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ABSTRACT

The Large Hadron Collider (LHC) is dedicated to the task of performing high energy scattering
collisions. The success of the physics program at the LHC also demands high precision of
theoretical predictions. We need to calculate multi-loop scattering amplitudes in perturbative
quantum field theory to obtain precise theoretical predictions. Feynman integrals are the building
blocks for scattering amplitudes and therefore the calculation of scattering amplitudes at higher
orders in perturbation theory also requires a deep understanding of multi-loop Feynman integrals.
Now is the age when we need to evaluate two-loop corrections to processes with massive
particles, like the top quark and the electroweak bosons. The calculation of two-loop Feynman
integrals with masses, using the available tools, often turns out to be a difficult task. The
algebraic structure of the Feynman integral has proven to be a great help in computing these
integrals. In practice, we use the method of differential equations to solve a particular Feynman
integral. We can exploit the properties of dimensionally regulated integrals to find a basis of
integrals which we call the master integrals. Solving these master integrals correspond to solving
the Feynman integral. The use of a particular ‘canonical form’ makes the solution of the
differential equation for the master integrals simpler and lets us immediately write them down in
terms of iterated integrals at all orders in the dimensional regularization parameter. In the case of
mostly massless processes, the integrals are known to evaluate to a special class of functions
known as the multiple polylogarithms. This is not true starting from two loops. The simplest
single scale example for this case is given by the very famous sunrise integral which is known to
contain an elliptic curve and needs elliptic generalizations of multiple polylogarithms in order to
write down the solution.

In this work, we present two examples of Feynman integrals which depend on multiple scales. The
first one is the planar double box integral with a closed top loop, which is required for the top-pair
production. This integral enters the next-to-next-to-leading order (NNLO) contribution for the
process pp→ tt̄ and was a bottleneck for a long time. The system of differential equations for the
double box integral is governed by three different elliptic curves, which originate from different
sub-topologies. In order to solve the differential equation satisfied by the master integrals in this
case, we use the factorization properties of the Picard–Fuchs operator associated with the ‘elliptic’
topologies to bring down the system of differential equation to the one coupled in blocks of sizes
2×2 at worst, at order ε0. We also use the linear form for the differential equation in order to solve
the system as iterated integrals in the dimensional regularization parameter conveniently. The other
example presented is that of the two-loop master integrals relevant to mixed QCD-EW corrections
to the decay H → bb̄ through a Htt̄ coupling. This has been done keeping full dependence on
the heavy particle masses (mt, mH and mW), but neglecting the b-quark mass. In this case, the
system of differential equations for the master integrals can be brought to the canonical form and
the master integrals can be expressed entirely in terms of multiple polylogarithms.
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"The world" is something like a great chess game being played by the Gods, and we are
observers of the game. We do not know what the rules of the game are; all we are allowed
to do is to watch them playing. Of course if we watch long enough, we may eventually catch
on to a few of the rules. The rules of the game are what we mean by fundamental physics.
-Richard Feynman.

Our most ambitious and organized efforts to understand what the world around us is made up of
has given us the best candidate for particle physics: "The Standard Model (SM)" which has been
verified to all extent by our present-day experiments. It has been able to predict the existence of
several particles, the most recent one to be confirmed was the infamous Higgs boson. However,
we have now also come to the conclusion that this cannot be the ultimate model as it lacks many
important aspects. There exist very significant signals that the SM is incomplete. The most
concrete evidence comes from astrophysical and cosmological observations. The vacuum energy
density crisis, presence of too many fundamental parameters, the inability of incorporation of the
most fundamental interaction, namely gravitation, and the matter-antimatter asymmetry are few
of the most famous problems which point to further deficiencies of the SM. More evidence comes
from the results confirming the existence of dark energy and dark matter, some other intriguing
manifestations of physics beyond the Standard Model (BSM).

Deviations from SM prediction is believed to be a strong signal for the existence of BSM physics.
The Large Hadron Collider (LHC) at Cern is dedicated to the task of performing precision
measurements of high energy scattering of particles, which may be sensitive to BSM physics.
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10 Introduction

The experimental signals are not able to distinguish BSM physics with the SM mediated
scattering processes. Experimentally, a way to handle this situation is the inference of signals
based on statistical analysis, by measuring an excess of events with respect to the predicted
frequency of occurrence by SM. On the theoretical side, a successful interpretation of precision
measurements requires accurate predictions of SM contributions of observable quantities in
scattering processes, for example, cross sections and decay rates. Therefore performing
calculations using the SM gives us a very good basis to start our future efforts on.

The most robust theoretical framework for particle physics is provided by the relativistic quantum
field theory (QFT). The possible interactions in quantum field theory are governed by few basic
principles: locality, symmetry, and renormalization group flow which make QFT the most concrete
framework for the interaction of particles: given a set of fields there is very often an almost unique
way to couple them together. The term “Standard Model" basically stands for a quantum field
theory based on the gauge group S U(3)⊗S U(2)⊗U(1). S U(3) is the gauge group for the Quantum
Chromodynamics (QCD) whereas S U(2)×U(1) is the symmetry group under which the gauge
transformations of unified electromagnetic and weak interactions (EW) remain invariant. The full
symmetry, in this case, has to be broken by the Higgs mechanism down to the electromagnetic
gauge symmetry in order to give masses to the W±, Z bosons. The minimal formulation, which is
the SM, requires a single Higgs field which is a doublet under S U(2). Since we are interested in
scattering processes at high energy, a scale at which all coupling constants are small, perturbation
theory presents itself as a valuable tool to obtain predictions from the theory systematically. In
this framework, observables are expanded as a series in powers of small coupling constants, with
individual orders expressed in terms of a bunch of Feynman diagrams.

1.1 Road map of the thesis

Computing scattering processes to higher orders in perturbation theory requires a deeper
understanding of ‘multi-loop Feynman integrals’ and further refinement of the mathematical
techniques used to evaluate them. The thesis discusses the innovative ideas to tackle complicated
multi-scale Feynman integrals along with shedding light upon the wonderful breakthroughs in the
field of multiple-loop calculations going beyond the class of integrals which evaluate to a
well-known class of function: the multiple polylogarithms (MPLs).

The thesis is divided into 7 chapters with each chapter being informative and complete on its
own. In the very first chapter, we briefly discuss the connection of scattering amplitude
computations in quantum field theory with Feynman integrals. We also try to cover the beautiful
structure of Feynman integrals and various famous methods to evaluate them. In chapter 2 we
take a small detour from the evaluation to Feynman integrals to getting an overview of techniques
of evaluating scattering amplitudes and physical observables, like cross section and decay rates,
along with learning about the state of the art and the hindrances and bottlenecks of the field. This
puts the important and technical world of multi-loop Feynman integral computations into the
bigger framework of scattering amplitudes. MPLs have proven to be an amazingly successful
class of functions to describe many scattering processes [9–11]. However, MPLs do not exhaust
the space of functions to which Feynman integrals evaluate. It has now been known from decades
that starting from two loops, not all Feynman integrals evaluate to MPLs [13, 14] and we need
elliptic generalizations to span the function space of these integrals. Elliptic obstructions were
already registered during the evaluation of massive Feynman diagrams more than 50 years ago by
Sabry [110]. In physics community, the study of elliptic integrals started to gain momentum with
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the work of Laporta and Remiddi [15], where they presented the result of the sunrise diagram as
complete elliptic integrals of the first kind with suitable arguments. Bloch and Vanhove in
2013 [16] further revolutionized this field by expressing the sunrise integral through a
generalization of the dilogarithm to an elliptic curve. This study revolutionized the field of
evaluation of Feynman integrals containing elliptic curves. We have seen a lot of progress in the
study of such Feynman integrals since then, which led us to some very fascinating results, some
of which can be found in [17–26]. Some of the results involve new classes of transcendental
functions, related either to elliptic generalizations of MPLs [27] or iterated integrals of modular
forms [73]. Chapter 3 carries the intention of introducing us to the mathematical world of elliptic
curves and modular forms, apart from fixing up the convention and setting up the stage for the
mathematical objects that appear in the rest of the thesis. It is well known that Feynman integrals
satisfy differential equations in the external kinematic variables [29–31]. In chapter 4, we study
the method of differential equations in great detail and learn about the ‘canonical form’ for
Feynman integrals which makes our task of ‘solving’ the integrals easier along with hinting us
about its structure [35]. In the two chapters following this, we present two cases of evaluation of
multi-scale Feynman integrals at two-loops, which apart from using all the concepts from the
chapters preceding this, shows explicitly the problems we face while tackling such complicated
diagrams along with giving us information about the route to tackle them. Chapter 5 carries the
example of the so-called ‘topbox’ which contributes to the process pp→ tt̄ and contains three
different elliptic curves, which made this diagram a bottleneck for a long time. Solving such a
diagram for the very first time gives the motivation to deal with more complicated cases and also
hinted the need of more mathematical study for the class of functions arising in these diagrams.
Chapter 6, on the other hand, presents the case of an integral which contains the hints for being
‘elliptic’, and hence more complicated in nature, but turns out to be evaluating to simpler
mathematical entities. This again shows us that guessing the structure of a massive Feynman
integral by predicting the objects it evaluates to, is far from obvious. In order to make the
evaluation and the techniques of both these cases more understandable and comparable, we
choose a specific pattern for both these chapters. The structure of both chapter 5 and chapter 6 is
as follows:

1. Physical importance and state of the art,

2. set-up and master integrals,

3. choice of co-ordinate system,

4. elliptic curves (if any),

5. transformation for the master integrals,

6. differential system (and integration kernels),

7. singularities and boundary conditions,

8. numerical results,

9. conclusions.

At the end of chapter 6, we also briefly sketch how we can use the master integrals in the
corresponding case for computing an actual observable, particularly the decay rate of the Higgs
boson into a pair of bottom quarks. Chapter 7 concludes the thesis. In the appendix, we collect all
the other useful information that could be helpful to understand this thesis in a clearer way. We
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hope that the meaning of the word Feynman integral is clear from the context, however, we try to
make this as obvious as possible.

1.2 From scattering amplitudes to Feynman diagrams

We are interested in physical quantities such as scattering cross sections and decay width. A simple
2-to-n particle scattering process is given as

(p1) + (p2)→ (p1′) + ...+ (pn′).

Pictorially, it can be visualized by

p1

p2

p1′

p2′

pn′

Figure 1.1. A 2-to-n scattering process.

Here, p1 and p2 are momenta of the initial two particles while p1′ , p2′ , ...pn′ are momenta of
the final n particles. The observables quantities, which allows the straight-forward comparison
between theory and experiment, are the scattering cross section σ(1 + 2→ 1′ + 2′ + ...+ n′) and
the decay width Γ(1→ 1′ + 2′ + ...+ n′). Usually, we wish to measure not only what the final-
state particles are, but also the momenta of those, and hence we are interested in the differential
cross sections, dσ/(d3 p1′ ...pn′). The outgoing momenta are not independent but constrained by
4-momentum conservation. The theoretical expression for the differential cross section is given as

dσ =
1

2E12E2|v1− v2|

(∏
f

d3 p f

(2π)32E f

)
|M(p1, p2→ {p f })|2 (2π)4δ4

(
p1 + p2−

∑
f

p f

)
where |v1 − v2| is the relative velocity of the two beams viewed from the lab frame, Ei is the
energy of the i−th particle, and {p f } = p1′ , p2′ , ..., pn′ . The scattering amplitude is denoted byM.
To actually compute the scattering amplitude, in practice, we need a set of Feynman rules that
associate the factors with elements of the Feynman diagram. For completion, we write down the
Feynman rules for QCD and EW theories in appendix 8. The methodology we acquire is the
following: we expand a scattering amplitude in the small parameter g and calculate the first few
terms. For instance, an amplitude An having n external partons (quarks and gluons) can be written
as a perturbative expansion:

An = gn−2
(
A(0)

n + g2A(1)
n + g4A(4)

n + g6A(3)
n + ...

)
.

In order to calculate A(l)
n we first draw all the Feynman diagrams with the given number of

external particles and l loops and then translate each of these graphs into a mathematical formula
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with the help of above mentioned Feynman rules. The sum of all such diagrams, at a specific
loop, is given by A(l)

n . To be kept in mind that here we have not specifically mentioned the
corresponding gauge group to the coupling constant, as at high energies all of the three coupling
constants are small and this technique can be carried out. In practice, to draw all the possible
graphs we can use tools like FeynArts [78] and Qgraph [79] and then carry out the translated
mathematical formula for the Feynman graphs using a computer algebra system (CAS) like
FORM [84]. It is a theoretical challenge to describe scattering events with many jets (narrowly
collimated bundles of hadrons), as well as to increase the precision of the predictions by
including higher-order perturbative corrections, which is required to match higher precision in
experimental physics. We will discuss more regarding scattering amplitudes in chapter 2. We will
also learn in chapter 4 that these Feynman integrals can be reduced to a set of basis integrals,
namely the master integrals. Reducing the amplitude to a set of master integrals is done by
exploiting the (generalized) unitarity or recurrence relations, for instance, integration by parts
relations. The evaluation of these master integrals is often a non-trivial task, even bottlenecks for
some of the cases. For the rest of this chapter, we move on to the very fascinating part of
scattering amplitudes: the Feynman integrals.

1.3 Feynman integrals

We now know that to calculate an amplitude in QFT one has to take into account various graphs
that contribute to a given process. The number of graphs however greatly increase with the
increasing number of loops. Feynman amplitude is represented as a sum of Feynman graphs,
where these graphs are written as Feynman integrals over loop momenta, due to the Feynman
rules. In general, a Feynman integral also contains several Lorentz indices. The calculation of
Feynman integrals mainly consists of three difficulties: tensor decomposition of integrals,
reduction of scalar integrals to a set of basis integrals, termed as the master integrals, and the
evaluation of these scalar basis integrals. The standard way to handle the tensor quantities is to
perform a tensor reduction that enables us to write the given quantity as a linear combination of
tensor monomials with scalar coefficients. The systematic method for one-loop case was worked
out by Passarino and Veltmann [7], whereas for higher loops, concrete methods are presented
in [45, 46]. We discuss the tensor reduction in a bit more detail in the appendix. The reduction of
scalar integrals into a set of master integrals can be carried out comfortably, thanks to the various
identities fulfilled by dimensional regulated integrals. The most powerful of these identities goes
by the name ‘integration by parts (IBP) identities’ and is explained in detail in chapter 5.
Consequently, we can imply that we deal with scalar Feynman integrals. The evaluation of these
scalar master integrals remains the focus of this thesis and some explicit computations of master
integrals corresponding to two-loop Feynman integrals containing massive particles in the loop is
presented in the last two chapters.

Let us consider a scalar Feynman graph I with n internal lines in general D dimensions. The
associated scalar l-loop integral is given by

I =

∫ l∏
r=1

dDkr

iπ
D
2

n∏
j=1

1
(−q2

j + m2
j)
ν j
, (1.3.1)

where we raise each propagator having mass m j by integer power ν j. Our task is to be able to do
this integration in order to write it down in terms of basic (mathematical) objects, for example, the
hypergeometric functions. There are broadly two ways to calculate these integrals. The first one
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is the analytic method where we can express the result in terms of analytic functions, usually as
an expansion in the dimensional regularization parameter ε, where D = 4−2ε. Or we can choose
to calculate these integrals numerically where each coefficient of each term in the Laurent series
in ε is just a number. To carry out the analytic evaluation, we may adopt many methods. Direct
integration in Feynman parameter space is the most straightforward option, but for multi-scale
integrals this quickly becomes very cumbersome. Another method is to transform the integral
to a Mellin-Barnes representation [8]. However, the most successful method nowadays to obtain
analytic results is by using the differential equation method. We also present a review of the few
famous options for numerical evaluation at the end of this chapter.

1.3.1 Feynman parametrization

An example of very commonly used parametrization is given by the Feynman parametrization.
The trick we use in this case is to write down Feynman integrals occurring in any loop integration
in terms of a master formula. We can combine the denominators d in the eq. (1.3.1), using the
formula:

1
dν1

1 dν2
2 ...d

νn
n

=

Γ
(∑n

i=1 νi

)
∏n

i=1Γ(νi)

∫ 1

0
Πn

i=1dxix
νi−1
i

δ
(
1−

∑n
j=1 x j

)
(
x1d1 + x2d2 + ....+ xndn

)∑n
i=1 νi

the parameters xi are called the Feynman parameters. Using the Feynman parameters in 1.3.1, we
obtain the form

I =
Γ(ν− lD/2)∏n

j=1Γ(ν j)

∫
x j≥0

dnx δ
(
1−

n∑
i=1

xi

) ( n∏
j=1

dx jx
ν j−1
j

)
Uν−(l+1)D/2

F ν−lD/2 (1.3.2)

HereU and F depend on the Feynman polynomials.

We can also look at these U and F polynomials from a graph theoretical view [61]. Let there
be a connected graph G for the integral presented above, having n internal lines and r number of
vertices. Let {d1,d2, ...,dn} denote the set of internal edges and l be the number of loops (Betti
number in mathematical terminology). We have then

l = n− r + 1.

For disconnected graphs, the corresponding formula for l is n− r + k, where k is the number of
connected components. Let T be the spanning tree for G, then it can be obtained from G by
deleting l edges. A given graph G has several spanning trees. If F is a spanning k-forest for G, it
can be obtained from G by deleting l + k− 1 edges. Consider an example of the diagram shown
below.

p1

p2 p3

p4

1

2

3

4

5

6

7

Figure 1.2. The double-box graph.
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Let PTi denote the set of external momenta attached to the connected components, Ti of a k-forest.
For the component T1 for this graph, we have PT1 =

{
p2, p3

}
whereas for the component T2, we get

PT2 =
{
p1, p4

}
. The U and F polynomials can be expressed very conveniently in terms of these

spanning trees and forests as:

U =
∑

T∈T1

∏
ei<T

xi, (1.3.3)

F =
∑

(T1,T2)∈T2

( ∏
ei<(T1,T2)

xi

) ( ∑
p j∈PT1

∑
pk∈PT2

p j · pk

µ2

)
+U

n∑
i=1

xi
m2

i

µ2 . (1.3.4)

The sum is over all spanning trees orU, and all spanning 2-forests in the first term of the formula
for F . The first formula says that U is the sum of all the monomials obtained from all spanning
trees. The formula for F has two parts, the first part is related to the external momenta and the
other part involves the masses. These U and F polynomials carry a lot of information about
the Feynman integral it derives from. They can be used to get knowledge of the divergence of a
Feynman graph, which is often taken as a guiding principle in order to solve a particular integral
(for example the sunrise graph). There is also another parametrization known as the Schwinger
parametrization which one can adopt.

In order to do a direct evaluation, we choose any convenient parametrization. We see a very
simple example of direct integration of a Feynman integral in section

〈
1.3.4

〉
. The choice of the

parametrization and the order of the integration over Feynman parameters is very important. The
method of direct integration is convenient, however, it is highly impractical when we need to go to
higher orders. Managing the algebraic computations become very cumbersome as the size of the
expressions become very large.

1.3.2 Divergences

It has been known from the early days of QFT that Feynman integrals suffer from divergences.
Let us consider a very standard example of a one-loop graph I(q) in 4-dimension, to understand
the concept of divergence,

I(q) =

∫
d4k

(2π)4

1

(k2−m2
1)

(
(q− k)2−m2

2

) . (1.3.5)

Here q is the momentum flowing into the graph, k is the momentum of the first line and mi is the
mass of the particle i. Note that we took a different pre-factor here in order to keep things simple
here and to smoothly connect later on to the notation in the eq. (1.3.1). This is done in section〈
1.3.4

〉
.

q

k

q−k

Figure 1.3. One loop self-energy diagram.
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To perform a simple power counting, we introduce spherical coordinates k = rk̂ in the eq. (1.3.5),
where k̂ is on the unit sphere and is expressed by the means of three angles. If we do a simple power
counting of the propagators, we obtain a logarithmically divergent integral given by

∫ ∞
Λ

dt t−1, in
the limit of large t. For a general diagram G, we get three contributions for the power counting.
The first one is from the Jacobian that arises when one introduces generalized spherical coordinates
in the (4× l)-dimensional space of l loop four-momenta and is given by 4l− 1 at large values of
the loop momenta. The other two contributions are from the powers of the propagators and the
degrees of its polynomials. Overall, this leads to an integral

∫ ∞
Λ

dr rω−1, where

ω = 4l−2n +
∑

a

pa,

where pa denotes the degree of the polynomials in the numerator depending on loop momenta
ki and n is the number of internal lines in a graph. The quantity ω is often called the degree of
divergence (DOD) of a graph. Ultra-violet (UV) divergences arise from the region where all loop
momenta become large. From DOD, we see that a Feynman integral is UV convergent if the DOD
is negative. We say that the integral has a logarithmic, linear, quadratic, ... overall divergence
when ω = 0,1,2, ... respectively. For massive fields, we have only UV divergences for an integral.
However, In the zero-mass limit, there exists another type of divergence for the small momenta,
known as the in f rared (IR) divergence. The figure 1.3 is also a typical example of such divergence
if one of the lines has a second power for the propagator which gives a factor (k2)2 in the integrand
if the mass of this line becomes zero. Here k is chosen as the momentum of this line. In this case
as well, we use the spherical coordinates and perform power-counting at small k to get a divergent
behaviour

∫ Λ

0 drr−1 but this time at small values of r.

These types of divergences are unavoidable in almost every attempt of calculating corrections
beyond the leading order. The concept we follow is simply that as long as we are computing
measurable quantities the answer has to come out finite. In practice, we adopt the following
methodology to calculate physical observables: we "shove these divergences under a rug", i.e.
instead of computing a physical observable all along, we deform the theory so that it depends on
some regulating parameter, in such a way that the integrals come out finite. When we put all the
integrals together, the answer we get for the observable is independent of the regulator, and
therefore the regulator can be removed. However, we still need to deal with divergent integrals in
the intermediate stage which we require to be mathematically manageable. Therefore we also
need to choose a renormalization scheme to absorb infinities in the intermediate stages of
perturbative calculations. The divergences drop out from the final physical answer irrespective of
the renormalization program we choose.

1.3.3 Dimensional regularization

The procedure of making divergent integrals tentatively finite by introducing a suitable
convergence device, i.e. a regulator, is called regularization. Also, it is a purely mathematical
procedure and has no physical consequences. Dimensional regularization is not a unique
procedure and we can adopt any other regularization scheme. Some famous examples of
regularization schemes apart from dimensional regularization are momentum cut-off,
Pauli-Villars, and analytic regularization. We now briefly discuss the dimensional regularization
(DR) [4].

Within DR we replace the 4 dimensional integral over the loop momentum by a D dimensional
integral, where D can be a non-integer or even a complex number. The integration is treated as a
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function of D. We have several reasons to choose DR over the other options. Some of them are as
follows: DR preserves all symmetries of the theory, particularly, the gauge symmetry. It allows an
easy identification of the divergences as the divergence usually appears as a pole in the regulator
when expanded in a series (when D approaches 4). In practice, we separate the part of the integral
which is finite in the limit of D approaching 4 from the part which is not. This procedures we
may choose to carry out this separation goes by the name subtraction schemes. DR suggests a
minimal subtraction scheme (MS) in a natural way, which greatly simplifies the calculations. DR
regularizes both UV as well as IR-divergences in massless theories at the same time.

The D-dimensional integration has to fulfil the standard laws for integration: Linearity:∫
dDk (a f (k) + bg(k)) = a

∫
dDk f (k) + b

∫
dDk g(k),

translation invariance: ∫
dDk f (k + p) =

∫
dDk f (k),

for any vector p, and scaling law:∫
dDk f (λk) = λ−D

∫
dDk f (k).

In addition, the D-dimensional integral is rotationally invariant:∫
dDk f (Λk) =

∫
dDk f (k),

where Λ belongs to the Lorentz group S O(1,D−1) of the D-dimensional vector space (assuming
this vector space has the metric diag(+1,-1,-1,-1)). In practice, we can always arrange the terms
in the integral, for instance, by completing the square in the denominator, such that every function
is rotationally invariant when we integrate over D dimensions, i.e. a function of k2. While using
the Feynman or Schwinger parametrization, for example, after this change of variables for the
diagonalization, we have a polynomial in the Feynman or Schwinger parameters and the loop
momentum k in the numerator. The integrals with odd powers of loop momentum in the numerator
vanish by symmetry. We can deal with the even powers and reduce the integral into scalar integral
following the method outlined in appendix. All the other useful techniques for handling Feynman
integrals, like Wick rotations, can also be combined with DR. There are other useful properties of
DR, which we refrain from mentioning here and one may refer to any standard QFT book for the
same.

We now try to understand how DR works in handling the divergences. Let us take an example of
a logarithmically divergent UV integral (no IR divergence). From the power counting we can see
that it be convergent if the real part of D is smaller than 4. Therefore we can consider Re(D) < 4,
by taking D = 4− 2ε where ε > 0, in order to compute this integral as a function of D. Later we
can analytically continue to the whole complex plane. This result of this integral will exhibit a
pole at D = 4. Similarly, for an IR divergent integral (no UV divergence), the integral converges
for Re(D) > 4. We can follow the same procedure in this case as well. We compute it in Re(D) >
4 by taking D = 4 + 2ε, and continue the result to D = 4. This will give us a double pole at
D = 4. It is also possible to regulate both types of divergences simultaneously. In this case,
we can use dimensional regularization for the UV-divergences while using a second regulator
for the IR-divergences. Some possible option for regulating the IR-divergences are as follows.
We can keep all external momenta off-shell, introduce small masses for all massless particles
or raise the original propagators to some power. Then we perform the loop integration in the



18 Introduction

domain where the integral is UV-convergent to obtain a result which we can analytically continue
to the whole complex D-plane. Then we can remove the additional regulator which makes the
IR-divergences regulated by DR and the IR divergences will also show up as poles at D = 4. For
the sufficiently inclusive (IR safe) observables, the IR singularities cancel between real and virtual
quantum corrections at the same order in perturbation theory, according to the KLN theorem [5,6].

Computationally speaking, we would like to express the final result of this D dimensional
integrals in terms of known functions. To perform analytic continuations to the physical regions
(where our external invariants and variables are well defined), we require good analytical
behaviour of the functions used. Practical calculations force us to find a solution as a Laurent
expansion in ε. Residues for a given power of the poles can be expressed in terms of known
functions. We know that an important role in mathematical physics is played by hypergeometric
functions since they are related to a wide class of special functions appearing in a large variety of
fields. The connection between multi-loop calculations of Feynman amplitudes and generalized
hypergeometric functions and polylogarithms has been known for quite some time.

1.3.4 Direct integration of Feynman integrals

Let us now look at evaluating the D-dimensional loop integrals. Considering any integral
constructed from the Feynman rules we find out that they are only convergent because of the
small imaginary part i. Moreover, the square of space-time is not positive semi-definite. We
perform a Wick rotation, i.e. we substitute t = iτ, to circumvent both these problems. Now our
vectors become Euclidean and their square is strictly non-negative. The integral in this case will
remain convergent even without i, given that it was convergent before. We can analytically
continue to Minkowski space to obtain physical results.

Consider a D-dimensional one-loop integral:∫
dDk

(2π)D

1(
k2−M + iO

)2

From the power counting we can see that the integral is divergent only if D ≥ 4, whereas for
D < 4, it converges. We have an integral over D-dimensional Euclidean space, where the
integrand depends only on the magnitude of k. Therefore, it is natural that we introduce spherical
coordinates. ∫

dDk =

∫
dΩD

∫
kD−1dk,

where dΩD denotes the differential solid angle of the D−dimensional unit sphere.

dΩD = sinD−2(φD−1)sinD−3(φD−2)...sin(φ2) dφ1...dφD−1,

where φi is the angle to the i− th axis. Therefore, we have,

ΩD = 2π
D−1∏
n=2

(∫ π

0
dφnsinn−1φn

)
= 2πD/2 1

Γ
(D

2
) .

The integral over Euclidean ke is straightforward:∫
dke

ka
e

(k2
e + M)b = M(a+1)/2−bΓ

(a+1
2

)
Γ
(
b− a+1

2
)

2Γ(b)
.
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We can use the above formula to get the result of our integral:

∫
dDk

(2π)D

1

(k2−M + iO)2 =
i

(4π)D/2

1

M2− D
2

Γ
(4−D

2

)
. (1.3.6)

Observe the occurrence of Gamma functions in the evaluation of Feynman integral, as already
hinted before. The factors i and (4π)D/2 are amongst the recurring factors in the integration of
Feynman integrals. Therefore we can already include them in the prefactor, as in the eq. (1.3.1),
which we recall here

I =

∫ l∏
r=1

dDkr

iπ
D
2

n∏
j=1

1
(−q2

j + m2
j)
ν j
, (1.3.7)

to get rid of the repeating appearances. In practice, we also multiply the overall Feynman integral
by a factor of e2γEε (µ2)ν−lD/2 where γE is the Euler-Mascheroni constant, µ is an arbitrary scale
which makes the Feynman integral dimensionless, l is the number of loops in the integral and ν is
the sum of powers of the propagators, i.e. ν =

∑n
i ν

i.

Let us again look at the singularity structure of a Feynman integral. First of all the Gamma-
function in the eq. (1.3.6), which for general ν, l and D is Γ(ν− lD/2) can give rise to a (single)
pole if the argument of this function is close to zero or to a negative integer value. This divergence
is the UV divergence explained before. Now, we consider the polynomial U. Depending on the
exponent ν− lD/2 ofU the vanishing of the polynomialU in some part of the integration region
can lead to poles in ε after integration. These poles resulting from the vanishing ofU is related to
UV sub-divergences. Lastly, let us consider the F polynomial. In the Euclidean region (where all
the invariants are negative or zero and all internal masses are positive or zero), the polynomial F
can only vanish on the boundary of the integration region, which is the same as for U, and these
may again lead to poles in ε after integration. These poles are related to IR divergences. If we do
not restrict the kinematics to the Euclidean region, the vanishing of F may result in divergences
after integration which are called the Landau singularities. In this way, we observe that the graph
polynomials U and F give us a lot of information about the graph it comes from. In chapter
4, we explicitly see how we can utilize the structure of the graph polynomial in the context of
differential equations, particularly to use the dimensional shift relations as well as to set up the
differential equations for our Feynman integrals.

1.3.5 Mathematical structure

Apart from the physical motivation for performing Feynman integral calculations, the
mathematical structure of these Feynman integrals has brought us to a whole new area of
research. In the last few years, we have seen a lot of coordination between mathematicians and
physicists in this area, which has given us some wonderful results. Understanding the
mathematical structure of Feynman integrals is not only interesting on its own but also helps us
solving a particular integral more efficiently. A better understanding of the analytic structure of a
Feynman diagram also often aids multi-scale generalizations.

Feynman integrals are blessed with beautiful mathematical structure. They give interesting results
in terms of typical transcendental constants like zeta and multiple zeta values [85]. An algebraic
variety is defined as the set of solutions of a system of polynomial equations over the real or
complex numbers. Algebraic variety of dimension one are called algebraic curves and algebraic
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varieties of dimension two are called algebraic surfaces. Feynman integrals are related to periods
of these algebraic varieties. As an example, in the case of the family of kite integrals, the non-
trivial algebraic variety is an elliptic curve [58]. We talk more about this in detail in chapter 3. We
now shortly go through some of the nice mathematical properties of Feynman integrals, without
diverging from our main goal which is to solve these Feynman integrals, preferably as a series
expansion in the dimensional regulator.

1.3.5.1 Periods

The definition of a period is a follows: A period is a complex number whose real and imaginary
parts are values of absolutely convergent integrals of rational functions with rational coefficients,
over domains of absolutely convergent integrals of rational functions with rational coefficients,
over domains in Rn given by polynomial inequalities with rational coefficients [87]. The number
of periods is a countable set. Any rational and algebraic number is a period, but there are also
transcendental numbers which are periods. For example, the number π, which can be expressed
through the integral

π =

"
x2+y2≤1

dxdy

is a period. On the other hand, it is also conjectured that natural logarithm e and Euler’s constant
γE are not periods. There are uncountably many numbers which are not periods.

Let us consider a loop integral in the Euclidean region (where all the masses are positive or zero
and all invariants are negative or zero). Let us also assume that all ratios of invariants and masses
are rational. A general Feynman graph written as a Laurent series expansion in the dimensional
regularization parameter is given by,

I =

∞∑
j=−2l

c jε
j,

where l denotes the number of loops. The coefficient c j in this equation are shown to be numerical
periods [86]. This feature strongly restricts the class of functions that can appear in multi-loop
integral calculations.

1.3.5.2 Shuffle algebras

Feynman integrals written as iterated integrals satisfy the shuffle algebra. We now discuss the
shuffle algebra and how they fit into the world of Feynman integrals. Let us consider a set of
letters A, which is also called the alphabet. A word is an ordered sequence of letters:

W = l1l2...lk,

where li denotes a particular letter. The word of length zero is denoted by e. Let us consider the
vector space of words over a field K. A shuffle algebra on the vector space of words is defined by

(l1l2...lk) · (lk+1...lr) =
∑

shu f f les σ

lσ(1)lσ(2)...lσ(r),

where the sum runs over all permutations σ, which preserve the relative order of 1,2, ...,k and of
k + 1, ...,r. It is similar to shuffling a deck of cards: If we split a deck of cards into two parts and
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shuffle, the relative ordering between the two individual parts remains the same, hence the name
‘shuffle’ for this algebra. The unit of this algebra is the empty word e:

e ·W = W · e = W.

The shuffle product is defined recursively by

(l1l2...lk) · (lk+1...lr ) = l1
[
(l2...lk).(lk+1...lr )

]
+ lk+1

[
(l1l2...lk) · (lk+2...lr)

]
.

Feynman integrals expressed as iterated integrals belong to the category of shuffle algebras. Let
[a,b] be a segment of the real line and f1, f2, .. functions on this interval. Let us denote by I the
following iterated integral:

I( f1, f2, ..., fk;a,b) =

∫ b

a
dt1 f1(t1)

∫ t1

a
dt2 f2(t2)...

∫ tk−1

a
dtk fk(tk).

For fixed a and b we have a shuffle algebra:

I( f1, f2, ..., fk;a,b) · I( fk+1, ..., fr;a,b) =
∑

shu f f les σ

I( fσ(1), fσ(2), ..., fσ(r);a,b),

where the sum runs over all permutations σ, which preserves the relative the order of 1,2, ...,k and
k+1, ...,r. Shuffle algebra is a commutative Hopf algebra. Feynman integrals satisfying the shuffle
algebra plays a very crucial role in fast computations of the integrals. This will also become clear
in chapter 3. As a side remark, the symbol calculus is also an active part of research in the field of
Feynman integral calculations.

1.3.6 Numerical tools

We now discuss some aspects of the numerical calculations of Feynman integrals and different
numerical tools that we use in our computations.

Sector Decomposition: We begin by the very well known technique for numerical evaluation
of divergent multi-loop integrals, known as the sector decomposition. It is a method operating in
Feynman parameter space which is useful to extract singularities regulated by dimensional
regularisation, by converting the integral into a Laurent series in ε. It can be used to calculate
virtual and real corrections to processes at higher orders. The basic idea is to decompose the
integration region into sectors with simple singularity structure, expanding in the regularization
parameter ε and finally integrating the finite coefficients numerically. Some of the famous
implementations of this technique are as follows:

1. Binoth, Heinrich: SecDec [62], which is based on a heuristic algorithm, where the number
of sectors is small and infinite recursion is possible.

2. Bogner, Weinzierl: Sector Decomposition [63], which is based on Hironaka’s polyhedra
game, where the number of sectors is large however infinite recursion is not possible.

3. Smirnov, Tentyukov: FIESTA [64], which is a hybrid of the above of algorithms, where
again, the number of sectors is small and infinite recursion is not possible.
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4. Kaneko, Ueda , a geometric method of sector decomposition [65], in which case, the
recursion capabilities are the same as those of FIESTA.

Ginac. GiNaC is an iterated and recursive acronym for GiNaC is Not a CAS, where CAS stands
for Computer Algebra System [66]. It is an open framework for symbolic computation within
the C++ framework. It uses the CLN library for implementing arbitrary-precision arithmetic.
Symbolically, it can do multivariate polynomial arithmetic, factor polynomials, compute GCDs,
expand series, and compute with matrices. Therefore it is a very efficient tool which we use to
numerically evaluate Feynman integrals to very high precision. It is also equipped to handle certain
non-commutative algebras which are extensively used in theoretical high energy physics: Clifford
algebras, SU(3) Lie algebras, and Lorentz tensors.

PSLQ algorithm. The PSLQ algorithm [70, 71] is another one of the important techniques for
efficient computations. This algorithm is useful, for example, when we want to evaluate a
Feynman integral in expansion in ε. Let us suppose that, in a given order of expansion in ε, we
know the transcendental numbers which can appear in the result and that we can obtain the result
numerically with high accuracy. For example, in the finite part of ε−expansion in two loops we
can expect at least xi−1 = ζ(i) with i = 2,3,4 or, equivalently, x1 = ζ(2), x2 = ζ(3) and x3 = π4.
Then we can use the PSLQ algorithm. Here, it gives the possibility to estimate whether or not a
given number x, can be expressed linearly as x = c1x1 + c2x2 + c3x3 with rational coefficients ci.
In practice, we assign a weight -1 to ε and therefore, at a given order in ε, we are interested in the
coefficients of all the possible transcendental constants having the same weight. A set of basis of
these transcendental constants (up to weight 22 for multiple zeta values) can be found from [109].

PSLQ is an example of an ‘integer relation algorithm’. If x1, x2, ..., xn are some real numbers, it
gives the possibility to find the n integers ci such that c1x1 +c2x2 + ...+cnxn = 0 or provide bounds
within which this relation is impossible. More formally, suppose that xi is given with the precision
of ν decimal digits. Then we have an integer relation with the normal bound N

|c1x1 + ...+ cnxn| < δ, (1.3.8)

provided that max |ci| < N, where δ > 0 is a small number, of order 10−ν. With a given accuracy
ν, a detection threshold δ and a norm bound N as an input, the PSLQ algorithm enables us to find
out the relation exits or not at some confidence level.

The numerical checks for the multi-scale Feynman integrals evaluated in chapters 5 and 6, use the
techniques and implementations mentioned above extensively.
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The lesson from the previous chapter was the following:

Feynman diagrams
Feynman rules
−→ scattering amplitude −→ observables.

This chapter presents the techniques and an overview of general ideas to compute scattering
amplitudes for perturbative calculations. As already motivated in the previous chapter, theoretical
predictions based on the SM are one of the most important ingredients for the interpretation of
collider data. Perturbative calculations at parton level or in combination with parton showers,
embedded into the well-established factorization picture for hadronic collisions is used by the
vast majority of experimental analyses. The level of experimental precision at LHC demands an
equally precise theoretical calculation. Precise theoretical predictions demand a long chain of
various tools and methods, all of which require highly technical computations. The current
processes of interest include final states involving the Higgs boson, electroweak gauge bosons,
jets and heavy quarks [88].

In a nut-shell this is what we do: at a particular loop l, the scattering amplitude is decomposed into
a basis of integrals together with rational coefficients,

Al
2→n =

∑
Feynman diagrams→

∑
i

(coefficients)i (integrals)i,

and we must then remove the infrared singularities to obtain a finite cross-section prediction of
order k,

dσ2→nNkLO = IRk

(
Ak

2→n,A
k−1
2→n+1, ...,A

0
2→n+k

)
,

where the function IRk represents an infrared subtraction technique. UV renormalization should
also be performed but this is not a problem in analytic approaches. Let us now look at the
technicalities we need to take care of in amplitude calculations in perturbative calculations.

25
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2.1 Calculation of scattering amplitudes

The short distance cross section is built out of scattering amplitudes. In the 1960s the scattering
amplitudes were built directly from the analytic properties, which is termed as the “on-shell"
method. With the rise of QCD and Feynman rules in the 1970s, this analyticity fell out of favor.
Later it was again resurrected for computing amplitudes in perturbative QCD as an alternative to
Feynman diagrams. Now perturbative information assists analyticity and the multi-loop
amplitudes can be generated from Feynman diagrams and other unitarity-inspired techniques.
The complexity of a scattering amplitude calculation grows very fast with the number of
loops and the number of legs.

At one loop, the last two decades saw huge progress in the construction of automated tools [78–83]
to generate amplitudes and reduce them to a small set of building blocks in order to evaluate them.
At one loop, we have the following factors to our benefit:

• Scattering amplitudes computations makes us deal with tensor integrals, apart from the
scalar integrals (i.e. integrals having no vectors with free indices in the numerator)

Iµ1...µn =

∫
dDk

kµ1 ...kµn

P1...PN
,

where Pi denote the denominators and µi are the indices in the numerator. At one-loop,
reduction of tensor integrals to scalar integrals have been worked out for a long time now
and it is known by the Passarino-Veltman reduction [7]. We can perform a tensor reduction
that enables us to write a given quantity as a linear combination of tensor monomials with
scalar coefficients. At one loop, all tensor integrals are reducible, which means that integrals
with loop momenta in the numerator can always be expressed in terms of integrals with
trivial numerators.

= c1 + c2 + c3 + c4 + R

Figure 2.1. Basis integrals for one-loop amplitude.

where the ci and R are rational functions of external kinematic invariants.

• The integrals we need to know explicitly, in this case, have maximally N = 4 external legs.
Integrals with N > 4 can be expressed in terms of boxes, triangles, bubbles and tadpoles
(in the case of massive propagators). The analytic expressions for these “master integrals"
are well-known. The most complicated analytic functions which can appear at one loop are
dilogarithms.

We can say that the next-to-leading order (NLO) calculations are well established. Unfortunately,
we are stuck at two loops. Beyond one loop, the integrals can have irreducible numerators, and the
function class the amplitude lives in is not necessarily known. However, we know that there a large
class of amplitudes where the function class is the well studied multiple polylogarithms. With the
inclusion of masses in the internal particle, the integrals quickly become elliptic and hence requires
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further study in order to tackle them. The state of the art amplitude computation is 2→ 3 processes.
The amplitude calculations at NNLO generates large expressions, containing integrals with loop
momenta in the numerator, contracted with external momenta and/or polarization vectors. It is not
feasible to perform the evaluation of each one of these diagrams separately. To some rescue these
diagrams are not all independent and there exist algebraic identities, like the integration-by-parts
(IBP) identities and Lorentz identities, between these integrals, which we can use to bring them
down to a set of basis integrals, called the master integrals, solving which corresponds to solving
the whole set of integrals they span.

Apart from using these ‘indirect methods’ to carry out the computations, calculating multi-loop
integrals numerically remains one of the most efficient ways to calculate integrals with a rather
large number of kinematic scales. However, extending the current multi-loop methods to higher
multiplicity still represents a serious challenge. The trending method to obtain the functional form
of the amplitude is the use of generalized unitarity methods. Let us now discuss briefly some
unitarity based methods for solving loop amplitudes and the growth in the techniques that are
useful at the present state of the art.

Unitarity based methods. We can use unitarity to determine the functional form of the
amplitudes. Scattering amplitude exhibit branch cut singularity when the particles in the loop can
be produced as real particles. The basic concept of using unitarity methods for amplitude
calculation is as follows: if we cut an amplitude in two all particles will be exchanged in the cut
channel. It is just a statement about probabilities summing to one. The imaginary part forM is
non-zero only when the virtual particles in the diagram go on-shell. Therefore, the appearance of
an imaginary part of M(s) always requires a branch cut singularity. We first derive the optical
theorem which explicitly shows how one can employ the imaginary of amplitudes into the
computations of cross sections.

The initial state particles are related to the final state particles through an abstract scattering matrix,
called the S-matrix, which avoids any reference to the intermediate states. The unitarity of the S-
matrix, acts as a constraint on the analytic structure of amplitudes.

S †S = 1.

In a theory without any interactions, the S -matrix is simply the identity matrix 1. We can therefore
write

S = 1 + iT, (2.1.1)

where T is called the transfer matrix and describes deviations from the free theory. From the
unitarity of the S matrix it follows that

−i(T −T †) = T †T (2.1.2)

Let |ki〉 denote a state with momentum k of i−th particle. For a scattering process of 2→ 2 particles
having initial momentum p1 and p2 and final momentum k1 and kn, we can write

〈p1 p2|T †T |k1k2〉 =
∑

n

( n∏
i=1

∫
d3qi

(2π)3

1
2Ei

)
〈p1 p2|T †|{qi}〉〈{qi}|T |k1k2〉

where we used the completeness of states |qi〉 in the form of inserting a 1. We express the T -matrix
element as the invariant matrix elementM times 4-momentum conserving delta functions. Using
eq. (2.1.2) we get,
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−i
[
M(k1k2→ p1 p2)−M∗(p1 p2→ k1k2)

]
=
∑

n

( n∏
i=1

∫
d3qi

(2π)32Ei

)
M∗(p1 p2→ {qi})M(k1k2→ {qi})

× (2π)4δ(4)(k1 + k2−
∑

i

qi))),

with overall momentum conservation. Let us clean up this equation a little. The factors(∏n
i=1

∫ d3qi

(2π)32Ei

)
along with the overall delta function constraint can be written as ΠLIPs where

LIPS stands for Lorentz invariant phase space. To make things compact, let us just denote the
initial state by the state |p〉 and final state by |k〉. Using these we can write,[
M(k→ p)−M†(p→ k)

]
= −i

∑
X

∫
Π (X)

LIPS (2π)4δ4(pk − pX)M(k→ X)M†(X→ p), (2.1.3)

the sum runs over all possible sets of X of final state particles. We can note here that the left-hand
side denotes the matrix elements, however, the right-hand side is matrix elements squared. That
means that at a particular order g2 in the coupling the left-hand side must be a loop to match a
tree-level calculation on the right-hand side. Thus, the imaginary parts of loop amplitudes can be
determined completely by tree-level amplitudes.

For forward scattering amplitudes, initial and final states are the same, hence we can set |k〉 =

|p〉 = |A〉, where A is some state. In this case we obtain

2i ImM(A→ A) = −i
∑

X

∫
Π (X)

LIPS (2π)4δ4(pk − pX) |M(A→ X)|2. (2.1.4)

In particular, when |A〉 is a one particle state, then the decay rate is given by

Γ(A→ X) =
1

2mA

∫
Π (X)

LIPS |M(A→ X)|2, (2.1.5)

which gives us,

ImM(A→ A) = mA

∑
X

Γ(A→ X). (2.1.6)

In this case,M(A→ A) is just a 2-point function. Therefore the imaginary part of the propagator
is equal to the sum of decay rates into every possible particle. The cross section for a 2-particle
state |A〉 is given by

σ(A→ X) =
1

2ECM |~pCM |

∫
Π (X)

LIPS |M(A→ X)|2. (2.1.7)

Using this we obtain the standard form of the optical theorem,

Im M(A→ A) = 2ECM~pCM

∑
X

σ(A→ X), (2.1.8)

where ECM ~pCM denote the energy and momentum in the center of mass frame respectively. This
equation states that the imaginary part of the forward scattering amplitude is proportional to the
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total scattering cross section. There are different ways to apply the optical theorem. One of them
is what we just saw, that is to obtain a total cross section by computing the complete amplitude in
forward scattering kinematics and taking the imaginary part of the full result at the very end.
Doing this, we trade the computation of different squared amplitudes and their integration over
different phase spaces, with the computation of the related imaginary parts of the forward
scattering amplitude. We see a sketch of such a calculation at the end of chapter 6.

Cutkowsky presented the rules [89] which one can use to calculate the discontinuity of a Feynman
amplitude with respect to an external invariant. Cutkowsky rules state:

• Cut a particular diagram in all possible ways, such that the cut propagators can be put on-
shell.

• Replace each cut by a delta function by substituting

1
q2−m2 + iε

→ 2πiδ(q2−m2).

• Sum the contribution of all possible cuts.

Using these rules, the discontinuity of the amplitude is given as a sum of cut diagrams which
feature on-shell intermediate particles. The use of these rules allows for a diagrammatic
interpretation. The cut propagators dissect a diagram into two parts. Each of these parts is
connected to either all incoming or all outgoing legs. Computation of the contribution of an
individual cut of a single diagram is also closely related to the computation of a phase space
integrals. Let us now see an example of how one can use cuts to exchange evaluation of phase
space integrals in with the evaluation of multi-loop integrals.

∝
∑

f

∫
dΠ f =

∑
f

∫
dΠ f

2

Figure 2.2. Exchanging phase space integral evaluation with evaluation of multi-loop integrals.

Here the blue dashed line represents imaginary parts (cuts) associated with states, which are
intermediate in the forward scattering amplitude, but final for the squared modulus of the
production amplitudes. We replaced each delta function in the final state phase with the
difference of two propagators with an opposite prescription for their imaginary parts. Doing so,
we get the forward scattering diagram and hence we exchange the square of a Born amplitude
with a two-loop diagram, in contrast to the usual application of the Cutkowsky rules. In this way,
the phase-space integrals can then be evaluated in the same algorithmic fashion as the multi-loop
integrals.

We now present a short overview of how unitarity has been used as a guiding principle in
amplitude calculations. The idea that one-loop amplitudes can be reconstructed from their
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unitarity cuts was put forward by Bern, Dixon and Kosower in the 1990s [90] and was used in
several phenomenological calculations. Britto, Cachazo and Feng [91] observed that the
coefficients of the four-point functions, obtained when one-loop amplitudes are reduced to scalar
integrals, are products of on-shell tree scattering amplitudes evaluated at complex momenta, and
Ossola, Papadopoulos and Pittau (OPP) [92] discovered a simple algebraic method for reducing
tensor integrals to scalar master integrals. All this revived the use of unitarity method in
amplitude calculations. It was realized that replacing any number of intermediate states by
on-shell particles probes deeper into the structure of scattering amplitudes. This extension is
called the generalized unitarity which involves cutting amplitudes several times. In the end, we
replace a loop amplitude on the cut with products of tree amplitudes which are known and much
simpler than the actual loop amplitude. This concept made the computation of one-loop
amplitudes in N = 4 super Yang-Mills theory feasible and led to the BCFW recursion relations
for tree-level gluon amplitudes and caused a revolution in the computation of one-loop QCD
amplitudes [72]. Interestingly, while unitarity cuts of Cutkowsky do consist of a physical
interpretation, generalized unitarity not so much. The D-dimensional generalized unitarity cuts
algorithm [93] has been extended to multi-loop integrands using integrand reduction [94, 95].

2.2 Cross sections

After discussing the techniques of computing amplitude and the advancements so far let us now
switch briefly to see how we can compute cross sections using these amplitudes. This section
focuses on the computations of cross sections in high energy physics by considering the parton
model as an example. At short distances, quarks and gluons (partons) in a proton behave as almost
free particles due to the phenomena called ‘asymptotic freedom’ in QCD. In proper circumstances,
the cross section may be decomposed as a partonic cross section multiplied by the probabilities of
finding partons of the prescribed momenta:

σhadronic =
∑

i j

∫
dx1dx2 fi(x1) f j(x2) dσ̂partonic.

The probability that a parton of type i carries a fraction of the incident particle’s momentum that
lies between x1 and x1 + dx1 is fi(x1)dx1 and similarly for partons in the other incident particle.
Hence the cross section is a convolution of a long-distance component, the parton distribution
function (PDF) fi(ξ) for a parton of type i, and a short distance component, the partonic hard
scattering cross section σ̂. It basically separates the short-distance effects, which are calculable
in perturbative theory, from long-distance effects, which belong to the domain of non-perturbative
QCD and have to be modeled and fitted from data. Now we discuss shortly the perturbative
calculations for the partonic cross section.

The perturbative short-distance cross section is given by

σ̂(αs,α) = [α]nα
[
σ̂(0)︸︷︷︸
LO

+

(
αs

2π

)
σ̂(1)︸     ︷︷     ︸

NLO

+

(
αs

2π

)2
σ̂(2)︸     ︷︷     ︸

NNLO

+

(
α

2π

)
σ̂NLO

EW ...
]
. (2.2.1)

In general, the theoretical estimates of the cross section based on computations through to the next-
to-leading order (NLO) in perturbative QCD, turns out to be insufficient. The leading-order (LO)
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cross section exhibits a strong dependence on the choice of the renormalization scale. Including
the O(αs) corrections decreases the scale dependence. We need at least NLO to obtain reliable
predictions whereas NNLO QCD provides the first serious estimate of the theoretical uncertainty.
We can say that at the moment we live in the world of NNLO computations. NLO EW is naively
similar in size to NNLO QCD and it is also important at high energies and near resonances.

In general the NNLO corrections to any given partonic cross section with m particles in the final
state contains three different contributions

dσ̂NNLO =

∫
dΦm+2

dσ̂RR
NNLO +

∫
dΦm+1

dσ̂RV
NNLO +

∫
dΦm

dσ̂VV
NNLO. (2.2.2)

The double-virtual corrections dσ̂VV
NNLO are constructed with two-loop amplitudes interfered with

the corresponding Born matrix element, and with one-loop amplitudes squared. The mixed
real-virtual contributions dσ̂RV

NNLO are built from the interference of one-loop amplitudes with an
additional real radiated parton and the corresponding tree-level matrix element. The double-real
radiation corrections are constructed from tree-level matrix elements squared with two real
partons added to the corresponding basic LO process. The phase-space integration is done with
the help of Monte Carlo integrations after divergences are eliminated.

In the calculation of the various pieces of eq. (2.2.2), we have to deal with UV and IR divergences.
In the double-virtual corrections, the divergences arise from the integration with respect to the
loop momenta. In the real-virtual part, we have an overlapping of the divergences arising from the
integration with respect to the one-loop momentum and the integration of the phase space of the
additional unresolved gluon or photon. In the double-real part, the matrix element is finite and the
divergences arise from the integration of the phase space of the two unresolved photon and gluon
in the final state. We use DR to regularize the divergences. The IR divergences are removed after
the three cross-sections are added together and the remaining initial state collinear divergences are
re-absorbed in the re-definition of the PDF with which we have to convolute the σ̂ in order to have
the hadronic cross section.
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3.1 Iterated path integrals

Let k be the real or complex numbers and M be a smooth manifold over k. Let γ : [0,1]→ M be a
piece-wise smooth path on M and let ω1, ...,ωn be smooth k-valued 1-forms on M. Let use write

γ∗ωi = fi(t)dt (3.1.1)

for the pull backs of the form ωi to the interval [0,1]. The ordinary line integral is given by∫
γ
ω1 =

∫
[0,1]

γ∗(ω1) =

∫ 1

0
f1(t1)dt1. (3.1.2)

and does not depend on the choice of parametrization of γ.

Definition: The iterated integral of ω1, ....,ωn along γ is defined by∫
γ
ω1...ωn =

∫
0≤t1≤...≤tn≤1

f1(t1)dt1... fn(tn)dtn. (3.1.3)

More generally, an iterated integral is any k−linear combination of such integrals. The empty
iterated integral (when n = 0) is defined to be the constant function 1.

Proposition : Iterated integrals satisfy the following first properties:

33
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1. The iterated integral
∫
γ
ω1...ωn does not depend on the choice of parametrization of the path

γ.

2. If γ−1(t) = γ(1− t) denotes the reversal of the path γ, then∫
γ−1
ω1...ωn = (−1)n

∫
γ
ωn...ω1 (3.1.4)

3. If α, β : I→ M are two paths such that β(0) = α(1), then let α β denote the composed path
obtained by traversing first α and then β. Then

∫
αβ
ω1...ωn =

n∑
i=0

∫
α
ω1...ωi

∫
β
ωi+1...ωn, (3.1.5)

where again the empty iterated integral is the constant function 1.

4. There is a shuffle product formula∫
γ
ωγω1...ωr

∫
γ
ωr+1...ωr+s =

∑
σ∈Σ(r,s)

∫
γ
ωσ(1)...ωσ(r+s) , (3.1.6)

where Σ(r, s) is the set (r, s) shuffles.

Σ(r, s) = {σ ∈ Σ(r + s) : σ−1(1) < ... < σ−1(r) and σ−1(r + 1) < ... < σ−1(r + s)}

3.2 Transcendental functions

The mathematical point of view of loop calculations reveal interesting algebraic structures. The
knowledge of the class of functions belonging to the Feynman integral aids the computation. In
higher order in perturbation theory, there are a class of mostly massless processes, where the virtual
corrections can be entirely expressed in terms of multiple polylogarithms. However, starting from
two-loops there are integrals which cannot be expressed in terms of these ‘simple’ functions and
we need to go beyond multiple polylogarithms. Guessing the class of functions sufficient for the
loop integrals is an active part of research. In this section, we discuss the various transcendental
functions which we encounter, mainly at two-loops.

3.2.1 Multiple polylogarithms (MPLs)

Let us start with generalizing the basic transcendental functions we know from high school, to the
class of functions we have so far referred to as the MPLs. The logarithm is defined by:

Li1(x) = −ln(1− x) =

∞∑
i=1

xi

i
(3.2.1)

and the dilogarithm is defined by

Li2(x) =

∞∑
i=1

xi

i2
(3.2.2)
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Generalizing it to any value of n gives us the classical polylogarithm:

Lin(x) =

∞∑
i=1

xi

in
(3.2.3)

The obvious generalization of the classical polylogarithm will bring us to the MPLs [11] [12]. The
MPLs are defined by the power series expansion:

Lin1,...,nk (x1, ..., xk) =
∑

i1>i2>...>ik>0

xi1
1

in1
1
...

xik
k

ink
k

. (3.2.4)

Here w= n1 + ...+nk is called the weight and k the depth. Some of the several subclasses of MPLs
are as follows:

1. Multiple-zeta values are obtained by substituting (x1 = ... = xk = 1):

ζ(n1, ...,nk) =
∑

i1>i2>...>ik>0

1
in1
1 in2

2 ...i
nk
k

. (3.2.5)

2. Harmonic polylogarithms are denoted as:

Hm1,...,mk (x) = Lim1,...,mk

(
x,1, ...,1︸︷︷︸

k−1

)
. (3.2.6)

3. Nielsen’s polylogarithms are denoted as

S n,p(x) = Lin+1,1,...,1

(
x,1, ...,1︸︷︷︸

p−1

)
. (3.2.7)

MPLs also enjoy representation in terms of iterated integrals. For zk , 0, integral representation of
MPLs is given by:

G(z1, ...,zk;y) =

∫ y

0

dt1
t1− z1

∫ t1

0

dt2
t2− z2

...

∫ tk−1

0

dtk
tk − zk

. (3.2.8)

We observe that one variable is redundant due to the following scaling relations:

G(z1, ...,zk;y) = G(xz1, ..., xzk; xy). (3.2.9)

In addition, the trailing zeroes in the eq. (3.2.8) are taken care of with the definitions:

G(0, ...,0︸︷︷︸
k

;y) =
1
k!

(ln(y))k, (3.2.10)

G(z1, ...,zk;y) =

∫ y

0

dt
t− z1

G(z2, ...,zk; t). (3.2.11)

There exist a relation between the two representation for the MPLs. We can introduce a short hand
notation:

Gm1,...,mk (z1, ...,zk;y) = G(0, ...,0︸︷︷︸
m1−1

,z1, ...,zk−1,0, ...,0︸︷︷︸
mk−1

,zk;y). (3.2.12)

Then the relation is given by

Lim1,...,mk (x1, ..., xk) = (−1)kGm1,...,mk

( 1
x1
,

1
x1x2

, ...,
1

x1...xk
;1

)
. (3.2.13)
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Convergence. The series expansion for Lim1,...,mk (x1, ..., xk) is convergent, if |x1x2...x j| ≤ 1 for
all j ∈ {1, ...,k} and (m1, x1) , (1,1). Therefore the function Gm1,...,mk (z1, ...,zk;y) has a convergent
series representation if |y| ≤ |z j| for all j.

MPLs exhibit several nice algebraic properties. The other beautiful aspects of the MPLs are that
they satisfy Hopf algebras. MPLs satisfy two Hopf algebra. The first one is referred to as “shuffle
algebra" and is related to the integral representation. An example of this multiplication is:

G(z1;y) G(z2;y) = G(z1,z2;y) +G(z2,z1;y).

The second algebra is called the “quasi-shuffle algebra" and is related to the series representation.
An example is given by:

Lim1(x1) Lim2(x2) = Lim1,m2(x1, x2) + Lim2,m1(x2, x1) + Lim1+m2(x1x2).

All these properties of MPLs allow a wide class of Feynman integrals to be computed
systematically to all orders in ε. Shuffle algebras satisfied by MPLS are especially useful for
numerically evaluating these functions. On the mathematical side, MPLs are very closely related
to punctured Riemann surfaces of genus zero.

3.2.2 Elliptic Polylogarithms

The appearance of objects beyond MPLs also required generalization to a class of function related
to genus one. A generalization of the classical polylogarithm depending on three variables x,y,q
and two (integer) indices n, m:

ELin;m(x;y;q) =

∞∑
j=1

∞∑
k=1

x j

jn
yk

km q jk.

The two summations in this equation are coupled through the variable q. Further generalization to
include any values of n, m, x and y gives us [19]:

ELin1,...,nl;m1,...,ml;2o1,...,2ol−1(x1, ..., xl;y1, ...,yl;q) =

∞∑
j1=1

...

∞∑
jl=1

∞∑
k1=1

...

∞∑
kl=1

x j1
1

jn1
1
..

x jl
l

jnl
l

yk1
1

km1
1
..

ykl
l

kml
l

q j1k1+...+ jlkl

Π l−1
i=1 ( jiki + ...+ jlkl)oi

. (3.2.14)

This formula is a special generalization to include both the genus one and the genus zero cases.
We now shift our attention to elliptic curves and later come back to applying them in Feynman
integrals.

3.3 Elliptic Curves

Elliptic curves have been an active part of the research for pure mathematicians for many years
now. However, only in the past few decades, we saw theoretical physics benefiting heavily from
the rich structure of elliptic curves. In this section, we first start with a small introduction of elliptic
curves, which by no means is meant to be extensive. Then we explain the mathematical structure
and the properties of elliptic curves which make them a powerful candidate for studying various
aspects of Feynman integrals.
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Elliptic integrals originally arose in the context of finding the arclength of an ellipse, from where
the name "elliptic curve" derives. Let K be a general field (not of characteristic 2), and f ∈ K[x]
denote a cubic polynomial with coefficients in K, which has distinct roots. Here x and y are in
the algebraic closure of K. The definition of an elliptic curve is then given as the locus of points
satisfying

y2 = f (x),

for any cubic or quartic polynomial f (x). After a change of variables (using a K-rational point),
the equation takes the simpler form

y2 = x3 + Ax + B,

where the values x,y,A and B belong to a field (which we may take to be C). This form is called
the Weierstrass form.

In addition to the points (x,y) on the elliptic curve, there is a very important ‘point at infinity’
that we like to consider on the curve, in the same way as we add a point at infinity in addition to
the points on the complex plane to form the ‘Riemann sphere’ in complex variable theory. The
condition that the roots are distinct implies that the curve is smooth everywhere. In this way, we
find the formal definition of an elliptic curve: An elliptic curve is a smooth projective algebraic
curve of genus one having a specified point O. The specified point O, often the point at infinity, is
the location of the identity element for the group addition. Let us now understand the concept of
the projective spaces in a bit more detail.

Projective space and the point at infinity. We know that parallel lines meet at infinity. Using
the concept of projective spaces we can make more sense of this statement and use it to interpret
the point at infinity on an elliptic curve. Let K be a field. Two-dimensional projective space P2

K
over K is given by the equivalence class of triples (x,y,z) with x,y,z ∈ K and at least one of x,y,z
non-zero. The triple (x1,y1,z1) is said to be equivalent to another triple (x2,y2,z2) if there exists a
non-zero element λ ∈ K such that

(x1,y1,z1) = (λx2,λy2,λz2). (3.3.1)

We denote this as (x1,y1,z1) ∼ (x2,y2,z2), i.e. the equivalence class of a triple only depends on
the ratios of x to y to z. Hence it is denoted by (x : y : z). If (x : y : z) is a point with z , 0, then
(x : y : z) ∼ (x/z : y/z : 1). These are the “finite" points in P2

K . However, if z = 0, then dividing by
z can be thought of as giving ∞ in either the x or y coordinate, and therefore the points (x : y : 0)
are called the “points at infinity" in P2

k . Before we discuss any further, let us define the term genus
which often occurs in this chapter.

Genus. An algebraic curve is the set of points satisfying a polynomial equation. The genus
of an algebraic curve is roughly the number of holes it has. In topology, the classical result on
the classification of two-dimensional manifolds tells us the following: any orientable, connected
two-dimensional compact manifold is homeomorphic to a sphere with handles. The number of
handles, g, is called the genus and it is a basic topological invariant. For an orientable compact
surface, g = 0 yields a sphere, g = 1 a torus, and g = 2 a double torus.

3.3.1 Elliptic curves over the complex numbers

The elliptic curves can be formulated as the embedding of a torus in the complex projective plane.
This follows straightforwardly from the Weierstrass’s elliptic functions. An elliptic curve over the
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complex numbers is obtained as a quotient of the complex plane by a lattice L spanned by two
fundamental periods ω1 and ω2. This section aims to discuss this concept in more detail and to
establish the connection between the torus and the complex projective space P2

C more concretely.

Lattices and the fundamental parallelogram. Let us first discuss lattices in order to define
elliptic curves over the complex numbers. Let ω1 and ω2 be two complex numbers, which are
linearly independent over the real numbers. Then the lattice L is defined to be

L = {mω1 + nω2|m,n ∈ Z}.

Figure 3.1. A parallelogram with two sides ω1 and ω2. Figure from [74].

Also, (ω1,ω2) will define the same lattice if and only if they differ by GL2(Z) action, but to preserve
positive imaginary part, we can restrict ourselves to S L2(Z). Let us also consider the fundamental
parallelogram for this lattice which is given by,

Π = α+ {aω1 + bω2|0 ≤ a ≤ 1, 0 ≤ b ≤ 1}.

where we can set α to be equal to 0 without any loss of generality.

We are looking for periodic functions on C/L. The functions we get are doubly periodic. Let us
also recall that the Riemann sphere is just the complex numbers C plus the point at infinity.

Doubly periodic functions. With the lattice L and ωi, we can now define a meromorphic
function f from the complex numbers to the Riemann sphere, such that

f (z +ωi) = f (z); z ∈ C.

We see that ω1 and ω2 are the two periods of this function, therefore the function f becomes
doubly periodic. These doubly periodic, meromorphic functions are called elliptic. If we glue the
opposite edges of the fundamental parallelogram together, we can think of it as a torus.
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Complex torus. A complex torus can be obtained as follows: if we consider a lattice L in Cn as
a real vector space; then the quotient group Cn/L is a compact complex manifold. This is shown
in figure 3.1.

Figure 3.2. Torus obtained after identifying the opposite sides of the fundamental parallelogram;
T:=C/L . Figure from [75].

Let us also briefly consider some properties of this elliptic function, f .

1. If f has no poles on the boundary ∂Π , then the sum of the residues in Π is 0. This is
evident if we consider the residue theorem, 2πi

∑
Res f =

∫
f over ∂Π. The integrals on the

opposite sides of ∂Π cancel, since f is doubly periodic, and we get the sum as 0.

2. If f has no poles in the interior of the fundamental parallelogram Π , then f is constant. This
is clear from the Liouville’s theorem. Since Π is a compact domain, f is bounded on Π ,
and since f is doubly periodic, it is bounded in all C. Since f is a bounded meromorphic
function over C, it is constant by Liouville’s theorem.

3. If f has no poles or zeroes on the boundary of Π , and {si} represents the singular points of
f in Π , with f having an order mi at si, then

∑
mi = 0. This follows again using the residue

theorem. If f is an elliptic function, then f ′ and f ′/ f are also elliptic. Using the residue
theorem, we then get 0 =

∫
f ′/ f = 2πi

∑
Res f = 2πi

∑
mi.

After getting familiar with the main properties of an elliptic function, let us now discuss some
specific examples for the same. Since we are mainly interested in periodic functions, an example
is that of a simple lattice generated by the period ω = 2πi which generates the periodic function
exp(z). The inverse function in this case (i.e. x = exp(z)) is given by

z = ln(x).

We may also define functions whose input is a lattice in C. The most natural of these are the
Eisenstein series. For a lattice L and k > 1, consider

G2k(L) =

′∑
ω∈L

1
ω2k , (3.3.2)
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where the prime on the sum means to exclude ω = 0. It is to be noted that the sum is zero if
the exponent is odd and hence contains only even exponents. By the above correspondence, this
gives rise to a function on the upper half plane, defined by G2k(τ) = G2k(Zτ+Z), also called the
Eisenstein series.

Weierstrass ℘-function. A very important example of a non-constant elliptic function in C is
given by the Weierstrass ℘-function, which is defined with respect to the lattice L as follows:

℘(z) = ℘(z; L) =
1
z2 +

′∑
ω∈Λ

[ 1
(z−ω)2 −

1
ω

]
. (3.3.3)

Here
∑′

again denotes 0 not being included in the sum. It is very easy to see that ℘(z) is an elliptic
function on the lattice and its only pole is a double pole at each lattice point. For any fixed l ∈ L,
the function ℘(z)− (z− l)−2 is continuous at z = l (we are not going to prove this here!). Therefore,
℘(z) is a meromorphic function with a double pole at all lattice points and no other poles. Also,
the right-hand side of the eq. (3.3.3) remains unchanged if we replace z by −z and l by −l. But
summing over l ∈ L is the same as summing over −l ∈ L, therefore ℘(z) =℘(−z), i.e. the Weierstrass
function is even. Next, we consider the term-by-term differentiation of eq. (3.3.3) to obtain,

℘
′

(z) = −2
∑
l∈L

1
(z− l)3 . (3.3.4)

If we replace z by z+ l0 for some fixed l0 ∈ L, it merely rearranges the term in the sum in eq. (3.3.4),
therefore it is obviously doubly periodic. This proves that ℘

′

(z) is an elliptic function. In order to
prove ℘(z) is also an elliptic function on the lattice L, it suffices to prove that ℘(z +ωi) = ℘(z) = 0
for i = 1,2. Let us prove this for i = 1, the case for i = 2 identically follows. Since the derivative
of the function ℘(z +ω1)−℘(z) is ℘

′

(z +ω1)−℘
′

(z) = 0, we have ℘(z +ω1)−℘(z) =C for some
constant C. If we substitute z = −1

2 ω1 and use the fact that ℘(z) is an even function, we conclude
that C= ℘( 1

2ω1)−℘(−1
2 ω1) = 0.

One of the main properties of the Weierstrass function is that they are sufficient to recover all
elliptic functions as every elliptic function can be written as a rational function in ℘ and ℘

′

. All
the higher derivatives of ℘ are polynomials in (℘,℘

′

), for eg:

℘”(z) =
1
6
℘(z)2−

1
2

g4.

The set of all elliptic functions forms a field and therefore we can identify the field of elliptic
functions with the field of rational functions in (℘,℘

′

).

Now, we wish to relate the ℘ function to elliptic curves. We find that for a lattice L, the associated
function ℘ satisfies the differential equation,

℘
′

(z)2 = 4℘(z)2−g4℘(z)−g6 = 4(℘− e1)(℘− e2)(℘− e3) (3.3.5)

where g4 = 60G4(L) and g6 = 140G6(L) and ei depend on the two periods ω1 and ω2. The
differential eq. (3.3.5) has an elegant and basic geometrical interpretation. Suppose we take the
function from the torus C/L to the complex projective space P2

C defined by

z 7→ (℘(z),℘
′

(z),1) for z , 0 ;

0 7→ (0,1,0).
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The image of any nonzero point z of C/L is a point whose complex coordinate satisfies the relation
y2 = f (x). In this way, we see that every point z is mapped to a point on the elliptic curve y2 = f (x)
in P2

C . This map is a one-to-one correspondence between C/L and the elliptic curve (including the
point at infinity).

The inverse function to Weierstrass’ elliptic function x = ℘(z) is an elliptic integral given by

z =

∫ ∞

x

dt√
4t3−g4t−g6

where
g4 = 60

∑
(m,n),(0,0)

1
(mω1 + nω2)4 , g6 = 140

∑
(m,n),(0,0)

1
(mω1 + nω2)6 .

In both examples for the periodic functions presented in this section, we can observe the periods
can be expressed as integrals involving only algebraic functions. For the first example,

2πi = 4i
∫ 1

0

dt
√

1− t2

For the second example, let us assume g4 and g6 are the two given algebraic numbers. The periods
are expressed as

ω1 = 2
∫ e2

e1

dt√
4t3−g4t−g6

, ω2 = 2
∫ e2

e3

dt√
4t3−g4t−g6

where ei are the roots of the cubic equation 4t3−g4t−g6 = 0.

The j-invariant. Let us consider an elliptic curve given by y2 = 4x3−g4x−g6 via the Weierstrass
elliptic functions. Then the j−invariant is defined as

j(τ) = 1728
g3

4

∆
(3.3.6)

where the modular discriminant ∆ is given by

∆ = g3
4−27g2

6 (3.3.7)

which is non-zero by the assumption that geometrically the graph has no cusps, self-interactions,
or isolated points. The j-invariant tells us when two curves are isomorphic over an algebraically
closed field. However, while working with non-algebraically closed field K, it is possible that
two curves have the same j-invariant that cannot be transformed into each other using rational
functions with coefficients in K. If two different elliptic curves defined over a field K have the
same j-invariant, then we can say that the two curves are twists of each other.

3.4 Elliptic curves and Feynman integral

After getting acquainted with the formal definition of an elliptic curve, we now shift our focus to
actually identifying the presence of an elliptic curve in a Feynman integral. Methods of algebraic
geometry are often very helpful in the study of Feynman integrals. We have many interesting
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examples in the literature where the integral was related to an elliptic curve [17,18,22,24], recently
even more than one elliptic curve [48]. In this section, we explain the use of maximal cut in
extracting an elliptic curve from a Feynman integral.

In order to detect the presence of an elliptic curve in our calculations, we search for Feynman
integrals, whose maximal cuts are periods of an elliptic curve. We can analytically continue the
momenta of a Feynman integral to complex values and replace the integration over space-time by
contour integrals (contour C) around poles of the integrand. Let us consider an integral of the form

Iν1ν2...νn(D) = (µ2)
ν−lD/2

∫
dDk1

(2π)4 ...
dDkl

(2π)4

n∏
j=1

1

Pν j
j

,

where νi denotes the power of the propagator Pi, D denotes the dimension, l denotes the number
of loops, µ is an arbitrary scale which makes the integral dimensionless and ν is the sum of powers
of the propagators. By calculating the maximal cut, mathematically, we mean taking the n−fold
residue at

P1 = ... = Pn = 0

of the integrand over the remaining (lD−n) variables along a contour C. Let us take the example
of the two-loop sunrise integral with equal masses in D- dimensions, with momentum k1 and k2
flowing in the loop [19].

I1001001(D, p2,m2µ2) = (µ2)
3−D

∫
dDk1

iπ
D
2

dDk2

iπ
D
2

1
(−k2

1 + m2)(−k2
2 + m2)((−(p− k1− k2))2 + m2)

.

(3.4.1)

p2 denotes the momentum squared (in the Minkowski metric).

p k1

k2

Figure 3.3. The sunrise graph, I1001001.

The elliptic curve of the sunrise graph can be obtained using the maximal cut method,

MaxCutC I1001001(2−2ε) =
µm2

π2

∫
C

dP

(P− t)
1
2 (P− t + 4m2)

1
2 (P2 + 2m2P−4m2t + m4)

1
2

+ O(ε).

(3.4.2)

In this equation P is the propagator variable left after carrying out all the delta integrations, m is
the mass of the particle in the loop and t = p2, is the Mandelstam variable.

Employing the method of calculation of a maximal cut to extract the elliptic curve, in practice, we
aim for an integral representation having a square root of a quartic polynomial in the denominator
along with a constant in the numerator. This defines the elliptic curve. We can integrate between
any pair of roots of this polynomial, which gives us the period of the elliptic curve present in



3.5 Elliptic curve and the Picard–Fuchs operator 43

our topology. Since we have only two independent periods, the result for any choice of integration
contour may be expressed as a linear combination of these periods. The maximal cuts are solutions
of the homogeneous differential equation satisfied by an integral. An extensive discussion about
maximal cuts is presented in section

〈
4.2

〉
.

In order to obtain the elliptic curve for the sunrise graph, we may also use information from the
graph polynomial. The graph polynomial introduced in the section

〈
1.3.2

〉
can be viewed as a

polynomial in the Feynman parameters x1, x2, x3 with parameters t and m2. We can define an
elliptic curve from the graph polynomial F polynomial as

F = 0 (3.4.3)

along with the choice of a rational point as an origin [48]. Substituting x for p2 and putting m
equal to one in eq. (3.4.1), we get the following expressing for the elliptic curve using F = 0,

−x1x2x3x + (x1 + x2 + x3)(x1x2 + x2x3 + x3x1) = 0.

Feynman integrals are known to satisfy differential equations in the external kinematic variable.
The knowledge of the algebraic structure is often a guiding principle in the computations. For
instance, for the sunrise graph, the order of the ordinary linear differential equation for an integral
follows from the dimension of the first cohomology group of the corresponding elliptic curve
(which is two). The two solutions of the homogeneous differential equation are the periods, say
ψ1 and ψ2, of the elliptic curve. We now shift to leaning the differential operators useful for the
periods of an elliptic curve.

3.5 Elliptic curve and the Picard–Fuchs operator

In this section, we define the Picard-Fuchs operator for the periods of the elliptic curves we obtain
from Feynman integrals. Let us consider a general quartic form for the elliptic curve:

E : ω2− (z− z1)(z− z2)(z− z3)(z− z4). (3.5.1)

The variables z1, z2, z3 and z3 are the roots of eq. (3.5.1) and they may depend on variables
x = (x1, ..., xn).

z j = z j(x), j ∈ [1,2,3,4].

We set
Z1 = (z3− z2)(z4− z1), Z2 = (z2− z1)(z4− z3), Z3 = (z3− z1)(z4− z2).

Not that Z1 + Z2 = Z3. The modulus k and the complementary modulus k̃ are given by

k =

√
Z1

Z3
, k̃ =

√
1− k2 =

√
Z2

Z3
(3.5.2)

There are six possibilities of defining k2. Our standard choice for the periods ψ1,ψ2 is

ψ1 =
4K(k)

Z
1
2
3

, ψ2 =
4iK(k̃)

Z
1
2
3

.

Let us also define quasi periods as

φ1 =
4[K(k)−E(k)]

Z
1
2
3

, φ2 =
4iE(k̄)

Z
1
2
3

.
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where K(x) denotes the complete elliptic integral of the first kind. Our lattice is generated by the
two periods we obtain from the elliptic curve, L = mψ1 +nψ2|m,n ∈ Z. The ratio of the two periods
and the nome is given by

τ =
ψ2

ψ1
, q = exp(2iπτ). (3.5.3)

The Dedekind’s η-function is given by

η(τ) = e
πiτ
12

∞∏
n=1

(1− e2πinτ) = q
1
12

∞∏
n=1

(1−q2n).

The periods of an elliptic curve satisfy the first order system of differential equations

d
(
ψi

φi

)
=

 −1
2 d lnZ2

1
2 d ln Z2

Z1

− 1
2 d ln Z2

Z3

1
2 d ln Z2

Z2
3

( ψi

φi

)
, i ∈ {1,2}, (3.5.4)

where we use the notation

d f (x) =

n∑
i=1

(
∂ f
∂xi

)
dxi.

The periods also satisfy the Legendre relation,

ψ1φ2−ψ2φ1 =
8πi
Z3

(3.5.5)

We also have from the eq. (3.5.3)

2πidτ = dlnq =
2πi
ψ2

1

4πi
Z3

dln
Z2

Z1
. (3.5.6)

Similar to the what we did in the section on iterated integrals let us consider a path γ : [0,1]→ Cn

such that xi = xi(λ) parametrized by the parameter λ. A specific choice is the path, γα : [0,1]→Cn,

indexed by α = [α1 : ... : αn] ∈ CPn−1 and given explicitly by

xi(λ) = xi(0) +αiλ, 1 ≤ i ≤ n. (3.5.7)

We may view the periods ψ1 and ψ2 as a function of the variable λ. The periods of an elliptic curve
satisfy the Picard–Fuchs equation. We can write the differential equations for the periods in terms
of Zi as : [ d2

dλ2 + p1,γ
d

dλ
+ p0,γ

]
ψi = 0, i ∈ {1,2}, (3.5.8)

where,

p1,γ =
d

dλ
lnZ3−

d
dλ

ln
(

d
dλ

ln
Z2

Z1

)
, (3.5.9)

p0,γ =
1
2

(
d

dλ
lnZ1

)(
d

dλ
lnZ2

)
−

1
2

(
d

dλZ1
) (

d2

dλ2 Z2
)
−

(
d2

dλ2 Z1
) (

d
dλZ2

)
Z1

(
d

dλZ2
)
−Z2

(
d

dλZ1
)

+
1

4Z3

 1
Z1

(
d

dλ
Z1

)2

+
1
Z2

(
d

dλ
Z2

)2 .
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This gives us the Picard-Fuchs operator along the path γ:

Lγ =
d2

dλ2 + p1,γ
d

dλ
+ p0,γ. (3.5.10)

The Wronskian is defined by

Wγ = ψ1
d

dλ
ψ2−ψ2

d
dλ
ψ1 =

4πi
Z3

d
dλ

ln
Z2

Z1
. (3.5.11)

The variation of the Wronskian along the path λ is given by

d
dλ

Wγ =− p1,γWγ, (3.5.12)

2πidτ =
2πiWγ

ψ2
1

dλ. (3.5.13)

It is also to be remembered that our choices for the periods is not unique. Any other choice related
to the original one by a Möbius transformation generates the same lattice.(

ψ
′

2
ψ
′

1

)
=

(
a b
c d

)(
ψ2
ψ1

)
,

(
a b
c d

)
∈ SL(2,Z). (3.5.14)

It can be seen in the figure 3.1. In terms of τ and τ
′

= ψ
′

2/ψ
′

1, the transformation reads

τ
′

=
aτ+ d
cτ+ d

.

In the case when the roots z j depend only on a single variable x, we may exchange the variable x
for the variable τ and study our problem as a function of τ. We discuss the Picard–Fuchs operator
in more detail in chapter 4, in section

〈
4.4

〉
, where we eventually learn how to use the factorization

properties of Picard–Fuchs operator in Feynman integral calculations.

3.6 Modular Forms

For the Feynman integral connected to elliptic integrals, often we can use modular forms to express
the results as iterated integrals. In this section, we discuss the properties of modular form. A
modular form is a function on the complex upper half plane that satisfies certain transformation
conditions and holomorphy conditions. Let τ be a complex number with Im(τ) > 0. Then a
modular form necessarily has a Fourier expansion,

f (τ) =

∞∑
n=0

an( f ) e2πinτ, an( f ) ∈ C for all n. (3.6.1)

The modular group is the group of 2×2 matrices with integer entries and determinant 1.

SL2(Z) =

{[
a b
c d

]
: a,b,c,d ∈ Z, ad−bc = 1

}
. (3.6.2)

The modular group is generated by the two matrices[
1 1
0 1

]
and

[
0 −1
1 0

]
. (3.6.3)
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The group of transformations defined by the modular group is generated by the matrix described
by the two matrix generators, τ→ τ+ 1 and τ→−1/τ. The upper half plane is

H = {τ ∈ C : Im(τ) > 0}. (3.6.4)

Definition: Let k be an integer. A meromorphic function f :H → C is weakly modular of weight
k if

f (γ(τ)) = (cτ+ d)k f (τ) for γ =

[
a b
c d

]
∈ SL2(Z) and τ ∈ H (3.6.5)

If this transformation law holds when γ is each one of the generators
[

1 1
0 1

]
and

[
0 −1
1 0

]
then

it holds for all γ ∈ SL2(Z). It means that f is weakly modular of weight k if f (τ+ 1) = f (τ) and
f (1/τ) = τk f (τ).

Defintion: Let k be an integer. A function f :H → C is a modular form of weight k if

1. f is holomorphic onH .

2. f is weakly modular form of weight k.

3. f is holomorphic at∞.

The set of modular forms of weight k is denoted MkSL2(Z). MkSL2(Z) forms a vector space over
C. The zero function on H is a modular form of every weight, and every constant function on H
is a modular form of weight 0. Now two non-trivial examples of modular forms follow.

Let k > 2 be an even integer and we define the Eisentein series of weight k to be a 2-dimensional
analogue of Riemann zeta function ζ(k) =

∑∞
d=1 1/dk,

Gk(τ) =

′∑
(c,d)

1
(cτ+ d)k , τ ∈ H , (3.6.6)

where the primed summation sign means to sum over nonzero integer pairs (c,d) ∈ Z2−{0,0} (note
that we saw this already in eq. (3.3.2)). It is a typical example of a modular form.

Definition: A cusp form of weight k is a modular form of weight k whose Fourier expansion has
leading coefficient a0 = 0, i.e.

f (τ) =

∞∑
n=1

anqn, q = e2πiτ (3.6.7)

The set of cusp forms is denoted S k(SL2(Z)).

3.6.1 Iterated integral of modular forms

It was shown in [73] that the family of Feynman integral for the sunrise and the kite graph can be
expressed as iterated integrals of modular form for a congruence subgroup Γ. In this subsection,
we review the basic concepts from the reference.
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Let f1(τ), f2(τ), ..., fn(τ) be a set of modular form for a congruence subgroup Γ. The standard
congruence subgroups of the modular group S L2(Z) are defined by

Γ0(N) =

{(
a b
c d

)
∈ SL2(Z) : c ≡ 0 mod N

}
,

Γ1(N) =

{(
a b
c d

)
∈ SL2(Z) : a,d ≡ 1 mod N, c ≡ 0 mod N

}
,

Γ(N) =

{(
a b
c d

)
∈ SL2(Z) : a,d ≡ 1 mod N, b,c ≡ 0 mod N

}
.

The weight of the modular form fi(τ) is denoted by ki. The n−fold iterated integral of these
modular forms is given by

I( f1, f2, ..., fn;τ,τ0) = (2πi)n
∫ τ

τ0

dτ1

∫ τ1

τ0

dτ2...

∫ τn−1

τ0

dτn f1(τ1) f2(τ2)... fn(τn). (3.6.8)

Using eq. (3.6.7) we may write

I( f1, f2, ..., fn;τ,τ0) =

∫ q

q0

dq1

q1

∫ q1

q0

dq2

q2
...

∫ qn−1

q0

dqn

qn
f1(τ1) f2(τ2)... fn(τn). (3.6.9)

For the special case when the first (n-1) modular forms are the constant function 1, we have

F(1, ...,1, fn;τ,τ0) =

∫ q

q0

dq1

q1

∫ q1

q0

dq2

q2
...

∫ qn−1

q0

dqn

qn
fn(τn). (3.6.10)

Introducing the short-hand notation for the repeated letters

{ fi} j = fi, fi, ..., fi︸     ︷︷     ︸
j

, (3.6.11)

we get in the eq. (3.6.10)

F({1}n−1, fn;τ,τ0) = I(1, ...,1︸︷︷︸
n−1

, fn;τ,τ0). (3.6.12)

The zero-fold iterated integral is defined as usual:

F(;τ,τ0) = 1 (3.6.13)

Here depth is defined as the number of iterated integrations. In the case of MPLs, the depth is
often referred to as the weight. However, here we use the word “depth". It is also to be kept in
mind that depth and modular weight are two different notions. Depth is the number of iteration of
iterated integrals, whereas, modular weight is associated to the individual modular forms f1, ..., fn.
F satisfies all the other properties of an iterated integral for example the shuffle product.

Let us further assume that fk(τ) vanishes at the cusp τ = i∞. We define the k-fold iterated integral
by

F ( f1, f2, ..., fk;q) = (2πi)k

τ∫
i∞

dτ1 f1 (τ1)

τ1∫
i∞

dτ2 f2 (τ2) ...

τk−1∫
i∞

dτk fk (τk) , q = e2πiτ.
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The case where fk(τ) does not vanishes at the cusp τ = i∞ is discussed in [73,77] and is similar to
trailing zeros in the case of MPLs. This is easily seen by changing the variable from τ to q:

2πi

τ∫
i∞

dτ1 f (τ1) =

q∫
0

dq1

q1
f (τ1 (q1)) , τ1 (q1) =

1
2πi

lnq1

Modular forms have a Fourier expansion around the cusp τ = i∞:

f j (τ) =

∞∑
n=0

a j,n qn.

f j(τ) vanishes at τ = i∞ if a j,0 = 0. Using the Fourier expansion and integrating term-by-term one
can obtain the q-series of the iterated integral of modular forms corresponding to eq. (3.6.1):

F ( f1, f2, ..., fk;q) =

∞∑
n1=0

...

∞∑
nk=0

a1,n1

n1 + ...+ nk
...

ak−1,nk−1

nk−1 + nk

ak,nk

nk
qn1+...+nk .







4 Differential equations for
Feynman integrals

Contents
4.1 Relation between different master integrals . . . . . . . . . . . . . . 51

4.1.1 Dimensional shift relations (DSR) 54

4.2 Maximal cuts . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.3 Canonical form for the differential equations . . . . . . . . . . . . . . 58
4.4 Picard–Fuchs Equation . . . . . . . . . . . . . . . . . . . . . . 60

4.4.1 The formal definition 60
4.4.2 Application of Picard–Fuchs operator 62

4.5 Algorithms for obtaining the canonical form . . . . . . . . . . . . . . 68
4.6 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . 70

“Differentiating is an operation easier than integrating!"

The direct integration of Feynman integrals suffers from several problems, for example,
integration of elementary or special functions, expansion in and summation of infinite series.
Kotikov, while dealing with the evaluation of 2- and 3- point functions, realized that a given
unknown integral can be considered to be a function of one of the propagator masses, and one
can write a differential equation for the integral in that variable [29, 30]. Using differential
equations thus allowed obtaining results for massive diagrams without calculating complicated
D-space Feynman integrals. This novel idea was soon realized to be very effective and
generalized later on by Remiddi [31], who then proposed the differentiation with respect to any
other kinematics invariants formed by the external momenta.

4.1 Relation between different master integrals

The set of diagrams we get after differentiating a Feynman integral can in principle be related to
each other by one or more identities. We can use these relations to our aid for solving these sets
of Feynman integrals efficiently. In this section, we discuss the various relations that we observe
between the set of Feynman integrals, in the context of differential equations.

51
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1. Integration by parts (IBP) identities: Integration by parts identities are one of the most
remarkable properties of dimensionally regularized integrals [32, 33]. These equations
follow from the Poincare’ invariance of the integrals, which is preserved in dimensional
regularization. It is basically the extension to D-dimensional spaces of Gauss’ theorem.
For each integral I, we can write,∫

dDk
(2π)D ...

dDkl

(2π)D

∂

∂kµi
vµ

n∏
j=1

1
(q2

j −m2
j)
ν j

= 0. (4.1.1)

where q contains any combination of scalar products and loop momentum vectors, v is any
loop momenta or external momenta and {ν j} denotes set of indices of the propagators. For a
two loop integral, for example, these identities take the form:∫

dDk1

(2π)d

dDk2

(2π)D

∂

∂kµi
vµF(k1,k2, p j) i = 1,2, (4.1.2)

where F denotes the integrand of the integral I.

2. Lorentz invariance identities: Another class of identities we can obtain by exploiting the
nature of the integrals as Lorentz scalars are the Lorentz invariance identities.

Under an infinitesimal Lorentz transformation, pi→ pi + δpi, where δpi = ωµνpi,ν with ωµν
a totally antisymmetric tensor, we get,

I(pi +δpi) = I(pi).

We can have the relation

I(pi +δpi) = I(pi) +
∑

n

∂I(pi)
∂pn,µ

= I(pi) +ωµν
∑

n

pn,ν
∂I(pi)
∂pn,µ

and using the antisymmetry of ωµν, we get the relation,∑
n

(
pn,ν

∂

∂pn,µ
− pn,ν

∂

∂pn,ν

)
I(pi) = 0.

This equation can be contracted with all possible antisymmetric combinations of the external
momenta pi,µp j,ν to obtain other identities for the considered integrals. It has been shown in
[111] that the Lorentz invariance identities are not linearly independent of the IBP relations
and therefore not strictly necessary for the reduction of the integrals to a set of master
integrals. Nevertheless, they can be used to speed up the reduction process.

3. Symmetry relations: The integrals can be further related to each other in the sense that the
value of the integral does not change if we redefine the loop momenta, but the integrand
transforms into a combination of different integrands. We can impose the condition that
both the integrals (original and the combination of integrals after shifted momentum) are
equal and get another relation. In order to understand it in a better way, let us consider the
sunrise graph which we have already mentioned a lot of times before.

I1001001(D, p2,m2µ2) = (µ2)
3−D

∫
dDk1

iπ
D
2

dDk2

iπ
D
2

1
(−k2

1 + m2)(−k2
2 + m2)((−(p− k1− k2))2 + m2)

.
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We consider the three members family of diagrams belonging to the sunrise graph, which
we obtain after raising the three propagators by a power one by one. We get the following
integrals:

I2001001(D, p2,m2µ2) = (µ2)
3−D

∫
dDk1

iπ
D
2

dDk2

iπ
D
2

1

(−k2
1 + m2)2(−k2

2 + m2)((−(p− k1− k2))2 + m2)
.

I1002001(D, p2,m2µ2) = (µ2)
3−D

∫
dDk1

iπ
D
2

dDk2

iπ
D
2

1

(−k2
1 + m2)(−k2

2 + m2)2((−(p− k1− k2))2 + m2)
.

and

I1001002(D, p2,m2µ2) = (µ2)
3−D

∫
dDk1

iπ
D
2

dDk2

iπ
D
2

1

(−k2
1 + m2)(−k2

2 + m2)((−(p− k1− k2))2 + m2)2 .

Under the symmetry relations, we have

I2001001 = I1002001 = I1001002,

which is clear if we look at the graph shown in the figure 3.3.

These above relations can be used to bring down the integrals belonging to a family of Feynman
integrals to a set of (independent) basis integrals, which we call the master integrals. The above
identities are linear in the integrals, with the coefficients being rational functions of the kinematic
invariants and the space-time dimension. As a result, one can relate an integral with general
integer powers to a finite set of master integrals (basis integrals).

In practice, the use of these identities generates, a large system of equations which needs to be
solved in order to reduce to the set of master integrals. One possible elimination technique is the
use of Laporta algorithm [34]: we can assign a “weight" to each integral which can be almost
any increasing function of the indices denoting the power of the numerators and the denominators
of the integral, such that integrals with higher indices have bigger weights. In other words, the
system of equations is now ordered by their complexity. This system can be solved by Gauss’
substitution rule, by considering the equations of the system one by one and using each equation
for expressing the integral with the highest weight in terms of the integrals of lower weight and
then substituting the result in the leftover equations. They are linear in the integrals, with the
coefficients being rational functions of the kinematic invariants and the space-time dimension. As
a result, one can relate an integral with general integer powers to a finite set of master (or basis)
integrals. The algorithm is straightforward, but its execution requires a great amount of algebra,
hence for practical purposes we use computer codes implementing the algorithm to get the set of
master integrals [36].

The next step consists of the actual evaluation of the master integrals. The identities mentioned
above can be further used to set up a linear system of first-order differential equations for the
occurring master integrals and by construction we get a block triangular structure, which has a
huge advantage that it makes the iterative solution for the differential equations manifest,
beginning from simple to more complicated diagrams [31]. Then we do a Laurent-expansion
around the dimensional regulation parameter ε, which gives a system of equation coupled in
coefficients of the expansions (i.e order of ε).



54 Differential equations for Feynman integrals

Let us briefly go through the concept of irreducible scalar products (ISPs). For an l-loop integral
depending on e linearly dependent external momenta p1, ..., pe, the number of ISPs depending on
the loop momenta ki are

n = l(l + 1)/2 + le (4.1.3)

and are given by:

sik = ki ·qk, i = 1, ..., l, k = 1, ..., l + e

where q1,...,l = k1,...,l, ql+1,...,l+e = p1,...,e. We define a topology (sector) as the set of propagators
(with positive exponents), sufficient to express all the ISPs. Using this, we can, therefore, express
any scalar product in the numerator in terms of denominators.

In this way, Feynman integrals can be classified according to their topology, starting with the
integrals where the maximal number of propagators is present. Let the propagators, labelled by
i, be raised to powers νi. Sub-topologies, where certain propagators are absent, are obtained by
pinching the propagators, i.e. by setting the corresponding indices ai to zero. The set of identities
presented above also relate integrals with different values of the ai within a topology.

Following are the examples of some famous programs which can be used for the reduction to
master integrals:

1. Reduze [37]

2. Kira [38]

3. Fire [39]

4. LiteRed [40] [47].

All the above programs have their advantages and short-comings and it depends on the user the
type of IBP reduction program he/she wants to use.

It is also useful to define the so-called sector-id which is a way to uniquely define a sector by
associating a number against it:

id =

n∑
j=1

2 j−1Θ(ν j).

Sector-id is a common occurrence in computer implementations for IBP reductions.

4.1.1 Dimensional shift relations (DSR)

In our calculations, most often, we deal with integrals that are regulated using DR. By lowering
the number of dimensions we can improve their UV behavior. In [41] and [45], Tarasov presented
an algorithm for systematically obtaining recurrence relations for dimensionally regularized
Feynman integrals with respect to the space-time dimension D. The relation between D and D−2
dimensional integrals is given in terms of a differential operator with which one can obtain an
explicit formula for each Feynman diagrams. One may observe that while using IBP identities,
we get relations connecting integrals with some exponents changed by ±1. Without going into
too much detail, let us straight-away discuss how we can use these shift relations in our
calculations.
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In order to explain it very clearly, we take the example of the Feynman integral Iν1ν2ν3ν4ν5ν6ν7 having
7 propagators with power νi (explained more clearly in chapter 5) We first introduce an operator

p1

p2 p3

p4

1

2

3

4

5

6

7

Figure 4.1. The planar double box with seven propagators.

i+, which raises the power of the propagator i by one, e.g.

1+Iν1ν2ν3ν4ν5ν6ν7(D) =I(ν1+1)ν2ν3ν4ν5ν6ν7(D). (4.1.4)

Along with this, we define two operators D±, which perform the task of shifting the dimension of
space-time by two:

D±Iν1ν2ν3ν4ν5ν6ν7 (D) =Iν1ν2ν3ν4ν5ν6ν7 (D±2) . (4.1.5)

We can calculate the Feynman graph polynomialsU and F using the formula presented in section〈
1.3.1

〉
. Then we can obtain the DSR for ν1, ..., ν7 ≥ 0 in terms of the differential operator as

D−Iν1ν2ν3ν4ν5ν6ν7 (D) =U
(
ν11+, ν22+, ν33+, ν44+, ν55+, ν66+, ν77+) Iν1ν2ν3ν4ν5ν6ν7 (D) .

(4.1.6)

For integrals with irreducible numerators (i.e. ν8 < 0 or ν9 < 0), in order to get the DSR, we can
proceed as follows: we can first convert to a basis of master integrals with ν8 = ν9 = 0 (and raised
propagators), and then apply the DSR to the latter and converts back to the original basis.

It is also possible to obtain the differential equations for the master integrals using the DSR. For
ν1, ..., ν7 ≥ 0, we get

µ2 d
ds

Iν1ν2ν3ν4ν5ν6ν7 (D) =D+F ′s
(
ν11+, ..., ν77+) Iν1ν2ν3ν4ν5ν6ν7 (D) ,

µ2 d
dt

Iν1ν2ν3ν4ν5ν6ν7 (D) =D+F ′t
(
ν11+, ..., ν77+) Iν1ν2ν3ν4ν5ν6ν7 (D) . (4.1.7)

The right-hand side is given by integrals in (D + 2) dimensions with three propagators (from the
F polynomial for this graph) raised by an additional unit. We can obtain the differential equation
by reducing these integrals on the right-hand side of the eq. (4.1.7) to the basis in D dimensions.

We see that these relations offer an easy and compact way to set up the differential equations for
a particular Feynman integral in a compact way. However, from a computational point of view,
it is not the most advantageous representation since it requires reduction of integrals with large ν,
which requires a lot of computational memory.
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4.2 Maximal cuts

Now, we discuss the maximal cuts, which often play a major role as a guiding principle for the
choice of master integrals, as will be explained in section

〈
4.3

〉
. In very simple terminology cutting

a propagator means forcing the particle propagating through it to be on-shell. Mathematically, we
achieve this easily if the propagator is raised to power one. We simply substitute the propagator
with a Dirac δ-function which forces the momentum of the propagator to be on-shell to get the cut,
as also mentioned in the previous chapters. The maximal cut is defined as the simultaneous cutting
of all its propagators. In this case, it corresponds to taking the n-fold residue of the integrand
in the complex plane, where n is the number of propagators. Such multiple cuts always exist
for the non-reducible diagrams. The maximal cuts are solutions of the homogeneous differential
equations [21]. Any such solution remains a solution upon multiplication with a non-zero constant.
We can obtain an integral representation for the homogeneous solutions of the differential equation
satisfied by the Feynman integral, in any number of dimensions D, by computing its maximal
cut. The computation of the maximal cut can be simplified by the use of the so-called Baikov
representation. In [44] it was shown that all independent homogeneous solutions for higher-order
(third or more) differential equations can be obtained by evaluating the maximal cut along different
independent contours, which do not cross any branch cut of the integrand.

Baikov representation. Recurrence relations are powerful tools for evaluating multi-loop
Feynman integrals. In an approach using explicit formulae for the solutions of the recurrence
relations for Feynman integrals, Baikov in [42], derived what we now know as the Baikov’s
representation for the Feynman integral. Let us consider a loop integral of the form

Iα1....αn =

∫
dDk1...dDkl

iπ
Dl
2

n∏
j=1

1

Pν j
j

where the scalar functions Pα are linear polynomials with respect to si j and n is the number of ISPs,
defined in eq. (4.1.3). The symbol vi denotes the power of the propagator Pi. These propagators P
are assumed to be linearly independent and to form a complete basis in the sense that any non-zero
linear combination of them depends on the loop momenta, as shown in the equation:

Pa =

l∑
i=1

l∑
j=1

Ai jki · k j +

l∑
i=1

M∑
j=l+1

Ai j
a ki · p j−l + fa, a = 1, ....,n (4.2.1)

where fa depends on external kinematics and internal masses and M = l + e (recall that e is the
number of independent external propagators). Here, we have separated out the denominators in
terms of the external momenta and loop momenta. The aim is to replace the loop momenta by the
set of propagators. In order to do so, we can project each of the loop momenta with respect to the
space spanned by the external momenta involved plus a transverse component,

Iα1....αn = Cl
n(G(p1, ..., pe))(−D+e+1)/2

∫
dx1...dxn

xα1
1 ...x

αn
n

Pl
n(x1− f1, ..., xn− fn)(D−M−1)/2 (4.2.2)

with

Cn
l =

π−l(l−1)/4−le/2∏l
i=1Γ( D−M+i

2 )
det(Aa

i j)
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and

Pl
n(x1, x2, ..., xn) = G(k1, ...,kl, p1, ...pe)|si j=

∑n
a=1 Aa

i j & si j=s ji

with G representing the Gram determinant, which is the jacobian of this transformation and Aa
i j is

the inverse of the topology matrix Ai j
a .

Loop by loop approach: At one loop the number of Baikov variables and the number of
propagators of a generic Feynman integral can be the same. However, at higher loops, this might
not be the case anymore. To consider an example, in the case of the planar double box, with E=3
independent external momenta and L=2, we get N=9 and M = L + E=5. In this case, we have to
integrate over nine variables whereas the double graph has only seven denominators. Therefore
we need to add 2 more denominators in order to complete the list of 9 denominators to express all
the ISPs. Hence it is desirable to have a representation having the minimal number of integration
variables. This can be achieved by considering the projection over the space spanned by the
external momenta of each loop integration momentum separately. This method is known by the
loop by loop method. [43].

Let us first assume that all propagators in our Feynman diagram occur to the power one. We first
consider a one-loop sub-graph with a minimal number of propagators such that the dimension of
the sub-space spanned by the external momenta or this sub-graph is minimal. Let the sub-graph
contain (e+1) propagators P1, ..., Pe+1. Therefore the sub-space spanned by the external momenta
for this sub-graph has the dimension e. Following eq. (4.2.2), we can calculate the Jacobian, which
is equal to replacing the measure corresponding to the loop momentum for the sub-graphs by the
following:

dDk

iπ
D
2

= u
2−eπ−

e
2

Γ
(

D−e
2

)G (p1, ..., pe)
1+e−D

2 G (k, p1, ..., pe)
D−e−2

2

e+1∏
j=1

dP j,

where the momenta p1, ..., pe denote the linearly independent external momenta for this sub-graph,
the Gram determinant (in Minkowski space) is defined by

G (p1, ..., pe) =det
(
−pi · p j

)
1≤i, j≤e

,

and u denotes an (irrelevant) phase (|u| = 1).

We then repeat this procedure for the second loop, replacing p1, ..., pe by the set of independent
external momenta for the full graph. The loop by loop approach hence is a very fast approach to
calculate the maximal cuts.

For an integral of the form

I =e2γEε
(
µ2

)n−D
∫

dDk1

iπ
D
2

dDk2

iπ
D
2

N (k1,k2)
n∏

j=1

1
P j
,

where N(k1,k2) is a polynomial in k1 and k2, a maximal cut is given by

MaxCutC I =e2γEε
(
µ2

)n−D
∫
C

dDk1

iπ
D
2

dDk2

iπ
D
2

N (k1,k2)
n∏

j=1

δ
(
P j

)
,

where the integration measure is re-written according to eq. (4.2) and the integration is over a
specified contour in the variables P j which is not eliminated because of the delta distributions.
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For the case of integrals with higher powers of the propagators, i.e. ν j > 1, a very easy way to
compute the corresponding maximal cut is by first converting to a basis with ν j = 1, which often
gives irreducible numerators, and then computing the maximal cut in this basis. We can also
interpret the delta distribution δ(P j) as a contour integration along a small circle around P j = 0,
and then compute the maximal cut from n−fold residues, as given in the eq.(3.4.2). To be noted
that the phase u is not relevant as any solution of the homogeneous solution remains a solution
upon multiplication with a constant.

The use of the maximal cut plays an important role in the identification of the elliptic curve present
in it, as we already saw in the previous chapter. Using the loop by loop approach we can very
quickly evaluate the integral representation for the maximal cut, from where we can identify the
elliptic curve. The exact definition of the integration contour in the maximal cut is not relevant for
the extraction of the elliptic curves as we are only interested in the integral form with the square
root of a quartic or cubic polynomial in the denominator from which we can calculate the periods
as explained before.

4.3 Canonical form for the differential equations

We are now familiar with the fact that the calculation of an arbitrary loop integral can always
be reduced to the calculation of a finite set of master integrals [99]. Starting with a ‘good’ set of
master integrals makes the task of evaluation of these master integrals very easy. Now it is obvious
to ask what is a good basis to start with. Henn in [35] gave an idea of what can be a good starting
point.

He used the concept of ‘transcendentality’ as a guiding principle since we work with differential
operators. Let T ( f ) be the degree of transcendentality for a function f which is defined as the
number of iterated integrals needed to define the function f , for eg., T (ε) = −1, T (log) = 1,
T (Lin) = n. Constants objects like ζn also have a degree of transcendentality equal to n. Algebraic
functions have degree zero. The good master integrals are considered to be the ones having a
uniform degree of transcendality, i.e. if f is a sum of terms, all summands have the same degree.

Consider the case of a set of M integrals, denoted by ~I, depending on kinematic variables, s and t
(put m = 1). In such case, the set of the differential equations looks like

d~I(s, t;ε) = A(s, t;ε) ~I(s, t;ε), A = As ds + At dt, (4.3.1)

where Ai denotes the differential equation with respect to the variable i. The matrix A has a
dimension M×M. These matrix-valued one-form satisfies the integrability condition:

dA−A∧A = 0.

or in other words,

∂sAt −∂tAs + [As,At] = 0, (4.3.2)

where [A,B] := AB− BA. The matrix A depends on the variable s, t and ε in a rational way. In
practice, we want to solve the eq. (4.3.1) as a Laurent expansion around ε = 0. To do so, we can
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change the basis

~J(s, t;ε)→ U(s, t;ε)~I(s, t;ε), (4.3.3)

to obtain
d ~J(s, t;ε) = A′(s, t;ε) ~J(s, t;ε).

The matrix A transforms to A′ as

A′ = UAU−1−U(dU−1). (4.3.4)

Using this technique one can transform to a basis of integrals where we obtain the form

d ~J′(s, t;ε) = εA′′(s, t) ~J′(s, t;ε), (4.3.5)

such that the dependence of the dimensional regulator ε completely factors out of the differential
equations. This system of differential equations is ‘fuchsian’ in the sense that the singularities of
this differential system are regular, i.e. the original Feynman integral grows only as a finite power
at all the singularities of the system. This form for the differential equation for the master integrals
is called the canonical form or the ε- f orm.

The differential equation is said to be in the dlog-form if the matrix A′′ can be written as,

dA(s, t) = A′′(s, t), (4.3.6)

with

A(s, t) =

N∑
l=1

Al log(Ll(s, t)), (4.3.7)

where Ll(s, t) denotes the polynomials in s and t and Al are constant M ×M matrices. The set
of polynomials A = {L1(s, t), ...,LN(s, t)} is referred to as the alphabet of the differential equation
and the letters are given by the individual polynomials. We can immediately see that it solves the
differential equation in terms of a path-ordered exponential

J′ = Peε
∫

c dA′′ J′(ε = 0), (4.3.8)

where the integration contour C connects the point representing the boundary condition to xn. In
other words, the perturbative solution in ε is given by iterated integrals where the entries of d A′′

determine the integration kernels. In this way, we see that choosing an optimal choice of integral
basis can make the integration of the system of differential equations trivial.

To give a very simple example in order to set up the basic idea, let us consider an integral I in one
variable x with boundary condition I(0) = 1. Now, consider the differential equation

(d + A) I = 0,

with the one-dimensional matrix A given by -εd ln(x−1). We can quickly note that

d ln(x−1) =
dx

x−1
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and which lets us write the solution immediately when we make an expansion I = I0 +ε I1 +ε2 I2 + ..

and compare each of the terms in the series expansion.

I(x) = 1 + ε G(1; x) + ε2 G(1,1; x) + ε3 G(1,1,1; x) + ....

Hence, we effectively bring the task of solving the integral to finding the correct master integrals
or the correct transformation which brings the system of master integrals to the canonical form.

A big question to investigate is how to find these nice master integrals which satisfy this
canonical form. One of the fundamental properties of a canonical form, which we can easily see
from the eq. (4.3.5), is that the homogeneous part of the system of differential equations becomes
trivial in the limit ε → 0. This implies that the homogeneous solution for ε = 0 is constant. We
are now familiar with the concept of maximal cuts and know that they give us the solution for the
homogeneous differential equations. For the Feynman integrals which evaluate to MPLs, the
maximal cut is an algebraic function, while in the case of integrals containing elliptic curves, they
contain transcendental functions within them. For example, for the case of the sunrise integral,
the maximal cut is given by a complete elliptic integral. One more clue is to obtained by
evaluating the ‘leading singularities’ of the candidate integrals by inspecting their generalized
cuts. The objects having constant leading singularities have the properties of uniform
transcendentalities. Leading singularities are defined by analytically continuing the momenta to
complex values and replacing the integration over space-time by contour integrals around poles
of the integrand. A complete understanding of the concept of leading singularity is available only
in the case of integrals that evaluate to MPLs (and their generalizations). The maximal cut is a
natural starting point to extend these to more complicated cases. Another way to make these
properties manifest is to get the ‘d-log’ representations, where the integrand is written as a
logarithmic differential form.

Note: In the appendix, we take an example of a bubble graph and employ the above techniques to
see how these methods are useful in solving a graph very easily.

4.4 Picard–Fuchs Equation

We already are a bit familiar with the differential equations corresponding to the case of elliptic
curves. The Picard–Fuchs equation, named after Emile Picard and Lazarus Fuchs, is usually
associated to be linear ordinary differential equation whose solutions describe the periods of
elliptic curves. However, the same name is also used for generalizations, as will be clear in this
section. Here, we wish to talk about the differential operator associated with this equation, with
the motivation of being useful in the evaluation of Feynman integrals.

4.4.1 The formal definition

In [100], the authors showed that finding the ordinary differential equation for any Feynman
integral is equivalent to solving a linear system of equations. Let us have a look at the method to
get some general features of the Picard–Fuchs equation. Let us consider a Feynman Integral with
l-loops and m external and n internal lines. We label the external momenta by p1, ..., pm and the
independent loop momenta by k1, ...,kl. We denote the Mandelstam variables by

s jk = (p j + pk)2, 1 ≤ j,k ≤ m.
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The set of kinematical invariants is given by {si j,m2
i } for the masses given by mi with 1 ≤ i ≤ n.

The Feynman integral is given by

I =

∏n
j=1Γ(ν j)

Γ(ν− lD/2)
(µ2)

ν−lD/2
∫ l∏

r=1

dDkr

iπD/2

n∏
j=1

1
(−q2

j + m2
j)
ν j
,

with ν = ν1 + ...+ νn. Using Feynman parametrization, explained in section
〈
1.3.1

〉
, gives us

I =

∫
∆

fω. (4.4.1)

∆ = {[x1 : x2 : ... : xn]} ∈ Pn−1|xi ≥ 0,1 ≤ i ≤ n}.

Here, ω is a differential (n−1) form given by

ω =

n∑
j=1

(−1) j−1x j dx1∧ ...∧dx̂ j∧ ...∧dxn, (4.4.2)

where the corresponding term being omitted is displayed with a hat. The function f is given by

f (x1, ..., xn) = (µ2)
ν−lD/2

( n∏
j=1

xν j−1
j

)
Uν−(l+1)D/2

F ν−lD/2 . (4.4.3)

The graph polynomial U is independent of the kinematical invariants, while F depends linearly
on the kinematical invariants, as we saw. Let t be an element from the set of kinematic invariants.
We aim to get an ordinary differential equation with respect to the variable t for the Feynman
integral. We look for a differential equation of the form

Lrωt = dβ (4.4.4)

where ωt is a (n− 1) form of homogeneous of degree (1− n) in the variables xi and is given by
ωt = fω. L(r) is the Picard–Fuchs operator which is given by

L(r) =

r∑
j=0

p j

(
µ2 d

dt

) j
. (4.4.5)

The coefficients p j may depend on the kinematical invariants from the set of invariants, the scale
µ2, the space-time dimension D and the exponents νi, but not on the Feynman parameters xi. We
can normalize the Picard–Fuchs operator such that pr = 1. β is an (n−2) form which depends on
the Feynman parameters xi. Assuming a form as shown in eq. (4.4.4) exists, we can integrate it to
get

L(r)I =

∫
∆

dβ (4.4.6)

We can apply Stokes’theorem to this equation (which is applicable within dimensional
regularization), to obtain

L(r)I =

∫
∂∆
β. (4.4.7)

This is the required ordinary differential equation for I. It is a differential operator of order r in the
variable t. The right-hand side is given as a sum of integrals with (n-1) Feynman parameters and
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hence are considered simpler. These integrals correspond to graphs which have one propagator
less than the integral I and hence can be considered simpler. Knowing these simpler integrals
along with the boundary conditions corresponds to obtaining the Feynman integral I, by solving
the differential equations. The task of actually finding the differential equation is a bit cumbersone.
It can be reduced to solving linear equations as follows: the unknown quantities in this equation
are r, p j(0 ≤ j ≤ r) and the differential form β. One can start with r = 1 and an ansatz for the
coefficients p j and the differential form β. This ansatz gives us a system of linear equations. We
can check for the solution for this sytem, and in case it does not exist we can repeat the same
step for r + 1. For finite integrals in even integer space time dimensions this method of solving
the ansatz is guaranteed to work. Hence the problem of finding the differential equation gets
effectively reduced to solving linear equations. Here we can explicitly see that the eq. (4.4.5) is of
Fuchsian type if all coefficients p j are meromorphic functions of t and if p j has at most poles of
order (r− j).

4.4.2 Application of Picard–Fuchs operator

After a general overview of Picard–Fuchs operator, we now discuss an algorithm which explains
the method of utilizing the factorization properties of this operator to decouple differential
equations for multi-scale Feynman integrals. The algorithm reduces the differential equations to
blocks of size of the order of the irreducible factors of the Picard–Fuchs operator. This also
presents a way in which the differential equations for Feynman integrals evaluating to MPLs can
be brought to an ε-form. Consider a Picard–Fuchs operator of the form

L =

r∑
j=0

p j(λ)
d j

dλ j . (4.4.8)

Let us now consider the case in when this operator factorizes into linear factors:

L =

(
ar(λ)

d
dλ

+ br(λ)
)
...

(
a2(λ)

d
dλ

+ b2(λ)
) (

a1(λ)
d

dλ
+ b1(λ)

)
. (4.4.9)

Such a differential equation can be easily solved and the answer can be written down easily in
terms of iterated integrals. Let the j-th factor of the differential operator be given by (can be seen
when expanded to first order),

ψ j(λ) = exp
(
−

∫ λ

0
dκ

b j(κ)
a j(κ)

)
. (4.4.10)

The full solution is written as

f (λ) =C1ψ1(λ) +C2ψ1(λ)
∫ λ

0
dλ1

ψ2(λ1)
a1(λ1)ψ1(λ1)

+C3ψ1(λ)
∫ λ

0
dλ1

ψ2(λ1)
a1(λ1)ψ1(λ1)

∫ λ1

0
dλ2

ψ3(λ2)
a2(λ2)ψ2(λ2)

+ ... . (4.4.11)

Hence it is evident that it can be expressed in terms of MPLs, for rational ai and bi. There are cases
when this differential operator cannot be factorized and contains irreducible differential operators
like

a j(λ)
d2

dλ2 + b j(λ)
d

dλ
+ c j(λ). (4.4.12)
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Let us consider the example of the differential operator:[
λ(1−λ2 d2

dλ2 + (1−3λ2)
d

dλ
−λ)

]
f (λ) = 0 (4.4.13)

This second-order differential operator is irreducible (i.e. cannot be factorized any further). The
solutions of this differential equations are K(λ) and K(

√
1−λ2), where K(λ) is the complete

elliptic integral of the first kind:

K(λ) =

∫ 1

0

dx√
(1− x2)(1−λ2x2)

. (4.4.14)

This is a clear way of observing how an elliptic integral occurs naturally in Picard–Fuchs
equations.

4.4.2.1 The physical motivation

In the calculation of scattering processes with massive particles, it is very common that within one
topology we have several master integrals, coupled together at order ε0 by differential equations.
Denoting the number of master integrals by N, we see that, for example, for the 2→ 2 processes at
NNLO, it is not unsual that we have topologies with 5 master integrals. Solving a coupled system
of N differential equations is a nasty task, but to some relieve, there are indications that topologies
with three or more master integrals can be decoupled into blocks of size 2× 2 at worse [24–28].
It is hence very obvious to ask if there exists a systematic method which transforms a system into
an equivalent system, where at order ε0 the differential equations split into small blocks. Now we
discuss the algorithm which completes this task [49].

4.4.2.2 The framework for the differential equation

We consider the master integrals in D = 2m− 2ε space-time dimensions, with m ∈ Z and ε being
the dimensional regularization parameter. As usual, we use IBPs to derive a set of differential
equations of Fuchsian type

d~I = A~I,

with A being a matrix values one-form

A =

N∑
i=1

Ai dxi.

The other properties follow from section
〈
4.3

〉
. We assume that A has an ε-expansion

A =
∑
j≥0

ε jA( j) =

n∑
i=1

∑
j≥0

ε jA( j)
i dxi. (4.4.15)

Our aim is to solve the differential equations order by order in ε. Here, the term A(0) which is
constant in ε plays a crucial role. With the higher terms A( j) with ( j ≥ 1), we only get additional
integration over lower-order expressions. Therefore we specifically are interested in a
transformation which simplifies A(0). We can change the basis for the master integrals

~J = U~I,
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to obtain
d ~J = Ã ~J,

where, as explained before, Ã is related to A by

Ã = UAU−1−UdU−1. (4.4.16)

Here we have dropped the explicit dependence on the parameters. The master integrals are
expressible in terms of MPLs if there is a transformation U such that Ã(0) = 0 and Ã = dlog(L),
where L denotes the polynomial in the invariants. Also, as discussed before, the matrix A has a
natural lower block triangular structure, which derives from the top topology and its
sub-topologies. The inclusion of sub-topologies only leads to integration over already determined
terms, therefore we work modulo sub-topologies.

Let us assume that a particular top topology has N master integrals. If we consider the case where
no transformation U exists, such that Ã((0) = 0, we might think that at order ε0, we have a coupled
system of N differential equations (and therefore a mess!), but often it the case that the system
decouples into blocks of smaller size. This can be done by exploiting the factorization properties
of the Picard–Fuchs operator for the integral [49]. Let us now look at how we achieve this.

4.4.2.3 The technique to decouple the coupled differential system

The algorithm for using the Picard–Fuchs operator to decouple the system coupled at ε0 can be
divided into five steps:

• We reduce a multi-scale problem to a single-scale problem with scale λ.

• We pick a master integral I and determine at order ε0 and modulo sub-topologies the

maximal number of independent derivatives I,
(

d
dλ

)
I,...,

(
d

dλ

)r−1
I. This defines the

Picard–Fuchs operator of order r for us. For r < N, the system decouples into a system of r
master integrals and (N − r) master integrals.

• Let us look at the sector with r master integral. Now we factorize the Picard–Fuchs operator
for this sector.

• We then construct the transformation using this factorized Picard–Fuchs operator. This
decouples the system into blocks of the size of the order of the irreducible factors of the
Picard–Fuchs operator.

• In the last step, we reconstruct the multi-variable transformation matrix from the single-
variable one.

Let us go through each of the points above separately and elaborate on them.

1. From a multi-scale to a single-scale problem: Let us consider a set of master integrals
I1, I2, ..., IN depending on kinematic variables x1, x2, ..., xn. The ordered set of master
integrals is denoted by the vector ~I = (I1, I2, ..., IN). If we have only one kinematic variable
x1, it is called a single-scale problem, whereas for two or more kinematic variables (n ≥ 2),
we have a multi-scale problem. Let α = [α1 : ...αn] ∈ C Pn−1 be a point in projective space.
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Without loss of generality we can set αn = 1. We then consider a path γα : [0,1] → Cn

which is parametrized by a variable λ and indexed by α. We have,

xi(λ) = αiλ, 1 ≤ i ≤ n. (4.4.17)

The master integrals are viewed as functions of λ, in other words, we look at the variation of
the master integrals in the direction specified by α. The derivative with respect to λ is given
by

d
dλ
~I = B~I, B =

n∑
i=1

αiAi. (4.4.18)

The transformed matrix is also given by a Taylor expansion in ε:

B = B(0) +
∑
j>0

ε jB( j). (4.4.19)

2. Consider one of the master integrals I from ~I. Using eq. (4.4.18) we can express the k-th
derivative of I with respect to λ as a linear combination of the original master integrals.
We now determine the largest number r, such that the matrix which expresses I, (d/dλ)
I,..., (d/dλ)r−1 I in terms of the original set {I1, ..., IN} has full rank, where r ≤ N. For the
case r < N, we complement the set I, (d/dλ)I, ..., (d/dλ)r−1 by (N−r) elements Iσr+1 , ..., IσN ∈

{I1, ..., IN} such that the transformation matrix has rank N. This already decouples the system
into a block of size r, which is closed under differentiation at order ε0 module sub-topologies
and a remaining sector of size (N − r).

3. Now we investigate the conditions under which the block of size r can be decomposed
further. We see that (d/dλ)rI can be written as a linear combination of
I, (d/dλ) I, ..., (d/dλ)r−1 I. This gives us the Picard–Fuchs operator Lr for the master
integral I with respect to λ:

LrI = 0, Lr =

r∑
k=0

Rk
dk

dλk , (4.4.20)

where Rk are rational functions in λ and we have normalized Rr = 1. The Picard–Fuchs
operator Lr often factorizes

Lr = L1,r1 L2,r2 ...Ls,rs , (4.4.21)

where Li,ri denotes a differential operator of order ri. Obviously r1 + ...+ rs = r. For the case
of linear factors, i.e. when the Picard–Fuchs operator Lr factorizes completely into linear
factors, we get

Lr = L1,1L2,1...Lr,1 (4.4.22)

with
Li,1 =

d
dλ

+ Ri,0.

4. The factorization can be used to convert the system of differential equations into a block
triangular form, at order ε0, with the sizes of the blocks given by r1,r2, ...,rs. A basis for
block i is given by

Ji, j =
d j−1

dλ j−1 Li+1,ri+1 ...Ls,rs I, 1 ≤ j ≤ ri. (4.4.23)
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For the case of linear factors, we use the transformation,

Ji,1 = exp
(∫ λ

dλ̃Ri,0

)
Li+1,1...Lr,1I

to bring the system to an equivalent system with Ã(0) = 0. The elements of the transformed
matrix is related to the original integrals ~I is given by

~J = V~I,

where ~J = (J1,1, ..., J1,r1 J2,1, ..., Js,rS ). V is a function of parameters α and λ.

5. If we set

U = V
( x1

xn
, ...,

xn−1

xn
, xn

)
, (4.4.24)

we get the transformation in terms of the original variables x1, ..., xn.

Note: There might be some terms in the original A, which map to zero in B for the class of paths we
consider in eq. (4.4.17). These terms are the ones that have derivatives constant on lines through
the origin. For example, d ln Z(x1, ..., xn), where Z(x1, ..., xn) is a rational function in (x,..., xn) and
homogeneous of degree zero in (x1, ..., xn). These terms do not contribute while integrating the
system of differential equations along the path of eq. (4.4.17) and they can also be easily removed
by a subsequent transformation.

4.4.2.4 Examples

Now we look at some topologies which contain hints for being elliptic and apply the above
formalism to find the tricks to decouple the coupled system at order ε0 in sizes of 2×2 at worst.

Example 1: No new elliptic integration introduced Consider the example of a two-loop four-
point integral with six propagators, Iν1,ν2,ν3,ν4,ν5,ν6,ν7 , where νi denotes the power to the propagator
i, as shown in the figure

p1

p2 p3

p4
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4

5
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Figure 4.2. A two-loop four-point integral with six propagators.

Internal solid lines in this figure correspond to mass m, dashed lines to mass zero. The external
momenta are on-shell, p2

1 = p2
2 = 0 and p2

3 = p2
4 = m2. The Mandelstam variables are given by

s = (p1 + p2)2 and t = (p2 + p3)2. We may choose two dimensionless variables as

s = −m2 (1− x1)2

x1
, t = −m2x2. (4.4.25)
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This integral has an elliptic sub-topology which is obtained by pinching propagators 2,5 and 6.
The topology shown here has two master integrals, which we choose as

~I =

(
(1 + 2ε) I1101111, I1101211

)
, (4.4.26)

where we chose the pre-factor in front of the first master integral to ensure that only A(0) and A(1)

occur in the ε-expansion of A. The Picard–Fuchs operator for the first master integral is of order 2
and factorizes into linear factors:

L2 =

( d
dλ

+
1

λ+ 1
+

2α1

α1λ−1
+

2α1λ

α1λ2 + 1
−

2α1λ

α1λ2−1

) ( d
dλ
−

1
λ

+
1

λ+ 1
+

2α
α1λ−1

)
. (4.4.27)

This factorization can, for example, be obtained with the help of the command "DFactor" in Maple.
Therefore, we may now transform to a basis where B̃ (0) is lower triangular with zeroes on the
diagonal. The entry on the lower-left corner of B̃ (0) has only single poles and is removed by re-
scaling the first master integral with (1+2ε) and the second master integral by ε, which brings the
system (in the variable λ) to ε−form. Going back to the original variables, we get

Ã =

(
1 0
0 1

)
d ln

( x1

x2

)
+ εÃ(1).

The ε0−term is easily removed by multiplying both master integrals by x2/x1. Overall, we find
that

U =

 U11 −
(1+2ε)(x1−1)3(x2+1)2

2x1(x1+1)
ε(x2+1)(x1−1)2

x1
0

 ,
U11 =

(1+2ε)(x1−1)(x2
2 x1+x2 x2

1+x2−x2
1+3x1−1)

2x1(x1+1)

and the transformed system is given by

Ã =ε

[(
2 0
0 0

)
d ln (x1 + 1)−

(
2 0
0 2

)
d ln (x1−1)

−

(
0 0
0 2

)
d ln (x2 + 1) +

(
0 0
−1 1

)
d ln (x1 + x2)

+

(
0 0
1 1

)
d ln (x1x2 + 1)

]
.

So, we see that this topology can be transformed to ε− form and does not introduce new elliptic
integrations.

Example 2: Elliptic integration within the sector needed We now look at a more involved
topology as shown in the figure 4.3. This is an example of a two-loop four-point integral with five
propagators. The kinematics is the same as in our first example. This topology has five master
integrals. As our initial basis, we take

~I = (εI1011101, I2011101, I1021101, I1012101, I1011201) .

Again we choose the pre-factors to ensure that only A(0) and A(1) appear in the ε-expansion of
A. For this system, this also happens to decouple the first master integral I1 = εI1011101 at order
ε0 from the remaining ones. Therefore, we have to consider only a 4× 4-system. Let us pick
I2 = I2011101. Working modulo ε-terms, we find that already the third derivative of I2 can be
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Figure 4.3. A two-loop four-point integral with five propagators.

expressed as a linear combination of the lower ones. Adding I5 = I1011201 to I2, (d/dλ)I2, (d/dλ)2I2
will give a transformation matrix of full rank. This decouples I5 from the 3×3-system formed by
I2, (d/dλ)I2, (d/dλ)2I2. The Picard–Fuchs operator for I2 is therefore of order 3. It factorizes into
a second-order operator and a first-order operator:

L3 = L2L1.

As a result, we see that the 3×3-system gets decoupled into a 2×2-system and a 1×1-system. The
2× 2-system is irreducible. When lifting the result from the single-scale case to the multi-scale
case with the variables {x1, x2} we again perform an additional transformation, which removes
d ln(x1/x2)-terms. In summary, we are able to decompose the five master integrals for this topology
at order ε0 in blocks of size

1,2,1,1.

The explicit expressions are longer, however, we may display the structure of Ã. We have

Ã =


0 0 0 0 0
0 ∗ ∗ 0 0
0 ∗ ∗ 0 0
0 ∗ ∗ 0 0
0 ∗ ∗ 0 0


+ εÃ(1),

where ∗ indicates a non-zero entry. In this example, we see that A(0) cannot be transformed to zero
by rational transformations and we find an irreducible 2×2-system at order ε0. Nevertheless, we
still achieved to simplify the original 5×5-system to smaller blocks.

4.5 Algorithms for obtaining the canonical form

In this section, we wish to briefly mention the various algorithms we may use in order to obtain
the canonical form for the differential equation for the master integrals.

1. Choice of coordinate system: Choosing a good coordinate system to get the differential
equation, is one of the key tricks in order to efficiently solve the differential equations. Often
the most naive choice turns out to be a bad one as we are stuck we a lot of square roots in
our differential system. We then need to change our differential equations to the ones with
respect to a smarter choice. For the case of multiple polylogarithms, this smart choice would
be the coordinate system which rationalizes all the occurring square roots simultaneously.
There exists an algorithm which we can use to rationalize our square roots simultaneously.
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The authors in [101] present an algorithm to be applicable in the physics community, that
rationalized a given square root by first associating an algebraic hypersurface to the root
and then parametrizing this hypersurface by and n-parameter family of lines, n denoting the
number of variables in the root.

However, rationalizing square roots increases the degree of the polynomials in intermediate
stages of the calculation. In order to handle this, we can choose to work bottom-up and
treat each sub-topology in a coordinate system that is best suited to this sub-topology, this
is the method we have followed in order to solve the two topologies mentioned in the next
chapters. We now briefly explain the various algorithms available in literature which we can
use to bring our system of differential equation to a canonical form (or linear form).

2. Roman Lee’s algorithm: The Lee algorithm is based on the Moser reduction algorithm [102]
in order to find a Fuchsian form for the differential system. In order to find the canonical
form one then needs to normalize the eigenvalues of the Fuchsian system in all singular
points. Few public implementations of this algorithm are present in [103, 104]. However,
this algorithm can only be used for single scale applications.

3. Christoph Meyer’s algorithm: Christoph Meyer in [105] presented an algorithm which is
applicable to problems involving multiple scales. Both of these algorithms need the
existence of a rational transformation, in order to obtain the canonical form for the
differential equation for the master integrals.

4. The Magnus expansion method: For a differential equation of the form

∂x J(ε, x) = A(ε, x)J(ε, x),

for a vector J of the master integrals, and x depends on the kinematic variable and the
masses. We can change this basis via the Magnus series obtained using A0 as the kernel
where A0 is the ε0 part of the differential matrix A,

J(ε, x) = B0(x)I(ε, x), B0(x) = exp[Ω[A0](x, x0)].

Here Ω(x) is the Magnus expansion and x0 is the boundary point. Using this we can obtain
the canonical form in the vector I(ε, x) [106].

5. In [22], it was shown that the canonical form can even be achieved for the cases where
rational transformation does not exist, in particular for the sunrise/kite system. This can
be down if one allows algebraic functions in the kinematic variables, periods of the elliptic
curves and their derivatives to occur in the transformation equation. It is easier a smart idea
to relax the condition of a canonical form (i.e. proportional in the dimensional regulator)
and allow constants in the ε to appear in the differential equation, on the condition that
the matrix corresponding to this part is strictly lower triangular. This does not break the
property that we are able to write down the master integral as an iterated integral. On the
other hand, it saves us from introducing additional transcendental functions. This form is
called the linear form for the differential equation. Since the matrix constant in ε is strictly
lower triangular we can easily transform to a canonical form by introducing primitives for
the terms in this matrix. In the case of elliptic multi-scale integrals, this method terms out
to be quite convenient to write down the results.
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4.6 Boundary Conditions

The last but equally important step in solving a differential equation is to acquire knowledge about
the boundary conditions. This section is devoted to that task. In order to solve the differential
equations, we also require the boundary value, for which we take carry out the following steps.

1. We can in principle evaluate the boundary conditions independently of the differential
equations, by calculating the integral at a preferred kinematic point. It is useful to express
these boundary constants in a basis of transcendental constants suitable for our
representation. A good basis of transcendental constants up to weight four is also shown in
the next chapter. We can obtain the coefficients of these constants using the PSLQ
algorithm.

2. Often a master integral vanishes or reduces to simpler integrals at a specific point. Choosing
these points as the boundary points provide us the boundary constants for those integrals.
Also, the master integrals often have boundary constants which are products of one-loop
integrals and can be easily computed. One such example which the master integral is often
a product of is the tadpole integral.

Tν
(
D,m2,µ2

)
=eγEε

(
µ2

)ν− D
2

∫
dDk

iπ
D
2

1(
−k2 + m2)ν = eγEε

Γ
(
ν− D

2

)
Γ (ν)

(
m2

µ2

) D
2 −ν

. (4.6.1)

For D = 2−2ε, µ = m and ν = 1 we have

T1 (2−2ε) =eγEεΓ (ε) =
1
ε

[
1 +

1
2
ζ2ε

2−
1
3
ζ3ε

3 +
9
16
ζ4ε

4 +O
(
ε5

)]
.

This is also shown in the next chapter.

3. The differential equations themselves also give insights regarding the choice of a boundary
condition. One can study the singularity structure explicit in the differential equation which
in many cases allows us to determine the boundary conditions without explicit calculation.







5 Planar double box with a closed
top loop

Contents
5.1 Physical importance . . . . . . . . . . . . . . . . . . . . . . . 73

5.1.1 State of the art 74

5.2 Set-up for solving the master integrals . . . . . . . . . . . . . . . . 74
5.2.1 Kinematical set-up 75
5.2.2 Modular weight 77
5.2.3 Master integrals 77

5.3 Coordinate system and differential forms . . . . . . . . . . . . . . . 78
5.3.1 Non-elliptic sectors 78
5.3.2 Elliptic Curves 79
5.3.3 Definition of all the elliptic curves 83

5.4 The transformation for the master integrals. . . . . . . . . . . . . . . 89
5.5 Integration kernels . . . . . . . . . . . . . . . . . . . . . . . . 92

5.5.1 Polylogarithmic one-forms 92
5.5.2 Modular forms 93
5.5.3 The high-energy limit 94
5.5.4 The general case 94
5.5.5 Singularities 99

5.6 Boundary conditions and boundary constants . . . . . . . . . . . . . . 100
5.6.1 A peek at the results 101
5.6.2 Analytic continuation 102

5.7 Numerical Checks . . . . . . . . . . . . . . . . . . . . . . . . 102
5.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.1 Physical importance

The top quark has been in or near the center of attention in high-energy physics since its discovery
in 1995. It couples strongly to the agents of electroweak symmetry breaking because of the large
mass, mt = 173±1.3GeV , making it both an object of interest itself, as well as a tool to investigate
the Higgs mechanism in detail. Top quark pair production at hadron colliders is amongst the

73
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most challenging processes to the theory. The large production rate of the top quark at the CERN
LHC and the decay gives rise to several jets or leptons which is required for testing the Standard
Model of particle physics at an unprecedented level, and also for uncovering indirect evidence for
new physics. Top-quark production can also be used to determine the top-quark mass, the strong
coupling constant αs, and the gluon parton distribution functions. Therefore, it is highly important
to have a precise understanding of this process. Higher-order perturbation theory for top-quark
observables requires precise multi-loop and multi-scale computations. At a fixed loop Feynman
integrals depending on multiple scales often turn out to be a bottleneck. A prominent example for
this is given by the planar double box integral to tt̄ production with a closed top loop 5.1, which
we discuss in this chapter.

5.1.1 State of the art

The total cross sections and differential distributions of the top-quark pair production have been
in focus for quite some time now. Some of the results in this area are as follows: The numerical
results for the NNLO calculation for the process pp → tt̄ were presented in [50–53, 55]. The
analytic results are valuable in the sense that they provide a faster and stable evaluation of the
virtual corrections and to understand the structure of the loop integral. In [56], the authors
presented the master integrals of a planar double-box family for top-quark pair production and
in [54], they calculated all the non-planar two-loop functions required for the quark initiated
channel qq̄ → tt̄ at NNLO in QCD, both of these gave rise to multiple polylogarithms. The
technique for solving the diagram 5.1 which consisted of elliptic curve(s) was shown in [22] and
the full analytic results for the diagram were published for the first time in [48].

5.2 Set-up for solving the master integrals

The integral shown below enter the next-to-next-to-leading order (NNLO) contribution for the
process pp→ tt̄.
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Figure 5.1. The planar double box with a massive top quark loop.
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5.2.1 Kinematical set-up

The solid lines denote massive propagators of mass m, dashed lines correspond to massless
propagators. All external momenta are taken to be out-going and on-shell.

p2
1 = p2

2 = 0 and p2
3 = p2

4 = m2

From momentum conservation we have,

p1 + p2 + p3 + p4 = 0.

The Mandelstam variables in our system are

s = (p1 + p2)2, t = (p2 + p3)2 u = (p2 + p4)2,

with s + t + u = 2m2. We can see from the topology that it contains the sunrise graph as a sub-
topology (by pinching propagators 2,3,5 and 6 ), which makes us expect the presence of functions
beyond multiple polylogarithms. Also, the presence of two scales, s and t, along with massive
internal propagators makes it a comparatively difficult diagram to tackle, in the field of Feynman
integral computations. In order to solve this topology, i.e. to write it as a Laurent expansion in the
dimensional regulator, we chose the method of differential eq. 4. As mentioned in 4.5, we relax
the form of the differential equation slightly and consider

d ~J = (A(0) + εA(1)) ~J, (5.2.1)

where A0 is strictly lower-triangular and A(0) and A(1) are independent of ε. We stress again the
following two points:

• this linear form does not spoil the property that the system of differential equations is solved
in terms of iterated integrals,

• the choice of ~J is not unique. This chapter discusses one particular choice in order to solve
the system of differential equations for the master integrals in this system.

For differential one-forms in our system, we introduce the notation

ω j =

r j∑
r=1

c j,r
dy

y− z j,r
(5.2.2)

where G(ω1, ...,ωk;y) is the integral representation of MPLs defined recursively through

G (ω1,ω2, ...,ωk;y) =

r1∑
r=1

c1,r

y∫
0

dy1 g
(
z1,r,y1

)
G (ω2, ...,ωk;y1) . (5.2.3)

In our topology, 5.1, we have two independent loop momenta and three independent external
momenta. Therefore we have nine independent scalar products involving the loop momenta. So,
we need to consider an auxiliary topology, with nine propagators, which are sufficient to express
all the independent scalar products. One possible choice for such a topology, which we consider
in this calculation is shown in figure 5.2.
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p1
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p4

1
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−p13 −p24

Figure 5.2. The auxiliary topology with nine propagators.

The integral family for this auxiliary topology is given in D-dimensional Minkowski space by

Iν1ν2ν3ν4ν5ν6ν7ν8ν9

(
D, s, t,m2,µ2

)
= e2γEε

(
µ2

)ν−D
∫

dDk1

iπ
D
2

dDk2

iπ
D
2

9∏
j=1

1

Pν j
j

, (5.2.4)

where γE denotes the Euler-Mascheroni constant, µ is an arbitrary scale introduced to keep the
Feynman integral dimensionless, the quantity ν is given by

ν =

9∑
j=1

ν j

and the set of propagators for the auxiliary topology are

P1 = − (k1 + p2)2 + m2, P2 = −k2
1 + m2, P3 = − (k1 + p1 + p2)2 + m2,

P4 = − (k1 + k2)2 + m2, P5 = −k2
2, P6 = − (k2 + p3 + p4)2 ,

P7 = − (k2 + p3)2 + m2, P8 = − (k1 + p2− p3)2 + m2, P9 = − (k2− p2 + p3)2 , (5.2.5)

with pi j = pi + p j. We obtain the original double box integral by putting ν8 = ν9 = 0. For the
Laurent expansion, we write,

Iν1ν2ν3ν4ν5ν6ν7 (4−2ε) =

∞∑
j= jmin

ε j I( j)
ν1ν2ν3ν4ν5ν6ν7 ,

where we suppress ν8 and ν9 and the explicit dependence on mandelstam variables, masses and µ
is assumed.

Graph Polynomial: The graph polynomial for our topology 5.1 is given by

U = (x1 + x2 + x3) (x5 + x6 + x7) + x4 (x1 + x2 + x3 + x5 + x6 + x7) ,

F = [x2x3 (x4 + x5 + x6 + x7) + x5x6 (x1 + x2 + x3 + x4) + x2x4x6 + x3x4x5]
(
−s
µ2

)
+ x1x4x7

(
−t
µ2

)
+ x7 [(x2 + x3) x4 + (x5 + x6) (x1 + x2 + x3 + x4)]

(
−m2

µ2

)
+ (x1 + x2 + x3 + x4 + x7)U

m2

µ2 ,
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where, in the expanded form, the graph polynomialU looks like

U =x1x5 + x1x6 + x1x7 + x2x5 + x2x6 + x2x7 + x3x5 + x3x6 + x3x7

+ x1x4 + x2x4 + x3x4 + x4x5 + x4x6 + x4x7.

In the appendix, we also have a look at all the contributing master topologies for this graph.

5.2.2 Modular weight

The topology 5.1 contains not one but three different elliptic curves, which we show explicitly in
section

〈
5.3.2

〉
. However, at this stage, we would like to discuss the concept of modular weight

and the usage in our calculation. We can infer the concept of modular weight from the scaling
behaviour under a re-scaling of the periods. Let our graph contain three elliptic curves, with
periods, ψ(a)

1 ,ψ(b)
1 , and ψ(c)

1 . Then we have

modular weight = scaling power + 2,

where the additional 2 is due to the Jacobian we obtain after replacing dy by dτr
6, where r ∈

{(a), (b), (c)}.

We may view the entries of the differential equation in eq. (5.2.1),

A = A(0) + εA(1)

as differential one-forms rational in

ε, x̃,y,ψ(a)
1 ,ψ(b)

1 ,ψ(c)
1 ,∂yψ

(a)
1 ,∂yψ

(b)
1 ,∂yψ

(c)
1 ,

where x̃ and y are the good choice of coordinates to represent the differential equations for our
system. We also observe that each entry of A is homogeneous under a simultaneous re-scaling of
all periods and their derivatives

ψ(r)
1 → λ ψ(r)

1 , ∂yψ
(r)
1 → λ ∂yψ

(r)
1 , r ∈ {a,b,c}.

This allows us to group the entries of A according to the scaling behavior under a simultaneous
re-scaling of all periods and their derivatives.

5.2.3 Master integrals

For our differential system, we need to evaluate 44 master integrals. The set of integrals having the
linear form in ε is denoted by ~J. We construct this basis J as follows: The master integrals, which
only depend on s do not pose any problems and are constructed with the algorithms mentioned in
section

〈
4.5

〉
. The master integrals which only depend on t are similar to the kite/sunrise system

and are constructed along the lines of [27, 28, 57–59, 73]. The master integrals which depend on
both s and t are the most complicated ones. In such cases, we follow the following steps: for the
diagonal blocks, we use the method of Picard-Fuchs operators, mentioned in section

〈
4.4

〉
, where

we also explicitly showed the algorithm and applied to few sub-topologies related to our case, and
combine it with the information from the maximal cuts (discussed in 4.2). For the non-diagonal
blocks, we follow the algorithm of Meyer [105], which is a method to construct the canonical form
for the differential equation for our set of integrals, however we modify the algorithm a little in
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order to obtain the linear form for differential equation, for the non-diagonal blocks and this fixes
the sub-topologies for our differential system.

In the basis ~J, the system of differential equations is linear in ε, i.e. of the form

d ~J =
(
A(0) + εA(1)) ~J. (5.2.6)

The matrices A(0) and A(1) are independent of ε. Furthermore, A(0) is strictly lower-triangular, i.e.

A(0)
i j = 0 for j ≥ i.

and follows from the set up of the differential equation, A(1) is block-triangular.

5.3 Coordinate system and differential forms

We may view the integrals I( j)
ν1ν2ν3ν4ν5ν6ν7 as functions on M = P2(C), where

[
s : t : m2

]
denote the

homogeneous coordinates. For this, we can choose the two dimensionless ratios to be

s
m2 ,

t
m2 . (5.3.1)

We express I( j)
ν1ν2ν3ν4ν5ν6ν7 as iterated integrals on P2(C).

Let us now have a look at the coordinate systems most suitable for the various (sub-) topologies.
We are free to choose any convenient coordinates on M.

5.3.1 Non-elliptic sectors

We start with discussing the appropriate coordinate system suitable for the non-elliptic
topologies, i.e. the ones which are expressible in terms of MPLs. One possibility, which is the
closest to physics, is given by the eq. (5.3.1), which we refer to as (s, t)-coordinates. However, in
this coordinate system we encounter many square roots, some of them even in very simple
sub-topologies. There may be many coordinate systems which rationalize a particular square
root, we may choose to work with any of them. We can make this choice depending on the degree
of polynomials we need to handle in a particular topology. In table 6.1, we mention the occurring
square roots in all the topologies, the coordinate system we choose in our case to remove the
corresponding square roots and the relationship between various choice of coordinates. Along
with this, we also mention the Jacobian we obtain due to the change of variables which gives us
the occurring differential form.
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Square root New choice of coordinates Differential forms√
−s(4m2− s) s

m2 = −
(1−x)2

x , t
m2 = y

ds
s = 2dx

x−1 −
dx
x ,

ds
s−4m2 = 2dx

x+1 −
dx
x ,

ds√
−s(4m2−s)

= dx
x .

√
−s(−4m2− s) s

m2 = −
(1+x′)2

x′ ,

x′ = 1
2

(
−s
m2 −2−

√
− s

m2

√
−4− s

m2

)
x′ = −1 +

(1−x)2

2x −
1−x
2x

√
x2−6x + 1,

x = 1 +
(1+x′)2

2x′ −
1+x′
2x′
√

x′2 + 6x′+ 1

ds
s = 2dx′

x′+1 −
dx′
x′ ,

ds
s+4m2 = 2dx′

x′−1 −
dx′
x′ ,

ds√
−s(−4m2−s)

= dx′
x′

√
−s(4m2− s) &√
−s(−4m2− s)

x = x̃ (1−x̃)
(1+x̃) ,

x̃ = 1
2

(
1− x−

√
x2−6x + 1

)
x′ = x̃ (1+x̃)

(1−x̃)

ω0 = ds
s =

2(2x̃)dx̃
x̃2+1 −

dx̃
x̃−1 −

dx̃
x̃+1 −

dx̃
x̃ ,

ω4 = ds
s−4m2 =

2(2x̃−2)dx̃
x̃2−2x̃−1 −

dx̃
x̃−1 −

dx̃
x̃+1 −

dx̃
x̃ ,

ω−4 = ds
s+4m2 =

2(2x̃+2)dx̃
x̃2+2x̃−1 −

dx̃
x̃−1 −

dx̃
x̃+1 −

dx̃
x̃ ,

ω0,4 = ds√
−s(4m2−s)

= dx̃
x̃−1 −

dx̃
x̃+1 + dx̃

x̃ ,

ω−4,0 = ds√
−s(−4m2−s)

= − dx̃
x̃−1 + dx̃

x̃+1 + dx̃
x̃

Table 5.1. The various square roots occurring in the differential system and the corresponding
coordinate choices. For the first case, the interval s ∈]−∞,0] is mapped to x ∈ [0,1], with the point
s = −∞ being mapped to x = 0 and the point s = 0 being mapped to x = 1. For the second case, the
interval s ∈]−∞,−4m2] is mapped to x′ ∈ [0,1]. The point s = −∞ is mapped to x′ = 0, the point s = 0
is mapped to x′ = −1.

As explained before, we adapt the coordinate system most suitable for a particular sub-topology.
In our case, the results for the more complicated integrals are most compactly expressed by
introducing the notation of eq. (5.2.3). All sub-topologies, which depend only on s, can be
expressed as iterated integrals with integration kernels given by the five differential one-forms{

ω0,ω4,ω−4,ω0,4,ω−4,0
}
.

In addition, for t = m2, or equivalently y = 1 (see table 6.1 for the definition of y), all master
integrals can be expressed as iterated integrals with these integration kernels. It is clear that all the
iterated integrals in these integration kernels are expressible in terms of MPLs.

5.3.2 Elliptic Curves

In this section, we talk about all the ‘complicated’ topologies, i.e. those which depend on both s
and t, and extract the elliptic curves for the corresponding topologies by studying their maximal
cuts. For the maximal cut, we use the loop by loop approach mentioned in section

〈
4.2

〉
. Now

we discuss each of the elliptic sectors present in our topology. It is to be kept in mind that here it
is not possible to choose any coordinate system which rationalizes the occurring (elliptic) square
roots.
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Let us recall the definition of the elliptic curve and the periods here,

E : w2− (z− z1) (z− z2) (z− z3) (z− z4) = 0, (5.3.2)

where the roots z j may depend on variables x = (x1, ..., xn):

z j = z j (x) , j ∈ {1,2,3,4}. (5.3.3)

We use the notation

d f (x) =

n∑
i=1

(
∂ f
∂xi

)
dxi. (5.3.4)

We set

Z1 = (z2− z1) (z4− z3) , Z2 = (z3− z2) (z4− z1) , Z3 = (z3− z1) (z4− z2) . (5.3.5)

Note that we have

Z1 + Z2 = Z3. (5.3.6)

We define the modulus and the complementary modulus of the elliptic curve E by

k2 =
Z1

Z3
, k̄2 = 1− k2 =

Z2

Z3
. (5.3.7)

There are six possibilities of defining k2. Our standard choice for the periods and quasi-periods is

ψ1 =
4K (k)

Z
1
2
3

, ψ2 =
4iK

(
k̄
)

Z
1
2
3

,

φ1 =
4[K (k)−E (k)]

Z
1
2
3

, φ2 =
4iE

(
k̄
)

Z
1
2
3

. (5.3.8)

Also the Dedekind’s eta function is defined by

η(τ) = e
iπτ
12

∞∏
n=1

(1− e2πinτ) = q
1

24

∞∏
n=1

(1−qn), q = e2πiτ.

Extraction of (all) the elliptic curve(s) For extracting the elliptic curves, we use the loop by
loop method in the Baikov representation. Using this approach, we aim for a one-dimensional
integral representation for the maximal cut with a constant in the numerator and square root of
a quartic polynomial in the denominator which defines the elliptic curve. The possible choices
for the integration contour are then given by integration between any pair of roots of the quartic
polynomial. This integration gives a period of the elliptic curve. The result for any choice of
integration contour may be expressed as a linear combination of two independent periods. In
practice we label/order the roots and define the periods by eq. (5.3.8).

1. Sector 73: Let us start with the equal mass sunrise integral in two space-time dimensions.
It is convenient to deal with the sunrise in dimension 2 as only depends on the graph
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polynomial F apart from being free from UV divergence. Starting first with the sub-loop
containing P1 and P4, we obtain

p14

p23

1 4 7

Figure 5.3. Sector 73

Here p23 = p2 + p3 and p14 = p1 + p4.

MaxCutC I1001001 (2−2ε) = (5.3.9)

uµ2

π2

∫
C

dP′(
P′− t + 2m2) 1

2
(
P′− t + 6m2) 1

2
(
P′2 + 6m2P′−4m2t + 9m4) 1

2

+O (ε) .

It is to be noted that for this topology we could have equally well start with the sub-loop
containing the propagators P7 and P4. Doing so, we find

MaxCutC I1001001 (2−2ε) = (5.3.10)

uµ2

π2

∫
C

dP

(P− t)
1
2
(
P− t + 4m2) 1

2
(
P2 + 2m2P−4m2t + m4) 1

2

+O (ε) .

We can see that these two representations are related to each other by by P′ = P−2m2.

2. Sector 127: Let us now look at the maximal cut of the double box integral, this time in four
space-time dimensions.

p1

p2 p3

p4

1

2

3

4

5

6

7

S

Figure 5.4. Sector 127

We have

MaxCutC I1111111 (4−2ε) = (5.3.11)

uµ6

4π4s2

∫
C

dP

(P− t)
1
2
(
P− t + 4m2) 1

2

(
P2 + 2m2P−4m2t + m4−

4m2(m2−t)2

s

) 1
2

+O (ε) .
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One recognizes in eq. (5.3.9), eq. (5.3.10) and eq. (5.3.11) the typical period integrals of an
elliptic curve. We note that the integrand of eq. (5.3.11) differs from the one of eq. (5.3.10).
The difference is given by the additional term

−
4m2

(
m2− t

)2

s
.

This term vanishes in the limit s→∞.

3. Sector 79: Let us now look at the maximal cut in sector 79.

p1

p2

p4

p3

1 4 7

3

2

S

Figure 5.5. Sector 79

We find with P = P8

MaxCutC I1112001 (4−2ε) = (5.3.12)

uµ4

4π3s

∫
C

dP

(P− t)
1
2
(
P− t + 4m2) 1

2

(
P2 + 2m2P−4m2t + m4−

4m2(m2−t)2

s

) 1
2

+O (ε) .

Up to the prefactor, this is the same maximal cut integral as in eq. (5.3.11). Therefore the
sectors 79 and 127 are associated to the same elliptic curve.

4. Sector 93: The most complicated example is the maximal cut in sector 93.

p1

p2

p4

p3

1 4 7

3

5

S

Figure 5.6. Sector 93

For this sector, we find first within the loop-by-loop approach a two-fold integral
representation in P2 and P8 for the maximal cut. The integrand has a single pole at P2 = 0.
Choosing as a contour for the P2-integration a small circle around this pole leads (with
P = P8) to

1
ε

MaxCutC I1012101 (4−2ε) =

uµ4

π2s

∫
C

dP

(P− t)
1
2
(
P− t + 4m2) 1

2

(
P2 + 2m2P−4m2t + m4−

4m2(m2−t)2

s

) 1
2

+O (ε) .
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We recognize again the elliptic curve of sector 79 and 127.

5. Sector 121: Our next example is the maximal cut in sector 121.

p1

p2

p4

p3

1 4 7

6

5

S

Figure 5.7. Sector 121

Here we find with P = P9 + 2m2

MaxCutC I2001111 (4−2ε) =
uµ4

4π3 (−s)
1
2
(
4m2− s

) 1
2

(5.3.13)

×

∫
C

dP

(P− t)
1
2
(
P− t + 4m2) 1

2

(
P2 + 2m2 (s+4t)

(s−4m2) P + m2 (m2−4t
) s

s−4m2 −
4m2t2
s−4m2

) 1
2

+O (ε) .

This corresponds to an elliptic curve different from the one found in sectors 79 and 127.
In the limit s→∞ the maximal cut integral reduces again up to a prefactor to the one of
eq. (5.3.10).

6. Sector 123: Our last example is the maximal cut in sector 123.
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p4
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S

Figure 5.8. Sector 123

Here we find with P = P9 + 2m2

MaxCutC I1101111 (4−2ε) =
uµ4

4π3 (−s)
1
2
(
4m2− s

) 1
2

(5.3.14)

×

∫
C

dP

(P− t)
(
P2 + 2m2 (s+4t)

(s−4m2) P + m2 (m2−4t
) s

s−4m2 −
4m2t2
s−4m2

) 1
2

+O (ε) .

The denominator may be viewed as a square root of a quartic polynomial, where two roots
coincide. This does not involve an elliptic curve and corresponds to genus zero.

5.3.3 Definition of all the elliptic curves

Now we define all the three elliptic curves according to the definition given in section
〈
3.4

〉
. The

coordinate system of interest here are denoted by (x,y). We can also express the Wronskian and
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the Picard-Fuchs operator from the roots z1,z2,z3 and z4 in terms of the variables (x,y) for the
variation of the elliptic curve along the paths

γα : [0,1]→ C2, x(λ) = x +α1λ, y(λ) = y +α2λ. (5.3.15)

We denote the derivatives of the Wronskian in the direction of x and y by Wx and Wy, which are
expressed as

Wx = ψ1
d
dx
ψ2−ψ2

d
dx
ψ1, Wy = ψ1

d
dy
ψ2−ψ2

d
dy
ψ1. (5.3.16)

The derivatives of Wronskian in the directions x and y are given by

Wx = ψ1
d
dx
ψ2−ψ2

d
dx
ψ1, Wy = ψ1

d
dy
ψ2−ψ2

d
dy
ψ1. (5.3.17)

We have

Wγα = α1Wx +α2Wy,

2πidτ =
2πiWγα

ψ2
1

dλ =
2πi
ψ2

1

(
Wxdx + Wydy

)
. (5.3.18)

We may use the Picard-Fuchs operator to eliminate second derivatives:

d2

dx2ψ1 =− p1,x
d
dx
ψ1− p0,xψ1,

d2

dy2ψ1 =− p1,y
d
dy
ψ1− p0,yψ1,

2
d2

dxdy
ψ1 =−

(
p1,x+y− p1,x

) d
dx
ψ1−

(
p1,x+y− p1,y

) d
dy
ψ1−

(
p0,x+y− p0,x− p0,y

)
ψ1,

where the subscript x + y refers to the path with (α1,α2) = (1,1). This leaves us with

ψ1,
d
dx
ψ1,

d
dy
ψ1.

There is a further relation, since we may exchange any derivative of ψ1 in favour of φ1:

1
2

(
d
dx lnZ2

)
ψ1 + d

dxψ1

1
2

d
dx ln Z2

Z1

= φ1 =

1
2

(
d
dy lnZ2

)
ψ1 + d

dyψ1

1
2

d
dy ln Z2

Z1

.

This yields

1
2

(
d
dy

ln
Z2

Z1

)
d
dx
ψ1−

1
2

(
d
dx

ln
Z2

Z1

)
d
dy
ψ1 =

1
4

[(
d
dx

lnZ2

)(
d
dy

lnZ1

)
−

(
d
dy

lnZ2

)(
d
dx

lnZ1

)]
ψ1. (5.3.19)

Using eq. (5.3.19) we may eliminate one derivative, say d
dxψ1. This leaves us with

ψ1,
d
dy
ψ1,

as expected, since the first cohomology group of an elliptic curve is two dimensional.



5.3 Coordinate system and differential forms 85

Elliptic curve (a). From eq. (5.3.10) we may read off the elliptic curve for the sunrise integral:

E(a) : w2−

(
z−

t
µ2

)(
z−

t−4m2

µ2

)(
z2 +

2m2

µ2 z +
m4−4m2t

µ4

)
= 0.

The roots of the quartic polynomial are

z(a)
1 =

t−4m2

µ2 , z(a)
2 =

−m2−2m
√

t
µ2 , z(a)

3 =
−m2 + 2m

√
t

µ2 , z(a)
4 =

t
µ2 .

This curve has the j-invariant

j
(
E(a)

)
=

(
3m2 + t

)3 (
3m6 + 75m4t−15m2t2 + t3

)3

m6t
(
m2− t

)6 (9m2− t
)2 .

Two elliptic curves over C are isomorphic, if and only if they have the same j-invariant. Let us
now consider a path γβ in (s, t)-space parametrized by

s = s0 +β1λµ
2, t = t0 +β2λµ

2.

For the Wronskian and the Picard-Fuchs operator d
dλ2 + p(a)

1,γβ
d

dλ + p(a)
0,γβ

we find

W(a)
γβ = 2πiµ6 3β2

t
(
t−m2) (t−9m2) ,

p(a)
1,γβ

= −µ2
(
β1

d
ds

+β2
d
dt

)
lnW (a)

γβ ,

p(a)
0,γβ

= µ10 2πi

W (a)
γβ

3β3
2

(
t−3m2

)
t2 (t−m2)2 (t−9m2)2 .

Eq. (5.3.19) reduces to the trivial equation

0 = 0.

We have

16
η
(
τ(a)

2

)24
η
(
2τ(a)

)24

η
(
τ(a))48 =

(
k(a)k̄(a)

)2
= 16

m3 √t
(
m−
√

t
)3 (

3m +
√

t
)

(
m +
√

t
)6 (

3m−
√

t
)2 .

For a path γα in (x,y)-space
x = α1λ, y = 1 +α2λ

we may use eq. (5.3.3) to express λ as a power series in q(a) and vice versa. The point (x,y) = (0,1)
corresponds to τ(a) = i∞.

For y = 1 we have

ψ(a)
1

∣∣∣∣
y=1

=
π

2
,

d
dy
ψ(a)

1

∣∣∣∣∣
y=1

= −
π

8
.
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Elliptic curve (b). From eq. (5.3.11) we obtain the elliptic curve associated to the double box
integral:

E(b) :w2−

(
z−

t
µ2

)(
z−

t−4m2

µ2

)z2 +
2m2

µ2 z +
m4−4m2t

µ4 −
4m2

(
m2− t

)2

µ4s

 = 0.

The roots of the quartic polynomial are now

z(b)
1 =

t−4m2

µ2 , z(b)
2 =

−m2−2m

√
t +

(m2−t)2

s

µ2 , z(b)
3 =

−m2 + 2m

√
t +

(m2−t)2

s

µ2 ,

z(b)
4 =

t
µ2 .

The j-invariant is given by

j
(
E(b)

)
={

s
(
3m2 + t

) [
s
(
3m6 + 75m4t−15m2t + t3

)
+ 8m2

(
m2− t

)2 (
9m2− t

)]
+ 16m4

(
m2− t

)4
}3

sm6 (s−4m2)2 [st +
(
m2− t

)2] (m2− t
)6 [s (9m2− t

)
−4m2 (m2− t

)]2 .

For the Wronskian and the Picard-Fuchs operator d
dλ2 + p(b)

1,γβ
d

dλ + p(b)
0,γβ

we find for the path γβ
defined in eq. (5.3.3)

W(b)
γβ = 2πiµ6

β1
(
m2− t

) [
s
(
t + 3m2

)
−4m2

(
m2− t

)]
+β2s

(
s−4m2

) (
2m2−3s−2t

)
(
s−4m2) (t−m2) [st +

(
m2− t

)2] [s (9m2− t
)
−4m2 (m2− t

)] ,

p(b)
1,γβ

= −µ2
(
β1

d
ds

+β2
d
dt

)
lnW (b)

γβ ,

p(b)
0,γβ

= µ10 2πi

W(b)
γβ

N(b)

s2 (s−4m2)2 (t−m2)2 [st +
(
m2− t

)2]2 [
s
(
9m2− t

)
−4m2 (m2− t

)]2
,

with

N(b) = 2β3
1

(
m2− t

)4
m2

(
8m8−10m6s−16m6t + 9m4s2 + 4m4st + 8m4t2 + 8m2s2t

+6m2st2− s2t2
)

+β2
1β2s

(
m2− t

)2 (
96m12−248m10s−288m10t + 276m8s2 + 504m8st + 288m8t2

−63m6s3−360m6s2t−264m6st2−96m6t3 + 119m4s3t + 84m4s2t2 + 8m4st3

−18m2s4t−25m2s3t2 + 2s4t2 + s3t3
)

+ 2β1β
2
2s2

(
4m2− s

) (
m2− t

)2 (
24m8−78m6s−48m6t + 88m4s2 + 84m4st

+24m4t2−18m2s3−24m2s2t−6m2st2 + s3t
)

+β3
2s3

(
4m2− s

)2 (
8m8−30m6s−24m6t + 36m4s2 + 62m4st + 24m4t2−9m2s3

−42m2s2t−34m2st2−8m2t3 + 3s3t + 6s2t2 + 2st3
)
.

The relation between the period and its two derivatives, using eq. (5.3.19), is given by

ψ(b)
1 =

(
s−4m2

) (
3s + 2t−2m2

)
t−m2

d
ds
ψ(b)

1 −
s
(
t + 3m2

)
−4m2

(
m2− t

)
s

d
dt
ψ(b)

1 .
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In (x,y)-space this translates to

ψ(b)
1 =−

(x + 1)
(
3x2−2xy−4x + 3

)
(x−1)(y−1)

d
dx
ψ(b)

1 −
x2y + 3x2−6xy−2x + y + 3

(x−1)2

d
dy
ψ(b)

1 .

We have with

χ(b) =

√
t +

(
m2− t

)2

s

the relation

16
η
(
τ(b)

2

)24
η
(
2τ(b)

)24

η
(
τ(b))48 =

(
k(b)k̄(b)

)2

=16
m3χ(b)

(
m2 + t−2mχ(b)

) (
3m2− t−2mχ(b)

)
(
m2 + t + 2mχ(b))2 (3m2− t + 2mχ(b))2 .

For a path γα in (x,y)-space
x = α1λ, y = 1 +α2λ

we may use eq. (5.3.3) to express λ as a power series in q(b) and vice versa. The point (x,y) = (0,1)
corresponds to τ(b) = i∞.

For y = 1, we have

ψ(b)
1

∣∣∣∣
y=1

=
π

2
,

d
dy
ψ(b)

1

∣∣∣∣∣
y=1

= −
π

8
.

Elliptic curve (c). From eq. (5.3.13) we obtain the elliptic curve associated to sector 121:

E(c) :w2−

(
z−

t
µ2

)(
z−

t−4m2

µ2

)z2 +
2m2 (s + 4t)
µ2 (s−4m2)z +

sm2
(
m2−4t

)
−4m2t2

µ4 (s−4m2)
 = 0.

The roots of the quartic polynomial are now

z(c)
1 =

t−4m2

µ2 , z(c)
2 =

1
µ2

(
−m2 (s + 4t)(

s−4m2) − 2
4m2− s

√
sm2

(
st +

(
m2− t

)2))
,

z(c)
3 =

1
µ2

(
−m2 (s + 4t)(

s−4m2) +
2

4m2− s

√
sm2

(
st +

(
m2− t

)2))
, z(c)

4 =
t
µ2 .

The j-invariant is given by

j
(
E(c)

)
=

{
s
(
3m2 + t

) (
3m6 + 75m4t−15m2t + t3

)
+ 192m6

(
m2− t

)2
}3

m6
[
st +

(
m2− t

)2] (m2− t
)4 [s (m2− t

) (
9m2− t

)
−64m6]2 .
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For the Wronskian and the Picard-Fuchs operator d
dλ2 + p(c)

1,γβ
d

dλ + p(c)
0,γβ

we find for the path γβ
defined in eq. (5.3.3)

W (c)
γβ = 2πiµ6(

s−4m2
){
β1

(
t−m2

) (
t2−6m2t−3m4

)
+β2s

(
3s

(
t−m2

)
+ 2

(
t−m2

)2
+ 16m4

)}
s
(
t−m2) [st +

(
m2− t

)2] [s (m2− t
) (

9m2− t
)
−64m6] ,

p(c)
1,γβ

= −µ2
(
β1

d
ds

+β2
d
dt

)
lnW (c)

γβ ,

p(c)
0,γβ

= µ10 2πi

W(c)
γβ

N(c)

s3 (s−4m2) (t−m2)2 [st +
(
m2− t

)2]2 [
s
(
m2− t

) (
9m2− t

)
−64m6]2

,

with

N(c) =

−2β3
1m2

(
m2− t

)2 (
3m4 + 6m2t− t2

) (
32m12−62m10s−64m10t + 3m8s2−24m8st

+32m8t2−26m6s2t−20m6st2−36m4s2t2−24m4st3−6m2s2t3 + 2m2st4 + s2t4
)

−β2
1β2s

(
m2− t

) (
9600m18−8232m16s−17920m16t + 1656m14s2 + 18736m14st

+7424m14t2−81m12s3−8724m12s2t−7512m12st2 + 512m12t3 + 1356m10s3t

+2972m10s2t2−416m10st3 + 384m10t4−54m8s4t−1045m8s3t2 + 632m8s2t3 + 1896m8st4

+96m6s4t2−256m6s3t3−720m6s2t4−400m6st5−28m4s4t3 + 37m4s3t4 + 92m4s2t5

+24m4st6−16m2s4t4−12m2s3t5−4m2s2t6 + 2s4t5 + s3t6
)

−2β1β
2
2s2

(
4m2− s

) (
544m16−518m14s−768m14t + 84m12s2 + 1252m12st−192m12t2

−420m10s2t−58m10st2 + 512m10t3 + 39m8s3t + 416m8s2t2 + 536m8st3−96m8t4

−76m6s3t2−176m6s2t3−250m6st4 + 34m4s3t3 + 108m4s2t4 + 68m4st5 + 4m2s3t4

−12m2s2t5−6m2st6− s3t5
)

+β3
2s3

(
4m2− s

)2 (
736m12−542m10s−672m10t + 120m8s2 + 562m8st−96m8t2−9m6s3

−206m6s2t−340m6st2 + 32m6t3 + 21m4s3t + 122m4s2t2 + 76m4st3−15m2s3t2

−42m2s2t3−14m2st4 + 3s3t3 + 6s2t4 + 2st5
)
.

Eq. (5.3.19) yields

ψ(c)
1 =

s
(
s−4m2

) [
3s

(
t−m2

)
+ 2

(
t−m2

)2
+ 16m4

]
(
t + 3m2) [s (t−m2)+ 8m4] d

ds
ψ(c)

1

−

(
s−4m2

) (
t−m2

) (
t2−6m2t−3m4

)
(
t + 3m2) [s (t−m2)+ 8m4] d

dt
ψ(c)

1 .

In (x,y)-space this translates to

ψ(c)
1 = −

(x + 1)(x−1)
(
3x2y−2xy2−3x2−2xy−12x + 3y−3

)
(y + 3)

(
x2y− x2−2xy−6x + y−1

) d
dx
ψ(c)

1

−
(x + 1)2 (y−1)

(
y2−6y−3

)
(y + 3)

(
x2y− x2−2xy−6x + y−1

) d
dy
ψ(c)

1 .
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We have with
χ(c) =

√
sm2

(
st +

(
m2− t

)2)
the relation

16
η
(
τ(c)

2

)24
η
(
2τ(c)

)24

η
(
τ(c))48 =

(
k(c)k̄(c)

)2

=16
m2

(
4m2− s

)
χ(c)

(
sm2 + st + 2χ(c)

) (
3sm2− st−16m4 + 2χ(c)

)
(
sm2 + st−2χ(c))2 (3sm2− st−16m4−2χ(c))2 .

For a path γα in (x,y)-space
x = α1λ, y = 1 +α2λ

we may use eq. (5.3.3) to express λ as a power series in q(c) and vice versa. The point (x,y) = (0,1)
corresponds to τ(c) = i∞.

For y = 1 we have

ψ(c)
1

∣∣∣∣
y=1

=
π

2
(1 + x)
(1− x)

,
d
dy
ψ(c)

1

∣∣∣∣∣
y=1

= −
π

8
(1 + x)
(1− x)

.

5.4 The transformation for the master integrals

One choice for the transformation which brings the integrals from the Laporta basis I (the one
obtained using IBPs) to the linear form J is given as,

Sector 9: J1 = ε2 D−I1001000,

Sector 14: J2 = ε2 (1− x) (1 + x)
2x

D−I0111000,

Sector 28: J3 = ε2

(
1− x2

)
x

[
I0021200 +

1
2

I0022100

]
,

J4 = ε2 (1− x)2

x
I0022100,

Sector 49: J5 = −
(1− x)2

2x
ε2 D−I1000110,

Sector 73: J6 = ε2 π

ψ(a)
1

D−I1001001,

J7 =
6
ε

(
ψ(a)

1

)2

2πiW (a)
y

d
dy

J6−
1
4

(
3y2−10y−9

)ψ(a)
1

π

2

J6,

Sector 74: J8 = 4ε2 D−I0101001,

Sector 15: J9 = − ε3 (1− ε)
(1− x)2

x
I1111000,

Sector 29: J10= − ε3 (1− x)2

x
I1012100,

Sector 54: J11= − ε2 (1 + x) (1− x)3

4x2 D−I0110110,

Sector 57: J12= ε2

(
1− x′2

)
x′

[
−

(1 + x′)2

x′
I2001210−

ε

2(1 + 2ε)
I2002000

]
,
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J13= − ε3 (1 + x′)2

x′
I2001110,

Sector 75: J14= ε3 (1− y) I1102001,

Sector 78: J15= ε2

(
1− x2

)2

x2 I0212001−
3ε2 (1− x)2

2x
I0202001,

J16= ε3

(
1− x2

)
x

I0112001,

Sector 89: J17= ε3 (1− y) I2001101,

Sector 92: J18= ε2 (1 + x)2

x
I0021102− ε

2 (1 + x)
x

(
I0021200 +

1
2

I0022100

)
,

J19= ε3

(
1− x2

)
x

I0021101,

Sector 113: J20= ε3 (1− ε)

(
1− x2

)
x

I1000111,

Sector 55: J21= ε3 (1−2ε)
(1− x)2

x
I1110110,

Sector 59: J22= ε4 (1− x)2

x
I1101110,

Sector 62: J23= ε3 (1−2ε)
(1− x)2

x
I0111110,

Sector 79: J24= ε3 (1− x)2

x
π

ψ(b)
1

I1112001,

J25= ε3 (1−2ε)
(1− x)2

x
I1111001−

1
3

(y−9)
ψ(b)

1

π
J24,

J26=
6
ε

(
ψ(b)

1

)2

2πiW (b)
y

d
dy

J24−
1
4

(
3y2−10y−9

)ψ(b)
1

π


2

J24

−
1
24

(
y2−30y−27

) ψ(b)
1

π

ψ(a)
1

π
J6,

Sector 93: J27= ε3 (1− x)2

x
π

ψ(b)
1

I1012101,

J28= ε3
[
1− y +

(1− x)2

x

]
(I1021101 + I2011101)−

1
6

(y−3)
ψ(b)

1

π
J27,

J29= ε4
[
1− y +

(1− x)2

x

]
I1011101,

J30=
6
ε

(
ψ(b)

1

)2

2πiW (b)
y

d
dy

J27−
1
4

(
3y2−10y−9

)ψ(b)
1

π


2

J27

−
1
12

(
y2−30y−27

) ψ(b)
1

π

ψ(a)
1

π
J6,

Sector 118: J32= ε3 (1−2ε)
(1− x)2

x
I0110111 + 2ε3 (1− ε)

(1− x)
x

I1000111,
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Sector 121: J33= ε3

(
1− x2

)
x

π

ψ(c)
1

I2001111,

J34= ε3 (1−2ε)

(
1− x2

)
x

I1001111−
1
3

(y−9)
(1 + 2x)
(1 + x)

ψ(c)
1

π
J33,

J35=
6
ε

(
ψ(c)

1

)2

2πiW (c)
y

d
dy

J33−
1
4

(
3y2−10y−9

) (1− x)2

(1 + x)2

ψ(c)
1

π

2

J33

+
1
8

(
y2−2y + 9

) (1− x)
(1 + x)

ψ(c)
1

π

ψ(a)
1

π
J6,

Sector 63: J36= ε4 (x + 1)(x−1)3

x2 I1111110,

Sector 119: J37= ε4 (x + 1)(x−1)3

x2 I1110111,

Sector 123: J38= 2ε4

(
x2−1

)
x

[
I11011110(−1)− (y−2) I1101111

]
−

4
x−1

J22,

J39= ε4 (1− y)
(1− x)2

x
I1101111,

Sector 126: J40= ε4 (x + 1)(x−1)3

x2 I0111111,

Sector 127: J41= ε4 (1− x)4

x2

π

ψ(b)
1

I1111111,

J42= 8ε4 (1− x)2

x
I1111111(−1)(−1)−8ε4 (y−2)(1− x)2

x
I1111111(−1)0

−8ε4 y (1− x)2

x
I11111110(−1)−

8x
(1− x)2

ψ(b)
1

π
J41

−4
(x−1)

(
x2−2 xy + 1

)
(x + 1)3 J40−4

x2−2 xy + 1
(x−1)(x + 1)

J37

−4
x2−2 xy−4 x + 1

(x−1)(x + 1)
J36−

4
3

(y + 3)
ψ(b)

1

π
J27 +

8
3

(y + 3)
ψ(b)

1

π
J24

−

4 +
32ε

(1−2ε)

(
x4− yx3− xy + 1

)
(x−1)2 (x + 1)2

 J23−16
(y−1) x
(x−1)2 J22

−8
(x−1)

(
x2− xy + x + 1

)
(x + 1)3 J19 + 4

(x−1)2

(y−1) x
J17

+ 16
(x−1)

(
x2− xy + x + 1

)
(x + 1)3 J16−

4
3

(
6 x2−5 xy−7 x + 6

)
(y−1) x

J14,

J43=
6
ε

(
ψ(b)

1

)2

2πiW (b)
y

d
dy

J41−
1
4

(
3y2−10y−9

)ψ(b)
1

π


2

J41 + 4y
(1− x)
(1 + x)

ψ(b)
1

π

ψ(c)
1

π
J33

+
2
3

y (y−9)

ψ(b)
1

π


2

J27 +
2
3

y (y−3)

ψ(b)
1

π


2

J24,

J44= ε4 (1− x)4

x2 I1111111(−1)0−
1
3

(2y−3)
ψ(b)

1

π
J41− ε

4 (1− x)4

x2 I0111111
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+ ε4
(1− x)2

(
x2−2xy + 1

)
x2 I1101111,

J45= ε4 (x−1)2 (x + 1)2

x2 I11111110(−1)−

(
2 x2y−9 x2 + 8 xy−6 x + 2y−9

)
3(x−1)2

ψ(b)
1

π
J41

−
2

x−1
J36 +

1
2

(
1
x

+ x−
2
3

y
)
ψ(b)

1

π
J27−

(
1
x

+ x−
2
3

y
)
ψ(b)

1

π
J24. (5.4.1)

5.5 Integration kernels

For the linear form for the differential equation we required the following conditions for matrix A:

• A linear in ε,

• A(0) strictly lower-triangular,

• A(0) vanish for x = 0 or y = 1,

• A(1) reduce to integration kernels for multiple polylogarithms for y = 1,

• A(1) reduce to modular forms for x = 0,

It is to be noted that these conditions still do not uniquely fix the set of master integrals ~J and
the matrix A. There is a “gauge freedom” of transformations which leaves these conditions intact.
In other words, we could in principle have another system of equations with all these conditions
satisfied. In this section we discuss the integration kernels appearing in the matrix A.

The system of differential equations simplifies for t = m2 (corresponding to y = 1) as well as for
s =∞ (corresponding to x = 0). In both limits the matrix A(0) in our differential eq. (5.2.6) vanishes.
In the former case (t = m2), the integration kernels are linear combinations of the one-forms given
in eq. (5.3.1) and the solution for the master integrals can be expressed in terms of MPLs. In the
latter case (s =∞), the integration kernels are of the form

f (2πi)dτ(a)
6 ,

where f is a modular form of the congruence subgroup Γ1(6) from the set given in eq. (5.5.3).
In this case the solution for the master integrals can be expressed in terms of iterated integrals of
modular forms [73]. We discuss this case in detail in the following sections.

5.5.1 Polylogarithmic one-forms

From the table 6.1, we can read off the differential forms ω0, ω4, ω−4, ω0,4 and ω−4,0. To get the
set of alphabet for the differential equation system evaluating to MPLs we see that,

2x̃dx̃
x̃2 + 1

=
dx̃

x̃− i
+

dx̃
x̃ + i

,

(2x̃−2)dx̃
x̃2−2x̃−1

=
dx̃

x̃−
(
1 +
√

2
) +

dx̃

x̃−
(
1−
√

2
) ,

(2x̃ + 2)dx̃
x̃2 + 2x̃−1

=
dx̃

x̃−
(
−1 +

√
2
) +

dx̃

x̃−
(
−1−

√
2
) .
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Thus, the set of alphabetsA,A′ and Ã for the variables x, x′ and x̃, respectively is given by

A = {−1,0,1} ,

A′ = {−1,0,1} ,

Ã =
{
−1,0,1, i,−i,1 +

√
2,1−

√
2,−1 +

√
2,−1−

√
2
}
.

Therefore, for the three cases above we have

• iterated integrals in the variable x involving the differential forms of the first row of table
6.1 may be expressed in terms of the smaller class of harmonic polylogarithms.

• The same holds for iterated integrals in the variable x′ involving the differential forms of the
second row of table 6.1.

• On the other hand, iterated integrals in the variable x̃ involving the differential forms of the
third row of table 6.1 have a larger alphabet and are expressed in terms of MPLs.

The entries of the matrix A can be written as linear combinations (with rational coefficients) of
fewer Q-independent basic building blocks, such that no further linear relations with rational
coefficients exist among these building blocks. In order to understand this concept let us restrict
to the subset of Feynman integrals which only depend on s. For this subset of Feynman integrals,
all entries of A are linear combinations of

dx̃
x̃− c

,

with
c ∈ Ã =

{
−1,0,1, i,−i,1 +

√
2,1−

√
2,−1 +

√
2,−1−

√
2
}
.

The alphabet Ã has nine letters. However, in the matrix A only specific linear combinations of
these one-forms appear. All entries of A can be expressed as Q-linear combinations of{

ω0,ω4,ω−4,ω0,4,ω−4,0
}
, (5.5.1)

where the ω’s have been defined in table 6.1. Thus the set of Q-independent integration kernels
contains for this example only five elements, given by eq. (5.5.1). Hence, the results in terms of
iterated integrals are shorter, if we work with a Q-independent set of integration kernels.

5.5.2 Modular forms

We may consider the topologies evaluating to MPLs to be ‘simple’ to work within this case.
However, we also have several elliptic topologies present. Here the obvious variable to work with
is the modular parameter τ of the associated elliptic curve.

There are integrals which only depend on t, but not on s and are all related to the elliptic curve
E(a). The curve E(a) is associated with the modular forms of Γ1(6). Therefore, we can write the
differential one-forms which are relevant to the integrals dependent on t but not on s in the form

f (2πi)dτ(a)
6 ,

where

τ(a)
6 =

1
6
ψ(a)

2

ψ(a)
1

,
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which we substitute for y (or t). Furthermore, f is a modular form of Γ1(6) from the set{
1, f2, f3, f4,g2,1

}
.

The modular weights (explained in the section
〈
5.2.2

〉
) are given by 0, 2, 3, 4 and 2, respectively.

The non-trivial modular forms are given by

f2 = −
1
4

(
3y2−10y−9

)ψ(a)
1

π

2

, f3 = −
3
2

y (y−1)(y−9)

ψ(a)
1

π

3

,

f4 =
1
16

(y + 3)4

ψ(a)
1

π

4

, g2,1 = −
1
2

y (y−9)

ψ(a)
1

π

2

.

5.5.3 The high-energy limit

A very interesting thing to note about these integral kernels is their behaviour in the high-energy
limit s→∞ (or equivalently x = 0). In this limit, the elliptic curves E(b) and E(c) degenerate to the
elliptic curve E(a). Therefore, in this limit, we have only one elliptic curve E(a) and we are able
to express all master integrals in terms of iterated integrals of modular forms. The resulting set of
modular forms is slightly larger than eq. (5.5.2). In order to present this set compactly, we first set

gn,r =−
1
2

y (y−1)(y−9)
y− r

ψ(a)
1

π

n

,

hn,s =−
1
2

y (y−1)1+s (y−9)

ψ(a)
1

π

n

.

The set relevant to the high-energy limit is{
1,g2,0,g2,1,g2,9,g3,1,h3,0,g4,0,g4,1,g4,9,h4,0,h4,1

}
.

These are again modular forms of Γ1(6) in the variable τ(a)
6 . All integration kernels reduce to Q-

linear combinations of elements of this set (times (2πi)dτ(a)
6 ) in the high-energy limit. Also, the

m-weight agrees with the modular weight in this limit.

5.5.4 The general case

We now discuss the general case. For our choice of basis ~J we find 107 Q-independent integration
kernels. In order to present some features of the differential system we group the integration
kernels according to their m-weight. In our system, we have integration kernels with m-weight 0,
1, 2, 3 and 4, with the complexity increasing with the increase in the m-weight. The ε0-part A(0)

contains only integration kernels of m-weight 3 and 4.

The naming system for the integral kernels is as follows:

• For the special cases t = m2 or s =∞ the naming remains the same as before.{
ω0,ω4,ω−4,ω0,4,ω−4,0, f2, f3, f4,g2,1

}
.
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• Integration kernels appearing in the ε0-part A(0) are denoted by

a(r)
n, j,

where n gives the m-weight, (r) indicates the periods appearing in the integration kernel and
j indexes different integration kernels with the same n and (r).

• The integration kernels appearing in the ε1-part A(1) is generically denoted by

η(r)
n, j,

where the superscript (r) and the second subscript j are optional.

• For the dlog-forms, we use the notation

d2, j.

These are necessarily of m-weight 2.

Let us now discuss for all m-weights typical examples, the cases of m-weight 0 and 1 are discussed
completely. The full list of integration kernels is given in the supplementary electronic file attached
to the arXiv [48], which consists of the integration kernels{

ω0,ω4,ω−4,ω0,4,ω−4,0, f2, f3, f4,g2,1,η
(r)
0 ,η(b)

1,1−4,η
(c)
1,1−3,d2,1−5,η2,1−12,η

( r
s )

2 ,

a(b)
3,1−4,a

(c)
3,1−3,η

(a)
3,1−3,η

(b)
3,1−24,η

(c)
3,1−11,a

(a,b)
4,1 ,a(a,c)

4,1 ,a(b,b)
4,1−5,a

(c,c)
4,1 ,a

(b,c)
4,1 ,

η(a,b)
4,1−3,η

(a,c)
4,1 ,η(b,b)

4,1−5,η
(c,c)
4,1 ,η

(b,c)
4,1

}
.

with r, s ∈ {a,b,c} and r , s.

We can categorize the different integration kernels present in our system belonging to each modular
weights.

5.5.4.1 m-weight 0

At m-weight 0 we have three integration kernels. They are given by

η(a)
0 =2πi dτ(a)

6 ,

η(b)
0 =2πi dτ(b)

6 ,

η(c)
0 =2πi dτ(c)

6 .

These are exactly the integration kernels we expect at m-weight 0. We expressed them (compactly)
in terms of the variables τ(a)

6 , τ(b)
6 or τ(c)

6 , respectively. Of course we may re-write them in terms of
the variables x and y. For example, for η(b)

0 one has

η(b)
0 =

2
3

(x−1)
(
x2y + 3 x2−6 xy−2 x + y + 3

)
(
x2y−9 x2 + 2 xy + 14 x + y−9

)
(xy−1)(x− y) (x + 1)

 π

ψ(b)
1

2

dx

−
2
3

(x−1)2
(
3 x2−2 xy−4 x + 3

)
(y−1)

(
x2y−9 x2 + 2 xy + 14 x + y−9

)
(xy−1)(x− y)

 π

ψ(b)
1

2

dy.



96 Planar double box with a closed top loop

5.5.4.2 m-weight 1

We find 7 integration kernels of m-weight 1, four of them are associated to the elliptic curve E(b),
three of them to the elliptic curve E(c). There are no integration kernels of m-weight 1 for the
elliptic curve E(a). The integration kernels of m-weight associated to the elliptic curve E(b) are

η(b)
1,1 =

(x−1)(
3 x2−2 xy−4 x + 3

)
(x + 1)

π

ψ(b)
1

dx,

η(b)
1,2 =

(x−1)
(
x2y2−9 x2y + 6 xy2−2 xy + y2 + 12 x−9y

)
(x + 1)

(
x2y−9 x2 + 2 xy + 14 x + y−9

)
(xy−1)(x− y)

π

ψ(b)
1

dx

−
x (x−1)2 (y−3)(

x2y−9 x2 + 2 xy + 14 x + y−9
)
(xy−1)(x− y)

π

ψ(b)
1

dy,

η(b)
1,3 =

(
x2y−9 x2−6 xy + 22 x + y−9

)
(x + 1)

(
x2y−9 x2 + 2 xy + 14 x + y−9

)
(x−1)

π

ψ(b)
1

dx

+ 2
x(

x2y−9 x2 + 2 xy + 14 x + y−9
) π

ψ(b)
1

dy,

η(b)
1,4 =

x (y−1)
(
−6 xy + y + x2y−2 x + 3 + 3 x2

)
(x + 1)(x−1)(xy−1)(x− y)

(
x2y−9 x2 + 2 xy + 14 x + y−9

) π

ψ(b)
1

dx

−
x
(
3 x2−2 xy−4 x + 3

)
(
x2y−9 x2 + 2 xy + 14 x + y−9

)
(xy−1)(x− y)

π

ψ(b)
1

dy.

Associated to the elliptic curve E(c) are

η(c)
1,1 =

(x + 1)(y + 3)
(x−1)

(
3 x2y−2 xy2−3 x2−2 xy−12 x + 3y−3

) π

ψ(c)
1

dx,

η(c)
1,2 = (x + 1)

π

ψ(c)
1

(
x2y3 + 3 x2y2−9 xy3−105 x2y + 99 xy2 + 2y3−27 x2 + 45 xy−12y2 + 57 x−54y

)
(x−1)

(
x2y2−10 x2y−2 xy2 + 9 x2 + 20 xy + y2 + 46 x−10y + 9

)
(xy−1)(x− y)

dx

+
x
(
3 x2y2−4 xy3−30 x2y + 38 xy2−2y3 + 27 x2−48 xy + 25y2 + 78 x−84y−3

)
(y−1)

(
x2y2−10 x2y−2 xy2 + 9 x2 + 20 xy + y2 + 46 x−10y + 9

)
(x− y) (xy−1)

dy

 ,
η(c)

1,3 =
(x + 1)2 (y−3)

(x−1)
(
3 x2y−2 xy2−3 x2−2 xy−12 x + 3y−3

) √
x2−6 x + 1

π

ψ(c)
1

dx.

5.5.4.3 m-weight 2

The integration kernels of m-weight 2 are numerous and we only list a few typical cases. The
integration kernels for the multiple polylogarithms

ω0, ω4, ω−4, ω0,4, ω−4,0,
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defined in eq. (??) belong to this class. Furthermore, the modular forms of modular weight 2
clearly belong to this class:

f2 (2πi)dτ(a)
6 =

dy
y−1

+
dy

y−9
−

dy
2y
,

g2,1 (2πi)dτ(a)
6 =

dy
y−1

.

The differential one-forms in eq. (5.5.4.3) and eq. (5.5.4.3) are all dlog-forms, depending either
on x (or alternatively on x̃) or y, but not both. There are further dlog-forms, depending on both
variables x and y. These are

d2,1 =d ln (x− y) + d ln (xy−1) ,

d2,2 =d ln (xy−1) ,

d2,3 =d ln
(
x2− xy− x + 1

)
,

d2,4 =d ln
(
3 x2−2 xy−4 x + 3

)
,

d2,5 =d ln
(
x2y−9 x2 + 2 xy + 14 x + y−9

)
.

There are six differential one-forms involving ratios of periods, one for each ratio. For example

η
( b

a )
2 =

1
2

(x + 1)
x (x−1)

ψ(b)
1

ψ(a)
1

dx

−
1
12

(
3 x2y2 + 2 xy3−90 x2y + 52 xy2−81 x2 + 138 xy + 3y2 + 144 x−90y−81

)
y (y−1)(y−9)

(
3 x2−2 xy−4 x + 3

) ψ(b)
1

ψ(a)
1

dy.

In addition there are 12 differential one-forms of m-weight 2, which do not belong to any class
discussed up to now. An example is given by

η2,1 =
(x−1)

(x + 1)
(
3 x2−2 xy−4 x + 3

)dx.

For our choice of master integrals ~J we observe that in the integration kernels of m-weight 2
polynomials in denominator occur only as a single power, i.e. there are no higher poles in m-
weight 2.

5.5.4.4 m-weight 3

At m-weight 3, we have first of all the modular form of weight 3 from the sunrise sector

f3 (2πi)dτ(a)
6 =3

ψ(a)
1

π
dy.

At m-weight 3 we have integration kernels appearing in the ε0-part A(0), an example is given by

a(b)
3,1 =

(
x2y−3 x2 + 4 xy + y−3

)
(y−1)

(x−1)
(
3 x2−2 xy−4 x + 3

)
(x + 1)

ψ(b)
1

π
dx

+

(
x2y2−9 x2y + 6 xy2−2 xy + y2 + 12 x−9y

)
(y−1)

(x−1)
(
3 x2−2 xy−4 x + 3

)
(x + 1)

∂yψ
(b)
1

π

dx

−
x (y−1)(

3 x2−2 xy−4 x + 3
) ψ(b)

1

π
dy−

(y−3) x (y−1)(
3 x2−2 xy−4 x + 3

) ∂yψ
(b)
1

π

dy.
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In addition, there are integration kernels of m-weight 3 in the ε1-part A(1), an example is given by

η(b)
3,1 =4

(y−1)(
3 x2−2 xy−4 x + 3

) ψ(b)
1

π
dx−

(x−1)(x + 1)(
3 x2−2 xy−4 x + 3

) ψ(b)
1

π
dy.

5.5.4.5 m-weight 4

At m-weight 4, we have one modular form of weight 4 from the sunrise sector

f4 (2πi)dτ(a)
6 =−

(y + 3)4

8y (y−1)(y−9)

ψ(a)
1

π

2

dy.

In addition, we encounter integration kernels appearing in the ε0-part A(0). An example is given
by

a(b,b)
4,3 =−

2
3

(y−3)(y−1) N(b,b)
4,3,1

(x−1)(x + 1)
(
3 x2−2 xy−4 x + 3

)2

ψ(b)
1

π


2

dx

+
4
3

x (y−3)(y−1)2 N(b,b)
4,3,2

(x−1)(x + 1)
(
3 x2−2 xy−4 x + 3

)2

ψ(b)
1

π


∂yψ

(b)
1

π

dx

+
2
3

x N(b,b)
4,3,3(

3 x2−2 xy−4 x + 3
)2

ψ(b)
1

π


2

dy

+
4
3

x (y−3)(y−1) N(b,b)
4,3,4(

3 x2−2 xy−4 x + 3
)2

ψ(b)
1

π


∂yψ

(b)
1

π

dy,

with

N(b,b)
4,3,1 =3 x4y−2 x3y2 + 9 x4 + 20 x3y−20 x2y2−18 x3 + 2 x2y−2 xy2−6 x2 + 20 xy−18 x

+ 3y + 9,

N(b,b)
4,3,2 =x2y2−24 x2y + 18 xy2−9 x2 + 16 xy + y2 + 30 x−24y−9,

N(b,b)
4,3,3 =9 x2y2−8 xy3−6 x2y + 10 xy2−27 x2−20 xy + 9y2 + 66 x−6y−27,

N(b,b)
4,3,4 =3 x2y−4 xy2 + 9 x2−2 xy−18 x + 3y + 9.

Finally, there are integration kernels of m-weight 4 appearing in the ε1-part A(1). An example is
given by

η(b,b)
4,3 =

1
9

1

(xy−1)(x− y)
(
3 x2−2 xy−4 x + 3

)2 (x2y−9 x2 + 2 xy + 14 x + y−9
) (y−1) P(b,b)

4,3,1

(x−1)(x + 1)
dx−

(x−1)2 P(b,b)
4,3,2

(y−1)
dy


ψ(b)

1

π


2

,
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with

P(b,b)
4,3,1 =27 x8y4−75 x7y5 + 48 x6y6−243 x8y3 + 909 x7y4−946 x6y5 + 288 x5y6 + 2673 x8y2

−7182 x7y3 + 5914 x6y4−1237 x5y5−288 x4y6−729 x8y−6966 x7y2 + 17592 x6y3

−11277 x5y4 + 1828 x4y5 + 288 x3y6−3159 x7y + 22392 x6y2−36146 x5y3

+ 15766 x4y4−1237 x3y5 + 48 x2y6 + 729 x7 + 13770 x6y−41898 x5y2 + 43510 x4y3

−11277 x3y4−946 x2y5 + 1134 x6−25929 x5y + 52590 x4y2−36146 x3y3

+ 5914 x2y4−75 xy5−9369 x5 + 30942 x4y−41898 x3y2 + 17592 x2y3 + 909 xy4

+ 15012 x4−25929 x3y + 22392 x2y2−7182 xy3 + 27y4−9369 x3 + 13770 x2y

−6966 xy2−243y3 + 1134 x2−3159 xy + 2673y2 + 729 x−729y,

P(b,b)
4,3,2 =27 x6y4−45 x5y5−30 x4y6 + 48 x3y7 + 243 x6y3−603 x5y4 + 828 x4y5−460 x3y6

+ 729 x6y2−2592 x5y3 + 1899 x4y4−126 x3y5−30 x2y6 + 729 x6y−4212 x5y2

+ 8085 x4y3−4686 x3y4 + 828 x2y5−2187 x5y + 6741 x4y2−8864 x3y3 + 1899 x2y4

−45 xy5−729 x5 + 7587 x4y−9708 x3y2 + 8085 x2y3−603 xy4 + 810 x4−9954 x3y

+ 6741 x2y2−2592 xy3 + 27y4−810 x3 + 7587 x2y−4212 xy2 + 243y3 + 810 x2

−2187 xy + 729y2−729 x + 729y.

5.5.5 Singularities

As already mentioned, the integration kernels are rational in

ε, x̃,y,ψ(a)
1 ,ψ(b)

1 ,ψ(c)
1 ,∂yψ

(a)
1 ,∂yψ

(b)
1 ,∂yψ

(c)
1 .

In the next section, we will choose as boundary point the point (x,y) = (0,1) (or equivalently
(s, t) = (∞,m2)). This motivates the introduction of the variable

ỹ = 1− y.

Therefore our boundary point is (x̃, ỹ) = (0,0). The polynomials in our system are as follows.

• Polynomials which only depend on x̃ are

Q1 =x̃, Q2 = x̃−1, Q3 = x̃ + 1,

Q4 =x̃2 + 1, Q5 = x̃2−2x̃−1, Q6 = x̃2 + 2x̃−1.

• Polynomials which only depend on ỹ are

Q7 = ỹ, Q8 = ỹ−1, Q9 =ỹ + 8.

• Polynomials which depend on x̃ and ỹ are
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Q10 =x̃2− x̃ ỹ− ỹ + 1, Q11 = −x̃2ỹ + x̃2 + x̃ ỹ + 1, Q12 = x̃4− x̃3ỹ + 2 x̃2 + x̃ ỹ + 1,

Q13 =3 x̃4−2 x̃3ỹ + 6 x̃2 + 2 x̃ ỹ + 3, Q14 = x̃4ỹ + 8 x̃4−4 x̃3ỹ + 2 x̃2ỹ + 16 x̃2 + 4 x̃ ỹ + ỹ + 8,

Q15 =3 x̃4ỹ−2 x̃3ỹ2−16 x̃3 + 6 x̃2ỹ + 2 x̃ ỹ2 + 16 x̃ + 3 ỹ, Q16 = x̃2ỹ−8 x̃ + ỹ + 8,

Q17 =x̃2ỹ + 8 x̃2 + 8 x̃ + ỹ.

Let us also have a look at the corresponding expressions in (s, t)-space: The polynomials Q10 and
Q11 appear when the expression st + (m2− t)2 is expressed in the variables x̃ and ỹ:

st +
(
m2− t

)2
=

Q10Q11

x̃ (x̃−1)(x̃ + 1)
.

The polynomial Q12 is related to

m2− t− s = −
Q12

x̃ (x̃−1)(x̃ + 1)
.

The polynomials Q13 and Q14 are related to the elliptic curve E(b). We have

3s + 2t−2m2 =
Q13

x̃ (x̃−1)(x̃ + 1)
,

s
(
t−9m2

)
+ 4m2

(
m2− t

)
=−

Q14

x̃ (x̃−1)(x̃ + 1)
,

The polynomial Q13 enters through eq. (5.3.3) or eq. (5.3.3), the polynomial Q14 appears in the
Picard-Fuchs operator for ψ(b)

1 in eq. (5.3.3).

The polynomials Q15, Q16 and Q17 are related to the elliptic curve E(c). We have

3s
(
t−m2

)
+ 2

(
t−m2

)2
+ 16m4 =−

Q15

x̃ (x̃−1)(x̃ + 1)
,

s
(
t−9m2

) (
t−m2

)
−64m6 =

Q16Q17

x̃ (x̃−1)(x̃ + 1)
.

The polynomial Q15 enters through eq. (5.3.3) or eq. (5.3.3), the polynomials Q16 and Q17 appears
in the Picard-Fuchs operator for ψ(c)

1 in eq. (5.3.3).

It is to be noted that the polynomials Q1, Q7, Q15 and Q17 vanish for (x̃, ỹ) = (0,0). We integrate
the system of differential equations starting from the point (x,y) = (0,1) (corresponding to s =∞

and t = m2). In order to do so, we need the boundary constants at this point. In the next section we
discuss the evaluation of the boundary constants at these points.

5.6 Boundary conditions and boundary constants

In this section, we intend to discuss the last part in solving any differential equation, that is
evaluating the boundary conditions. We wish to integrate the system of differential equations
starting from the point (x,y) = (0,1), which correspond to s = ∞ and t = m2. Therefore, we
require the boundary constants at this point. In order to express these boundary constants in a
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basis of transcendental constants up to weight four [109], using PSLQ algorithm, we can use the
following basis:

w = 1 : ln(2),

w = 2 :ζ2, ln2(2),

w = 3 :ζ3, ζ2 ln(2), ln3(2),

w = 4 :ζ4, Li4

(
1
2

)
, ζ3 ln(2), ζ2 ln2(2), ln4(2).

We need to calculate explicitly the boundary constants for the integrals, which neither depend on s
nor on t. There are two such integrals: J1 (which is also a product of tadpoles) and J8 (the sunrise
integral at the pseudo-threshold). For the result for J1, we simply take the results from eq. (4.6.1).
For J8 we proceed as follows: We start from the Feynman parameter integral and we get

J8 =6ε2e2γEεΓ (1 + 2ε)

1∫
0

dx2

1∫
0

dx4

[
1

x2−1
−

1
x2 + 1

] [
1

x4 + 1
−

1
x4 + x2

]

× (x2 + 1)ε (x4 + 1)−2ε (x4 + x2)−2ε
(
x4 +

x2

x2 + 1

)ε
.

We see that we can perform the x4 integration at each order in ε and get the results in MPLs
G(z1, ...,zk; x2), where the remaining variable x2 appears in the argument list z1, ..., zk. With the
methods of [67] we can convert all polylogarithms to a form, where the parameters z1, ..., zk do
not depend on x2, the simplest example is given by

G (−x2;1) = G (−1; x2)−G (0; x2) .

We may then perform the integration over the variable x2. The resulting expressions may also be
simplified with the help of the PSLQ-algorithm. Apart from these two integrals there are other
integrals which are products of simpler integrals and are calculated similarly.

For all other master integrals we obtain the boundary constants from the behavior at a specific
point, where the master integral vanishes or reduces to simpler integrals. This specific points
for our system are (x,y) = (0,1), (x,y) = (1,1) and (x,y) = (−1,1). For the points (x,y) = (1,1)
or (x,y) = (−1,1) we integrate the system along y = 1 from x = 0 to x = ±1. For y = 1 we only
obtain MPLs. We evaluate the MPLs to high precision and use the PSLQ-algorithm to extract the
transcendental constants.

The complete list of boundary constants is given in the appendix of the arXiv [48].

5.6.1 A peek at the results

For all the basis integrals, we write

Jk =

∞∑
j=0

ε jJ( j)
k .

We now show examples for the result of a few of the master integrals. The integrals J1 and J8 are
independent of s and t (or equivalently independent of x and y) and are given by

J1 =1 + ζ2ε
2−

2
3
ζ3ε

3 +
7
4
ζ4ε

4 +O
(
ε5

)
,
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J8 =6ζ2ε
2 + ε3 (21ζ3−36ζ2 ln2) + ε4

(
144Li4

(
1
2

)
−78ζ4 + 72ζ2 ln2 (2) + 6ln4 (2)

)
+O

(
ε5

)
.

We also look at an example of one of the master integral which depends only on s.

J(0)
2 =0,

J(1)
2 =−G (0; x) ,

J(2)
2 =2G (−1,0; x)−G (0,0; x) + ζ2,

J(3)
2 =−4G (−1,−1,0; x) + 2G (−1,0,0; x) + 2G (0,−1,0; x)−G (0,0,0; x)−2ζ2G (−1; x)

+ 2ζ3,

J(4)
2 =8G (−1,−1,−1,0; x)−4G (−1,−1,0,0; x)−4G (−1,0,−1,0; x)−4G (0,−1,−1,0; x)

+ 2G (−1,0,0,0; x) + 2G (0,−1,0,0; x) + 2G (0,0,−1,0; x)−G (0,0,0,0; x)

+ 4ζ2G (−1,−1; x)−2ζ2G (0,−1; x)−4ζ3G (−1; x) +
8
3
ζ3G (0; x) +

19
4
ζ4,

(5.6.1)

In the appendix, we present an example each of the cases when the integral depends only on t and
when they depend both on s and t. In order to keep it very clear and simple, we avoid presenting
the full result in the thesis, however, one is referred to [48] for the same.

5.6.2 Analytic continuation

Let us also discuss the regions where our results are valid. For most parts of our calculations,
there are no restrictions on s and t for our calculations. The results are written in terms of iterated
integrals which are valid for all values of s and t, if a proper analytic continuation around branch
cuts according to Feynman’s iε-prescription is understood [58]. In a neighbourhood of our
boundary point, s = ∞ and t = m2, we do not need analytic continuation. For the analytic
continuation, we need to choose the integration path such that it avoids the singularities of the
integration kernels according to Feynman’s iε-prescription. We also need to take care that the
integration kernels are continuous along the integration path at the same time. These integration
kernels also involve the periods of the elliptic curves. Therefore we need to ensure that the
periods vary continuously along the integration path. The periods are expressed in terms of
complete elliptic integrals in a neighbourhood of the boundary point. The complete elliptic
integral K(k), when viewed as a function of k2 has a branch cut along [1,∞[. If the image of the
integration path in k2-space crosses this cut we have to compensate for the discontinuity of K(k)
by taking the monodromy around k2 = 1 into account. The numerical checks, on the other hand,
are limited to the region of convergence of the power series expansions.

5.7 Numerical Checks

All results have been verified numerically with the help of the program
sector_decomposition [63]. The program sector_decomposition allows (as SecDec [69]
or FIESTA [64] the numerical evaluation of multi-loop integrals. In order to check the numerical
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results, we undertake the following methodoly. We evaluate all master integrals of the Laporta
basis ~I at a few kinematic points numerically with the program sector_decom- position. We
also evaluate our results in the basis ~J at the same kinematic points, converted to the basis ~I and
compared the two results. We find a good agreement.

The evaluation of the iterated integrals appearing in our results is done as follows: We split the
integration path into two pieces: First we integrate in (x̃, ỹ)-space from (0,0) to (x̃,0), then from
(x̃,0) to (x̃, ỹ). The integration along the first part gives only multiple polylogarithms, which can be
evaluated to high precision [67]. We use these results as new boundary constants for the integration
along the second part. Assuming that ỹ is small, we may expand for the integration along the
second part all integration kernels in ỹ. As a reference we give numerical results for the master
integrals in the basis ~J at the kinematic point

s = −
12769
840

m2, t =
10
11

m2.

This point corresponds to

x =
7

120
, y =

10
11
,

or equivalently

x̃ =
1
15
, ỹ =

1
11
.

We can see the numerical results for the first five terms of ε-expansion displayed in tables.

All results have been verified numerically with the help of the program sector_decomposition
[63].
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ε0 ε1 ε2 ε3 ε4

J1 1 0 1.6449341 −0.80137127 1.8940657
J2 0 2.8415816 −2.8295758 6.4116869 −7.7009279
J3 0 −2.8415816 15.355894 −39.817554 97.903278
J4 0 0 8.074586 −20.479468 55.140667
J5 1 −2.7213737 3.7029375 −6.5645107 7.7616443
J6 0 0 4.7951687 −7.7339091 23.583241
J7 0 −0.13797489 5.0760627 −8.5195954 25.27333
J8 0 0 9.8696044 −15.803336 48.383357
J9 0 0 4.037293 −2.1975902 7.5750011
J10 0 0 0 −10.577768 19.861743
J11 0 2.8415816 −10.562581 19.960005 −34.628948
J12 0 0 4.8094349 −23.163298 56.79741
J13 0 0 0 −9.6340372 18.255071
J14 0 0 0 0.074587202 −0.1198646
J15 0 0 −4.037293 23.437914 −62.690651
J16 0 0 0 8.4983135 −20.922966
J17 0 0 0 0.1491744 0.058984085
J18 0 1.4207908 −12.163995 44.930917 −88.809767
J19 0 0 0 16.996627 −15.625817
J20 0 0 −10.735443 −9.8004674 −37.795989
J21 0 0 4.037293 −13.184573 21.864228
J22 0 0 0 0 8.4599162
J23 0 0 0 4.8796692 −25.793413
J24 0 0 0 2.6138189 −0.23796592
J25 0 0 4.037293 −9.2635254 25.950914
J26 0 0 2.7276656 −1.848663 13.397014
J27 0 0 0 5.2276379 8.7055971
J28 0 0 0 8.9388561 12.795847
J29 0 0 0 0 18.80581
J30 0 0 5.4553312 −3.9355497 35.856907
J32 0 0 −10.735443 −40.306104 −35.268067
J33 0 0 0 7.3822471 10.116064
J34 0 0 10.735443 −3.4643927 53.616756
J35 0 0 0.97741243 5.1104476 15.424638
J36 0 0 0 0 −13.214347
J37 0 0 0 0 −43.342128
J38 0 0 0 0 44.194787
J39 0 0 0 0 0.28609557
J40 0 0 0 0 −26.330837
J41 0 0 0 0 11.147258
J42 0 0 0 −19.021429 −320.23817
J43 0 0 0 0.89070327 9.183764
J44 0 0 0 0 21.040337
J45 0 0 0 0 −1.4008206

Table 5.2. Numerical results for the first five terms of the ε-expansion of the master integrals at the
kinematic point s = − 12769

840 m2, t = 10
11 m2.
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5.8 Conclusion

In this chapter, we discussed the analytic calculation of the master integrals for the planar double
box integral relevant to top-pair production with a closed top loop, given for the first time in [48].
This integral depends on two scales and involves several elliptic sub-sectors. The integral
contains elliptic curves which can be extracted from the maximal cuts. The system involves three
in-equivalent elliptic curves. This integral involves a special case of having more than one elliptic
curve and was believed to be a roadblock for a long time. It is helpful to write down the results of
these integrals in terms of well defined mathematical objects. However, since elliptic
polylogarithms are by definition iterated integrals on a single elliptic curve we can not naturally
express the result of this integral in terms of elliptic polylogarithms. We showed that the system
of differential equations can be transformed to a form linear in ε, where the ε0-term is strictly
lower-triangular. This system of differential equations is easily solved to any desired order in ε.
One may express the results in terms of iterated integrals of the occurring integration kernels and
in this chapter we discussed the integration kernels particular to our choice of transformation for
the master integrals. The techniques applied in this case and the (unexpected) results obtains open
the door to a wider class of Feynman integrals and more detailed study of algebraic structure.
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6.1 Physical importance

We know that the SM employs the Higgs mechanism, which can be tested by measuring the
strength of the Higgs boson interactions with other fundamental particles. The strength of the
Higgs boson interactions is proportional to the fermion mass and is, therefore, greatest for the top
quark. Moreover, the stronger the interaction the larger the decay rate of the Higgs boson into a
pair of fermions, and hence more probable the decay. Since the top quark is heavier than the Higgs
boson, the most likely decay is into a pair of bottom quarks, the heaviest decay products allowed
by energy conservation. The physics of bottom quark, in particular, sheds light on CP violation.
Some important high-mass particles decay into bottom quarks. Top quarks nearly always do so
and the Higgs boson is expected to decay into bottom quarks more than any other particle given

107
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its mass. Since the discovery of a new boson with a mass near 124 GeV by the ATLAS and CMS
collaborations, huge progress in the understanding of the properties and coupling of this particle
has been made which is compatible with the Standard Model Higgs boson. The decay H→ bb̄, is
predicted to have a branching fraction of about 58%. the subleading fermionic decays H→ τ+τ−

and H→ cc̄ reach branching ratios of about 6% and 3% respectively. A precise measurement of the
rate for this process directly probes the Yukawa coupling of the Higgs boson to a down-type quark
and provides a necessary test of the hypothesis that the Higgs field is the source of mass generation
in the charged fermion sector of the SM. We can use perturbative calculations to compute QCD
corrections for this process to the full O(α) result and obtain all contributions of order ααS to the
partial decay rate. In this chapter, we are mainly interested in the mixed O(ααs)-corrections to the
decay H→ bb̄ through a Htt̄-coupling. In the beginning, we show the extensive calculation of the
master integrals for the Higgs decay to bb̄ [108]. Examples of Feynman diagrams are shown in
fig. 6.3. We exclude the diagrams whose master integrals are related to the master integrals of the
diagrams of fig. 6.3 by symmetry. We also neglect the b-quark mass. However, the dependence on
the top quark mass mt, the W-boson mass mW and the momentum p of the Higgs boson is treated
exactly. These diagrams are useful in order to obtain the partial decay width of Higgs boson into
a bottom quark pair. At the end of this chapter, we also briefly sketch how we can obtain the full
decay width for this process using the optical theorem.

Observing Higgs decay experimentally

Because of the overwhelmingly large background contribution from several other SM processes
that can mimic the experimental signature characterized by the appearance of a bottom quark,
it is a challenge to observe it experimentally. The ATLAS and CMS Collaboration overcame
this challenge by deploying modern sophisticated analysis tools and by focusing on particular
signatures where a Higgs boson is produced in association with a vector boson V (a W or Z
particle), a weak interaction process known as VH(bb), shown in the figure below, which leads to
a significant reduction in the background. The experiment results for Higgs decay to two bottom
quarks can be obtained from [96, 97].

p

p

q̄
′

(q̄)

q

W(Z)

W(Z)

H

b

b̄

Figure 6.1. Associated production of Higgs
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6.1.1 State of the art

The determination of the branching ratios of Higgs-boson decays necessitates the inclusion of the
available higher-order corrections and a sophisticated estimate of the theoretical and parametric
uncertainties. The present status of the partial decay widths can be summarized in terms of the
expression

Γ(H→ f f̄ ) =
NcGF MH

4
√

2π
m2

f (1 +δQCD +δt +δmixed)(1 +δEW),

Figure 6.2. Higgs boson branching
ratios and their uncertainties for Higgs
masses around 125 GeV. From [60]

where Nc = 3(1) for quarks (leptons), GF denotes the Fermi
constant, MH the Higgs mass and m f the fermion mass.
In general, the pure QCD corrections δQCD to the Higgs
boson decays into quarks are known up to NLO including
the full quark mass dependence, and up to N4LO for the
leading corrections with the leading mass effects. The
dominant part of the QCD corrections can be absorbed
in the running quark mass evaluated at the scale of the
Higgs mass. The top-induced QCD corrections, which are
related to interference effects between H→ gg and H→ qq̄,
are known at NNLO in the limit of heavy top quarks and
light bottom quarks. In the case of leptons, there are no
QCD corrections (δQCD = δt = δmixed = 0). The electroweak
corrections δ are known at NLO exactly. In addition, the
mixed QCD-EW corrections range at the one-per-mille level
of the factorized expression with respect to QCD and EW
corrections is used. The partial decay width of H → bb̄ is also known fully differential at N3LO
QCD [107].

6.2 The setup for the master integrals

For an on-shell Higgs boson we have p2 = m2
H . In figure 6.3, we show all the diagrams contributing

to the mixed QCD-EW corrections with an Htt̄ coupling. Not shown here are the diagrams related
to these by symmetry.



110 Higgs decay to two bottom quarks.

GA GB GC GD

GE

Figure 6.3. Examples of Feynman diagrams contributing to the mixed O(ααs)-corrections to the decay
H→ bb̄ through a Htt̄-coupling. The Higgs boson is denoted by a dashed line, a top quark by a green
line, a bottom quark with a black line and a gluon by a curly line. Particles with mass mW are drawn
with a wavy line.

For the two-loop contributions to the Higgs decay, we have two independent external momenta p1
and p2, which label the momenta of b-quark and b̄-quark, respectively. With two independent loop
momenta, we have seven ISPs, therefore we need to consider an auxiliary topology which contains
all the seven propagators needed to express the ISPs. Therefore we introduce an auxiliary topology
GA-GD with seven propagators for each of the four Feynman diagrams, as shown in figure 6.4. The
master integrals related to diagram GE are a subset of the master integrals related to diagram GA

and similarly also a subset of the master integrals related to diagram GD. We consider the integrals

IX
ν1ν2ν3ν4ν5ν6ν7

= e2γEε
(
µ2

)ν−D
∫

dDk1

iπ
D
2

dDk2

iπ
D
2

7∏
j=1

1(
PX

j

)ν j
, X ∈ {A,B,C,D},

where D = 4−2ε denotes the number of space-time dimensions, γE denotes the Euler-Mascheroni
constant, µ is an arbitrary scale introduced to render the Feynman integral dimensionless, and the
quantity ν is defined by

ν =

7∑
j=1

ν j.

The inverse propagators PX
j are defined as follows:

Topology A:

PA
1 = −k2

1 + m2
t , PA

2 = − (k1− p1− p2)2 + m2
t , PA

3 = − (k1 + k2)2 ,

PA
4 = −k2

2 + m2
t , PA

5 = − (k2 + p1)2 + m2
W , PA

6 = − (k2 + p1 + p2)2 + m2
t ,

PA
7 = − (k1− p1)2 + m2

t . (6.2.1)

Topology B:

PB
1 = −k2

1 + m2
t , PB

2 = − (k1− p1− p2)2 + m2
t , PB

3 = − (k1 + k2)2 + m2
W ,
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Figure 6.4. Auxiliary diagrams for the two planar vertex corrections, the non-planar vertex correction
and topology D. The internal masses of the propagators are encoded by the colour of the propagators:
massless (black), mt (green), mW (red).



112 Higgs decay to two bottom quarks.

PB
4 = −k2

2, PB
5 = − (k2 + p1)2 , PB

6 = − (k2 + p1 + p2)2 ,

PB
7 = − (k1− p1)2 + m2

t . (6.2.2)

Topology C:

PC
1 = −k2

1 + m2
t , PC

2 = − (k1− p1− p2)2 + m2
t , PC

3 = − (k1 + k2)2 ,

PC
4 = − (k1 + k2− p1)2 , PC

5 = −k2
2 + m2

W , PC
6 = − (k2 + p2)2 + m2

t ,

PC
7 = − (k1− p1)2 + m2

t . (6.2.3)

Topology D:

PD
1 = −k2

1 + m2
t , PD

2 = − (k1− p1− p2)2 + m2
t , PD

3 = − (k1− p1)2 + m2
W ,

PD
4 = − (k1 + k2)2 + m2

t , PD
5 = −k2

2, PD
6 = − (k2 + p1)2 ,

PD
7 = − (k2 + p1 + p2)2 . (6.2.4)

We get our original three point diagrams when we substitute ν7 = 0. In our conventions, we are
interested in the integrals with ν7 ≤ 0.

Feynman parametrization: The Feynman parameter representations for the four topologies are
given by

IX
ν1ν2ν3ν4ν5ν6ν7

=e2γEε
Γ(ν−D)

7∏
j=1
Γ(ν j)

∫
xi≥0

d7x δ

1− 7∑
j=1

x j


 7∏

j=1

xν j−1
j

 U
ν− 3

2 D
X

F ν−D
X

,

The graph polynomials are given by

UA = (x1 + x2 + x7) (x4 + x5 + x6) + x3 (x1 + x2 + x4 + x5 + x6 + x7) ,

FA = [x1x2 (x3 + x4 + x5 + x6) + x4x6 (x1 + x2 + x3 + x7) + x3 (x1x6 + x2x4)]
(
−p2

µ2

)
+UA

(x1 + x2 + x4 + x6 + x7)
m2

t

µ2 + x5
m2

W

µ2

 ,
UB = (x1 + x2 + x7) (x4 + x5 + x6) + x3 (x1 + x2 + x4 + x5 + x6 + x7) ,

FB = [x1x2 (x3 + x4 + x5 + x6) + x4x6 (x1 + x2 + x3 + x7) + x3 (x1x6 + x2x4)]
(
−p2

µ2

)
+UB

(x1 + x2 + x7)
m2

t

µ2 + x3
m2

W

µ2

 ,
UC = (x1 + x2 + x7) (x5 + x6) + (x3 + x4) (x1 + x2 + x5 + x6 + x7) ,

FC = [x1x2 (x3 + x4 + x5 + x6) + x1x4x6 + x2x3x5− x3x6x7]
(
−p2

µ2

)
+UC

(x1 + x2 + x6 + x7)
m2

t

µ2 + x5
m2

W

µ2

 ,
UD = (x1 + x2 + x3) (x5 + x6 + x7) + x4 (x1 + x2 + x3 + x5 + x6 + x7) ,

FD = [x1x2 (x4 + x5 + x6 + x7) + x5x7 (x1 + x2 + x3 + x4) + x4 (x1x7 + x2x5)]
(
−p2

µ2

)
+UD

(x1 + x2 + x4)
m2

t

µ2 + x3
m2

W

µ2

 .
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Using these graph polynomials, we can set up the differential equation system for our master
integrals. We can have a look at all the (sub-) topologies of these graphs in the appendix.

6.2.1 Hint of ellipticity

In [26], the authors present an example of a non-planar two-loop three-point function which
contributes to two-loop amplitudes for tt̄ production and γγ production in gluon fusion.

Figure 6.5. A non-planar three-point function belonging to the class functions that goes beyond MPLs.

In figure 6.5, we can see a graph which differs from topology C only in external momenta if we put
mW = mt. This topology is associated to an elliptic curve and is not expressible entirely in terms
of MPLs. This gives us a hint that the class of function the topology shown in figure 6.3 goes
beyond the class of MPLs. However, this is not the case and we are able to express the result of
the master integrals in this case in terms of MPLs. The only difficulty we face is the simultaneous
rationalization of all the occurring (particularly two) square roots.

6.2.2 Technique to solve the system of differential equations

The technique we follow to solve the master integrals, i.e. to write down the master integrals as
a Laurent series expansion in the dimensional regularization parameter, is to use the method of
differential equations. In order to find the master integrals, we find the minimal set of integrals
sufficient to express all the diagrams of the family of diagrams from the topologies shown in figure
6.3. We aim to bring the set of master integrals to the canonical form explained in section

〈
4.3

〉
. In

this process, as we already know that we encounter square roots, our aim is to find the coordinate
system in which we can rationalize all the square roots simultaneously. At the end we write down
the results as a Laurent series in the parameter ε.

6.2.3 A common set of master integrals

For the reduction to master integrals, we use the programs Reduze [37], Kira [38] or Fire [39]
combined with LiteRed [40, 47]. Each topology involves a certain number of master integrals.
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Topology Number of master integrals
A 18
B 15
C 31
D 14

Table 6.1. The number of master integrals for a given topology.

This number of master integrals for each topology separately is shown in table 6.1. However, not
all of these master integrals are independent and are related to each other, which brings the number
of master integrals we need to solve in order to express all of these down to 39. We now show the
relations between these master integrals:

IA
µ00ν000 = IC

µ0000ν0 = ID
µ00ν000,

IA
µ000ν00 = IB

µ0ν0000 = IC
µ000ν00 = ID

00νµ000,

IA
µν0ρ000 = IC

µν000ρ0 = ID
µν0ρ000,

IA
µν00ρ00 = IB

µνρ0000 = IC
µν00ρ00,

IA
0µνρ000 = IC

µ00ν0ρ0 = ID
0µ0ρν00,

IB
0µνρ000 = IC

0µρ0ν00,

IA
µ0ν0ρ00 = IB

µ0ρν000 = IC
µ0ν0ρ00 = ID

00ρµν00,

IA
µ00νρσ0 = ID

νσρµ000,

IB
µνρσ000 = IC

µνσ0ρ00,

IC
µνρ00σ0 = ID

µν0σ0ρ0,

IA
µνρ0σ00 = IB

µνσ0ρ00 = IC
µν0ρσ00,

IA
0µνρσ00 = IC

µ00νσρ0 = ID
0ρσµν00,

IA
µνρσκ00 = IC

µν0ρκσ0,

IB
µνρσκ00 = IC

µνσκρ00,

IC
µ0νρσκ0 = ID

0κσµνρ0. (6.2.5)

The 39 master integrals are grouped into 25 blocks such that one block corresponds to one
sub-topology. Some of the master integrals are taken as integrals in D− 2 = 2− 2ε space-time
dimensions because of better UV behaviour apart from the ease of solving. We can express them
in terms of a linear combination of master integrals in D = 4−2ε dimensions with the help of the
DSR discussed in section

〈
4.1.1

〉
.

6.3 The choice of coordinate system:

In our case, the master integrals depend on two dimensionless quantities

v =
p2

m2
t
, w =

m2
W

m2
t
,
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with p = p1 + p2, after we set
µ2 = m2

t .

The coordinate system v,w is the most obvious choice to start with. However, we soon realize that
this is not a smart choice as we encounter multiple square roots in this coordinate.

In particular, we get the following square roots√
−v (4− v) and

√
λ (v,w,1).

The Källen function is defined by

λ(x,y,z) =x2 + y2 + z2−2xy−2yz−2zx.

In order to rationalize the square roots, we introduce dimensionless quantities x and y through

p2

m2
t

= v = −
(1− x)2

x
,

m2
W

m2
t

= w =
(1− y + 2xy) (x−2y + xy)

x
(
1− y2) .

The first transformation very standard and has occurred in many places before, the second one is
obtained using the algorithm mentioned in [101]. The Feynman integrals are then functions of x,y
and the dimensional regularization parameter ε. The inverse transformations are given by

x =
1
2

(
2− v−

√
−v (4− v)

)
, y =

√
λ (v,w,1)−

√
−v (4− v)

1−w + 2v
,

such that x = 0 corresponds to v =∞ and y = 0 corresponds to w = 1.

6.4 The transformation for the master integrals

Let the canonical basis of master integrals [35] be denoted by ~J = (J1, ..., J39)T . The system of
differential equations is in ε-form in this basis:

d ~J = εA ~J, (6.4.1)

where matrix A is independent of ε. An exmple of the transformation which gives us the vector in
the eq. (6.4.1) is given by

J1 =ε2 D−IA
1001000,

J2 =ε2 D−IA
1000100,

J3 =ε2

(
1− x2

)
2x

D−IA
1101000,

J4 =ε2

(
1− x2

)
2x

D−IA
1100100,

J5 =
1
2
ε2v D−IB

1001010,

J6 =
1
2
ε2v D−IB

0011010,

J7 =ε2

(
1− x2

)
2x

D−IA
0111000,
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J8 =ε2 D−IA
(−1)111000,

J9 =ε2
(1− x)

(
1 + x−2y + y2 + 2xy + xy2

)
x
(
1− y2) D−IB

0111000,

J10 =ε2
[
D−IB

(−1)111000− (1−w)D−IB
0111000

]
,

J11 =2ε2 D−IB
0111(−1)00−2ε2 D−IB

0110000,

J12 =ε2 (1−w) D−IA
1010100,

J13 =ε2

(
1− x2

)2

4x2 D−IA
1101010,

J14 =ε2 (1− x)3 (1 + x)
4x2 D−IB

1101010,

J15 =ε3 (1− ε)v IA
1001110,

J16 =ε2

(
1− x2

)
x

[
(1−w) D−IB

1111000−D−IB
0111000

]
,

J17 =ε3v IC
1120010,

J18 =ε3v IC
1110020,

J19 =ε2

(
1− x2

)
x

[
(1−2ε) IC

2110010 + ε IC
1110020

]
,

J20 =ε3v IA
1120100,

J21 =ε3v IA
1110200,

J22 =2ε2 (1− x)
x (1 + w)

[
(1−2ε) (1 + x) IA

2110100− ε (x−w) IA
1120100 + ε (1− x + 2w) IA

1110200

−
1
2

(1 + x) D−IA
1100100

]
,

J23 =2ε3v IA
0211100,

J24 =2ε3v IA
0121100,

J25 =2ε3v IC
0210110,

J26 =2ε3v IC
0120110,

J27 =ε3 (1− x)2

x (1 + x)

[
(1−2ε) (1− x) IA

1101110 + 2(1− ε) IA
1001110

]
,

J28 =2ε3 (1−2ε)v IB
1111010,

J29 =2ε3v (1−w) IA
1111200,

J30 =2ε3v
(
IA
1112100 + IA

1111200

)
,

J31 =4ε3 (1− x)2

x
(
1 + x2) [(1− x2

)
IA
2111100− (1 + w) IA

1111200−2IA
1112100 + 2IA

1120100 + IA
1110200

−IA
0211100−2IA

0121100

]
,

J32 =4ε4v IB
1111100,

J33 =2ε3v (1−w) IC
1110120,

J34 =2ε3vw
(
IC
1110210 + IC

1110120

)
,

J35 =2ε3v (1−w) IC
1120110,
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J36 =4ε3 (1− x)2

x
(
1 + x2) [(1− x2

)
IC
2110110− (1 + w) IC

1110120−2w IC
1110210 + 2(1−w) IC

1120110

+2IC
1120010 + IC

1110020− IC
0210110−2IC

0120110

]
,

J37 =2ε4v IC
1011110,

J38 =ε3vw ID
1112010,

J39 =4ε4
(1− x)2

(
1− x + x2− xw

)
x2 IC

1111110. (6.4.2)

6.5 The one-forms of the system

Let us now discuss the singularities of the system of differential equations. The singularities are
on hypersurfaces and each hypersurface is defined by a polynomial in x and y. The polynomials
in our differential system are given by

p1 =x, p2 = x−1, p3 = x + 1, p4 = y, p5 = y−1, p6 = y + 1, p7 = xy + x− y + 1,

p8 =xy + x−2y, p9 = 2xy− y + 1, p10 = xy2 + 2xy−2y2 + x + 2y,

p11 =xy2 + 2xy + y2 + x−2y + 1, p12 = xy2 + 2xy− y2 + x + 2y−1, p13 = 2xy2 + 2xy− y2 + 2y−1,

p14 =2xy2 + 2xy−3y2 + 2y + 1, p15 = 3xy2 + 2xy−2y2− x + 2y, p16 = 3xy2 + 2xy−3y2− x + 2y + 1.

In total we have 16 polynomials. We note that the polynomials pk are maximally of degree 3 and
the highest degree in the variable y is two, whereas the highest degree in the variable x is one.
We observe that in our differential system the entries of matrix A are Q-linear combinations of
dlog-forms of these polynomials:

Ai j =

16∑
k=1

c̃i jk d ln (pk (x,y)) , c̃i jk ∈ Q. (6.5.1)
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and find that matrix A contains only fifteen Q-independent linear combinations of dlog-forms. We
can, therefore, consider a basis for these one forms as follows:

ω1 =
ds
s

= 2d ln p2−d ln p1, ω2 =
ds

s−4m2
t

= 2d ln p3−d ln p1, ω3 =
ds√

−s
(
4m2

t − s
) = d ln p1,

ω4 =
dm2

W

m2
W

= d ln p8 + d ln p9−d ln p5−d ln p6−d ln p1,

ω5 =
dm2

W

m2
W −m2

t
= d ln p7−d ln p5−d ln p6 + d ln p4 + d ln p2−d ln p1,

ω6 =d ln
(
s + m2

W −m2
t

)
= d ln p16−d ln p5−d ln p6 + d ln p2−d ln p1,

ω7 =d ln
(
s−m2

W + m2
t

)
= d ln p12−d ln p5−d ln p6 + d ln p2−d ln p1,

ω8 =
1
2

d ln
(
sm2

W +
(
m2

t −m2
W

)2
)

=
1
2

d ln p15 +
1
2

d ln p14−d ln p5−d ln p6 + d ln p2−d ln p1,

ω9 =
1
2

d ln
((

2m2
t −m2

W

)
s +

(
m2

t −m2
W

)2
)

=
1
2

d ln p13 +
1
2

d ln p10−d ln p5−d ln p6 + d ln p2−d ln p1,

ω10 =
1
2

d ln
(
λ
(
s,m2

W ,m
2
t

))
= d ln p11−d ln p5−d ln p6 + d ln p2−d ln p1,

ω11 =
1
2

d ln p15−
1
2

d ln p14, ω12 =
1
2

d ln p13−
1
2

d ln p10, ω13 =
1
2

d ln p9−
1
2

d ln p8,

ω14 =
1
2

d ln p6−
1
2

d ln p5, ω15 = d ln p4−
1
2

d ln p6−
1
2

d ln p5.

The entries of A are therefore of the form

Ai j =

15∑
k=1

ci jk ωk, ci jk ∈ Q.

We can also re-scaling the master integrals with constant factors such that we obtain only integer
coefficients.

ci jk ∈ Z.

The basis of master integrals ~J presented in [108] has this form. We can also choose to express
matrix A as

A =

15∑
k=1

Ck ωk,

where the entries of the 39× 39-matrices Ck are integer numbers. This matrix can be obtained
from the arXiv submission of [108].

In our choice of coordinate, the differential forms simplify considerably in the following cases:

1. On the hypersurface y = 0 (i.e. for the case mW = mt), i.e. for the case p2 → ∞, the
differential forms reduce to a linear combination of

dx
x
,

dx
x−1

,
dx

x + 1
.

2. On the hypersurface x = 0, i.e. for the case p2→∞, the differential forms reduce to a linear
combination of

dy
y
,

dy
y−1

,
dy

y + 1
,

dy

y + 1
3

.
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3. On the hypersurface x = 1, i.e. for the case p2 = 0 and m2
W = m2

t , the differential forms
reduce to a linear combination of

dy
y
,

dy
y−1

,
dy

y + 1
,

2ydy
y2 + 1

,
2(y−2)dy
y2−4y−1

,
2(y + 2)dy
y2 + 4y−1

.

The derivative of the master integrals is given by the product of the matrix A with the vector
~J:

d ~J = εA ~J.

On the hypersurface x = 1, ~J is in the kernel of A because

∂ ~J
∂y

∣∣∣∣∣∣
x=1

=0,

even though A , 0. Therefore the master integrals are constant on the hypersurface x =

1. This motivates us to consider this as a boundary point while integrating the system of
differential equations.

6.6 Boundary conditions and integration of the differential
system for the master integrals

In order to obtain the analytic result for the master integrals at a point (x,y), we integrate the
system from a boundary point (xi,yi) along a path (xi,yi) to (x,y). For our case, as already pointed
out, we have several significant simplifications:

1. All master integrals are constant on the hypersurface x = 1 (corresponding to p2 = 0 and
m2

W = m2
t ) and therefore we take the values of the master integrals on this hypersurface as

boundary values. We can refer to this as a boundary line.

2. Then we integrate the differential equation along a straight line from (1,y) to (x,y) with
y = const (the result does not depend on the path chosen). The polynomials p1-p3 and p7-
p16 are all linear in x (the polynomials p4-p6 don’t contribute along y = const), and thus we
do not need to factorize higher-order polynomials in x.

3. We also notice that the boundary values on the hypersurface x = 1 are particularly simple
as 35 out of the 39 master integrals vanish on this hypersurface and the only four master
integrals which do not vanish are products of one-loop integrals.

We can see that all the integration kernels are dlog-forms and therefore the result can be expressed
in terms of MPLs.

6.6.1 Boundary constants

As mentioned above all other master integrals vanish on the hypersurface x = 1. The only non-
vanishing master integrals at x = 1 are J1, J2, J5 and J6. These are rather simple as they are
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products of one-loop integrals. These are given by:

J1 =e2γEε (Γ (1 + ε))2 ,

J2 =e2γEε (Γ (1 + ε))2 w−ε ,

J5 =e2γEε
(Γ (1 + ε))2 (Γ (1− ε))2

Γ (1−2ε)
(−v)−ε ,

J6 =e2γEε
(Γ (1 + ε))2 (Γ (1− ε))2

Γ (1−2ε)
(−v)−ε w−ε .

Therefore, we obtain the full set of boundary conditions required for our system, on the line
(x,y) = (1,y).

Since we are performing an integration in the (x,y)-space from (1,y) to (x,y), it is better to change
variables from x to x′ = 1− x. In (x′,y)-space, we integrate the system from (0,y) to (x′,y), where
y is treated as a parameter. This integration gives MPLs of the form

G
(
l′1, ..., l

′
k; x′

)
,

where the letters l′1, ..., l′k are from the alphabet

A =
{
0,1,2, x′7, x

′
8, x
′
9, x
′
10, x

′
11, x

′
12, x

′
13, x

′
14, x

′
15, x

′
16

}
.

The non-trivial letters x′7-x′16 are given by

x′7 =
2

1 + y
, x′8 =

1− y
1 + y

, x′9 =
1 + y
2y

,

x′10 =
1 + 4y− y2

(1 + y)2 , x′11 =
2
(
1 + y2

)
(1 + y)2 , x′12 =

4y
(1 + y)2 ,

x′13 = −
1−4y− y2

2y (1 + y)
, x′14 =

1 + 4y− y2

2y (1 + y)
, x′15 =

1−4y− y2

(1 + y) (1−3y)
,

x′16 = −
4y

(1 + y) (1−3y)
.

6.6.2 A peek at the results

For all the basis integrals in our case, we write

Jk =

∞∑
j=0

ε jJ( j)
k .
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To give an example, here we show the first non-vanishing term of the most complicated integral,
the non-planar vertex correction J39:

J(3)
39 =8G

(
0,1,1; x′

)
−4G

(
0,1, x′8; x′

)
−4G

(
0, x′8,1; x′

)
+ 4G

(
0, x′8, x

′
9; x′

)
+ 4G

(
0, x′9, x

′
8; x′

)
−8G

(
1,2,1; x′

)
+ 8G

(
1, x′15,1; x′

)
−4G

(
1, x′15, x

′
8; x′

)
−4G

(
1, x′15, x

′
9; x′

)
−16G

(
1, x′7,1; x′

)
+ 8G

(
1, x′7, x

′
8; x′

)
+ 12G

(
1, x′7, x

′
9; x′

)
+ 4G

(
1, x′8,1; x′

)
−4G

(
1, x′8, x

′
9; x′

)
−4G

(
1, x′9, x

′
8; x′

)
+ 8G

(
x′14,2,1; x′

)
−8G

(
x′14, x

′
15,1; x′

)
+ 4G

(
x′14, x

′
15, x

′
8; x′

)
+ 4G

(
x′14, x

′
15, x

′
9; x′

)
+ 16G

(
x′14, x

′
7,1; x′

)
−8G

(
x′14, x

′
7, x
′
8; x′

)
−12G

(
x′14, x

′
7, x
′
9; x′

)
−4G

(
x′14, x

′
8,1; x′

)
+ 4G

(
x′14, x

′
8, x
′
9; x′

)
+ 4G

(
x′14, x

′
9, x
′
8; x′

)
+ 8G

(
x′15,1,1; x′

)
+ 4G

(
x′15,1, x

′
8; x′

)
−8G

(
x′15,2,1; x′

)
+ 4G

(
x′15, x

′
14, x

′
8; x′

)
+ 4G

(
x′15, x

′
14, x

′
9; x′

)
+ 4G

(
x′15, x

′
7,1; x′

)
−12G

(
x′15, x

′
7, x
′
8; x′

)
−8G

(
x′15, x

′
7, x
′
9; x′

)
−4G

(
x′15, x

′
8,1; x′

)
+ 4G

(
x′15, x

′
8, x
′
9; x′

)
+ 4G

(
x′15, x

′
9, x
′
8; x′

)
−8G

(
x′7,1,1; x′

)
+ 4G

(
x′7,1, x

′
8; x′

)
+ 4G

(
x′7, x

′
8,1; x′

)
−4G

(
x′7, x

′
8, x
′
9; x′

)
−4G

(
x′7, x

′
9, x
′
8; x′

)
.

We can see that the results are expressible as Goncharov polylogarithms.

6.7 Numerical results

Numerical checks for any calculations are equally important and therefore we also discuss the
numerical checks. The numerical results for

p2 = m2
H ,

are particularly of interest. Since p2 > 0, we are not in the Euclidean region. Feynman’s i0-
prescription instructs us to take a small imaginary part into account: p2 → p2 + i0, which selects
the correct branches for the two square roots

√
−v(4− v) and

√
λ(v,w,1). With

mW = 80.38 GeV, mH = 125.2 GeV, mt = 173.1 GeV

we obtain for the variables x and y

x = 0.7384 + 0.6743i,y = 0.3987i.

The values of the master integrals at this point are given to 8 digits in table 6.2. As explained in
the previous chapter, these master integrals are easily computed to arbitrary precision by
evaluating the MPLs with the help of GiNaC [67, 68]. In order to verify these results, we also
calculated and matched the first few digits at various kinematic points with the help of the
programs sector_decomposition [63] and pySecDec [69], for which we found a good
agreement.
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ε0 ε1 ε2 ε3 ε4

J1 1 0 1.6449341 −0.80137127 1.8940657
J2 1 1.5342081 2.8218314 2.3241685 2.8313617
J3 0 −0.74005414i −0.069477641i −1.2212434i 0.47861551i
J4 0 −0.74005414i −1.2048747i −2.1988043i −1.9222094i
J5 1 0.64791401 + 3.1415927i −4.7249059 + 2.0354819i −6.357481−4.5083042i −2.2935901−13.276148i
J6 1 2.1821222 + 3.1415927i −2.5539737 + 6.8553389i −12.242073 + 2.3118807i −16.987211−15.906447i
J7 0 0.74005414i −1.2490335i 4.0114542i −7.931414i
J8 0 0 −0.54768013 0.47549335 −2.5261306
J9 0 1.4585842i 0.050868134i 6.4537259i −4.1565512i
J10 0 1.5342081 −1.7502763 5.7981619 −12.790768
J11 0 0 2.2406312 1.5008239 10.399293
J12 0 −1.5342081 0.91070302 −5.9968338 8.8611857
J13 0 0 −0.54768013 −0.10283443 −0.91150188
J14 0 0.74005414i −2.3249487 + 0.54896908i −1.7246372−3.4477675i 3.1827067−5.0304701i
J15 0 0 −0.40473314 −0.19458947 −0.73218618
J16 0 −1.4801083i 2.8153204i −7.8872093i 15.843952i
J17 0 0 −0.27384007 0.25481947 −1.2423838
J18 0 0 0 0.54349879 −0.505106
J19 0 −0.74005414i 1.3879888i −3.8717735i 8.3164903i
J20 0 0 −0.40473314 −0.012836717 −1.766483
J21 0 0 0 1.0679293 0.50513135
J22 0 0 0.40473314 + 2.8771124i −2.1230218−1.197403i 0.75622025 + 11.086074i
J23 0 0 0 1.4266372 −0.44333884
J24 0 0 −0.80946628 0.078302369 −3.4351805
J25 0 0 0 1.447072 −0.3662879
J26 0 0 −0.83957331 −0.038098053 −3.7104375
J27 0 0 0.40473314 0.19458947−0.29952444i 0.73218618−0.17212665i
J28 0 0 0 2.4399925 + 2.5430133i −6.9287969 + 2.8702957i
J29 0 0 0 0.69594214 1.4888349
J30 0 0 0 1.3639124 2.6684304
J31 0 0 0 1.530613−0.59904887i 2.5899951−1.0224563i
J32 0 0 0 −1.6890882 −0.27250855
J33 0 0 0 0.372767 0.60475274
J34 0 0 0 0.30226015 0.61200492
J35 0 0 −0.29189318 −0.65744728 −1.3431597
J36 0 0 0 1.5567823−0.61339819i 2.7076661−1.0872344i
J37 0 0 0 −0.78991058 0.12604664
J38 0 0 0 0.050162573 0.077279399
J39 0 0 0 0.18876826 0.41154739

Table 6.2. Numerical results for the first five terms of the ε-expansion of the master integrals J1-J39 at
the kinematic point s = m2

H .

6.8 The total decay rate of the Higgs to two bottom quarks:

As already motivated at the beginning of this chapter, a precise measurement of the decay rate of
the H→ bb̄ process directly tests the Yukawa coupling of the Higgs boson to a down-type quark.
This is necessary to solidify the Higgs boson as the only possible source of mass generation in the
fermion sector of the SM. The Higgs boson decays most frequently in a pair of bottom quarks,
which is a down-type quark. In the last part of this chapter, we briefly sketch the computation of
the full decay rate using optical theorem mentioned in chapter 2. The scattering amplitudes, as a
function of energy, has a branch cut on the positive real axis, and with the optical theorem, we can
relate this imaginary part, of the forward scattering amplitude, to the total cross section.

In order to perform this calculation, we can parametrize the corrections to the decay rate as follows
[98]:

Γ(H→ bb̄) = Γ(0)(1 +∆αs +∆(α) +∆(ααs) + ...),

where the ellipses stand for higher-order corrections in α and αs. We can split the EW corrections
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into a weak and a QED contributions which are separately finite and gauge-invariant:

∆(α) =∆(QED) +∆(weak),

∆(ααs) =∆(QED,αs) +∆(weak,αs).

Here, Γ(0) denotes the Born decay rate given by

Γ(0) =
Ncαm2

bMH

8s2
W M2

W

β3
0,

where Nc = 3 is the number of colors and sW is the sine of the weak mixing angle.

β0 =

√
1−4m2

b/M
2
H is the velocity of the produced bottom quarks, which we can approximate to

1. In section
〈
6.1.1

〉
, we have used the Fermi constant GF . It is useful to write down the relation

between the two, which is given by,

GF
√

2
=

πα

2s2
W M2

W

1
1−∆r

,

where ∆r parametrizes the radiative corrections to the muon decay beyond QED corrections within
the effective four-fermion theory. We need to renormalize all the quantities properly and take care
of the counterterms.

The analytic expression for ∆(QED,αs) can easily be obtained from the O(α2
s) QCD corrections. In

order to obtain the ∆(weak,αs) corrections, we can use the following technique. We consider the
imaginary part of the three-loop propagator-type diagrams which are obtained by dressing the
O(α) diagrams in all possible ways with a coupling of top quark and Higgs. For the evaluation of
the full decay rate Γ(H→ bb̄), we use the optical theorem which for our case has the form

Γ(H→ bb̄) =
1

MH
Im

[∑
H

(q2 = M2
H + iε)

]
,

where
∑

H(q2) is the Higgs boson two-point function which is evaluated on the Higgs boson mass
shell.

Figure 6.6. The propagator type diagrams needed to evaluate the decay rate of Higgs boson into a pair
of b quarks using the optical theorem.
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In figure 6.6, we show some examples of the type of diagrams needed in order to calculate the
decay rate of the Higgs boson to a pair of bottom quarks using the optical theorem. Here t, b
W and H denote the top quark, the bottom quark, the electroweak boson, and the Higgs boson
respectively. All the diagrams symmetrical to these diagrams are not shown explicitly. The master
integrals are also expected to be expressible in terms of MPLs.

6.9 Results

In this chapter, we discussed the two-loop master integrals relevant to the O(ααs)-corrections to
the decay H → bb̄ through a Htt̄-coupling. The master integrals depend exactly on the masses
of the heavy particles (mW and mt) along with momentum p2 of the Higgs boson. We found out
that all the master integrals are expressed in terms of MPLs with an alphabet of 13 letters after
we rationalize both the occurring square roots simultaneously. The integrals can be evaluated to
arbitrary precision with the help of the GiNaC-library and we also had a look at the numerical
values for the special case p2 = m2

H . These integrals are needed for computation of the partial
width for the Higgs decay into a pair of bottom quarks. At the end, we also briefly looked at the
full decay width computation for the process H→ bb̄.







7 Conclusion and Outlook

The close coordination between experiments being carried out at the LHC and theoretical
predictions by performing perturbative calculations is the need of the hour. We live in the time
when mass corrections from electorweak bosons and top quarks are highly required. We
therefore need to evaluate multi-loop scattering amplitudes which requires the evaluation of
Feynman integrals with masses, which poses several theoretical challenges. In order to solve
Feynman integrals we can use the method of differential equations. Bringing them to canonical
form is often the easiest way to write down the solution immediately as iterated integrals when
expanded as a Laurent series in the dimensional regulator ε. For most of the massless cases it is
possible to write down the results in terms in MPLs. This is however not generally true when we
start including masses in the diagram. The simplest example of an integral which cannot be
written down in terms of MPLs is the sunrise diagram. This opens the door for Feynman integrals
evaluating to functions ‘beyond the MPLs’.

In this work we discussed various techniques which can be employed to solve such integrals.
The case of the planar double box showed us an example of a diagram which contains three
different elliptic curves, and hence was difficult to tackle. We showed explicitly how we can use
the factorization properties of the Picard–Fuchs operator associated to the topologies, to construct
a basis which decouples the system of differential equation in blocks of size 2× 2, at order ε0, at
worst. For the system of linear differential equation, we used a special linear form to write down
the results as iterated integrals of the kernels present in our differential system. The differential
system simplifies in two particular limits, t = m2 and s = ∞, where t and s are the Mandelstam
variables in the system and m is the mass in the loop. At these special points we are able to write
the result of our integrals as MPLs and iterated integrals of modular forms respectively.

We also discussed the computation of master integrals for the two-loop mixed QCD-EW
corrections for the Higgs decay to two bottom quarks. This family of integral contains a hint of
being associated to an elliptic curve. However we are able to find out that this is not the case, and
once we rationalize all the occurring square roots in the differential system, we are able to write
down the result of the master integrals entirely in terms of MPLs. Apart from performing the
evaluation of the master integrals, we also had a look at how we can use these calculations to
observe a physical observable, namely the full decay rate of Higgs boson to a pair of bottom
quarks. The techniques discussed in this work are expected to be useful for tackling more
complicated topologies in future.
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8.1 Feynman rules

In this section, we mention the Lagrangian for the SM for completeness and also show explicitly
how to read off the rules from the Lagrangian in the case of QCD.

8.1.1 QCD lagrangian:

The S U(N) gauge invariant classical Lagrangian density which governs the interaction between
fermions and non-Abelian gauge fields is given as

Lclassical = −
1
4

Fa
µνF

a,µν +

n f∑
f =1

ψ
( f )
α,i

(
i /Dαβ,i j−m f δαβδi j

)
ψ

( f )
β, j ., (8.1.1)

where,

Fa
µν = ∂µAa

ν −∂νA
a
µ + gs f abcAb

µAc
ν ,

/Dαβ,i j ≡ γ
µ
αβDµ,i j = γµ

(
δi j∂µ− igsT a

i jA
a
µ

)
(8.1.2)
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and Aa
µ and ψ( f )

α,i are the guage and fermionic quark fields, respectively. The indices in each case
correspond to the following:

a,b, · · · : color indices in the adjoint representation⇒ [1,N2−1] ,

i, j, · · · : color indices in the fundamental representation⇒ [1,N] ,

α,β, · · · : Dirac spinor indices⇒ [1,D] ,

µ,ν, · · · : Lorentz indices⇒ [1,D] . (8.1.3)

Here D is the space-time dimensions. The mass of the quark corresponding to ψ( f ) is given by
m f and gS stands for the strong coupling constant, respectively. The structure constants of SU(N)
group is given by f abc. The generators of the fundamental representations of SU(N) is related to
the structure constant as [

T a,T b
]

= i f abcT c . (8.1.4)

T a are traceless, Hermitian matrices and we can normalise them as

Tr
(
T aT b

)
= TFδ

ab (8.1.5)

where, TF = 1
2 . The completeness relation for these matrices are given as

∑
a

T a
i jT

a
kl =

1
2

(
δilδk j−

1
N
δi jδkl

)
. (8.1.6)

In addition, we also have the following relations for them.∑
a

(T aT a)i j = CFδi j ,

f acd f bcd = CAδ
ab , (8.1.7)

where CA = N and CF = N2−1
2N are the quadratic Casimirs of the SU(N) group in the adjoint and

fundamental representations respectively. For QCD, the SU(N) group index, N = 3 and the flavor
number n f = 6.

In order to obtain the propagators unambiguously we need to add some terms in the Lagrangian
to ‘fix the gauge’. The gauge fixing in a covariant way, when done through the path integral
formalism, generates new particles called Faddeev-Popov (FP) ghosts having spin-0 but obeying
fermionic statistics. Perturbative gauge theories in certain non-covariant gauges, such as light-
cone or axial gauges, are ghost free. However ghosts are unavoidable in order to maintain manifest
Lorentz invariance in a perturbative gauge theory.

As a result we obtain the following full quantum Lagrangian density:

LY M =Lclassical +Lgauge− f ix +Lghost (8.1.8)

where, the second and third terms on the right hand side correspond to the gauge fixing and FP
contributions, respectively. These are obtained as

Lgauge− f ix = −
1
2ξ

(
∂µAa

µ

)2
,

Lghost =
(
∂µχa∗)Dµ,abχ

b (8.1.9)
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with

Dµ,ab ≡ δab∂µ−gs fabcAc
µ . (8.1.10)

The arbitrary gauge parameter ξ is introduced in order to specify the gauge in a covariant way. The
prescription of fixing gauge in a covariant way is known as Rξ gauge, the choice ξ = 1 is known
as Feynman gauge. However, the physical result is independent of the choice of the gauges. The
field χa and χa∗ are ghost and anti-ghost fields, respectively.

All the Feynman rules can be read off from the quantized Lagrangian LY M in Eq. 8.1.8. Let us see
how they are represented. The quarks are denoted through straight lines, gluons through curly and
ghosts through dotted lines. We provide the rules in Rξ gauge.

• The Feynman rules for the propagators for quarks, gluons and ghosts are given from this
theory as:

j,β i,α

p2 p1

i (2π)4 δ(4) (p1 + p2)δi j

(
1

/p1−m f + iO

)
αβ

b, ν a,µ

p2 p1

i (2π)4 δ(4) (p1 + p2)δab
1
p2

1

−gµν + (1− ξ)
p1µp1ν

p2
1



b a

p2 p1

i (2π)4 δ(4) (p1 + p2)δab
1
p2

1

• For the interacting vertices the rules are given by:

p1p2

p3

i,αj,β

a,µ

igs (2π)4 δ(4) (p1 + p2 + p3)T a
i j

(
γµ

)
αβ
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p1p2

p3

a,µb, ν

c,ρ

gs

3!
(2π)4 δ(4) (p1 + p2 + p3) f abc

×
[
gµν(p1− p2)ρ + gνρ(p2− p3)µ + gρµ(p3− p1)ν

]

p1p2

p3

bc

a,µ

−gs (2π)4 δ(4) (p1 + p2 + p3) f abc pµ1

p1p2

p3 p4

a,µb, ν

c,ρ d,σ −
g2

s

4!
(2π)4 δ(4) (p1 + p2 + p3 + p4){(

f ac,bd − f ad,cb
)
gµνgρσ +

(
f ab,cd − f ad,bc

)
gµρgνσ

+
(

f ac,db− f ab,cd
)
gµσgνρ

}
with

f ab,cd ≡ f abx f cdx

To be noted that we need to take care of the symmetry factor for any Feynman diagram, and for
each quark/ghost loop, we need to multiply a factor of (-1).

8.1.2 Construction of the full standard model Lagrangian

Now we have a look at the different parts which contribute to the full SM Lagrangian [112]..

Gauge Group S U(2)L×U(1)Y

The full gauge field (including the fermionic part) Lagrangian is

Lgauge = −
1
4

Fa
µνF

aµν−
1
4

Wa
µνW

aµν−
1
4

BµνBµν, (8.1.11)

where the field strength Fµν was defined in the previous subsection. The covariant derivative for
the S U(2)L group is given as

Wa
µν = ∂µWa

ν −∂νW
a
µ + gεabcWb

µWc
ν (a = 1, . . . ,3), (8.1.12)
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where, for the fundamental representation of S U(2)L, T a = τa/2, where τa are the Pauli matrices,
εabc is the completely anti-symmetric tensor in 3 dimensions. The covariant derivative for a field
ψL transforming under this group non-trivially is given by,

DµψL =
(
∂µ− igWa

µT a
)
ψL. (8.1.13)

As for the Abelian U(1)Y group, we have

Bµν = ∂µBν−∂νBµ, (8.1.14)

with the covariant derivative given by

Dµψ =
(
∂µ− ig′ ηYY Bµ

)
ψ, (8.1.15)

where Y is the hypercharge of the field and we put ηY = ±, connected to the electric charge through

Q = T3 +ηYY . (8.1.16)

We can write the covariant derivative in terms of the mass eigenstates Aµ and Zµ, as follows: W3
µ = ηZ Zµ cosθW + Aµηθ sinθW

Bµ = −ηZZµηθ sinθW + Aµ cosθW
,

 ηZZµ = W3
µ cosθW −Bµηθ sinθW

Aµ = W3
µ ηθ sinθW + Bµ cosθW

. (8.1.17)

For a doublet field ψL, with hypercharge Y , we get,

DµψL =

[
∂µ− i

g
√

2

(
τ+W+

µ +τ−W−µ
)
− i

g
2
τ3W3

µ − ig′ηYYBµ

]
ψL

=

[
∂µ− i

g
√

2

(
τ+W+

µ +τ−W−µ
)
+ iηee Q Aµ− i

g
cosθW

(
τ3

2
−Q sin2 θW

)
ηZZµ

]
ψL, (8.1.18)

where

W±µ =
W1
µ ∓ iW2

µ
√

2
, (8.1.19)

τ± =
τ1± iτ2
√

2
. (8.1.20)

We can define the charge operator by

Q =


1
2 +ηYY 0

0 − 1
2 +ηYY

 , (8.1.21)

and we have used the relations,

ηe e = −ηθ gsinθW

= −g′ cosθW . (8.1.22)

For a singlet of S U(2)L, ψR, we have,

DµψR =
[
∂µ− ig′ηYYBµ

]
ψR

=

[
∂µ + iηee Q Aµ + i

g
cosθW

Q sin2 θWηZZµ

]
ψR . (8.1.23)

For each fermion field ψ, we define the projection operator P by ψR,L = PR,Lψ, where

PR,L =
1±γ5

2
, (8.1.24)

and ψ = ψR +ψL.
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The Higgs Lagrangian

The SM includes a Higgs doublet which can be viewed as,

Φ =


ϕ+

v + H + iϕZ
√

2

 . (8.1.25)

Since ηYYΦ = +1/2, the covariant derivative reads

DµΦ =

[
∂µ− i

g
√

2

(
τ+W+

µ +τ−W−µ
)
+ iη

g
2
τ3W3

µ − i
g′

2
Bµ

]
Φ

=

[
∂µ− iη

g
√

2

(
τ+W+

µ +τ−W−µ
)
+ iηee Q Aµ− i

g
cosθW

(
τ3

2
−Q sin2 θW

)
ηZZµ

]
Φ, (8.1.26)

where, for the doublet field Φ,

Q =

(
1 0
0 0

)
. (8.1.27)

The Higgs Lagrangian is given as

LHiggs =
(
DµΦ

)†
DµΦ+µ2Φ†Φ−λ

(
Φ†Φ

)2
, (8.1.28)

from which we obtain the relation,

v2 =
µ2

λ
, m2

h = 2µ2, λ =
g2

8
m2

h

m2
W

. (8.1.29)

We expand this Lagrangian to find the following terms quadratic in the fields:

LHiggs = · · ·+
1
8

g2v2W3
µWµ3 +

1
8

g′2v2BµBµ−
1
4

gg′v2W3
µBµ +

1
4

g2v2W+
µ W−µ

+
1
2

v∂µϕZ
(
−g′Bµ + gW3

µ

)
+

i
2

gvW−µ ∂
µϕ+−

i
2

gvW+
µ ∂

µϕ− . (8.1.30)

After diagonalization, the first three terms give a massless field (the photon) and a massive one
(the Z) while the fourth term gives mass to the charged W±µ bosons. The relations for the photon
and the Z boson is given in Eq. (8.1.17), Using Eq. (8.1.17), we get

LHiggs = · · ·+
1
2

m2
ZZµZµ + m2

WW+
µ W−µ

+ηZ mZZµ∂µϕZ + imW
(
W−µ ∂

µϕ+−W+
µ ∂

µϕ−
)
, (8.1.31)

where
mW =

1
2

gv, mZ =
1

cosθW

1
2

gv =
1

cosθW
mW . (8.1.32)

From this equation we find that the terms in the last line are quadratic in the fields, which
complicates the definition of the propagators. We can again use gauge fixing to overcome this.
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The Yukawa Lagrangian, fermion masses and the CKM matrix

The fermions and the Higgs doublet gain mass after the spontaneous symmetry breaking. For this,
we have

LYukawa = −LL YlΦ `R−Q
′

L YdΦ d′R−Q
′

L Yu Φ̃ u′R + h.c., (8.1.33)

where LL (Q′L) are the left-handed lepton (quark) doublets and,

Φ̃ = iσ2Φ
∗ =


v + H− iϕZ
√

2
−ϕ−

 . (8.1.34)

Yl, Yd, and Yu are general complex 3×3 matrices in the flavor spaces. We diagonalize Yd and Yu

to bring the quarks into the mass basis. For this, we use the unitary transformations

u′L = uL U†uL, d
′

L = dL U†dL,

u′R = UuR uR, d′R = UdR dR, (8.1.35)

such that
v
√

2
U†uL Yu UuR = Mu = diag(mu,mc,mt) ,

v
√

2
U†dL Yd UdR = Md = diag(md,ms,mb) . (8.1.36)

The Higgs couplings of the quarks become diagonal in this new basis,:

−LH =

(
1 +

h0

v

) [
u Mu u + d Md d

]
. (8.1.37)

The photon and the Z couplings remain diagonal, however, the couplings to the W mixes the upper
and lower components of Q′L, which transforms differently under the unitary transformations.
Therefore, the couplings to W± become off-diagonal:

LW =
g
√

2
uL V γµ dL W†µ + h.c., (8.1.38)

where we get the Cabibbo-Kobayashi-Maskawa (CKM) matrix,

V = U†uLUdL. (8.1.39)

The complete SM Lagrangian

The complete Lagrangian for the Standard Model is obtained by summing all the contribution
explained above.

LSM =Lgauge +LFermion +LHiggs +LYukawa +LGF +LGhost, (8.1.40)

The Feynman rules can be read off from the Lagrangian as before. We do not mention the rules
here explicitly and instead ask the reader to refer to [112].

8.2 Tensor reduction

In this section we have a look at the technique of reducing multi-loop tensor integrals to scalar
integrals. We start with the one-loop case and then discuss the multi-loop case.
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8.2.1 One-loop reduction

Let us discuss some features of the one-loop reduction. We first introduce the notation for integrals
with one, two or three external legs, as follows:

A0(m) = eεγEµ2ε
∫

dD

iπ
D
2

1
(−k2 + m2)

,

B0,µ,µν(p,m1,m2) = eεγEµ2ε
∫

dDk
iπD/2

1,kµ,kµkν
(−k2 + m2

1)(−(k− p)2 + m4
2)
,

C0,µµν(p1, p2,m1,m2,m3) = eεγEµ2ε
∫

dDk
iπD/2

1,kµ,kµkν
(−k2 + m2

1)(−(k− p1)2 + m2
2)(−(k− p1− p2)2 + m2

3)
,

(8.2.1)

where the notation for the numerator is quite self-explanatory. More legs and higher rank tensor
can be easily generalized from the formulae shown above. The reduction technique in this case
follows from the fact that the result can only depend on tensor structures which are built from
external momenta pµj and the metric tensor gµν, due to Lorentz symmetry. Therefore, we can write
a general form for the tensor integrals in terms of form factors times external momenta and/or the
metric tensor, as shown below.

Bµ = pµB1,

Bµν = pµpνB21 + gµνB22,

Cµ = pµ1C11 + pµ2C12,

Cµν = pµ1 pν1C21 + pµ2 pν1C22 + (pµ1 pν2 + pν1 pµ2)C23 + gµνC24. (8.2.2)

We then solve for the form factors B1, B21, B22, C11 etc by first contracting both the sides with the
metric tensor and the external momenta. In this process, we re-write the resulting scalar products
between the loop momenta kµ and external momenta on the left hand side in terms of inverse
propagators, so that the terms cancel with the propagators downstairs and we are left with integral
with trivial numerical factors. Then the remaining step is just to invert the matrix which one
obtains on the right hand side of the above equation.

This algorithm is based on the observation that for one-loop integrals a scalar product of the loop
momentum with an external momentum can be expressed as a combination of inverse propagators,
which does not hold true if one goes to two or more loops. Let us now look at the tensor reduction
for multi-loop case.

8.2.2 Multi-loop reduction

For a general multi-loop tensor integrals let us start with integral which we obtain after Feynman or
Schwinger parametrization and removal of the odd power of the loop momentum in the numerator.
The integrals with an even power of the loop momentum can be related by Lorentz invariance to
scalar integrals:∫

dDk
iπD/2 kµkν f (k2) = −

1
D

gµν
∫

dDk
iπD/2 (−k2) f (k2),∫

dDk
iπD/2 kµkνkρkσ f (k2) =

1
D(D + 2)

(gµνgρσ + gµρgνσ + gµσgνσ))
∫

dDk
iπD/2 (−k2)

2
f (k2). (8.2.3)
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It is easy to generalize this to arbitrary higher tensor structures. Using the dimension shift operator
introduced in section

〈
4.1.1

〉
, we get

D+

∫
dDk

iπ
D
2

f (k2) =

∫
d(D+2)k

iπ(D+2)/2 f (k2). (8.2.4)

Shifting the dimension from D to D+2 is equivalent to introducing a factor (−k2) in the numerator.
Therefore we can use the dimensional operator for example for the term∫

dDk
iπD/2 kµkν f (k2) = −

1
2

gµνD+

∫
dDk

iπD/2 f (k2). (8.2.5)

In addition we also get (Feynman or Schwinger) parameter x j in the numerator when we shift the
loop momentum like k

′

= k− xp. For tensor reduction, it is more convenient to use the Schwinger
parameters, which is given by

1
−Pν

=
1

Γ(ν)

∫ ∞

0
dxxν−1exp(xP). (8.2.6)

A schwinger parameter x in the numerator is equivalent to raising the power of the original
propagators by one. This is visualized as:

ν1i+
1

(−Pi)ν1
= νi

1
(−Pi)ν1 + 1

=
1

Γ(νi)

∫ ∞

0
dxix

νi−1
i xiexp(xiPi), (8.2.7)

where we used the same convention i for shifting the propagator by one unit, as introduced before.
Therefore, we can consider an integral where a Schwinger parameter occurs in the numerator as
a scalar integral and the corresponding propagator is raised to a higher power. In this way, we
can express all tensor integrals in terms of scalar integrals by using an intermediate Schwinger
parametrization. However, these scalar integrals involve higher power of the propagators and/or
shifted dimensions, which is the price we pay for this technique.

8.3 The bubble graph

In other to use the techniques in the chapter of differential equations, we show an explicit example
of the equal-mass bubble integral. This integral is given by

Bν1ν2(D, p2,m2,µ2) = eγEε(µ2)
ν12−

D
2

∫
dDk

iπ
D
2

1
(−k2

1 + m2)ν1(−k2
2 + m2)ν2

, (8.3.1)

where ν12 denotes the sum of the two propagator-powers. We recall that the tadpole integral T1 is
give by

Tν(D,m2,µ2) = eγEε
Γ(ν− D

2 )
Γ(ν)

(m2

µ2

) D
2 −ν

. (8.3.2)

Generating and solving the IBP relations gives us the following reduction for the bubble integrals:

B21 = B12 = (D−3)
µ2

p2−4m2 B11 +
1
2

(D−2)
µ4

m2(p2−4m2)
T1. (8.3.3)
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Using the dimensional shift relation for B11, we get

B11(2−2ε) = B21(4−2ε) + B12(4−2ε) = 2B21(4−2ε). (8.3.4)

Combining eq. (8.3.3) and eq. (8.3.4) and putting µ = m, we get

B11(2−2ε) = −
2x

(1 + x)2 ((1−2ε)B11(4−2ε) + (1− ε)T1(4−2ε)). (8.3.5)

If we substitute s by −m2 (1−x)2

x , we can solve the equal mass bubble integral very easily if we
consider

B̃11(2−2ε, x) = ε
(1− x)(1 + x)

2x
B11(2−2ε, s,m2,m2). (8.3.6)

The differential equation for B̃11 reads

d
dx

B̃11(2−2ε, x) = ε
(1

x
−

2
1 + x

)
B̃11(2−2ε, x)−

ε

x
T1(2−2ε) (8.3.7)

and the boundary condition
B̃11(2−2ε,1) = 0.

This integral is easily written in terms of (harmonic) polylogs, after reading off the alphabet from
eq. (8.3.7).
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8.4 More results from the ‘topbox’

As promised in chapter 5, we present here few more examples of the results for our master integrals
with different dependencies.

The first example is an integral which only depends on t and is expressible as iterated integrals of
modular forms {1, f2, f3, f4,g2,1}. The modular forms have been defined in eq. (5.5.2).

J(0)
6 = 0,

J(1)
6 = 0,

J(2)
6 = F (1, f3;q6) + 3ζ2,

J(3)
6 = −F ( f2,1, f3;q6)−F (1, f2, f3;q6) + 3ζ2F (1;q6)−3ζ2F ( f2;q6) +

21
2
ζ3−18ζ2 ln (2) ,

J(4)
6 = F ( f2, f2,1, f3;q6) + F ( f2,1, f2, f3;q6) + F (1, f2, f2, f3;q6) + F (1, f4,1, f3;q6)

+ 3ζ2F ( f2, f2;q6)−3ζ2F (1, f2;q6)−3ζ2F ( f2,1;q6) + 3ζ2F (1, f4;q6) + ζ2F (1, f3;q6)

+

(
21
2
ζ3−18ζ2 ln (2)

)
(F (1;q6)−F ( f2;q6))−39ζ4 + 72Li4

(
1
2

)
+ 36ζ2 ln2(2)

+ 3ln4 (2) .

(8.4.1)

The next example is that of an integral which depends on both s and t.

J(0)
24 =0,

J(1)
24 =0,

J(2)
24 =0,

J(3)
24 =Iγ

(
η(b)

0 ,η
( b

a )
2 , f3;λ

)
−

3
2

Iγ
(
η(b)

0 ,η(b)
3,5,ω0,4;λ

)
−3 Iγ

(
η(b)

1,1,ω0,4,ω0,4;λ
)

+ Iγ
(
η

( a
b )

2 ,η(a)
0 , f3;λ

)
+

9
2

Iγ
(
η(b)

0 ,a(b)
3,2,ω0,4,ω0,4;λ

)
+ Iγ

(
η(b)

0 ,a(a,b)
4,1 ,η(a)

0 , f3;λ
)

+
7
4
ζ2 Iγ

(
η(b)

0 ;λ
)
−2ζ2 Iγ

(
η(b)

1,1;λ
)
+ 3ζ2 Iγ

(
η

( a
b )

2 ;λ
)
+ 3ζ2 Iγ

(
η(b)

0 ,a(b)
3,2;λ

)
+ 3ζ2 Iγ

(
η(b)

0 ,a(a,b)
4,1 ;λ

)
−3 ln(2)ζ2−

7
4
ζ3.

(8.4.2)
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8.5 Topologies present in the two-loop planar double box

In this section we show diagrams of all master topologies for the case of topbox, discussed in
chapter 5. In total there 27 master topologies.
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Figure 8.1. Master topologies (part 1).
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Figure 8.2. Master topologies (part 2).
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Figure 8.3. Master topologies (part 3).
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Figure 8.4. Master topologies (part 4).



144 Appendix

8.6 Topologies for the two-loop mixed QCD-EW corrections for
H→ bb̄ through a Htt̄ coupling

In this section we show the diagrams of all master topologies relevant for the diagrams contributing
to the two-loop mixed QCD-EW corrections for H → bb̄ through a Htt̄ coupling, discussed in
chapter 6.
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J3 J4

J5 J6
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Figure 8.5. Master topologies (part 1).
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Figure 8.6. Master topologies (part 2).



146 Appendix
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Figure 8.7. Master topologies (part 3).
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