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Abstract

The study of matrix models is of considerable significance. In this thesis

we study the large N quantum mechanics of two matrices (X1,X2), coupled

via a Yang-Mills interaction, in a non supersymmetric setting. Of the two

matrices, X1 is treated exactly, while X2 is understood as an “impurity” in the

background of the first. Considering the ground state wavefunction with no

X2 “impurities”, it is observed that this state depends on the eigenvalues of

the X1 matrix, resulting in additional shifts in the calculation of the kinetic

term for the X1 sector. This results in an effective potential which, using

the results of collective field theory, is used to obtain the planar large N

nonsupersymmetric background. The system is studied in both weak and

strong coupling. The strong coupling system is free of infrared divergences.
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Chapter 1

Introduction

1.1 Background

The origin of string theory was to describe the large number of mesons and

hadrons, which interact through strong force. These particles were seen as

different oscillation modes of a string. Although it explained well some of

the features of hadron spectrum, such as the mass angular momentum re-

lation, this idea was replaced by that of Quantum Chromodynamics (QCD)

which is a renormalizable quantum field theory having quarks as the funda-

mental constituent of matter. This theory has a running coupling constant,

which means that at high energies the coupling constant becomes very small

(asymptotic freedom), but at low energies, this coupling constant becomes

very large (quark confinement). This makes the theory strongly coupled

at low energies and it is not easy to perform perturbative calculations. A

possible solution of this problem is the large N expansion as suggested by ’t

Hooft.

Large N Expansion

The first hint of string-gauge duality was given by ’t Hooft in 1974 [1], where

he proposed that the large N limit of SU(N) gauge theory is equivalent to

8



CHAPTER 1. INTRODUCTION 9

string theory. This proposal of ’t Hooft was intended to overcome the prob-

lem of low energy calculations in QCD where the theory becomes strongly

coupled and the perturbative methods do not work. QCD which is the can-

didate for the theory of strong interactions, consists of quarks which come

in three colors. Hence the theory is based on SU(3) gauge group. ’t Hooft

suggested that if instead the gauge group is taken as SU(N), with N being the

number of colors, then taking the large N limit such that λ = g2
YM

N is held

fixed, may lead to a solvable approximation. This is called the ’t Hooft limit.

This large N expansion is of the form similar to the perturbative expansion

of closed strings, thus suggesting the equivalence between gauge theory and

string theory. The perturbative expansion of a large N gauge theory in 1/N

and g2
YM

N has the form [2],[3]:

Z =

∞∑

g=0

N2−2g fg(λ)

here fg(λ) is some polynomial and g is the genus or the number of handles

in the diagram. The diagram with g = 0 is the leading order term in the

large N expansion and can be drawn on a plane. These are therefore known

as planar diagrams. Each term with g > 0 suppresses the leading term by

factor of 1/N2. This perturbative expansion in gauge theory has form similar

to the loop expansion in string theory

Z =

∞∑

g=0

g
2g−2
s Zg

with string coupling gs equal to 1/N. We therefore see that the large N

limit connects gauge theory with string theory. However, this connection

is based on perturbative expansion that does not converge. Therefore, it is

only indicative and not a rigorous derivation of the equivalence.
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AdS/CFT Correspondence

This possible gauge - string theory duality found a concrete realization

in the context of the Anti-de-Sitter / Conformal Field theory (AdS/CFT)

correspondence, originally proposed by Juan Maldacena [4],[5],[6]. This

can be described as the duality between a theory with gravity and one

without gravity. This is so because the string theory side of this equivalence,

in the AdS background, includes gravitons and thus it describes gravity,

and the gauge theory side, which is given by conformal field theory does

not contain any particle with spin greater than one and thus is a theory

without gravity. The original example of the AdS/CFT correspondence as

proposed by Maldacena is the equivalence between type IIB string theory

on a ten dimensional space that consists of a five dimensional Anti-de-Sitter

space and a five sphere i.e. AdS5 × S5, and maximally supersymmetric four

dimensional conformal field theory which is N=4 supersymmetric Yang-

Mills (SYM) theory. The Anti-de-Sitter space is the maximally symmetric

solution of Einstein’s equation with negative cosmological constant [7]. The

metric of AdS5 is given as

ds2 = R2[−dt2cosh2ρ + dρ2 + sinh2ρdΩ2
3]

Adding the 5-sphere of radius R, the full metric of AdS5 × S5 is

ds2 = R2[−dt2cosh2ρ + dρ2 + sinh2ρdΩ2
3 + dψ2cos2θ + dθ2 + sin2θdΩ′23].

AdS5 × S5 can be shown to be a solution to the type IIB supergravity

equations of motion [8]. The symmetry group of AdS5 is SO(2,4) and the

symmetry group of S5 is SO(6). Thus AdS5 × S5 has an overall symme-

try group SO(2, 4) × SO(6) which in complex terms is SU(2, 2 | 4) [9]. The

other side of the equivalence consists of supersymmetric conformal field

theory. The conformal field theory is quantum field theory that is invari-

ant under the group of conformal transformations. These transformations



CHAPTER 1. INTRODUCTION 11

preserve the metric up to an over all (in general x dependent) scaling fac-

tor gµν(x) → Ω2(x)gµν(x), thus preserving angles. Gauge theory, where the

coupling constant does not change as a function of the energy scale, is a con-

formally invariant theory. Now, we add supersymmetry to this conformally

invariant gauge theory, to get super conformal field theory. Supersymmetry

relates bosons to fermions and contains supercharges. TheN=4 super Yang

Mills theory consists of 32 supercharges. The field content of this theory in-

cludes the complex Weyl fermions, the vector field and six real scalar fields

[3]. These six real scalar fields have an SO(6) R-Symmetry. Including the

R-Symmetry, the N=4 SYM obeys a global supersymmetry corresponding

to the supergroup SU(2, 2 | 4), which is the same as that of AdS5 × S5. This

similarity of the supergroups of the two theories is one of the confirmations

of the AdS/CFT correspondence.

The AdS/CFT correspondence relates a theory in d+1 dimensions to a

theory without gravity in d dimensions. Thus the AdS/CFT correspondence

follows the holographic principles [6], [10] which states that all information

contained in a volume in d+1 dimensional space can be represented by

another theory which lives on the boundary of that volume in d dimensional

space. The principle of holography applies to black holes as well stating that

the black hole entropy which is the number of degrees of freedom of a black

hole can be described using the area of event horizon of the black hole. In

the context of AdS/CFT correspondence, the type II string living on AdS5×S5

dual toN=4 SYM, follows this holographic priciple becauce the SYM theory

can be thought of as living on the four dimensional boundary of the five

dimensional AdS5 space.

In this correspondence which relates type IIB string theory in ten di-

mensional AdS5 × S5 space time to maximally supersymmetric Yang Mills

theory in four dimension, the string model is controlled by two parameters

[11]: the string coupling constant gS and the “effective” string tension R2/α,
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where R is the common radius of AdS5 and S5 geometries and α is related

to the string length. The gauge theory is parameterized by the rank N of

the gauge group and the coupling constant gYM or equivalently the ’t Hooft

coupling λ = g2
YM

N. According to AdS/CFT correspondence these two sets

of parameters are related as

4πλ

N
= gS

√
λ =

R2

α
.

Beside this correspondence of parameters, AdS/CFT also relates the energy

eigenstate of AdS5 × S5 string with composite gauge theory operators of

the form OA = Tr(φi1φi2 · · ·φin) where φin are the elementary fields of N=4

SYM in the adjoint representation of SU(N) i.e. N × N hermitian matrices.

The energy eigenvalue E of a string state with respect to time in global co-

ordinates is conjectured to be equal to the scaling dimension of the dual

gauge theory operator. These scaling dimensions are the eigenvalues of

dilatation operator acting on the state OA.

The spectrum on the string side of this duality is known in the low energy

limit, corresponding to weakly curved geometries in string units i.e., to the

region
√
λ ≫ 1. While on the gauge side, the theory is understood only in

the perturbative regime i.e. λ ≪ 1. Thus AdS/CFT duality is a weak/strong

coupling duality. This, on one hand means that it makes the calculations

easier in the regions where it was previously difficult like the low energy

QCD, while on the other hand this makes any attempt at a derivation of the

AdS/CFT conjecture all the more difficult.

BMN Conjecture

The string/gauge map was made considerably more precise by Berenstein,

Maldacena and Nastase [12] in 2002, who proposed considering certain limit

on both sides of the AdS/CFT duality. The limit on the string theory side was

taken by considering a string rotating with large angular momentum on a
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great circle of the S5 sphere. In this large J limit with J2/N held fixed ( the BMN

limit) the geometry seen by this fastly moving string is a gravitational plane

wave. This limit is a particular case of the Penrose limit. Thus, the plane

wave or the pp-wave geometry is obtained by taking the Penrose limit of the

AdS5 × S5 background [13], [14]. These are the maximally supersymmetric

solutions to type IIB string theory. This has the advantage that its spectrum

is exactly known in the light cone gauge. The corresponding limit applied

on the gauge theory leads to the considerations of operators with large R-

charge J along with large number of colors N such that the effective quantum

loop counting parameter λ′ = g2
YM

N/J2 and the effective genus counting

parameter g′s = J2/N are held fixed. This R-charge J is the SO(2) generator

of rotation in the plane generated by two of the six Higgs scalars. Choosing

of two Higgs scalars from the set of six, corresponds to breaking of SO(6)

R symmetry of the gauge theory, which is equivalent to the breaking of

SO(6) symmetry of the S5 sphere by fast moving string along the equator of

the S5 sphere. According to this correspondence [17], the R-charge J of the

Yang Mills operator is proportional to the light cone momentum p+ of the

corresponding string state and the operator △ − J of the Yang mills theory

is proportional to the light cone energy p− of the same state, where △ is

the dilatation operator. This can also be stated as an equality between two

operators. On the string theory side p− can be understood as the plane wave

light cone string theory Hamiltonian, which on Yang-Mills side is equal

to difference between dilatation operator and R-charge operator. Thus the

BMN conjecture stated in another way, relates the spectrum of strings which

are eigenvalues of light cone Hamiltonian p− to the spectrum of dilatation

operator which is the Hamiltonian ofN = 4 gauge theory on R×S3 restricted

to the BMN limit.

We now explain how this spectrum of states matches on either side of

the correspondence. On the gauge theory side the operator with lowest
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value of △− J = 0 is the unique single trace operator namely Tr(ZJ) [15], [16]

where Z ≡ (φ5 + iφ6) (where φ5 and φ6 are two of the six Higgs scalars of the

N = 4,D = 4 SYM theory and trace is over N color indices). This operator

is the chiral primary operator and is associated to the 1/2BPS state whose

scaling dimension is exactly equal to J at all value of coupling parameter λ′.

It is associated to the vacuum state in the light cone gauge which is unique

state with zero light cone energy. In other words we have the correspondence

1
√

JNJ
TrZJ ←→ |0, p+ >l.c..

Here, 1√
JNJ

is the normalization constant. On the string theory side, this state

corresponds to a ground state supergravity mode with the string momentum

n = 0. These states generate the flat space spectrum. On the gauge theory

side other operators may be generated from the single trace by acting on

it with SO(6) supersymmetry lowering operator. This corresponds to the

insertion of an “impurity” and summing over all possible positions within

Tr(ZJ). This impurity is one of the six Higgs scalar fields, other than the two

defining Z. Thus the single impurity operator is given by 1√
NJ+1

Tr(φiZ
J). This

operator has the scaling dimension △ = J + 1. Similarly the two impurity

operator which is obtained by acting two distinct lowering operator on

Tr(ZJ+2) yields

1
√

JNJ+2

J∑

l=0

Tr(φZlψZJ−l)

which corresponds to string state a
φ

0

†
a
ψ

0

†
|0, p+ >. Proceeding in this manner,

all operators dual to supergravity modes of the gauge theory can be obtained

by acting with an appropriate number of lowering operators on the single

trace operator i.e. inserting the appropriate number of impurity fields in the

“string of Z’s”. This background Z fields are always assumed to be large in

number compared to the number of impurity fields i.e. the system is always

assumed to be in “dilute gas” approximation. Although the operator-state
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correspondence explained here is for scalar fields, but it can be extended to

bosonic and fermionic fields as well.

The proposal of BMN extended to the non supergravity modes as well.

This corresponds to extending the theory on string side to n , 0 modes of

excitation. The operators consisting of impurities which are the near BPS

operators come with position dependent phase term exp(2πinl/J) where l

is the position of the impurity within the trace. The operator with single

impurity is given as

1
√

J

J∑

l=1

1
√

JNJ+1
Tr(ZlφZJ−l)exp(2πinl/J).

The operator however vanishes (except for zero momentum n = 0) be-

cause of the cyclicity of the trace. The corresponding state on the string

theory side i.e. ai
n
†|0, p+ > also vanishes because of the constraint that total

momentum along the string should be zero. So we can only have more than

one oscillator state so that total momentum is zero, and thus corresponds

to a physical state. The first non-trivial example of this is the two oscilla-

tor state ai
n
†
a

j
−n

†
|0, p+ > which corresponds to gauge field theories with two

impurities φi and φ j in the sequence of Z fields summed over the possible

position of impurities along with a position dependent phase term . So the

operator state correspondence for this case is

ai
n

†
a

j
−n

†
|0, p+ >l.c. ↔

1
√

JNJ+1

J∑

l=1

Tr(φiZ
lφ jZ

J−l)exp(2πinl/J).

To summarize, each oscillator along the string is associated with one

impurity field in the sequence of Z fields on the gauge theory side, with the

sum over all possible positions for the insertion of the impurity field and a

phase proportional to the momentum. States whose total momentum is not

zero along the string correspond to operators that also vanish because of the

cyclicity of the trace.



CHAPTER 1. INTRODUCTION 16

1.2 Motivation: Matrix Models and their

Significance

Now that this correspondence between plane wave string theory and BMN

gauge theory is established as a limit of the AdS/CFT duality one might con-

sider if other properties of AdS/CFT duality also hold in this limit. One such

property of the AdS/CFT duality is the principle of holography. The bound-

ary of the plane wave string theory is a one dimensional light like direction.

So, by the principles of holography [17], one might guess that the dual gauge

theory living on the boundary of strings on the pp-wave background should

be a quantum mechanical model. This quantum mechanical system is the

plane wave matrix model [18], which arises by considering N = 4,D = 4

SYM compactified on a three sphere and performing truncation of the re-

sulting Kaluza-Klein spectrum to the lowest lying mode. The Hamiltonian

of the SYM theory corresponds to the dilatation operator and the Higgs

fields become quantum mechanical matrix coordinates. This matrix theory

in the pp-wave background has mass terms, in contrast to the matrix model

in the flat Minkowski background. This mass deformation in the pp-wave

background makes its energy spectrum discrete, whereas the spectrum in

flat background is continuous. The mass parameter of the pp-wave matrix

model is related to the four dimensional Yang Mills coupling constant as

{m
3
}

3

=
32π2

g2
ym

.

Thus we see that the pp wave string theory is dual to the matrix quantum

mechanics which arises because of the Kaluza-Klein reduction ofN = 4 SYM

on R × S3.

The study of quantum mechanics of matrix degrees of freedom is termed

as matrix model. This model first appeared in the study of nuclear physics,

when studying energy levels of atomic nuclei, and in statistical physics.
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In general, the study of matrix model, is of considerable significance and

interest, particularly their large N limit. Some of these examples are

• The large N limit of the system of N×N matrices describes the D0 branes

connected by small strings. These D0 branes provide a definition of

the M-theory in the light cone frame [19]. Thus, we see that M-theory

in the light cone frame, is exactly described by the large N limit of a

particular supersymmetric matrix quantum mechanics.

• The correlators in one dimensional matrix model are related to corre-

lators of 1/2 BPS operators in zero coupling limit ofN = 4 SYM theory.

These correlation functions are used to understand the properties of

giant gravitons and related solutions of string theory on AdS5×S5 [20].

• Another useful application in the study of matrix models is the map-

ping between basis of states made of traces (closed strings) and the

eigenvalue of matrices in terms of Schur polynomials [20], [21]

• The plane wave matrix theory is related to N = 4 SYM dilatation

operator [18].

• Multi-matrix, multi-trace operators with diagonal free two point func-

tions have also been identified [22], [23].

• The theory of quantum chromodynamics (QCD) has been thought of

as reduced to finite number of matrices with quenched momenta [24].

Alternatively they can associated with QCD zero modes on hyper-

spheres.

.

Single Matrix Models

The single hermitian matrix model is the simplest model and was solved

by [25], in the large N limit or the planar limit. In this study, the single
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matrix model was used to obtain the combinatorics of planar diagrams and

the ground state energy of a one dimensional oscillator with four vertex

interaction which lead to the introduction of fermions. The study of the

single matrix model in the fermionic picture describes, on the field theory

side, the 1/2 BPS states and their interactions. These states are associated

to chiral primary operators with conformal weight ∆ = J, where J is a

particular U(1) charge in the R-symmetry group. As the value of J changes, its

interpretation on the dual quantum gravity changes. For excitation energy

is O(1), the dual state is a state of gravitons; if it of O(
√

N) the dual state

is a string; If it is O(N) the dual state is a state of giant gravitons and if it

is O(N2) the dual state is an LLM geometry. It was shown by Lin, Lunin

and Maldacena (LLM), that a fermionic droplet configuration completely

describes 1/2 BPS states [26]. The dynamics of these 1/2 BPS states and

their interactions have a simple field theory description in terms of free

fermions associated with complex matrix in a harmonic potential. The

fermions form a droplet configuration in the phase space. These states

can also be thought of as fermions in a magnetic field on the lowest Landau

level (Quantum Hall Effect). However, the energy and flux obtained by

LLM are exactly reproduced if the free fermion matrix model is replaced

by a one dimensional hermitian matrix in a bosonic phase space density

description [27]. The study of single hermitian matrix in a bosonic phase

space description, gives the energy and flux associated with 1/2 BPS states.

These 1/2 BPS states are constructed from a system of two matrices or a

complex matrix and performing a truncation to a single hermitian matrix.

Specifically, starting with Z = X1 + iX2, where X1 and X2 are the two scalars

of the N = 4 SYM theory, and introducing the matrix valued creation and

annihilation operators

Z =
1
√
ω

(A + B†)



CHAPTER 1. INTRODUCTION 19

the 1/2 BPS states correspond to a restriction of the sector with no B excita-

tions. Thus the single hermitian matrix is the matrix describing the dynamics

of the A, A† system i.e.

M ≡ 1
√

2ω
(A + A†).

The supergravity description of these 1/2 BPS states is given in terms of

giant gravitons [28]. These giant gravitons are the solutions of D3-branes

wrapping a round S3 in S5 or in AdS5, with large angular momentum. The 1/2

BPS excitations of AdS×S configuration in both type IIB string theory and M-

theory, which is the gravity description of 1/2 BPS states was constructed and

its energy and flux was found to be in one to one correspondence with those

of a general fermionic droplet configuration [26] (referred to as LLM). The 1/2

BPS states in the AdS/CFT correspondence for maximally supersymmetric

theories are associated to chiral primary operators with conformal weight

△ = J, where J is the particular U(1) charge in the R- symmetry group. For

small excitation energies J ≪ N, these BPS states correspond to particular

gravity modes propagating in the bulk. As the excitation energy increases

J ∼ N, some of the states can be described as branes in AdS or in the internal

sphere which are the giant gravitons. Also, these 1/2 BPS states preserve

half of the supersymmetries (i.e. 16 of the 32).

The single matrix model is also used in the study of string theory in two

dimensions as a description of gravity [29]. When considered in the double

scaling limit, the single hermitian matrix model gives the two dimensional

theory of quantum gravity. However, if this map of matrix models with

string theory is considered for larger number of matrices, then tachyons

might appear in the theory.

Two Matrix Models

An extension of the map between 1/2 BPS states and free fermions was

studied [27] by considering states associated with a full two matrix problem,
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as referred to, in section 1.2.1. Here the matrix associated with A, A† forms

the large N background and is treated exactly while the other associated

with B, B† is treated like an impurity creating fluctuation in the large N

background generated by the first matrix. The second matrix is treated in a

coherent state basis, using creation and annihilation operator. The study of

such a system of combined mixed traces leads to a sequence of eigenvalue

equations, which are then solved for the case of oscillator potential, which

results from the coupling to the curvature of R × S3. This provides a two

dimensional set of eigenstates which can be thought of as an extension to

the one dimensional space representing the eigenstates of free fermions. A

mapping was proposed associating the eigenstates to the gravity states with

either S or AdS radial dependence. This mapping between gravity and

matrix model wavefunctions is found to be one to one in contrast to the

holographic map, where one of the dimensions is projected out.

The generalization of this approach to include gYM interactions was de-

veloped in [30]. By considering a multi local set of states appropriate to

the gYM interaction, a full free spectrum for two Hermitian matrices was

constructed. In addition to the identification above the direct model of two

scalars X1 and X2 was also discussed i.e. the following Hamiltonian was

considered

Ĥ ≡ 1

2
Tr(P2

1) +
ω2

2
Tr(X2

1) +
1

2
Tr(P2

2) +
ω2

2
Tr(X2

2) − g2
YMTr([X1,X2])2. (1.2.1)

When the gYM interactions are included, a full string tension corrected BMN

type Hamiltonian is obtained [30]. Further properties of the spectrum were

studied in [31], where it was shown that the full string tension corrected

spectrum depends on two momenta. For a specific value of one of these mo-

menta, the spectrum has the same structure as that of giant magnon bound

states. States with arbitrary number of impurities were also considered and

their first order (in g2
YM

N) spectrum was obtained.
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The framework used in [27]-[31] is based on the collective field theory

[32], which provides a transition from Yang Mills to string theory description.

In this method there is a direct change of variables from the matrices of the

U(N) gauge theory to the fields of string theory. The observables in the

collective field theory are thus given by loops or traces of matrix products,

which are the physical observables describing the dynamics of the theory

with large N symmetry. The resulting effective or collective Hamiltonian is

built from two interaction terms describing joining and splitting of loops.

The spectra and the interactions of these observables should have a gravity/

string field theory interpretation.

1.3 Outline

The approach taken in [27]-[31] is based on a supersymmetric setting, al-

lowing one to consistently neglect normal ordering terms. As a result the

planar background is harmonic and gYM independent. In this thesis, a non

supersymmtric background, is considered, in an approach where the two

matrices are treated asymmetrically, and properties of the large N back-

ground are obtained.

The thesis is organised as follows.

Chapter 2 describes the collective field theory technique, as it applies

to matrix models. The change of variables to invariant collective fields is

described and the Jacobian also wanted with this change of variables is

found by requiring Hermiticity. The single matrix case is then discussed in

some detail.

Chapter 3 introduces, in a non supersymmetric background, the quantum

mechanical Hamiltonian of two hermitian matrices, coupled via Yang - Mills

interaction. Here one of the matrices (X1), is treated exactly and the other

(X2), as impurity in the background of the first matrix. If V is the unitary
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matrix that diagonalizes X1, we observe that the commutator of P1 with

X̄2 ≡ V†X2V and P̄2 is non zero and therefore we introduce a canonical

transformation for P1, so that the transformed momenta does commute with

X̄2 and P̄2.

In this thesis we are interested in the “state with no X̄2 impurities”.

Because of the dependence of such states on X1 degree of freedom, it is

seen that the canonically transformed momenta, acting on such states, is not

equal to zero. Therefore there is an additional shift in the kinetic term for

X1. This is carefully taken into account in chapter 4, and the shifted kinetic

energy is calculated.

In chapter 5 the planar background, in terms of the density of eigenvalues

of X1 matrix, is obtained implicitly through a non-linear integral equation.

The equal time correlator for the X1 matrix, in the weak coupling limit is

obtained using the density description and the perturbation theory, to the

order λ2.

Chapter 6 deals with the strong coupling limit (λ→∞), in which we see

that the effective potential obtained due to the additional shifts, discussed

above, does not contribute. The large N, ground state energy and< Tr(X1)2 >

are obtained in this limit and it is seen that these results are free of infrared

divergences.

Chapter 7 is reserved for conclusions, where we state the results that we

obtained in this thesis.

The Appendix A describes the double index notations of the matrices

and Appendix B gives the detailed calculations for the shifted background

momenta in original system of coordinates. Appendix C gives the alternate

method for the calculation of< Tr(X1)2 >, using perturbation theory, to O(λ).



Chapter 2

Collective Field Theory

In this thesis we will use the collective field theory in an attempt to obtain

an effective Hamiltonian in terms of the density of eigenvalues of a single

hermitian matrix. It is therefore useful that this method be revised in this

chapter.

Collective field theory represents a systematic formalism for describing

the dynamics of invariant observables of the theory. The method consists

of a direct change of variables to the invariant observables. This leads to an

effective Hamiltonian, and in this new representation, the large N limit is

determined by classical stationary points. The large N spectrum is, in general

determined by small fluctuations about the stationary collective field. Thus,

the Hamiltonian in terms of these new invariant observables describes the

full dynamics of the theory.

Consider the Hamiltonian for a multi-matrix system, with hermitian

matrices Xi

H = −1

2
Tr(

M∑

i=1

∂

∂Xi

∂

∂Xi
) + V(Xi) (2.0.1)

≡ −1

2

M∑

i=1

∑

mn

∂

(∂Xi)mn

∂

(∂Xi)nm
) + V(Xi) (2.0.2)

where the potential V(Xi) is invariant under the unitary transformation

Xi → U†XiU

23
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The Hamiltonian is invariant under this symmetry, and one may consider

equal time single trace correlators (operators) of the form

Tr(· · ·
M∏

i=1

Xni

i

M∏

j=1

X
m j

j
· · · )

In the large N limit, this change of variables from the original variables to

invariant loop variables implies a reduction of degree of freedom. For exam-

ple in the single matrix systems the collective variables corresponds to the

eigenvalue basis. These variables are known to be independent in the large

N limit, as evidenced in studies of single matrix models and matrix descrip-

tion of lower dimensional strings. For finite N there are constraints, which

can be considered after the change of variables. This results in interesting

effects related to the stringy exclusion principle.

Consider the change of variable to

Xi → φC (2.0.3)

where C is a gauge invariant loop or word index. The kinetic term of

Hamiltonian under the above change of variables becomes

T = −1

2
Tr(

M∑

i=1

∂

∂Xi

∂

∂Xi
) = −1

2

∑

C,C′

Ω(C,C′)
∂

∂φC

∂

∂φC′
+

1

2

∑

C

ω(C)
∂

∂φC
(2.0.4)

where

Ω(C,C′) = Tr(

M∑

i=1

∂φC

∂Xi

∂φC′

∂Xi
)

and

ω(C) = −Tr(

M∑

i=1

∂2φC

∂Xi∂Xi
)

Ω(C,C′) “joins” loops or words and ω(C) “splits” loops or words. For exam-

ple, if φC = Tr(XJ

1
) and φC′ = Tr(XJ′

1
) then Ω = JJ′Tr(XJ−1

1
XJ′−1

1
). So in general,

one may write schematically

Ω(C,C′) =
∑

φC+C′
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where C+C′ is obtained by adding the two words C and C’. Similarly ω can

be schematically written as

ω(C) =
∑

ωC′ωC′′

which represents all processes of splitting the word C into C’ and C”.

Because of the Jacobian J associated with the change to the new variable

φC, the operator ∂
∂φC

, transforms as

∂

∂φC
→ J1/2 ∂

∂φC
J−1/2 =

∂

∂φC
− 1

2

∂lnJ

∂φc
(2.0.5)

where J is the Jacobian of the transformation.

Under this transformation the kinetic piece of the Hamiltonian becomes

ω(C)∂C +Ω(C,C′)∂C∂C′ → ω(C)(∂C −
1

2
∂C ln J) +Ω(C,C′)(∂C −

1

2
∂C ln J)

(∂C′ −
1

2
∂C′ ln J)

= ω(C)∂C −
1

2
ω(C)∂C ln J + ∂C(Ω(C,C′)∂C′)−

(∂CΩ(C,C′))∂C′ −
1

2
Ω(C,C′)∂C∂C′ ln J−

Ω(C,C′)∂C ln J∂C′ +
1

4
Ω(C,C′)∂C ln J∂C′ ln J

Using the hermiticity condition, terms linear in ∂C are zero. This implies

that

ω(C) = Ω(C,C′)(∂C′ lnJ) + ∂C′Ω(C′,C) (2.0.6)

Therefore, the explicitly hermitian collective field Hamiltonian is

H =
1

2
(∂C +

1

2
∂ClnJ)Ω(C,C′)(−∂C′ +

1

2
∂C′lnJ) + V (2.0.7)

Using equation (2.0.6)

∂C′lnJ = Ω−1(C,C′)ω(C) −Ω−1(C,C′)∂C′Ω(C,C′)

If we substitute for ∂C′ ln J in equation (2.0.7), then the leading contribution

will be

H = −1

2

(

∂CΩ(C,C′)∂C′ −
1

4
ω(C′)Ω−1(C,C′)ω(C)

)

+ V
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=
1

2

(

Π(C)Ω(C,C′)Π(C′) +
1

4
ω(C′)Ω−1(C,C′)ω(C)

)

+ V (2.0.8)

where,

Π(C) = −i
∂

∂φ(C)

The full Hamiltonian in addition contains counter terms which contribute

at loop level. This form is explicitly required by the hermiticity requirement

and is

2∆H = −1

2

∂ω(C)

∂φC
+

1

2

∂Ω(C′′,C′)

∂φC′′
Ω−1(C′,C)ω(C)

+
1

4

∂Ω(C′′,C)

∂φC′′
Ω−1(C,C′)

∂Ω(C′,C′′′)

∂φC′′′

The formalism developed above gives a general description of the collec-

tive field theory technique. In the next section we will apply this formalism

to the case of single matrix.

2.1 Single Hermitian Matrix

For a single hermitian matrix, one can choose

φC ≡ φk ≡ Tr(eikM)

Its Fourier transform is the density of eigenvalues and is called the x

representation of the variable. In the x representation, the collective field

variable is given as

φ(x) =

∫

dk

2π
e−ikxφk =

∑

i

δ(x − λi)

where λi is the eigenvalue of the matrix M. In the x representation ω(C) and

Ω(C,C′) are given as

Ω(x, y) = ∂x∂y(φ(x)δ(x − y))

ω(x) = 2∂x(φ(x)

?

dz
φ(z)

x − z
) (2.1.1)
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Therefore, the leading order term of the Hamiltonian in (2.0.8) is

H =

∫

dx

∫

dy − 1

2

∫

dx∂x
∂

∂φ(x)
φ(x)∂x

∂

∂φ(x)
+

1

2

∫

dxφ(x)(

?

dy
φ(z)

x − y
)
2

+

∫

dxφ(x)V(x) − µ(

∫

dxφ(x) −N) (2.1.2)

where the Lagrange multiplier µ enforces the constraint
∫

dxφ(x) = N.

There is an identity

∫

dxφ(x)(

?

dy
φ(y)

x − y
)
2

=
π2

3

∫

dxφ3(x)

Also, to exhibit the large N dependence, we do the following rescaling

x→
√

Nx

φ(x)→
√

Nφ(x)

−i
∂

∂ψ(x.0)
≡ Π(x)→ 1

N
Π(x)

µ→ Nµ

Thus, the effective Hamiltonian in the large N limit, which is sufficient for

the study of the large N background and fluctuations, is

H0
e f f =

1

2N2

∫

dx∂xΠ(x)φ(x)∂xΠ(x) +N2(

∫

dx
π2

6
φ3(x) + φ(x)(v(x) − µ))

(2.1.3)

The second term of the above equations is of leading order in N. This will

therefore generate the background and the first term will generate the fluc-

tuation around this background. These fluctuations can be examined by

defining the background φ0 as the result of extremising the second term of

(2.1.3) with respect to φ(x). Thus, we obtain the background as,

πφ(x) = πφ0(x) =
√

2µ − 2v(x) (2.1.4)



Chapter 3

Non-Supersymmetric Two Matrix

Model

The two matrix problem that we are interested in, is described by the quan-

tum mechanical Hamiltoninan

Ĥ ≡ 1

2
Tr(P2

1) +
ω2

2
Tr(X2

1) +
1

2
Tr(P2

2) +
ω2

2
Tr(X2

2) − g2
ymTr([X1,X2])2. (3.0.1)

Here X1 and X2 are the two N×N hermitian matrices and P1 and P2 are their

conjugate momenta respectively, such that

[Xa
i j,P

b
mn] = iδinδ jmδab (i, j,m,n = 1 · · ·N) (a, b = 1, 2)

[Xa
i j,X

b
mn] = [Pa

i j,P
b
mn] = 0

These two matrices are coupled via the standard Yang-Mills interaction.

The Hamiltonian above can be thought of, as associated with two of the

six Higgs scalars of bosonic sector of N = 4 SYM, in the leading Kaluza-

Klein compactification on R × S3. The harmonic potential results from the

coupling to the curvature of the manifold. In the present study we consider

the non-supersymmetric setting.

28
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3.1 Two - Matrix Hamiltonian in

Creation/Annihilation Basis

In the two matrix Hamiltonian given in (3.0.1), one of matrices, X1, is treated

in coordinate space and exactly (in the large N limit), and the other, X2, in a

creation/annihilation basis. Letting

X2 ≡
1
√

2w
(A2 + A†2) P2 = −i

√

w

2
(A2 − A†2) (3.1.1)

the Hamiltonian (3.0.1) takes the form

Ĥ =
1

2
Tr(P2

1) +
w2

2
Tr(X2

1) + wTr(A†2A2) +N2 w

2

−
g2

YM

2w
Tr(2[X1,A

†
2][X1,A2] + [X1,A2]2 + [X1,A

†
2]2) (3.1.2)

+
g2

YM
N

w
Tr(X2

1) −
g2

YM

w
(Tr(X1))2

Here A2 and A†2 are the creation and annihilation operators related to the

X2 matrix such that

[(A2)i j, (A
†
2)mn] = δimδ jn (i, j,m,n = 1 · · ·N)

[(A2)i j, (A2)mn] = [(A†2)i j, (A
†
2)mn] = 0

As the interaction is quadratic in the oscillators, one can perform a Bogoli-

ubov transformation

(V†A2V)i j = cosh(φi j)Bi j − sinh(φi j)B
†
i j (3.1.3)

with

tanh(2φi j) =

g2
YM

w
(λi − λ j)

2

w +
g2

YM

w
(λi − λ j)2

, (3.1.4)

where the λi’s are the eigenvalues of the matrix X1 and V is the unitary

matrix that diagonalizes X1. Then (3.1.2) takes the form
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Ĥ =
1

2
Tr(P2

1) +
w2

2
Tr(X2

1) +

N∑

i, j=1

√

w2 + 2g2
YM

(λi − λ j)2 (B†i jB ji +
1

2
). (3.1.5)

We would like to obtain an effective Hamiltonian for the X1 coordinate (or

its eigenvalues), which should be able to reproduce expectation values of

large N invariant operators, depending only on X1. In this thesis we will

concentrate on the contribution to the large N ground state configuration

coming from the zero point energies of the B, B† oscillators, and we are

therefore led to the Hamiltonian:

Ĥ0 =
1

2
Tr(P2

1) +
w2

2
Tr(X2

1) +
1

2

N∑

i, j=1

√

w2 + 2g2
YM

(λi − λ j)2 (3.1.6)

However, P1 acts non trivially on the ground state with no B impurities,

and therefore in (3.1.6), the Hamiltonian in the X1 sector has to be corrected.

In addition P1 no longer commutes with B, B†. These issues will be addressed

in the sections to follow.

3.2 Diagonalizing One of the Matrices (X1)

Consider the interaction part of the Hamiltonian (3.0.1)

Hint = −g2
YMTr([X1,X2])2

This can be rewritten as

Hint = −g2
YMTr[X1,X2][X1,X2]

= −2g2
YM(Tr(X2

1X2
2) − Tr(X1X2X1X2))

If we diagonalize matrix X1 using the unitary transformation X1 = VΛV†,

where V is a unitary matrix, then the interaction piece of the hamiltonian

(3.0.1) together with the potential term for matrix X2 is given as

U =
1

2
ω2TrX2

2 + 2g2
YM(Tr(X2

1X2
2) − Tr(X1X2X1X2))
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=
1

2
ω2TrX2

2 + 2g2
YM(λ2

i (X̄2)i j(X̄2) ji − λi(X̄2)i jλ j(X̄2)i j)

=
1

2
ω2TrX2

2 + g2
YM(λi − λ j)

2(X̄2)i j(X̄2) ji

=
1

2
(ω2 + 2g2

YM(λi − λ j)
2)(X̄2)i j(X̄2) ji

=
1

2
ω2

i j(λ)(X̄2)i j(X̄2) ji

Here λi is the eigenvalue of the matrix X1 and X̄2 = V†X2V. Similarly

we can write the momentum for X̄2 as P̄2 = V†P2V. So, the creation and

annihilation operators Bi j, B†
i j

introduced in the previous section are nothing

but the creation, annihilation operators associated with the scalar field (X̄2)i j,

each with frequency ωi j. We find it easier to work with (P̄2)i j and (X̄2)i j,

instead of B, B†. We write the Hamiltonian sector in terms of “bared” co-

ordinates as

H =
1

2
PA

1 P1A +
1

2
ω2XA

1 X1A +
1

2
P̄A

2 P̄2A +
1

2
ω2

A(λ)X̄2AX̄A
2 (3.2.1)

Here the indices denote a double index notation i.e. A = (i j). The details

for this double index notation are given in Appendix A.

As a result of the definition of X̄2 , P̄2, we observe that

[P1, X̄2] , 0 [P1, P̄2] , 0

In the next section, we derive a canonical transformation which will result

in standard commutation relation.

3.3 Canonical transformation

We have seen earlier that the commutators of P1 with P̄2 and X̄2 are non-zero.

These commutators take the form

[(P1)A, (X̄2)B] = −iFA
BC(X̄2)C (3.3.1)

[(P1)A, (P̄2)B] = −iFA
BC(P̄2)C (3.3.2)
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Therefore, we perform a canonical transformation of P1 to get its commutator

with P̄2 and X̄2 equal to zero. This canonical transformation is given as

(P̄1)A = (P1)A + FA
BC(X̄2)B(P̄2)C (3.3.3)

It can be shown that the commutator of (P̄1)A with (P̄2)
B

and (X̄2)
B

is indeed

zero.

[(P̄1)A, (P̄2)
B
] = [(P1)A + FA

CD(X̄2)C(P̄2)D, (P̄2)
B
]

= −iFA
BC(P̄2)C + FA

CD[(X̄2)C, (P̄2)
B
](P̄2)D

= −iFA
BC(P̄2)C + FA

CDiδC
B(P̄2)D

= −iFA
BC(P̄2)C + iFA

BC(P̄2)C

= 0

and,

[(P̄1)A, (X̄2)
B
] = [(P1)A + FA

CD(X̄2)C(P̄2)D, (X̄2)
B
]

= −iFA
BC(X̄2)C + FA

CD(X̄2)C, [(P̄2)
B
, (X̄2)D]

= −iFA
BC(X̄2)C − iFA

CD(X̄2)CδD
B

= −iFA
BC(X̄2)C − iFA

CB(X̄2)C

= 0,

provided FA
BC = −FA

CB. We will show that FA
BC is indeed anti-symmetric.

Explicit Form of FA
BC

Referring to (3.3.1), this can be rewritten as

[Pdc, (V
†X2V)pq] = −iFdc,pq,ml(V

†X2V)lm (3.3.4)

The left hand side of this equation is simply,

−i(
∂

∂X1
)
cd

(V†X2V)pq
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This can be calculated using,

(
∂

∂X1
)
cd

=
∑

ab

∑

m,b

VamV†mcVdb

λb − λm

∂

∂Vab
+

∑

b

V†bcVdb
∂

∂λb

Thus the left hand side of (3.3.4) is

(
∂

∂X1
)
cd

(V†X2V)pq = (
∂

∂X1
)

cd

V†pi(X2)i jV jq

= (X2)i j

VdbV
†
mcVam

λb − λm

∂

∂Vab
V†piV jq

= (X2)i j

VdbV
†
mc

λb − λm
(V†piV jmδbq − V jqδpmV†bi)

=
VdqV

†
mcV

†
pi

V jm

λq − λm
−

VdbV
†
pcV jqV

†
bi

λb − λp
(X2)i j

=
(V†X2V)pmV†mcVdq

λq − λm
−

V†pcVdb(V
†X2V)bq

λb − λp

=
(V†X2V)pbV

†
bc

Vdq

λq − λb
+

V†pcVdb(V
†X2V)bq

λp − λb

=
V†

bc
Vdq(X̄2)pb

λq − λb
+

V†pcVdb(X̄2)bq

λp − λb

=
V†mcVdq(X̄2)pm

λq − λm
+

V†pcVdl(X̄2)lq

λp − λl

= (
V†mcVdqδlp

λq − λm
+

V†pcVdlδmq

λp − λl
)(X̄2)lm

Comparing this with right hand side of (3.3.4)

Fdc,pq,ml =
V†mcVdqδlp

λq − λm
+

V†pcVdlδmq

λp − λl
(3.3.5)

This is the expression for FA
BC. Comparing indices, we have A = (dc),

B = (qp) and C = (lm). Thus if we want to write an expression for FA
CB, we

change (lm)↔ (qp) i.e. l↔ q and m↔ p. Thus we get

FA
CB =

V†pcVdlδqm

λl − λp
+

V†mcVdqδpl

λm − λq
(3.3.6)

Comparing these two equations, we see that FA
BC = −FA

CB. This proves the

anti - symmetry of FA
BC.



Chapter 4

Effective X1 Hamiltonian

We proceed by concentrating on the large N configuration of the system for

the ground state configuration and correlators without X2 “impurities”. The

state with no X2 “impurity” is given as

Ψ0 ∼ exp(−1

2
ωi jX̄2i jX̄2 ji) (4.0.1)

The normalization for this ”no impurity” state is determined as follows

Ψ0 = A exp(−1

2

∑

i, j

ωi jX̄2i jX̄2 ji)

∫

dX̄2Ψ
2
0 = A2

∫

dX̄2 exp(−
∑

i, j

ωi jX̄2i jX̄2 ji) = 1

⇒ A2
∏

i, j

√
π

ωi j
= 1

⇒ A =
∏

i, j

(
ωi j

π
)1/4 (4.0.2)

The normalized no “impurity” state is thus given as

Ψ0 =
∏

i, j

(
ωi j

π
)1/4 exp(−1

2

∑

i, j

ωi j(X̄2)i j(X̄2) ji)

= exp(
1

4

∑

A

lnωA −
1

2
ωA(X̄2A))(X̄2

A
) (4.0.3)

The 2 sector acting on this ground state just gives the zero point energy

of a harmonic oscillator as is explicitly shown below

(
1

2
P̄2

A
P̄2A +

1

2
ω2

AX̄2AX̄2
A

)Ψ0

34
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=
(

− 1

2
(
∂

∂X̄2

)
ab

(
∂

∂X̄2

)
ba

+
1

2
ω2

ab(X̄2ab)(X̄2ba)
)

exp(−1

2
ωi j(X̄2i j)(X̄2 ji))) (4.0.4)

since,

(
∂

∂X̄2

)
ab

exp(−1

2
ωi j(X̄2i j)(X̄2 ji)) = −(ωab(X̄2)ba) exp(−1

2
ωi j(X̄2i j)(X̄2 ji))

and,

(
∂

∂X̄2

)
ba

(−ωab(X̄2)ba) exp(−1

2
ωi j(X̄2i j)(X̄2 ji))

= −(ωab − ωab(X̄2)baωba(X̄2)ab) exp(−1

2
ωi j(X̄2i j)(X̄2 ji))

Therefore,

(
1

2
P̄2

A ¯P2A +
1

2
ω2

AX̄2AX̄2
A

)Ψ0 =
1

2

∑

ab

ωabΨ0 (4.0.5)

and we obtain equation (3.1.6)

Ĥ0 =
1

2
Tr(P2

1) +
w2

2
Tr(X2

1) +
1

2

N∑

i, j=1

√

w2 + 2g2
YM

(λi − λ j)2 (4.0.6)

Considering an arbitrary wavefunction, written as

ψ(λ, X̄2) = f (λ)ψ0(λ, X̄2)

we define an effective X1 Hamiltonian to be

H
e f f

1
f (λ) ≡

∫

dX̄2ψ0 ∗ ⋆(λ, X̄2)Ĥψ0(λ, X̄2) f (λ) (4.0.7)

Given the dependence ofψ0 on λ, P1ψ0 , 0, and this has to be carefully taken

into account.

It will be shown later (4.1.20), that this effective Hamiltonian only de-

pends on the eigenvalues of X1, resulting in considerable simplification of

degrees of freedom.

4.1 Shifted kinetic term

From the canonical transformation in (3.3.3), we have

P1A = P̄1A − FA
BCX̄2BP̄2C (4.1.1)
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For simplicity of notation, we drop the bar sign from now on. The kinetic

term then becomes

1

2
PA

1 P1AΨ0(λ,X2)→1

2
(PA

1 − FABCX2BP2C)(P1A − FA
BCX2BP2C)Ψ0(λ,X2)

=
1

2

(

PA
1 P1A

︸︷︷︸

Term 1

− [PA
1 ,FA

BCX2BP2C]
︸               ︷︷               ︸

Term 2

− 2FA
BCX2BP2CPA

1
︸             ︷︷             ︸

Term 3

+

FABCX2BP2CFA
BCX2BP2C

︸                       ︷︷                       ︸

Term 4

)

Ψ0(λ,X2) (4.1.2)

In addition to the shift resulting from the canonical transformation (4.1.1),

there is an additional shift that results from the fact that P1Ψ0 , 0.

One has,

P1AΨ0(λ,X2) = P1A

(

exp(
1

4

∑

D

lnωD) exp(−1

2

∑

D

ωDX2
DX2D)

)

= Ψ0(λ,X2)




P1A −

i

4

∑

D

∂A lnωD +
i

2

∑

D

∂AωDX2
DX2D





= Ψ0(λ,X2)




P1A −

i

4

∑

D

∂A lnωD(1 − 2ωDX2
DX2D)





Thus,

P1AΨ0(λ,X2) = Ψ0(λ,X2)(P1A − i(∆Y)A) (4.1.3)

where, the additional shift is given by

(∆Y)A =
1

4

∑

D

∂A lnωD(δD
D − 2ωDX2

DX2D)

Then Term 1 in (4.1.2) is given as

1

2
P1

AP1AΨ0(λ,X2) =
1

2
Ψ0(P1

A − i(∆Y)A)(P1A − i(∆Y)A)

=
1

2
Ψ0

(

P1
AP1A − i[P1

A,∆YA] − i2(∆Y)AP1
A − (∆Y)A(∆Y)A

)

(4.1.4)

Taking the ground state expectation value of (4.1.4) gives,

1

2





P1
AP1A −

A
︷           ︸︸           ︷

2i
〈
(∆Y)A

〉
P1

A





− 1

2

B
︷           ︸︸           ︷
〈

(∆Y)A(∆Y)A

〉

−1

2

C
︷          ︸︸          ︷

i
〈

[P1
A,∆YA]

〉

(4.1.5)
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where the expectation value of any operator O is given as

〈

Ô(X2)
〉

≡
∫

dX2Ψ
⋆
0 (X2, λ)Ô(X2)Ψ0(X2, λ)

In particular,

< X2AXB
2 >=

δB
A

2ωB
(4.1.6)

Thus term A in (4.1.5) is given as

〈∆Y〉A =
1

4

∑

D

∂A lnωD

〈

(δD
D − 2ωDX2

DX2D)
〉

=
1

4

∑

D

∂A lnωD(δD
D − 2ωD

1

2ωD
δD

D)

= 0 (4.1.7)

The vanishing of this term (multiplying P1A linearly) and the vanishing of

term 3 in (4.1.2) (as will be shown later), are required for consistency of this

method.

Term B of (4.1.5) is given as

− 1

2

〈

(∆Y)A(∆Y)A

〉

=

= −1

2

〈(
1

4
∂A lnωB(δB

B − 2ωBX2
BX2B)

) (
1

4
∂A lnωB(δB

B − 2ωBX2
BX2B)

)〉

= −
〈( 1

32
∂A lnωB(δB

B − 2ωBX2
BX2B)∂A lnωC(δC

C − 2ωCX2
CX2C)

)〉

= − 1

32

〈(

∂A lnωB(δB
B − 2ωBX2

BX2B)∂A lnωCδ
C
C

−∂A lnωB(δB
B − 2ωBX2

BX2B)∂A lnωC2ωCX2
CX2C

)〉

= − 1

32

(

− ∂A lnωBδ
B
B∂

A lnωC2ωC

δC
C

2ωC

+ 4∂A lnωB∂
A lnωCωBωC

〈

X2
BX2BX2

CX2C

〉 )

= − 1

32

(

− ∂A lnωB∂
A lnωC

+ 4ωBωC∂A lnωB∂
A lnωC

(
δB

B

2ωB

δC
C

2ωC
+

gBC

2ωB

gBC

2ωC
+
δC

B

2ωB

δB
C

2ωC

)
)

= − 1

16
∂A lnωB∂

A lnωB (4.1.8)
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Term C in (4.1.5) is given as

− i
1

2

〈

[P1
A,∆YA]

〉

=

= −i
1

2
(−i)∂A

1





1

4

∑

D

∂A lnωD(δD
D − 2ωDX2

DX2D)





= −1

2





1

4

∑

D

∂A∂A lnωD

〈

(δD
D − 2ωDX2

DX2D)
〉

+

+
1

4

∑

D

∂A lnωD(−2∂AωD)
〈

X2
DX2D

〉





=
1

8
∂A lnωD∂

A lnωD (4.1.9)

Now, substituting (4.1.7), (4.1.8) and (4.1.9), for term A, B and C respectively

in (4.1.5), gives the term 1 in (4.1.2)

− 1

16
∂A lnωB∂

A lnωB

+
1

8
∂A lnωD∂

A lnωD

=
1

16
∂A lnωB∂

A lnωB (4.1.10)

In order to calculate term 2 in (4.1.2), we note that

P2CΨ0 = iωCX2CΨ0 (4.1.11)

and hence,

iΨ0(PA
1 FA

BCX2BωCX2C)

= i((PA
1 FA

BC)ωC < X2BX2C > +FA
BC(PA

1ωC) < X2BX2C >)

= i((PA
1 FA

BC)ωC

gBC

2ωB
+ FA

BC(PA
1ωC)

gBC

2ωB
)

= 0 (Since FA
BB = 0) (4.1.12)

In order to calculate Term 3, we use (4.1.3) and (4.1.11) to give

−(FA
BCX2BP2CPA

1 )Ψ0 = Ψ0(−iFA
BCX2BωCX2C(P1

A − i(∆Y)A))
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= (−iFA
BCωC < X2BX2C > P1

A

︸                            ︷︷                            ︸

A

−FA
BCωCX2BX2C(∆Y)A

︸                    ︷︷                    ︸

B

) (4.1.13)

Term A given in the above expression is calculated as follows

Term A = FA
BCωC

δBC

2ωC

= 0 (4.1.14)

and, Term B is given as

Term B = −1

4
FA

BCωCX2BX2C∂
A lnωD(δD

D − 2ωDX2
DX2D)

= −1

4

(

FA
BCωC∂

A lnωD 〈X2BX2C〉+

2FA
BCωCωD∂

A lnωD

〈

X2BX2CX2
DX2D

〉)

= −1

2

(

FA
BCωCωD∂

A lnωD

(

gBC

2ωB

δD
D

2ωD
+

gCD

2ωC

δD
B

2ωD
+

gBD

2ωD

δD
C

2ωC

))

= −1

8

(

∂A lnωD(FA
DCgCD + FA

BDgBD)
)

= 0 (4.1.15)

substituting (4.1.14) and (4.1.15) in (4.1.13), we get

Term 3 = 0 (4.1.16)

Now we are left to calculate term 4 in (4.1.2). Starting with

1

2
FABCX2BP2CFA

DEX2DP2EΨ0(λ,X2)

=
1

2
FABCFA

DEX2BP2C(X2DiωEX2E)Ψ0

=
1

2

(

iFABCFA
DEωEX2B((−iδCD)X2E + X2D(−iδCE))

+ iFABCFA
DEωEX2BX2DX2E(iωCX2C)

)

Ψ0

=
1

2

(

FABCFA
CEωEX2BX2E + FABCFA

DCωCX2BX2D

− FA
BCFADEωCωEX2BX2CX2DX2E

)

Ψ0

we obtain
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1

2

(

FABCFA
CEωE < X2BX2E > +FABCFA

DCωC < X2BX2D >

− FA
BCFADEωCωE < X2BX2CX2DX2E >

)

=
1

2

(

FABCFA
CEωE

gBE

2ωB
+ FABCFA

DCωC

gBD

2ωB

− FA
BCFADEωCωE

( gBC

2ωB

gDE

2ωE
+

gBD

2ωB

gCE

2ωC
+

gBE

2ωB

gCD

2ωC

) )

=
1

2

(1

2
(FABCFA

CB + FABCFA
BCωC

ωB
) − FABCFACB + FABCFABC

ωC

ωB

)

=
1

2

(

− 1

2
FABCFA

BC(1 − ωC

ωB
) +

1

4
FABCFABC

(

1 − ωC

ωB

) )

= −1

8
FABCFABC

(

1 − ωC

ωB

)

(4.1.17)

Using (4.1.10), (4.1.12), (4.1.16) and (4.1.17) for term 1, term 2, term 3 and

term 4 in (4.1.2) gives the shifted kinetic term as

1

2
PA

1 P1A →
1

2
PA

1 P1A −
1

8

∑

ABC

FA
BCFA

BC

(

1 − ωC

ωB

)

+
1

16
∂A lnωB∂

A lnωB (4.1.18)

Using the expression of FA
BC, we can simplify the above expression, with

A = (cd),B = (pq) and C = (lm), FA
BC is given as

FA
BC =

VcpV†
md

λp − λm
(1 − δpm)δql +

VclV
†
qd

λq − λl
(1 − δql)δpm

Replacing, c↔ d, p↔ q, l↔ m, we can get expression for FA
BC, which is

given as

FA
BC =

VdqV
†
lc

λq − λl
(1 − δql)δpm +

VdmV†pc

λp − λm
(1 − δpm)δql

Using these two expressions, we find

FA
BCFA

BC =
(1 − δpm)δql

(λp − λm)2
+

(1 − δql)δpm

(λq − λl)
2

Therefore the first term in (4.1.18), can be rewritten as

− 1

8

∑

ABC

FA
BCFA

BC

(

1 − ωC

ωB

)

=

− 1

8

∑

pq,lm





(1 − δpm)δql

(λp − λm)2
+

(1 − δql)δpm

(λq − λl)
2





(

1 − ωlm

ωpq

)

= −1

8

∑

p,l,m

(1 − δpm)

(λp − λm)2

(

1 − ωlm

ωlp

)
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+
∑

p,l,q

(1 − δql)

(λq − λl)
2

(

1 −
ωlp

ωpq

)

= −1

4

∑

p,l,m

(1 − δpm)

(λp − λm)2

(

1 − ωlm

ωlp

)

Thus, from (4.1.18), finally we obtain,

1

2
P1

AP1A →
1

2
PA

1 P1A −
1

4

∑

p,l,m

(1 − δpm)

(λp − λm)2

(

1 − ωlm

ωlp

)

+
1

16
∂A lnωB∂

A lnωB

(4.1.19)

Therefore, we arrive at the expression for H
e f f

1

H
e f f

1
=

1

2
PA

1 P1A −
1

4

∑

p,l,m

(1 − δpm)

(λp − λm)2

(

1 − ωlm

ωlp

)

+
1

16
∂A lnωB∂

A lnωB +
1

2

∑

A

ωA

(4.1.20)

It is important to note that the effective potential depends only on the eigen-

values of X1, and therefore one can use the collective field theory to obtain

an effective hamiltonian in terms of the density of these eigenvalues.

This will be done in the next chapter, but in the next section we provide

an additional check of our result (4.1.19).

4.2 Shifted Background Momenta in Original

System of Coordinates

We show in this section that working with X̄2 is the same as working with

the original X2 coordinate. This is done by rewriting the X2 frequency that

we got in terms of X̄2 again in terms of X2, as follows:

ωi j(X̄2)i j(X̄2) ji = ωi j(V
†X2V)i j(V

†X2V) ji

= ωi jV
†
ia(X2)abVbjV

†
jc(X2)cdVdi

= (X2)ab[V
†
iaVbjωi jVdiV

†
jc](X2)cd

= (X2)abMab,cd(X2)cd

= (X2)baMab,cd(X2)cd
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which in the double index notation is

XA
2ωA

BX2B , ωA
B =Mab,cd ≡ V†iaVbjωi jVdiV

†
jc

where A = (ab), B = (cd).

Thus the Hamiltonian in the original system is

H =
1

2
P2

1 +
1

2
ω2X2

1 +
1

2
P2

2 +
1

2
(X2)abMab,cd(X2)cd

It has been shown earlier that X2 sector acting on the ground state with no

X2 impurities is just the zero point energy of simple harmonic oscillator i.e.

1
2
Mab,cd. Thus the hamiltonian acting on the ground state with no X2 impurity

is

H0 =
1

2
P2

1 +
1

2
ω2X2

1 +
∑

ab,cd

1

2
Mab,cd

As before, since this ground state wavefunction has frequency depending in

the eigenvalue of X1, P1 acting on this wavefunction is not zero. i.e.

P1Ψ0(X1,X2) , 0

So the more precise statement of the Hamiltonian in the X1 sector is

H
e f f

1
≡

∫

dX2Ψ
∗
0(X1,X2)ĤΨ0(X1,X2) (4.2.1)

i.e. We want to integrate over the X2 degree of freedom. The ground state

Ψ0(X1,X2) is of the form

Ψ0(X1,X2) =
∏

C

ω1/4
C

exp(−1

2
XC

2ωC
DX2D)

Then,

P1AΨ0(X1,X2) = P1A





∏

C

ω1/4
C

exp
(

−1

2
XC

2ωC
DX2D

)




=




P1A

∏

C

ω1/4
C




exp

(

−1

2
XC

2ωC
DX2D

)

+
∏

C

ω1/4
C

(

P1A exp
(

−1

2
XC

2ωC
DX2D

))
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+





∏

C

ω1/4
C

exp
(

−1

2
XC

2ωC
DX2D

)



P1A

=




−i

∂

∂XA
1





∏

C

ω1/4
C








exp

(

−1

2
XC

2ωC
DX2D

)

+
∏

C

ω1/4
C

(

−i
∂

∂XA
1

exp
(

−1

2
XC

2ωC
DX2D

))

+





∏

C

ω1/4
C

exp
(

−1

2
XC

2ωC
DX2D

)



P1A

= Ψ0(X1,X2)
1

4ωC
[P1A, ωc]

+Ψ0(X1,X2)
(

−1

2
XC

2 [P1A, ωC
D]X2D

)

+Ψ0(X1,X2)P1A

= Ψ0(X1,X2)
(

P1A −
1

2

(

XC
2 [P1A, ωC

D]X2D

− 1

2ωC
[P1A, ωC]

))

and,

PA
1 P1AΨ0(X1,X2) = Ψ0(X1,X2)

(

PA
1 −

1

2

{

XC
2 [PA

1 , ωC
D]X2D −

1

2ωC
[PA

1 , ωC]
})

(

P1A −
1

2

{

XC
2 [P1A, ωC

D]X2D −
1

2ωC
[P1A, ωC]

})

= Ψ0(X1,X2)
[

PA
1 P1A −

1

2

{

XC
2

[

PA
1 , [P1A, ωC

D]
]

X2D

−1

2
(PA

1

1

ωC
)[P1A, ωC] − 1

2ωC

[

PA
1 , [P1A, ωC]

]}

−1

2

{

XC
2 [P1A, ωC

D]X2D −
1

2ωC
[P1A, ωC]

}

PA
1

−1

2

{

XC
2 [PA

1 , ωC
D]X2D −

1

2ωC
[PA

1 , ωC]
}

P1A

+
1

4

{

XC
2 [PA

1 , ωC
D]X2D −

1

2ωC
[PA

1 , ωC]
}

{

XE
2 [P1A, ωE

F]X2F −
1

2ωE
[P1A, ωE]

}]

= Ψ0(X1,X2)
[

PA
1 P1A −

1

2

{

XC
2

[

PA
1 , [P1A, ωC

D]
]

X2D
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−1

2
(PA

1

1

ωC
)[P1A, ωC] − 1

2ωC

[

PA
1 , [P1A, ωC]

]}

−
{

XC
2 [PA

1 , ωC
D]X2D −

1

2ωC
[PA

1 , ωC]
}

P1A

+
1

4

{

XC
2 [PA

1 , ωC
D]X2D −

1

2ωC
[PA

1 , ωC]
}

{

XE
2 [P1A, ωE

F]X2F −
1

2ωE
[P1A, ωE]

}]

This gives the kinetic piece of the corrected Hamiltonian. In order to get the

kinetic piece of (4.2.1) one is left to perform the gaussian integral

〈

X2AXB
2

〉

2

One obtains,
〈

X2AXB
2

〉

2
=

1

2
(ω−1)A

B
(4.2.2)

Thus, using the above relation the kinetic piece of (4.2.1) can be calculated. In

particular, it can be shown that the terms linear in P1A vanishes. In Appendix

B we show that,

〈{

XC
2 [PA

1 , ωC
D]X2D −

1

2ωC
[PA

1 , ωC]
}〉

2

= 0 (4.2.3)

In order to calculate,

−1

2

〈{

XC
2

[

PA
1 , [P1A, ωC

D]
]

X2D −
1

2
(PA

1

1

ωC
)[P1A, ωC] − 1

2ωC

[

PA
1 , [P1A, ωC]

]}〉

2

(4.2.4)

One first requires knowledge of,

[

PA
1 , [P1A, ωC

D]
] 〈

XC
2 X2D

〉

This equals,

−
(

2

ωik

ωil − ωik

(λk − λl)
2
+

1

ωi j

1

λk − λp

∂ωi j

∂λk
+

1

2ωi j

∂2ωi j

∂λk
2

)

Also,

1

2
(PA

1

1

ωC
)[P1A, ωC] =

1

2
(−i

∂

∂X1A

1

ωC
)(−i

∂

∂X1A
ωC)
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=
1

2

∑

p

∑

i j

(

1

ωi j

∂ωi j

∂λp

)2

and,

〈{

− 1

2ωC

[

PA
1 , [P1A, ωC]

]}〉

2

=
1

ωi j

1

λk − λp

∂ωi j

∂λk
+

1

2ωi j

∂2ωi j

∂λk
2

Summing these two terms shows that (4.2.4) equals

− 1

2

〈{

XC
2

[

PA
1 , [P1A, ωC

D]
]

X2D −
1

2
(PA

1

1

ωC
)[P1A, ωC] − 1

2ωC

[

PA
1 , [P1A, ωC]

]}〉

2

= −
∑

i

∑

k,l

1

(λk − λl)
2
(1 − ωil

ωik
) +

1

4

∑

p

∑

i j

(

1

ωi j

∂ωi j

∂λp

)2

(4.2.5)

In addition,

1

4

{

XC
2 [PA

1 , ωC
D]X2D −

1

2ωC
[PA

1 , ωC]
} {

XE
2 [P1A, ωE

F]X2F −
1

2ωE
[P1A, ωE]

}

(4.2.6)

=
1

2

∑

i

∑

k,l

1

(λk − λl)
2
(1 − ωil

ωik
) − 1

8

∑

p

∑

i j

(

1

ωi j

∂ωi j

∂λp

)2

Using the results of (4.2.5) and (4.2.6), gives the contribution of the corrected

kinetic term in (4.2.1) i.e.

1

2
PA

1 P1A →
1

2
PA

1 P1A +
1

4

∑

i

∑

k,l

1

ωik

ωil − ωik

(λk − λl)
2
+

1

16

∑

p

∑

i j

(

1

ωi j

∂ωi j

∂λp

)2

=
1

2
PA

1 P1A −
1

4

∑

i

∑

k,l

1

(λk − λl)
2

(

1 − ωil

ωik

)

+
1

16

∑

p

∑

i j

(

1

ωi j

∂ωi j

∂λp

)2

(4.2.7)

in precise agreement with the result obtained in the previous section.



Chapter 5

Density Description and Weak

Coupling Expansion

In this chapter, we will use the collective field theory approach that was

discussed in the earlier chapter, to write the effective Hamiltonian in terms

of the density of eigenvalues of the background matrix X1, and hence develop

the large N background configuration which is expanded perturbatively to

order λ2.

Considering the effective Hamiltonian, given in the previous chapter

(4.1.20), which is rewritten as

Ĥ1
e f f
=

1

2
Tr(P2

1) +
ω2

2
Tr(X2

1) +
1

2

N∑

i, j=1

√

ω2 + 2g2
YM

(λi − λ j)2

− 1

4

∑

p,l,m

(1 − δpm)

(λp − λm)2

(

1 − ωlm

ωlp

)

+
1

16
∂A lnωB∂

A lnωB (5.0.1)

In this equation the last two terms represent the change coming from shift

in the kinetic term of X1. Out of these the second term, which is

1

16
∂A lnωB∂

A lnωB

can be rewritten as,

1

16
∂A lnωB∂

A lnωB =
1

16

∑

i j,cb

∂

∂X1i j

(lnωbc)
∂

∂X1 ji

(lnωbc)

46
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=
1

16

∑

i j,cb

( 1

ωbc

∂

∂X1i j

√

ω2 + 2g2
ym(λb − λc)2

1

ωbc

∂

∂X1 ji

√

ω2 + 2g2
ym(λb − λc)2

)

=
1

16

∑

i j,cb

( 1

ω2
bc

∑

k

V jk
∂

∂λk
V†ki

√

ω2 + 2g2
ym(λb − λc)2

∑

p

Vip
∂

∂λp
V†pj

√

ω2 + 2g2
ym(λb − λc)2

)

=
1

16

∑

cb

∑

k

( 1

ω2
bc

∂

∂λk

√

ω2 + 2g2
ym(λb − λc)2

∂

∂λk

√

ω2 + 2g2
ym(λb − λc)2

)

=
1

8

∑

bc

∑

k

1

ω4
bc

(4g2
ym)2(λb − λc)

2δbk

=
1

8

∑

bc

1

ω4
bc

(4g2
ym)2(λb − λc)

2

Replacing this in (5.0.1), we can rewrite the effective Hamiltonian as

Ĥ1
e f f
=

1

2
Tr(P2

1) +
ω2

2
Tr(X2

1) +
1

2

N∑

i, j=1

√

ω2 + 2g2
YM

(λi − λ j)2

− 1

4

∑

p,l,m

(1 − δpm)

(λp − λm)2

(

1 − ωlm

ωlp

)

+
1

8

∑

bc

1

ω4
bc

(4g2
ym)2(λb − λc)

2 (5.0.2)

This equation describes the dynamics of a single hermitian matrix, and

the large N background can be described in terms of the density of eigen-

values,

φ(x) =
∑

i

δ(x − λi),

as the minimum of the cubic field effective potential

Ve f f =
π2

6

∫

dxφ3(x) +
ω2

2

∫

dxφ(x)x2 − µ(

∫

dxφ(x) −N)

+
1

2

∫

dx

∫

dy
√

ω2 + 2g2
YM

(x − y)2 φ(x)φ(y)

− 1

4

∫

dx

∫

dy

∫

dzφ(x)φ(y)φ(z)
1

(x − y)2

(

1 −
ω(z, y)

ω(z, x)

)

+
1

8

∫

dx

∫

dyφ(x)φ(y)
1

ω4
xy

(4g2
ym)2(x − y)2 (5.0.3)
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where the Lagrange multiplier µ enforces the constraint
∫

dxφ(x) = N. To

exhibit explicitly the N dependence, we rescale

x→
√

Nx φ(x)→
√

Nφ(x) µ→ Nµ (5.0.4)

This results in

Tr1 =

∫

dxφ(x) = N→
∫

dxφ(x) = 1

Under the above rescaling, we see that the last term in (5.0.3), is of order N,

and therefore is sub leading. Thus we obtain

Ve f f = N2
[π2

6

∫

dxφ3(x) +
ω2

2

∫

dxφ(x)x2 − µ(

∫

dxφ(x) − 1)

+
1

2

∫

dx

∫

dy
√

ω2 + 2λ(x − y)2φ(x)φ(y)

− 1

4

∫

dx

∫

dy

∫

dzφ(x)φ(y)φ(z)
1

(x − y)2

(

1 −
ω(z, y)

ω(z, x)

)]

(5.0.5)

where λ = g2
YM

N is the usual ’t Hooft’s coupling.

Using the perturbative expansion,

1

(x − y)2

(

1 −
ω(z, y)

ω(z, x)

)

= − λ
2

2ω4
(4z2 − 4z(x + y) + (x + y)2) +O(λ3).

Therefore, the last term in (5.0.5) can be rewritten as

λ2

4ω4

(

3

∫

dxx2φ(x)
(
∫

dxφ(x)
)2

− 2

∫

dxφ(x)(

∫

dxφ(x)x)
2)

As N →∞, the large N background configuration minimizes (5.0.5) and

it satisfies:

π2φ2
0(x) =2µ − ω2x2 − 2

∫

dy
√

ω2 + 2λ(x − y)2φ0(y)

− 3λ2

4ω4
x2 − 3λ2

ω4

∫

dyy2φ0(y) (5.0.6)

When λ = 0, (5.0.6) reduces to the well known Wigner distribution:

πφ0(x) =
√

2µ − 2ω − ω2x2 =
√

2ω − ω2x2, |x| ≤ x0 =

√

2

ω
(5.0.7)
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with the identification µ = 2ω being enforced by the constraint
∫ x+

x−

dxφ0(x) = 1.

Expanding
√

ω2 + 2λ(x − y)2 , perturbatively in terms of λ, gives

√

ω2 + 2λ(x − y)2 = ω

(

1 +
2λ(x − y)2

ω2

)1/2

= ω +
λ

ω
(x − y)2 − λ2

2ω3
(x − y)4

+ · · ·

= ω +
λ

ω
(x2 + y2 − 2xy)

− λ2

2ω3
(x4 + y4 − 4x3y − 4xy3 + 6x2y2) + · · ·

Assuming that the background remains even (
∫

dxxφ0 = 0), (5.0.6), can be

rewritten to order λ2 as

π2φ2
0(x) =2µ − ω2x2 − 2ω − 2λ

ω
x2 − 2λ

ω

∫

dyy2φ0(y)

+
λ2

ω3

(

x4 + 6x2

∫

dyy2φ0(y) +

∫

dyy4φ0(y)

)

− 3λ2

2ω4
x2 − 3λ2

ω4

∫

dyy2φ0(y) (5.0.8)

⇒ φ0 =
1

π

√

β − α2x2 + λ2γx4

where,

β =2µ − 2ω − 2λ

ω

∫

dyy2φ0(y) +
λ2

ω3

∫

dyy4φ0(y) − 3λ2

ω4

∫

dyy2φ0(y)

α2 =ω2 +
2λ

ω
− 6λ2

ω3

∫

dyy2φ0(y) +
3λ2

2ω4

γ =
1

ω3

To order λ, φ0 has the form

φ0 =
1

π

√

β − α2x2

with β and α now taken only up to order λ. In the above form the

background distribution still remains of the Wigner type with suitable ad-

justments. We have β = 2α, where α2 = ω2 + 2λ
ω . Thus,

φ0 =
1

π

√
2α − α2x2 (5.0.9)
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with turning point X0 =

√

2
α , understood to be expanded to order λ.

To order λ2, φ0 has the form given in (5.0.8). We now have β = 2α+λ2∆β,

with the shifted turning point given as x̄ = x0 + ∆x. However we see that

their is no need to introduce this shift, since, because of the normalization

condition, we have

∫

dxφ0(x) = 1

⇒ 1 =
2

π

∫ x̄

0

√

β − α2x2 + λ2γx4

=
2

π

∫ x0

0

√

β − α2x2 + λ2γx4 +
2

π
(∆x)
︸︷︷︸

O(λ2)

(√

β − α2x2 + λ2γx4

)

|
x=x0

︸                          ︷︷                          ︸

O(1) term =0 at x = x0

=
2

π

∫ x0

0

√

β − α2x2 + λ2γx4

Using the above expression we can calculate ∆β

1 =
2

π

∫
√

2
α

0

dx
√

2α + λ2∆β − α2x2 + λ2γx4

=
2

π

∫
√

2
α

0

dx
√

2α − α2x2

(

1 +
λ2(∆β + γx4)

2α − α2x2

)1/2

=
2

π

∫
√

2
α

0

dx
√

2α − α2x2

(

1 +
λ2

2

(∆β + γx4)

2α − α2x2

)

=
2

π

∫
√

2
α

0

dx
√

2α − α2x2

︸                       ︷︷                       ︸

=1

+
λ2

π

∫
√

2
α

0

dx
(∆β + γx4)
√

2α − α2x2

⇒
∫
√

2
α

0

dx
(∆β + γx4)
√

2α − α2x2
= 0
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setting, x =
√

2
α sinθ and dx =

√

2
α cosθ, we have,

∫ π/2

0

∆β +
4γ

α2
sin4θdθ = 0

⇒ ∆βπ
2
+

4γ

α2

∫ π/2

0

sin4θdθ = 0

∆β
π

2
+
γ

α2

3π

4
= 0

⇒ ∆β =
−3γ

2α2
(5.0.10)

5.1 Calculation of
〈

Tr(X2
1
)
〉

Using Density

Description

We have,

〈

TrX2
1

〉

=

∫

dxx2φ0(x)

=
2

π

∫ √
2/α

0

x2
√

2α − α2x2 + λ2∆β + λ2γx4dx

=
2

π

∫
√

2
α

0

dxx2
√

2α − α2x2

(

1 +
λ2(∆β + γx4)

2α − α2x2

)1/2

=
2

π

∫
√

2
α

0

dxx2
√

2α − α2x2

(

1 +
λ2

2

(∆β + γx4)

2α − α2x2

)

=
2

π

∫
√

2
α

0

dxx2
√

2α − α2x2

︸                          ︷︷                          ︸

Term 1

+
λ2

π

∫
√

2
α

0

dx
∆βx2

√
2α − α2x2

︸                         ︷︷                         ︸

Term 2

+

λ2

π

∫
√

2
α

0

dx
γx6

√
2α − α2x2

︸                         ︷︷                         ︸

Term 3

(5.1.1)

Term 1 =
2

π

∫
√

2
α

0

dxx2
√

2α − α2x2

setting x =

√

2

α
sinθ, dx =

√

2

α
cosθdθ

Term 1 =
2

π

∫ π/2

0

(
2

α
)sin2θ

√
2α cosθdθ
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=
2

πα

∫ π/2

0

(1 − cos2θ)dθ

=
1

2α

Term 2 =
∆βλ2

π

∫
√

2
α

0

dx
x2

√
2α − α2x2

setting x =

√

2

α
sinθ, dx =

√

2

α
cosθdθ

Term 2 =
∆βλ2

π

∫ π/2

0

2

α2
sin2θdθ

=
λ2∆β

2α2

= −
3γλ2

4α4

Term 3 =
λ2γ

π

∫
√

2
α

0

dx
x6

√
2α − α2x2

setting x =

√

2

α
sinθ, dx =

√

2

α
cosθdθ

Term 3 =
λ2γ

π

∫ π/2

0

(
2

α
)

3 1

α
sin6θdθ

=
λ2γ

πα4

5π

4

=
5λ2γ

4α4

Substituting Term 1, Term 2 and Term 3 in expression (5.1.1), we get

∫

dxx2φ0(x) =
1

2α
−

3γλ2

4α4
+

5λ2γ

4α4

=
1

2α
+
γλ2

2α4

Using the following expression for α and γ in the above expression,

α2 = ω2 +
2λ

ω
− 6λ2

2ω4
+

3λ2

2ω4

= ω2

[

1 −
(

3λ2 − 4ω3λ

2ω6

)]

⇒ α = ω

[

1 −
(

3λ2 − 4ω3λ

2ω6

)]1/2
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And γ =
1

ω3
(5.1.2)

we get,

∫

dxx2φ0(x) =
1

2ω

[

1 −
(

3λ2 − 4ω3λ

2ω6

)]−1/2

+
λ2

2ω3

1

ω4

[

1 −
(

3λ2 − 4ω3λ

2ω6

)]−2

=
1

2ω

[

1 +

(

3λ2 − 4ω3λ

4ω6

)

+
3

8

4λ2

ω6
+ · · ·

]

+
λ2

2ω7

[

1 + 2

(

3λ2 − 4ω3λ

2ω6

)

+ · · ·
]

=
1

2ω
− λ

2ω4
+

13λ2

8ω7
+O(λ3) + · · ·

The final result to O(λ)2, is then

〈

TrX2
1

〉

=

∫

dxx2φ0(x) =
1

2ω
− λ

2ω4
+

13λ2

8ω7
(5.1.3)

5.2 Calculation of
〈

Tr(X2
1
)
〉

Using Perturbation

theory

In this section, we use standard perturbation theory to calculate < Tr(X2
1
) >

to orderλ2. The Hamiltonian for the two matrix system, with gYM interaction

is given as

H =
1

2
TrẊ1

2
+
ω2

2
TrX1

2 +
1

2
TrẊ2

2
+
ω2

2
TrX2

2 − gYM
2Tr[X1,X2][X1,X2] (5.2.1)

Using this, we can write the Lagrangian as

L =
1

2
TrẊ1

2 − ω
2

2
TrX1

2 +
1

2
TrẊ2

2 − ω
2

2
TrX2

2 + gYM
2Tr[X1,X2][X1,X2] (5.2.2)

Using the path integral formalism, we can write the expression for the ex-

pectation value of X2
1
. This is given as

〈

TrX2
1

〉

=

∫

[DX1](X1)i j(X1) jie
iS0+iSint
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=

∫

[DX1](X1)i j(X1) jie
iS0

∞∑

n=0

(iSint)
n

n!
(5.2.3)

where,

S0 =

∫

dt
1

2

{

TrẊ1
2 − ω2TrX1

2 + TrẊ2
2 − ω2TrX2

2
}

and

Sint =

∫

dt
λ

N
Tr[X1,X2][X1,X2]

with λ = gYM
2N

Calculation to O( λ)

Considering n = 0 in (5.2.3), we get

〈

TrX2
1

〉

=

∫

[DX1](X1)i j(t)(X1) ji(t)e
iS0

= ∆(t) (5.2.4)

where, ∆(t) is the free propagator, given as [33]

∆(t) = i

∫

dE

2π

e−iEt

E2 − ω2 + iǫ

=

∫

dE

2π

e−iEt

2ω

(
1

E − ω + iδ
− 1

E + ω − iδ

)

When t > 0 complete the contour in lower half plane.

Figure 5.1: Path of integration along the real time axis for ∆(t).

The path encloses the pole at E = ω − iδ. When t < 0, the contour closes

on upper half plane. The path encloses the pole at E = −ω + iδ.
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Therefore, using the Cauchy integral formula, we can write the above

expression as

∆(t) =
i

2π

1

2ω

(

θ(t)(−2πi)e−iωt − θ(−t)(2πi)eiωt
)

=
1

2ω

(

θ(t)e−iωt + θ(−t)eiωt
)

(5.2.5)

at t = 0

∆(0) =
1

2ω
(5.2.6)

Now to get the first order correction, put n = 1 in (5.2.3)

〈

TrX2
1

〉

=

∫

[DX1](X1)i j(X1) jie
iS0(iSint)

=
iλ

N

∫

[DX1](X1)i j(X1) ji

∫

dtTr([X1,X2][X1,X2])

=
iλ

N

∫

[DX1](X1)i j(X1) ji

∫

dtTr(2X1X2X1X2
︸        ︷︷        ︸

a

− 2X2
1X2

2
︸ ︷︷ ︸

b

) (5.2.7)

Term (a) and term (b) corresponds to the following diagrams

(a) (b)

Figure 5.2: Ribbon graph for O(λ) terms in the perturbative expansion of
< Tr(X2

1
) >.

we see that the diagram (a) is non-planar. Therefore it does not contribute.

So, to O(λ) only term (b) contributes. Symmetry factor for this diagram is 2.
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Hence, to O(λ)
〈

TrX2
1

〉

= −4iλ∆(0)

∫

dt[∆(t − t′)]2 (5.2.8)

To calculate the integral their are two methods.

Method I: Use expression for

∆(t − t′) = i

∫

dE

2π

e−iE(t−t′)

E2 − ω2

Method II: Use expression

∆(t) =
1

2π

(

Θ(t)e−iωt + Θ(−t)eiωt
)

Method I

Using the Method I, the integral in (5.2.8) is given as

∫

dt

(

i

∫

dE

2π

e−iEt

E2 − ω2

) (

i

∫

dE′

2π

e−iE′t

E′2 − ω2

)

= −
∫

dt
dE

2π

dE′

2π
e−i(E+E′)t 1

(E2 − ω2)(E′2 − ω2)

Using the definition of δ function

δ(E + E′) =

∫

dt

2π
e−i(E+E′)t

the above integral becomes

= −
∫

dE

2π

dE′

2π
2πδ(E + E′)

1

(E2 − ω2)(E′2 − ω2)

= − 1

2π

∫ ∞

−∞

dE

(E2 − ω2)2
(5.2.9)

The integration has got pole of order 2 at ±ω

The residue at + ω = lim
E→ω

d

dE

(

(E − ω)2 1

(E + ω)2(E − ω)2

)

= lim
E→ω

d

dE

1

(E + ω)2

= lim
E→ω

−2

(E + ω)3
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= − 1

4ω3

The residue at − ω = lim
E→−ω

d

dE

(

(E + ω)2 1

(E + ω)2(E − ω)2

)

= lim
E→−ω

d

dE

1

(E − ω)2

= lim
E→−ω

−2

(E − ω)3

=
1

4ω3

Pole at −ω only lies in the upper half plane. Therefore we only consider that

∫

dE

(E2 − ω2)2
= 2πi

1

4ω3

Substituting in (5.2.9)

= − i

4ω3
=

1

4iω3

Substituting this in (5.2.8) and 1
2ω for ∆(0) gives

〈

TrX2
1

〉

O(λ)
=
−λ
2ω4

(5.2.10)

In Appendix C, we give details of the calculation using method II, which

is shown to agree with this result. To order λ, the result of < Tr(X2
1
) >

using perturbation theory agrees with the result obtained by the density

description method.

Calculation to O(λ2)

To calculate
〈

TrX2
1

〉

to O(λ2), consider n = 2 in (5.2.3)

〈

TrX2
1

〉

=

∫

[DX1](X1)i j(X1) jie
iS0

(iSint)
2

2!

= −1

2

∫

[DX1](X1)i j(X1) jie
iS0(Sint)

2

= − λ
2

2N2

∫

[DX1](X1)i j(X1) jie
iS0(

∫

dtTr[X1,X2][X1,X2])
2
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= − λ
2

2N2

∫

[DX1](X1)i j(X1) jie
iS0





∫

dt

∫

dt′Tr((2X1X2X1X2)2

︸           ︷︷           ︸

term 1

+

(2X2
1X2

2)
2

︸    ︷︷    ︸

term 2

) − 8Tr(X1X2X1X2)(X2
1X2

2)
︸                      ︷︷                      ︸

term 3





(5.2.11)

Various possible diagrams for Term 1 are given in (Fig.5.3)

(a) (b)

(c)

Figure 5.3: Ribbon graph for O(λ2) term with (2X1X2X1X2)2 interaction

Diagrams (a) and (c) are sub leading. So the only contributing diagram

is diagram (b). Various possible diagrams for Term 2 are given in (Fig.5.4)

Here, diagram (d) is sub leading and diagrams (e) and ( f ) contribute. Var-

ious possible diagrams of Term 3 are given in (Fig.5.5). However all these

diagrams are sub leading. Thus of all the diagrams corresponding to Term

(1), (2) and (3), only diagram(b), (e) and ( f ) contribute.

• Symmetry factor for diagram (b) is 16.
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(d) (e)

(f)

Figure 5.4: Ribbon graph for O(λ2) term with (2X2
1
X2

2)2 interaction

(g) (h)

(i)

Figure 5.5: Ribbon graph for O(λ2) term with (X1X2X1X2)(X2
1
X2

2) interaction

• Symmetry factor for diagram (e) is 8.

• Symmetry factor for diagram (f) is 4.
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To O(λ2) term (b), (e) and (f) are given as

Term (b) = −32λ2

∫

dt

∫

dt′∆(t − t”)∆(t′ − t”)(∆(t − t′))3 (5.2.12)

Term (e) = −16λ2∆(0)

∫

dt

∫

dt′(∆(t − t”))2(∆(t − t′))2 (5.2.13)

Term (f) = −8λ2(∆(0))2

∫

dt

∫

dt′∆(t − t”)∆(t′ − t”)∆(t − t′) (5.2.14)

This integral can be calculated using the following expression for ∆(t)

∆(t) =
1

2ω
[θ(t)e−iωt + θ(−t)eiωt]

Thus in the above integral (∆(t − t′))3 can be calculated as follows

(∆(t − t′))3
=

1

(2ω)3

(

θ(t − t′)e−iω(t−t′) + θ(t′ − t)eiω(t−t′)
)3

=
1

(2ω)3

(

θ3(t − t′)e−3iω(t−t′) + θ3(t′ − t)e3iω(t−t′)

+3θ2(t − t′)θ(t′ − t)e−iω(t−t′) + 3θ(t − t′)θ2(t′ − t)eiω(t−t′)
)

Using θ(t)θ(t)θ(t) = θ(t)

θ(−t)θ(−t)θ(−t) = θ(−t)

θ2(t)θ(−t) = θ(t)θ2(−t) = 0

(∆(t − t′))3
=

1

(2ω)3

(

θ(t − t′)e−3iω(t−t′) + θ(t′ − t)e3iω(t−t′)
)

(5.2.15)

Using (5.2.15) in (5.2.12), we get

Term (b) = − 32λ2

(2ω)5

∫ ∞

−∞
dt

∫ ∞

−∞
dt′

(

θ(t)e−iωt + θ(−t)eiωt
)

(

θ(t′)e−iωt′ + θ(−t′)eiωt′
)

(

θ(t − t′)e−3iω(t−t′) + θ(t′ − t)e3iω(t−t′)
)

= − 32λ2

(2ω)5

∫ ∞

−∞
dt

∫ ∞

−∞
dt′θ(t)θ(t′)θ(t − t′)e−4iωte2iωt′
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+ θ(t)θ(t′)θ(t′ − t)e2iωte−4iωt′

+ θ(t)θ(−t′)θ(t − t′)e−4iωte4iωt′

+ θ(t)θ(−t′)θ(t′ − t)e2iωte−2iωt′

+ θ(−t)θ(t′)θ(t − t′)e−2iωte2iωt′

+ θ(−t)θ(t′)θ(t′ − t)e4iωte−4iωt′

+ θ(−t)θ(−t′)θ(t − t′)e−2iωte4iωt′

+ θ(−t)θ(−t′)θ(t′ − t)e4iωte−2iωt′

= − 32λ2

(2ω)5

(∫ ∞

0

dt

∫ ∞

0

dt′θ(t − t′)e−4iωte2iωt′ + θ(t′ − t)e2iωte−4iωt′

+

∫ ∞

0

dt

∫ 0

−∞
dt′e−4iωte4iωt′ +

∫ 0

−∞
dt

∫ ∞

0

dt′e4iωte−4iωt′

+

∫ 0

−∞
dt

∫ 0

−∞
dt′θ(t − t′)e−2iωte4iωt′ + θ(t′ − t)e4iωte−2iωt′

)

= − 32λ2

(2ω)5

(∫ ∞

0

dt

∫ t

0

dt′e−4iωte2iωt′ +

∫ t′

0

dt

∫ ∞

0

dt′e2iωte−4iωt′

+

∫ ∞

0

dte−4iωt

∫ ∞

0

dt′e−4iωt′ +

∫ ∞

0

dte−4iωt

∫ ∞

0

dt′e−4iωt′

+

∫ ∞

0

dt

∫ ∞

0

dt′θ(t′ − t)e2iωte−4iωt′ + θ(t − t′)e−4iωte2iωt′
)

= − 32λ2

(2ω)5

(∫ ∞

0

dte−4iωt 1

2iω
(e2iωt − 1)

+

∫ ∞

0

dt′e−4iωt′ 1

2iω
(e2iωt′ − 1)

+
1

4iω

1

4iω
+

1

4iω

1

4iω

+

∫ t′

0

dt

∫ ∞

0

dt′e2iωte−4iωt′ +

∫ t′

0

dt

∫ ∞

0

dt′e−4iωte2iωt′
)

= − 32λ2

(2ω)5

(

4

2iω

∫ ∞

0

dt(e−2iωt − e−4iωt) − 2

16ω2

)
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= − 32λ2

(2ω)5

(

− 4

8ω2
− 2

16ω2

)

=
5λ2

8ω7
(5.2.16)

Similarly, (5.2.13) can be calculated as follows,

Using ∆(t) =
1

2ω

(

θ(t)e−iωt + θ(−t)eiωt
)

and ∆(0) =
1

2ω

Term e = − 16λ2

(2ω)5

∫ ∞

−∞
dt

∫ ∞

−∞
dt′

(

θ(t)e−2iωt + θ(−t)e2iωt
)

(

θ(t − t′)e−2iω(t−t′) + θ(t′ − t)e2iω(t−t′)
)

= − 16λ2

(2ω)5

∫ ∞

−∞
dt

∫ ∞

−∞
dt′

(

θ(t)θ(t − t′)e−4iωte2iωt′

+θ(t)θ(t′ − t)e−2iωt′

+θ(−t)θ(t − t′)e2iωt′

+θ(−t)θ(t′ − t)e4iωte−2iωt′
)

= − 16λ2

(2ω)5

(∫ ∞

0

dt

∫ t

−∞
dt′e−4iωte2iωt′ +

∫ t′

0

dt

∫ ∞

0

dt′e−2iωt′

+

∫ 0

−∞
dt

∫ ∞

−∞
dt′θ(t − t′)e2iωt′

+

∫ 0

−∞
dt

∫ ∞

−∞
dt′θ(t′ − t)e4iωte−2iωt′

)

= − 16λ2

(2ω)5

(∫ ∞

0

dte−4iωt 1

2iω
e2iωt +

∫ ∞

0

dt′t′e−2iωt′

+

∫ t′

0

dt

∫ ∞

0

dt′e−2iωt′ +

∫ ∞

0

dt

∫ t

−∞
dt′e−4iωte2iωt′

)

= − 16λ2

(2ω)5

(

− 1

ω2

)

=
λ2

2ω7
(5.2.17)

Also (5.2.14), can be calculated as follows,

Term f = − 8λ2

(2ω)5

∫ ∞

−∞
dt

∫ ∞

−∞
dt′

(

θ(t)e−iωt + θ(−t)eiωt
)
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(

θ(t′)e−iωt′ + θ(−t′)eiωt′
)

(

θ(t − t′)e−iω(t−t′) + θ(t′ − t)eiω(t−t′)
)

= − 8λ2

(2ω)5

∫ ∞

−∞
dt

∫ ∞

−∞
dt′

(

θ(t)θ(t′)θ(t − t′)e−2iωt

+θ(t)θ(t′)θ(t − t′)e−2iωt′

+θ(t)θ(−t′)θ(t − t′)e−2iωte2iωt′

+θ(t)θ(−t′)θ(t′ − t)

+θ(−t)θ(t′)θ(t − t′)

+θ(−t)θ(t′)θ(t′ − t)e2iωte−2iωt′

+θ(−t)θ(−t′)θ(t − t′)e2iωt′

+θ(−t)θ(−t′)θ(t′ − t)e2iωt
)

= − 8λ2

(2ω)5

(∫ ∞

0

dt

∫ t

0

dt′e−2iωt +

∫ t′

0

dt

∫ ∞

0

dt′e−2iωt′

+

∫ ∞

0

dt

∫ 0

−∞
dt′e−2iωte−2iωt′ +

∫ 0

−∞
dt

∫ ∞

0

dt′e2iωte−2iωt′

+

∫ 0

−∞
dt

∫ 0

−∞
dt′θ(t − t′)e2iωt′ +

∫ 0

−∞
dt

∫ 0

−∞
dt′θ(t′ − t)e2iωt

)

= − 8λ2

(2ω)5

(

2

∫ ∞

0

dtte−2iωt − 2

4ω2
+ 2

∫ ∞

0

dtte−2iωt

)

= − 8λ2

(2ω)5

(

− 6

4ω2

)

=
3λ2

8ω7
(5.2.18)

Hence substituting (5.2.16), (5.2.17) and (5.2.18) for term 1 and 2 in (5.2.11)

gives,

〈

TrX2
1

〉

=
5λ2

8ω7
+
λ2

2ω7
+

3λ2

8ω7

=
3λ2

2ω7
(5.2.19)

Thus, the order λ2 result is not in agreement with the density description

result. This discrepancy between the results is perhaps not too surprising,
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as the effective hamiltonian is defined as

Ĥ
e f f

1(0)
≡

∫

dX̄2ψ0(λ, X̄2)Ĥψ0(λ, X̄2) (5.2.20)

where, ψ0(λ, X̄2) is the ground state wavefunction with no “impurity” and

the subscript “1” in the effective hamiltonian denotes that it is for the X1

sector. However, higher excited states ψn(λ, X̄2) (known to be expressed in

terms of Hermite polynomials) have not been included. This would lead to

a sequence of effective hamiltonians

Ĥ
e f f

1(n)
≡

∫

dX̄2ψn(λ, X̄2)Ĥψn(λ, X̄2) (5.2.21)

which have not been discussed in this thesis.



Chapter 6

Strong Coupling Solution

As discussed at length in chapter 4, the fact that ψ0(λ, X̄2) depends on X1

degrees of freedom, results in a shifted P1 operator and the resultant effective

potential terms of equation (4.1.19) or (4.2.7).

Remarkably, as λ → ∞ these effective potential terms are sub leading

compared to the ground state frequency. Therefore, we expect that the

λ→ ∞ limit (λ ≫ ω3) of (5.0.1) is of great relevance to the properties of the

strongly coupled system of two matrices [34], and is studied in this chapter

The λ→∞ limit of (5.0.6) takes the form

π2φ2
0(x) = 2µ − 2

√
2λ

∫

dy|x − y|φ0(y) (6.0.1)

E0 = N2
[π2

6

∫

dxφ3
0(x) +

√
2λ

2

∫

dx

∫

dy|x − y|φ0(x)φ0(y)
]

(6.0.2)

Here E0 is the ground state energy and it is obtained by considering Ve f f

(5.0.5) at φ0 for large λ. In the above expressions, we introduce the following

term

f (x) =
√

2λ

∫

dy|x − y|φ0(y), π2φ2
0(x) = 2(µ − f (x)) (6.0.3)

which satisfies

65
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f (x) =

√
2λ

π

∫

dy|x − y|
√

2(µ − f (y)). (6.0.4)

As it was the case in perturbation theory, we assume that φ0(x) remains an

even, single cut function defined in the interval [−x0, x0]. To show that this

is a consistent ansatz, we note that then:

f (x) =
√

2λ

(

|x|
∫ |x|

−|x|
φ0(y)dy + 2

∫ x0

|x|
φ0(y)ydy

)

. (6.0.5)

Hence f (x) is also even, establishing the consistency of the ansatz. Using

∂2
x|x − y| = 2δ(x − y),

equation (6.0.4) becomes1

∂2
x f (x) =

√
2λ

π

∫

dy∂2
x|x − y|

√

2(µ − f (y))

=

√
2λ

π

∫

dy2δ(x − y)
√

2(µ − f (y))

=
4
√
λ

π

√

µ − f (x) (6.0.6)

This can be integrated as follows

∫

d f (∂x f (x)) =
4
√
λ

π

∫

d f
√

µ − f (x)

1

2

(

∂x f (x)
)2

=
4
√
λ

π
(−2

3
)
(√

µ − f (x)
)3

+ e

1

2
(∂x f (x))2

+
8
√
λ

3π
(µ − f (x))3/2

= e (6.0.7)

The “energy” constant can be worked out using the condition

Let f (x = 0) = f0 ⇒ ∂x f (0) = 0

Therefore (6.0.7) at x = 0 becomes

0 +
8
√
λ

3π
(µ − f0)3/2

= e

1φ2
0

satisfies a very similar equation.
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Hence (6.0.7) can be rewritten as

d f

dx
=

4λ
1
4

√
3π

√

(µ − f0)
3
2 − (µ − f (x))

3
2 (6.0.8)

Using the normalization condition for φ0, we get

1 =

∫ x0

−x0

dxφ0(x) = 2

∫ x0

0

dxφ0(x) = 2

∫ µ

f0

d f
φ0( f )

d f

dx

=
2
√

2

π

√
3π

4λ
1
4

∫ µ

f0

d f

√

µ − f (x)
√

(µ − f0)
3
2 − (µ − f (x))

3
2

=
2
√

2

π

√
3π

4λ
1
4

4

3

√

(µ − f0)
3
2 − (µ − f (x))

3
2 |µ

f0

=
2
√

2
√

3π

1

λ
1
4

(µ − f0)
3
4

⇒(µ − f0)
3
2 =

3π

8
λ

1
2

and hence (6.0.8) takes the form:

d f

dx
=

4λ
1
4

√
3π

(µ − f0)
3
4

√

1 −
(

(µ − f (x))

(µ − f0)

) 3
2

=
4λ

1
4

√
3π

√

3π

8
λ

1
4

√

1 −
(

(µ − f (x))

(µ − f0)

) 3
2

=
√

2λ

√

1 −
(µ − f (x)

µ − f0

) 3
2

(6.0.9)

We will not need to invert (6.0.9) and obtain f (x) explicitly, as all results

presented here will be expressed in terms of known definite integrals.

Of particular interest is the large N ground state energy. From (6.0.2) and

(6.0.3) this can be written as

E0 = N2
[π2

6

∫

dxφ3
0(x)+

1

2

∫

dx f (x)φ0(x)
]

= N2
[µ

2
− π

2

12

∫

dxφ3
0(x)

]

(6.0.10)

One needs to know µ, or f0, independently. From (6.0.5), one obtains

f (0) = f0 = 2
√

2λ

∫ x0

0

dxxφ0(x)
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We therefore need to calculate this integral, which is done as follows

∫ x0

0

dxxφ0(x) =

∫ µ

f0

d f
φ0(x)

d f

dx

x( f )

=

√
2

π

1
√

2λ

∫ µ

f0

d f x( f )
(µ − f (x))

1
2

√

1 −
(
µ− f (x)

µ− f0

) 3
2

=

√
2

π

1
√

2λ









4

3
(µ − f0)3/2

√

1 −
(

µ − f (x)

µ − f0

)3/2

x( f )





∣
∣
∣
∣

µ

f0

−4

3
(µ − f0)3/2

∫ µ

f0

d f
1
d f

dx





√

1 −
(

µ − f (x)

µ − f0

)3/2








=
x0

2
− 1

2
√

2λ
(µ − f0)

Here we have used the expression for (µ − f0)3/2 and
d f

dx
. Now substituting

this in expression for f0 we get

f0 =
√

2λx0 − (µ − f0) µ =
√

2λx0.

From (6.0.9) one obtains

√
2λx0 =

∫ µ

f0

d f
1

√

1 −
(
µ− f (x)

µ− f0

)3/2

=(µ − f0)

∫ 1

0

dz
√

1 − (1 − z)
3
2

(

using
µ − f (x)

µ − f0
= (1 − z) ⇒ d f = (µ − f0)dz

)

=2(µ − f0)

∫ 1

0

tdt
√

1 − t3

(

using (1 − z)
1
2 = t

)

Also,

π2

12

∫

dxφ3
0(x) =

π2

12

2
√

2

π3

1
√

2λ

∫ µ

f0

d f
1
d f

dx

(µ − f (x))
3
2

=
1

6

1

π
√
λ

2









4

3
(µ − f0)3/2

√

1 −
(

µ − f (x)

µ − f0

)3/2

(µ − x( f ))





∣
∣
∣
∣

µ

f0

− 4

3
(µ − f0)3/2

∫ µ

f0

d f (−1)





√

1 −
(

µ − f (x)

µ − f0

)3/2







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=
1

6

∫ µ

f0

d f





√

1 −
(

µ − f (x)

µ − f0

)3/2




=
1

6
(µ − f0)

∫ 1

0

√

1 − (1 − z)
3
2

(

Let
µ − f (x)

µ − f0
= (1 − z) ⇒ d f = (µ − f0)dz

)

=
1

3

∫ 1

0

dtt
√

1 − t3
(

Let (1 − z)
1
2 = t

)

=
1

3

(∫ 1

0

t
√

1 − t3
dt −

∫ 1

0

t4

√
1 − t3

)

Using the property

∫ 1

u

xm

√
1 − x3

=
2um−2

√
1 − u3

2m − 1
+

2(m − 2)

2m − 1

∫ 1

u

xm−3

√
1 − x3

dx

We get
∫ 1

0

x4

√
1 − x3

dx =
4

7

∫ 1

0

x
√

1 − x3
dx

Thus,

∫ 1

0

x
√

1 − x3dx =

∫ 1

0

x
√

1 − x3
dx − 4

7

∫ 1

0

x
√

1 − x3
dx

=
3

7

∫ 1

0

x
√

1 − x3
dx

and
π2

12

∫

dxφ3
0(x) =

1

7
(µ − f0)

∫ 1

0

t
√

1 − t3
dt

These integrals are tabulated in [35], and are finite. Therefore

E0 =N2

[

(µ − f0)

∫ 1

0

t
√

1 − t3
dt − 1

7
(µ − f0)

∫ 1

0

t
√

1 − t3
dt

]

=N2
[6

7

(3π

8

) 2
3

∫ 1

0

tdt
√

1 − t3
λ

1
3

]

=N2
[ 9

14

(
√

3

4π

) 1
3
(

Γ
(2

3

))3

λ
1
3

]

(6.0.11)

Similar to the weak coupling case we consider the correlator

< TrX2
1 >= N2

∫

dxx2φ0 = 2N2

∫ µ

f0

x2( f )
φ0( f )

d f

dx

d f
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To evaluate the integral, we use integration by part

∫ µ

f0

x2( f )
φ0( f )

d f

dx

d f =




x2( f )

∫
φ0( f )

d f

dx

d f
∣
∣
∣
∣

µ

f0




−

∫ µ

f0




2x

dx

d f

∫
φ0( f )

d f

dx

d f




d f

(6.0.12)

Now we need to evaluate
∫

φ0( f )
d f
dx

d f , which is done as follows

∫
φ0( f )

d f

dx

d f =

√
2

π

1
√

2λ

∫
µ − f (x)

√

1 −
(
µ− f (x)

µ− f0

) 3
2

d f

=
1

π
√
λ

∫
µ − f (x)

√

1 −
(
µ− f (x)

µ− f0

) 3
2

d f

Let,

√

1 −
(µ − f (x)

µ − f0

) 3
2
= Z

1

2

1
√

1 −
(
µ− f (x)

µ− f0

) 3
2

3

2

(µ − f (x)

µ − f0

) 1
2 d f

µ − f0
= dz

(µ − f (x))
3
2 d f =

4

3
z(µ − f0)

3
2 dz

Thus,

∫
φ0( f )

d f

dx

d f =
1

π
√
λ

4

3
(µ − f0)

3
2

∫

dz

=
4

3

(µ − f0)
3
2

π
√
λ

√

1 −
(µ − f (x)

µ − f0

) 3
2

Substitute in (6.0.12)

= x2( f )
4

3

(µ − f0)
3
2

π
√
λ

√

1 −
(µ − f (x)

µ − f0

) 3
2
∣
∣
∣
∣

µ

f0

−
∫

2x( f )
1
d f

dx

4

3

(µ − f0)
3
2

π
√
λ

√

1 −
(µ − f (x)

µ − f0

) 3
2

=
4

3

(µ − f0)
3
2

π
√
λ

x2
0 −

4

3

(µ − f0)
3
2

π
√
λ

∫
√

1 −
(µ − f (x)

µ − f0

) 3
2
x( f )

1
√

1 −
(
µ− f (x)

µ− f0

) 3
2

d f

(

Calling
4

3

(µ − f0)
3
2

π
√
λ
= A =

1

2
By substituting the expression for(µ − f0)

3
2

)

=
x2

0

2
− 1
√

2λ

∫

x( f )d f
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=
x2

0

2
− 1
√

2λ
x0µ +

1
√

2λ

∫
f

d f

dx

d f

(

Putting x0 =
µ
√

2λ

)

= −
µ2

4λ
+

1
√

2λ

∫
f

d f

dx

d f

Thus

< TrX2
1 >=N2

[

−
µ2

2λ
+

2
√

2λ

∫ µ

f0

f
d f

dx

d f
]

(6.0.13)

=2 N2
(3π

8

) 4
3
λ−

1
3

[(
∫ 1

0

tdt
√

1 − t3

)2

− 2

5

∫ 1

0

dt
√

1 − t3

]

=
N2

π2
1
3

√
3

(3π

8

) 4
3
λ−

1
3

[3
√

3

π

(

Γ
(2

3

))6

− 2

5

(

Γ
(1

3

))3]

Summarizing, we have the result for the large N ground state energy and

< Tr(X2
1
) > as follows:

E0 =N2
[ 9

14

(
√

3

4π

) 1
3
(

Γ
(2

3

))3

λ
1
3

]

< Tr(X2
1) >=

N2

π2
1
3

√
3

(3π

8

) 4
3
λ−

1
3

[3
√

3

π

(

Γ
(2

3

))6

− 2

5

(

Γ
(1

3

))3]

The strong coupling limit would also correspond to the limit ω → 0, cor-

responding to the system of two “massless” matrices (i.e. without the har-

monic potential) with a Yang-Mills interaction. However, the perturbation

theory for such a system faces the problem of infrared divergences. A

remarkable feature of the planar ground state energy and the correlator

obtained above is that they are free of infrared divergences and depend

only on the appropriate power of λ which is expected from dimensional

considerations.



Chapter 7

Conclusions

The aim of this thesis was to study the system of two hermitian matrices,

in a harmonic potential, coupled via Yang-Mills interaction, in a nonsuper-

symmetric setting. These two matrices are two of the six Higgs scalars of the

bosonic sector ofN = 4 SYM theory, in the leading Kaluza - Klein compact-

ification on R × S3. The two matrix models have been studied previously

as well, [27], [30], [31], where the two matrices were either considered as

angular momentum eigenstates or were treated exactly. In all these previ-

ous works, a supersymmetric approach was always assumed, because of

which the normal ordering terms were consistently neglected. Working in

the nonsupersymmetric setting makes us to consider these terms.

The work began by reviewing the collective field theory technique, giv-

ing first the general formalism and then applying it to a system of single

matrix. This knowledge of the collective field theory was then applied to the

system of two hermitian matrices interacting through the Yang - Mills po-

tential. Two approaches were explored. In the first, one matrix was treated

exactly and formed the background, while the second matrix was treated

in the creation annihilation basis. The resulting Hamiltonian was written

(3.1.2), which included normal ordering terms owing to the nonsupersym-

metric treatment of the matrices. A Bogoliubov transformation was then
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introduced and only the ground state configuration coming from the zero

point energy of the creation annihilation oscillators, was considered in the

resulting Hamiltonian (3.1.6). Due to non trivial commutation relations, it

turns out to be easier to consider the scalar field X̄2. A canonical trans-

formation was derived and an effective Hamiltonian acting on the ground

state wavefunction with no X2 “impurity” was introduced. However P1

acts non trivially on this ground state wavefunction with no “impurities”,

and therefore the Hamiltonian in the X1 sector will have additional shifts.

This corrected or shifted Hamiltonian is worked out both in the original as

well as “bared” system of coordinates, and the result is found to be in exact

agreement (4.1.19 and 4.2.7).

An important feature of this effective potential is that it only depends on

the eigenvalues of the matrix X1, and therefore one can use the collective

field theory to obtain the large N planar background in terms of the density

of these eigenvalues. This has been done and the background has been

found to satisfy a self - consistent gYM dependent integral equation. This

integral equation has both a weak and a strong coupling expansion.

The weak coupling expansion of the background is described to O(λ2)

and the same calculation is also performed perturbatively to O(λ2). In the

strong coupling limit (λ→∞), it is seen that the background satisfies a non

- linear differential equation, with solution that has also been discussed. The

planar ground state energy and examples of correlators have been obtained

and these are shown to be finite.

The results obtained in this thesis are possibly of relevance in the study

of gauge theory and ADS/CFT correspondence,but in a non supersymmetric

background. One can think of the background obtained in this thesis as

associated to the non-supersymmetric gYM deformation of the “droplet” de-

scription of 1/2 BPS states. The strong coupling background is different from

the harmonic background resulting from the supersymmetric arguments.
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Another possible relevance is related to the physical interpretation of the

eigenvalues as coordinates of a system of D0’s.

The strong coupling results are also free of infrared divergences, even in

the case of two “massless” matrices (i.e. without the harmonic potential, or

in zero curvature limit) with a Yang - Mills interaction.

Clearly, several extensions of the results obtained in this thesis suggest

themselves. The most obvious one is a study of the contributions coming

from higher excited states in (5.2.21), if these are systematic or if it may be

desirable to consider a more symmetric description of the two matrices, as

it has been considered for instance in [36].

Multi matrix models are notoriously difficult to study, but it is worthwhile

remarking that the methods described in this thesis are straightforwardly

generalizable to more than two matrices. The required formalism for such

study has been established in this thesis.
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Appendix A

Double Index Notation

The double index notation is used to describe the indices carried by the

matrices and the frequency. It is depicted by letters in bold. The notation is

as follows: If A= (ij) and

TA = Ti j

Then, a raised index is defined as follows

TA = T ji = gABTB

Also, for instance(A = (ab),B = (cd),C = (i j))

ωi jX̄2i jX̄2 ji = X2baV
†
ibVajωi jVdiV

†
jcX2cd = XA

2ωA
BX2B

and,

ωA
B = O−1

A
C
ωCOC

B

where OC
B is the orthogonal matrix given by

OC
B
= VdiV

†
jc = Ocd

i j

also, since

O−1 = OT

and

(OT)B
C = OC

B
= Oi j

cd
= VdiV

†
jc
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⇒ (OT)C
B
= (OT)i j

cd
= Odc

ji
= VidV†cj

⇒ (O−1)i j
cd
= VidV†cj

Therefore we have the following result

Ocd
i j = VdiV

†
jc (O−1)i j

cd
= VidV†cj (A.0.1)



Appendix B

Calculation of Shifted Kinetic

Term in Original System of

Coordinates

To calculate the shifted kinetic term in original system of coordinates, we

need to calculate (4.2.3), (4.2.4) and (4.2.6). These terms will be referred to

as term 1, term 2 and term 3 respectively in the following discussion. Here

we discuss the details of calculation of these terms.

B.1 Term 1

The left hand side in (4.2.3) can be rewritten as

i[P1A, ωC
D] < X2

CX2D > −
1

2ωC
i[P1A, ωC]

=
1

2
(ω−1)D

C
i[P1A, ωC

D] − 1

2ωi j

∂

∂Xab
ωi j (B.1.1)

To calculate this result we need to calculate i[P1A, ωC
D] which is done as

follows

i[P1A, ωC
D] =

∂

∂Xab
ωcd

e f (B.1.2)
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Using the expression for ∂
∂Xab

as

∂

∂Xab
=

∑

k,p

VbkV
†

pa

λk − λp
R̂kp +

∑

k

Vbk
∂

∂λk
V†ka (B.1.3)

where

R̂kpVab = Vapδbk

R̂kpV†ab = −V†kbδap

and

ωA
B = ωab

cd =
∑

i j

VajV
†
ibωi jVdiV

†
jc (B.1.4)

Using (B.1.3) and (B.1.4) in (B.1.2), we get

i[P1A, ωC
D] =

∑

k,p

VbkV
†

pa

λk − λp
R̂kp(VcjV

†
idωi jV f iV

†
je) + VbkV

†
kaVcjV

†
id(
∂ωi j

∂λk
)V f iV

†
je

=
∑

k,p

VbkV
†

pa

λk − λp
(VcpV†id(ωik − ωip)V f iV

†
ke + VcjV

†
kd(ωkj − ωpj)V f pV†je)

+ VbkV
†
kaVcjV

†
id(
∂ωi j

∂λk
)V f iV

†
je

= Okp
ab
(

O−1
cd

ipωik − ωip

λk − λp
Oik

e f
+O−1

cd

kjωkj − ωpj

λk − λp
Opj

e f
)

+Okk
abO−1

cd

i j
(
∂ωi j

∂λk
)Oi j

e f (B.1.5)

Using (B.1.5) in (B.1.1) and also,

Oik
e f (ω−1)e f

cd
O−1

cd

ip
= Oik

CO−1
C

D
(ω−1)DOD

BO−1
B

ip
= δD

ik(ω−1)Dδ
ip

D

But this term is 0 because p , k Similarly

Opi
e f (ω−1)e f

cd
O−1

cd

ki
= δC

piω
−1)Cδ

ki
C

which is also equal to 0. Thus (B.1.1) is left with

1

2
Okk

ab
∂ωi j

∂λk
Oi j

e f (ω−1)e f
cd

O−1
cd

i j − 1

2ωi j
Okk

ab
∂ωi j

∂λk

=
1

2
Okk

ab
∑

i j

1

ωi j

∂ωi j

∂λk
− 1

2ωi j
Okk

ab
∂ωi j

∂λk

= 0 (B.1.6)

Thus we have shown that term 1 is equal to 0.
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B.2 Term 2

Term 2, which is (4.2.4), consists of three terms, which we can call term-A,

term-B and term-C. These are

Term A = [P1A
, [P1A, ωC

D]] < X2
CX2D >

Term B =
1

2
(PA

1

1

ωC
)[P1A, ωC]

Term C =
〈{

− 1

2ωC

[

PA
1 , [P1A, ωC]

]}〉

2

(B.2.1)

The details of calculations of these terms are given below.

Term A

Term A = −1

2
(ω−1)C

D[iP1A
, [iP1A, ωC

D]]

= −1

2
(OD

Lω−1
L(O−1)L

C
)[iP1A

, [iP1A, ωC
D]]

= −1

2
(Vel2V

†
l1 fω

−1
l1l2

Vdl1V
†
l2c)[iP

1A
, [iP1A, ωC

D]] (B.2.2)

Now we need to calculate the commutator [iP1A
, [iP1A, ωC

D]] , for which we

need (B.1.5), which is rewritten as

[iP1A, ωC
D] =VakV

†
pbVcpV†id

(ωik − ωip

λk − λp

)

V f iV
†
ke

+ VakV
†
pbVciV

†
kd

(ωik − ωip

λk − λp

)

V f pV†ie

+ VakV
†
kbVcjV

†
id

(∂ωi j

∂λk

)

V f iV
†
je (B.2.3)

Using this we can write

[iP1A
, [iP1A, ωC

D]] =
VblV

†
ma

λl − λm
R̂lm

(

VakV
†
pbVcpV†id

(ωik − ωip

λk − λp

)

V f iV
†
ke

+VakV
†
pbVciV

†
kd

(ωik − ωip

λk − λp

)

V f pV†ie

+VakV
†
kbVcjV

†
id

(∂ωi j

∂λk

)

V f iV
†
je

)
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+ VblV
†
la

∂

∂λl

(

VakV
†
pbVcpV†id

(ωik − ωip

λk − λp

)

V f iV
†
ke

+VakV
†
pbVciV

†
kd

(ωik − ωip

λk − λp

)

V f pV†ie

+VakV
†
kbVcjV

†
id

(∂ωi j

∂λk

)

V f iV
†
je

)

(B.2.4)

This calculated and substituted in (B.2.2) gives

TermA = −
(

2

ωik

ωil − ωik

(λk − λl)
2
+

1

ωi j

1

λk − λp

∂ωi j

∂λk
+

1

2ωi j

∂2ωi j

∂λk
2

)

(B.2.5)

Term B

Term B =
1

2
(PA

1

1

ωC
)[P1A, ωC]

=
1

2
(−i

∂

∂X1A

1

ωC
)(−i

∂

∂XA
1

ωC)

= −1

2
(− 1

ω2
C

∂

∂X1A
ωC)(

∂

∂XA
1

ωC)

=
1

2

1

ω2
i j

∑

p

(VbpV†pa

∂

∂λp
ωi j)

∑

p

(VapV†pb

∂

∂λp
ωi j)

=
1

2

∑

p

∑

i j

( 1

ωi j

∂ωi j

∂λp

)
2

(B.2.6)

Term C

In order to calculate term C we have to calculate [P1A, [P1A, ωC]], which is

given below

−[P1A, [P1A, ωC]] = [iP1A, [iP1A, ωC]]

Now,[P1A, ωC] =
∂

∂Xab
ωi j

=
∂

∂Xba
ωi j

= ValV
†
lb

∂ωi j

∂λl

Therefore, [iP1A, [iP1A, ωC]] =
∂

∂Xba
(ValV

†
lb

∂ωi j

∂λl
)
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=
VbkV

†
pa

λk − λp
R̂kp(ValV

†
lb

∂ωi j

∂λl
)

+ VbkV
†
ka

∂

∂λk
(ValV

†
lb

∂ωi j

∂λl
)

=
2

λk − λp

∂ωi j

∂λk
+
∂2ωi j

∂λ2
k

(B.2.7)

Therefore, using this expression, we get term C as

Term C =
1

ωi j

1

λk − λp

∂ωi j

∂λk
+

1

2ωi j

∂2ωi j

∂λk
2

(B.2.8)

Sum of these three terms gives Term 3 as,

Term 3 = −
∑

i

∑

k,l

1

(λk − λl)
2
(1 − ωil

ωik
) +

1

4

∑

p

∑

i j

(

1

ωi j

∂ωi j

∂λp

)2

(B.2.9)

B.3 Term 3

In term 3, which is (4.2.6), the product of second term in first bracket with

the second bracket is zero using the results derived for term 1. Thus this

equation can be rewritten as

− 1

4

(

[iP1A, ωC
D][iP1A, ωE

F] < XC
2 X2DXE

2 X2F >

− 1

2ωE
[iP1A, ωC

D][iP1A, ωE] < XC
2 X2D >

)

= −1

4

(

[iP1A, ωC
D][iP1A, ωE

F](< XC
2 X2D >< XE

2 X2F >

+ < XC
2 XE

2 >< X2DX2F > + < XC
2 X2F >< XE

2 X2D >)

− 1

2ωE
[iP1A, ωC

D][iP1A, ωE] < XC
2 X2D >

)

(B.3.1)

In the above expression the following term is equal to zero, using the result

of term 1.

[iP1A, ωC
D] < X2

CX2D >
(

[iP1A, ωE
F] < X2

EX2F > −
1

2ωE
[iP1A, ωE]

)

= 0

Thus (B.3.1)reduces to

− 1

16

(

[iP1A, ωC
D][iP1A, ωE

F](ω−1)
CE

(ω−1)DF
︸                                         ︷︷                                         ︸

Term A



APPENDIX B. CALCULATION OF SHIFTED KINETIC TERM IN
ORIGINAL SYSTEM OF COORDINATES 83

+ [iP1A, ωC
D][iP1A, ωE

F](ω−1)
C

F(ω−1)D

E

︸                                         ︷︷                                         ︸

Term B

)

(B.3.2)

Solving for term A which is given as

− 1

16
[iP1A, ω

CD][iP1A, ωEF](O−1)C

L
(ω−1)L(O)L

E(O−1)D

M
(ω−1)M(O)M

F

= − 1

16

(

[iP1A, ω
CD](O−1)C

L
(O−1)D

M
[iP1A, ωEF](O)L

E(O)M
F
)

(ω−1)L(ω−1)M

(B.3.3)

Substituting the expression for [iP1A, ωCD] = [iP1A, ωC
D] with C = (cd)→ (dc)

and is given in (B.1.5), we get

[iP1A, ω
CD](O−1)C

L
(O−1)D

M
= Om2l1,ab

(ωm1m2
− ωm1l1

λm2
− λl1

)

δl2m1

+Om1l2,ab

(ωm2l2 − ωm2m1

λl2 − λm1

)

δl1m2
+Okk,abδl2m1

δl1m2

∂ωl1l2

∂λk
(B.3.4)

Similarly,

[iP1A, ωEF](O)L
E(O)M

F
= Oab

m2l1

(ωm1m2
− ωl1l2

λm1
− λl2

)

δl1m2

+Oab
m2l1

(ωl2l1 − ωm2m1

λl1 − λm2

)

δl2m1
+Oab

ppδl1m2
δl2m1

∂ωl1l2

∂λp
(B.3.5)

substituting (B.3.4) and (B.3.5) in (B.3.3), we get result for term A as

Term A =
∑

l2

∑

l1,m2

(ωl2m2
− ωl1l2

λm2
− λl1

)2 1

ωl1l2

1

ωl2m2

+
∑

l1

∑

l2,m1

(ωl1m1
− ωl1l2

λm1
− λl2

)2 1

ωl1l2

1

ωl1m1

+
∑

k

∑

l1l2

( 1

ωl1l2

∂ωl1l2

∂λk

)2

(B.3.6)

Similarly,

Term B =
∑

l1

∑

l2,m2

(ωl1m2
− ωl1l2

λm2
− λl2

)2 1

ωl1l2

1

ωl1m2

+
∑

l2

∑

l1,m1

(ωl2m1
− ωl1l2

λm1
− λl1

)2 1

ωl1l2

1

ωl2m1

+
∑

p

∑

l1l2

( 1

ωl1l2

∂ωl1l2

∂λp

)2

(B.3.7)
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Substituting, (B.3.6) and (B.3.7) in (B.3.2), and after simplification gives,

Term 3 =
1

2

∑

i

∑

k,l

1

(λk − λl)
2
(1 − ωil

ωik
) − 1

8

∑

p

∑

i j

(

1

ωi j

∂ωi j

∂λp

)2

(B.3.8)



Appendix C

Method II for Calculation of

< Tr(X2
1
) > to O(λ)

Method II

Substituting

∆(t) =
1

2ω

(

Θ(t)e−iωt + Θ(−t)eiωt
)

and using

Θ(t)Θ(t) = Θ(t)

Θ(−t)Θ(t) = 0

Θ(−t)Θ(−t) = Θ(−t)

∫

dt[∆(t)]2
=

1

4ω2

∫ ∞

−∞
dt

(

Θ(t)e−2iωt + Θ(−t)e2iωt
)

=
1

4ω2

(
∫ ∞

0

dt
(

Θ(t)e−2iωt + Θ(−t)e2iωt
)

+

∫ 0

−∞
dt

(

Θ(t)e−2iωt + Θ(−t)e2iωt
))

In 0 to∞ limit t > 0. So Θ(t) = 1 and Θ(−t) = 0. So in 0 to∞ limit

∫ ∞

0

dte−2iωt =
1

2iω

85



APPENDIX C. METHOD II FOR CALCULATION OF < TR(X2
1
) > TO O(λ)86

and, in −∞ to 0 limit t < 0. So Θ(t) = 0 and Θ(−t) = 1. So

∫ ∞

0

dte−2iωt =
1

2iω

∫

dt[∆(t)]2
=

1

4iω3
(C.0.1)

Substituting (C.0.1) in (5.2.8) and putting 1
2ω for ∆(0) gives

〈

TrX2
1

〉

O(λ)
=
−λ
2ω4

(C.0.2)
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