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Abstract

The study of matrix models is of considerable significance. In this thesis
we study the large N quantum mechanics of two matrices (X, X»), coupled
via a Yang-Mills interaction, in a non supersymmetric setting. Of the two
matrices, X is treated exactly, while X, is understood as an “impurity” in the
background of the first. Considering the ground state wavefunction with no
X, “impurities”, it is observed that this state depends on the eigenvalues of
the X; matrix, resulting in additional shifts in the calculation of the kinetic
term for the X; sector. This results in an effective potential which, using
the results of collective field theory, is used to obtain the planar large N
nonsupersymmetric background. The system is studied in both weak and

strong coupling. The strong coupling system is free of infrared divergences.
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Chapter 1

Introduction

1.1 Background

The origin of string theory was to describe the large number of mesons and
hadrons, which interact through strong force. These particles were seen as
different oscillation modes of a string. Although it explained well some of
the features of hadron spectrum, such as the mass angular momentum re-
lation, this idea was replaced by that of Quantum Chromodynamics (QCD)
which is a renormalizable quantum field theory having quarks as the funda-
mental constituent of matter. This theory has a running coupling constant,
which means that at high energies the coupling constant becomes very small
(asymptotic freedom), but at low energies, this coupling constant becomes
very large (quark confinement). This makes the theory strongly coupled
at low energies and it is not easy to perform perturbative calculations. A
possible solution of this problem is the large N expansion as suggested by 't

Hooft.

Large N Expansion

The first hint of string-gauge duality was given by "t Hooft in 1974 [1], where

he proposed that the large N limit of SU(N) gauge theory is equivalent to
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string theory. This proposal of 't Hooft was intended to overcome the prob-
lem of low energy calculations in QCD where the theory becomes strongly
coupled and the perturbative methods do not work. QCD which is the can-
didate for the theory of strong interactions, consists of quarks which come
in three colors. Hence the theory is based on SU(3) gauge group. 't Hooft
suggested that if instead the gauge group is taken as SU(N), with N being the
number of colors, then taking the large N limit such that A = ¢, N is held
fixed, may lead to a solvable approximation. This is called the 't Hooft limit.
This large N expansion is of the form similar to the perturbative expansion
of closed strings, thus suggesting the equivalence between gauge theory and
string theory. The perturbative expansion of a large N gauge theory in 1/N
and g3, N has the form [2],[3]:

Z= i Nz_zgfg()\)
g=0

here f,(A) is some polynomial and g is the genus or the number of handles
in the diagram. The diagram with ¢ = 0 is the leading order term in the
large N expansion and can be drawn on a plane. These are therefore known
as planar diagrams. Each term with g > 0 suppresses the leading term by
factor of 1/N?. This perturbative expansion in gauge theory has form similar

to the loop expansion in string theory

292
Z = ngg Zg
g=0

with string coupling g, equal to 1/N. We therefore see that the large N
limit connects gauge theory with string theory. However, this connection
is based on perturbative expansion that does not converge. Therefore, it is

only indicative and not a rigorous derivation of the equivalence.
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AdS/CFT Correspondence

This possible gauge - string theory duality found a concrete realization
in the context of the Anti-de-Sitter / Conformal Field theory (AdS/CFT)
correspondence, originally proposed by Juan Maldacena [4],[5],[6]. This
can be described as the duality between a theory with gravity and one
without gravity. This is so because the string theory side of this equivalence,
in the AdS background, includes gravitons and thus it describes gravity,
and the gauge theory side, which is given by conformal field theory does
not contain any particle with spin greater than one and thus is a theory
without gravity. The original example of the AdS/CFT correspondence as
proposed by Maldacena is the equivalence between type IIB string theory
on a ten dimensional space that consists of a five dimensional Anti-de-Sitter
space and a five sphere i.e. AdSs X S°, and maximally supersymmetric four
dimensional conformal field theory which is N=4 supersymmetric Yang-
Mills (SYM) theory. The Anti-de-Sitter space is the maximally symmetric
solution of Einstein’s equation with negative cosmological constant [7]. The

metric of AdSs is given as
ds® = R*[—dt*cosh®p + dp* + sinh*pd()3]
Adding the 5-sphere of radius R, the full metric of AdSs x S° is
ds? = R*[~dt*cosh®p + dp® + sinh? pd Q% + dy*cos*0 + d6* + sin*0dQY'3].

AdSs x S° can be shown to be a solution to the type IIB supergravity
equations of motion [8]. The symmetry group of AdSs is SO(2,4) and the
symmetry group of S° is SO(6). Thus AdSs x S° has an overall symme-
try group SO(2,4) X SO(6) which in complex terms is SU(2,2 | 4) [9]. The
other side of the equivalence consists of supersymmetric conformal field
theory. The conformal field theory is quantum field theory that is invari-

ant under the group of conformal transformations. These transformations
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preserve the metric up to an over all (in general x dependent) scaling fac-
tor g, (x) — Q% (x) Su(x), thus preserving angles. Gauge theory, where the
coupling constant does not change as a function of the energy scale, is a con-
formally invariant theory. Now, we add supersymmetry to this conformally
invariant gauge theory, to get super conformal field theory. Supersymmetry
relates bosons to fermions and contains supercharges. The N'=4 super Yang
Mills theory consists of 32 supercharges. The field content of this theory in-
cludes the complex Weyl fermions, the vector field and six real scalar fields
[3]. These six real scalar fields have an SO(6) R-Symmetry. Including the
R-Symmetry, the N=4 SYM obeys a global supersymmetry corresponding
to the supergroup SU(2,2 | 4), which is the same as that of AdSs x S°. This
similarity of the supergroups of the two theories is one of the confirmations
of the AdS/CFT correspondence.

The AdS/CFT correspondence relates a theory in d+1 dimensions to a
theory without gravity in d dimensions. Thus the AdS/CFT correspondence
follows the holographic principles [6], [10] which states that all information
contained in a volume in d+1 dimensional space can be represented by
another theory which lives on the boundary of that volume in d dimensional
space. The principle of holography applies to black holes as well stating that
the black hole entropy which is the number of degrees of freedom of a black
hole can be described using the area of event horizon of the black hole. In
the context of AdS/CFT correspondence, the type Il string living on AdSs x S°
dual to N=4 SYM, follows this holographic priciple becauce the SYM theory
can be thought of as living on the four dimensional boundary of the five
dimensional AdSs space.

In this correspondence which relates type IIB string theory in ten di-
mensional AdSs X S° space time to maximally supersymmetric Yang Mills
theory in four dimension, the string model is controlled by two parameters

[11]: the string coupling constant ¢s and the “effective” string tension R?/«,
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where R is the common radius of AdSs and S° geometries and « is related
to the string length. The gauge theory is parameterized by the rank N of
the gauge group and the coupling constant gy or equivalently the "t Hooft
coupling A = g3, N. According to AdS/CFT correspondence these two sets
of parameters are related as

4mtA R?
N V=

Beside this correspondence of parameters, AdS/CFT also relates the energy
eigenstate of AdSs X S string with composite gauge theory operators of
the form O, = Tr(¢;, ¢y, - - - Pi,) where ¢;, are the elementary fields of N=4
SYM in the adjoint representation of SU(N) i.e. N X N hermitian matrices.
The energy eigenvalue E of a string state with respect to time in global co-
ordinates is conjectured to be equal to the scaling dimension of the dual
gauge theory operator. These scaling dimensions are the eigenvalues of
dilatation operator acting on the state O,.

The spectrum on the string side of this duality is known in the low energy
limit, corresponding to weakly curved geometries in string units i.e., to the
region VA > 1. While on the gauge side, the theory is understood only in
the perturbative regime i.e. A < 1. Thus AdS/CFT duality is a weak/strong
coupling duality. This, on one hand means that it makes the calculations
easier in the regions where it was previously difficult like the low energy
QCD, while on the other hand this makes any attempt at a derivation of the
AdS/CFT conjecture all the more difficult.

BMN Conjecture

The string/gauge map was made considerably more precise by Berenstein,
Maldacena and Nastase [12] in 2002, who proposed considering certain limit
on both sides of the AdS/CFT duality. The limit on the string theory side was

taken by considering a string rotating with large angular momentum on a
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greatcircle of the S° sphere. In thislargeJ limit with J*/N held fixed ( the BMN
limit) the geometry seen by this fastly moving string is a gravitational plane
wave. This limit is a particular case of the Penrose limit. Thus, the plane
wave or the pp-wave geometry is obtained by taking the Penrose limit of the
AdSs x S° background [13], [14]. These are the maximally supersymmetric
solutions to type IIB string theory. This has the advantage that its spectrum
is exactly known in the light cone gauge. The corresponding limit applied
on the gauge theory leads to the considerations of operators with large R-
charge J along with large number of colors N such that the effective quantum
loop counting parameter A’ = g7, N/J* and the effective genus counting
parameter ¢/ = J*/N are held fixed. This R-charge J is the SO(2) generator
of rotation in the plane generated by two of the six Higgs scalars. Choosing
of two Higgs scalars from the set of six, corresponds to breaking of SO(6)
R symmetry of the gauge theory, which is equivalent to the breaking of
SO(6) symmetry of the Ss sphere by fast moving string along the equator of
the S5 sphere. According to this correspondence [17], the R-charge | of the
Yang Mills operator is proportional to the light cone momentum p* of the
corresponding string state and the operator A — | of the Yang mills theory
is proportional to the light cone energy p~ of the same state, where A is
the dilatation operator. This can also be stated as an equality between two
operators. On the string theory side p~ can be understood as the plane wave
light cone string theory Hamiltonian, which on Yang-Mills side is equal
to difference between dilatation operator and R-charge operator. Thus the
BMN conjecture stated in another way, relates the spectrum of strings which
are eigenvalues of light cone Hamiltonian p~ to the spectrum of dilatation
operator which is the Hamiltonian of N = 4 gauge theory on Rx S° restricted
to the BMN limit.

We now explain how this spectrum of states matches on either side of

the correspondence. On the gauge theory side the operator with lowest
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value of A — ] = 0 is the unique single trace operator namely Tr(Z/) [15], [16]
where Z = (5 + ips) (Where ¢s and ¢¢ are two of the six Higgs scalars of the
N =4,D = 4 SYM theory and trace is over N color indices). This operator
is the chiral primary operator and is associated to the 1/2BPS state whose
scaling dimension is exactly equal to | at all value of coupling parameter A’.
It is associated to the vacuum state in the light cone gauge which is unique
state with zero light cone energy. In other words we have the correspondence

1
N

TrZ! 0,p" >,,.

1

N

corresponds to a ground state supergravity mode with the string momentum

Here, is the normalization constant. On the string theory side, this state
n = 0. These states generate the flat space spectrum. On the gauge theory
side other operators may be generated from the single trace by acting on
it with SO(6) supersymmetry lowering operator. This corresponds to the
insertion of an “impurity” and summing over all possible positions within

Tr(Z)). This impurity is one of the six Higgs scalar fields, other than the two

defining Z. Thus the single impurity operator is given by \/%Tr(qbizf ). This

operator has the scaling dimension A = | + 1. Similarly the two impurity

operator which is obtained by acting two distinct lowering operator on

Tr(Z*?) yields

1 J
Tr(pZ'wz)™
~ ,Z HpZ'pz! ™)

(7)+
0

which corresponds to string state a aébJrIO, p* >. Proceeding in this manner,
all operators dual to supergravity modes of the gauge theory can be obtained
by acting with an appropriate number of lowering operators on the single
trace operator i.e. inserting the appropriate number of impurity fields in the
“string of Z’s”. This background Z fields are always assumed to be large in

number compared to the number of impurity fields i.e. the system is always

assumed to be in “dilute gas” approximation. Although the operator-state
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correspondence explained here is for scalar fields, but it can be extended to
bosonic and fermionic fields as well.

The proposal of BMN extended to the non supergravity modes as well.
This corresponds to extending the theory on string side to n # 0 modes of
excitation. The operators consisting of impurities which are the near BPS
operators come with position dependent phase term exp(2minl/J) where 1
is the position of the impurity within the trace. The operator with single
impurity is given as

1 1

V& N

Tr(Z'$pZexp2minl/]).

The operator however vanishes (except for zero momentum n = 0) be-
cause of the cyclicity of the trace. The corresponding state on the string
theory side i.e. afflO, p* > also vanishes because of the constraint that total
momentum along the string should be zero. So we can only have more than
one oscillator state so that total momentum is zero, and thus corresponds
to a physical state. The first non-trivial example of this is the two oscilla-
tor state af;ra]; nJrlO,pJr > which corresponds to gauge field theories with two
impurities ¢; and ¢; in the sequence of Z fields summed over the possible
position of impurities along with a position dependent phase term . So the

operator state correspondence for this case is

]
a;+a]_n+|0,p+ > o ! Z Tr(p:Z' ;2 exp(2minl/]).

VNI

To summarize, each oscillator along the string is associated with one
impurity field in the sequence of Z fields on the gauge theory side, with the
sum over all possible positions for the insertion of the impurity field and a
phase proportional to the momentum. States whose total momentum is not
zero along the string correspond to operators that also vanish because of the

cyclicity of the trace.
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1.2 Motivation: Matrix Models and their
Significance

Now that this correspondence between plane wave string theory and BMN
gauge theory is established as a limit of the AdS/CFT duality one might con-
sider if other properties of AdS/CFT duality also hold in this limit. One such
property of the AdS/CFT duality is the principle of holography. The bound-
ary of the plane wave string theory is a one dimensional light like direction.
So, by the principles of holography [17], one might guess that the dual gauge
theory living on the boundary of strings on the pp-wave background should
be a quantum mechanical model. This quantum mechanical system is the
plane wave matrix model [18], which arises by considering N' = 4,D = 4
SYM compactified on a three sphere and performing truncation of the re-
sulting Kaluza-Klein spectrum to the lowest lying mode. The Hamiltonian
of the SYM theory corresponds to the dilatation operator and the Higgs
fields become quantum mechanical matrix coordinates. This matrix theory
in the pp-wave background has mass terms, in contrast to the matrix model
in the flat Minkowski background. This mass deformation in the pp-wave
background makes its energy spectrum discrete, whereas the spectrum in
flat background is continuous. The mass parameter of the pp-wave matrix

model is related to the four dimensional Yang Mills coupling constant as

m3  32m?
{5} =
gym
Thus we see that the pp wave string theory is dual to the matrix quantum
mechanics which arises because of the Kaluza-Klein reduction of N' = 4SYM
on R x S
The study of quantum mechanics of matrix degrees of freedom is termed

as matrix model. This model first appeared in the study of nuclear physics,

when studying energy levels of atomic nuclei, and in statistical physics.
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In general, the study of matrix model, is of considerable significance and

interest, particularly their large N limit. Some of these examples are

The large N limit of the system of NxXN matrices describes the DObranes
connected by small strings. These D0 branes provide a definition of
the M-theory in the light cone frame [19]. Thus, we see that M-theory
in the light cone frame, is exactly described by the large N limit of a

particular supersymmetric matrix quantum mechanics.

The correlators in one dimensional matrix model are related to corre-
lators of 1/2 BPS operators in zero coupling limit of N' = 4 SYM theory.
These correlation functions are used to understand the properties of

giant gravitons and related solutions of string theory on AdSs x S° [20].

Another useful application in the study of matrix models is the map-
ping between basis of states made of traces (closed strings) and the

eigenvalue of matrices in terms of Schur polynomials [20], [21]

The plane wave matrix theory is related to N = 4 SYM dilatation

operator [18].

Multi-matrix, multi-trace operators with diagonal free two point func-

tions have also been identified [22], [23].

The theory of quantum chromodynamics (QCD) has been thought of
as reduced to finite number of matrices with quenched momenta [24].
Alternatively they can associated with QCD zero modes on hyper-

spheres.

Single Matrix Models

The single hermitian matrix model is the simplest model and was solved

by [25], in the large N limit or the planar limit. In this study, the single
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matrix model was used to obtain the combinatorics of planar diagrams and
the ground state energy of a one dimensional oscillator with four vertex
interaction which lead to the introduction of fermions. The study of the
single matrix model in the fermionic picture describes, on the field theory
side, the 1/2 BPS states and their interactions. These states are associated
to chiral primary operators with conformal weight A = |, where J is a
particular U(1) charge in the R-symmetry group. Asthe value of ] changes, its
interpretation on the dual quantum gravity changes. For excitation energy
is O(1), the dual state is a state of gravitons; if it of O( VN) the dual state
is a string; If it is O(N) the dual state is a state of giant gravitons and if it
is O(N?) the dual state is an LLM geometry. It was shown by Lin, Lunin
and Maldacena (LLM), that a fermionic droplet configuration completely
describes 1/2 BPS states [26]. The dynamics of these 1/2 BPS states and
their interactions have a simple field theory description in terms of free
fermions associated with complex matrix in a harmonic potential. The
fermions form a droplet configuration in the phase space. These states
can also be thought of as fermions in a magnetic field on the lowest Landau
level (Quantum Hall Effect). However, the energy and flux obtained by
LLM are exactly reproduced if the free fermion matrix model is replaced
by a one dimensional hermitian matrix in a bosonic phase space density
description [27]. The study of single hermitian matrix in a bosonic phase
space description, gives the energy and flux associated with 1/2 BPS states.
These 1/2 BPS states are constructed from a system of two matrices or a
complex matrix and performing a truncation to a single hermitian matrix.
Specifically, starting with Z = X; + iX,, where X; and X, are the two scalars
of the N' = 4 SYM theory, and introducing the matrix valued creation and

annihilation operators
1

S

(A + B")
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the 1/2 BPS states correspond to a restriction of the sector with no B excita-
tions. Thus the single hermitian matrix is the matrix describing the dynamics
of the A, A" system i.e.

1
M=——(A+A".
%( +A')

The supergravity description of these 1/2 BPS states is given in terms of
giant gravitons [28]. These giant gravitons are the solutions of D3-branes
wrapping a round S® in $° or in AdSs, with large angular momentum. The 1/2
BPS excitations of AdS xS configuration in both type IIB string theory and M-
theory, which is the gravity description of 1/2 BPS states was constructed and
its energy and flux was found to be in one to one correspondence with those
of a general fermionic droplet configuration [26] (referred to as LLM). The 1/2
BPS states in the AdS/CFT correspondence for maximally supersymmetric
theories are associated to chiral primary operators with conformal weight
A = |, where ] is the particular U(1) charge in the R- symmetry group. For
small excitation energies | < N, these BPS states correspond to particular
gravity modes propagating in the bulk. As the excitation energy increases
] ~ N, some of the states can be described as branes in AdS or in the internal
sphere which are the giant gravitons. Also, these 1/2 BPS states preserve
half of the supersymmetries (i.e. 16 of the 32).

The single matrix model is also used in the study of string theory in two
dimensions as a description of gravity [29]. When considered in the double
scaling limit, the single hermitian matrix model gives the two dimensional
theory of quantum gravity. However, if this map of matrix models with
string theory is considered for larger number of matrices, then tachyons

might appear in the theory.

Two Matrix Models

An extension of the map between 1/2 BPS states and free fermions was

studied [27] by considering states associated with a full two matrix problem,
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as referred to, in section 1.2.1. Here the matrix associated with A, A forms
the large N background and is treated exactly while the other associated
with B, B is treated like an impurity creating fluctuation in the large N
background generated by the first matrix. The second matrix is treated in a
coherent state basis, using creation and annihilation operator. The study of
such a system of combined mixed traces leads to a sequence of eigenvalue
equations, which are then solved for the case of oscillator potential, which
results from the coupling to the curvature of R x S®. This provides a two
dimensional set of eigenstates which can be thought of as an extension to
the one dimensional space representing the eigenstates of free fermions. A
mapping was proposed associating the eigenstates to the gravity states with
either S or AdS radial dependence. This mapping between gravity and
matrix model wavefunctions is found to be one to one in contrast to the
holographic map, where one of the dimensions is projected out.

The generalization of this approach to include gy interactions was de-
veloped in [30]. By considering a multi local set of states appropriate to
the gyy interaction, a full free spectrum for two Hermitian matrices was
constructed. In addition to the identification above the direct model of two
scalars X; and X, was also discussed i.e. the following Hamiltonian was

considered

A

1 2 1 2
STr(Ph) + %Tr(xf) + STe(P) + %Tr(xg) - & Tr([X, X2 (1.2.1)

When the gy) interactions are included, a full string tension corrected BMIN
type Hamiltonian is obtained [30]. Further properties of the spectrum were
studied in [31], where it was shown that the full string tension corrected
spectrum depends on two momenta. For a specific value of one of these mo-
menta, the spectrum has the same structure as that of giant magnon bound
states. States with arbitrary number of impurities were also considered and

their first order (in g3,,N) spectrum was obtained.
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The framework used in [27]-[31] is based on the collective field theory
[32], which provides a transition from Yang Mills to string theory description.
In this method there is a direct change of variables from the matrices of the
U(N) gauge theory to the fields of string theory. The observables in the
collective field theory are thus given by loops or traces of matrix products,
which are the physical observables describing the dynamics of the theory
with large N symmetry. The resulting effective or collective Hamiltonian is
built from two interaction terms describing joining and splitting of loops.
The spectra and the interactions of these observables should have a gravity/

string field theory interpretation.

1.3 Outline

The approach taken in [27]-[31] is based on a supersymmetric setting, al-
lowing one to consistently neglect normal ordering terms. As a result the
planar background is harmonic and gyy independent. In this thesis, a non
supersymmtric background, is considered, in an approach where the two
matrices are treated asymmetrically, and properties of the large N back-
ground are obtained.

The thesis is organised as follows.

Chapter 2 describes the collective field theory technique, as it applies
to matrix models. The change of variables to invariant collective fields is
described and the Jacobian also wanted with this change of variables is
found by requiring Hermiticity. The single matrix case is then discussed in
some detail.

Chapter 3 introduces, in anon supersymmetric background, the quantum
mechanical Hamiltonian of two hermitian matrices, coupled via Yang - Mills
interaction. Here one of the matrices (X;), is treated exactly and the other

(X»), as impurity in the background of the first matrix. If V is the unitary
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matrix that diagonalizes X;, we observe that the commutator of P; with
X, = VX,V and P, is non zero and therefore we introduce a canonical
transformation for P, so that the transformed momenta does commute with
X, and P,.

In this thesis we are interested in the “state with no X, impurities”.
Because of the dependence of such states on X; degree of freedom, it is
seen that the canonically transformed momenta, acting on such states, is not
equal to zero. Therefore there is an additional shift in the kinetic term for
Xj. This is carefully taken into account in chapter 4, and the shifted kinetic
energy is calculated.

In chapter 5 the planar background, in terms of the density of eigenvalues
of X; matrix, is obtained implicitly through a non-linear integral equation.
The equal time correlator for the X; matrix, in the weak coupling limit is
obtained using the density description and the perturbation theory, to the
order A%,

Chapter 6 deals with the strong coupling limit (A — o), in which we see
that the effective potential obtained due to the additional shifts, discussed
above, does not contribute. The large N, ground state energy and < Tr(X;)? >
are obtained in this limit and it is seen that these results are free of infrared
divergences.

Chapter 7 is reserved for conclusions, where we state the results that we
obtained in this thesis.

The Appendix A describes the double index notations of the matrices
and Appendix B gives the detailed calculations for the shifted background
momenta in original system of coordinates. Appendix C gives the alternate

method for the calculation of < Tr(X;)? >, using perturbation theory, to O(A).



Chapter 2

Collective Field Theory

In this thesis we will use the collective field theory in an attempt to obtain
an effective Hamiltonian in terms of the density of eigenvalues of a single
hermitian matrix. It is therefore useful that this method be revised in this
chapter.

Collective field theory represents a systematic formalism for describing
the dynamics of invariant observables of the theory. The method consists
of a direct change of variables to the invariant observables. This leads to an
effective Hamiltonian, and in this new representation, the large N limit is
determined by classical stationary points. The large N spectrum is, in general
determined by small fluctuations about the stationary collective field. Thus,
the Hamiltonian in terms of these new invariant observables describes the
full dynamics of the theory.

Consider the Hamiltonian for a multi-matrix system, with hermitian

matrices X;
1% 9 9
H= —ETr(; X%+ VD (2.0.1)
=—1i2 ? J ) + V(X)) (2.0.2)
a 2 i—1 mn (aXz)mn (axl)nm l A

where the potential V(X;) is invariant under the unitary transformation
X; - U'X;U

23



CHAPTER 2. COLLECTIVE FIELD THEORY 24

The Hamiltonian is invariant under this symmetry, and one may consider

equal time single trace correlators (operators) of the form

M
H X[
j=1

In the large N limit, this change of variables from the original variables to
invariant loop variables implies a reduction of degree of freedom. For exam-
ple in the single matrix systems the collective variables corresponds to the
eigenvalue basis. These variables are known to be independent in the large
N limit, as evidenced in studies of single matrix models and matrix descrip-
tion of lower dimensional strings. For finite N there are constraints, which
can be considered after the change of variables. This results in interesting
effects related to the stringy exclusion principle.

Consider the change of variable to
Xi = ¢c (2.0.3)

where C is a gauge invariant loop or word index. The kinetic term of

Hamiltonian under the above change of variables becomes

:__Tr(Zﬁﬁ ———ZQ(CC’ 30c 8% Zw(C )3ge 204

where "
ODc D
Q(C,C) = Tr(Z 3‘?;%
P i i
and

ZCPC
w(C) = —Tr(Z X%

Q(C, C’) “joins” loops or words and w(C) “splits” loops or words. For exam-
ple, if ¢c = Tr(X{) and ¢¢ = Tr(X{/) then Q) = ]]’Tr(X{_le_l). So in general,

one may write schematically

QC,C) =) pesc
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where C + (' is obtained by adding the two words C and C’. Similarly w can

be schematically written as

w(C) = Z WerWer

which represents all processes of splitting the word C into C" and C”.
Because of the Jacobian J associated with the change to the new variable

i
¢c, the operator 52-, transforms as

9 R ]1/2i 9 _1ldm
8qu 8q§c a(PC 2 a(Pc

where ] is the Jacobian of the transformation.

]—1/2 —

(2.0.5)

Under this transformation the kinetic piece of the Hamiltonian becomes

W(O)dc + OC, CNIcde — o(C)dc - %ac InJ) + QC, )0 - %ac InJ)
@ - 30cIn])
= w(C)dc - %w(C)&c InJ +dc(CQ(C, C')der)-
(cQ(C, C))de — %Q(C, C")dcde In J—-
Q(C, € In Jac + 7Q(C,C)ocIn Jac In]
Using the hermiticity condition, terms linear in dc are zero. This implies

that
w(C) = Q(C, C" (D In]) + dQ(C’, C) (2.0.6)

Therefore, the explicitly hermitian collective field Hamiltonian is

H = 50c + 50n)QC,C)(-dc + pacha) +V  (207)
Using equation (2.0.6)

doln] = Q7(C,Cw(C) - Q7(C,C)IQ(C,C')

If we substitute for do In | in equation (2.0.7), then the leading contribution

will be

1
H= —E(acg(c, oo — jIw(C’)Q‘l(C, Cw(C)) +V
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= %(H(C)Q(C, CHILC) + %w(C’)Q‘l(C, Cw(C)) +V (2.0.8)
where,
T1(C) = —i J
— 990

The full Hamiltonian in addition contains counter terms which contribute
at loop level. This form is explicitly required by the hermiticity requirement

and is

190(0) 19Q(C”,C)

— _1 ,
2AH = 2 300 *5— . Q(C’, C)w(C)
19Q(C”,C) ., ,.0Q(C’, C")
TR i At e (I 61 Jutuni S A
4 8(PCH ( ) 8(PC”’

The formalism developed above gives a general description of the collec-
tive field theory technique. In the next section we will apply this formalism

to the case of single matrix.

2.1 Single Hermitian Matrix

For a single hermitian matrix, one can choose

dc = Pr = Tr(e™)

Its Fourier transform is the density of eigenvalues and is called the x
representation of the variable. In the x representation, the collective field

variable is given as

o) = [ Sreon=Y o= )

where A, is the eigenvalue of the matrix M. In the x representation w(C) and

Q(C,C’) are given as

Q(x, y) = 99y (P(x)0(x - )

w(x) = 20,(d() dzj)(_z)z

) 2.1.1)
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Therefore, the leading order term of the Hamiltonian in (2.0.8) is

H:fdxfdy fdx8a¢()¢( ,Ca(; 1qu)(x)(f ﬂ)

+fdx({)(x)V(x)—/J(fdxqb(x)—N) (2.1.2)

where the Lagrange multiplier u enforces the constraint f dxg(x) =

There is an identity

2
f dx()( dyM) _ f dx(2)

Also, to exhibit the large N dependence, we do the following rescaling

x—>\/IT]x

— VN¢(x)
9 1
TS0y - e = e

p— Ny

Thus, the effective Hamiltonian in the large N limit, which is sufficient for

the study of the large N background and fluctuations, is

Hyy = 5x [ @2M00@am100 + N[ a0 + e - w)
(2.1.3)
The second term of the above equations is of leading order in N. This will
therefore generate the background and the first term will generate the fluc-
tuation around this background. These fluctuations can be examined by
defining the background ¢, as the result of extremising the second term of

(2.1.3) with respect to ¢(x). Thus, we obtain the background as,

nip(x) = o(x) = /2u — 2v(x) (2.1.4)
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Non-Supersymmetric Two Matrix

Model

The two matrix problem that we are interested in, is described by the quan-

tum mechanical Hamiltoninan

2 2
A= Te(P?) + %Tr(xf) + %Tr(P%) + %Tr(xg) - &, Tr([Xy, Xo])% (3.0.1)

N —

Here X; and X, are the two N X N hermitian matrices and P; and P, are their

conjugate momenta respectively, such that

(X7

e P, 1= i6iw0pmbw (i, jymmn=1---N)(a,b=1,2)

X

ij’ p zm] =0

These two matrices are coupled via the standard Yang-Mills interaction.
The Hamiltonian above can be thought of, as associated with two of the

six Higgs scalars of bosonic sector of N' = 4 SYM, in the leading Kaluza-

Klein compactification on R x §°. The harmonic potential results from the

coupling to the curvature of the manifold. In the present study we consider

the non-supersymmetric setting.

28
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3.1 Two - Matrix Hamiltonian in
Creation/Annihilation Basis

In the two matrix Hamiltonian given in (3.0.1), one of matrices, Xj, is treated
in coordinate space and exactly (in the large N limit), and the other, X,, in a

creation/annihilation basis. Letting

Xo=—=(h+ A Pr=-i /%(Az - A}) (3.1.1)

the Hamiltonian (3.0.1) takes the form

1 2 W 2 t 2 W
H = —Tr(P ) + 7Tr(X1) +wTr(A,A2) + N >

- iYMT<2[X1,A;1[x1,A21+[X1,A2] XA (612

v Sl - Sy

Here A, and A} are the creation and annihilation operators related to the

X, matrix such that
[(AZ)z]/ (A )mn] = 6m6]n (l, j, m,n = 1--.- N)

[(A2)ij, (A2)mn] = [(AD)ij, (ADn] = 0

As the interaction is quadratic in the oscillators, one can perform a Bogoli-

ubov transformation
(V'A;V);; = cosh(¢j)Bi; — sinh(¢;))Bf; (3.1.3)
with

g%(M 2
IMA— A
tanh(2¢;j) = o A= A)

s ) (3.1.4)
w + ﬂ(/\z - A]‘)Z

where the A;’s are the eigenvalues of the matrix X; and V is the unitary

matrix that diagonalizes X;. Then (3.1.2) takes the form
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A

1 w? s 1

STH(PD) + S Te(XD) + ) \/w2 #2880 = )2 (BBi+3). (3.15)
i,j=1

We would like to obtain an effective Hamiltonian for the X; coordinate (or

its eigenvalues), which should be able to reproduce expectation values of

large N invariant operators, depending only on X;. In this thesis we will

concentrate on the contribution to the large N ground state configuration

coming from the zero point energies of the B, B oscillators, and we are

therefore led to the Hamiltonian:

A

1 w? 1w
Ay = 5Tr(PD) + ST0G) + 5 '\ + 283, (A= A, (3.1.6)
ij=1

However, P; acts non trivially on the ground state with no B impurities,
and therefore in (3.1.6), the Hamiltonian in the X; sector has to be corrected.
In addition P; no longer commutes with B, B'. These issues will be addressed

in the sections to follow.

3.2 Diagonalizing One of the Matrices (X)

Consider the interaction part of the Hamiltonian (3.0.1)
Hin = =gy Tr([X1, Xa])*
This can be rewritten as
Hipe = =g, Tr[X1, Xo1[X1, Xo]
= -2¢%, (Tr(XiX5) — Tr(X1 X2 X1 X2))

If we diagonalize matrix X; using the unitary transformation X; = VAV?,
where V is a unitary matrix, then the interaction piece of the hamiltonian

(3.0.1) together with the potential term for matrix X, is given as

1
U= EcuZTrxg + 280 (Tr(X5X3) — Tr(X1 X2 X1 X2))
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1 - - - -

= szTrxg + 285 (AT (X2);(X2) i = AilX2),jA (X))
1 o

= Ea)zTrxg + g%/M(Ai - A]')Z(Xz)i]‘(XZ)]'i
1 _ _

= E(a)2 +2g5, (i — /\j)z)(Xz)ij(Xz)ﬁ

_ %a)l.zj(/\)(xz)ij(XZ)ﬁ

Here A, is the eigenvalue of the matrix X; and X, = V'X,V. Similarly
we can write the momentum for X, as P, = V'P,V. So, the creation and
annihilation operators B;;, B;r]. introduced in the previous section are nothing
but the creation, annihilation operators associated with the scalar field (X»); i
each with frequency w;;. We find it easier to work with (P,);; and (X2);;,
instead of B, Bf. We write the Hamiltonian sector in terms of “bared” co-

ordinates as

1 1 1, 1 o
H= EP{‘PM + Eaﬁxfxm + EPg*PZA + Ewi()\)XZAXg‘ (3.2.1)

Here the indices denote a double index notation i.e. A = (ij). The details
for this double index notation are given in Appendix A.

As a result of the definition of X5 , P,, we observe that
[P1/X2]¢0 [Pllpz:l;to

In the next section, we derive a canonical transformation which will result

in standard commutation relation.

3.3 Canonical transformation

We have seen earlier that the commutators of P; with P, and X, are non-zero.

These commutators take the form

[(P1)4, (X2)P] = —iF A" (Xa)c (3.3.1)

[(P1)a, (P2)P] = —iFA"“(Py)c (3.3.2)
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Therefore, we perform a canonical transformation of P; to get its commutator

with P, and X, equal to zero. This canonical transformation is given as
(P1)s = (P1), + FABC(XZ)B(pz)C (3.3.3)

It can be shown that the commutator of (P;) , with (P,)° and (X,)” is indeed

zero.
[(P1)a, (P2)1 = [(P1)s + FAP (K2)c(Pa)p, (P)']
= —iF"“(Po)c + FAP[(X2)c, (152)3](152)]3
= —iF4%(P,)c + FAPid " (Py),
= —iF4PC(P,) + iFA"S(P))
=0
and,

[(P1) 4, (X2)] = [(P1)4 + FA“P(X2)c(P2)p, (X2)']
= —iFs"(Xo)c + FAP(X)e, [(P2), (X))
= —iFA"(Xy)c — iF4P(X2)6p"
= —iFs"(Xp)c — iFA“P(Xy)c

=0,

rovided F4%¢ = —F,“B. We will show that F45€ is indeed anti-symmetric.
P y

Explicit Form of F,5¢

Referring to (3.3.1), this can be rewritten as

The left hand side of this equation is simply,

) (Vv

_l(axl cd
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This can be calculated using,

Vo VIV
axl i ZZ - — - avab ZVZCV‘”’

ab

Thus the left hand side of (3.3.4) is

d
(530) (VXaV)yy = (530) VA,V
dev Vam a +
(X2)1] /\ A aVabvsz]q
VaV?

= (X2)ij5¥——— = — (VJr Vindbg = VigOpm V)
i quvmcvplv VaViVigVy

T A, (X2)ij
(V+X2v)pm Vg VI Va(VIXa V)
A= No— 1,
B (VX V) V] Vi .\ VI Va(VIXa V)
A= =

Vi Vag(X2)pw N V3 Vap(X2)ng
/\q - Ab /\p - /\b
V;cvdq(XZ)pm + V;cvdl(XZ)lq
/\q - /\m /\p - /\l
Vi Vagoy . V3Vt
- At] - Am /\p - /\]

)(X2)um

Comparing this with right hand side of (3.3.4)
V;C quélp V;Cleémq
+

Ao=Am A=A

This is the expression for F,*C. Comparing indices, we have A = (dc),

ch,pq,ml = (335)

= (gp) and C = (Im). Thus if we want to write an expression for F A8, we

change (Im) < (qp) i-e. | & gand m & p. Thus we get

VicVadgn V5. cViydp

FACB —
M= A=A

(3.3.6)

Comparing these two equations, we see that F4,*© = —F,“*. This proves the

anti - symmetry of F,"¢
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Effective X; Hamiltonian

We proceed by concentrating on the large N configuration of the system for
the ground state configuration and correlators without X, “impurities”. The

state with no X, “impurity” is given as
1 & o
\I]() ~ exp(—Ea)inZi]-Xzﬁ) (401)
The normalization for this “no impurity” state is determined as follows

1 s -
\IIO =A exp(—E Z (UinZinZji)

i#]
dez\I’(z) = A? dez exp(— Z C()inZinZji) =1
i#]
2
= A H /wl =1
z;t]
= A= H( AT (4.0.2)

i#]

The normalized no “impurity” state is thus given as
Wiji 1 _ _
Wo = [ [ exp(—5 ) w3i(Ke)(Xa);)
i#] i#]
1 1 . .
= exp(] ZA" Inw, — Ea)A(XZA))(XZA) (4.0.3)
The 2 sector acting on this ground state just gives the zero point energy

of a harmonic oscillator as is explicitly shown below

1-4- 1 - -
(§P2AP2A + Ew,quzAXZA)\Po

34
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= (=370 () + 503 (Kaa) (Ko exp(- 30 (X)) (404

since,
d 1 - _ _ 1 _ _
(a_Xz) beXP(—Ewij(XZij)(XZﬁ)) = —(war(X2)p,) eXP(—Ea)z‘j(Xzij)(iji))
and,
d _ 1 _ _
(a—Xz)ba(—wub(XQ)bg) eXp(_Ewij(XZij)(XZji))
- - 1 - -
= —(Wap — Wap(X2)p,@0a(X2) ) eXp(—sz‘j(XZij)(Xz i)
Therefore,
1 -4 - 1 - - 1
(EPZAPZA + szquZAXZA)\I]O = E ; Vo (405)
and we obtain equation (3.1.6)
1 w? Iv
Hy = 3Te(P) + S T0O3) +5 Y \/w2 +2g2 (A= A2 (4.0.6)
iji=1

Considering an arbitrary wavefunction, written as

YA, Xa) = f(Dho(A, X2)

we define an effective X; Hamiltonian to be

HY'F0) = [ dago (L, KDY, ) D) (40.7)

Given the dependence of )y on A, P11 # 0, and this has to be carefully taken
into account.

It will be shown later (4.1.20), that this effective Hamiltonian only de-
pends on the eigenvalues of X;, resulting in considerable simplification of

degrees of freedom.

4,1 Shifted kinetic term

From the canonical transformation in (3.3.3), we have

Pip = Pig — FA®XypPyc (4.1.1)
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For simplicity of notation, we drop the bar sign from now on. The kinetic

term then becomes

1 1
EPme‘I’o(/\/ X5) —’E(Pf — P X5 Pyc) (P14 — FAP“XapPac)Wo(A, Xa)
1
= 5( PYP1a = [P, FA" XapPac] = 2F4" XosPocPY +
——
Term 1 Term 2 Term 3
FABC X PacF AP XopPc | Wo(A, X2) (4.12)
Term 4

In addition to the shift resulting from the canonical transformation (4.1.1),
there is an additional shift that results from the fact that P; W, # 0.
One has,

1 1
P14Wo(A, X5) = PlA( eXP(Z Z In wp) eXP(_E Z CUDXZDXZD))
D D
1 1
= Wy(A, X2) (PlA ~1 ZD: dalnwp + 5 ZD: aAa)DXZDXZD]

1
= Wy(A, X5) (PlA ~1 Z dalnwp(1l - 260DX2DX2D))
D

Thus,
PlA\yO(A/ Xz) = \I]()(A, XZ)(PIA - Z(AY)A) (413)

where, the additional shift is given by
1
(AY), = g Y 94 Inwp(6f - 2wpXs"Xap)
D

Then Term 1 in (4.1.2) is given as

1 1

EplAplA\IIO(A/ X3) = E\PO(PIA — i(AY))(P1a — i(AY) )
= %\yo (P1*Pya —i[Py", AYA] = i2(AY) Py = (AY)(AY),) (4.1.4)

Taking the ground state expectation value of (4.1.4) gives,

A B C
1 P1APia — 2i {((AY),) P2 1 AY)YA(AY L; P4 AY 415
5| PP = 2N P = S (A (AY),) ~5 ([P AYal)  (415)
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where the expectation value of any operator O is given as
(0(x2)) = f dX, W5 (Xz, 1)O(X2) Wo( X2, A)

In particular,

Xoa X5 >= %
< Xopky >= m (416)

Thus term A in (4.1.5) is given as
(AY), = i Y datnwp (68 - 20pXa"Xap))
D
_ i XD: Ialnwp(65 - Za)D—éD)
=0 (4.1.7)

The vanishing of this term (multiplying Pi4 linearly) and the vanishing of
term 3 in (4.1.2) (as will be shown later), are required for consistency of this
method.

Term B of (4.1.5) is given as

~ 2 {antan,) =

_ _% <(iaf‘ In wp(6” - 2a)BXzBX23)) (i&A In wp(58 - 2wBXzBXzB))>

1
= — <(3—28A In a)B(ég - za)BXZszB)aA In C‘)C(ég - 2wCX2CX2C))>
= _3i2 (04 In wp (55 — 205X, Xo5)0" In wOE

—&A In cuB(ég - 2a)BXQBX23)&A In C()Cza)chCX2c)>

1 " o
= —32( 8Alna)35 0 lna)CZa)c2 p~
+ 48A In a)B&A In WcWBWC <X2 XQBXZCX2c> )
1
= _3—2( —dalnwpd* Inwe
o8 6C
+ dwpwcd s In wdd In wc B _< 4
2wg 2w

gsc §°° . o5 00 ))

20)3 ZCL)C ZC()B 2a)c

= —11—68A In a)BaA In B (418)
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Term C in (4.1.5) is given as

~ iz (P, AY,]) =

= —l%(—l)a{‘ (i Z BA In CL)D((Sg - ZO)DXZDXZD))
D
111 Py D D
= —5 ZZ aA lna)D <(6D —2wpXs XZD)>+
D

+i Z daInwp(-20"wp) <X2DX2D>}
D

= %(Ll lna)D&‘A lna)D (419)

Now, substituting (4.1.7), (4.1.8) and (4.1.9), for term A, B and C respectively
in (4.1.5), gives the term 1 in (4.1.2)

1
— E&; In C()B&A In WBR

1
+ gaA In a)D&A In wp

_ %aA In @z Inwp (41.10)

In order to calculate term 2 in (4.1.2), we note that
PZC\PO = ia)CXZC\I]() (4111)

and hence,

iWo(PAF AP XopwcXac)

= i(PAFA" )Y we < XopXoc > +F4"(Plwc) < XapXoc >)

= (PLEA"Ywc S + B PO (Phwc) 25
26()3 2&)3

=0 (Since F4*% =0) (4.1.12)
In order to calculate Term 3, we use (4.1.3) and (4.1.11) to give

—(FAP X5 Pac Py = Wo(=iF AP XopwcXoc (P = i(AY)Y))
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= (—iF4%wc < XopXoc > P1 = FABCwc XopXoc(AY)?) (4.1.13)

A B

Term A given in the above expression is calculated as follows

Term A = FABCa)C(SLC
Za)c

=0 (4.1.14)
and, Term B is given as

1
Term B = —EFABCa)CXZBch&A In C()D((SB - 2a)DX2DX2D)
1
= _Z (FABCa)CQA In wp <X23X2c> +
2PABCC()CC()DaA In wWp <XZBX2Cx2DX2D>)

(g se, o o4 gsc Op 8o 05 . gep Oc
= 1
2 (F A @ewpgin @D (2w3 2wp | 2wc 2wp | 2wp 2wc

1
=-3 (&A In CL)D(FADCgCD + FABDgBD))

=0 (4.1.15)
substituting (4.1.14) and (4.1.15) in (4.1.13), we get
Term 3 =0 (4.1.16)

Now we are left to calculate term 4 in (4.1.2). Starting with

1
EPABCngP 2cFAP XopParWo(A, X2)

1 .
= EPABCPADEXzszc(XZDleXE)\yo

1,. . .
= E(1FABCFADECUEX2B((_16CD)X2E + Xop(=idcE))

+ IFAPCFAPE 0 Xop Xop Xop (ic Xac) )\ Wo

1
= §<FABCFACECUEXZBX2£ + FABCFADchszxzD

- FABCFADECUCCUEszchxszzE)\I’o

we obtain



CHAPTER 4. EFFECTIVE X1 HAMILTONIAN 40

1
E(FABCPACEQ)E < XopXop > +FABCFADCC()C < XopXop >

— FAPCPAPE e < XopXocXopXor > )

1 8BE gBD
i FABCF CE , &bb + FABCF DC
2( A O s A g

_ p,BCPADE 8BC &DE + 8BD &CE N 8BE gCD)
A 26()]3 Za)E 26()3 26()C 26()3 26()(: )

WcWE (

1
( (FABCF ,CB 4 FABCE BCC‘)C) FABCE, o + FAB FABC%)

2 wp wp
1 1 1
= 2( ZFABCF Bc(l wB) + 4FABCFABC (1 — w—B))
_Lpascp (1 _ ﬂ) (4.1.17)
8 WBR

Using (4.1.10), (4.1.12), (4.1.16) and (4.1.17) for term 1, term 2, term 3 and

term 4 in (4.1.2) gives the shifted kinetic term as

1 1
~PAPy — —PAPyy — = Z FABCFA (1 - —) + Lo, nwpd Inws (41.18)
2 2 § L 16

Using the expression of F4°, we can simplify the above expression, with

= (cd), B = (pq) and C = (Im), FABC is given as

v, vt chV*
FuB€ = — 2 m ] 5 381+ —— (1 = 5,1)00m
A /\p_/\m( P ) ql Aq ( ql) p

Replacing, ¢ © d,p © g,1 < m, we can get expression for F4c, which is

given as
1.

quVerc
FABC = /\q _ /\] (1 - 6ql)6pm +
Using these two expressions, we find
(1 = 6pm)Oq1 s (1 = 641)0pm
(/\p - /\m)z (/\q - A1)2
Therefore the first term in (4.1.18), can be rewritten as
Z FAPCFApc (1 - —) =
ABC
1—0,m)0 1 —0,1)0,m -
__Z(( p)zl_'_( ql)pz)(l_a)_l)
8 pq,lm (Ap - Am) (Aq - /\l) Wpy
__* (1- 67"'”) (1 _ %)
p I,m (A )

dm
/\ _/\ (1 6pm)6ql

BCRA  _
FA™"Fpc =
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Ly -0 (1_%)

o (Ag = M) @pq
T (-
plm(/\ Aw)? Wip

Thus, from (4.1.18), finally we obtain,

1 -0,
1Pl PlA—) 1P PlA_l —( P ) (1_a)lm)
a)lp

2 2 plm(/\ _/\m)

E8A In wgé' In wp

(4.1.19)

Therefore, we arrive at the expression for Hif f

ff_Lha 1 (1 = Opm) Wi 1 " 1
H/ = 3PP -7 ) ——5(1-= + 2204 Inwgd lnw3+§;a}A

(4.1.20)

It is important to note that the effective potential depends only on the eigen-

values of X, and therefore one can use the collective field theory to obtain
an effective hamiltonian in terms of the density of these eigenvalues.

This will be done in the next chapter, but in the next section we provide

an additional check of our result (4.1.19).

4.2 Shifted Background Momenta in Original
System of Coordinates

We show in this section that working with X, is the same as working with
the original X, coordinate. This is done by rewriting the X, frequency that

we got in terms of X, again in terms of X5, as follows:

wii(X2);1(X2) i = wii(VIXa V)i (VI X V)
= wijv;(xz)ubVij;C(XZ)chdi
= (XZ)gb[V;Vbjwijvdiv}rc](XZ)cd
= (X2)apMab,ca(X2)e

= (XZ)baMab,cd(XZ)cd
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which in the double index notation is
X waPXop , wa® = Mupea = V;Vbjwijvdiv}rc

where A = (ab), B = (cd).
Thus the Hamiltonian in the original system is

1 1 1 1
H= EP% + Ea)ZXf + §P§ + 5 (X2)apMapca(X2)ea

It has been shown earlier that X, sector acting on the ground state with no
X, impurities is just the zero point energy of simple harmonic oscillator i.e.
%Mab,cd. Thus the hamiltonian acting on the ground state with no X, impurity

is
1, 1 1
Ho = 5P} + 50X} + Y M

2
ab,cd
As before, since this ground state wavefunction has frequency depending in

the eigenvalue of X, P; acting on this wavefunction is not zero. i.e.
P1Wo(X1, X2) #0
So the more precise statement of the Hamiltonian in the X; sector is
H = f dXo W (X, Xo) HWo(X1, X5) 4.2.1)

i.e. We want to integrate over the X, degree of freedom. The ground state

Wy (X1, X») is of the form
1
Wo(X1, Xp) = H a)lc/4 eXP(—EXZCCUCszD)
Then,
1
P1aWo(X1, X5) = Pia (H wéﬂl exp (—EXE:CUCDXE)
c
1
= (PlA 1;[ C()é./4] exp (—EXga)CDXZD)

1
+ H a)g‘:/4 (PlA exp (_EXZCCUCDXZD))
C
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and,

+ Ha)l/4exp( ~XSwc XZD) Pia
Ha)l/4 exp (——X wc XZD)

7 1
| 1/4 . Cc, ., D
+ ] C() (—l exp (——ZXZ wc XZD))

1
+ [H wé/4 exp (—EXgaJCDXZD)
c

1
= ‘I’o(Xl,Xz)4—[P1A, w,]
wc

_l_

x4

P1a

1
+ Wo(X1, X2) (—§X§[P1A, ch]sz) + Wy(X1, X2)P1a

1
= Wp(X1, X2) (plA - E(XZC[PlA/a)CD]XZD

—%[Pm, wc]))

PAP1AWo(X1, X2) = Wo(Xy, Xa)

1 1
(sz 5 {Xg[P?, wcP1Xap — E[P‘f, a)c]})

1 1
(PlA - {Xg[Pm,wc 1Xop — —[P1A,CUC]})
2 2wc
= Wy(Xy, X2)
1
[Pme - E {X§ [Pf, [P14, CUCD]] Xop
1,1 1,
5 (PP el = 5= [P, 1P acl]

1 1
-5 {Xg[PlA/CUCD]XZD — =—[Pia, CUC]} p{

2 26()(:
1 1
> {ch[Pf, wcP1Xop - E[Pf’ CUC]} P14
1 1
+3 {XSIP 01X - 5 [P, ccl
wc
1
{Xg[PlAszF]XZF ~ 5 [PlAz(UE]}]
WE
= Wo(X1, X2)
1
PP = 5 (XS [P 1Puas 0cPT] Xao

43
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1,1 1,
_E(Pl CU_C)[PlA/wC] ~ 2oc [P1 , [PlA/a)C]]}

1
- {ch[Pf, wcP1Xop — E[Pf, wc]} Pia
1 1
t1 {XZC[Pf,wCD]sz - E[Pf,wd}

1
{XIQE[PlA/wEF]XZF - —2 [PlA/wE]}]
WE

This gives the kinetic piece of the corrected Hamiltonian. In order to get the

kinetic piece of (4.2.1) one is left to perform the gaussian integral

<X2AX§ >2
One obtains,
(XouXZ), = %(w—l)AB (4.2.2)

Thus, using the above relation the kinetic piece of (4.2.1) can be calculated. In
particular, it can be shown that the terms linear in P14, vanishes. In Appendix
B we show that,

<{X2C [P4, wcP1Xap — ZLQ)C[P;*, wc]}>2 =0 (4.2.3)

In order to calculate,

—1<{X§ [pzl‘\, [PlA,CUCD]] Xop — 1(P‘14wic)[P1A,a)C] - ;TC [P‘f, [P1a, wc]]}>

2 2 5

(4.2.4)

One first requires knowledge of,

[Pf/ [P1a, CUCD]] <X2CX2D>

This equals,
_(i Wi — Wik +i 1 awif+ 1 azwij)
Wik A — A))F - @ij Ak = Ay A 2wi IA2
Also,
1 1 1 J 1 0
Z(PA=L)[P = () (———
2( 1 C()C)[ 1A/, wC] 2( (9X1A (UC)( l&XlA CL)C)
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1 1 dwyj\’
=22 (a5

and,

1 1 1 Odwij 1 Pw;
— 2 [pA P, }> _ b j j
<{ 2CUC[ 1/ [P1a wC]] 2 Wi A=Ay Ik " 2w;; o>

Summing these two terms shows that (4.2.4) equals

1 1 1 1
- §<{X§ [P‘f, [P14, CUCD]] Xop — E(P?w_)[PlA;CUC] ~ Dee [Pf, [P1a, C‘)C]]}>2
) 1520 ] | BTEE
R /\k - A’ 4 wij Ay
In addition,
L {XC[P wcP1Xop — L[PA W ]}{XE[P we X —L[P W ]}
4 1, WC 2D 2w wc 1, e 2 1A, WE 2F ZCUE 1A, WE

(4.2.6)
wj] 1
Sl
Z kZ;tl (Ak - /\l Wik 8 ;
Using the results of (4.2.5) and (4.2.6), gives the contribution of the corrected

kinetic term in (4.2.1) i.e.

2
1 1 wi—wi ( 1 a‘”ij)
—P{Pis — p P —
2 14 14+ 4 Z Z Wik (/\k — Al) 16 Z Z Wij 8/\p
2
1 1 1 Wil 1 dwjj
= —PAPy, — = —(1——')+— (——)
21 4 4 le Z (/\k — Al)z Wik 16 ; ; Wij (9/\;;

k+#l
4.2.7)

in precise agreement with the result obtained in the previous section.



Chapter 5

Density Description and Weak

Coupling Expansion

In this chapter, we will use the collective field theory approach that was
discussed in the earlier chapter, to write the effective Hamiltonian in terms
of the density of eigenvalues of the background matrix X;, and hence develop
the large N background configuration which is expanded perturbatively to
order A%,

Considering the effective Hamiltonian, given in the previous chapter

(4.1.20), which is rewritten as

N
seff 1 WP 1
37 = STPh + ST ) + 5 ; \/wz +2g2 (A= A2

1 (1 - 6pm) ( wj ) 1
=y ———|(1- ")+ —dalnwpd* Inws (5.0.1)
4 ’;1 (A, — Am)? wip 16

In this equation the last two terms represent the change coming from shift

in the kinetic term of X;. Out of these the second term, which is

1
E8A In wpd”* In wg

can be rewritten as,

1 1 d d
E8A lna)B8A 11’16()3 = E ;: ath (lna)bc)E(lna)bc)

46
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ij,ch ¢ !

1 40
_ 2 2 _ 2
Whe 9X1]1 \/w + zgym(Ab Ac) )

~ 16 Z Z V]kaA Vi \/C‘)2 + 2875 (Ap — Ac)?

ij,cb

Zvl,, . Vi A2 + 285 (A - 1?)

=16 2 L (5 Ve 26t 17
o 2 g i)
-3 Z Z —4<4g§m>2mb ~ )20

82—(4gym>2mb— 1?

bc

Replacing this in (5.0.1), we can rewrite the effective Hamiltonian as

N
H, —T (P?) + T (G)+5 ; \/a)Z +2g2 (A= A2

1-5,, }
ﬁ(l ° )+%Z_(48ym) A=A (5.0.2)

be bC

plm

This equation describes the dynamics of a single hermitian matrix, and
the large N background can be described in terms of the density of eigen-

values,

$(x) = Z 5(x — Ay),

as the minimum of the cubsic field effective potential
Vers :%2 f dxc(x) + %2 f dxcp(x)x* — p( f dx(x) — N)
+ % f dx f dy \/w2 + 28 = y)* dW)d(Y)
~5J o [y [aoanwoer——(-72%)

1 1
v [ ax [ avorow) PG UL (503)
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where the Lagrange multiplier y enforces the constraint f dx¢p(x) = N. To

exhibit explicitly the N dependence, we rescale

x— VYNx ¢@x) - VNo@x) u— Nu (5.0.4)

This results in
Trl = fdxgb(x) =N — fdxd)(x) =1

Under the above rescaling, we see that the last term in (5.0.3), is of order N,

and therefore is sub leading. Thus we obtain

2 2
Vess = NZ[%fdx¢3(x)+%fdx(p(x)xz—p(fdxqb(x)—l)
v 3 [ [ayor e 216 vrowon)
w(z,Y)

1 1
- 3 f dx f dy f dz¢(x)¢(y)¢(z)(x_y)2(1— — (Z’x))] (5.0.5)

where A = g3, N is the usual 't Hooft’s coupling.

Using the perturbative expansion,

1 ( _ a)(z, y)
(x — y)z a)(z, X)

Therefore, the last term in (5.0.5) can be rewritten as

21 [[aveow( [ aom) -2 [ s [avowm )

As N — oo, the large N background configuration minimizes (5.0.5) and

) = —2)54 (42% — 4z(x + y) + (x + y)°) + O(A%).

it satisfies:

R L e

372 3A2
2 dyy2¢o(y) (5.0.6)

4ot w*

When A =0, (5.0.6) reduces to the well known Wigner distribution:

TiPo(x) = \/Zy — 2w — w?x2 = V2w — w?x2, |x| <xy= 2 (5.0.7)
w
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with the identification u = 2w being enforced by the constraint

j; _x+ dxgo(x) = 1.

Expanding /w? + 2A(x — y)? , perturbatively in terms of A, gives

2A(x — y)2\'?
\/a)z +2A(x —y)? = a)(l + %)

— +£( — )2__2( —y)t .-
=w+—(x-y s XY

_ Ao o
=w+ w(x +y° —2xy)
Ay 3 3 2.2
_2_a)3(x + Y —4x’y —4xy’ + 6xYT) + -
Assuming that the background remains even ( f dxxgo = 0), (5.0.6), can be

rewritten to order A? as

TP5(x) =2u — wx* — 2w — %xz - % dyy’Po(y)
AZ
+ (x4 + 627 f dyy*o(y) + f dyy4<¢>o(y))
32 312
— ﬂxz - dyyijo(y) (5.0.8)

= o =% \/ﬁ — a?x? + A\2yxt

where,
22 A2 32
p=2u - 2w - o fdyyquo(y) t3 fd]/]/4¢o(y) By fdyy2qbo(y)
20 6A2 3A?
a? =w® + Py dyqubo(y) + 2t
1
Y s

To order A, ¢ has the form

Po = % \B—ax?

with f and @ now taken only up to order A. In the above form the
background distribution still remains of the Wigner type with suitable ad-

justments. We have B = 2a, where a? = w? + % Thus,

1
Po = - V2 — a?x? (5.0.9)
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with turning point X, = \/g, understood to be expanded to order A.

To order A?, ¢ has the form given in (5.0.8). We now have f = 2a + A2Ag,
with the shifted turning point given as ¥ = xy + Ax. However we see that
their is no need to introduce this shift, since, because of the normalization

condition, we have

fdxgbo(x):l
) X
== — 222 + A2k
:>1_7_(‘f0 \/ﬁ atx? + A2yx

2 (7 2
== — 22+ A2yt + = — a2x2 + A2yt
j; \/ﬁ a?x? + A2yxt + — (Ax) (\/ﬁ a’xs + A 7/x)|x:x0

O(A?)
2 [
:; ‘f(; Jﬁ — azxz + Azf)/xﬁl

Using the above expression we can calculate Ap

O(1) term =0 at x = xg

\/Z
1== f dv \[2a + 1208 - a%22 + A2y
0

s
) (VE
= —f dx V2a — a?x?
0

TC
GG ESCS 1
200 — a2x?

NE
= %f dx V2a — a2x?
T Jo
(1 LA +yx4))

2 2a — a?x?

= %f dx V2a — a?x?
0

=1
LA YR @y
—_— x—
T Jo V2a — a2x?
AB + vt
dx( p+yxt)

= —— =0
j(: V2a — a2x?

=
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setting, x = \/g sin 6 and dx = \/g cos 0, we have,
/2 )/
f AB +- —sin *0d6 =0

= A= +—f sin*0d0 = 0

7/371_
Aﬁ a24_
__7/
= A= e

5.1 Calculation of <Tr(X%)> Using Density

Description
We have,
(TrXf) = f dxa®o(x)
2 2
== X \/20( — a?x? + A2AB + A?yxtdx
0
Vi A2(AB + x4\
_2 f dxx® V2a — a2x2(1 + (5—27/2))
T Jo 200 — a*x
Vi 2(AB + yx*
= Zf dx® V2o — a2x2 |1 + A M
T Jo 2 20— a?x?
—zf\/gdxe 2a—a2x2+/\—2 \/gd Aﬁx
T Jo T Jo V2a - a2x2
Term 1 Term 2
22 : Y

dx———
T Jo V2a — a2x?

Term 3

) (VE
Term 1 = - f dxx® V2o — a2x2
0

setting x = \/g sin0, dx = \/g cos 0dO

/2
Term 1 = % f (%)sinQQ V2a cos 6d6
0

51

(5.0.10)

(5.1.1)
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2 7'(/2

== (1 - cos’0)do
na J,

_1
T 2w

ApA2 (VR e
x—
V2a — a?x?

0
. 2 . 2
setting x = \/j sin0, dx = \/j cos 0dO
! !
ABA* (T2 2
Term 2 = P f —zsin29d9
T oJy «

A2AB
- a2
3yA?
4ot

Term 2 =

Term 3 = — f
V2a a2x2

setting x = \/z sin0, dx = \/z cos 6d0O
a a
A2 /2 3
Term 3 = _Vf (E) lsin6(9d(9
s a’ «a

_ A%y5m

T nat 4

_ 5A%y
4ot

Substituting Term 1, Term 2 and Term 3 in expression (5.1.1), we get

1 3yA? 5y
f ded() = 50~ 4o * g

/\2
_i.mr
20 204

Using the following expression for @ and y in the above expression,

B w 2wt 2wt

3A%2 —4wA
_ 2
<o [1- (5|

372 — 40371 \]"?
g

52
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And y = % (5.1.2)

we get,

2 3 -1/2
s |

A1 [1 B (3A2 3 4a)3)\)l_2

- 203 wt 2w°
[, (34wt B4R
2w 4wb 8 wb
A? 312 —4w3A
1 A 13A2 X
“20 20t g7 TOWIT
The final result to O(A)?, is then
1 A 1372
2\ _ 2 _ AN
(Tex3) = f dedpy(x) = 5= = 5 + o (5.1.3)

5.2 Calculation of <Tr(X%)> Using Perturbation
theory

In this section, we use standard perturbation theory to calculate < Tr(X?) >

to order A%. The Hamiltonian for the two matrix system, with gy, interaction

is given as
1 s 2 (U2 2 1 s 2 (U2 2 2
H= ETl'Xl + ?Tl‘Xl + ETI'XZ + ?TI‘XZ — 8YMm Tl'[Xl,le[Xl,XZ] (521)

Using this, we can write the Lagrangian as

1 2 1 2
L=-TrX2 - Corx 2+ -Tex,* - &

> > 5 > TrXo” + g’ Tr[ X1, Xo][X1, X2] (5.2.2)

Using the path integral formalism, we can write the expression for the ex-

pectation value of X?. This is given as

(133) = [ 10%1100), 00,57
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= f [DXﬂ(Xl)ij(Xl)ﬁel’SOZ% (5.2.3)

n=0
where,
1 y 2 2 2 > 2 2 2
So= | dt; {Trx1 — *Tr X2 + TrXo” — 0*TrX, }
and
A
Sint:fdtNTr[XhXﬂ[Xl/XZ]

with A = gYMZN

Calculation to O( 1)
Considering n = 0 in (5.2.3), we get
(138) = [ [DX:1060), 0060, 0
= A(t) (5.2.4)
where, A(t) is the free propagator, given as [33]

dE e—iEt
A)=i | —m———
®) Z‘f27'(E7~—a)2+i€

B dEe—iEf( 1 1 )
B 21 2w \E—w+i0 E+w—1d

When t > 0 complete the contour in lower half plane.

E

—w 416

w— 10

Figure 5.1: Path of integration along the real time axis for A(t).

The path encloses the pole at E = w — i6. When t < 0, the contour closes

on upper half plane. The path encloses the pole at E = —w + 0.
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Therefore, using the Cauchy integral formula, we can write the above

expression as

A(t) = 2i2i (6t)(—2mi)e™™" - O(-t)(2mi)e")
=5 5 (0™ + 6(="") (52.5)
att =0
1
AO) =75 (5.2.6)

Now to get the first order correction, put n = 1in (5.2.3)

(133) = [ 101100, 060,550

_iA
N
:N f [DX1](X1);i(X1);; | dETrX: X Xi X, —2X7X3)  (5.27)

——— —
a b

[DX3]1(X1),(X1);; | dETr([Xa, Xo][X0, Xo])

Term (a) and term (b) corresponds to the following diagrams

(a)

Figure 5.2: Ribbon graph for O(A) terms in the perturbative expansion of
< Tr(X3) >.

we see that the diagram (a) isnon-planar. Therefore it does not contribute.

So, to O(A) only term (b) contributes. Symmetry factor for this diagram is 2.
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Hence, to O(A)
(TeX2) = —4iAA(0) f dHA(t - )] (5.2.8)

To calculate the integral their are two methods.

Method I: Use expression for

, . dE e—iE(t—t/)
A(t—t)—le—Ez_wz

Method II: Use expression

A(t) = % (Ot ™" + O(-t)e™")

Method I
Using the Method I, the integral in (5.2.8) is given as

atli % e—iEt Zf dE’ e—iE’t
2n E? — @? 21 E? — 2
— f G IEAE iepy 1
21t 21 (E2 — w?)(E’* — w?)

Using the definition of 6 function
dt 7 ’
S(E + E' = " —i(E+E")t
E+E)= [ o

the above integral becomes

dE dE’ , 1
=) man E T By m
1 dE

a s (5.2.9)

The integration has got pole of order 2 at +w

The residue at + w = lim i ((E — )’ 21 2)
E-w dE (E + w)(E — w)
i L1
E~o dE (E + w)?
-2
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__ L
T 403
. . d 2 1
The residue at — w = lim — [(E + w) > >
E>-o dE (E+ w)(E — w)

= lim — !
 E>-w dE (E — @)

= lim 3
E=-w (E - w)
1

- 403

Pole at —w only lies in the upper half plane. Therefore we only consider that
[
(E2 — w?)* 43

i 1

Substituting in (5.2.9)

40’ 4ie?
Substituting this in (5.2.8) and ﬁ for A(0) gives

_ A

(Tr X%>O(A) T 2wt

(5.2.10)

In Appendix C, we give details of the calculation using method 1I, which
is shown to agree with this result. To order A, the result of < Tr(X?) >
using perturbation theory agrees with the result obtained by the density

description method.

Calculation to O(A?)
To calculate <TrX%> to O(A?), consider n = 2 in (5.2.3)

Q. 2
(138) = [ 011000, 000),05 5

1 .

:—Ef[DX1](X1)1']‘(X1)]'1'€150(Sint)2
/\2

2N?

2
[ toxi100, 00,65 [ armix, X1, %)
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= 2N2f[DX1](X1)l] X1 fdtfdt TI'((2X1X2X1X2)

term 1
(2X2X2)) — BTr(X1 X, X1 X,) (X2X3) (5.2.11)
S—
term 2 term 3

Various possible diagrams for Term 1 are given in (Fig.5.3)

(a) (b)
:
v JZ Jit”
(c)

Figure 5.3: Ribbon graph for O(A?) term with (2X;X,X;X;)? interaction

Diagrams () and (c) are sub leading. So the only contributing diagram
is diagram (b). Various possible diagrams for Term 2 are given in (Fig.5.4)
Here, diagram (d) is sub leading and diagrams (¢) and (f) contribute. Var-
ious possible diagrams of Term 3 are given in (Fig.5.5). However all these
diagrams are sub leading. Thus of all the diagrams corresponding to Term

(1), (2) and (3), only diagram(b), (¢) and (f) contribute.

e Symmetry factor for diagram (b) is 16.
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12
tl
12

7 j 7 v

(e)

t” _7 J t”

(f)

Figure 5.4: Ribbon graph for O(A%) term with (2X7X3)* interaction

(h)

Figure 5.5: Ribbon graph for O(A?) term with (X;X,X;X;)(X3X3) interaction

e Symmetry factor for diagram (e) is 8.

e Symmetry factor for diagram (f) is 4.
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To O(A?) term (b), (e) and (f) are given as

Term (b) = —322 f dt f A At — YA — t7)(A(E - 1)) (5.2.12)
Term (e) = —16A2A(0) f dt f At (At — )X (A(t = ) (5.2.13)

Term (f) = —8A%(A(0)) fdt fdt’A(t —t")A(t = t")A(t - t) (5.2.14)
This integral can be calculated using the following expression for A(t)
A(t) = %[G(t)e‘i‘”t + O(—t)e "]

Thus in the above integral (A(t - #))* can be calculated as follows

(A=) = (0= 070+ 00 - peet-)’
w

(260 (63(t ) —3iw(t—t") + 63(t t)e3im(t—t’)

+30%(t — £)O(t — t)e ) 1 30(t — )0 (F — t)ef“’“—f'))
Using  O(HO(H)O(t) = 6(t)
O(-H0(—1)0(~t) = O(~t)
0*(HO(—t) = O(H)O*(-t) = 0

oy 3:
(At =t) 20

)(Q(t F)e ) 4 ot — Hedet) (5.2.15)

Using (5.2.15) in (5.2.12), we get

2
Term (b 321 f dt f dt’ (O(t)e" + O(-t)e")
(2a)

(6@)e™ + o(-)e")

(Q(t ) —3iw(t—t") + Q(t, t)e3ia)(t—t’))

2
- 324 f dt f drOHO()O(t - t')e~ w2l
o)y
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O(H)OF)O( — t)e¥ @ e=4er

+ O()O(—)O(t — t)e™ it it
O(HO(—t)O(t — t)e¥ @t 2!
O(—1)O(t)O(t — t')e 2wt it
O(=1)O(F)O(F — t)e*wle 4!
O(—1)0(—t)6(t — t')e 2wttt

O(—HO(~t)O(t — t)eite= 2wt

2
_ 327 (f dtf dt 8 —4za)t621wt' + Q(t, ) 21wte—4iwt’
 w)’

f dff dp g4t ptior f dtf 4y’ pliot p=tiot
f dt f drO(t — t)e 2@t L gt — r)etiet e—Ziwt’)

32/\2
= (f dtf dtle—éhwt 2iwt’ f dtf dt/ezm)t —diwt
+f dt€_4zwtf dt’e —4iwt’ +f dte—4lwtf dte —diwt’
0 0 0 0
+ f dt f dr Ot — teXte™ o £ 9(t — t')e —4Za)t621wt’)
0 0

2 00
__ 327 f dte—4i(ut 1 ( 2iwt 1)
(20))5 0 2iw

* P
+ dt’ —diwt — 2iwt’ _ 1
j; ¢ 2iw (e )
1 1 1 1
4za) dicw 4za) 4iw

f dtf dt; 21wt —4iwt’ f dtf dt/ —4iwt 21a)t')
0

= 32A2 4 - —2iwt —4iwt 2
__<2w)5(2iwfo die™ =) ~ 5




CHAPTER 5. DENSITY DESCRIPTION AND WEAK COUPLING
EXPANSION 62
322 4 2
_(Za))5 (_ 8aw? 16a)2)
5A2
"~ 8w

(5.2.16)
Similarly, (5.2.13) can be calculated as follows,

Using A(b) =5 (Q(t)e 0t g(—t)e m;t)

and A(0) :2L

2 00 00
Terme = — (16A5 f dtf dr’ (6(t)e‘2i“’t + 6(—t)e2i“’t)

Q(t ) —2iw(t—t") + Q( ) 2ic(t— t))

2
161 f dtf dt/ Q(t)G(t ) —4iwt 21a)t’
(Za)

+O(HO(t — t)e 2w

+9( t)@(t ) 2iwt’

+6(_t)6(t/ _ t)e4iwte—2ia)t’>

2 (oo
_ 16A (f dtf dte —4iwt 21wt’ f dtf dt’e—Ziwt'
(2a) 0
f dt f dro(t — t)e¥et
f dtf dr Q(t 4zwt 21wt’)
2 (o)
_ (126A)5 (f dt€_4lwt2, eZzwt +f di'te —2iwt’
@ 0
f dtf dt/e—Zzwt f dtf dt e—41a)t 21wt)
_16A? (__)
Qo) @
AZ

Also (5.2.14), can be calculated as follows,

81 f‘” f°° y ,
Term f = — dt dt (6(He iwt + O(~t elmt
owp ) 4] ar(ew (=)
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(Q(t/)e—iwt’ + 9(_t/)eia)t’)
¥ )e—zw(t ) + Q(t’ t)ezw(t t))

Q(t
_ SAZ , —2iwt
= 2a)) f dtf dt Q(t)Q(t )O(t —t)e

+O(HO)O(t — t')e 2!
+O(H)O(—t)O(t — t')e 2t it
+0(HO(—1)O( — 1)
+0(—)O(F)O(t - t')
+O(-HO(F)O(t — t)eX e 2!
+0(=H)O(=t)O(t — t')e? "
+0(=HO(—-1)O(t - ™)

2 00 t 00 -
__ 58 ( f dt f dt’e 2t 4 f dt f dt’e 2t
0
00 0
+f dtf d ’ —21a)t —2iwt’ dtf dt/ 21a}t —2iwt’
00
+ f dt f dro(t — t')e* ! + f dt f dro — 2“‘”)

2 00 ) 2
81 - (2 f dtte %t — — +2 f dtte—zm)
2a)) 0 4w 0

BTN
4?

~ 3A2

- (5.2.18)

Hence substituting (5.2.16), (5.2.17) and (5.2.18) for term 1 and 2 in (5.2.11)

gives,
502 A% 3A2
2\ _
<TrX1> 8w * 2w7 - 8w’
3A2
= — 2.1
2o (5.2.19)

Thus, the order A? result is not in agreement with the density description

result. This discrepancy between the results is perhaps not too surprising,
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as the effective hamiltonian is defined as

Hi{(])() Ede2¢O(A/X2)H¢O(/\,X2) (5.2.20)

where, 1y(A, X,) is the ground state wavefunction with no “impurity” and
the subscript “1” in the effective hamiltonian denotes that it is for the X;
sector. However, higher excited states 1,(A, X») (known to be expressed in
terms of Hermite polynomials) have not been included. This would lead to

a sequence of effective hamiltonians

1) —

o/l = f dXow,(A, X)H (A, Xy) (5.2.21)

which have not been discussed in this thesis.



Chapter 6

Strong Coupling Solution

As discussed at length in chapter 4, the fact that ¢y(A, X») depends on X;
degrees of freedom, results in a shifted P; operator and the resultant effective
potential terms of equation (4.1.19) or (4.2.7).

Remarkably, as A — oo these effective potential terms are sub leading
compared to the ground state frequency. Therefore, we expect that the
A — oo limit (A > @?) of (5.0.1) is of great relevance to the properties of the
strongly coupled system of two matrices [34], and is studied in this chapter

The A — oo limit of (5.0.6) takes the form

2000 = 2u - 2V2R [ dyle = lon(y) (60.1)

E, =N2[%2fdx(p(3)(x)+gfdxfdylx—yl(po(x)(po(y)] (6.0.2)

Here E, is the ground state energy and it is obtained by considering Vs
(5.0.5) at ¢ for large A. In the above expressions, we introduce the following

term

fx)=V2a f dylx = ylpo(y), T2PR() = 2(u — f(x)) (6.0.3)

which satisfies
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flx) = g f dylx — yl72(u = f())- (6.0.4)

As it was the case in perturbation theory, we assume that ¢(x) remains an
even, single cut function defined in the interval [~xo, xy]. To show that this

is a consistent ansatz, we note that then:

|x|

f0 = V24 (le bo(y)dy +2 f| loqbo(y)ydy)- (6.0.5)

Hence f(x) is also even, establishing the consistency of the ansatz. Using

—lxl

chlx -yl =26(x—y),

equation (6.0.4) becomes!

95 f (%) =g f dyd2lx — yl 21 — f(y))
=@ f dy26(x — y) \/2(u = f())

4‘/— " () (6.0.6)

This can be integrated as follows

f df(0.f(x) =M f df \Juu - f)

( S@) = i (-2 - f00) +e

8 x/_
SO+ = ) = e (60.7)
The “energy” constant can be worked out using the condition
Let f(x=0)=fy, = d:f(0)=0

Therefore (6.0.7) at x = 0 becomes

- 83\/— =

1 2 . . . . .
¢y satisfies a very similar equation.
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Hence (6.0.7) can be rewritten as
df _ 4As : ;
e V= i)} - (- f)} (6.0.8)
Using the normalization condition for ¢, we get
1= [ deqbo(x) = 2\]0. deqbo(x) = f fqu(f
2V2 \3n Vi - f@)
R 4)\? f 4
V= £)F = (u - fe?
2V2 V3m4 3 3
I
2V21
\/3—7_(/\4 —(u - fo)
(- fo)t = A
and hence (6.0.8) takes the form:
ar e \/ ((# —f(x)))%
dx r ’ (1= fo)
3n (u f(x))
\V3n (b — fo)
_ u- f(x)
=21 \/ H fo (6.0.9)

We will not need to invert (6.0.9) and obtain f(x) explicitly, as all results

presented here will be expressed in terms of known definite integrals

Of particular interest is the large N ground state energy. From (6.0.2) and
(6.0.3) this can be written as

E, _NZ[ i f dx3 () + = f dxf ()epo(x)] = NZ[E——2 f dxp3(x)] (6.0.10)

One needs to know p, or f, independently. From (6.0.5), one obtains

f0 = fr=2VE [ dxaguto)
0
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We therefore need to calculate this integral, which is done as follows

" Po(x)
jo‘dqubo(x):jf‘ df df x(f)

V2 1 df " (#—f(x))f_
()

m N2y
- ‘f\;_{[ (- f)3/2\/ (—“M__f}:))a/zx(f)] .

=

= = ———=(u~= /o)

o8}

Here we have used the expression for (1 — fp)*? and %. Now substituting

this in expression for f, we get
fo = \/2_AXO - ([J - fo) u= \/Z_AXO.

From (6.0.9) one obtains

n
V2Ax, = f df !
fo H-f@)32
1- ( t=fo )

1 —
=1~ fi) fo e (using Hy T2 -9 = df = - )

Also,
72 72242 1 |
12 ) P00 =50 _\/ﬁffo Sl = S0

11 |f4 i = f()\ z
—gn—ﬁz{[g(ﬂ_fo)m\/l—( i f ) (H_x(f))]|fo

e [ EET)
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1 _(E= S0V

_6ff0df[\/1 (H—fO) ]
y fo)f \/1—(1—2)2 Let

=§f0dtt 1-8 (Let(l—z)%:t)

A [
3 (fo 1- 0 V1I-£
Using the property

=(1-2) = df = (u- fo)dz)

_2u’”‘2\/1—u3 2(m —2) xm3
L VI—2 @ 2m-1 2m -1 \/—1 3

We get
f\/ —x3 V1

Thus,

1 1

fx\/l—xf‘dx: dx — =

0 0 1—x3 7 Jo 1—x3

1-—x3

and

1
axi) = 50— ) [~

These integrals are tabulated in [35], and are finite. Therefore

1 1
%zNﬂw‘ﬁ’o—ﬁé?“‘;w‘ﬁ’o—ﬁ%ﬁ“l
6 3m\: ( tdt
NEE) ),
9 V3 \i/ 2\ L1
:Nz[ﬁ(g) (r(g)) A (6.0.11)

Similar to the weak coupling case we consider the correlator

<TrX?>=N? f dxx*¢py = 2N? f f)¢(; ff )df
fo
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To evaluate the integral, we use integration by part

f f)qb(;ff)df [z(f)f%(f) Jf(zﬁ qb(;ffdf)df

(6.0.12)

Now we need to evaluate f (P?Tf,f)d f, which is done as follows

0fy f Bof0

u f(x))
H fo

u—fx)
n\/_f / # f(x)
H fo

_f(x)z
Let, \/1—(”y_f0) =7
1 (# f(x)) df

. u=fo L u—fo
1- ()

dz

1
2

(4~ FOf =52l - fo)lds

Thus, qu(f)df—L\/_%(# fo)zf

_4(u- o) L (S0
3 VA u=fo

Substitute in (6.0.12)

=x(f)3

4(u=fo)r | = f@)\3
VA 1= H=fo )

14 fo)2 — f(2)\3
fz (f)df3 Mnﬁ \/1_(!11_](0 )
4=l , 4=l \/ 1
o n (f) df
3 VA 3 nVA f _(M)%
1=fo

1
=A= —By substituting the expression for(u — fo) )

fo

4(u— fo)?
‘/_

ARG

(Calhng =
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Y1 1 ff
=0 st —— | Ld
2 ) 7Y

(Puttmg Xo = L)

) rf

Thus

u 2 (" f
\/_fo

o (2 ([ jd%)éf =
- ) - 20

Summarizing, we have the result for the large N ground state energy and

< Trx? >=N?| - 7 S fl (6.0.13)

< Tr(X2) > as follows:

B =N () () 2]

N2 3m\4
< Tr(X3) >=n2% \/§(_n) A é[

The strong coupling limit would also correspond to the limit @ — 0, cor-

responding to the system of two “massless” matrices (i.e. without the har-
monic potential) with a Yang-Mills interaction. However, the perturbation
theory for such a system faces the problem of infrared divergences. A
remarkable feature of the planar ground state energy and the correlator
obtained above is that they are free of infrared divergences and depend
only on the appropriate power of A which is expected from dimensional

considerations.
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Conclusions

The aim of this thesis was to study the system of two hermitian matrices,
in a harmonic potential, coupled via Yang-Mills interaction, in a nonsuper-
symmetric setting. These two matrices are two of the six Higgs scalars of the
bosonic sector of N =4 SYM theory, in the leading Kaluza - Klein compact-
ification on R x S®. The two matrix models have been studied previously
as well, [27], [30], [31], where the two matrices were either considered as
angular momentum eigenstates or were treated exactly. In all these previ-
ous works, a supersymmetric approach was always assumed, because of
which the normal ordering terms were consistently neglected. Working in
the nonsupersymmetric setting makes us to consider these terms.

The work began by reviewing the collective field theory technique, giv-
ing first the general formalism and then applying it to a system of single
matrix. This knowledge of the collective field theory was then applied to the
system of two hermitian matrices interacting through the Yang - Mills po-
tential. Two approaches were explored. In the first, one matrix was treated
exactly and formed the background, while the second matrix was treated
in the creation annihilation basis. The resulting Hamiltonian was written
(3.1.2), which included normal ordering terms owing to the nonsupersym-

metric treatment of the matrices. A Bogoliubov transformation was then
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introduced and only the ground state configuration coming from the zero
point energy of the creation annihilation oscillators, was considered in the
resulting Hamiltonian (3.1.6). Due to non trivial commutation relations, it
turns out to be easier to consider the scalar field X,. A canonical trans-
formation was derived and an effective Hamiltonian acting on the ground
state wavefunction with no X, “impurity” was introduced. However P;
acts non trivially on this ground state wavefunction with no “impurities”,
and therefore the Hamiltonian in the X; sector will have additional shifts.
This corrected or shifted Hamiltonian is worked out both in the original as
well as “bared” system of coordinates, and the result is found to be in exact
agreement (4.1.19 and 4.2.7).

An important feature of this effective potential is that it only depends on
the eigenvalues of the matrix X;, and therefore one can use the collective
field theory to obtain the large N planar background in terms of the density
of these eigenvalues. This has been done and the background has been
found to satisfy a self - consistent gyy dependent integral equation. This
integral equation has both a weak and a strong coupling expansion.

The weak coupling expansion of the background is described to O(A?)
and the same calculation is also performed perturbatively to O(A?). In the
strong coupling limit (1 — o), it is seen that the background satisfies a non
- linear differential equation, with solution that has also been discussed. The
planar ground state energy and examples of correlators have been obtained
and these are shown to be finite.

The results obtained in this thesis are possibly of relevance in the study
of gauge theory and ADS/CFT correspondence,but in a non supersymmetric
background. One can think of the background obtained in this thesis as
associated to the non-supersymmetric gyy deformation of the “droplet” de-
scription of 1/2 BPS states. The strong coupling background is different from

the harmonic background resulting from the supersymmetric arguments.



CHAPTER 7. CONCLUSIONS 74

Another possible relevance is related to the physical interpretation of the
eigenvalues as coordinates of a system of D0’s.

The strong coupling results are also free of infrared divergences, even in
the case of two “massless” matrices (i.e. without the harmonic potential, or
in zero curvature limit) with a Yang - Mills interaction.

Clearly, several extensions of the results obtained in this thesis suggest
themselves. The most obvious one is a study of the contributions coming
from higher excited states in (5.2.21), if these are systematic or if it may be
desirable to consider a more symmetric description of the two matrices, as
it has been considered for instance in [36].

Multi matrix models are notoriously difficult to study, butitis worthwhile
remarking that the methods described in this thesis are straightforwardly
generalizable to more than two matrices. The required formalism for such

study has been established in this thesis.
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Appendix A

Double Index Notation

The double index notation is used to describe the indices carried by the
matrices and the frequency. It is depicted by letters in bold. The notation is
as follows: If A= (ij) and

Ta=Tj

Then, a raised index is defined as follows
T =T; = ¢"Ts
Also, for instance(A = (ab), B = (cd), C = (ij))
Wi X0ijXoji = XZbaV;VajwideiV;CXZCd = X5wa"Xop

and,

4 C
wa? =074 wcOC’

where Oc” is the orthogonal matrix given by
B _ Tt — ed
Oc” = ViV, = Oj;

also, since

ol =0
and
(0" =0c" = 05 = ViV,
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cd

= (0" = (0" = 04l = ViV,

= (07" = aVy
Therefore we have the following result

O = Vy Vi, O = ViV

77
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Appendix B

Calculation of Shifted Kinetic
Term in Original System of

Coordinates

To calculate the shifted kinetic term in original system of coordinates, we
need to calculate (4.2.3), (4.2.4) and (4.2.6). These terms will be referred to
as term 1, term 2 and term 3 respectively in the following discussion. Here

we discuss the details of calculation of these terms.

B.1 Term1

The left hand side in (4.2.3) can be rewritten as

1
i[PlA, wcP] < X, Xop > ——i[PlA, wc]
2C()C
1 4 Copia D 1 4
- — P - —wj B.1.1
2(6‘) )D Z[ ;¢ ] Za)ijaXuba)] ( )

To calculate this result we need to calculate i[P'4, wcP] which is done as
follows

i[P", wcP] ef (B.1.2)

= aXab a)Cd
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Using the expression for —as

(9 kaV pa 8
—R Vig=—V1 B.1.3
Xy L=, "”+Zk: kDA, ke (B:13)
where
Rkpvab = Vapébk
R,V = =V} 64
and

a)AB = a)ade = Z VujV;)a)ideiV;fC (B14)
ij
Using (B.1.3) and (B 1. 4) in (B.1.2), we get

[P, wcP] = Z p- ””Rkp(vcjv;wijvﬁvyg>+kav;aqud( M”)vfz
k#p

Vie V! pa + + +
= Z A — (VCPVzd( — Wip)ViVi, + VeiViglwrj — wpp) Vi V5,)
k#p

+ Vi ViV, Vd(ém”)vfz

Wik — W;j kjWkj — W
_O abo 1ip po ef O 1K1 27K p]o ef
(0 )\k — A=Ay )

+ 0™ O, 1”( )Ol]‘*’ (B.1.5)
Using (B.1.5) in (B.1.1) and also,
0 ()01 = 0,502 (w )pOp" 05" = 62(w™)ps",
But this term is 0 because p # k Similarly
Oyl (@™ )ef O = 8w ™)l

which is also equal to 0. Thus (B.1.1) is left with

1 86Ui' cd ij 1 (96()1
Z0 ab_]oi efe -1 . O—l I _ O ab” "1
208 o, O @ )er O = 520w 530
1 v 1dw; 1 , OWij
—— a - _ O a
ZOkk zZ] a)i]- 8/\k 2(()1']' i 8/\](
=0 (B.1.6)

Thus we have shown that term 1 is equal to 0.
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B.2 Term2

Term 2, which is (4.2.4), consists of three terms, which we can call term-A,

term-B and term-C. These are

Term A = [PY, [P, wcP]] < XoCXop >

Term B = %(wai)[Pm,wc]
1
Term C = <{ 5o [Pl,[PlA,cuC]]}>2 (B.2.1)

The details of calculations of these terms are given below.

Term A

1
Term A = —E(w‘l)CD[iPlA, [iP, wcP]]

= 300t (O P, P, ]

1 1A L
- _Z(Vehv,] s, Van VEIPY, [iPY, wcP]] (B.2.2)

Now we need to calculate the commutator [iP'", [iP™4, wcP]], for which we

need (B.1.5), which is rewritten as

Wik i
[iP1a, wcP] =V, kv*bvcpv;(ﬁ)vﬁvze
P VAV V(S v
pb ¥ ciV kd A /\p frVie
+ + & t
+ VaVi Ve Vi (5 n Nvavt, (B.2.3)
Using this we can write
1A L Vblea Wi — Wiy
[P [P, el === Run (vukv;bvcpva(m)vﬂvze

—wj
+VukV+bVaVZd( A, S\4A%:

dw,;
+VaV Ve Vi( 5 A] )Vﬂvf)
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2
V'V, Vi ViV
Ly (V" (/\ -, ) f
Wip
+Vﬂkv‘fbvav,’gd( A, Vi Vi

dw;
HVaVE Vi Vi 5 A])Vﬁ\ﬁ) (B.2.4)

This calculated and substituted in (B.2.2) gives

2 Wi — Wik 1 1 8601] 1 8261)1‘]‘)
T A=-|——m——— + — + B.2.5
. (a)ik M= A wijAdx— Ay A 2wi5 JA2 ( )
Term B
1,1
Term B = ~(P{—)[P14, @c]
2 wc
1, . d 1 0
=2 R
1 1 0 0
= _E(_J—&med(@wd
Z(pr pa&A wz;)Z(VapV;rbgA wz;)
! 86”” B.2.6
2 Z Z a)Z] 8A (B.2.6)
Term C

In order to calculate term C we have to calculate [P'4, [P14, wc]], which is

given below

_[plA’ [plAl C()(j]] = [iplA/ [iplA/ wC]]

Now,[P14, wc] = Wwi]‘
_9
aXba K
8a),]
=V, V,*b o
_— 1 dwj
Therefore, [iP**, [iP14, wc]] = 8X —(VaV} b (9/\1)
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Voo o v 20
F/\p kp( al Vo a /\ )
Wij
+ ViV — o (Vul DI, —)
2 dwij Pwjj
= + B.2.7
A=Ay A A ( )
Therefore, using this expression, we get term C as
1 1 dw; 1 Pwy
Term C = — ! J (B.2.8)

+
wWij Ak — Ap Ik Zwij a/\kz

Sum of these three terms gives Term 3 as,

Term 3 = — ZZ o _A)( ——”) 422(;%) (B.2.9)

i k#l
B.3 Term 3

In term 3, which is (4.2.6), the product of second term in first bracket with
the second bracket is zero using the results derived for term 1. Thus this

equation can be rewritten as

([zPlA,a)C 1P, i < XS Xop X5 Xop >
1. .
- g[lpm,ch][lPlA,wE] < X5 Xop > )
E
1
= —Z([iPm,a)CD][iPm,a)EF](< X$Xop >< XEXop >

+ < XSX5 >< XopXor > + < XS Xor >< X5Xop >)

1
- 2—[1P1A,wCD][zP1A we] < X$Xop > ) (B.3.1)
WE

In the above expression the following term is equal to zero, using the result

of term 1.
1 .
[iP1A,CUCD] < XZCXZD > ([iPlA, wEF] < XZEXZF > —g[lpmf CUE]) =0
E
Thus (B.3.1)reduces to

— (1P, 0P NP, e 1) (@

Term A
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+ [iPra, @cPIPY, 0 )@ ™) p ™)) (B.3.2)
Term B

Solving for term A which is given as

- i[ipm, WPILP™, werl(O ) (@ )(0)EO™), (@ (O

=‘11—6<“P1A' PO (O [P, werl(0), (O)y @ ™)@ Dy

(B.3.3)
Substituting the expression for [iP14, w“P] = [iP14, wcP] with C = (cd) — (dc)
and is given in (B.1.5), we get

Wimymy — Oyl

. _ L _ M
[iP14, C‘)CD](O 1)C (O 1)D = Ormh,ﬂb(W)ébml

Winyly, — Wihiym 8(0; I
+ Omllzfﬂb( AZZZ Y - 1)6llmz + Okk ab612m1611m2 8 = (B34)
2 m
Similarly,
i ab [ Pmymy — @iyl
[P, werl(O) O = O3 (FL2 12 o
my 2
Wil — Wmam (9a)l
Olfl:zh( /2\;1 _ Amzz 1)6127111 + O;Z(Sllmzélzml 8Al (B.3.5)
substituting (B.3.4) and (B.3.5) in (B.3.3), we get result for term A as
Term A = Z Z wlzmz a)lllz 1 1
Iy L#my - All Wnl, Wiym,
a)llml a)1112 1 1
+
; lﬁZml B Alz Wi, Wiymy
1 o'?a)lllz
+ B.3.6
Z Z w1, a/\k ( )

)

Similarly,

2
a)lm a)zz 1 1
Term B = E E e ”
wl]lz wlﬂl’lz

Iy L#my 2

E T (e L
- Al wl]lz wlzml

Iy L#m

N Z Z a)izz 9;);12 (B.3.7)
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Substituting, (B.3.6) and (B.3.7) in (B.3.2), and after simplification gives,

; 1 dwj 2
Term3_ZZZ Ak—/\l) ~(1 __l)__ZZ(wij%p]) (B.3.8)

i k#l



Appendix C

Method II for Calculation of
< Tr(X%) > to O(A)

Method 11

Substituting
_ 1 —iwt iwt
At) = %<®(t)e +O(-he™")

and using

O(HO(t) = O(t)
O(-1H)O(t) = 0
O(—1)0(~t) = O(~t)

f dt{A®)] =4sz I : dt (@(t)e'zi“’t + @(_t)eZiwf)

zﬁ( f Cat (O(t)e 2" + O(-t)e? ")
; 0
- f dt (O(t)e 2" + O(~t)e* "))

In0to colimitt > 0. So®(t) = 1and O(—t) = 0. So in 0 to co limit

f‘x’ dte—Ziwt — L
0 2iw

85
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and, in —co to 0 limit t < 0. So ©(f) = 0and O(-t) = 1. So

” dte—Ziwt — L
0 2iw

1
2 _
f dHAM) = = (C.0.1)

Substituting (C.0.1) in (5.2.8) and putting 5- for A(0) gives

(Tex?) = i

0w = 2o (C.0.2)
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