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Abstract: The main focus of this paper is to analyze the algebraic structure of constacyclic codes over
the ring R = Fp, + w1 Fp + w,Fp + w3F, + w1w,F, + w1 w3F,, where wi — a? = 0, wyw, = wowy,
w3 — BPw, = 0,and a, B € F, \ {0}, for a prime p. We begin by introducing a Gray map defined
over R, which is associated with an invertible matrix. We demonstrate its advantages over the
canonical Gray map through some examples. Finally, we create new and improved quantum codes
from constacyclic codes over R using Calderbank-Shore-Steane (CSS) construction.

Keywords: linear codes; Gray map; CSS construction; quantum codes

MSC: 11T71; 94B05; 94B15

1. Introduction

In contrast to classical information theory, quantum information theory is a rela-
tively emerging field [1-3]. The concept of quantum error-correcting codes (QECCs) was
initially introduced by Shor [4] and Steane [5], with a construction method outlined by
Calderbank et al. [6]. Subsequently, researchers have explored various approaches to uti-
lize classical error-correcting codes to create new quantum codes (QECCs). The quantum
code database remains quite limited when compared to classical block codes. The existing
database [7] encompasses finite fields of order up to 9, but it focuses exclusively on QECCs
for p = 2. Some static tables of quantum codes are available in [8,9], building upon the
work in [10]. The online tables [9] might have been overlooked by many researchers.

The field of quantum error-correcting codes has seen remarkable growth since the
initial realization that such codes could safeguard quantum information, which is anal-
ogous to how classical error-correcting codes protects classical information. Shor’s [4]
pioneering work led to the discovery of the first quantum error-correcting code. In 1998,
Calderbank et al. [6] provided a systematic method for constructing quantum codes from
classical error-correcting codes. Many researchers have concentrated on using Calderbank-
Shor-Steane (CSS) construction to produce quantum codes from linear codes that contain
their duals (see [11-14]).

Qian et al. [15] initially presented the construction of quantum codes from cyclic codes
of odd length over the chain ring F, + uF, where u? = 0. Subsequently, Kai and Zhu [16]
introduced a technique for generating quantum codes from cyclic codes of odd length
over the finite chain ring IF4 + ulF4. Qian [17] proposed a novel approach for constructing
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quantum error-correcting codes from cyclic codes over the finite non-chain ring Fy + vlF,
where v?> = v of any length. Motivated by this study, Ashraf and Mohammad [18] obtained
quantum codes from cyclic codes over the non-chain ring F; + ulf; + vF; + uvF,, where
u? = u,v*> = v, uv = vu, q = p",and p is an odd prime.

Constacyclic codes, a robust extension of cyclic codes over finite non-chain rings, have
proven to be a prolific source of new quantum codes. Recent research by coding theorists has
explored constacyclic codes extensively. Distinguished investigations include Li et al. [19]
over Iy, + ulf, + vF), + uvlF,, with w2 —u=0,v2—v=0,and uv — vu = 0; Ma et al.’s [20]
contributions over F), + o), + UZFP, with v = v; and Gao and Wang’s [21] over F), + ulf),
where > = 1. These studies have led to the construction of numerous significantly
improved quantum codes, all originating from dual-containing constacyclic codes.

In light of these developments, it becomes evident that constacyclic codes over finite
non-chain rings represent a valuable resource for generating new and better quantum
codes. Therefore, this article delves into the exploration of constacyclic codes within the
framework of the non-chain ring R = Fp + w1 + woFp + wle + wywaFp + wy wlep,
where w? — a2 = 0, wywy = wywy, W3 — /Szwz =0, and «, /3 € Iy \ {0}, for a prime p. The
objective is to find new quantum codes over the finite field le The article makes two
significant contributions:

e Comprehensive study of the structure of constacyclic codes with the length | over R.
*  The construction of better quantum codes concerning their parameters, surpassing
those previously documented in the literature.

A noteworthy aspect of this research involves the presentation of computational findings [22],
highlighting the substantial impact of this work on the development of new quantum codes.

2. Preliminaries

Let [F) be a finite field of order p (an odd prime). A subspace Cy of lF;” is called a linear
code of length m over [, and its members are called the codewords. Let R ¥y +wlFp, +
wolF) + wle + wiwlFy + wlwsz, where w% —a? =0, wywy = wowy, wz ﬁzwz =0,and
a,p € Fy\ {0} bea flrute commutative ring. Remember that a linear code C over the
ring R of length n is essentially an R-submodule of the module R". One can also view
an element ¢ = (co,c1,...,¢,_1) in C as a polynomial ¢(z) = cg +c1z + -+ + ¢, 12"}

Rz
(=" [;\Y
R if and only if it is an R-submodule in the module <Z7f£zll\>. Many researchers have
extensively explored constacyclic codes over finite fields and finite commutative Frobenius
rings [23-27]. Consider the elements of R as follows:

within the ring A linear code C is called a A-constacyclic code of length n over

(a4 w1) (B — w3), K2 = (= wy) (B% — w3),

= 2,/32 252

= 41ﬁ2<rx+wl>< ~ o), 4 = g = 1) (0 = ),

K5 = (& +w1) (W] + Bwy), x6 = (a — wy) (w3 + pwy).

1
4n [&2 4n?
We can verify that k1 +x2 + k3 + x4 + x5 + k¢ = 1, and x;x; = 6;; (Kronecker delta) for
i,j € {1,2...,6}. Consequently, the set {1, %, ..., Kk} forms a set of non-zero pairwise
orthogonal idempotent elements in R. This implies that R can be expressed as a sum of
submodules as follows:

R = KlR@KzR@K3R@ K4R@K5REBK6R
= Kle D Klep D K3le D K4Fp D K5le D K6Fp.

Therefore, any element r = a + wqb + wyc + w%d + wiwoe + wlw% f € R can be uniquely
written as
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r = a+ wyb + wyc + wid + wywye + wywi f (1)
= K14 + Kob + k3¢ + K4d + K56 + Kef,

where
a=a+ab,
b=a—uab,
¢=a-+ab— pc+ B2 — aPe + ap’f,
d=a—ab— pc+ p*d+ aPe — ap’f,
¢=a+ab+ fc+ p*d + aPe + ap’f,
f=a—ab+pc+ p*d —ape — ap’f,

are the elements of FF,.

Suppose that GL, () is the group of invertible matrices of order n over [, and let
N € GLg(IFp) in such a way that NNT = kI, where N7 is the transpose of the matrix N, I
is the identity matrix of order 6, and k € F, — {0}. With the above notation, we define a
Gray map associated with an invertible matrix N as follows:

V:R— Fg such that V(r) := (a,b,¢,d,¢, f)N.
We can extend the Gray map V for each component individually, as follows:

VRN — Fgl such that

V(ro,r1,...,11-1) = ((@0,bo,0,do, e, fo)N, (a1,b1,61,d1,81, 1)N (2)
/"'/(ﬁlflrbl*l/C_Zfl/dlfl/e_lflrflfl)N)/

where r; = x14; + 10b; + k3¢; + kad; + 156, + x6f; € R, fori € {0,1,...,1 —1}. Here,
we introduce the Lee weight for the vector ¥ € R as wy(r) = wy(V(r)), where wr
(resp. wy) denotes the Lee weight (resp. the Hamming weight). The Lee weight of wy,
(r = (ro,71,...,7-1)) = wr(ro) +wr(ry) +--- +wr(r;_1) and the Lee distance from
rtor € R, is established as dr (r,7') = wr(r — ') = wy(V(r —1')). The Lee distance
d; (C) for the code C is defined as follows:

dp(C) = min{dy(r,7') | r #7'}.

It is notable that the Gray map V is a linear map over [, that preserves distances and
mapping vectors from R/ to ]Fgl. Since the Gray map V is bijective, it follows that V(C)
forms a [6], k, dp] linear code over IF,, where d; is equal to dp.

The Euclidean inner product of any two vectors, r = (ro,r1,...,7_1) and ¥ =
(1o, 11,1 _4) in R! is defined as r - ¥ = rorg +riry 4+ -+ - 4+ r;_1r;_;. The dual code
of Cis formulated as C* = {r € R! | r-#' =0V ' € C}. A code C is called dual-containing
ifctcc, self-orthogonal if C C C+, and self-dual if C*+ = C.

Example 1. Let R3 = -— 3F3 [11,202]
(s —1,w3 —w), w1 wy—wrt1)

have w3 — 1 = (wy — 1)(wy + 1) and w3 — wy = wy(wy — 1)(wa + 1). Thus, the orthogonal
idempotent elements in R3 are

be a finite commutative non-chain ring. Then, we
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1
k1 =2(1+w1)(1+2w3), x = 5(1 —w1)(1—w}) = 2(1+ 2wy) (1 4 2w3),
1
k3 = (14 wy) (w3 4 2wy), K4 = 1(1 —w1) (w3 —wo) = (14 2wy) (w3 + 2w,),
1
K5 = (1+wy) (w3 +wy), ke = 1(1 — 1) (w3 +wo) = (14 2w) (w5 + wy),

where k1 + K3 + k3 + K4 + k5 + k¢ = 1. By Chinese Remainder Theorem, we have R3 = x1R3 &
K2R3 B r3R3 DKy R3 D xk5R3 B reR3 = x1F3 @ 12F3 © 13F3 © 143 D 53 D x6F3. Therefore,
any element r = a + w1b + woc + w%d + wiwoe + wlw%f € 'R can be expressed as follows:

r = a+w1b+w2c+w§d+w1wze+w1w%f
= (a+b)yx;+(@a+2b)ko+ (a+b+2c+d+2e+ frz+
(@a+2b+2c+d+e+2f)ka+(a+b+c+d+e+ flrs+
(a+2b+c+d+2e+2f)Ke.

Hence, the Gray map V : Ry — F§ can be established as follows:

V(r) := (a+ba+2ba+b+2c+d+2e+f,a+2b+2c+d+e+2f,
a+b+c+d+e+f,a+2b+c+d+2e+2f)Ny,

where a,b,c,d, e, f € F3, and N1 € GLg(F3), where

121101
112110
011211
Ni=la 1012 1)
2 22011
2 0111 2
which has the property that NyNT = 2I¢.
Example 2. Let R5 = — Fslw,wo] be a finite commutative non-chain ring, where

(w? —a2,w3 — B2w; w1 wy —wywy )
a = 2 and B = 3 are non-zero elements of Fs. Then, we have w? — a® = (w; — 2)(wy + 2) and

w% — ﬁzwz = wy(wy — 3)(wy + 3). The orthogonal idempotent elements in Rs are as follows:

1

K =42+ w)(1+w3), k= W(“ —w1) (B —w3) = 42— w1)(1+ w3),
K3 = 2(2+w1) (w3 — 3wy), K4 = W(“ —wy) (w3 — pwn) = 2(2 — wy) (w3 — 3wy),
K5 = 2(2+ 1) (w3 + 3wy), Ke = W(“ — 1) (w3 + pwn) = 2(2 — wy) (w3 + 3wy),

where k1 + K3 + k3 + x4 + k5 + k¢ = 1. By Chinese Remainder Theorem, we have Rs = x1R5 ®
Ko Rs B3R5 DraR5 B x5R5 Bk Rs = k1Fs5 B 12F5 B 13F5 B x4F5 @ 15F5 B x6F'5. Therefore,
any element r = a + w1b + woc + w%d + wiwye + wlw%f € 'R can be expressed as follows:

r = a+w1b+w2c+w%d+w1wze+w1w§f
= (a+2b)k1+ (a+3b)xy + (a+2b+ 2c +4d + 4e + 3f )3+
(a4+3b+2c+4d+e+2f)kg+ (a+2b+3c+4d +e+3f x5+
(a+3b+3c+4d + 4e + 2f)xe.
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The Gray map V : Rs —s F& can be established as follows:

V(r) := (a+2b,a+3b,a+2b+2c+4d +4e+3f,a+3b+2c +4d + e + 2f,
a+2b+3c+4d+e+3f,a+3b+3c+4d +4e+2f)No,

where a,b,c,d,e, f € Fs, and Ny € GL¢(F5), where

Z

Il
_ = = =W
e
e N
[ == OS TSR S
— Wk R =
W Rk P Pk =

~

which has the property that NoNT = 41,
Theorem 1. The Gray map V : R} — Fgl defined in Equation (2) is linear and isometric.

Proof. To prove that V is a linear map, assume that z = a1x; + axky + asx3 + asky + asxs +
agke and y = byxy + boky + bakz + baxy + bsks + bgkg are any two elements of R and Aisa
non-zero scalar in [F,. Then, we have

V(z —|—y) = (ay + by, a2+ by, as + b3, ay + by, as + bs,ag + bg)N
= [(a1,a2,a3,a4,a5,a6) + (b1, b2, b3, by, bs, be) [N
= (ay,ap,a3,a4,0a5,a6)N + (b1, by, b3, by, bs, bg)N
=V(z) +V(y),
V(A -z) = (Aay, Aay, Aas, Aay, Aas, Aag)N
= )\(oh, ap,as,dy,4ds, a6)N
= AV(z).

This ensures that V is a linear map. To prove that V is an isometry, we shall show that
the Lee distance and the Hamming distance of code C are the same. As z,y € R/, then by
definition of the Lee distance, we see that

di(zy) = wty(V(z —y)) = wtp(V(2) = V(y)) = du(V(z), V(y)). ®)

Therefore, the Gray map V is an isometry. [

Theorem 2. Let C be a linear code with parameters [1,k,dr | over R.

(i) Then, V(C) is a linear code with parameters [6l,k,dy| over ¥y, where di and dy are the
same.

(ii) The image V (C) is self-orthogonal over ¥, provided C is self-orthogonal over R.

(iii) The image V (C) is a dual-containing code over IF,, provided C is a dual-containing code over R.

(iv) Cis a self-dual code over R if and only if V (C) is a self-dual code over IF,,.

Proof.

(i) The proof follows by Theorem 1.

(i) If C is self-orthogonal over R. Then, for any codewords z = (z1,zy,...,2;) and
vy = (yi,y2,...,y;) in C, where z; = ailKl + aéxz + CléKg, + aZK4 + agx5 + aéx6 and
yi = biKl + béKZ + béK3 + bflm + béK5 + béK6 are elements of R for1 < i < [, we
have z - y = 0. This suggests that a}b} + a]Zb]Z +oF a;b]l =0forl <j <6 Let
Z',y" € V(C) be any two elements, then some z, y € C exists such that z’ = V(z) and

v =V(y),ie,
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(iii)

(iv)
O

V(21),V(z2),..., V(z)))

= (
(a1, a3, a3, 23, a5,aé)N, (a1, a3, a3, a3, a3, ap)N, ..., (ay, @b, a3, ay, a5, ag)N),
(
(

V(y1),V(y2),....V(y1))
(b1,b3,63,6}, 6%, BN, (02,03, 13,13, b2, b2)N,, ..., (b}, bh, b5, ', bL, BLYND),

where N € GLg(F,) such that NNT = ALs, A € F, — {0}. Now, we have

1
— Y (a}, o, ab, ay a, o NNT. (b, b, b, b, b, )

Il
—

(a}, ab, a af, a, ab) AT, (b}, b, b, b, L, b))

I
™-

Il
—

MA@, + abbh 4 albh + al bl + akbl + albi)

I
™-

I
—

[
gl

111 212 Iply _

Il
<

Thus, we have 2’ -y = V(z) - V(y) = 0 for all 2,y € V(C) if C is self-orthogonal
over R. Hence, V(C) is a self-orthogonal code of length 6 over F,, provided C is a
self-orthogonal code over R.

Suppose that C+ C C, then by the linearity of V, we have V(C+) C V(C). To prove
that V(C) is dual-containing, it remains to show that V(C*+) = V(C). For this, let
z=(z1,22,...,21) € Cand y = (y1,y2,---,y1) € CL, where z; = ayK +u21<2 +a3K3 +
{147(4 + 115K5 + agke and y; = bl %1 + byKo + biks + b WKa + b51c5 + b’?;% are elements of
Rforl1 <i<Il Now,x-y= Oglvestha’falbl—i—azb2 ’b =0forl1 <j<e6.
Consider

V(z) = ((a1,83,03,a},a8,a3)N, (a3, 03,03, a3, a3, aZ)N, ..., (a}, ay, a, al, a, ag)N),
V(y) = ((b}, b3, b3, b}, b}, bE)N, (b3, 63,63, b2, b2, 2)N, ... ., (b}, bb, b5, bL, b, bL)N),

Now, V(z) - V(y) = 0 suggests that V(y) € V(C)*. Thus, we have V(Ct) C V(C)*.
Contrarily, V is a bijective linear map, so the sizes of V(C') and V(C)* are the same.
Thus, V(C1) = V(C)*. Hence, V(C) is a dual-containing code over F, provided C
is a dual-containing code over R.

It follows from part (iii).

Theorem 3 ([11]). Let C = x1C; @ x2C @ x3C3 © x4Cy © x5C5 @ x6Cg be a linear code over
R. Then:

(i)
(ii)

clt = ch_ll &) KzCzL ) Kgc_g,L © K4C_4L © K5C_5L @ K6C_6L;
C is self-dual over R if C; are self-dual codes over Fp, for 1 <i < 6.

Here, we define the direct sum and the direct product as defined by Dinh et al. [24] in

the following ways:

D1 @& Dy ={dy +dy|d;j € Dj; j=1,2}, (4)
D1®D2:{(d1,d2)|d]'€D',‘ j:1,2}. (5)
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Suppose that C is a linear code with length I over R. Consider the following sets:

Ci={de IF;, k13 + x2b + x3¢ + k4d + k58 + 16 f € C; for some 4,b,¢,¢, f € IF;};

It can be seen that C; for 1 < i < 6 is a linear code with length I over [F,,. Therefore, we can
express a linear code C with length [ over R as C = x1C; ® x2Cy @ x3C3 @ 14Cs ® x5C5 B
k6Ce- If G; is the generator matrix of C; for 1 < i < 6, then the generator matrix V(G) of
the Gray image V(C) is given as follows:

3. A-Constacyclic Codes over R

A constacyclic code is an important class of linear error-correcting codes. It is a
generalization of cyclic codes, which are themselves a subset of linear codes. Suppose that
A = x1a + kb + K3¢ + K4d + K56 + K¢ f 1S @ unit element in R. Then, a linear code C with
length [ over R is called a A-constacyclic code if, for any codeword ¢ = (co,c1,...,¢1_1)
in C, it satisfies the property that wx (¢) = (Ac;_1,¢o,-..,¢;_7) is again a member of C. In
particular, if A = 1, then A-constacyclic code C becomes a cyclic code, and if A = —1, then
C becomes a negacyclic code.

Lemma 1. Let A = x1a + 10b + K3¢ + k4d + x5 + K6 f € R be a non-zero element. Then, the

element A € R is a unit element in R if a,b,c,d, e, f are unit elements in F,. Moreover, when

A € R is a unit element, then its inverse is given by AV =xa Vb Fage +igd 1 +
-1 -1

Kse -+ Kef .

Proof. Suppose that A = x1a + 12b + k3¢ + K4d + k56 + k¢ f € R is a unit element. Then, an
element A1 = x1a1 + xby + K301 + Kadq + K561 + K6 f1 € R exists such that AA; = 1. Using
the idempotent orthogonality of x; for 1 <i < 6, we have xjaa; 4 kpbby + x3ccq + Kxaddy +
Kseeq + ke f f1 = 1. Putting the values of x; for 1 < i < 6 and comparing the constant term
and coefficients of wq, wo, w%, wywWo, wlw%, we obtain

aaq + bby =2,
aa; —bby =0,
—ccy — ddy 4 eer + ff; =0,
ccy +ddy +eer + ff1 =4,
—ccy+ddy+ee;— ff1 =0,
ccy —ddy +eeg — ff1 =0.
Solving these equations, we obtainaa; = 1,bb; =1,cci =1,dd; =1,ee; =1,and ff; = 1.

Therefore, we have A~! = xja=! + xob ™! + k3¢ +x4d ™1 + x5 + Kéf_l.
The converse part can be performed in a similar way. [
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Theorem 4. Let C = x1C; @ 12Cy @ x3C3 @ k4Cy D x5C5 @ x6Cs be a linear code over R
and A = K1\ + 10 \y + k3A3 + K4 Ay + K5A5 + kg Ag € R be a unit element. Then, C is a
A-constacyclic code over R if C; is a Aj-constacyclic code for 1 < i < 6 over .

Proof. Suppose that C is a A-constacyclic code with length / over R. If ¢ = (ro,11,...,7_1) €
C, whererj = K14y ; + ka2 j + K383 j + K444 ; + K505 ; + Kedg j such thata; ; € F for1 <i <6
and 0 < j <1 —1, then we have (a;0,4;1,...,4;;_1) € C;. Thus, the A-constacyclic shift of
ciswp(c) = (Arj_1,70,...,71_2) € C, where

Ari_1 =K1 Aay—1 +KoNoay 1 +Kk3A3a3) 1 + KgAgay) 1 + K5As5a5)_1 + KeNelg 1.

Therefore, we obtain wx(c) = Z?:l ki(Aiaj1—1,0i0,8i1,...,4i1—2) € C, which leads to
(Ajaj;-1,8i0,8i1,...,8;1—2) € C;. Therefore, C; is a A;-constacyclic code for 1 < i < 6 of
length [ over ).

Conversely, assume that C; is a A;-constacyclic code of length [ over Fj, for 1 < i < 6. Then,
for a vector @; = (a;0,4;1,...,8;;-1) € C;, we have wy, (a;) = (Aiajj_1,8i0,8i1,...,8;-2) € Ci.
Thus, we have

6

Z KiwA[(a_i) = Z Ki (Aiai,l—llai,O/ Aidre--y ai,l—Z) = (Arl—ll L\RERY rl—Z) = WA (C)
i i=1

Therefore, if C; is a Aj-constacyclic code for 1 < i < 6 of length [ over Fj,, then Cis a
A-constacyclic code over R. [

Theorem 5. Let C = x1C; & x2Co & k3C3 @ k4Cy @ k5C5 @ k6Cg be a A-constacyclic code over

R and pi(z) € % a unique monic polynomial of the lowest degree such that C; = (p;(z)) and

pi(2)|(z} — A;) for 1 <i < 6. Then, C = (p( )), where p(z) = k1p1(2) + kop2(2) + K3p3(2) +
K4pa(z) + x5p5(2) + K6ps(z) and p(z)|(z' — A).

Proof. Suppose that C = x1C; @ 1,Cp @ x3C5 @ x4Cy B k5C5 D x6Cs is a A-constacyclic
code with length I over R, then each C; is a A;-constacyclic code over Fj, for 1 < i < 6.

Therefore, C; C = ,p [ A] 5 is a principal ideal generated by a monic polynomial p;(z) € <5”_[f\}’_>

of lowest degree such that p;(z)|(z/ — A;) for 1 < i < 6. Thus, x;p;(z) are the generator
polynomials of C.

If we take p(z) = x1p1(z) + k2p2(z) + k3p3(2) + Kapa(z) + K5p5(2) + Keps(z), then
(p(z)) C C. Furthermore, we see that x;p(z) = x;p;(z) € (p(z)) implies that C C (p(z)).
Thus, we conclude that C = (p(z)).

Moreover, we have p;(z) € <5’i [/Z\]) such that p;(z)|(z} — A;). Thus, polynomials

qi(z) € Fp[z] exist such that (z/ — A;) = p;(z)q;(z) for 1 < i < 6. Thus, we have

6 6
z)( ;Kﬁh(z)) = ;Kipi(z)%'(z) =wi(z —A) =2 - A

Thus, we conclude that p(z)|(z — A). O

Corollary 1. Let C = ®%_,x,C; be a A-constacyclic code over R, and C; = (p;(z)) such that

2= A =piz ) i(z) for1 <i < 6. Then:

i Ct= l 11c1 Cij‘ is a A~ -constacyclic code over R;

(i) C* = (X% xiqi(z)), whereq;(z) is the reciprocal polynomial of q;(z), which is defined as
g; (z) = 248E)g;(z71) for 1 < i < 6

(iii) |CL|= pZizl deg(pi(z))
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4. Dual-Containing A-Constacyclic Codes

The dual-containing code is a very important class of code for the construction of
quantum error-correcting codes.

Definition 1. Suppose that C is a A-constacyclic code of length | over R, where A is a unit element
of R. Then, C is said to be dual-containing ifCL CC.

Proposition 1. Let C be a A-constacyclic code over R, where A = x1 A1 + K2y +Kk3A3 + K44 +
k55 + k6N € R. If C is a non-trivial dual-containing code, then A; = £1 for1 <i < 6,1i.e.,
A€ {tKy Ky tr3tKygEtK5EtK6} €R.

Remark 1. Suppose that C is a A-constacyclic code over R, then from Proposition 1 we con-

clude that:

(i) IfA=1,then A; = 1and C;is a cyclic code over IF,, for 1 <i < 6.

() If A= —1,then A; = —1and C;is a negacyclic code over F), for 1 <i < 6.

(i) If A; = 1and Aj = —1, then C; is a cyclic code, and C; is a negacyclic code over IFy, for
1<i#j<e6.

Example 3. Let C be a (wq — w3 — wyw3)-constacyclic code over R, then Ay = 1 implies that C;

is a cyclic code, and Aj = —1 further implies that C; is a negacyclic code for 2 < j < 6 over ),

Example 4. Let C be a (1 — 2w5)-constacyclic code over R, then A; = 1 implies that C; is a cyclic
code fori = 1,2, and Aj = —1 further implies that C; is a negacyclic code for 3 < j < 6 over Fp.

Example 5. Let Cbea (1 — %wz — %w% — wiwy + wq w%)—constacyclic code over R, then A; = 1

implies that C; is a cyclic code for i = 1,2,3, and Aj = —1 further implies that C; is a negacyclic
code for j = 4,5,6 over IF,.

Lemma 2 ([6]). Let C; be a Aj-constacyclic code with generator polynomial p;(z) over F. Then,
C; is a dual-containing code if 2" — Aj =0 mod (p]-(z)p}*(z)), where Aj = +1 and p]’-‘(z) is the
reciprocal polynomial of p;(z), for j = 1,2,...,6.

Lemma 3. Let C be a linear code over R and C* be the dual of C. If V is a Gray map as defined in
Equation (2), then V(C*) = V(C)*. Moreover, if C is a self-orthogonal (self-dual) code over R,
then V (C) is a self-orthogonal (resp. self-dual) code over IF),.

Proof. The set K = {1, %, ...,Ks} forms a basis for 6-dimensional vector space R over Fp.
Anelement r € R can be uniquely expressed as r = x1ay + kpay + k343 + k404 + K505 + Keag,
where a; € Fj, for 1 <i < 6. Then, we have

V(r) = (a1, a2, a3, a4,as,a6) M,

where M € GLg(Fy) such that MMT =alganda € Fy — {0} Letz = (z9,21,---,21-1) €
C C R!, where zj = K1a1 + K2u2 + K3ll3 + K4a4 + K5a5 + K6a6 € Rfor0 <j<I—1 Then,
we have z = xja; + koay + k303 + Kaag + K505 + Keas, where a; = (a9,a},...,al71) € IF;.
Suppose that y = x1b1 + x2by + k3b3 + x4by + x5b5 + K6bg € CL. Then, we obtain that
z -y = 0 implies that

K1a1b1 + K0a2by + K3a3b3 + K4a4b4 + K505b5 4 Kgagbg = 0.

Since K is linearly independent, we obtain a;b; = 0 for 1 < i < 6. Also, we have V(z) =
(Cll,IZZ, as,ay, as, ﬂ6)M < V(C) and V(y) = (bl,bz, b3, b4, b5, b6)M S V(CL) Consider
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V(z)-V(y) = V(z)- V(y)" =(a1,a2,a3,a4,a5,a6) MM" (b1, by, b3, by, bs, be)
:rx(albl + azbz + ﬂ3b3 + 614174 + 615175 + ﬂﬁbé)
=0.

Therefore, V(y) € V(C)*, ie, V(Ct) € V(C)*. Since the Gray map V is bijective,

|V(CH)| = |V(C)*| suggests that V(C+) = V(C)*. If C is a self-orthogonal code, then

C C C*, and hence, V(C) C V(C*) = V(C)*. Therefore, V(C) is a self-orthogonal code.
0

Theorem 6 ([25]). Let C; = [n,kq,d1]q and Cy = [n, ko, d3], be two linear codes over GF(q) with
Cy C C1. Then, a QECC exists with parameters [[n, ky + ko — n,d)],, where d = min{wt(v) :
v € (C1\Cy)U(Ca\ C)} > min{dy, dp}. Moreover, if Cy is a dual-containing code, then a
QECC with parameters [[n,2ky — n,dq]], exists, where d; = min{wt(v) : v € C; \ C{ }.

Theorem 7 ([6]). Let C be a A-constacyclic code over ¥\, having a generator polynomial p(z).
Then, C is dual-containing if (z' — A) =0 mod (p(z)p*(z)), where A = +1.

The dual-containing cyclic and negacyclic codes over [}, are provided by Theorem 7. Using
this outcome, we can now ascertain the prerequisites and requirements for A-constacyclic codes
over R to have their duals, as demonstrated in the following theorem.

Theorem 8. Let C = EB?:lKiCi be a A-constacyclic code of length | over R, where A = k1A +
KoMy + -+ K60 € Rand C = (p(z)) = (k1p1(z) + xapa(z) + - - - + Kepe(2)), where p;(z)
is the generating polynomial of code C; over I, for 1 < i < 6. Then, C is a dual-containing code if
and only if (z! — A;) =0 mod (pi(z)p}(z)), where A; = 1 for1 <i < 6.

Proof. Suppose that C = @9 x;C; is a A-constacyclic code over R, where A = 1A +
kpAy 4+ --- + kA € R. Then, by Theorem 4, the code C; is a A;-constacyclic code
with generating polynomial p;(z) over F. If C is a dual-containing code, then we have
@?lei(ff C @%_,x;C;. Since this expression is unique, we have C:t C C;. Therefore, by
Lemma 2 we have (z/ — A;) =0 mod (pi(z) - pi(z)). O

Corollary 2. Let C = ®%_x;C; be a A-constacyclic code over R. Then, C is a dual-containing
code over R if and only if C; is a dual-containing code over Fy, for 1 < i < 6.

Theorem 9. Let C = @%_,«,C; be a A-constacyclic code of length | over R, and V be the Gray
map. If V(C) has parameters [61,k, dp;], where k = ky + ko + - - - + kg is the dimension of V(C)
and dy, is the Lee distance of C, if C is a dual-containing code, then a QECC exists with parameters
61,2k — 6l,dy] over ).

Proof. Suppose that C is a dual-containing code over R and V is a Gray map. Then, V(C)
is also a dual-containing code with parameters [6/, k, d;] over IF,,. Therefore, by Theorem 6,
a QECC with parameters [[6], 2k — 61, dy]], exists over F,. [

_ IFS[wl,wz] .. _ . .
Example 6. Let Rz = s e ——— be a finite non-chain ring. Suppose that

A= 2w§ — 1is a unit element in R3. Then, A\ = Ay = —land A3 = Ay = A5 = Ag = 1.
Thus, in F3(z], we have

2 —1=(z+2)°

Z+1=(z+1)°.
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Let p1(2) = pa(z) = (2+ 1%, pa(2) = pa(z) = (z+2), and ps(z) = ps(z) = 1 be the
generator polynomials of C; for 1 < i < 6, respectively. Then, C = (k1p1(z) + kop2(z) + - - - +
Kepe(z)) is a (2w3 — 1)-constacyclic code of length 9 over R3. Let N1 € GL¢(F3), as given in
Example 1, then NyNT = 215 and the Gray image ¥V (C) has the parameters [54,44,4]. Moreover,
(x = A;) =0 mod (p;(z)p;(z)) for 1 <i < 6; thus, by Theorem 8, we find that C is a dual-
containing code; so, by Theorem 9, we have a QECC [[54, 34, 4]|s, which is a new QECC with
this parameter.

Remark 2. In the previous example, we have seen that the Gray image V (C) is a linear code with
parameters [54,44, 4] over the field F3. Specifically, for a code with a length 9, the Gray image’s
length is 54, and its dimension is equal to the rational sum of the dimensions of the individual codes,
yielding 44 as a result. Let G; denote the generator matrix of C; = (p;(z)) fori € {1,2,...,6}.
Then, the generator matrix for V (C) is given in Section 2.

After providing the generator matrix V (G) as input to the Magma Computation System [22],
it was determined that the minimum distance of V (C) is 4. Based on this computation, it is crucial
to note that the minimum distance of the Gray image is greater than the distance of each C;. As in
Example 6, dH(C1> = dH(Cz) =3, dH(Cg) = dH(C4) =2, and dH(CS) = dH(C6) =1, while
the Lee distance is 4. Notably, employing the canonical Gray map rather than the Gray map V
would result in a Lee distance of 1 instead of 4. Which underlines one of the primary advantages of
using the Gray map V.

Example 7. Let Rs5 = Fslwn o] be a non-chain ring. Suppose that A = 1+

<w%—4,wg—4w2,w1w2—w2w1}
wy (1 + 3wy ) (1 + 3wy) is a unit element in Rs. Then, Ay = Ay = Az = 1and Ay = A5 =
N = —1. Thus, in F5|z|, we have

2 1= (2442 +2+1)°
241 = (2412 +4z+1)°.

Let p1(2) = (22 +2+1), pa(2) = (2 +4)% pa(z) = 1, and py(z) = ps(z) = ps(2) = (2+1)
be the generator polynomials of C; for 1 < i < 6, respectively. Then, C = (k1p1(z) + kap2(z) +
-+ x6pe(2)) is a (14 (1 — wy) (wa — wd))-constacyclic code with length 15 over Rs. Let
N, € GL¢(Fs), as given in Example 2, then NZNZT = 4l and the Gray image ¥V (C) has the
parameters [90,83,3]. Moreover, (z!> — A;) = 0 mod (p;(z)p;(z)) for 1 < i < 6; thus, by
Theorem 8, we find that C is a dual-containing code; hence, by Theorem 9 we have a new QECC
[[90, 76, 3]]5, with this parameter. Again, here we can see that the distance of V(C) > dy (C;) for
1<i<e6.

Example 8. Let Rs5 = <w%+1rw£1[$21,’;’12l02_w2w1> be a non-chain ring. Suppose that A = 4 is a unit

element in Rs. Then, Ay = —1 = Agand A3 =1 = Ay = As = Ag. Thus, in Fs|z], we have

2P —1=e+4)°P+22+2+28+224241)0
P4 1=(z4+1)°(2f +42° + 2+ 428+ 22+ 4z +1)°.

Let p1(z) = (20 +42° + 24 + 423 + 22 + 4z 4+ 1), pa(z) = (z+1)%, p3(z) = 1, and py(z) =
p5(z) = pe(z) = (z+4) be the generator polynomials of C; for 1 < i < 6, respectively. Then,
C = (k1p1(z) + x2p2(z) + - - - + kepe(z)) is a A-constacyclic code with length 35 over Rs. Let
Ny € GL(Fs), as given in Example 2, then NoNI = 41¢ and the Gray image V (C) has the
parameters [210,199,3]. Moreover, (z°> — A;) = 0 mod (p;(z)p; (z)) for 1 < i < 6; thus, by
Theorem 8, we find that C is a dual-containing code; so, by Theorem 9 we have an improved QECC
[[210, 188, 3]]5 against the existing code [[210,186, 3|5 [14]. Here, we can see that the distance of
V(C) Z dH(Ci)fOT’ 1 S i S 6.
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Example 9. Let Rs be a non-chain ring, as in Example 7. Suppose that A = 4 + wp(2 + wy)
(2 + wy) is a unit element in Rs. Then, Ay = =1 = Ay = Azand Ay =1 = As = Ag. Thus,
in Fs[z], we have

P —1=(z+4)°(+z+1)°=°+22+1)°
P 41=(z4+1)°(2% +4z+1)°(25 +42° +1)°.

Let pr(z) = (0 + 423 +1), pa(2) = (2 1), ps(2) = (2 1% palz) = 1, and ps(z)
pe(z) = (z +4) be the generator polynomials of C; for 1 < i < 6, respectively. Then, C =
(k1p1(2) + K2p2(2) + - - - + Kepe(z)) is a (4 + wp(2 4+ w1 ) (2 + wy))-constacyclic code with
length 45 over Rs. Let Ny € GLg(F5), as given in Example 2, then N2N2T = 4l and the Gray
image V (C) has the parameters [270,259, 3]. Moreover, (z*> — A;) =0 mod (p;(z)p; (z)) for
1 <i < 6; thus, by Theorem 8, we find that C is a dual-containing code; thus, by Theorem 9 we have
an improved QECC with parameters [[270, 248, 3|5 against the existing code [[270,246, 3]]5 [28].
Here, we can see that the distance of V(C) > dy(C;) for 1 <i < 6.

Example 10. Let R; = Frlwn,wy] be a non-chain ring. Suppose that A = 2w3 — 1

<w%—1,w§—wz,w1w2—w2wl>
is a unit element in Ry. Then, Ay = —1 = Agand A3 = Ay =1 = As = Ag. Thus, in Fy[z],
we have
2 —1=(z+3)(z+5)(z+6)(z> +3)(z*> +5)
2Z41=(z+1)(z+2)(z+4)(z>+2)(z° +4).
Let p1(z) = (22 +2), pa(z) = 1, and p3(z) = pa(z) = (z+3) = p5(z) = ps(z) be the

generator polynomials of C; for 1 < i < 6, respectively. Then, C = (x1p1(z) + xopa(z) + -+ - +
Kepe(z)) is a (2w3 — 1)-constacyclic code of length 9 over Ry. Let N3 € GL¢(F7) such that

N3

I
NN N NN W
NN NN N
NRNNWRNN
NN WNNN
N WNNNN
WNNNNN

then N3NT = I¢ and the Gray image ¥ (C) has the parameters [54,47,3). Moreover, (z° — A;) =0
mod (p;(z)p;(z)) for 1 < i < 6; thus, by Theorem 8, we find that C is a dual-containing code;
so, by Theorem 9, we have a new QECC with parameters [[54,40, 3]];. Here, one can see that the
distance of V(C) > dy(C;) for 1 <i <6.

Note: In Table 1, q,n, and A represent the order of the field, the length of the code
defined over R, and the unit element in R, respectively. p;(z) is a generator polynomial of
Ciforie {1,2,...,6}, N1, Ny, N3 are the invertible matrices over F3, F5, F7, respectively,
used to define the Gray map V. The parameters of the corresponding Gray image (dual-
containing code) are denoted by V(C). [[n,k,d]] and [[n, k', d']] represent the parameters of
the new QECC and existing QECC, respectively.



Axioms 2024, 13, 697

13 of 15

Table 1. Some new and improved QECCs over I, from constacyclic codes over R, for (p = 3,5,7).

qg =n A p1(z) p2(z) p3(z) =pa(z)  ps(x) =pe(x) N V(C) [[n, K, d]] [n, X', d']]

3 9 —wy + w5 + wyw3 11 12 1 1 N [54,52,2] [[54,50,2]]3 [[54,46,2]]5 [12]
3 9 2w3 — 1 11011 11011 12 1 N (54,44, 4] [[54,34,4]]3 New QECC

3 11 —wy + w5 + wy w3 102221 1 102122 1 Ny [66,51,3] [[66,36,3]]3 New QECC

3 11 —wy + Wi + ww3 102221 102122 102122 1 Ny (66,46, 4] [[66,26,4]]3 New QECC

3 11 —w+ws+wws 102221 1 102122 1022122 N (66,41, 5] [[66,16,5]]3 New QECC

3 13 2w3 — 1 1021 1021 1102 1 N 78,66, 4] [[78,54,4]]3 New QECC

3 18 1 11011 11011 12 1 N [108,98, 3] [[108,88,3]]3 New QECC

5 6 ~1 134 13 12 12 N> 36,29, 4] [[36,22,4]]5 New QECC

5 18 -1 1003004 13 12 12 N, [108,97,4] [[108,86,4]]5 New QECC

5 19 —1 1 1033234341 1033234341 1033234341 N> [114, 69, 6] [[114,24,6]]5 New QECC

5 19 -1 1033234341 1033234341 1033234341 1033234341 N> [114,60,7] [[114,6,7]]s New QECC

5 20 —wy+ w3+ wws 10404 11 11 11 N> [120,111, 3] [[120,102,3]]5 [[120,96,3]]5 [14]
5 22 —w;—wi+wws 111212 1 13 12 N, (132,123, 4] [[132,114,4]]5 [[132,110,4]]5 [21]
5 25 1—2w3 1400041 1 11 11 N> [150, 140, 3] [[150, 130, 3]]5 New QECC

5 25 1— 2w} 140000000014 1 11 11 N, [150, 135, 4] [[150,120,4]]5 New QECC

5 40 1 12342 1 12 13 N> [240,232, 3] [[240,224, 3]]5 New QECC

7 7 1—2w3 1436 1 11 11 N3 (42,35, 4] [[42,28,4]]7 New QECC

7 9 2wl —1 1002 12 13 13 N3 (54, 46, 4] [[54, 38, 4]]; New QECC

7 14 —w+w+wws 10201 1331 11 11 N3 (84,73, 4] [[84,62,4]]7 New QECC

7 15 1—2w3 153356 1 12 14 N3 [90, 81, 4] [[90,72,4]]; New QECC

7 18 —wy+ws+wws 102 13026 12 12 N3 (108,98, 4] [[108, 88, 4]], New QECC
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5. Conclusions

This article focuses on the exploration of constacyclic codes in the context of non-chain

Fy[u,0]

(w2 —a2,w3 — B2y, wy wy —wpw )
investigation, numerous new and improved quantum codes have been derived. Substantial
potential exists for discovering additional quantum codes within the finite field F, by
considering prime powers instead of primes. Applying the Gray map V harnesses this
potential. In a more general context, substituting the ring R with alternative commutative
finite rings offers the prospect of developing many fresh quantum code constructions.

rings R = , where a, B € F, — {0} for a prime p. From this
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