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1 Introduction

Understanding nonperturbative properties of 4d Quantum Chromodynamics (QCD) and
Yang-Mills theory remains one of the most challenging and fundamental problems of particle
physics. To study these properties, it is often useful to consider various deformations of
strongly-coupled field theories to weakly-coupled ones while keeping their qualitative features.
After taking suitable deformations, we can apply weak-coupling analyses to extract some
properties of the confinement physics.

Because of the asymptotic freedom, 4d gauge theories become weakly coupled when put
on small compactified spacetime. Although the deconfinement transition happens if this is
done naively, it has been uncovered that confinement is kept intact under suitable setups.
Currently, there are two ways to achieve it, and monopoles and center vortices play essential
roles in those setups to explain confinement. One way is to consider Yang-Mills theory with
the double-trace deformation (or QCD with adjoint quarks) on R3 × S1 [1–5] (see [6] for a
review). For sufficiently small S1, the theory becomes abelianized, and the monopole (or
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monopole-molecule) plays pivotal roles in confinement and other nonperturbative phenomena.
The other way is to consider Yang-Mills theory or QCD on R2 × T 2 with ’t Hooft flux. For
small T 2, we can derive two-dimensional theories of center vortices to explain confinement and
also chiral effective Lagrangian [7–11]. Further compactification of this setup to R1 ×S1 ×T 2

enables the analysis within the framework of quantum mechanics [12, 13]. Semiclassical
analyses of these compactified setups facilitate the study of confinement and chiral symmetry
breaking in a controlled setting and uncover qualitative behaviors of confinement vacua.
These compactifications should achieve the adiabatic continuity between weakly-coupled
low-dimensional theories and strongly-coupled original theories, while its full demonstration
is still an important task.

We now have two distinct semiclassical descriptions on R3 ×S1 and R2 ×T 2 with ’t Hooft
flux. In both setups, the fractional instantons play important roles in explaining confinement,
but their realizations are different between these two cases: they take the form of magnetic
monopoles on R3 × S1 while they become center vortices on R2 × T 2. In recent work by
some of the present authors, we investigated the connection between magnetic monopoles
and center vortices and unified these two semiclassical pictures [14] (see also [15]). Using
the dual photon effective theory for the 3d semiclassical analysis, we showed how the 2d
center-vortex theory naturally appears via the center-symmetry twisted boundary condition
and identified monopoles as the junction of the center-vortex configuration. This unification
bridges the gap between monopole-based and vortex-based semiclassical frameworks, which
leads to the weak-weak continuity of the confinement mechanism.

In this paper, we extend the previous study to understand the behavior of N = 1
SU(N) super Yang-Mills (SYM) theory under compactification from R3 × S1 to R2 × T 2

with the ’t Hooft twist. The N = 1 SYM theory serves as the ideal prototype realizing
the adiabatic continuity of the confinement vacua: certain observables, such as the Witten
index [16, 17], enjoy the topological nature thanks to supersymmetry, and we can apply
the semiclassical weak-coupling analysis for those quantities. In the N = 1 SU(N) SYM
theory, significant progress has been made in the monopole semiclassics on R3 × S1, but
a clear understanding of the center-vortex semiclassics on R2 × T 2 is still lacking at the
quantitative level as will be discussed at the end of section 2. Therefore, in this paper, we
study the weak-weak continuity, or the monopole-vortex continuity, in the SYM theory to
understand the confinement mechanism across different dimensional compactifications. The
following is the highlight of this paper.

Monopole and center-vortex semiclassics. In section 2, we begin with reviewing the semi-
classical approaches on R3 × S1 and R2 × T 2, following refs. [1–4] and ref. [7], respectively.
On R3 × S1, the 3d gauge field is abelianized as SU(N) Higgs−−−→ U(1)N−1 at generic points of
classical moduli, and the fundamental monopoles carry two fermionic zero modes as they have
1/N fractional topological charge. The nonperturbative contribution to the bosonic potential
comes from monopole molecules called “magnetic bions” and “neutral bions”, which yield the
mass gap to the dual photon and holonomy fields, respectively. On R2 × T 2 with ’t Hooft
flux, the 2d gauge field has a perturbative gap due to the boundary condition, and “center
vortex” describes the tunneling event that carries two fermionic zero modes. Therefore, the
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center vortex generates the gluino condensate but does not produce the area law of Wilson
loops, which is consistent with the mixed ’t Hooft anomaly after the 2d reduction.

“Weak-weak” continuity of the vacuum structure. In section 3, we consider N = 1 SU(N)
SYM on R2 × (S1)3 × (S1)4 with the ’t Hooft twist and vary the size L3 while keeping
NΛL4 ≪ 1. We elucidate that the twisted boundary condition originating from the ’t
Hooft twist guarantees the transition from monopoles to center-vortices, and we establish
the “weak-weak” continuity of the vacuum structure, such as the superpotential and gluino
condensate. We also study the implication of the mass deformation on the vacuum structure
and the generalization of these arguments to QCD(adj.).

Double string picture and the switching from 3d area law to 2d perimeter law. In section 4, we
investigate the behavior of the Wilson loop during the dimensional transition from R3 ×S1 to
R2 × T 2 with ’t Hooft flux. The 4d mixed anomaly between the center and chiral symmetry
produces the 2d mixed anomaly between the 1-form center and chiral symmetry under the
presence of ’t Hooft flux, which requires the 2d perimeter law of the Wilson loop. We show
that the perimeter law of the 2d center-vortex semiclassics can be understood from the 3d
monopole through the “double-string picture”. With the double-string picture, the Wilson
loop creates the domain wall for the broken chiral symmetry that wraps along the S1 direction,
and the Wilson loop serves as the junction of the domain wall. With the mass deformation,
Wilson loops obey the area law due to the absence of the discrete chiral symmetry.

Bion contribution and vacuum energy. In section 5, we examine the fate of the bion-induced
confinement during the dimensional reduction from 3d to 2d. The calculation of the bion
amplitude shows that magnetic bions disappear under the compactification. Although the
magnetic bions exist as the local minima for L3 ≫ L4/g2, those local minima merge with
other saddle points around L3 ∼ L4/g2 so that only the unstable saddle remains as their
remnant. We interpret this observation as a microscopic signature of the crossover from the
3d monopole/bion picture to the 2d center-vortex picture. We also discuss how the vacuum
energy continues to vanish during the reduction from 3d to 2d in terms of the bion amplitude,
and we find that its cancellation occurs in a parallel manner to that in the 2d N = (2, 2)
supersymmetric CP 1 model on R× S1 with the flavor-twisted boundary condition [18].

2 Review on R3 × S1 semiclassics and R2 × T 2 semiclassics

In this section, we review the two semiclassical approaches for N = 1 SU(N) super Yang-Mills
(SYM) theory: R3 × S1 semiclassics [1–4] and R2 × T 2 semiclassics [7].

The N = 1 SU(N) SYM theory is the 4d SU(N) Yang-Mills theory with one massless
adjoint Weyl fermion λ, called the gluino. The action is,

S = 1
g2

∫
tr(f ∧ ⋆f) − iθ

8π2

∫
tr(f ∧ f) + 2i

g2

∫
d4x tr(λ̄σ̄µDµλ), (2.1)

where a = aµdxµ is the SU(N) gauge field, f = da + i a ∧ a is its field strength, and
Dµλ = ∂µλ + i [aµ, λ] is the covariant derivative in the adjoint representation, and this theory
enjoys the 4d N = 1 supersymmetry. This theory has the ZN 1-form symmetry, denoted
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as Z[1]
N and called the center symmetry, and also has the Z2N discrete chiral symmetry,

λ 7→ e2πi/(2N)λ. There is the mixed ’t Hooft anomaly between Z[1]
N and (Z2N )chiral, and the

anomaly matching claims the spontaneous breaking of chiral symmetry, (Z2N )chiral
SSB−−→ Z2,

if the system is in the confinement phase. We note that this Z2 subgroup is the fermion
parity, and it cannot be spontaneously broken for Lorentz-invariant vacua.

The partition function on R3 × S1 with the periodic boundary condition for λ is called
the Witten index, which is topologically protected and gives N at any size of S1 [16]. This
N -fold degeneracy can be naturally understood as the result of the discrete chiral symmetry
breaking associated with the chiral condensate ⟨tr(λλ)⟩, and it satisfies the anomaly matching
constraint. Due to its topological nature, we can deform the theory into a weakly coupled
one without any phase transition through the compactification.

2.1 3d semiclassics: R3 × S1 with spatial compactification

Let us first consider the N = 1 SYM on R3 × S1, where the size L4 of S1 is sufficiently
small compared with the strong scale 1/Λ,

NΛL4 ≪ 1. (2.2)

We take the periodic boundary condition for λ (the spatial compactification), and this
preserves the supersymmetry. Here, the 3d effective theory at small S1 is briefly reviewed
based on [1–4].

At small S1, the bosonic degrees of freedom in the effective theory are the 3d gauge
field and holonomy P4 = P exp(i

∫
S1 a4dx4) along S1 (Polyakov loop). For pure YM or SYM

with the antiperiodic fermion boundary condition, the one-loop Gross-Pisarski-Yaffe (GPY)
potential for the holonomy is generated [19], and the holonomy gets the vacuum expectation
value that violates the center symmetry. For N = 1 SYM theory with the periodic fermion
boundary condition, the perturbative GPY potential exactly cancels between the gluon and
gluino contributions due to supersymmetry, and the moduli space for P4 remains to be flat
within the perturbative computation. Thus, both 3d gauge field and holonomy survive as
the low-energy degrees of freedom.

Let us take the Polyakov gauge that diagonalizes the holonomy, then P4 becomes

P4 = diag(eiφ1 , · · · , eiφN ) , (2.3)

with the condition φ1 + · · · + φN = 0 (mod 2π). It is convenient to denote them as the
N -component field, ϕ⃗ = (φ1, . . . , φN−1,−φ1 − · · · − φN−1), whose periodicity is

ϕ⃗ ∼ ϕ⃗ + 2πα⃗i, (2.4)

where α⃗i (i = 1, · · · , N − 1) is the positive simple root.1
With the holonomy background (2.3), the 3d gluon field (aij)i,j=1,...,N gets the Kaluza-

Klein mass φi−φj

L4
mod 2π

L4
Z, and the diagonal gluons are gapless while off-diagonal ones

1Our convention for the SU(N) root and weight vectors is summarized in appendix A. We can expand ϕ⃗ as
ϕ⃗ =

∑
i
ϕiα⃗i by taking φ1 = ϕ1, φ2 = ϕ2 − ϕ1, . . . , φN−1 = ϕN−1 − ϕN−2, and φN = −ϕN−1.
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acquire the nonzero gap at generic values of P4.2 Therefore, the 3d gauge field is abelianized
at almost all holonomies, SU(N) Higgs−−−→ U(1)N−1. By using the 3d Abelian duality, we can
rewrite this 3d U(1)N−1 gauge field into a U(1)N−1-valued scalar field, called the dual photon
σ⃗. Because of the electromagnetic duality, its periodicity is

σ⃗ ∼ σ⃗ + 2πµ⃗k, (2.5)

where µ⃗k (k = 1, · · · , N − 1) denotes the fundamental weight. Noting that the permutation
redundancy remains, the target space of compact bosons (ϕ⃗, σ⃗) is given by

(ϕ⃗, σ⃗) ∈ RN−1/2πΛroots × RN−1/2πΛweights
SN

, (2.6)

where SN denotes the Weyl permutation group, and Λroots and Λweights are the root and
weight lattices, respectively.

One can eliminate the permutation redundancy by restricting the space of ϕ⃗ to the
Weyl chamber, e.g.,

α⃗i · ϕ⃗ > 0, − α⃗N · ϕ⃗ < 2π, (2.7)

where α⃗N = −(α⃗1 + · · · + α⃗N−1) is the Affine simple root. In this gauge, the center
transformation is represented by [20]

(ϕ⃗, σ⃗) 7→ (PWϕ⃗ + 2πµ⃗1, PWσ⃗), (2.8)

where PW denotes the cyclic Weyl permutation. The center-symmetric holonomy ϕ⃗c can
be written as,

ϕ⃗c = 2π

N
ρ⃗ = 2π

N
(µ⃗1 + · · · + µ⃗N−1), (2.9)

where ρ⃗ is called the Weyl vector. This center-symmetric holonomy corresponds to P4 = C,
up to gauge, where the clock matrix is given by C = e

i(N+1)π
N diag(1, e 2πi

N , · · · , e
2πi(N−1)

N ).
Here, we introduce the complex scalar variable:

z⃗ := i
[
σ⃗ +

(
θ

2π
+ 4πi

g2

)
(ϕ⃗ − ϕ⃗c)

]
. (2.10)

With this notation, the tree-level kinematic term of the bosonic degrees of freedom can
be neatly written as,

S3d,bosonic = 1
g2L4

|dϕ⃗|2 + g2

16π2L4

∣∣∣∣dσ⃗ + θ

2π
dϕ⃗

∣∣∣∣2 = g2

16π2L4
|dz⃗|2 . (2.11)

We note that the complex scalar z⃗ and the Cartan gluino λ⃗ forms the 3d N = 2 supersymmetric
multiplet, and z⃗ is the lowest component of the superfield, Z⃗ = z⃗ +

√
2ϑλ⃗ + · · · , in the 4d

N = 1 chiral multiplet notation. Therefore, this neat feature of the effective Lagrangian in
terms of z⃗ continues even after taking into account the loop corrections.

2The same is true also for gluinos, and we denote the gapless diagonal components as λ⃗.
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For confinement and chiral symmetry breaking, we must go beyond perturbation theory
and need nonperturbative objects; monopoles and bions. There are N -types of fundamental
monopoles in this setup: N − 1 Bogomol’nyi-Prasad-Sommerfield (BPS) monopoles and
one Kaluza-Klein (KK) monopole [21–26]. Magnetic charges of BPS monopoles are simple
roots {α⃗i}i=1,··· ,N−1, and the magnetic charge of the KK monopole is the affine root α⃗N . All
these monopoles carry two fermionic zero modes according to the Callias index theorem,
and one can find the monopole-instanton vertex,

[Mi] ∼ e−
8π2
Ng2 + iθ

N eα⃗i·z⃗(α⃗i · λ⃗)2 (i = 1, · · · , N). (2.12)

For the anti-monopoles, we assign

[M∗
i ] ∼ e−

8π2
Ng2 −

iθ
N eα⃗i·z⃗∗(α⃗i · ⃗̄λ)2 (i = 1, · · · , N). (2.13)

The monopole vertex should be invariant under the discrete chiral transformation, and thus
it acts not only on Cartan gluinos but also on the complex scalar:

(Z2N )chiral : λ⃗ 7→ e
2πi
2N λ⃗, z⃗ 7→ z⃗ − 2πi

N
ρ⃗. (2.14)

Therefore, the vacuum expectation value of eα⃗i·z⃗ plays the role of the order parameter for
the discrete chiral symmetry breaking.

Since the monopoles carry fermionic zero modes, the leading contributions for the bosonic
nonperturbative potential come from bions, monopole-antimonopole molecules. The bion
amplitude should be roughly given by

[MiM∗
j ] ∼ e−2 8π2

Ng2 eα⃗i·z⃗+α⃗j ·z⃗∗(α⃗i · α⃗j)2, (2.15)

Note that only [MiM∗
j ] with j = i−1, i, i +1 are nonzero (corresponding to the nonvanishing

Cartan matrix elements). The bion [MiM∗
j ] with j = i ± 1 is called magnetic bion, and

[MiM∗
i ] is called neutral bion.

The monopole and bion contributions to the effective Lagrangian are tightly constrained
by supersymmetry. They can be summarized as the affine Toda superpotential, which is
obtained from calculating the monopole amplitude [1, 2],

W (Z⃗) = M3
P V L4e−

8π2
Ng2 + iθ

N

g2

N∑
i=1

eα⃗i·Z⃗ = L4Λ3e
iθ
N

N∑
i=1

eα⃗i·Z⃗ , (2.16)

where MP V is the Pauli-Villars regulator, and we defined Λ3 = 1
g2 M3

P V e−
8π2
Ng2 (matched to

the NSVZ scheme after changing to the canonical gauge coupling from the holomorphic
one). This superpotential not only describes the monopole-induced interactions but also
automatically leads to the bion-induced bosonic potential:

V (z⃗) = 16π2L4
g2

∣∣∣∣∂W (z⃗)
∂z⃗

∣∣∣∣2 = V0

N∑
i,j=1

eα⃗i·z⃗+α⃗j ·z⃗∗(α⃗i · α⃗j)

= V0

N∑
i=1

∣∣∣eα⃗i·z⃗ − eα⃗i−1·z⃗
∣∣∣2 , (2.17)
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where V0 = 16π2

g2 Λ6L3
4. Usually, the semiclassical objects lower the effective potential, and

magnetic bions follow this rule. However, neutral bions give the opposite contribution and this
relative sign is important to have supersymmetric vacua. In terms of the Lefschetz-thimble
integration over the quasi-moduli, this relative sign is interpreted as the “hidden topological
angle” [27, 28], and we will discuss it in more detail in section 5.

Minimization of the bosonic potential is achieved by requiring that eα⃗i·z⃗ = eα⃗j ·z⃗ for all
i, j = 1, . . . , N . Since ∏N

i=1 eα⃗i·z⃗ = 1, we can easily find the N -fold degenerate vacua,

eα⃗i·z⃗ = e2πik/N (i = 1, . . . , N)

⇔ z⃗ = 2πkρ⃗

N
i, (2.18)

for k = 0, 1, . . . , N − 1, which spontaneously break the discrete chiral symmetry. The bosonic
potential produces the mass gap to the complex scalar z⃗, and if we look more closely, the
dual photon gets a mass due to magnetic bions, while the holonomy field gets a mass due
to neutral bions [3, 4]. This is the semiclassical confinement mechanism from monopoles
and bions for the 4d N = 1 SYM on R3 × S1.

2.2 2d semiclassics: R2 × T 2 with ’t Hooft flux

The other semiclassical method is to compactify R4 to R2 × T 2 with ’t Hooft flux, and let us
give a brief review based on [7] (see also [12, 13]). We set the size of two cycles to be the
same, L3 = L4 = L, and they are supposed to be sufficiently small, NΛL ≪ 1.

To form the torus T 2, we impose the identification (x3, x4) ∼ (x3 + L, x4) ∼ (x3, x4 + L).
Since the N = 1 SYM contains only adjoint fields, the ’t Hooft flux can be introduced. We
turn on the unit ’t Hooft flux by choosing the SU(N)-valued transition functions g3(x4)
and g4(x3) such that

g3(L)†g4(0)†g3(0)g4(L) = e
2πi
N 1N×N . (2.19)

The ’t Hooft flux corresponds to the background gauge field for the Z[1]
N symmetry along

the compactified 3-4 directions. We can perform the gauge transformation so that these
transition functions become the clock matrix C and shift matrix S of SU(N):

g3(x4) = S, g4(x3) = C, (2.20)

where C = eiα diag(1, e 2πi
N , · · · , e

2πi(N−1)
N ), (S)ij = eiαδi+1,j , and eiNα = (−1)N+1. This gauge

choice turns out to be useful for the analysis on small T 2.
Under the T 2 compactification, the 1-form symmetry Z[1]

N in the 4d spacetime becomes,
in terms of the 2d description,(

Z[1]
N

)
4d

→
(
Z[1]

N ×
(
Z[0]

N × Z[0]
N

))
2d

, (2.21)

where
(
Z[0]

N × Z[0]
N

)
2d

is the center symmetry acting on the Polyakov loops P3, P4 along each

cycle of T 2, and
(
Z[1]

N

)
2d

is the 1-form center symmetry acting on the spatial Wilson loop
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on R2. At small T 2, the gauge field becomes flat along the 3-4 direction, f34 = 0. In the
gauge (2.20), the boundary conditions for the gluon and gluino are given by

aµ(x⃗, x3 + L, x4) = Saµ(x⃗, x3, x4)S†, aµ(x⃗, x3, x4 + L) = Caµ(x⃗, x3, x4)C†,

λ(x⃗, x3 + L, x4) = Sλ(x⃗, x3, x4)S†, λ(x⃗, x3, x4 + L) = Cλ(x⃗, x3, x4)C†, (2.22)

and both gauge fields and fermions get the nonzero KK mass at least of O(1/NL). The
classical vacuum is obtained by setting a3 = a4 = 0 and the Polyakov loops are solely
determined by the transition function,

P3 = S, P4 = C. (2.23)

This satisfies ⟨tr(P n3
3 P n4

4 )⟩ = 0 for any (n3, n4) ̸= (0, 0) mod N . Thus, we obtain the center-
symmetric gapped system, and the 2d effective theory becomes the discrete ZN gauge theory
within the perturbation theory.

For the 2d gapped gauge-Higgs system, it is natural to expect the presence of vortex-like
instantons as semiclassical objects. To explain its topological stability in our setup, let us
compactify R2 × T 2 to (T 2)12 × (T 2)34 with ’t Hooft twists n12 = n34 = 1 for sufficiently
large L1, L2. Then, the topological charge is given by [29]

Qtop ∈ −n12n34
N

+ Z = − 1
N

+ Z. (2.24)

Thus, there exists a 2d localized configuration topologically protected by Qtop = ±1/N . The
vortex action Sv is bounded from below by the BPS bound,

Sv = 1
g2

∫
tr(f ∧ ⋆f) ≥ 8π2

g2 |Qtop| = SI

N
, (2.25)

where SI = 8π2/g2 is the 4d instanton action. The equality holds if and only if the (anti-
)self-dual YM equation is satisfied.

Although it is still an open mathematical problem if the fractional instanton on R2 × T 2

satisfies the BPS bound, numerical studies [30–33] support the existence of the self-dual
vortex with Qtop = ±1/N . Moreover, they show that the vortex, or fractional instanton,
rotates the phase of Wilson loop by the ZN center element when it goes across the loop,
which is the characterization of the center vortex.3 This justifies to perform the semiclassical
analysis assuming the self-dual center vortex with Sv = SI/N and Qtop = ±1/N .

As the center vortex carries the topological charge 1/N , it is associated with two fermionic
zero modes for N = 1 SYM due to the index theorem, Index(D) = 2NQtop = 2. The presence
of the fermionic zero mode tells that the center vortex does not produce the area law of
the Wilson loop as its contribution vanishes by the fermion path integral. However, it
generates the chiral condensate ⟨tr(λλ)⟩ ∼ e−SI/N , because the operator tr(λλ) can absorb
the fermionic zero mode of the center vortex when the location of the center vortex coincides

3Fractional instantons on R× T 3 with ’t Hooft twist(s) have been studied numerically in [34–36], and they
also satisfy the BPS bound within the numerical accuracy and the lattice discretization error. They play the
pivotal role for similar semiclassical approaches in [12, 13]. See [37, 38] for the similar numerical calculations
for CP N−1 models on R× S1.
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with that of the operator insertion. Therefore, N = 1 SYM on R2 × T 2 with the ’t Hooft
flux shows the “de”-confinement of the 2d Wilson loops and the discrete chiral symmetry
breaking. At first glance, the deconfinement of the 2d Wilson loops may seem to suggest
the failure of the adiabatic continuity to the 4d confinement states, but this is not the case
due to the subtle interplay between (Z[1]

N )2d and (Z2N )chiral [7]. The 2d mixed anomaly
between (Z[1]

N )2d and (Z2N )chiral comes out of the 4d ’t Hooft anomaly thanks to the ’t Hooft
twisted compactification [7] (see also [39–42]), and the gapped vacua must form the projective
representation of (Z[1]

N )2d × (Z2N )chiral by the anomaly matching condition. This is why we
only get the N -fold degeneracy of the ground states instead of N2 ones despite the fact
that both (Z[1]

N )2d and (Z2N )chiral are broken.4
To confirm these claims semiclassically, a convenient way to describe the vacuum structure

is to compactify R2 × (T 2)34 to R× (S1)2 × (T 2)34 with the size L2, and we set L = L3,4 ≪
L2 ≪ Λ−1. We then take the Hamiltonian viewpoint with regarding R as the time direction
for the quantization [7, 12, 13]. As L = L3,4 is the shortest length scale, we first minimize
along those directions, and the ’t Hooft twist n34 = 1 sets P3 = S, P4 = C as we have already
seen. Next, P2 must commute with both P3, P4 to minimize the classical action along the
2-3 and 2-4 directions, and then we obtain N classical vacua labeled by P2 = e 2πim

N 1N×N

with m = 0, 1, . . . , N − 1. Let us call this state |m⟩:

P2|m⟩ = e
2πim

N |m⟩. (2.26)

When the center vortex does not carry the fermionic zero modes as in the case of pure
YM, it produces the transition amplitude, or the tunneling process, from |m⟩ to |m ± 1⟩
as ⟨m ± 1, τ = T |m, τ = 0⟩ ≡ ⟨m ± 1| exp(−TĤ)|m⟩ ∼ T e−SI/N±iθ/N , and the vacuum
degeneracy is lifted. For the N = 1 SYM, however, the center vortex carries the fermion
zero modes, and thus ⟨m ± 1, T |m, 0⟩ = 0, which shows that |m⟩ is the correct eigenstate
of the SYM Hamiltonian ĤSYM. The insertion of tr(λλ) absorbs two zero modes for λ and
the center-vortex process contributes to the following matrix element,

⟨m + 1, T | tr(λλ(τ)) |m, 0⟩ ∼ 1
L3 e−SI/N+iθ/N . (2.27)

Similarly, the anti-vortex contributes to ⟨m − 1, T | tr(λ̄λ̄(τ)) |m, 0⟩ ∼ 1
L3 e−SI/N−iθ/N . We

note that these amplitudes do not have the imaginary-time length T as the overall coefficient
because the dominant contribution comes only when the center vortex sits on top of the
operator insertion. The prefactor 1/L3 is multiplied to match the mass dimension of both
sides. We can diagonalize the chiral condensate by changing the basis as

|̃k⟩ := 1√
N

∑
m∈ZN

e−2πikm/N |m⟩ , (2.28)

and then we obtain

⟨̃k| tr(λλ)|̃k⟩ ∼ 1
L3 e−SI/N+i(θ+2πk)/N ∼ Λ3ei(θ+2πk)/N . (2.29)

As the price, the Polyakov loop is no longer diagonal, ⟨̃k1|P2 |̃k2⟩ = δk1,k2−1.
4The same phenomenon occurs also for the massless charge-N Schwinger model, and all these conclusions

can be confirmed by exact calculations [43–46].
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Due to the fact that the center vortex rotates the phase of the Wilson loop and also
carries the fermionic zero modes, we cannot diagonalize P2 and tr(λλ) simultaneously. As a
result, the gluino condensate tr(λλ) shows the nontrivial commutation relation with tr(P2)
on the low-energy Hilbert space Hg.s. = ∑

m C|m⟩ = ∑
k C|̃k⟩,

tr(λλ) tr(P2) = e−2πi/N tr(P2) tr(λλ). (2.30)

This is the semiclassical realization of the 2d mixed anomaly between (Z[1]
N )2d and (Z[0]

2N )chiral
symmetries. From this observation, the large Wilson loop becomes the discrete chiral
symmetry generator under the renormalization-group flow, and the perimeter law of the
2d Wilson loop can be understood as the topological property of the spontaneously broken
chiral symmetry generator.

Let us pose several puzzles about the 2d center-vortex semiclassics for N = 1 SYM:

• The derivation of vacuum structure is less straightforward compared with that of 3d
monopole/bion-based semiclassics. It would be better to derive the vacuum structure
directly from the 2d dilute gas calculation of the center vortices.

• Unlike the case of 3d monopole semiclassics, we lack the analytic formula for the
self-dual center vortex, and its fluctuation determinant cannot be calculated. This
prohibits us from comparing the results with other analyses quantitatively.

• It is quite counter-intuitive that the Wilson loop in 2d obeys the perimeter law whereas
the vacuum structure is smoothly connected to the 4d/3d confinement vacua. What
is the microscopic dynamics realizing the switching5 from the 3d area law to the 2d
perimeter law?

• In the context of 3d semiclassical analysis, both confinement and chiral symmetry
breaking arise from magnetic bions. In the 2d semiclassics, however, the center vortex
does not have this character unlike the BPS and KK monopoles, and it seems that
there is no counterpart of magnetic bions. Do magnetic bions play any roles in the 2d
semiclassics?

In the following of this paper, we shall address these problems by revising the 2d center-vortex
theory from the viewpoint of the 3d monopole/bion theory.

3 Weak-weak continuity in N = 1 super-Yang-Mills

In this section, we aim to understand the 2d center-vortex semiclassics for N = 1 SYM theory
from the 3d monopole/bion semiclassics by extending the recent achievement that unifies
the monopole and center-vortex semiclassics for deformed YM [14].

5The adiabatic continuity holds between small L3 and large L3 regimes, as shown in section 3 by explicitly
demonstrating that local observables and vacuum structure are kept under this compactification. However,
this might sound to have a conflict with the switching of the Wilson loop behaviors from the area law to the
perimeter law, which happens instantaneously upon the

(
S1)

3
compactification regardless of how large L3 is.

Its consistency with the adiabatic continuity is ensured since this switching occurs for asymptotically large
Wilson loops that are much larger than the compactification size L3.
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3.1 Monopole-vortex continuity

We put the N = 1 SYM on R2 × (S1)3 × (S1)4 ∋ (x, x3, x4) with x3 ∼ x3 + L3 and
x4 ∼ x4 + L4 using the ’t Hooft twisted boundary condition, where the latter S1 is always
small: L4 ≪ (NΛ)−1. We first consider the large-L3 case so that the 3d monopole/bion
effective theory is applicable, and then we gradually make L3 smaller to observe how the
monopole/bion semiclassics is connected to the center-vortex effective theory.

The 3d monopole/bion effective theory is already explained in section 2.1, and we need
to identify the role of the ’t Hooft flux along the 3-4 direction in that language. From the 3d
perspective after the (S1)4 compactification, the 4d 1-form symmetry, (Z[1]

N )4d, becomes

(Z[1]
N )4d → (Z[1]

N )3d × (Z[0]
N )3d, (3.1)

where (Z[1]
N )3d acts on the spatial Wilson loop, and (Z[0]

N )3d is the conventional center symmetry,
acting on the Polyakov loop P4. In this 3d language, the ’t Hooft flux along the 3-4 direction
corresponds to the (Z[0]

N )3d-twisted boundary condition on R2 × (S1)3. The action of (Z[0]
N )3d

center symmetry on the dual photon and holonomy (σ⃗, ϕ⃗) is shown in (2.8), and the boundary
conditions are6

σ⃗(x, x3) = PW σ⃗(x, x3 + L3), ϕ⃗(x, x3) = PW ϕ⃗(x, x3 + L3) + 2πµ⃗1. (3.2)

Since the Weyl vector satisfies PW ρ⃗ = ρ⃗ − Nµ⃗1, these boundary conditions can be sum-
marized as

z⃗(x, x3 + L3) = P−1
W z⃗(x, x3), (3.3)

with the complex scalar z⃗ defined by (2.10). The same Weyl-permutation-twisted boundary
condition is imposed on the Cartan adjoint fermion λ⃗. In summary, the boundary condition
for the superfield Z⃗ reads

Z⃗(x, x3 + L3) = P−1
W Z⃗(x, x3). (3.4)

A recent finding in [14] is that the 2d center-vortex instanton is nothing but the magnetic
flux associated with the 3d BPS/KK monopole in R2 × (S1)3 with (Z[0]

N )3d-twisted boundary
condition. To see this, let us put a BPS or KK monopole [Mi(x∗)] ∼ eα⃗i·z⃗(x∗), (2.12), which
has the magnetic charge α⃗i and is located at (0, x3,∗). To examine the bosonic profile of this
monopole, we will analyze the classical equation of motion in the 3d EFT:

∇2ϕ⃗ = 2πL4α⃗i δ(2)(x)δ(x3 − x3,∗),

∇2σ⃗ = −2πL4α⃗i

(
θ

2π
+ 4πi

g2

)
δ(2)(x)δ(x3 − x3,∗), (3.5)

with the Weyl-permutation-twisted boundary condition (3.3). The effect of the boundary
condition can be taken into account by extending the range of x3 to R with the mirror-image
method (See the left panel of figure 1).

6Note that the fields are subject to the (Z[0]
N )3d center transformation from x3 = L3 to x3 = 0.
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Ԧ𝛼𝑖+1

Φ = 2𝜋 Ԧ𝜈𝑖

Φ = 2𝜋 Ԧ𝜈𝑖+1

Φ = 2𝜋 Ԧ𝜈𝑖𝑥3 Ԧ𝑍 𝒙, 𝑥3 + 𝐿3
= 𝑃𝑊

−1 Ԧ𝑍 𝒙, 𝑥3
Φ = 2𝜋 Ԧ𝜈𝑖+1

monopole Ԧ𝛼𝑖

𝑥1

𝑥2

𝑊(𝐶) = e−2𝜋𝑖/𝑁
𝑂(𝑁𝐿3)

Figure 1. (Left panel) Mirror-image magnetic monopoles to satisfy the center-twisted boundary
condition. The magnetic charge α⃗i emits the outgoing magnetic flux 2πν⃗i and absorbs the incoming
magnetic flux 2πν⃗i+1 along the x3 direction. (Right panel) Schematic 3d view of a BPS/KK monopole
in R2 × S1 with the center-twisted boundary condition. The magnetic flux is localized to a size of
O(NL3). This magnetic flux is indeed the center vortex: the Wilson loop acquires the phase e−2πi/N

if it surrounds the vortex.

Let us solve the classical equation of motion with σ⃗ → 0 and ϕ⃗ → ϕ⃗c as |x| → ∞.
The result is given by7

ϕ⃗ − ϕ⃗c = ig2

4π

(
σ⃗ + θ

2π
(ϕ⃗ − ϕ⃗c)

)
(3.7)

= −L4
2

N−1∑
ℓ=0

ν⃗i−ℓ

∑
k∈Z

 1√
|x|2 + (x3,ℓ − NkL3)2

− 1√
|x|2 + (x3,ℓ − L3 − NkL3)2

 ,

where x3,ℓ = x3 − x3,∗ − ℓL3, and ν⃗i is the weight vector of the defining representation:

ν⃗1 = µ⃗1, ν⃗2 = µ⃗1 − α⃗1, . . . , ν⃗N = µ⃗1 − α⃗1 − · · · − α⃗N−1. (3.8)

As |x| → ∞, σ⃗ = O(e−
2π

NL3
|x|) and ϕ⃗ − ϕ⃗c = O(e−

2π
NL3

|x|), and thus the magnetic field is
exponentially localized at the origin of R2.

As the U(1)N−1 field strength is given by f⃗ = ig2

4πL4
⋆
(
dσ⃗ + θ

2π dϕ⃗
)

via the Abelian duality,
the magnetic flux Φ⃗ through the x1-x2 plane can be expressed as8

Φ⃗(x3) =
∫
R2

d2x
ig2

4πL4
∂x3

(
σ⃗(x, x3) + θ

2π
ϕ⃗(x, x3)

)

= π
N−1∑
ℓ=0

ν⃗n−ℓ

∑
k∈Z

[
sign(x3,ℓ − NkL3) − sign(x3,ℓ − L3 − NkL3)

]
. (3.9)

7A naive guess from the mirror-image method is

ϕ⃗ − ϕ⃗c = ig2

4π

(
σ⃗ + θ

2π
(ϕ⃗ − ϕ⃗c)

)
= L4

2 “
∑
n∈Z

α⃗i−n (mod N)√
|x − x∗|2 + (x3 − x3,∗ − nL3)2

′′

, (3.6)

For the sake of convergence and satisfying the boundary condition at |x| → ∞, we have to change the order of
the summation by rewriting α⃗i = ν⃗i − ν⃗i+1 from this naive one.

8One can obtain this result by naively swapping the order of the sum and the integral. However, if we do it
more correctly by regularizing the R2 integral into the finite region and then taking the R2 limit, each term of
the summand produces the extra term. Those extra terms cancel out thanks to

∑N−1
ℓ=0 ν⃗ℓ = 0, and we obtain

the same result with the naive manipulation.
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When x3 is restricted to the physical domain, we have

Φ⃗(x3) =
{

2πν⃗i (x3,∗ < x3 < L3),
2πν⃗i+1 (0 ≤ x3 < x3,∗).

(3.10)

Thus, the magnetic field out of the BPS/KK monopole takes the vortex-like profile shown in
figure 1: it localizes in the R2 direction and forms the vortex along (S1)3 with the outgoing
magnetic flux 2πν⃗i and the incoming magnetic flux 2πν⃗i+1.

Then, in the presence of the BPS/KK monopole, the 2d Wilson loop W (C) on the
x1-x2 plane has the phase

W (C) = 1
N

N∑
ℓ′=1

exp
(

iν⃗ℓ′ ·
∫

C
a⃗

)

=
{

e−2πi/N (when C surrounds the localized flux),
1 (when C does not surround the localized flux), (3.11)

which is the characterization of the center vortex. As we advocated, the 2d center vortex
is obtained as the magnetic flux out of the BPS/KK monopole on R2 × (S1)3 with the
(Z[0]

N )3d-twisted boundary condition. This is the essential ingredient to understand the 2d
center-vortex semiclassics from the viewpoint of 3d monopole/bion semiclassics.

We note that the BPS and KK monopoles are permuted under the (Z[0]
N )3d center

symmetry. Therefore, the distinction between the BPS/KK monopoles disappears in this
setup due to the twisted boundary condition by extending the internal moduli of the center
vortex as x3 ∈ [0, NL3): all the BPS and KK monopoles are connected as the single chain via
the center-vortex magnetic flux in the extended moduli space. This explains the uniqueness
of the 2d center vortex despite the presence of N distinct fundamental monopoles in 3d
semiclassics.

As emphasized in [14], this picture provides the weak-coupling realization of the scenario
that the monopole serves as the kink of the center-vortex network [47–49]. In the 4d center-
vortex model, the presence of monopoles in the vortex network makes the vortex surface
nonorientable, which plays the pivotal role to have nonzero instanton numbers [50–52]. Such
nonoerientable vortex surfaces give a model explaining asymptotic string tensions [53, 54].
The importance of the presence of monopoles in addition to center vortices for confinement
is also recently pointed out in [55].

3.2 Weak-weak continuity of superpotential and gluino condensate

We next investigate the continuity of the vacuum structure between the 3d monopole/bion
regime and the 2d center-vortex regime. For this purpose, let us discuss how the vacuum
configuration is chosen for large L3 and small L3 regimes.

When L3 is large enough, the effect of the twisted boundary condition is negligible
and the vacuum is determined by the minima of the bosonic potential. The bion-induced
bosonic potential is given by (2.17), and we find the confining chiral-broken vacua, z⃗ = 2πkρ⃗

N i
for k = 0, 1, . . . , N − 1.

When L3 becomes sufficiently small, we need to minimize the kinetic term along the (S1)3
direction rather than the potential, and thus we must find the constant mode that satisfies
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the boundary condition. The constant mode with the center-twisted boundary condition gives

z⃗ = P−1
W z⃗. (3.12)

Due to the periodicity of dual photons, this equation has to be solved up to the identification,
z⃗ ∼ z⃗ + 2πiµ⃗n (n − 1, . . . , N − 1). There are only N distinct constant configurations,

z⃗ = 2πkρ⃗

N
i, (k = 0, 1, . . . , N − 1), (3.13)

which satisfies the requirement. These are exactly the same as the vacuum configurations
for large L3 limit. This justifies the weak-weak continuity of the vacuum structure between
the large and small L3 limits.

Let us reconsider the 2d semiclassical analysis using the 3d monopole/bion semiclassics.
The 2d effective theory is completely gapped at the perturbative level due to the twisted
boundary condition: all adjoint gluon and gluino acquire the O(1/NL3) KK mass. There
are no gapless fluctuations but we still need to take into account the N distinct vacua.
In section 2.2, we computed the transition amplitude instead of the partition function to
circumvent this issue, but we here take a more field-theoretic approach to compute the
superpotential. We use the technique of “integrating in” the auxiliary field Σ to include
the ZN discrete low-energy mode.

Let us denote

Z1 := α⃗1 · Z⃗, · · · , ZN−1 := α⃗N−1 · Z⃗, (3.14)

then α⃗N · Z⃗ = −Z1 − · · · − ZN−1. We would like to treat

ZN := α⃗N · Z⃗ , (3.15)

on the equal footing with Z1, . . . , ZN−1 by regarding them as independent fields, and then
the constraint Z1 + · · · + ZN = 0 (mod 2πi)9 should appear as the equation of motion. This
can be achieved by rewriting the superpotential (2.16) in terms of (Z1, · · · , ZN ) and the
auxiliary field Σ,

W (Z1, · · · , ZN , Σ) = L4Λ3e
iθ
N

N∑
i=1

eZi + Σ
(
eZ1+···+ZN − 1

)
. (3.16)

When we solve the equation of motion of Σ, we obtain the Affine Toda superpotential (2.16).
Since the center symmetry acts as Zi 7→ Zi+1, the center-twisted boundary condition (3.4)

becomes

Zi(x, x3 + L3) = Zi+1(x, x3). (3.17)
9The 2πi periodicity of Zi comes out of the weight vector periodicity of the dual photon σ⃗ ∼ σ⃗ + 2πµ⃗k (k =

1, · · · , N − 1). The effective potential seems to violate the periodicity of the holonomy field, but we should
notice that this effective description breaks down at the boundary of the Weyl chamber due to the presence of
extra massless modes. Therefore, we only need to take into account the periodicity of dual photons within
this Abelianized effective theory.

– 14 –



J
H
E
P
0
5
(
2
0
2
5
)
1
9
4

This twisted boundary condition gives the KK mass except for the diagonal U(1) mode,
eZ := eZ1 = · · · = eZN . By integrating out the higher KK modes, the effective superpotential
becomes10

W (Z, Σ) = NL4Λ3e
iθ
N eZ + Σ

(
eNZ − 1

)
. (3.18)

This superpotential governs the 2d effective theory on R2. The equations of motion gives

eNZ = 1, Σ = −L4Λ3e
iθ
N eZ . (3.19)

This leads us to the same N vacua as found in the 3d monopole semiclassics. We note that
the gluino condensate ⟨tr(λλ)⟩ can be obtained by taking the derivative of W in terms of
the (holomorphic) gauge coupling, and we can find

⟨tr(λλ)⟩k = 16π2Λ3ei(θ+2πk)/N , (3.20)

with k = 0, 1, . . . N − 1 [1, 2], which is independent of L3 and L4.11 We would like to point
out that the numerical coefficient for the gluino condensate was not determined within the
2d center-vortex semiclassics in ref. [7], and this becomes possible by revising it from the
3d monopole/bion semiclassical description.

3.3 Mass deformation and phase diagram

If we add the mass term for the adjoint fermion,
m

16π2

(
tr(λλ) + tr(λ̄λ̄)

)
, (3.21)

the supersymmetry and the discrete chiral symmetry are explicitly broken. We assume
that m is small, and then the leading correction comes from the fact that the fermionic
zero modes of the monopole vertex can be absorbed by the mass term. The 3d bosonic
effective Lagrangian becomes [59, 60]

Leff,m = g2

16π2L4
|dz⃗|2 + V0

N∑
i=1

|eα⃗i·z⃗ − eα⃗i+1·z⃗|2 − mΛ3L4
N

N∑
i=1

(eα⃗i·z⃗+ iθ
N + eα⃗i·z⃗∗− iθ

N ), (3.22)

where the last term describes the contribution of the monopole. Both the monopole and
bion potential gives the mass to the dual photon and the Wilson loop obeys the area law.
However, the monopole term tends to violate the 0-form center symmetry and leads to the
deconfinement transition as m increases. On the R3 limit, i.e. L3 → ∞, the transition point
is roughly given by m∗ ∼ Λ3L2

4.
10As a side remark, we could introduce the auxiliary field in a different way as −Σ̃(Z1 + · · · + ZN ) in the

superpotential neglecting the subtlety related to the periodicity of Zi. Integrating out (Z1, · · · , ZN ), we get the

effective superpotential in terms of the auxiliary field Σ̃, which reads W (Σ̃) = NΣ̃ − NΣ̃ log
(

Σ̃

L4Λ3e
iθ
N

)
. This

is nothing but the Veneziano-Yankielowicz superpotential [56]. Since Σ̃ is neutral under the center symmetry,
we can also discuss the weak-weak continuity based on this effective superpotential.

11Recently, the direct semiclassical computation of the gluino condensate on T 4 with the ’t Hooft twist is
carried out in refs. [57, 58], and the result is consistent with the weak-coupling instanton calculus.
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∼ pure Yang-Mills

SYM on ℝ3 × 𝑆1 with mass deformation

Center symmetry is 
stabilized by ‘t Hooft flux

Figure 2. Expected behaviors of the phase diagram on the (L3, m)-plane with NL4Λ ≪ 1. For
large m (green), we have a pure Yang-Mills theory on R2 × S1 × S1 with the ’t Hooft flux. For
NL3Λ ≪ 1, the theory is confined due to the ’t Hooft flux, but when NL3Λ ≫ 1, the system becomes
the high-temperature Yang-Mills theory and it is in the deconfinement phase. The large L3 region
(blue) should be described as the SYM on R3 × S1 with the mass deformation, and there is also a
deconfinement transition at m∗ ∼ Λ3L2

4. The minimal scenario is to connect these deconfinement
transitions by a single transition line.

When m < m∗, the center-symmetric configurations z⃗ = 2πkρ⃗
N i are the local minima even

with the monopole perturbation. The role of monopole is to split the N degenerate vacua,
and the 2d vacuum energy density,

∫ L3
0 dx3Leff,m, reads

Ek(θ) = −L3L4m

( 1
16π2 ⟨tr(λλ)⟩k + c.c.

)
= −2L3L4mΛ3 cos

(
θ + 2πk

N

)
. (3.23)

We then obtain the multi-branch structure of the confinement vacua with the level crossing
at θ = π. Due to the explicit violation of the chiral symmetry breaking, the 2d Wilson
loop also obeys the area law, and then the weak-weak continuity between the 3d and 2d
semiclassics is valid for the small-m perturbation.

The above analysis is based on the 3d monopole/bion semiclassics, and thus we have
implicitly assumed that L3 ≫ L4. When both L3 and L4 are sufficiently small compared
with (NΛ)−1, the ’t Hooft twisted compactification stabilizes the center symmetry at the
tree level. This suggests that the system is in the confined phase at any values of m if L3
and L4 are both small. The phase diagram on the (L3, m) plane is sketched in figure 2.

3.4 Generalization to QCD(adj)

So far, we have seen that the adiabatic continuity holds between R3 × S1 and R2 × T 2 setups.
The vacua are preserved under the twisted compactification, and the 3d monopole-instanton
becomes the 2d center-vortex-instanton in the 2d theory. It is straightforward to generalize
the above argument in the adjoint QCD [QCD(adj)] with nf quarks.
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The QCD(adj) consists of gluons and nf adjoint Weyl fermions. In particular, the
one-flavor massless QCD(adj) is nothing but the N = 1 SYM. The main difference is the
holonomy degrees of freedom. In the N = 1 SYM, the 3d effective theory includes the
holonomy variable ϕ⃗. For nf ≥ 2, the perturbative GPY potential fixes the holonomy to the
center-symmetric value, and only the dual photon σ⃗ is the low-energy degrees of freedom.
Without the power of the supersymmetry, the magnetic bions such as BPS-KK and their
anti-bions still induce the following potential [3, 61]

V (σ⃗) ∼ Λ3(ΛL4)3− 4
3 (nf−1)

N∑
i=1

∣∣∣eiα⃗i·σ⃗ − eiα⃗i−1·σ⃗
∣∣∣2 , (3.24)

which gives the same vacua:

σ⃗ = 2πkρ⃗

N
(k = 0, · · · , N − 1), (3.25)

and they are invariant under the
(
Z[0]

N

)
3d

-twisted boundary condition. This leads us to the
3d-2d adiabatic continuity: these vacua persist under the reduction from the 3d description
to the 2d one.

During the twisted compactification, all adjoint fields get O(1/NL3) Kalzua-Klein mass
and decouple. Thus, the 2d theory only has the ZN degrees of freedom of the dual photon,
representing the N degenerate vacua, just as in the N = 1 SYM.

4 Double confining string: from 3d area law to 2d perimeter law

Because of the bion mechanism, the Wilson loop obeys the area law in the 3d semiclassics.
On the other hand, the 2d Wilson loop on R2 × T 2 with ’t Hooft flux obeys the perimeter
law, and it acts as the generator of the spontaneously broken discrete chiral symmetry. as
explained in section 2.2. In this section, we elucidate the microscopic dynamics behind this
curious behavior using the 3d monopole/bion semiclassics.

4.1 Demonstration for the SU(2) case

To simplify and focus on the essence, let us first look at the case of SU(2). Throughout this
section, we assume L3 ≫ L4 so that we can apply the 3d monopole/bion effective theory
in R2 × S1. The field contents of 3d effective theory consist of the dual photon σ with the
periodicity σ ∼ σ + 2π, the holonomy ϕ, and Cartan Weyl fermion. With the notation of the
previous sections, we can identify the bosonic fields as σ = α⃗1 · σ⃗, ϕ = α⃗1 · ϕ⃗.

4.1.1 Wilson loop in the 3d monopole semiclassics

In the following of this section, we neglect the holonomy field ϕ⃗ by always setting it to the
center-symmetric point, and the effective bosonic action in section 2.1 becomes

S = g2

32π2L4
|dσ|2 + 4V0[1 − cos(2σ)], (4.1)

where V0 is the bion amplitude. Our argument below can easily be generalized to QCD(adj).
Recall that the only difference between N = 1 SYM and QCD(adj) is the absence of the
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holonomy variable as it is fixed to the center-symmetric value by the perturbative GPY
potential for QCD(adj).

In terms of the dual photon, the Wilson loop W (C) on R3 is defined as the defect operator
that determines the boundary condition of the dual photon σ near the loop C: for any small
loops C ′ linking to C, the dual photon must have a nontrivial monodoromy,∫

C′
dσ = 2π. (4.2)

We may express this defect as the violation of the magnetic Bianchi identity, d(dσ) = 2πδ[C].
The cos-type nonperturbative potential tries setting σ to its minima as much as possible,

while the Wilson loop requires that σ should go from 0 to 2π around the loop. To satisfy these
requirements, the region where σ moves is restricted around the minimal surface attached
to the loop C, and the confining flux tube is formed:

⟨W (C)⟩ ∼ exp(−Tconf Area(C)), (4.3)

where Tconf denotes the string tension. If we look more closely at this flux tube, it turns
out to consist of two kinks for N = 1 SU(2) SYM theory. As the magnetic bion has the
magnetic charge 2, the bion potential takes the form of − cos(2σ), and we have two vacua
σ = 0, π mod 2π. Thus, the kink solution for σ going from 0 to 2π consists of two minimal
kinks, one of which goes from 0 to π and the other goes from π to 2π, and we call it the
“double string picture” following [62, 63]. If we denote the tension of the minimal kink
configuration as Tkink, we may expect that12

Tconf ≈ 2Tkink. (4.4)

Each minimal kink describes the domain wall associated with the discrete chiral symmetry
breaking, and thus the confining string consists of two chiral domain walls.

4.1.2 Wilson loop in R2 × S1: perimeter law from double string picture

Now, we consider the behavior of the Wilson loop in the (Z[0]
2 )3d-twisted R2 × (S1)3 setup.

For SU(2), the Weyl permutation acts as

σ → −σ (mod 2π). (4.5)

For the holonomy field, ϕ = π is not only the minimum of the neutral-bion potential but
also consistent with the twisted boundary condition, so we may neglect its fluctuation in
the discussion below. The dual photon feels the magnetic-bion potential, − cos(2σ). Let us
put the Wilson loop W (C) so that C lives in a constant-x3 R2 plane.

As illustrated in figure 3, there are two dominant configurations of the dual photon that
contributes to ⟨W (C)⟩ in the center-twisted R2 × (S1)3. One is the standard minimal-surface
configuration as in the case of R3, shown in the left panel of figure 3.

The other contribution is specific to the compactified geometry: we consider the chiral
domain wall attached to W (C) and extended along the x3 direction as shown in the right panel

12According to the numerical work of ref. [63], the double-string picture for N = 1 SU(N) SYM is valid for
N ≤ 5, but the double string collapses to the single string for the fundamental loop of N ≥ 6.

– 18 –



J
H
E
P
0
5
(
2
0
2
5
)
1
9
4

𝑥3 𝑍 𝒙, 𝑥3 + 𝐿3
= −𝑍 𝒙, 𝑥3

𝑥1

𝑥2

𝝈: 𝟎 → 𝟐𝝅𝑊(𝐶)
𝑥3

𝑍 𝒙, 𝑥3 + 𝐿3
= −𝑍 𝒙, 𝑥3

𝑥1

𝑥2

𝑊(𝐶)

𝝈 = −𝝅
𝝈 = 𝟎

𝝈 = 𝝅

𝚫𝝈 = 𝝅

𝚫𝝈 = 𝝅

Figure 3. Two dominant dual-photon configurations for the Wilson loop in the center-twisted
R2 × (S1)3. (Left panel) Confinement flux tube forms the minimal-area surface of C in the constant
x3 plane. For SU(2), this flux tube has the double kink structure, which is called the double string
picture. This contribution gives the dominant contribution when C is not so large. (Right panel)
The minimal-area surface of C wraps around the (S1)3 direction: one part of the double string goes
upward and the other goes downward out of C, and it forms the domain wall for the spontaneously
broken chiral symmetry. This configuration is possible due to the twisted boundary condition. When
|C| ≫ L3, this gives the dominant contribution.

of figure 3. Let us check if this configuration is really consistent with the boundary condition.
To have the nontrivial winding number of σ around the Wilson loop, we have to attach the
domain walls with the opposite orientation above and below W (C). Since the x3 direction
is twisted by the center symmetry, these chiral domain walls with opposite orientation are
smoothly glued at x3 = 0 ∼ L3.13 This contribution to ⟨W (C)⟩ can be evaluated by the wall
tension Tkink and the area of the wall L3 × Length(C) as exp(−Tkink L3 Length(C)). The
dual photon takes σ = 0 outside the wall and σ = π inside the wall, and they have the same
energy density as these are related by the broken chiral symmetry.

To sum up, the Wilson loop average gets the contributions from both of these con-
figurations, and which of these configurations dominates depends on the size of the loop.
Schematically, we have

W (C) ∼ e−Tconf Area(C) + e−Tkink L3 Length(C)

∼
{

e−Tconf Area(C) if C is not that large,

e−Tkink L3Length(C) if C is sufficiently large,
(4.6)

where Tkink is the kink tension, and Tconf is the string tension. If the size of C is not
so large compared with L3, the standard area law appears. When the size of C becomes
large enough compared to L3, the domain wall extended along (S1)3 dominates and we
obtain the perimeter law. The switching scale between these behaviors can be estimated as
Tconf Area(C∗) = Tkink L3 Length(C∗); when we use the double-string scenario with Tconf ≈
2Tkink, the switching size becomes L∗ ≈ 2L3 for a square loop of size L × L. This is the

13There is another insightful way to understand that the domain wall along the x3 direction is the valid
configuration. By extending the range of x3 from R/L3Z to R, we need to put the mirror image of the Wilson
loop repeatedly as x3 7→ x3 + L3 with flipping its charge. The above discussion shows that we can consider
the chiral domain wall extended along the x3 direction connecting these Wilson loops without costing much
energy. This is indeed the case as the Wilson loops are deconfined on the chiral domain wall even though
they are confined on the R3 bulk [62]. From the modern view, different chiral-broken vacua are distinct as the
symmetry-protected topological states with the center symmetry, and thus the deconfinement on the chiral
domain wall is mandatory to satisfy the anomaly inflow from the bulk [64–67].
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microscopic explanation for why the Wilson loops in the 2d center-vortex semiclassics shows
the perimeter law and generates the spontaneously-broken chiral transformation.

As discussed in section 3.3, the gluino mass term explicitly breaks the discrete chiral
symmetry, and the N -fold degeneracy is resolved at generic values of the vacuum angle θ.
Then, the energy densities inside and outside the domain wall associated with the Wilson
loop become different, and the 2d Wilson loops obey the area law in the presence of mass
deformation. At θ = π, there is the 2-fold ground-state degeneracy due to the spontaneously
broken CP symmetry, and the fundamental Wilson loop in the specific orientation follows
the perimeter law as its associated domain wall relates the CP -broken vacua.

4.2 Generalization to SU(N)

We now extend our previous discussion for the SU(2) gauge group to the SU(N) gauge group.
We neglect the fluctuation of the holonomy by setting ϕ⃗ = ϕ⃗c, and the effective action for
the dual photons with the bion-induced potential is given by

S3d,bosonic = g2

16π2L4
|dσ⃗|2 + V0

N∑
i=1

∣∣∣eiα⃗i·σ⃗ − eiα⃗i−1·σ⃗
∣∣∣2 . (4.7)

As shown in (2.18), this potential has the N vacua σ⃗ = 2πk
N ρ⃗ with k = 0, 1, . . . , N − 1, and

the discrete chiral symmetry is spontaneously broken.
Let us consider the behavior of the fundamental Wilson loop. In the Abelianized regime,

the fundamental Wilson loop is represented as

tr[W (C)] =
N∑

i=1
exp

(
i
∮

C
ν⃗i · a⃗

)
, (4.8)

where a⃗ is the Cartan gluons and ν⃗i = µ⃗1 − (α⃗1 + · · · α⃗i−1). In the 3d semiclassics, each
component, exp(i

∮
C ν⃗i · a⃗), of the fundamental Wilson loop can be translated as the defect

operator that imposes the nontrivial winding number,∫
C′

dσ⃗ = 2πν⃗i, (4.9)

for any small loops C ′ linking to C; equivalently, one may express this condition as

d(dσ⃗) = 2πν⃗i δ[C], (4.10)

where δ[C] is the delta-functional 2-form for the closed loop C. Since all these N components
are related by the unbroken (Z[0]

N )3d center symmetry, they show exactly the same behavior
and we focus on the case of ν⃗1 = µ⃗1.

On R3, the Wilson loop shows the area law, ⟨W (C)⟩ ∼ exp[−Tconf Area(C)]. The
magnetic bion potential tries to set the field configuration to one of its vacuum, say σ⃗ = 0⃗, as
much as possible, but the Wilson loop imposes that σ⃗ should goes from 0⃗ to 2πµ⃗1 around
the loop. This causes the formation of the kink on which σ⃗ rapidly changes from 0⃗ to 2πµ⃗1
and σ⃗ stays almost constant everywhere away from the kink, which is the valid configuration
due to the gauge redundancy, σ⃗ ∼ σ⃗ + 2πµ⃗1. The energy density of this kink gives the
confining string tension, Tconf .
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𝑥3
Ԧ𝑍 𝒙, 𝑥3 =

𝑃𝑊 Ԧ𝑍 𝒙, 𝑥3 + 𝐿3

𝑥1

𝑥2

𝑊(𝐶) 𝚫𝝈 =
𝟐𝝅𝝆

𝑵

𝚫𝝈 = −
𝟐𝝅𝝆

𝑵
+ 𝟐𝝅𝝁𝟏

𝝈 = −
𝟐𝝅𝝆

𝑵
(inside)

𝝈 = 𝟎 (outside)

Figure 4. Dominant configuration for |C| ≫ L3. One of the kinks from the Wilson loop extends
upward, while the other extends downward. This configuration is possible due to the twisted boundary
condition: (∆σ⃗)lower kink = −PW (∆σ⃗)upper kink, and explains the 2d perimeter law.

On R2 × (S1)3 with the twisted boundary condition, there is the other configuration
that also contributes to ⟨W (C)⟩. The twisted boundary condition (3.3) requires σ⃗(x, x3 +
L3) = P−1

W σ⃗(x, x3), and an analog of the right panel of figure 3 can be generalized to the
SU(N) case as follows (its details are illustrated in figure 4): the kink extended along the x3
direction is created by the Wilson loop, and the dual photon σ⃗ take the following expectation
values in the bulk region,

σ⃗(x, x3) =

0⃗ (x is outside of the wall attached to C),
−2π

N ρ⃗ (x is inside of the wall attached to C).
(4.11)

This kink plays the role of the domain wall for the spontaneously-broken discrete chiral
symmetry, and the energy densities inside and outside the kink are the same. Along the
direction shown in figure 4, the upper and lower kinks have the jump

(∆σ⃗)upper kink = 2πρ⃗

N
, (4.12)

(∆σ⃗)lower kink = −2πρ⃗

N
+ 2πµ⃗1, (4.13)

respectively. Let us confirm that this configuration satisfies the boundary condition. The
winding number around the Wilson loop is correctly given by∮

C′
dσ⃗ = (∆σ⃗)upper kink + (∆σ⃗)lower kink = 2πµ⃗1. (4.14)

Moreover, the twisted boundary condition requires14

(∆σ⃗)lower kink|x3=0 = PW (−∆σ⃗)upper kink|x3=L3 , (4.15)

and we can see that this relation holds because of PW ρ⃗ = ρ⃗ − Nµ⃗1.
14The negative sign on the right-hand-side arises from the difference of directions of the arrows in figure 4.

Note that the difference (∆σ⃗)lower kink = − 2πρ⃗
N

+ 2πµ⃗1 is consistent with the configuration because of the
weight-vector periodicity of the dual photon. Indeed, we have (σ⃗)inside = (σ⃗)outside + (∆σ⃗)lower kink = − 2πρ⃗

N
+

2πµ⃗1 ∼ − 2πρ⃗
N

, where we have used the weight-vector periodicity in the last line.

– 21 –



J
H
E
P
0
5
(
2
0
2
5
)
1
9
4

Summing up these two contributions, we obtain the expectation value of the Wilson loop as

⟨W (C)⟩ ∼ e−Tconf Area(C) + e−Tkink L3 Length(C), (4.16)

and the second term dominates when C becomes sufficiently large. This provides an expla-
nation from the 3d perspective on why the 2d Wilson loop in the center-twisted R2 × (S1)3
obeys the perimeter law and generates the spontaneously-broken chiral symmetry. Therefore,
the 2d perimeter law from the double-string picture also works well in the SU(N) case.

5 Bion amplitude from the quasi-moduli integration

In this section, we compute the interaction between monopoles and anti-monopoles to
investigate how the bion amplitude transforms between R3 × (S1)4 and R2 × (S1)3 × (S1)4
with ’t Hooft flux when the size L3 is gradually changed.

5.1 Review on the bion amplitude of QCD(adj) in R3 × S1

We first review the semiclassical physics of nf -flavor SU(N) QCD(adj.) on R3 × (S1)4 with
NL4Λ ≪ 1 following refs. [3, 4]. When nf ≥ 2, the one-loop GPY potential prefers the
center-symmetric holonomy, ϕ⃗ = ϕ⃗c, and the 3d perturbative effective action for the diagonal
components of gluons and fermions is

Seff =
∫
R3

d3x
L4
g2

[
1
4(f⃗ij)2 +

nf∑
f=1

⃗̄λf σi∂iλ⃗f

]
, (5.1)

with i, j = 1, 2, 3 denoting the three spatial directions. Associated with the adjoint higgsing,
there appear N types of fundamental monopoles (N − 1 BPS and one KK). On R3 each
monopole carries 2nf adjoint zero modes (2 per flavor), as dictated by the Callias index
theorem. It is notable that the number of adjoint zero modes on each monopole equals 2nf

for the particular case of a ZN -symmetric Polyakov-loop background [68].
The leading contribution to the bosonic potential comes from the bions, which are the

bound state of monopoles and anti-monopoles so that fermionic zero modes are lifted. In
section 2.1, we obtained the bion amplitude using the power of supersymmetry as it can
be related to the monopole amplitude. We can also compute the bion amplitude based on
the 3d effective theory more directly by evaluating the interaction between monopoles and
anti-monopoles [4, 69, 70]: the expression for the bion amplitude has the following structure,

Zbion(g) ∼ g−8︸︷︷︸
Jacobian

e−2(SI/N)(1+cg)︸ ︷︷ ︸
Boltzmann weight

∫
d3xd3y exp (−Vb(x⃗ − y⃗))︸ ︷︷ ︸

dual photon exchange

[
SF (x⃗ − y⃗)

]2nf︸ ︷︷ ︸
fermion exchange

. (5.2)

The factor g−8 appears from the Jacobian for collective coordinates, e−2(SI/N)(1+cg) is the
Boltzmann weight for two monopoles with c =

√
nf−1

3 for N = 2, and the rest comes from
the interaction between the monopole and anti-monopole. exp(−Vb(x⃗ − y⃗)) is the Coulomb
interaction between monopoles located at x⃗ and y⃗ due to the dual-photon exchange, and
its concrete form for N = 2 is given by

Vb(r⃗) = ±4πL4
g2

1
r

, (5.3)
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where we take + for the magnetic bion (BPS-KK) and − for the neutral bion (BPS-BPS).
The last factor

[
SF (x⃗ − y⃗)

]2nf comes from the fermion zero-mode exchange interaction with
the massless free fermion propagator

SF (r⃗) = lim
m→0

(−iσi∂i)
∫ d3k

(2π)3
eik⃗·r⃗

k⃗2 + m2

= i
4π

σixi

r3 , (5.4)

where the higher Matsubara frequencies are omitted. For nf = 1, i.e., for N = 1 SYM,
the Coulomb potential has to be doubled, Vb → 2Vb, since the holonomy also gives the
same long-range interaction.

From now on, we focus on N = 2. With an approximation SF (x⃗) ∼ 1/r2, the magnetic
bion amplitude becomes

Zbion ∼ 1
g8 exp

(
−8π2

g2 (1 + cg)
)∫ ∞

ρmin
drr2 exp [−Veff(r)] , (5.5)

where ρmin ∼ L4 is a cutoff of the 3d effective description, and

Veff(r) = 4πL4
g2r

+ 4nf log r

L4
. (5.6)

The minimum of Veff(r) is located at r = rb with rb = πL4
g2nf

. For N = 1 SYM, the bion
size has an extra factor 2 as rb = 2πL4/g2 because the Coulomb potential is doubled. We
can identify it as the typical size of magnetic bions, and this implies that the magnetic
bion is a shallow bound state as rb ≫ L4. By evaluating the integral (5.5) with a Gaussian
approximation, we find

Zbion ∼ 1
g14−8nf

exp
(
−8π2

g2 (1 + cg)
)

. (5.7)

By substituting the two-loop coupling constant with β0 = (22 − 4nf )/3 and β1 = (136 −
64nf )/3, the mass gap is obtained as

M
Λ = 4π

√
8Zbion(g)

g2L2
4

∼ (ΛL4)
8−2nf

3 . (5.8)

As this produces the nonperturbative mass gap for the dual photon, this result shows the
microscopic dynamics behind the “bion confinement mechanism” in QCD(adj) on R3 × S1.

5.2 Bion amplitude of N = 1 SYM in R2 × S1 × S1 with ’t Hooft flux

In what follows, we extend the previous computation of the bion amplitude on R3 × (S1)4
to the R2 × (S1)3 × (S1)4 setup with the ’t Hooft flux and NL4Λ ≪ 1. For simplicity of
calculations, let us focus on N = 1 SYM, or nf = 1 QCD(adj), with the gauge group SU(2).
We use (x1, x2) as the coordinate for R2 and x3 ∼ x3 + L3 for (S1)3. We only take into
account the zero modes along the x4 direction as L4 is sufficiently small.
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Because of the twisted boundary condition, σ(x3 + L3) = −σ(x3), the Coulomb potential
between monopoles is

Vb(r⃗) = ±16π2

g2
L4
L3

∑
n3∈2Z+1

∫ dk1dk2
(2π)2

ei⃗k·r⃗

k2
1 + k2

2 + ω2n2
3

= ±16π

g2
L4
L3

∞∑
n=1

K0((2n − 1)ωρ) cos((2n − 1)ωx3) , (5.9)

where we define ω ≡ 2π
NL3

= π
L3

, ρ =
√

x2
1 + x2

2 and k⃗ = (k1, k2, ωn3). K0 is the modified
Bessel function of the second kind. The fermion propagator for this case is

SF (r⃗) = 1
L3

∑
n3∈2Z+1

∫ dk1dk2
(2π)2

eik⃗·r⃗

σ1k1 + σ2k2 + σ3ωn3

= 1
L3π

(−iσi∂i)
∞∑

n=1
K0((2n − 1)ωρ) cos((2n − 1)ωx3) . (5.10)

We put the ± sign in front of the Coulomb potential Vb to distinguish the magnetic and
neutral bions, but this turns out to be unnecessary for the R2 × (S1)3 × (S1)4 setup: it is
important to note that the neutral bion and magnetic bion configurations are unified by
extending the x3 region from [0, L3) to [0, NL3) = [0, 2L3). Remember that the (Z[0]

N )3d-
twisted boundary condition exchanges BPS monopole and KK monopole, and the species
of monopole are no longer discriminated for the extended x3 moduli. More concretely, one
can confirm it by noticing that Vb(ρ, x3 + L3) = −Vb(ρ, x3). In the following, we then take
the − sign for Vb without loss of generality.

The bion amplitude can be written as

Zbion ∼ 1
g8 exp

(
−8π2

g2

)∫ ∞

ρmin
dρ

∫ 2L3

0
dx3 ρ exp (−Veff(ρ, x3)) , (5.11)

with the effective potential

Veff(ρ, x3) = 2Vb(ρ, x3) − log
(
(∂3Vb)2 + (∂ρVb)2

)
. (5.12)

The prefactor 2 for Vb arises from the contribution of the holonomy degrees of freedom,
and the second term describes the fermion-exchange contribution. Let us again emphasize
that this bion amplitude (5.11) includes both magnetic bion and neutral bion, because of
the extended moduli integral x3 ∈ [0, 2L3). In our convention for choosing of the − sign,
the neutral bion exists near x3 ≈ 0 and the magnetic bion exists near x3 ≈ L3, when L3
is supposed to be sufficiently large.

For later purposes, let us derive the asymptotic form in the long-distance region15

ρ ≫ ω−1. In this limit, we just take the n = 1 mode into account in the expressions of
the Coulomb potential (5.9) and fermion propagator (5.10). Then, the Coulomb potential

15As we will see below, the effective potential in this limit becomes relevant when L4 ≪ L3 ≪ L4/g2.
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and the fermion propagator are reduced to

Vb(ρ, x3) ≈ −16π

g2
L4
L3

K0(ωρ) cos(ωx3)

≈ −16π

g2
L4
L3

√
π

2ωρ
e−ωρ cos(ωx3) , (5.13)

and

|SF (ρ, x3)|2 ∼ (K1(ωρ))2 cos2(ωx3) + (K0(ωρ))2 sin2(ωx3)

∼ 1
2ωρ

exp(−2ωρ), (5.14)

where we have used the asymptotic form of the modified Bessel function Kν(z) →
√

π
2z e−z

as z → ∞. This exponential falloff reflects the mass gap ω = π
L3

arising from the ’t Hooft
twist. In this limit, the bion amplitude reads

Zbion ∼ 1
g8 exp

(
−8π2

g2

)∫
dρ

∫ 2L3

0
dx3 exp

(32π

g2
L4
L3

√
π

2ωρ
e−ωρ cos(ωx3) − 2ωρ

)
. (5.15)

We note that this amplitude is similar to the bion quasi-moduli integral in the ZN -twisted
CP N−1 sigma model on R× S1 [18]. Here, we can integrate out the x3-moduli integral, and
we have the intermediate expression of the integral

∫∞
ρmin

dρ
∫ 2L3

0 dx3 . . . as∫ ∞

ρmin
dρ I0

[32π

g2
L4
L3

√
π

2ωρ
e−ωρ

]
e−2ωρ , (5.16)

with the modified Bessel function I0. The integrand of this amplitude can be interpreted
as the 2d effective potential between the center vortex and anti-vortex,

Ṽeff(ρ) = − log
(

I0

[32π

g2
L4
L3

√
π

2ωρ
e−ωρ

])
+ 2ωρ . (5.17)

5.3 Change of magnetic-bion saddle

In R3 × S1, the magnetic bion appears as a minimum of the effective potential of the quasi-
moduli integral of the BPS-KK molecule, (5.5). Now, let us observe how the magnetic-bion
saddle changes in the R2 × S1 × S1 setup.

When we are interested in the scale ρ ∼ O(L3), it would be efficient to use the original
expressions for the Coulomb potential, which is derived from the mirror-image configuration
(figure 1). In this case at N = 2, we have the Coulomb potential,

Vb(ρ, x3) = −4πL4
g2L3

∑
m∈Z

{
L3√

(x3 − 2mL3)2 + ρ2 − L3√
(x3 − (2m + 1)L3)2 + ρ2

}
. (5.18)

In what follows, we consider the effective potential (5.12) with the above Vb(ρ, x3). With
the extended moduli x3 ∼ x3 + 2L3, the neutral bion, BPS-BPS, is around (ρ, x3) ≈ (0, 0),
and the magnetic bion, BPS-KK, is around (ρ, x3) ≈ (0, L3).

We now study the saddle-point structure of the effective potential numerically. The
important dimensionless parameter in the effective potential is 4πL4

g2L3
, which is the ratio
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Figure 5. The effective potential at 4πL4
g2L3

= 0.1: the heatmap describes the height of the effective
potential, and the arrows indicate the downward flows. The circle and triangle markers show locations
of the saddle points (the circle marker represents a local minimum, and the triangle one corresponds to
an unstable saddle). (Left panel) The plot in the region (0 < ρ/L3 < 2, −0.5 < x3/L3 < 1.5). The cross
marker at (ρ, x3) = (0, 0) denotes the BPS-BPS singularity. There are several saddle points around
the magnetic-bion point (ρ, x3) ≈ (0, L3). The unstable saddles near (ρ, x3) ≈ (0, 0.5L3), (0, 1.5L3)
are akin to the “saddles at infinity.” (Right panel) The magnified figure near the magnetic-bion point.
From this figure, it can be observed that the potential valley lies at ρ2 + (x3 − L3)2 ≈ r2

b , which
reflects the 3d spherical symmetry for the magnetic bion saddles in R3 × S1.

between the size of (S1)3 and the 3d bion scale ∼ L4/g2. For the numerical purpose, we
introduce the cutoff to the sum of the Coulomb potential (5.18):

∑
m∈Z

{
· · ·
}
⇒

Ncutoff∑
m=−Ncutoff

{
· · ·
}

. (5.19)

In the figures below, we use Ncutoff = 30.
As an illustration of the effective potential at large L3 ≫ L4/g2, the saddle-point structure

of the effective potential at 4πL4
g2L3

= 0.1 is depicted in figure 5. In this figure, the color represents
the values of the effective potential, and the arrows denote the downward flows. Saddle points
are marked with a circle for local minima and a triangle for unstable saddles. The left figure
is a plot in the region (0 < ρ/L3 < 2, −0.5 < x3/L3 < 1.5), and the right figure offers a
zoomed view of the area 0 < ρ/L3 < 0.2, 0.9 < x3/L3 < 1.1, close to the magnetic-bion point
(ρ, x3) = (0, L3). We can observe the following behaviors of the effective potential:

• BPS-BPS singularity near the origin (ρ, x3) = (0, 0) and the neutral bion.

Both the magnetic Coulomb interaction and the fermion exchange interaction are
attractive around (ρ, x3) = (0, 0), and there is no saddle point in the real domain.
Moreover, the limit (ρ, x3) → 0 is singular but we should note that

√
ρ2 + x2

3 ≲ L4
is outside the scope of the effective theory. In the complexified domain, there are
saddle points at

√
ρ2 + x2

3 ≈ eπirb with rb = 2πL4/g2, and they correctly reproduce
the neutral-bion amplitude including its sign.
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(a) 4πL4
g2L3

= 0.2. (b) 4πL4
g2L3

= 0.4. (c) 4πL4
g2L3

= 0.6.

Figure 6. Evolution of saddle-point structure of the effective potential in the magnetic-bion region
0.5L3 < x3 < 1.5L3, as the parameter 4πL4

g2L3
increases. (a) The plot at 4πL4

g2L3
= 0.2, where the situation

is still similar to the large-L3 case. (b) The plot at 4πL4
g2L3

= 0.4. The local minimum and unstable
saddle on the x3 axis draw closer together as 4πL4

g2L3
increases. (c) The plot at 4πL4

g2L3
= 0.6. As 4πL4

g2L3

increases further, the local minimum and unstable saddle annihilate each other. At this stage, only
the unstable saddle at x3 = L3 remains.

• Magnetic bion (BPS-KK) saddles around (ρ, x3) = (0, L3)

Around (ρ, x3) = (0, L3), the Coulomb interaction becomes repulsive, while the fermion-
exchange interaction is attractive. As a result, the potential has a valley at ρ2 + (x3 −
L3)2 ≈ r2

b, which is identified as the 3d magnetic bion formation. When L3 is infinite,
all the points of the potential valley are stable saddles and exactly degenerate due to
the 3d rotational symmetry. The degeneracy is slightly lifted by the finite L3 effect,
and local minima are found on the x3 axis around (ρ, x3) ≈ (0, L3 ± rb), and unstable
saddles appear around (ρ, x3) ≈ (rb, L3) (see the right panel of figure 5).

• Unstable saddles at (ρ, x3) ≈ (0,±0.5L3)

Far from the Coulomb core, the fermion-exchange attractive interaction is dominant.
Near (ρ, x3) ≈ (0,±0.5L3), there is a point where the attractive force from BPS
monopole at x3 = 0 and the attractive force from KK monopole at x3 = L3 are
balanced. This saddle resembles the “saddle at infinity.16”

This summarizes the situation at large L3. In particular, the magnetic bion exists as local
minima of the effective potential.

Then, let us see how the saddle-point structure changes when we make L3 smaller, or
4πL4
g2L3

becomes larger. The structure in the neutral-bion region, |x3| < 0.5L3, does not change
qualitatively, so we will focus on the magnetic-bion region |x3 − L3| < 0.5L3. This evolution
is illustrated in figure 6, which displays the saddle-point structures at 4πL4

g2L3
= 0.2, 0.4, 0.6.

An interesting phenomenon occurs on the x3 axis. At large L3, e.g., figure 6(a), there are
“magnetic bion minima” and “(unstable) saddles at infinity” on the x3 axis. As L3 decreases,
they move closer together (see the transition from figure 6(a) to figure 6(b)). Below the

16The term “saddle at infinity” refers to an unstable saddle point that appears upon compactification,
typically represented by an instanton–anti-instanton pair located at antipodal points. This saddle point is
often related to the thimble of the complex neutral bion [71].
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2 4 6 8 10

4πL4

g2 L3

0.2

0.4

0.6

0.8

1.0

ρ*

L3

Figure 7. The 4πL4
g2L3

-dependence of the size of magnetic bion ρ∗, or the position of the unstable saddle
(ρ, x3) = (ρ∗, L3). We note that the vertical axis is taken as ρ∗/L3 instead of ρ∗ itself. The solid
curves show the numerical results, and the dashed and dotted curves are the asymptotic formula (5.20)
for large-L3 and small-L3, respectively.

critical L3, the local minima and unstable saddles merge, and they cancel each other out.
Eventually, only one unstable saddle remains (figure 6(c)). We can estimate the critical
L3 numerically, which is 4πL4

g2L3
≈ 0.44.

This indicates that the magnetic bion no longer exists as local minima at small L3. Then,
following the path of this downward flow, one eventually reaches the singularity at the origin.
The only remnant of the magnetic bion is the unstable saddle at (ρ, x3) = (ρ∗, L3). As the
BPS/KK monopoles are unified as a single center vortex, the neutral and magnetic bions
will become just a pair of center vortex and anti-vortex. At small L3, when we look at the
microscopic structure of the x3 internal moduli, the vortex–antivortex pair possesses a complex
neutral bion saddle as well as the unstable saddle point, that is the remnant of the magnetic
bion. We interpret the disappearance of the stable magnetic-bion saddle as the microscopic
signature of the crossover from the 3d monopole/bion picture to the 2d center-vortex picture.

Before concluding this subsection, let us observe L3 dependence of “the size of magnetic
bion” ρ∗, or the location of the unstable saddle, which is plotted in figure 7. The asymptotic
behaviors at small L3 and large L3 can be estimated as follows:

ρ∗ ≃


2πL4

g2 (L3 ≫ rb),
L3
2π W0

(
16π

(
4πL4
g2L3

)2
)

(L3 ≪ rb),
(5.20)

where W0(x) is the principle branch of the Lambert W function. For large L3, the bion size
should be determined by the one for the 3d semiclassics, and for small L3, the asymptotic form
can be estimated from the large-ρ expression (5.15). These asymptotic forms are compared
with the numerical result for ρ∗/L3 in figure 7.

5.4 On the hidden topological angle

In this subsection, we study the interplay between the complex neutral bion and the unstable
saddle (magnetic bion remnant). We know that the vacuum energy vanishes in N = 1
SYM for supersymmetric vacua. In the R3 × S1 monopole semiclassics, the magnetic bion
decreases the vacuum energy but the neutral bion gives the opposite contribution, and they
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exactly cancel with each other and the supersymmetry is preserved. This relative sign for
the neutral bion is called the hidden topological angle, which has been understood from the
Bogomol’nyi-Zinn-Justin (BZJ) prescription for the quasi-moduli integral [70] and also from
the complex saddles in its Lefschetz-thimble integration [27] (see also [72, 73]).

A natural question is how this cancellation is preserved during the reduction from 3d
semiclassics to 2d semiclassics. Here, we offer a few observations on this cancellation in the
R2 × S1 × S1 setup. First, let us see that some cancellation must happen in the quasi-moduli
integral. Due to supersymmetry [74], the integrand for the quasi-moduli integration of the
bion amplitude satisfies the special property,(

(∂3Vb)2 + (∂ρVb)2
)

e−2Vb = 1
4∇

2e−2Vb , (5.21)

which follows from ∇2Vb = 0 up to singularity at the origin. Therefore, the bion amplitude
can be written as the integration of the total derivative:

Zbion ∼ 1
g8 exp

(
−8π2

g2

)∫ ∞

ρmin
dρ

∫ 2L3

0
dx3 ρ

(
(∂3Vb)2 + (∂ρVb)2

)
e−2Vb

= 1
4g8 exp

(
−8π2

g2

)∫ 2L3

0
dx3

∫
dρ ρ

(
∂2

3 + 1
ρ

∂ρρ∂ρ

)
e−2Vb . (5.22)

After properly regularizing the neutral-bion singularity at ρ = 0 (as in R3 × S1 case), this
amplitude should vanish because of the exponential decay:17 Vb(ρ, x3) ∼ 1√

ρe−ωρ. At least,
the total bion amplitude Zbion can be rewritten by only its boundary terms. Thus, if there
are relevant thimbles, they should be eventually canceled.

Next, let us try to understand the hidden topological angle in a more concrete way. In
the particular limit L4 ≪ L3 ≪ L4/g2, the location of the unstable bion saddle is given
by the small-L3 asymptotic formula of (5.20). Upon taking this limit, the size of magnetic
bion becomes much larger than L3: ρ∗ ∼ L3

2π log{16π(4πL4/g2L3)2} ≫ L3. The quasi-moduli
integral can be then written as (5.15),

Zbion ∼
∫

dρ

∫ 2L3

0
dx3 exp

(32π

g2
L4
L3

√
π

2ωρ
e−ωρ cos(ωx3) − 2ωρ

)
. (5.23)

In this expression, the saddles can be easily found:

• The magnetic-bion unstable saddle:

(ρ, x3) ≃ (ρ∗, L3). (5.24)

• The complex neutral-bion saddle: its location is approximately

(ρ, x3) ≃ (ρ∗ ± iπ, 0), (5.25)

where we have used
√

ω(ρ∗ ± iπ) ≃ √
ωρ∗ from ωρ∗ ≫ 1.

17In the R3 × S1 setup, the boundary terms of the neutral and magnetic bion at |r⃗| → ∞ are finite and
have opposite signs, thus canceling each other out.
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We rewrite ρ = ρ∗ + δρ, and let us focus on the integration near the bion saddle(s)
|δρ| ≪ ρ∗. This approximation suffices for our purpose to observe the cancellation structure
of these two saddles. Then, the integration near the bion saddle can be expressed as18

Zbion ∝
∫ 2L3

0
dx3

∫
d(δρ) e2e−ωδρ cos(x3)−2ωδρ. (5.26)

Interestingly, this integration is identical to that of the quasi-moduli integral of the supersym-
metric CP 1 quantum mechanics [75, 76], whose thimble structure has been studied in [18, 77].
Depending on the infinitesimal phase to g2, the intersection numbers of thimbles change.
Borrowing the result of ref. [18], we have

Zbion =

Imag − Ineu,ρ∗−iπ (g2 → g2e−i0)
Ineu,ρ∗+iπ − Imag (g2 → g2e+i0)

= 0, (5.27)

where Imag is the integration on the Lefschetz thimble from the magnetic bion saddle, and
Ineu,ρ∗±iπ is that of the neutral bion saddle (ρ, x3) ≃ (ρ∗ ± iπ, 0).

These observations explain how the cancellation structure is preserved when we move
from the 3d to the 2d semiclassical regime by changing L3 with L4 ≪ L3 ≪ L4/g2. The
cancellation structure between real and complex saddles, or the hidden topological angle,
remains intact nontrivially in the 2d vortex-antivortex framework.

6 Summary and discussion

We studied N = 1 SU(N) SYM theory using the weak-coupling semiclassical theory, and
we made the connection between the monopole/bion-based semiclassics on R3 × S1 and
the vortex-based semiclassics on R2 × T 2 with the ’t Hooft twist. We showed that the
BPS/KK monopoles in the 3d effective theory are transmuted into the center vortex in the
2d description across the dimensional reduction, and we have confirmed the “weak-weak”
continuity of the vacuum structure and the gluino condensate.

We also studied the behavior of the Wilson loop during the dimensional reduction from
R3 × S1 to R2 × T 2, and showed that the perimeter law of the 2d center-vortex semiclassics
is understood from the 3d monopoles through the “double-string picture”. Thanks to the
center-twisted boundary condition, we uncovered that the domain wall wrapping along the
compactified S1 direction comes out of the Wilson loop, and the vacua inside and outside
of the wall are related by the spontaneously broken chiral transformation. As a result, the
Wilson loop in the 2d semiclassics can be identified with the chiral-symmetry generator when
the loop is sufficiently large, which is required to satisfy the anomaly matching condition
with gapped vacua. Based on this observation, we also showed that the mass deformation,
which breaks the discrete chiral symmetry, restores the area-law behavior of the Wilson loop.

On the one hand, we established the adiabatic continuity between the monopole and
center-vortex semiclassical theories from 3d to 2d, with its explicit demonstration for dynamics,
local observables, and vacuum structures. On the other hand, we also found the switching of
the Wilson loop behaviors from the 3d area law to 2d perimeter law for finite L3 as mentioned

18The coefficient is simplified by 16πL4
g2L3

√
π
2

exp(−ωρ∗)√
ωρ∗

= 1.
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above. At the first sight, these two observations may seem to have a conflict. However, they
are actually consistent because the switching from the 3d area law to the 2d perimeter law
occurs only for asymptotically large Wilson loops, which are larger than the compactification
size L3. This is justified by estimating the switching size as L∗ ≈ Tconf

Tkink
L3.

We also performed the computation of the bion amplitude on R2 × S1 × S1, and we
found that the local minima corresponding to the magnetic bions disappear when L3 becomes
comparable to the magnetic bion size, rb = 2πL4/g2. Since the BPS/KK monopole becomes
the identical center vortex under the twisted boundary condition, the magnetic bion becomes
the vortex-anti-vortex pair, and it can no longer exist as the stable molecule for L3 ≲ 4.5rb.
We also studied the role of neutral bions across the dimensional reduction and confirmed
the vanishing of the vacuum energy in terms of the bion amplitude.

We suspect that SYM with tiny supersymmetry-breaking deformation on R2 × S1 × S1

with ’t Hooft twist provides a good testing ground for studying the resurgence structure
of 4d gauge theories. The resurgence theory relates the asymptotic nature of perturbative
expansion with the nonperturbative contribution [78–80]. For this purpose, we first need
to have the well-defined perturbative expansion but the presence of massless gluons causes
various difficulties when we try to start this program on R4 [81]. On R2 × S1 × S1 with
’t Hooft flux, all the perturbative modes have nonzero KK mass, and then we can evade the
difficulty associated with the infrared divergence, which makes the perturbative expansion
well-defined [12]. As another important ingredient to study the resurgence structure, we need
to have a deep understanding of the nonperturbative objects, such as fractional instantons
and their composites. While the analytic properties of the fractional instantons on R2 × T 2

with small T 2 are not much known, the BPS and KK monopoles on R3 × S1 are quite
well understood. Starting from the 3d monopole/bion theory and taking the center-twisted
compactification, we are able to study the bion amplitude as we have demonstrated for the
SYM case in this paper (see [82, 83] for the 2d cases).

For SYM case, the perturbative series vanishes trivially due to supersymmetry, and
we cannot proceed the resurgence program in the naive way. However, the asymptotic
divergence should immediately appear with supersymmetry-breaking deformation, and this
can be formally achieved by treating the fermion flavor nf as a continuous parameter. Then,
the bion amplitudes with nf ̸= 1 should start to have the ambiguity to cancel the Borel
ambiguity of the asymptotic series. This structure, called Cheshire cat resurgence [84–88],
would be a good starting point for the investigation of the resurgence structure in the 4d
gauge theories as some computations can be performed at the supersymmetric point.
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A Conventions of roots and weights

Our convention for the roots and weights for SU(N) is as follows. Let {e⃗n}N
n=1 represent

the orthonormal basis of RN .

• The simple roots are given by α⃗n = e⃗n− e⃗n+1 (n = 1, . . . , N −1). They satisfy α⃗n · α⃗m =
2δnm − δn,m±1. The affine root vector is defined by α⃗N := e⃗N − e⃗1 = −(α⃗1 + · · ·+ α⃗N−1)

• The fundamental weight can be expressed as µ⃗n = e⃗1 + · · · + e⃗n − n
N

∑N
k=1 e⃗k (n =

1, . . . , N − 1). This satisfies µ⃗n · α⃗m = δnm.

• The weight vector of the defining representation can be written as:

ν⃗1 = µ⃗1, ν⃗2 = µ⃗1 − α⃗1, . . . , ν⃗N = µ⃗1 − α⃗1 − · · · − α⃗N−1 . (A.1)

The following formulas are useful: α⃗n = ν⃗n − ν⃗n+1, ν⃗n · ν⃗m = − 1
N + δnm.

• Using the basis {e⃗n}N
n=1, we define the cyclic Weyl permutation PW as PW e⃗n = e⃗n+1;

in particular PW α⃗n = α⃗n+1 (mod N) and PW ν⃗n = ν⃗n+1 (mod N).
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