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The DGLAP equation for the nonsinglet structure function F*(x,t) at LO is solved analytically at low x by converting it into a
partial differential equation in two variables: Bjorken x and ¢ (¢t = In(Q*/A?) and then solved by two methods: Lagrange’s auxiliary
method and the method of characteristics. The two solutions are then compared with the available data on the structure function.

The relative merits of the two solutions are discussed calculating the chi-square with the used data set.

1. Introduction

The structure function of the nucleon has played a pivotal role
in our understanding of the internal composition of the pro-
ton and the neutron. Experimentally, structure functions are
extracted from the cross-section measurement in deep inelas-
tic scattering experiments, and theoretically in QCD, they
have a simple interpretation in terms of the quark and gluon
momentum distribution, a set of universal functions known
as parton distribution functions (PDFs). In DIS kinematics,
the PDFs are exgressed in terms of two DIS variables: the
Bjorken x and Q°, the four momentum transferred squared.
These functions are not calculable in QCD but their evolution
in Q* is predicted by a set of integrodifferential equations
known as DGLAP equations [1-4]. The standard and most
widely used practice of studying these structure functions
is through the numerical solution of these equations [5, 6].
The x dependence of the parton structure function at some
initial scale Qé, which is small but not so small to break
down the perturbative picture, is assumed on various physical
grounds, and the parameters are then obtained from a global
fit of DIS data. It has been shown by numerous analyses that
these equations are in good agreement with the DIS data
over a wide kinematic region in x and Q*. They can explain

data down to very small value of Q* ~ 1GeV? traditionally
explained by soft processes and also for very small value of
x < 1, where these equations are not expected to work.
These give credibility to the DGLAP approach as a proper one
to study the parton distribution functions. However, apart
from the numerical solution, there is the alternative approach
of studying analytically these equations at small x and there
are many analytical solutions available in the literature [7-
10], and the present authors have also pursued such an
approach with reasonable phenomenological success [11-15].
The analytical approach, though not possible to carry out to
higher order in (x, Q®) space due to the complex nature of the
splitting functions involved, is intuitive one in the sense that
the solutions obtained allow us to visualize their dependence
on the variables. In this paper, we study some analytical
solutions of the nonsinglet structure functions that is, the
flavour dependent contributions to the structure functions
considering the corresponding DGLAP evolution equations.
As is well known, the nonsinglet structure functions, in
DIS plays an important role for precise description of the
quark densities; it is comparatively easy because it is not
coupled to the singlet and the gluon and can be regarded
as a starting ground for the analysis of the other structure
functions. We convert the LO DGLAP equation which is



an integrodifferential equation into a partial differential equa-
tion in the two variables (x, Q%) by a Taylor series expansion
valid to be at low x. The resulting equation is then solved
analytically by two different methods: Lagrange’s auxiliary
method [16] and the method of characteristics [17, 18].

In earlier work, the DGLAP equation was solved approx-
imately by using either Lagrange’s method [11-13] or by the
method of characteristics [14, 15]. Besides that, the levels
of approximation were also different. The aim of the paper
is to make a detailed comparison of the predictions of the
two methods with two different levels of approximations. We
have highlighted above how the present work differs from the
earlier works.

The paper is organized as follows: in Section 2 we give the
formalism, Section 3 is devoted to discussion of the solutions
by comparison with the available data, and in Section 4 we
give our conclusion.

2. Formalism

The nonsinglet flavour dependent contribution is defined as
¢ (xQ) =Y (a(x»Q)-3(xQ)),

where g; is the density of quark of ith flavour and the sum
run over all quark flavours. The corresponding nonsinglet
structure function is the charged weighed sum of these
densities multiplied by x. Since the gluon and the singlet
quark are flavour independent, the nonsinglet contribution
evolves independently in the DGLAP approach and is given
by [21]

00" (@) _a(Q) s nss o

__S 2
ot T Fo ®4 (x,Q), @
where + = In(Q*/A?) and qu\;s are the splitting func-

tions which give the probability of radiating a parton with
momentum fraction x from a parton with higher momentum
fraction x'. The symbol ® stands for the convolution integral
with respect to the first variable x defined as

(f®g)(x)=L1 d7yf(y)9<§)' (3)

Using the explicit form of the splitting function P;\;S =

Cp((1+ 2/ - z)), from [21] the evolution equation for the
nonsinglet structure function can be written as

OEY (x,1)
ot

[{3+4ln(1 — 0} B (x, 1)

' dz 2 Ns<x )
2 1 E —,t
" Ll—z{( +Z) 2 z

2B (x,1) H .

(4)
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Here Ay = 4/3f3, and 3, = 11 - (2/3)nf are QCD beta func-
tion at LO.

To simplify and reduce the integrodifferential equation to
a partial differential equation, we introduce a variable u =
1 — z and expand the argument x/z as

x x (o] [ee)

k
-1 =xZuk:x+xZu. (5)
z -u k=0 k=1

Using (5) we expand FN(x/z) in Taylor series as

® L OFNS (x,1)
FNS<f,t> = NS Xt +x uk;
2 \z > (o0 1;1 0x
2
(202, u*) °FNS (x,1)
+ +
21 O0x?

(6)

The series (6) is convergent [11-15], and hence at small x, we
can approximate these by

NS (X NS . kaFé\IS(x’t)
F2 (;,t) =F (X,t)+xkzz;u T (7)
Now putting (7) in (4) we get
OF) (x,1)
ot
A
- Tf [ 3+4In(1-x)} B (x,1)
' dz 2 NS
+2L 12 (z - 1)F2 (x, 1)
1 dz OEY (x,t)
+2L 1-2 Z(1+z )( Z >
(8)
Carrying out the integration in z, we can write (8) as
OFNS (x,t) A fx OF)S (x,t
s (x )— f 2 )[zln(l>+(l—x2)]
ot t ox x ©)

A
- Tf[3+41n(1—x)+(x—1)(x+3)]F§S(x,t).

Equation (9) is a partial differential equation for the nonsin-
glet structure function Fy $(x, t) with respect to the variables
x and t. Beyond its traditional use in ¢ evolution, it gives also
x evolution at small x. There are various methods for solving
the partial differential equation in two variables. We here
adopt the two different methods as mentioned in Section 1.

While performing the integration in z and neglecting
terms O(x?) and higher, we can also express (8) as

OF,° (x,1) 8Asx0F" (x,1)
ot 3t ox
Af{4ln(1 —-x)+2x}

(10)
S(x,1).
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This is what we get by considering

(e8]
xZuk =xu=x(1-z), consideringk=1only (11)
k=1

during integration.

We solve both the PDEs (9) and (10) with the two for-
malisms described here, the Lagrange’s method and method
of characteristics. Though both these PDEs are obtained
from the same equation (4), the levels of approximations are
different for both (9) and (10). We continue our discussion
for comparing the formalisms with the solutions derived by
solving (9) and (10).

2.1. Solution by the Method of Characteristics. Being a dif-
ferential equation in two variables, it requires two boundary
conditions for its solution. But usually we have only one
given boundary condition which is the nonperturbative x
distribution of the function at some initial scale Qé. So,
the solutions obtained are not unique, but they give only a
range of solutions. This limitation can be avoided by adopting
the method of characteristics [17, 18]. From the theory of
differential equation, we know that most of the important
properties of the solution of (9) depend on the principal part
of the equation, that is, the left hand side in (9). But this
part is actually a total derivative along the solution of the
characteristic equation

M:—ﬁ [2xln<l)+x] (12)
dt t X

which gives the characteristic curve of (9). That is, along
the characteristic curve, which is a solution of (12), the
partial differential equation becomes an ordinary differential
equation, and then we can solve it with only one boundary
condition.

On using (12) in (9), the left hand side becomes an
ordinary derivative with respect to ¢, and the equation
becomes an ordinary differential equation:

NS
W S 0B (0,0, (1)

where

Af{4ln(1—x(t))+(x—1)(x+3)}
t

M (x®),t) = . (14)

If the characteristic curve passes through a point (x, t), that
is, x(t) = x in the x — t space, we get the solution of (12) to be

= \3P/8 s
In ln<i> :ln<£>. (15)
x (t) t

If the characteristic curve cuts the initial curve t = ¢, at a
point x(t,) = 7, then (15) gives

—\3Bo/8 z
In ln<f> =1In 1, (16)
T 0

so that,

tO )8/3ﬁ0

T =§exp(? 17)

Since (X, t) is any point on the x —t space, therefore dropping
the bars over x and ¢, the equation of the characteristic is

8/3p,
x(t) = Texp(t—> . (18)
0

Integrating (13) over ¢ from £, to t along the characteristic
curve x(t) (18), we get the solution for the nonsinglet
structure function Ff S(x,t) as

B (x,1)

= Fé\ls (1) exp [% {21n<é>lnx—xln<i)”.

(19)

Equation (19) is the analytical solution for the nonsinglet
structure function of (9) within the present formalism. We
can also express it as

t\" 8
Fﬁs(x,t)zpfs(r)<—) , a=—{2Ilnx-x}. (20)
ty 3B,
Using the same formalism for the PDE (10), we get the
characteristic equation as
dx(t) _ 84Arx 1)
dt 3t

Substituting (21) in (10), we get an ordinary differential
equation with respect to t,

dEy® (x (1),1)

i MEm,0E (xm),n, @2

where

(23)

NS (x(0),1) = Af{41n(l—;€(t))+2x(t)}.

Solving (22) along the characteristic curve, in a similar way
we get a different form of solution for the nonsinglet structure
function Fé\l S(x,t) as

B (x,1)

= Fé\l S (1) exp

() )
e (Rl

: (24)

which can be expressed also as

B
BE® (x,t) = B* (1) (f) , (25)
0



1 3 t\¥?
Tl vl (T M)
(26)

SR

Equations (19) and (24) are the two analytical solutions of
(9) and (10), which are obtained from the same evolution
equation (4) with different level of approximations.

2.2. Solution by the Lagrange’s Auxiliary Method. To solve (9)
by the Lagrange’s auxiliary method [16], we write the equation
in the form

Q(x,t)% +P(x,t)% =R(x,tF"),

(27)

where
P(x,t)=—Afx[21n<§>+(l—x2)], (28)
Qx.t) = t, (29)
R(xF°) =R (x) B (x,1) (30)

with

R(x)=A;[3+4ln(1-x)+(x-1)(x+3)]. ()

The general solution of (27) is obtained by solving the
following auxiliary system of ordinary differential equations

dx dt
P(x) Q@)

dF) (x,t)

R(x,t,F)S (x,1)) (32)

If u(x, t, F;IS) = C; and v(x,t, ngs) = C, are the two inde-
pendent solutions of (30), then in general, the solution of (27)
is

F (u,v) =0, (33)

where F is an arbitrary function of u and v.
Solving the auxiliary system, we get

u (x, t, F;IS) =tx™s (%),

(34)
v(x, t,F;jS) = F;\]S (x, 1) YN (x).
The functions X™°(x) and Y™°(x) are defined as
NS _ _ d_x ]
X (x) = exp [ J ) (35)

NS () = exp [_ J I;T(j:))dx] . (36)
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The explicit analytical form of XNS(x) in the leading (1/x)
approximation is [22, 23]

XM (x) = exp [—% log |10gx|] . (37)

In this approach we try to find a specific solution that satisfies
some physical conditions on the structure function. Such a
solution can be extracted from the combination of u and v
linear in Fé\l s,

u+av=_p, (38)

where « and f3 are two quantities to be determined from the

boundary conditions on F)°. The two physically plausible
boundary conditions are

N (1) = BY° (x,t,)  at some low ¢ = (39)

F;IS (I,t)=0 for any t. (40)

The first one corresponds to a nonperturbative input at some
low momentum scale, and the second one corresponds to
large x behaviour of any structure function at any momentum
transfer consistent with constituent quark counting rules.
These two boundary conditions leads us to

t X" (x) + aF)° (x,1)) Y™ (x) = B, (41)
tX™ (1) = B. (42)

The term Y™*(1) does not appear in (42) due to (40). With
these boundary conditions, the solution of (27) takes the
form

NS (x,£) = FNS (x, t0)< t ) [XNS( )‘XNS(I)]
[

XNS (x) = (t/ty) XNS ()]

(43)
From (37) we know
x¥ (1) =o. (44)
Hence, we get
t
B® (x,t) = B® (x, t,) <t—) ) (45)
0

This gives the ¢ evolution for F;IS (x, t), nonsinglet structure
function in LO at small x.

In a similar way when we solve (10) by the Lagrange’s
method we write that equation in a form

OE)® (x,1) OF)® (x,t)

_ NS
Qe t) == ==+ P(xt) I =R(x,tF"),
(46)
where
8A
P(x,t) = —fo,
Qx,t) =t, (47)

R(xtE") =R (x) B (x,1)
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FIGURE 1: Nonsinglet structure function Ffs(x, Q?) as a function of x at different fixed Q? according to (19) and (45). Data from [19, 20].

with
R'(x) = A [4In(1-x) +2x]. (48)

Solution of this ODE (46) then leads us to a solution for the
nonsinglet structure function F'° as given below
[XNS (1) _ XNS (x)]

t/ty) XNS (1) = XNS (x)]”
(49)

Fé\js (x,1) :Fé\ls(x,to)<é> T

Here, X™*(x) as defined by (35) using P(x,t) = —8A ;x/3
gives

xS (x) = exp [E In (x)] . (50)
32
But in this case,

X)) =1. (51)

Defining h(x, t) as
XNS (1) = xNS
RPN GOt ) EERS
[(t/9) XN® (1) = XN ()]
Equation (49) becomes,
EYS (1) = NS (. 1,) (;) h(x,t) (53)
0

with h(x,t) < 1 for t > t,. Here h(x, t) measures deviation of
(53) from solution given by (45).

We note that the apparent absence of log x dependence
in the solution (53) is due to algebraic cancellation and
boundary condition (40).

Equations (45) and (53) are the solutions of (9) and
(10). They are obtained from the same evolution equation
(4) as noted earlier. In the next section, we consider their
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FIGURE 2: Nonsinglet structure function Fi\ls (x, Q%) as a function of Q? at different fixed x according to (19) and (45). Data from [19, 20].

phenomenological utility with respect to each other vis-a-
vis the available experimental data. Then we perform a chi-
square test to test their compatibility with the data.

3. Results and Discussion

We have obtained two sets of analytical solutions of the
same DGLAP evolution equation by applying two different
methods, having different levels of approximations. The
question we have to address is: which solution is valid in
which kinematic region? As well as which set of solution is
more compatible with data and why? We test the validity of
the solutions by comparing them directly with the available
data on the nonsinglet structure function. We also compare
our solutions with the MSTW 08 numerical solutions to test
the analytical methods. Experiments usually publish the data

only for the proton and the neutron structure functions F/
and F}. So the nonsinglet structure function data is to be
extracted from these data using the formula F)® = 3(F/ ~F}).
While deriving the data for the nonsinglet, the statistical
and systematic errors of the individual data are added in
quadrature, so that maximum possible errors come out. For
our analysis we use the data from [19, 20, 24]. To evolve our
solutions, we use the MRST2004 [25] input and MSTW2008
[26] input for two different representations of our solutions.

For comparison at first we take the solutions (19) and
(45). In Figure 1, we plot the solutions given by (19) and (45)
as functions of x at some representative fixed Q*, where the
data in the said references are given. Though we explore the
range of 0.03 < x < 0.25and 1.5GeV? < Q* < 55GeV?
for CERN-WA25 experiment and 0.03 < x < 0.25 and
7GeV? < Q% < 90 GeV? for EMC collaboration data, due to
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very few experimental data points available, we plot here the
data within the range 1.5 GeV> < Q* < 20 GeV? only. In the
given range, we see that in the small Q2 region 1 GeV? < Q2 <
10 GeV? the solution by the Lagrange’s method (see (45))
gives a better description of the experimental data than the
solution by the method of characteristics (see (19)), whereas
in the larger Q” region 11 GeV?* < Q* < 20 GeV* the opposite
is true.

In Figure 2, we plot the solutions (i.e., (19) and (45))
as functions of Q at different fixed x and compare them
with the same set of data. Here also we notice the same
pattern consistent with the observation in the first graph.
The solution by the Lagrange’s method (45) is good for low
values of Q*° < 10GeV?, particularly for the data from
the CERN-WA25 [19], whereas the second solution by the
method of characteristics (19) represents correctly the data

which fall comparatively on the high Q* > 10 GeV? side,
more particularly the data from EMC [20]. Comparing both
the graphs we see that this observation, that is, validity of the
solution (45) in the low Q* < 10 GeV? region and that of (19)
in the region Q* > 10 GeV?, is true for all values of x explored
here.

In Figure 3, we plot the solutions given by (24) and (53)
as functions of x at some fixed Q* values with the same set of
data. In the given range of data we see that both our analytical
solutions are no more compatible with the experimental data
beyond Q* > 11 GeV* for the entire x range 0.03 < x < 0.25
explored here. Similarly in Figure 4, the solutions (24) and
(53) are plotted as function of Q? against some fixed x values.
From Figure 4 also we see that our analytical solutions (24)
and (53) do not follow the trend of data beyond x > 0.175 for
the entire Q” range explored.
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FIGURE 4: Nonsinglet structure function Ff $(x, Q) as function of Q? at different fixed x according to (24) and (53). Data from [19, 20].

In Figures 5 and 6, we plot our set of solutions (19), (45),
(24), and (53), respectively, with the BCDMS data where we
explore a relatively high x range, 0.07 < x < 0.75, and
the corresponding Q* range is also high 13 GeV* < Q* <
63 GeV?. Here we use the recent MSTW08 input to evolve our
solutions and we compare our solutions with the numerical
solution by MSTWO08 [27]. We compare our solutions as a
function of x for different Q* values. From the figure we
observe that though our both sets of solutions follow the
general trend of data and agree with the numerical solutions
towards low x range, as we approach the high x range our
solutions overshoot both data and the numerical solutions.

From the above observations we can conclude that for
both the set of analytical solutions (19), (45), (24), and (53)
obtained from the two PDEs (9) and (10), towards low x

they converge to the same limit, that is, they predict the
same behaviour at low value of x. In case of the solutions
obtained by Lagrange’s method given by (45) and (53), while
(45) shows logarithmic growth with the increasing Q* values,
the other solution given by (53) remains almost constant for
increasing Q” for fixed x values. The solutions by method of
characteristics (19) and (24), also show very slow growth with
increasing Q” for fixed x values.

We note that (10) is less accurate than (9), since the infinite
sum in (5) is approximated by only two terms as shown in (11)
to derive it and so are the solutions (24) and (53). It is also to
be noted that (9) and (10) can be considered equivalent to the
accuracy for O(x?). Similarly the solutions (19) and (45) are
also equivalent to the accuracy for O(x?). But for the solutions
(24) and (53), due to the neglect of few terms in (10) they do
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not require to be so. The solutions (19) and (24) appear to
be different. The reason of difference is due to the fact that
the solution (24) was obtained after neglecting a few terms
O(x?) in (10). Similar is the case for (45) and (53).

For a quantitative estimate of the goodness of fit between
the solutions of the two analytical methods with the exper-
imental data, we also do an y* testing using the formula
' = Y, ((Xy, - X,.)/0;)%, where the theoretical (X,;,) and
experimental (X, ) values are for the same ith data point with
estimated uncertainty o;. Usually if y*/d.o.fis not much larger
than one, the theoretical calculations are considered as being
statistically consistent with data. In Table 1. we show that the
x*/d.o.f values are consistent with the above discussion for
the first set of solutions given by (19) and (45). The numbers
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TABLE 1: led.o.f. for (19) and (45).
Method Inputs CERN-WA25 EMC .
collaboration
Methodof —y 1 pe19004 9.69 1.48
characteristics
Lagrange's MRST2004 147 10.86
method
TABLE 2: Xz/d.o.f. for (24) and (53).
Method Inputs CERN-WA25 EMC .
collaboration
Methodof 1 pe19004 5.52 423
characteristics
Lagranges MRST2004 4.04 7.06
method

of degrees of freedom for the experiments CERN WA25 and
EMC are 20 and 32, respectively.

We also compare (24) and (53), the two solutions of
(10), obtained by method of characteristics and Lagrange’s
method, respectively. y*/d.o.f. values for the two solutions
obtained by solving the PDE (10) are shown in Table 2. The
x> analysis also supports our above discussion.

Let us discuss the compatibility or otherwise of the
present work with those of Lopez and Yndurdin [28] and
Martin [29]. For small x, Lopez-Yndurain and Martin-
like analysis leads to the following behaviour of nonsinglet
structure function:

N N ¢ —dys(1-1)
Fzs(X,f)"'x (t_> , (54)
0

where A < 1 and dyg is anomalous dimension given as

Igs (n).

2B,

This is to be compared with (19), (24), (45), and (53) above.
Using the standard MRST [25] PDE,

dys (n) = (55)

B () ~ (56)

where A = 0.5. Thus except for the factor x*, which originates
from the input [25], the present work differs from that of
Lopez and Yndurdin [28] and Martin [29]. In a sense it is
close to the work of Vovk et al. [30], where the effective A is
x dependent contrary to the expectations of Lopez, Yndurain
and Martin.

4. Conclusion

The Taylor approximated DGLAP equation for the nonsinglet
structure function, which turns out to be a partial differential
equation in two variables, is solved analytically by two
different methods: the Lagrange’s auxiliary method and the
method of characteristics. However, further approximations
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in the partial differential equation give us a rather unsat-
isfactory result. The solutions are valid vis-a-vis the data
and numerical solution in two different region of x and
Q*: the Lagrange’s method solution for the lower x and Q*
range and the method of characteristics solution for the
low x and comparatively high Q* range. Considering the
solutions together, they are valid in a wide range of Q* as
discussed. This demonstrated that two powerful methods of
solving differential equations can be applied in the DGLAP
framework to obtain analytical solutions. Results of these
methods to the polarized structure function gi\ls(x, t) have
been reported elsewhere [31].
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