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Abstract: The main focus of this paper is to analyze the algebraic structure of constacyclic codes over

the ring R = Fp + w1Fp + w2Fp + w2
2Fp + w1w2Fp + w1w2

2Fp, where w2
1 − α2 = 0, w1w2 = w2w1,

w3
2 − β2w2 = 0, and α, β ∈ Fp \ {0}, for a prime p. We begin by introducing a Gray map defined

over R, which is associated with an invertible matrix. We demonstrate its advantages over the

canonical Gray map through some examples. Finally, we create new and improved quantum codes

from constacyclic codes over R using Calderbank–Shore–Steane (CSS) construction.

Keywords: linear codes; Gray map; CSS construction; quantum codes

MSC: 11T71; 94B05; 94B15

1. Introduction

In contrast to classical information theory, quantum information theory is a rela-
tively emerging field [1–3]. The concept of quantum error-correcting codes (QECCs) was
initially introduced by Shor [4] and Steane [5], with a construction method outlined by
Calderbank et al. [6]. Subsequently, researchers have explored various approaches to uti-
lize classical error-correcting codes to create new quantum codes (QECCs). The quantum
code database remains quite limited when compared to classical block codes. The existing
database [7] encompasses finite fields of order up to 9, but it focuses exclusively on QECCs
for p = 2. Some static tables of quantum codes are available in [8,9], building upon the
work in [10]. The online tables [9] might have been overlooked by many researchers.

The field of quantum error-correcting codes has seen remarkable growth since the
initial realization that such codes could safeguard quantum information, which is anal-
ogous to how classical error-correcting codes protects classical information. Shor’s [4]
pioneering work led to the discovery of the first quantum error-correcting code. In 1998,
Calderbank et al. [6] provided a systematic method for constructing quantum codes from
classical error-correcting codes. Many researchers have concentrated on using Calderbank–
Shor–Steane (CSS) construction to produce quantum codes from linear codes that contain
their duals (see [11–14]).

Qian et al. [15] initially presented the construction of quantum codes from cyclic codes
of odd length over the chain ring F2 + uF2, where u2 = 0. Subsequently, Kai and Zhu [16]
introduced a technique for generating quantum codes from cyclic codes of odd length
over the finite chain ring F4 + uF4. Qian [17] proposed a novel approach for constructing
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quantum error-correcting codes from cyclic codes over the finite non-chain ring F2 + vF2,
where v2 = v of any length. Motivated by this study, Ashraf and Mohammad [18] obtained
quantum codes from cyclic codes over the non-chain ring Fq + uFq + vFq + uvFq, where
u2 = u, v2 = v, uv = vu, q = pn, and p is an odd prime.

Constacyclic codes, a robust extension of cyclic codes over finite non-chain rings, have
proven to be a prolific source of new quantum codes. Recent research by coding theorists has
explored constacyclic codes extensively. Distinguished investigations include Li et al. [19]
over Fp + uFp + vFp + uvFp, with u2 − u = 0, v2 − v = 0, and uv − vu = 0; Ma et al.’s [20]
contributions over Fp + vFp + v2

Fp, with v3 = v; and Gao and Wang’s [21] over Fp + uFp,
where u2 = 1. These studies have led to the construction of numerous significantly
improved quantum codes, all originating from dual-containing constacyclic codes.

In light of these developments, it becomes evident that constacyclic codes over finite
non-chain rings represent a valuable resource for generating new and better quantum
codes. Therefore, this article delves into the exploration of constacyclic codes within the
framework of the non-chain ring R = Fp + w1Fp + w2Fp + w2

2Fp + w1w2Fp + w1w2
2Fp,

where w2
1 − α2 = 0, w1w2 = w2w1, w3

2 − β2w2 = 0, and α, β ∈ Fp \ {0}, for a prime p. The
objective is to find new quantum codes over the finite field Fp. The article makes two
significant contributions:

• Comprehensive study of the structure of constacyclic codes with the length l over R.
• The construction of better quantum codes concerning their parameters, surpassing

those previously documented in the literature.

A noteworthy aspect of this research involves the presentation of computational findings [22],
highlighting the substantial impact of this work on the development of new quantum codes.

2. Preliminaries

Let Fp be a finite field of order p (an odd prime). A subspace C0 of Fm
p is called a linear

code of length m over Fp, and its members are called the codewords. Let R = Fp + w1Fp +
w2Fp + w2

2Fp + w1w2Fp + w1w2
2Fp, where w2

1 − α2 = 0, w1w2 = w2w1, w3
2 − β2w2 = 0, and

α, β ∈ Fp \ {0} be a finite commutative ring. Remember that a linear code C over the
ring R of length n is essentially an R-submodule of the module Rn. One can also view
an element c = (c0, c1, . . . , cn−1) in C as a polynomial c(z) = c0 + c1z + · · · + cn−1zn−1

within the ring
R[z]

⟨zn−Λ⟩
. A linear code C is called a Λ-constacyclic code of length n over

R if and only if it is an R-submodule in the module
R[z]

⟨zn−Λ⟩
. Many researchers have

extensively explored constacyclic codes over finite fields and finite commutative Frobenius
rings [23–27]. Consider the elements of R as follows:

κ1 =
1

2αβ2
(α + w1)(β2 − w2

2), κ2 =
1

2αβ2
(α − w1)(β2 − w2

2),

κ3 =
1

4αβ2
(α + w1)(w

2
2 − βw2), κ4 =

1

4αβ2
(α − w1)(w

2
2 − βw2),

κ5 =
1

4αβ2
(α + w1)(w

2
2 + βw2), κ6 =

1

4αβ2
(α − w1)(w

2
2 + βw2).

We can verify that κ1 + κ2 + κ3 + κ4 + κ5 + κ6 = 1, and κiκj = δij (Kronecker delta) for
i, j ∈ {1, 2 . . . , 6}. Consequently, the set {κ1, κ2, . . . , κ6} forms a set of non-zero pairwise
orthogonal idempotent elements in R. This implies that R can be expressed as a sum of
submodules as follows:

R = κ1R⊕ κ2R⊕ κ3R⊕ κ4R⊕ κ5R⊕ κ6R
∼= κ1Fp ⊕ κ2Fp ⊕ κ3Fp ⊕ κ4Fp ⊕ κ5Fp ⊕ κ6Fp.

Therefore, any element r = a + w1b + w2c + w2
2d + w1w2e + w1w2

2 f ∈ R can be uniquely
written as
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r = a + w1b + w2c + w2
2d + w1w2e + w1w2

2 f (1)

= κ1 ā + κ2b̄ + κ3 c̄ + κ4d̄ + κ5 ē + κ6 f̄ ,

where

ā = a + αb,

b̄ = a − αb,

c̄ = a + αb − βc + β2d − αβe + αβ2 f ,

d̄ = a − αb − βc + β2d + αβe − αβ2 f ,

ē = a + αb + βc + β2d + αβe + αβ2 f ,

f̄ = a − αb + βc + β2d − αβe − αβ2 f ,

are the elements of Fp.
Suppose that GLn(Fp) is the group of invertible matrices of order n over Fp and let

N ∈ GL6(Fp) in such a way that NNT = kI6, where NT is the transpose of the matrix N, I6

is the identity matrix of order 6, and k ∈ Fp − {0}. With the above notation, we define a
Gray map associated with an invertible matrix N as follows:

∇ : R −→ F
6
p such that ∇(r) := (ā, b̄, c̄, d̄, ē, f̄ )N.

We can extend the Gray map ∇ for each component individually, as follows:

∇ : Rl −→ F
6l
p such that

∇(r0, r1, . . . , rl−1) = ((ā0, b̄0, c̄0, d̄0, ē0, f̄0)N, (ā1, b̄1, c̄1, d̄1, ē1, f̄1)N (2)

, . . . , (āl−1, b̄l−1, c̄l−1, d̄l−1, ēl−1, f̄l−1)N),

where ri = κ1 āi + κ2b̄i + κ3 c̄i + κ4d̄i + κ5 ēi + κ6 f̄i ∈ R, for i ∈ {0, 1, . . . , l − 1}. Here,
we introduce the Lee weight for the vector r ∈ R as wL(r) = wH(∇(r)), where wL

(resp. wH) denotes the Lee weight (resp. the Hamming weight). The Lee weight of wL

(r = (r0, r1, . . . , rl−1)) = wL(r0) + wL(r1) + · · · + wL(rl−1) and the Lee distance from
r to r′ ∈ Rl , is established as dL(r, r′) = wL(r − r′) = wH(∇(r − r′)). The Lee distance
dL(C) for the code C is defined as follows:

dL(C) = min{dL(r, r′) | r ̸= r′}.

It is notable that the Gray map ∇ is a linear map over Fp that preserves distances and

mapping vectors from Rl to F
6l
p . Since the Gray map ∇ is bijective, it follows that ∇(C)

forms a [6l, k, dH ] linear code over Fp, where dL is equal to dH .
The Euclidean inner product of any two vectors, r = (r0, r1, . . . , rl−1) and r′ =

(r′0, r′1, . . . , r′l−1) in Rl is defined as r · r′ = r0r′0 + r1r′1 + · · · + rl−1r′l−1. The dual code

of C is formulated as C⊥ = {r ∈ Rl | r · r′ = 0 ∀ r′ ∈ C}. A code C is called dual-containing
if C⊥ ⊆ C, self-orthogonal if C ⊆ C⊥, and self-dual if C⊥ = C.

Example 1. Let R3 = F3[w1,w2]

⟨w2
1−1,w3

2−w2,w1w2−w2w1⟩
be a finite commutative non-chain ring. Then, we

have w2
1 − 1 = (w1 − 1)(w1 + 1) and w3

2 − w2 = w2(w2 − 1)(w2 + 1). Thus, the orthogonal
idempotent elements in R3 are
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κ1 = 2(1 + w1)(1 + 2w2
2), κ2 =

1

2
(1 − w1)(1 − w2

2) = 2(1 + 2w1)(1 + 2w2
2),

κ3 = (1 + w1)(w
2
2 + 2w2), κ4 =

1

4
(1 − w1)(w

2
2 − w2) = (1 + 2w1)(w

2
2 + 2w2),

κ5 = (1 + w1)(w
2
2 + w2), κ6 =

1

4
(1 − w1)(w

2
2 + w2) = (1 + 2w1)(w

2
2 + w2),

where κ1 + κ2 + κ3 + κ4 + κ5 + κ6 = 1. By Chinese Remainder Theorem, we have R3 = κ1R3 ⊕
κ2R3 ⊕ κ3R3 ⊕ κ4R3 ⊕ κ5R3 ⊕ κ6R3

∼= κ1F3 ⊕ κ2F3 ⊕ κ3F3 ⊕ κ4F3 ⊕ κ5F3 ⊕ κ6F3. Therefore,
any element r = a + w1b + w2c + w2

2d + w1w2e + w1w2
2 f ∈ R can be expressed as follows:

r = a + w1b + w2c + w2
2d + w1w2e + w1w2

2 f

= (a + b)κ1 + (a + 2b)κ2 + (a + b + 2c + d + 2e + f )κ3+

(a + 2b + 2c + d + e + 2 f )κ4 + (a + b + c + d + e + f )κ5+

(a + 2b + c + d + 2e + 2 f )κ6.

Hence, the Gray map ∇ : R3 −→ F
6
3 can be established as follows:

∇(r) := (a + b, a + 2b, a + b + 2c + d + 2e + f , a + 2b + 2c + d + e + 2 f ,

a + b + c + d + e + f , a + 2b + c + d + 2e + 2 f )N1,

where a, b, c, d, e, f ∈ F3, and N1 ∈ GL6(F3), where

N1 =

















1 2 1 1 0 1
1 1 2 1 1 0
0 1 1 2 1 1
2 1 0 1 2 1
2 2 2 0 1 1
2 0 1 1 1 2

















,

which has the property that N1NT
1 = 2I6.

Example 2. Let R5 = F5[w1,w2]

⟨w2
1−α2,w3

2−β2w2,w1w2−w2w1⟩
be a finite commutative non-chain ring, where

α = 2 and β = 3 are non-zero elements of F5. Then, we have w2
1 − α2 = (w1 − 2)(w1 + 2) and

w3
2 − β2w2 = w2(w2 − 3)(w2 + 3). The orthogonal idempotent elements in R5 are as follows:

κ1 = 4(2 + w1)(1 + w2
2), κ2 =

1

2αβ2
(α − w1)(β2 − w2

2) = 4(2 − w1)(1 + w2
2),

κ3 = 2(2 + w1)(w
2
2 − 3w2), κ4 =

1

4αβ2
(α − w1)(w

2
2 − βw2) = 2(2 − w1)(w

2
2 − 3w2),

κ5 = 2(2 + w1)(w
2
2 + 3w2), κ6 =

1

4αβ2
(α − w1)(w

2
2 + βw2) = 2(2 − w1)(w

2
2 + 3w2),

where κ1 + κ2 + κ3 + κ4 + κ5 + κ6 = 1. By Chinese Remainder Theorem, we have R5 = κ1R5 ⊕
κ2R5 ⊕ κ3R5 ⊕ κ4R5 ⊕ κ5R5 ⊕ κ6R5

∼= κ1F5 ⊕ κ2F5 ⊕ κ3F5 ⊕ κ4F5 ⊕ κ5F5 ⊕ κ6F5. Therefore,
any element r = a + w1b + w2c + w2

2d + w1w2e + w1w2
2 f ∈ R can be expressed as follows:

r = a + w1b + w2c + w2
2d + w1w2e + w1w2

2 f

= (a + 2b)κ1 + (a + 3b)κ2 + (a + 2b + 2c + 4d + 4e + 3 f )κ3+

(a + 3b + 2c + 4d + e + 2 f )κ4 + (a + 2b + 3c + 4d + e + 3 f )κ5+

(a + 3b + 3c + 4d + 4e + 2 f )κ6.
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The Gray map ∇ : R5 −→ F
6
5 can be established as follows:

∇(r) := (a + 2b, a + 3b, a + 2b + 2c + 4d + 4e + 3 f , a + 3b + 2c + 4d + e + 2 f ,

a + 2b + 3c + 4d + e + 3 f , a + 3b + 3c + 4d + 4e + 2 f )N2,

where a, b, c, d, e, f ∈ F5, and N2 ∈ GL6(F5), where

N2 =

















3 1 1 1 1 1
1 3 1 1 1 1
1 1 3 1 1 1
1 1 1 3 1 1
1 1 1 1 3 1
1 1 1 1 1 3

















,

which has the property that N2NT
2 = 4I6.

Theorem 1. The Gray map ∇ : Rl −→ F
6l
p defined in Equation (2) is linear and isometric.

Proof. To prove that ∇ is a linear map, assume that z = a1κ1 + a2κ2 + a3κ3 + a4κ4 + a5κ5 +
a6κ6 and y = b1κ1 + b2κ2 + b3κ3 + b4κ4 + b5κ5 + b6κ6 are any two elements of R and λ is a
non-zero scalar in Fp. Then, we have

∇(z + y) = (a1 + b1, a2 + b2, a3 + b3, a4 + b4, a5 + b5, a6 + b6)N

= [(a1, a2, a3, a4, a5, a6) + (b1, b2, b3, b4, b5, b6)]N

= (a1, a2, a3, a4, a5, a6)N + (b1, b2, b3, b4, b5, b6)N

= ∇(z) +∇(y),

∇(λ · z) = (λa1, λa2, λa3, λa4, λa5, λa6)N

= λ(a1, a2, a3, a4, a5, a6)N

= λ∇(z).

This ensures that ∇ is a linear map. To prove that ∇ is an isometry, we shall show that
the Lee distance and the Hamming distance of code C are the same. As z, y ∈ Rl , then by
definition of the Lee distance, we see that

dL(z, y) = wtH(∇(z − y)) = wtH(∇(z)−∇(y)) = dH(∇(z),∇(y)). (3)

Therefore, the Gray map ∇ is an isometry.

Theorem 2. Let C be a linear code with parameters [l, k, dL] over R.

(i) Then, ∇(C) is a linear code with parameters [6l, k, dH ] over Fp, where dL and dH are the
same.

(ii) The image ∇(C) is self-orthogonal over Fp, provided C is self-orthogonal over R.
(iii) The image ∇(C) is a dual-containing code over Fp, provided C is a dual-containing code over R.
(iv) C is a self-dual code over R if and only if ∇(C) is a self-dual code over Fp.

Proof.

(i) The proof follows by Theorem 1.
(ii) If C is self-orthogonal over R. Then, for any codewords z = (z1, z2, . . . , zl) and

y = (y1, y2, . . . , yl) in C, where zi = ai
1κ1 + ai

2κ2 + ai
3κ3 + ai

4κ4 + ai
5κ5 + ai

6κ6 and
yi = bi

1κ1 + bi
2κ2 + bi

3κ3 + bi
4κ4 + bi

5κ5 + bi
6κ6 are elements of R for 1 ≤ i ≤ l, we

have z · y = 0. This suggests that a1
j b1

j + a2
j b2

j + · · · + al
jb

l
j = 0 for 1 ≤ j ≤ 6. Let

z′, y′ ∈ ∇(C) be any two elements, then some z, y ∈ C exists such that z′ = ∇(z) and
y′ = ∇(y), i.e.,
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z′ = (∇(z1),∇(z2), . . . ,∇(zl))

= ((a1
1, a1

2, a1
3, a1

4, a1
5, a1

6)N, (a2
1, a2

2, a2
3, a2

4, a2
5, a2

6)N, . . . , (al
1, al

2, al
3, al

4, al
5, al

6)N),

y′ = (∇(y1),∇(y2), . . . ,∇(yl))

= ((b1
1, b1

2, b1
3, b1

4, b1
5, b1

6)N, (b2
1, b2

2, b2
3, b2

4, b2
5, b2

6)N, . . . , (bl
1, bl

2, bl
3, bl

4, bl
5, bl

6)N),

where N ∈ GL6(Fp) such that NNT = λI6, λ ∈ Fp − {0}. Now, we have

z′ · y′ = ∇(z) · ∇(y) = ∇(z) · ∇(y)T

=
l

∑
i=1

(ai
1, ai

2, ai
3, ai

4, ai
5, ai

6)NNT .(bi
1, bi

2, bi
3, bi

4, bi
5, bi

6)

=
l

∑
i=1

(ai
1, ai

2, ai
3, ai

4, ai
5, ai

6)λI6.(bi
1, bi

2, bi
3, bi

4, bi
5, bi

6)

=
l

∑
i=1

λ(ai
1bi

1 + ai
2bi

2 + ai
3bi

3 + ai
4bi

4 + ai
5bi

5 + ai
6bi

6)

=
6

∑
i=j

λ(a1
j b1

j + a2
j b2

j + · · ·+ al
jb

l
j) = 0.

Thus, we have z′ · y′ = ∇(z) · ∇(y) = 0 for all z′, y′ ∈ ∇(C) if C is self-orthogonal
over R. Hence, ∇(C) is a self-orthogonal code of length 6l over Fp, provided C is a
self-orthogonal code over R.

(iii) Suppose that C⊥ ⊆ C, then by the linearity of ∇, we have ∇(C⊥) ⊆ ∇(C). To prove

that ∇(C) is dual-containing, it remains to show that ∇(C⊥) = ∇(C)⊥. For this, let
z = (z1, z2, . . . , zl) ∈ C and y = (y1, y2, . . . , yl) ∈ C⊥, where zi = ai

1κ1 + ai
2κ2 + ai

3κ3 +
ai

4κ4 + ai
5κ5 + ai

6κ6 and yi = bi
1κ1 + bi

2κ2 + bi
3κ3 + bi

4κ4 + bi
5κ5 + bi

6κ6 are elements of
R for 1 ≤ i ≤ l. Now, x · y = 0 gives that a1

j b1
j + a2

j b2
j + · · ·+ al

jb
l
j = 0 for 1 ≤ j ≤ 6.

Consider

∇(z) = ((a1
1, a1

2, a1
3, a1

4, a1
5, a1

6)N, (a2
1, a2

2, a2
3, a2

4, a2
5, a2

6)N, . . . , (al
1, al

2, al
3, al

4, al
5, al

6)N),

∇(y) = ((b1
1, b1

2, b1
3, b1

4, b1
5, b1

6)N, (b2
1, b2

2, b2
3, b2

4, b2
5, b2

6)N, . . . , (bl
1, bl

2, bl
3, bl

4, bl
5, bl

6)N),

Now, ∇(z) · ∇(y) = 0 suggests that ∇(y) ∈ ∇(C)⊥. Thus, we have ∇(C⊥) ⊆ ∇(C)⊥.
Contrarily, ∇ is a bijective linear map, so the sizes of ∇(C⊥) and ∇(C)⊥ are the same.
Thus, ∇(C⊥) = ∇(C)⊥. Hence, ∇(C) is a dual-containing code over Fp provided C
is a dual-containing code over R.

(iv) It follows from part (iii).

Theorem 3 ([11]). Let C = κ1C̄1 ⊕ κ2C̄2 ⊕ κ3C̄3 ⊕ κ4C̄4 ⊕ κ5C̄5 ⊕ κ6C̄6 be a linear code over
R. Then:

(i) C⊥ = κ1C̄1
⊥
⊕ κ2C̄2

⊥
⊕ κ3C̄3

⊥
⊕ κ4C̄4

⊥
⊕ κ5C̄5

⊥
⊕ κ6C̄6

⊥
;

(ii) C is self-dual over R if C̄i are self-dual codes over Fp for 1 ≤ i ≤ 6.

Here, we define the direct sum and the direct product as defined by Dinh et al. [24] in
the following ways:

D1 ⊕ D2 = {d1 + d2 | dj ∈ Dj; j = 1, 2}, (4)

D1 ⊗ D2 = {(d1, d2) | dj ∈ Dj; j = 1, 2}. (5)
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Suppose that C is a linear code with length l over R. Consider the following sets:

C̄1 = {ā ∈ F
l
p |κ1 ā + κ2b̄ + κ3 c̄ + κ4d̄ + κ5 ē + κ6 f̄ ∈ C; for some b̄, c̄, d̄, ē, f̄ ∈ F

l
p};

C̄2 = {b̄ ∈ F
l
p |κ1 ā + κ2b̄ + κ3 c̄ + κ4d̄ + κ5 ē + κ6 f̄ ∈ C; for some ā, c̄, d̄, ē, f̄ ∈ F

l
p};

C̄3 = {c̄ ∈ F
l
p |κ1 ā + κ2b̄ + κ3 c̄ + κ4d̄ + κ5 ē + κ6 f̄ ∈ C; for some ā, b̄, d̄, ē, f̄ ∈ F

l
p};

C̄4 = {d̄ ∈ F
l
p |κ1 ā + κ2b̄ + κ3 c̄ + κ4d̄ + κ5 ē + κ6 f̄ ∈ C; for some ā, b̄, c̄, ē, f̄ ∈ F

l
p};

C̄5 = {ē ∈ F
l
p |κ1 ā + κ2b̄ + κ3 c̄ + κ4d̄ + κ5 ē + κ6 f̄ ∈ C; for some ā, b̄, c̄, d̄, f̄ ∈ F

l
p};

C̄6 = { f̄ ∈ F
l
p |κ1 ā + κ2b̄ + κ3 c̄ + κ4d̄ + κ5 ē + κ6 f̄ ∈ C; for some ā, b̄, c̄, d̄, ē ∈ F

l
p}.

It can be seen that C̄i for 1 ≤ i ≤ 6 is a linear code with length l over Fp. Therefore, we can
express a linear code C with length l over R as C = κ1C̄1 ⊕ κ2C̄2 ⊕ κ3C̄3 ⊕ κ4C̄4 ⊕ κ5C̄5 ⊕
κ6C̄6. If Gi is the generator matrix of C̄i for 1 ≤ i ≤ 6, then the generator matrix ∇(G) of
the Gray image ∇(C) is given as follows:

∇(G) =

















∇(κ1G1)
∇(κ2G2)
∇(κ3G3)
∇(κ4G4)
∇(κ5G5)
∇(κ6G6)

















.

3. Λ-Constacyclic Codes over R

A constacyclic code is an important class of linear error-correcting codes. It is a
generalization of cyclic codes, which are themselves a subset of linear codes. Suppose that
Λ = κ1a + κ2b + κ3c + κ4d + κ5e + κ6 f is a unit element in R. Then, a linear code C with
length l over R is called a Λ-constacyclic code if, for any codeword c = (c0, c1, . . . , cl−1)
in C, it satisfies the property that ωΛ(c) = (Λcl−1, c0, . . . , cl−2) is again a member of C. In
particular, if Λ = 1, then Λ-constacyclic code C becomes a cyclic code, and if Λ = −1, then
C becomes a negacyclic code.

Lemma 1. Let Λ = κ1a + κ2b + κ3c + κ4d + κ5e + κ6 f ∈ R be a non-zero element. Then, the
element Λ ∈ R is a unit element in R if a, b, c, d, e, f are unit elements in Fp. Moreover, when
Λ ∈ R is a unit element, then its inverse is given by Λ−1 = κ1a−1 + κ2b−1 + κ3c−1 + κ4d−1 +
κ5e−1 + κ6 f−1.

Proof. Suppose that Λ = κ1a + κ2b + κ3c + κ4d + κ5e + κ6 f ∈ R is a unit element. Then, an
element Λ1 = κ1a1 + κ2b1 + κ3c1 + κ4d1 + κ5e1 + κ6 f1 ∈ R exists such that ΛΛ1 = 1. Using
the idempotent orthogonality of κi for 1 ≤ i ≤ 6, we have κ1aa1 + κ2bb1 + κ3cc1 + κ4dd1 +
κ5ee1 + κ6 f f1 = 1. Putting the values of κi for 1 ≤ i ≤ 6 and comparing the constant term
and coefficients of w1, w2, w2

2, w1w2, w1w2
2, we obtain

aa1 + bb1 = 2,

aa1 − bb1 = 0,

−cc1 − dd1 + ee1 + f f1 = 0,

cc1 + dd1 + ee1 + f f1 = 4,

−cc1 + dd1 + ee1 − f f1 = 0,

cc1 − dd1 + ee1 − f f1 = 0.

Solving these equations, we obtain aa1 = 1, bb1 = 1, cc1 = 1, dd1 = 1, ee1 = 1, and f f1 = 1.
Therefore, we have Λ−1 = κ1a−1 + κ2b−1 + κ3c−1 + κ4d−1 + κ5e−1 + κ6 f−1.

The converse part can be performed in a similar way.
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Theorem 4. Let C = κ1C̄1 ⊕ κ2C̄2 ⊕ κ3C̄3 ⊕ κ4C̄4 ⊕ κ5C̄5 ⊕ κ6C̄6 be a linear code over R
and Λ = κ1Λ1 + κ2Λ2 + κ3Λ3 + κ4Λ4 + κ5Λ5 + κ6Λ6 ∈ R be a unit element. Then, C is a
Λ-constacyclic code over R if C̄i is a Λi-constacyclic code for 1 ≤ i ≤ 6 over Fp.

Proof. Suppose that C is a Λ-constacyclic code with length l over R. If c = (r0, r1, . . . , rl−1) ∈
C, where rj = κ1a1,j + κ2a2,j + κ3a3,j + κ4a4,j + κ5a5,j + κ6a6,j such that ai,j ∈ Fp for 1 ≤ i ≤ 6
and 0 ≤ j ≤ l − 1, then we have (ai,0, ai,1, . . . , ai,l−1) ∈ C̄i. Thus, the Λ-constacyclic shift of
c is ωΛ(c) = (Λrl−1, r0, . . . , rl−2) ∈ C, where

Λrl−1 = κ1Λ1a1,l−1 + κ2Λ2a2,l−1 + κ3Λ3a3,l−1 + κ4Λ4a4,l−1 + κ5Λ5a5,l−1 + κ6Λ6a6,l−1.

Therefore, we obtain ωΛ(c) = ∑
6
i=1 κi(Λiai,l−1, ai,0, ai,1, . . . , ai,l−2) ∈ C, which leads to

(Λiai,l−1, ai,0, ai,1, . . . , ai,l−2) ∈ C̄i. Therefore, C̄i is a Λi-constacyclic code for 1 ≤ i ≤ 6 of
length l over Fp.

Conversely, assume that C̄i is a Λi-constacyclic code of length l overFp for 1 ≤ i ≤ 6. Then,
for a vector āi = (ai,0, ai,1, . . . , ai,l−1) ∈ C̄i, we have ωΛi

¯(ai) = (Λiai,l−1, ai,0, ai,1, . . . , ai,l−2) ∈ C̄i.
Thus, we have

6

∑
i=1

κiωΛi
¯(ai) =

6

∑
i=1

κi(Λiai,l−1, ai,0, ai,1, . . . , ai,l−2) = (Λrl−1, r0, . . . , rl−2) = ωΛ(c).

Therefore, if C̄i is a Λi-constacyclic code for 1 ≤ i ≤ 6 of length l over Fp, then C is a
Λ-constacyclic code over R.

Theorem 5. Let C = κ1C̄1 ⊕ κ2C̄2 ⊕ κ3C̄3 ⊕ κ4C̄4 ⊕ κ5C̄5 ⊕ κ6C̄6 be a Λ-constacyclic code over

R and pi(z) ∈
Fp [z]

⟨zl−Λi⟩
a unique monic polynomial of the lowest degree such that C̄i = ⟨pi(z)⟩ and

pi(z)|(z
l − Λi) for 1 ≤ i ≤ 6. Then, C = ⟨p(z)⟩, where p(z) = κ1 p1(z) + κ2 p2(z) + κ3 p3(z) +

κ4 p4(z) + κ5 p5(z) + κ6 p6(z) and p(z)|(zl − Λ).

Proof. Suppose that C = κ1C̄1 ⊕ κ2C̄2 ⊕ κ3C̄3 ⊕ κ4C̄4 ⊕ κ5C̄5 ⊕ κ6C̄6 is a Λ-constacyclic
code with length l over R, then each C̄i is a Λi-constacyclic code over Fp for 1 ≤ i ≤ 6.

Therefore, C̄i ⊆
Fp [z]

⟨zl−Λi⟩
is a principal ideal generated by a monic polynomial pi(z) ∈

Fp [z]

⟨zl−Λi⟩

of lowest degree such that pi(z)|(z
l − Λi) for 1 ≤ i ≤ 6. Thus, κi pi(z) are the generator

polynomials of C.
If we take p(z) = κ1 p1(z) + κ2 p2(z) + κ3 p3(z) + κ4 p4(z) + κ5 p5(z) + κ6 p6(z), then

⟨p(z)⟩ ⊆ C. Furthermore, we see that κi p(z) = κi pi(z) ∈ ⟨p(z)⟩ implies that C ⊆ ⟨p(z)⟩.
Thus, we conclude that C = ⟨p(z)⟩.

Moreover, we have pi(z) ∈
Fp [z]

⟨zl−Λi⟩
such that pi(z)|(z

l − Λi). Thus, polynomials

qi(z) ∈ Fp[z] exist such that (zl − Λi) = pi(z)qi(z) for 1 ≤ i ≤ 6. Thus, we have

p(z)
(

6

∑
i=1

κiqi(z)
)

=
6

∑
i=1

κi pi(z)qi(z) = κi(z
l − Λi) = zl − Λ.

Thus, we conclude that p(z)|(zl − Λ).

Corollary 1. Let C = ⊕6
i=1κiC̄i be a Λ-constacyclic code over R, and C̄i = ⟨pi(z)⟩ such that

zl − Λi = pi(z)qi(z) for 1 ≤ i ≤ 6. Then:

(i) C⊥ = ⊕6
i=1κiC̄i

⊥
is a Λ−1-constacyclic code over R;

(ii) C⊥ = ⟨∑6
i=1 κiq

∗
i (z)⟩, where q∗i (z) is the reciprocal polynomial of qi(z), which is defined as

q∗i (z) = zdeg(qi(z))qi(z
−1) for 1 ≤ i ≤ 6;

(iii) |C⊥| = p∑
6
i=1 deg(pi(z)).
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4. Dual-Containing Λ-Constacyclic Codes

The dual-containing code is a very important class of code for the construction of
quantum error-correcting codes.

Definition 1. Suppose that C is a Λ-constacyclic code of length l over R, where Λ is a unit element
of R. Then, C is said to be dual-containing if C⊥ ⊆ C.

Proposition 1. Let C be a Λ-constacyclic code over R, where Λ = κ1Λ1 + κ2Λ2 + κ3Λ3 + κ4Λ4 +
κ5Λ5 + κ6Λ6 ∈ R. If C is a non-trivial dual-containing code, then Λi = ±1 for 1 ≤ i ≤ 6, i.e.,
Λ ∈ {±κ1 ± κ2 ± κ3 ± κ4 ± κ5 ± κ6} ∈ R.

Remark 1. Suppose that C is a Λ-constacyclic code over R, then from Proposition 1 we con-
clude that:

(i) If Λ = 1, then Λi = 1 and Ci is a cyclic code over Fp for 1 ≤ i ≤ 6.
(ii) If Λ = −1, then Λi = −1 and Ci is a negacyclic code over Fp for 1 ≤ i ≤ 6.
(iii) If Λi = 1 and Λj = −1, then Ci is a cyclic code, and Cj is a negacyclic code over Fp for

1 ≤ i ̸= j ≤ 6.

Example 3. Let C be a (w1 − w2
2 − w1w2

2)-constacyclic code over R, then Λ1 = 1 implies that C1

is a cyclic code, and Λj = −1 further implies that Cj is a negacyclic code for 2 ≤ j ≤ 6 over Fp.

Example 4. Let C be a (1 − 2w2
2)-constacyclic code over R, then Λi = 1 implies that Ci is a cyclic

code for i = 1, 2, and Λj = −1 further implies that Cj is a negacyclic code for 3 ≤ j ≤ 6 over Fp.

Example 5. Let C be a (1 − 1
2 w2 −

3
2 w2

2 − w1w2 + w1w2
2)-constacyclic code over R, then Λi = 1

implies that Ci is a cyclic code for i = 1, 2, 3, and Λj = −1 further implies that Cj is a negacyclic
code for j = 4, 5, 6 over Fp.

Lemma 2 ([6]). Let Cj be a Λj-constacyclic code with generator polynomial pj(z) over Fp. Then,
Cj is a dual-containing code if zn − Λj ≡ 0 mod (pj(z)p∗j (z)), where Λj = ±1 and p∗j (z) is the

reciprocal polynomial of pj(z), for j = 1, 2, . . . , 6.

Lemma 3. Let C be a linear code over R and C⊥ be the dual of C. If ∇ is a Gray map as defined in
Equation (2), then ∇(C⊥) = ∇(C)⊥. Moreover, if C is a self-orthogonal (self-dual) code over R,
then ∇(C) is a self-orthogonal (resp. self-dual) code over Fp.

Proof. The set K = {κ1, κ2, . . . , κ6} forms a basis for 6-dimensional vector space R over Fp.
An element r ∈ R can be uniquely expressed as r = κ1a1 + κ2a2 + κ3a3 + κ4a4 + κ5a5 + κ6a6,
where ai ∈ Fp for 1 ≤ i ≤ 6. Then, we have

∇(r) = (a1, a2, a3, a4, a5, a6)M,

where M ∈ GL6(Fp) such that MMT = αI6 and α ∈ Fp − {0}. Let z = (z0, z1, . . . , zl−1) ∈

C ⊆ Rl , where zj = κ1a
j
1 + κ2a

j
2 + κ3a

j
3 + κ4a

j
4 + κ5a

j
5 + κ6a

j
6 ∈ R for 0 ≤ j ≤ l − 1. Then,

we have z = κ1a1 + κ2a2 + κ3a3 + κ4a4 + κ5a5 + κ6a6, where ai = (a0
i , a1

i , . . . , al−1
i ) ∈ F

l
p.

Suppose that y = κ1b1 + κ2b2 + κ3b3 + κ4b4 + κ5b5 + κ6b6 ∈ C⊥. Then, we obtain that
z · y = 0 implies that

κ1a1b1 + κ2a2b2 + κ3a3b3 + κ4a4b4 + κ5a5b5 + κ6a6b6 = 0.

Since K is linearly independent, we obtain aibi = 0 for 1 ≤ i ≤ 6. Also, we have ∇(z) =
(a1, a2, a3, a4, a5, a6)M ∈ ∇(C) and ∇(y) = (b1, b2, b3, b4, b5, b6)M ∈ ∇(C⊥). Consider
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∇(z) · ∇(y) = ∇(z) · ∇(y)T =(a1, a2, a3, a4, a5, a6)MMT(b1, b2, b3, b4, b5, b6)

=α(a1b1 + a2b2 + a3b3 + a4b4 + a5b5 + a6b6)

=0.

Therefore, ∇(y) ∈ ∇(C)⊥, i.e., ∇(C⊥) ⊆ ∇(C)⊥. Since the Gray map ∇ is bijective,
|∇(C⊥)| = |∇(C)⊥| suggests that ∇(C⊥) = ∇(C)⊥. If C is a self-orthogonal code, then
C ⊆ C⊥, and hence, ∇(C) ⊆ ∇(C⊥) = ∇(C)⊥. Therefore, ∇(C) is a self-orthogonal code.

Theorem 6 ([25]). Let C1 = [n, k1, d1]q and C2 = [n, k2, d2]q be two linear codes over GF(q) with

C⊥
2 ⊆ C1. Then, a QECC exists with parameters [[n, k1 + k2 − n, d]]q, where d = min{wt(v) :

v ∈ (C1 \ C⊥
2 ) ∪ (C2 \ C⊥

1 )} ≥ min{d1, d2}. Moreover, if C1 is a dual-containing code, then a
QECC with parameters [[n, 2k1 − n, d1]]q exists, where d1 = min{wt(v) : v ∈ C1 \ C⊥

1 }.

Theorem 7 ([6]). Let C be a Λ-constacyclic code over Fp having a generator polynomial p(z).

Then, C is dual-containing if (zl − Λ) ≡ 0 mod (p(z)p∗(z)), where Λ = ±1.

The dual-containing cyclic and negacyclic codes overFp are provided by Theorem 7. Using
this outcome, we can now ascertain the prerequisites and requirements for Λ-constacyclic codes
over R to have their duals, as demonstrated in the following theorem.

Theorem 8. Let C = ⊕6
i=1κiC̄i be a Λ-constacyclic code of length l over R, where Λ = κ1Λ1 +

κ2Λ2 + · · ·+ κ6Λ6 ∈ R and C = ⟨p(z)⟩ = ⟨κ1 p1(z) + κ2 p2(z) + · · ·+ κ6 p6(z)⟩, where pi(z)
is the generating polynomial of code C̄i over Fp for 1 ≤ i ≤ 6. Then, C is a dual-containing code if

and only if (zl − Λi) ≡ 0 mod (pi(z)p∗i (z)), where Λi = ±1 for 1 ≤ i ≤ 6.

Proof. Suppose that C = ⊕6
i=1κiC̄i is a Λ-constacyclic code over R, where Λ = κ1Λ1 +

κ2Λ2 + · · · + κ6Λ6 ∈ R. Then, by Theorem 4, the code C̄i is a Λi-constacyclic code
with generating polynomial pi(z) over Fp. If C is a dual-containing code, then we have

⊕6
i=1κiC̄i

⊥
⊆ ⊕6

i=1κiC̄i. Since this expression is unique, we have C̄i
⊥
⊆ C̄i. Therefore, by

Lemma 2 we have (zl − Λi) ≡ 0 mod (pi(z) · p∗i (z)).

Corollary 2. Let C = ⊕6
i=1κiC̄i be a Λ-constacyclic code over R. Then, C is a dual-containing

code over R if and only if Ci is a dual-containing code over Fp for 1 ≤ i ≤ 6.

Theorem 9. Let C = ⊕6
i=1κiC̄i be a Λ-constacyclic code of length l over R, and ∇ be the Gray

map. If ∇(C) has parameters [6l, k, dH ], where k = k1 + k2 + · · ·+ k6 is the dimension of ∇(C)
and dL is the Lee distance of C, if C is a dual-containing code, then a QECC exists with parameters
[6l, 2k − 6l, dH ] over Fp.

Proof. Suppose that C is a dual-containing code over R and ∇ is a Gray map. Then, ∇(C)
is also a dual-containing code with parameters [6l, k, dH ] over Fp. Therefore, by Theorem 6,
a QECC with parameters [[6l, 2k − 6l, dH ]]p exists over Fp.

Example 6. Let R3 = F3[w1,w2]

⟨w2
1−1,w3

2−w2,w1w2−w2w1⟩
be a finite non-chain ring. Suppose that

Λ = 2w2
2 − 1 is a unit element in R3. Then, Λ1 = Λ2 = −1 and Λ3 = Λ4 = Λ5 = Λ6 = 1.

Thus, in F3[z], we have

z9 − 1 = (z + 2)9

z9 + 1 = (z + 1)9.
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Let p1(z) = p2(z) = (z + 1)4, p3(z) = p4(z) = (z + 2), and p5(z) = p6(z) = 1 be the
generator polynomials of C̄i for 1 ≤ i ≤ 6, respectively. Then, C = ⟨κ1 p1(z) + κ2 p2(z) + · · ·+
κ6 p6(z)⟩ is a (2w2

2 − 1)-constacyclic code of length 9 over R3. Let N1 ∈ GL6(F3), as given in
Example 1, then N1NT

1 = 2I6 and the Gray image ∇(C) has the parameters [54, 44, 4]. Moreover,
(x9 − Λi) ≡ 0 mod (pi(z)p∗i (z)) for 1 ≤ i ≤ 6; thus, by Theorem 8, we find that C is a dual-
containing code; so, by Theorem 9, we have a QECC [[54, 34, 4]]3, which is a new QECC with
this parameter.

Remark 2. In the previous example, we have seen that the Gray image ∇(C) is a linear code with
parameters [54, 44, 4] over the field F3. Specifically, for a code with a length 9, the Gray image’s
length is 54, and its dimension is equal to the rational sum of the dimensions of the individual codes,
yielding 44 as a result. Let Gi denote the generator matrix of C̄i = ⟨pi(z)⟩ for i ∈ {1, 2, . . . , 6}.
Then, the generator matrix for ∇(C) is given in Section 2.

After providing the generator matrix ∇(G) as input to the Magma Computation System [22],
it was determined that the minimum distance of ∇(C) is 4. Based on this computation, it is crucial
to note that the minimum distance of the Gray image is greater than the distance of each Ci. As in
Example 6, dH(C1) = dH(C2) = 3, dH(C3) = dH(C4) = 2, and dH(C5) = dH(C6) = 1, while
the Lee distance is 4. Notably, employing the canonical Gray map rather than the Gray map ∇
would result in a Lee distance of 1 instead of 4. Which underlines one of the primary advantages of
using the Gray map ∇.

Example 7. Let R5 = F5[w1,w2]

⟨w2
1−4,w3

2−4w2,w1w2−w2w1⟩
be a non-chain ring. Suppose that Λ = 1 +

w2(1 + 3w1)(1 + 3w2) is a unit element in R5. Then, Λ1 = Λ2 = Λ3 = 1 and Λ4 = Λ5 =
Λ6 = −1. Thus, in F5[z], we have

z15 − 1 = (z + 4)5(z2 + z + 1)5

z15 + 1 = (z + 1)5(z2 + 4z + 1)5.

Let p1(z) = (z2 + z + 1), p2(z) = (z + 4)2, p3(z) = 1, and p4(z) = p5(z) = p6(z) = (z + 1)
be the generator polynomials of C̄i for 1 ≤ i ≤ 6, respectively. Then, C = ⟨κ1 p1(z) + κ2 p2(z) +
· · ·+ κ6 p6(z)⟩ is a (1 + 1

2 (1 − w1)(w2 − w2
2))-constacyclic code with length 15 over R5. Let

N2 ∈ GL6(F5), as given in Example 2, then N2NT
2 = 4I6 and the Gray image ∇(C) has the

parameters [90, 83, 3]. Moreover, (z15 − Λi) ≡ 0 mod (pi(z)p∗i (z)) for 1 ≤ i ≤ 6; thus, by
Theorem 8, we find that C is a dual-containing code; hence, by Theorem 9 we have a new QECC
[[90, 76, 3]]5, with this parameter. Again, here we can see that the distance of ∇(C) ≥ dH(C̄i) for
1 ≤ i ≤ 6.

Example 8. Let R5 = F5[w1,w2]

⟨w2
1+1,w3

2−4w2,w1w2−w2w1⟩
be a non-chain ring. Suppose that Λ = 4 is a unit

element in R5. Then, Λ1 = −1 = Λ2 and Λ3 = 1 = Λ4 = Λ5 = Λ6. Thus, in F5[z], we have

z35 − 1 = (z + 4)5(z6 + z5 + z4 + z3 + z2 + z + 1)5

z35 + 1 = (z + 1)5(z6 + 4z5 + z4 + 4z3 + z2 + 4z + 1)5.

Let p1(z) = (z6 + 4z5 + z4 + 4z3 + z2 + 4z + 1), p2(z) = (z + 1)2, p3(z) = 1, and p4(z) =
p5(z) = p6(z) = (z + 4) be the generator polynomials of C̄i for 1 ≤ i ≤ 6, respectively. Then,
C = ⟨κ1 p1(z) + κ2 p2(z) + · · ·+ κ6 p6(z)⟩ is a Λ-constacyclic code with length 35 over R5. Let
N2 ∈ GL6(F5), as given in Example 2, then N2NT

2 = 4I6 and the Gray image ∇(C) has the
parameters [210, 199, 3]. Moreover, (z35 − Λi) ≡ 0 mod (pi(z)p∗i (z)) for 1 ≤ i ≤ 6; thus, by
Theorem 8, we find that C is a dual-containing code; so, by Theorem 9 we have an improved QECC
[[210, 188, 3]]5 against the existing code [[210, 186, 3]]5 [14]. Here, we can see that the distance of
∇(C) ≥ dH(C̄i) for 1 ≤ i ≤ 6.



Axioms 2024, 13, 697 12 of 15

Example 9. Let R5 be a non-chain ring, as in Example 7. Suppose that Λ = 4 + w2(2 + w1)
(2 + w2) is a unit element in R5. Then, Λ1 = −1 = Λ2 = Λ3 and Λ4 = 1 = Λ5 = Λ6. Thus,
in F5[z], we have

z45 − 1 = (z + 4)5(z2 + z + 1)5(z6 + z3 + 1)5

z45 + 1 = (z + 1)5(z2 + 4z + 1)5(z6 + 4z3 + 1)5.

Let p1(z) = (z6 + 4z3 + 1), p2(z) = (z + 1), p3(z) = (z + 1)2, p4(z) = 1, and p5(z) =
p6(z) = (z + 4) be the generator polynomials of C̄i for 1 ≤ i ≤ 6, respectively. Then, C =
⟨κ1 p1(z) + κ2 p2(z) + · · · + κ6 p6(z)⟩ is a (4 + w2(2 + w1)(2 + w2))-constacyclic code with
length 45 over R5. Let N2 ∈ GL6(F5), as given in Example 2, then N2NT

2 = 4I6 and the Gray
image ∇(C) has the parameters [270, 259, 3]. Moreover, (z45 − Λi) ≡ 0 mod (pi(z)p∗i (z)) for
1 ≤ i ≤ 6; thus, by Theorem 8, we find that C is a dual-containing code; thus, by Theorem 9 we have
an improved QECC with parameters [[270, 248, 3]]5 against the existing code [[270, 246, 3]]5 [28].
Here, we can see that the distance of ∇(C) ≥ dH(C̄i) for 1 ≤ i ≤ 6.

Example 10. Let R7 = F7[w1,w2]

⟨w2
1−1,w3

2−w2,w1w2−w2w1⟩
be a non-chain ring. Suppose that Λ = 2w2

2 − 1

is a unit element in R7. Then, Λ1 = −1 = Λ2 and Λ3 = Λ4 = 1 = Λ5 = Λ6. Thus, in F7[z],
we have

z9 − 1 = (z + 3)(z + 5)(z + 6)(z3 + 3)(z3 + 5)

z9 + 1 = (z + 1)(z + 2)(z + 4)(z3 + 2)(z3 + 4).

Let p1(z) = (z3 + 2), p2(z) = 1, and p3(z) = p4(z) = (z + 3) = p5(z) = p6(z) be the
generator polynomials of C̄i for 1 ≤ i ≤ 6, respectively. Then, C = ⟨κ1 p1(z) + κ2 p2(z) + · · ·+
κ6 p6(z)⟩ is a (2w2

2 − 1)-constacyclic code of length 9 over R7. Let N3 ∈ GL6(F7) such that

N3 =

















3 2 2 2 2 2
2 3 2 2 2 2
2 2 3 2 2 2
2 2 2 3 2 2
2 2 2 2 3 2
2 2 2 2 2 3

















,

then N3NT
3 = I6 and the Gray image ∇(C) has the parameters [54, 47, 3]. Moreover, (z9 −Λi) ≡ 0

mod (pi(z)p∗i (z)) for 1 ≤ i ≤ 6; thus, by Theorem 8, we find that C is a dual-containing code;
so, by Theorem 9, we have a new QECC with parameters [[54, 40, 3]]7. Here, one can see that the
distance of ∇(C) ≥ dH(C̄i) for 1 ≤ i ≤ 6.

Note: In Table 1, q, n, and Λ represent the order of the field, the length of the code
defined over R, and the unit element in R, respectively. pi(z) is a generator polynomial of
Ci for i ∈ {1, 2, . . . , 6}, N1, N2, N3 are the invertible matrices over F3, F5, F7, respectively,
used to define the Gray map ∇. The parameters of the corresponding Gray image (dual-
containing code) are denoted by ∇(C). [[n, k, d]] and [[n, k′, d′]] represent the parameters of
the new QECC and existing QECC, respectively.
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Table 1. Some new and improved QECCs over Fp from constacyclic codes over Rp for (p = 3, 5, 7).

q n Λ p1(z) p2(z) p3(z) = p4(z) p5(x) = p6(x) N ∇(C) [[n, k, d]] [[n, k′, d′]]

3 9 −w1 + w2
2 + w1w2

2 11 12 1 1 N1 [54, 52, 2] [[54, 50, 2]]3 [[54, 46, 2]]3 [12]

3 9 2w2
2 − 1 11011 11011 12 1 N1 [54, 44, 4] [[54, 34, 4]]3 New QECC

3 11 −w1 + w2
2 + w1w2

2 102221 1 102122 1 N1 [66, 51, 3] [[66, 36, 3]]3 New QECC

3 11 −w1 + w2
2 + w1w2

2 102221 102122 102122 1 N1 [66, 46, 4] [[66, 26, 4]]3 New QECC

3 11 −w1 + w2
2 + w1w2

2 102221 1 102122 1022122 N1 [66, 41, 5] [[66, 16, 5]]3 New QECC

3 13 2w2
2 − 1 1021 1021 1102 1 N1 [78, 66, 4] [[78, 54, 4]]3 New QECC

3 18 1 11011 11011 12 1 N1 [108, 98, 3] [[108, 88, 3]]3 New QECC

5 6 −1 134 13 12 12 N2 [36, 29, 4] [[36, 22, 4]]5 New QECC

5 18 −1 1003004 13 12 12 N2 [108, 97, 4] [[108, 86, 4]]5 New QECC

5 19 −1 1 1033234341 1033234341 1033234341 N2 [114, 69, 6] [[114, 24, 6]]5 New QECC

5 19 −1 1033234341 1033234341 1033234341 1033234341 N2 [114, 60, 7] [[114, 6, 7]]5 New QECC

5 20 −w1 + w2
2 + w1w2

2 10404 11 11 11 N2 [120, 111, 3] [[120, 102, 3]]5 [[120, 96, 3]]5 [14]

5 22 −w1 − w2
2 + w1w2

2 111212 1 13 12 N2 [132, 123, 4] [[132, 114, 4]]5 [[132, 110, 4]]5 [21]

5 25 1 − 2w2
2 1400041 1 11 11 N2 [150, 140, 3] [[150, 130, 3]]5 New QECC

5 25 1 − 2w2
2 140000000014 1 11 11 N2 [150, 135, 4] [[150, 120, 4]]5 New QECC

5 40 1 12342 1 12 13 N2 [240, 232, 3] [[240, 224, 3]]5 New QECC

7 7 1 − 2w2
2 1436 1 11 11 N3 [42, 35, 4] [[42, 28, 4]]7 New QECC

7 9 2w2
2 − 1 1002 12 13 13 N3 [54, 46, 4] [[54, 38, 4]]7 New QECC

7 14 −w1 + w2
2 + w1w2

2 10201 1331 11 11 N3 [84, 73, 4] [[84, 62, 4]]7 New QECC

7 15 1 − 2w2
2 153356 1 12 14 N3 [90, 81, 4] [[90, 72, 4]]7 New QECC

7 18 −w1 + w2
2 + w1w2

2 102 13026 12 12 N3 [108, 98, 4] [[108, 88, 4]]7 New QECC
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5. Conclusions

This article focuses on the exploration of constacyclic codes in the context of non-chain

rings R =
Fp [u,v]

⟨w2
1−α2,w3

2−β2w2,w1w2−w2w1⟩
, where α, β ∈ Fp − {0} for a prime p. From this

investigation, numerous new and improved quantum codes have been derived. Substantial
potential exists for discovering additional quantum codes within the finite field Fp by
considering prime powers instead of primes. Applying the Gray map ∇ harnesses this
potential. In a more general context, substituting the ring R with alternative commutative
finite rings offers the prospect of developing many fresh quantum code constructions.
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