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The DGLAP equation for the nonsinglet structure function 𝐹
NS
2
(𝑥, 𝑡) at LO is solved analytically at low 𝑥 by converting it into a

partial differential equation in two variables: Bjorken 𝑥 and 𝑡 (𝑡 = ln(𝑄2/Λ2) and then solved by two methods: Lagrange’s auxiliary
method and the method of characteristics. The two solutions are then compared with the available data on the structure function.
The relative merits of the two solutions are discussed calculating the chi-square with the used data set.

1. Introduction

Thestructure function of the nucleon has played a pivotal role
in our understanding of the internal composition of the pro-
ton and the neutron. Experimentally, structure functions are
extracted from the cross-sectionmeasurement in deep inelas-
tic scattering experiments, and theoretically in QCD, they
have a simple interpretation in terms of the quark and gluon
momentum distribution, a set of universal functions known
as parton distribution functions (PDFs). In DIS kinematics,
the PDFs are expressed in terms of two DIS variables: the
Bjorken 𝑥 and 𝑄2, the four momentum transferred squared.
These functions are not calculable inQCDbut their evolution
in 𝑄
2 is predicted by a set of integrodifferential equations

known as DGLAP equations [1–4]. The standard and most
widely used practice of studying these structure functions
is through the numerical solution of these equations [5, 6].
The 𝑥 dependence of the parton structure function at some
initial scale 𝑄

2

0
, which is small but not so small to break

down the perturbative picture, is assumed on various physical
grounds, and the parameters are then obtained from a global
fit of DIS data. It has been shown by numerous analyses that
these equations are in good agreement with the DIS data
over a wide kinematic region in 𝑥 and 𝑄2. They can explain

data down to very small value of 𝑄2 ∼ 1GeV2 traditionally
explained by soft processes and also for very small value of
𝑥 ≪ 1, where these equations are not expected to work.
These give credibility to theDGLAP approach as a proper one
to study the parton distribution functions. However, apart
from the numerical solution, there is the alternative approach
of studying analytically these equations at small 𝑥 and there
are many analytical solutions available in the literature [7–
10], and the present authors have also pursued such an
approach with reasonable phenomenological success [11–15].
The analytical approach, though not possible to carry out to
higher order in (𝑥,𝑄2) space due to the complex nature of the
splitting functions involved, is intuitive one in the sense that
the solutions obtained allow us to visualize their dependence
on the variables. In this paper, we study some analytical
solutions of the nonsinglet structure functions that is, the
flavour dependent contributions to the structure functions
considering the corresponding DGLAP evolution equations.
As is well known, the nonsinglet structure functions, in
DIS plays an important role for precise description of the
quark densities; it is comparatively easy because it is not
coupled to the singlet and the gluon and can be regarded
as a starting ground for the analysis of the other structure
functions. We convert the LO DGLAP equation which is
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an integrodifferential equation into a partial differential equa-
tion in the two variables (𝑥,𝑄2) by a Taylor series expansion
valid to be at low 𝑥. The resulting equation is then solved
analytically by two different methods: Lagrange’s auxiliary
method [16] and the method of characteristics [17, 18].

In earlier work, the DGLAP equation was solved approx-
imately by using either Lagrange’s method [11–13] or by the
method of characteristics [14, 15]. Besides that, the levels
of approximation were also different. The aim of the paper
is to make a detailed comparison of the predictions of the
two methods with two different levels of approximations. We
have highlighted above how the present work differs from the
earlier works.

The paper is organized as follows: in Section 2 we give the
formalism, Section 3 is devoted to discussion of the solutions
by comparison with the available data, and in Section 4 we
give our conclusion.

2. Formalism

The nonsinglet flavour dependent contribution is defined as

𝑞
NS

(𝑥, 𝑄
2
) = ∑

𝑖

(𝑞
𝑖
(𝑥, 𝑄
2
) − 𝑞
𝑖
(𝑥, 𝑄
2
)) , (1)

where 𝑞
𝑖
is the density of quark of 𝑖th flavour and the sum

run over all quark flavours. The corresponding nonsinglet
structure function is the charged weighed sum of these
densities multiplied by 𝑥. Since the gluon and the singlet
quark are flavour independent, the nonsinglet contribution
evolves independently in the DGLAP approach and is given
by [21]

𝜕𝑞
NS

(𝑥, 𝑄
2
)

𝜕𝑡
=

𝛼
𝑠
(𝑄
2
)

2𝜋
𝑃
NS
𝑞𝑞

⊗ 𝑞
NS

(𝑥
󸀠
, 𝑄
2
) , (2)

where 𝑡 = ln(𝑄2/Λ2) and 𝑃
NS
𝑞𝑞

are the splitting func-
tions which give the probability of radiating a parton with
momentum fraction 𝑥 from a partonwith highermomentum
fraction 𝑥󸀠. The symbol ⊗ stands for the convolution integral
with respect to the first variable 𝑥 defined as

(𝑓 ⊗ 𝑔) (𝑥) = ∫

1

𝑥

𝑑𝑦

𝑦
𝑓 (𝑦) 𝑔(

𝑥

𝑦
) . (3)

Using the explicit form of the splitting function 𝑃
NS
𝑞𝑞

=

𝐶
𝐹
((1 + 𝑧

2
)/(1 − 𝑧))

+
from [21] the evolution equation for the

nonsinglet structure function can be written as

𝜕𝐹
NS
2

(𝑥, 𝑡)

𝜕𝑡

=

𝐴
𝑓

𝑡
[ {3 + 4 ln (1 − 𝑥)} 𝐹NS

2
(𝑥, 𝑡)

+ 2∫

1

𝑥

𝑑𝑧

1 − 𝑧
{(1 + 𝑧

2
) 𝐹

NS
2

(
𝑥

𝑧
, 𝑡)

−2𝐹
NS
2

(𝑥, 𝑡) }] .

(4)

Here 𝐴
𝑓
= 4/3𝛽

0
and 𝛽

0
= 11 − (2/3)𝑛

𝑓
are QCD beta func-

tion at LO.
To simplify and reduce the integrodifferential equation to

a partial differential equation, we introduce a variable 𝑢 =

1 − 𝑧 and expand the argument 𝑥/𝑧 as

𝑥

𝑧
=

𝑥

1 − 𝑢
= 𝑥

∞

∑

𝑘=0

𝑢
𝑘
= 𝑥 + 𝑥

∞

∑

𝑘=1

𝑢
𝑘
. (5)

Using (5) we expand 𝐹NS
(𝑥/𝑧) in Taylor series as

𝐹
NS
2

(
𝑥

𝑧
, 𝑡) = 𝐹

NS
2

(𝑥, 𝑡) + 𝑥

∞

∑

𝑘=1

𝑢
𝑘
𝜕𝐹

NS
2

(𝑥, 𝑡)

𝜕𝑥

+

(𝑥∑
∞

𝑘=1
𝑢
𝑘
)
2

2!

𝜕
2
𝐹
NS
2

(𝑥, 𝑡)

𝜕𝑥
2

+ ⋅ ⋅ ⋅ .

(6)

The series (6) is convergent [11–15], and hence at small 𝑥, we
can approximate these by

𝐹
NS
2

(
𝑥

𝑧
, 𝑡) = 𝐹

NS
2

(𝑥, 𝑡) + 𝑥

∞

∑

𝑘=1

𝑢
𝑘
𝜕𝐹

NS
2

(𝑥, 𝑡)

𝜕𝑥
. (7)

Now putting (7) in (4) we get

𝜕𝐹
NS
2

(𝑥, 𝑡)

𝜕𝑡

=

𝐴
𝑓

𝑡
[ {3 + 4 ln (1 − 𝑥)} 𝐹NS

2
(𝑥, 𝑡)

+ 2∫

1

𝑥

𝑑𝑧

1 − 𝑧
(𝑧
2
− 1) 𝐹

NS
2

(𝑥, 𝑡)

+2∫

1

𝑥

𝑑𝑧

1 − 𝑧
(1 + 𝑧

2
)(𝑥

∞

∑

𝑘=1

𝑢
𝑘
)
𝜕𝐹

NS
2

(𝑥, 𝑡)

𝜕𝑥
] .

(8)

Carrying out the integration in 𝑧, we can write (8) as

𝜕𝐹
NS
2

(𝑥, 𝑡)

𝜕𝑡
−

𝐴
𝑓
𝑥

𝑡

𝜕𝐹
NS
2

(𝑥, 𝑡)

𝜕𝑥
[2 ln( 1

𝑥
) + (1 − 𝑥

2
)]

=

𝐴
𝑓

𝑡
[3 + 4 ln (1 − 𝑥) + (𝑥 − 1) (𝑥 + 3)] 𝐹NS

2
(𝑥, 𝑡) .

(9)

Equation (9) is a partial differential equation for the nonsin-
glet structure function 𝐹NS

2
(𝑥, 𝑡) with respect to the variables

𝑥 and 𝑡. Beyond its traditional use in 𝑡 evolution, it gives also
𝑥 evolution at small 𝑥. There are various methods for solving
the partial differential equation in two variables. We here
adopt the two different methods as mentioned in Section 1.

While performing the integration in 𝑧 and neglecting
terms O(𝑥2) and higher, we can also express (8) as

𝜕𝐹
NS
2

(𝑥, 𝑡)

𝜕𝑡
−

8𝐴
𝑓

3

𝑥

𝑡

𝜕𝐹
NS
2

(𝑥, 𝑡)

𝜕𝑥

=

𝐴
𝑓
{4 ln (1 − 𝑥) + 2𝑥}

𝑡
𝐹
NS
2

(𝑥, 𝑡) .

(10)
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This is what we get by considering

𝑥

∞

∑

𝑘=1

𝑢
𝑘
= 𝑥𝑢 = 𝑥 (1 − 𝑧) , considering 𝑘 = 1 only (11)

during integration.
We solve both the PDEs (9) and (10) with the two for-

malisms described here, the Lagrange’s method and method
of characteristics. Though both these PDEs are obtained
from the same equation (4), the levels of approximations are
different for both (9) and (10). We continue our discussion
for comparing the formalisms with the solutions derived by
solving (9) and (10).

2.1. Solution by the Method of Characteristics. Being a dif-
ferential equation in two variables, it requires two boundary
conditions for its solution. But usually we have only one
given boundary condition which is the nonperturbative 𝑥

distribution of the function at some initial scale 𝑄
2

0
. So,

the solutions obtained are not unique, but they give only a
range of solutions.This limitation can be avoided by adopting
the method of characteristics [17, 18]. From the theory of
differential equation, we know that most of the important
properties of the solution of (9) depend on the principal part
of the equation, that is, the left hand side in (9). But this
part is actually a total derivative along the solution of the
characteristic equation

𝑑𝑥 (𝑡)

𝑑𝑡
= −

𝐴
𝑓

𝑡
[2𝑥 ln( 1

𝑥
) + 𝑥] (12)

which gives the characteristic curve of (9). That is, along
the characteristic curve, which is a solution of (12), the
partial differential equation becomes an ordinary differential
equation, and then we can solve it with only one boundary
condition.

On using (12) in (9), the left hand side becomes an
ordinary derivative with respect to 𝑡, and the equation
becomes an ordinary differential equation:

𝑑𝐹
NS
2

(𝑥 (𝑡) , 𝑡)

𝑑𝑡
= 𝑐

NS
(𝑥 (𝑡) , 𝑡) 𝐹

NS
2

(𝑥 (𝑡) , 𝑡) , (13)

where

𝑐
NS

(𝑥 (𝑡) , 𝑡) =

𝐴
𝑓
{4 ln (1 − 𝑥 (𝑡)) + (𝑥 − 1) (𝑥 + 3)}

𝑡
. (14)

If the characteristic curve passes through a point (𝑥, 𝑡), that
is, 𝑥(𝑡) = 𝑥 in the 𝑥− 𝑡 space, we get the solution of (12) to be

ln ln( 𝑥

𝑥 (𝑡)
)

3𝛽0/8

= ln(𝑡
𝑡
) . (15)

If the characteristic curve cuts the initial curve 𝑡 = 𝑡
0
at a

point 𝑥(𝑡
0
) = 𝜏, then (15) gives

ln ln(𝑥
𝜏
)

3𝛽0/8

= ln 𝑡

𝑡
0

, (16)

so that,

𝜏 = 𝑥 exp (
𝑡
0

𝑡
)

8/3𝛽0

. (17)

Since (𝑥, 𝑡) is any point on the 𝑥− 𝑡 space, therefore dropping
the bars over 𝑥 and 𝑡, the equation of the characteristic is

𝑥 (𝑡) = 𝜏 exp( 𝑡

𝑡
0

)

8/3𝛽0

. (18)

Integrating (13) over 𝑡 from 𝑡
0
to 𝑡 along the characteristic

curve 𝑥(𝑡) (18), we get the solution for the nonsinglet
structure function 𝐹NS

2
(𝑥, 𝑡) as

𝐹
NS
2

(𝑥, 𝑡)

= 𝐹
NS
2

(𝜏) exp [ 8

3𝛽
0

{2 ln( 𝑡

𝑡
0

) ln𝑥 − 𝑥 ln( 𝑡

𝑡
0

)}] .

(19)

Equation (19) is the analytical solution for the nonsinglet
structure function of (9) within the present formalism. We
can also express it as

𝐹
NS
2

(𝑥, 𝑡) = 𝐹
NS
2

(𝜏) (
𝑡

𝑡
0

)

𝛼

, 𝛼 =
8

3𝛽
0

{2 ln𝑥 − 𝑥} . (20)

Using the same formalism for the PDE (10), we get the
characteristic equation as

𝑑𝑥 (𝑡)

𝑑𝑡
= −

8𝐴
𝑓

3

𝑥

𝑡
. (21)

Substituting (21) in (10), we get an ordinary differential
equation with respect to 𝑡,

𝑑𝐹
NS
2

(𝑥 (𝑡) , 𝑡)

𝑑𝑡
= 𝑐

NS
(𝑥 (𝑡) , 𝑡) 𝐹

NS
2

(𝑥 (𝑡) , 𝑡) , (22)

where

𝑐
NS

(𝑥 (𝑡) , 𝑡) =

𝐴
𝑓
{4 ln (1 − 𝑥 (𝑡)) + 2𝑥 (𝑡)}

𝑡
. (23)

Solving (22) along the characteristic curve, in a similar way
we get a different formof solution for the nonsinglet structure
function 𝐹NS

2
(𝑥, 𝑡) as

𝐹
NS
2

(𝑥, 𝑡)

= 𝐹
NS
2

(𝜏) exp[ 3

4𝐴
𝑓

𝑥((
𝑡

𝑡
0

)

8𝐴𝑓/3

− 1)

−
3

2𝐴
𝑓

{

∞

∑

𝑘=1

𝑥
𝑘

𝑘
2
((

𝑡

𝑡
0

)

8𝐴𝑓𝑘/3

− 1)}]

(24)

which can be expressed also as

𝐹
NS
2

(𝑥, 𝑡) = 𝐹
NS
2

(𝜏) (
𝑡

𝑡
0

)

𝛽

, (25)
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where

𝛽 =
1

ln (𝑡/𝑡
0
)
[

3

4𝐴
𝑓

𝑥((
𝑡

𝑡
0

)

8𝐴𝑓/3

− 1)

−
3

2𝐴
𝑓

{

∞

∑

𝑘=1

𝑥
𝑘

𝑘
2
((

𝑡

𝑡
0

)

8𝐴𝑓𝑘/3

− 1)}] .

(26)

Equations (19) and (24) are the two analytical solutions of
(9) and (10), which are obtained from the same evolution
equation (4) with different level of approximations.

2.2. Solution by the Lagrange’s Auxiliary Method. To solve (9)
by the Lagrange’s auxiliarymethod [16], wewrite the equation
in the form

𝑄 (𝑥, 𝑡)
𝜕𝐹

NS
2

(𝑥, 𝑡)

𝜕𝑡
+ 𝑃 (𝑥, 𝑡)

𝜕𝐹
NS
2

(𝑥, 𝑡)

𝜕𝑥
= 𝑅 (𝑥, 𝑡, 𝐹

NS
2
) ,

(27)

where

𝑃 (𝑥, 𝑡) = −𝐴
𝑓
𝑥 [2 ln( 1

𝑥
) + (1 − 𝑥

2
)] , (28)

𝑄 (𝑥, 𝑡) = 𝑡, (29)

𝑅 (𝑥, 𝑡, 𝐹
NS
2
) = 𝑅
󸀠
(𝑥) 𝐹

NS
2

(𝑥, 𝑡) (30)

with

𝑅
󸀠
(𝑥) = 𝐴

𝑓 [3 + 4 ln (1 − 𝑥) + (𝑥 − 1) (𝑥 + 3)] . (31)

The general solution of (27) is obtained by solving the
following auxiliary system of ordinary differential equations

𝑑𝑥

𝑃 (𝑥)
=

𝑑𝑡

𝑄 (𝑡)
=

𝑑𝐹
NS
2

(𝑥, 𝑡)

𝑅 (𝑥, 𝑡, 𝐹
NS
2

(𝑥, 𝑡))
. (32)

If 𝑢(𝑥, 𝑡, 𝐹NS
2
) = 𝐶

1
and V(𝑥, 𝑡, 𝐹NS

2
) = 𝐶

2
are the two inde-

pendent solutions of (30), then in general, the solution of (27)
is

𝐹 (𝑢, V) = 0, (33)

where 𝐹 is an arbitrary function of 𝑢 and V.
Solving the auxiliary system, we get

𝑢 (𝑥, 𝑡, 𝐹
NS
2
) = 𝑡𝑋

NS
(𝑥) ,

V (𝑥, 𝑡, 𝐹
NS
2
) = 𝐹

NS
2

(𝑥, 𝑡) 𝑌
NS

(𝑥) .

(34)

The functions𝑋NS
(𝑥) and 𝑌NS

(𝑥) are defined as

𝑋
NS

(𝑥) = exp [−∫ 𝑑𝑥

𝑃 (𝑥)
] , (35)

𝑌
NS

(𝑥) = exp[−∫ 𝑅
󸀠
(𝑥)

𝑃 (𝑥)
𝑑𝑥] . (36)

The explicit analytical form of 𝑋NS
(𝑥) in the leading (1/𝑥)

approximation is [22, 23]

𝑋
NS

(𝑥) = exp [−1
2
log 󵄨󵄨󵄨󵄨log𝑥

󵄨󵄨󵄨󵄨] .
(37)

In this approach we try to find a specific solution that satisfies
some physical conditions on the structure function. Such a
solution can be extracted from the combination of 𝑢 and V
linear in 𝐹NS

2
,

𝑢 + 𝛼V = 𝛽, (38)

where 𝛼 and 𝛽 are two quantities to be determined from the
boundary conditions on 𝐹

NS
2

. The two physically plausible
boundary conditions are

𝐹
NS
2

(𝑥, 𝑡) = 𝐹
NS
2

(𝑥, 𝑡
0
) at some low 𝑡 = 𝑡

0
, (39)

𝐹
NS
2

(1, 𝑡) = 0 for any 𝑡. (40)

The first one corresponds to a nonperturbative input at some
low momentum scale, and the second one corresponds to
large𝑥 behaviour of any structure function at anymomentum
transfer consistent with constituent quark counting rules.
These two boundary conditions leads us to

𝑡
0
𝑋

NS
(𝑥) + 𝛼𝐹

NS
2

(𝑥, 𝑡
0
) 𝑌

NS
(𝑥) = 𝛽, (41)

𝑡𝑋
NS

(1) = 𝛽. (42)

The term 𝑌
NS
(1) does not appear in (42) due to (40). With

these boundary conditions, the solution of (27) takes the
form

𝐹
NS
2

(𝑥, 𝑡) = 𝐹
NS
2

(𝑥, 𝑡
0
) (

𝑡

𝑡
0

)

[𝑋
NS

(𝑥) − 𝑋
NS

(1)]

[𝑋
NS

(𝑥) − (𝑡/𝑡
0
)𝑋

NS
(1)]

.

(43)

From (37) we know

𝑋
NS

(1) ≈ 0. (44)

Hence, we get

𝐹
NS
2

(𝑥, 𝑡) = 𝐹
NS
2

(𝑥, 𝑡
0
) (

𝑡

𝑡
0

) . (45)

This gives the 𝑡 evolution for 𝐹NS
2
(𝑥, 𝑡), nonsinglet structure

function in LO at small 𝑥.
In a similar way when we solve (10) by the Lagrange’s

method we write that equation in a form

𝑄 (𝑥, 𝑡)
𝜕𝐹

NS
2

(𝑥, 𝑡)

𝜕𝑡
+ 𝑃 (𝑥, 𝑡)

𝜕𝐹
NS
2

(𝑥, 𝑡)

𝜕𝑥
= 𝑅 (𝑥, 𝑡, 𝐹

NS
2
) ,

(46)

where

𝑃 (𝑥, 𝑡) = −

8𝐴
𝑓

3
𝑥,

𝑄 (𝑥, 𝑡) = 𝑡,

𝑅 (𝑥, 𝑡, 𝐹
NS
2
) = 𝑅
󸀠
(𝑥) 𝐹

NS
2

(𝑥, 𝑡)

(47)
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Figure 1: Nonsinglet structure function 𝐹NS
2
(𝑥, 𝑄
2
) as a function of 𝑥 at different fixed 𝑄2 according to (19) and (45). Data from [19, 20].

with

𝑅
󸀠
(𝑥) = 𝐴

𝑓 [4 ln (1 − 𝑥) + 2𝑥] . (48)

Solution of this ODE (46) then leads us to a solution for the
nonsinglet structure function 𝐹NS

2
as given below

𝐹
NS
2

(𝑥, 𝑡) = 𝐹
NS
2

(𝑥, 𝑡
0
) (

𝑡

𝑡
0

)

[𝑋
NS

(1) − 𝑋
NS

(𝑥)]

[(𝑡/𝑡
0
)𝑋

NS
(1) − 𝑋

NS
(𝑥)]

.

(49)

Here, 𝑋NS
(𝑥) as defined by (35) using 𝑃(𝑥, 𝑡) = −8𝐴

𝑓
𝑥/3

gives

𝑋
NS

(𝑥) = exp [75
32

ln (𝑥)] . (50)

But in this case,

𝑋
NS

(1) = 1. (51)

Defining ℎ(𝑥, 𝑡) as

ℎ (𝑥, 𝑡) =

[𝑋
NS

(1) − 𝑋
NS

(𝑥)]

[(𝑡/𝑡
0
)𝑋

NS
(1) − 𝑋

NS
(𝑥)]

. (52)

Equation (49) becomes,

𝐹
NS
2

(𝑥, 𝑡) = 𝐹
NS
2

(𝑥, 𝑡
0
) (

𝑡

𝑡
0

)ℎ (𝑥, 𝑡) (53)

with ℎ(𝑥, 𝑡) ≤ 1 for 𝑡 ≥ 𝑡
0
. Here ℎ(𝑥, 𝑡)measures deviation of

(53) from solution given by (45).
We note that the apparent absence of log𝑥 dependence

in the solution (53) is due to algebraic cancellation and
boundary condition (40).

Equations (45) and (53) are the solutions of (9) and
(10). They are obtained from the same evolution equation
(4) as noted earlier. In the next section, we consider their
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Figure 2: Nonsinglet structure function 𝐹NS
2
(𝑥, 𝑄
2
) as a function of 𝑄2 at different fixed 𝑥 according to (19) and (45). Data from [19, 20].

phenomenological utility with respect to each other vis-a-
vis the available experimental data. Then we perform a chi-
square test to test their compatibility with the data.

3. Results and Discussion

We have obtained two sets of analytical solutions of the
same DGLAP evolution equation by applying two different
methods, having different levels of approximations. The
question we have to address is: which solution is valid in
which kinematic region? As well as which set of solution is
more compatible with data and why? We test the validity of
the solutions by comparing them directly with the available
data on the nonsinglet structure function. We also compare
our solutions with the MSTW 08 numerical solutions to test
the analytical methods. Experiments usually publish the data

only for the proton and the neutron structure functions 𝐹𝑝
2

and 𝐹
𝑛

2
. So the nonsinglet structure function data is to be

extracted from these data using the formula𝐹NS
2

= 3(𝐹
𝑝

2
−𝐹
𝑛

2
).

While deriving the data for the nonsinglet, the statistical
and systematic errors of the individual data are added in
quadrature, so that maximum possible errors come out. For
our analysis we use the data from [19, 20, 24]. To evolve our
solutions, we use the MRST2004 [25] input and MSTW2008
[26] input for two different representations of our solutions.

For comparison at first we take the solutions (19) and
(45). In Figure 1, we plot the solutions given by (19) and (45)
as functions of 𝑥 at some representative fixed 𝑄2, where the
data in the said references are given. Though we explore the
range of 0.03 ≤ 𝑥 ≤ 0.25 and 1.5GeV2 ≤ 𝑄

2
≤ 55GeV2

for CERN-WA25 experiment and 0.03 ≤ 𝑥 ≤ 0.25 and
7GeV2 ≤ 𝑄

2
≤ 90GeV2 for EMC collaboration data, due to
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Figure 3: Nonsinglet structure function 𝐹NS
2
(𝑥, 𝑄
2
) as a function of 𝑥 at different fixed 𝑄2 according to (24) and (53). Data from [19, 20].

very few experimental data points available, we plot here the
data within the range 1.5GeV2 ≤ 𝑄

2
≤ 20GeV2 only. In the

given range, we see that in the small𝑄2 region 1GeV2 ≤ 𝑄
2
≤

10GeV2 the solution by the Lagrange’s method (see (45))
gives a better description of the experimental data than the
solution by the method of characteristics (see (19)), whereas
in the larger𝑄2 region 11GeV2 ≤ 𝑄

2
≤ 20GeV2 the opposite

is true.
In Figure 2, we plot the solutions (i.e., (19) and (45))

as functions of 𝑄2 at different fixed 𝑥 and compare them
with the same set of data. Here also we notice the same
pattern consistent with the observation in the first graph.
The solution by the Lagrange’s method (45) is good for low
values of 𝑄2 ≤ 10GeV2, particularly for the data from
the CERN-WA25 [19], whereas the second solution by the
method of characteristics (19) represents correctly the data

which fall comparatively on the high 𝑄
2
≥ 10GeV2 side,

more particularly the data from EMC [20]. Comparing both
the graphs we see that this observation, that is, validity of the
solution (45) in the low𝑄

2
≤ 10GeV2 region and that of (19)

in the region𝑄2 ≥ 10GeV2, is true for all values of 𝑥 explored
here.

In Figure 3, we plot the solutions given by (24) and (53)
as functions of 𝑥 at some fixed𝑄2 values with the same set of
data. In the given range of data we see that both our analytical
solutions are no more compatible with the experimental data
beyond 𝑄2 ≥ 11GeV2 for the entire 𝑥 range 0.03 ≤ 𝑥 ≤ 0.25

explored here. Similarly in Figure 4, the solutions (24) and
(53) are plotted as function of𝑄2 against some fixed 𝑥 values.
From Figure 4 also we see that our analytical solutions (24)
and (53) do not follow the trend of data beyond 𝑥 ≥ 0.175 for
the entire 𝑄2 range explored.
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Figure 4: Nonsinglet structure function 𝐹NS
2
(𝑥, 𝑄
2
) as function of 𝑄2 at different fixed 𝑥 according to (24) and (53). Data from [19, 20].

In Figures 5 and 6, we plot our set of solutions (19), (45),
(24), and (53), respectively, with the BCDMS data where we
explore a relatively high 𝑥 range, 0.07 ≤ 𝑥 ≤ 0.75, and
the corresponding 𝑄2 range is also high 13GeV2 ≤ 𝑄

2
≤

63GeV2. Herewe use the recentMSTW08 input to evolve our
solutions and we compare our solutions with the numerical
solution by MSTW08 [27]. We compare our solutions as a
function of 𝑥 for different 𝑄2 values. From the figure we
observe that though our both sets of solutions follow the
general trend of data and agree with the numerical solutions
towards low 𝑥 range, as we approach the high 𝑥 range our
solutions overshoot both data and the numerical solutions.

From the above observations we can conclude that for
both the set of analytical solutions (19), (45), (24), and (53)
obtained from the two PDEs (9) and (10), towards low 𝑥

they converge to the same limit, that is, they predict the
same behaviour at low value of 𝑥. In case of the solutions
obtained by Lagrange’s method given by (45) and (53), while
(45) shows logarithmic growth with the increasing𝑄2 values,
the other solution given by (53) remains almost constant for
increasing 𝑄2 for fixed 𝑥 values. The solutions by method of
characteristics (19) and (24), also show very slow growth with
increasing 𝑄2 for fixed 𝑥 values.

Wenote that (10) is less accurate than (9), since the infinite
sum in (5) is approximated by only two terms as shown in (11)
to derive it and so are the solutions (24) and (53). It is also to
be noted that (9) and (10) can be considered equivalent to the
accuracy for O(𝑥2). Similarly the solutions (19) and (45) are
also equivalent to the accuracy forO(𝑥2). But for the solutions
(24) and (53), due to the neglect of few terms in (10) they do
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not require to be so. The solutions (19) and (24) appear to
be different. The reason of difference is due to the fact that
the solution (24) was obtained after neglecting a few terms
O(𝑥2) in (10). Similar is the case for (45) and (53).

For a quantitative estimate of the goodness of fit between
the solutions of the two analytical methods with the exper-
imental data, we also do an 𝜒

2 testing using the formula
𝜒
2
= ∑
𝑖
((𝑋th − 𝑋ex)/𝜎𝑖)

2, where the theoretical (𝑋th) and
experimental (𝑋ex) values are for the same 𝑖th data point with
estimated uncertainty𝜎

𝑖
. Usually if𝜒2/d.o.f is notmuch larger

than one, the theoretical calculations are considered as being
statistically consistent with data. In Table 1. we show that the
𝜒
2
/d.o.f values are consistent with the above discussion for

the first set of solutions given by (19) and (45). The numbers

Table 1: 𝜒2/d.o.f. for (19) and (45).

Method Inputs CERN-WA25 EMC
collaboration

Method of
characteristics MRST2004 9.69 1.48

Lagrange’s
method MRST2004 1.47 10.86

Table 2: 𝜒2/d.o.f. for (24) and (53).

Method Inputs CERN-WA25 EMC
collaboration

Method of
characteristics MRST2004 5.52 4.23

Lagrange’s
method MRST2004 4.04 7.06

of degrees of freedom for the experiments CERN WA25 and
EMC are 20 and 32, respectively.

We also compare (24) and (53), the two solutions of
(10), obtained by method of characteristics and Lagrange’s
method, respectively. 𝜒2/d.o.f. values for the two solutions
obtained by solving the PDE (10) are shown in Table 2. The
𝜒
2 analysis also supports our above discussion.
Let us discuss the compatibility or otherwise of the

present work with those of López and Ynduráin [28] and
Martin [29]. For small 𝑥, Lopez-Yndurain and Martin-
like analysis leads to the following behaviour of nonsinglet
structure function:

𝐹
NS
2

(𝑥, 𝑡) ∼ 𝑥
𝜆
(
𝑡

𝑡
0

)

−𝑑NS(1−𝜆)

, (54)

where 𝜆 < 1 and 𝑑NS is anomalous dimension given as

𝑑NS (𝑛) =
ΓNS (𝑛)

2𝛽
0

. (55)

This is to be compared with (19), (24), (45), and (53) above.
Using the standard MRST [25] PDF,

𝐹
NS
2

(𝑥, 𝑡
0
) ∼ 𝑥
𝜆
, (56)

where 𝜆 = 0.5.Thus except for the factor 𝑥𝜆, which originates
from the input [25], the present work differs from that of
López and Ynduráin [28] and Martin [29]. In a sense it is
close to the work of Vovk et al. [30], where the effective 𝜆 is
𝑥 dependent contrary to the expectations of López, Ynduráin
and Martin.

4. Conclusion

TheTaylor approximatedDGLAP equation for the nonsinglet
structure function, which turns out to be a partial differential
equation in two variables, is solved analytically by two
different methods: the Lagrange’s auxiliary method and the
method of characteristics. However, further approximations
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in the partial differential equation give us a rather unsat-
isfactory result. The solutions are valid vis-a-vis the data
and numerical solution in two different region of 𝑥 and
𝑄
2: the Lagrange’s method solution for the lower 𝑥 and 𝑄

2

range and the method of characteristics solution for the
low 𝑥 and comparatively high 𝑄

2 range. Considering the
solutions together, they are valid in a wide range of 𝑄2 as
discussed. This demonstrated that two powerful methods of
solving differential equations can be applied in the DGLAP
framework to obtain analytical solutions. Results of these
methods to the polarized structure function 𝑔

NS
1
(𝑥, 𝑡) have

been reported elsewhere [31].
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