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Glöckle et al. started to study [1] relativity in the three-nucleon (3N) system
under the Bakamjian-Thomas formalism [2], which belongs to the relativistic
quantum mechanics and is dictated by the Poincaré algebra. Since a relativistic
two-nucleon (2N) potential is not easily provided, we need some schemes which
would allow us to transform a nonrelativistic potential into the corresponding
relativistic one. Such schemes are required to fulfill the condition that the gen-
erated relativistic potential yields the same observables in the 2N system as the
original nonrelativistic potential. There are two schemes which satisfy that con-
dition. One was proposed by Coester et al. [3] and we call it the CPS scheme.
It requires a solution of a nonlinear integral equation, which can be achieved nu-
merically by an iteration method [4]. The other scheme is a momentum scaling
method (MSM) [5], realized by an elaborate change of momentum variables. The
above-mentioned schemes are examples of simple transformations, while we are
actually interested in a comparison between the original nonrelativistic and the
modified relativistic potential predictions in the 3N system. In the case of the
triton binding energy we have already shown this comparison [6], demonstrating
that the difference is smaller when the CPS scheme is employed.

On the other hand, the Kharkov model [7] provides directly the relativistic
2N potential so no transformation scheme is needed in this case.

At this workshop we present the relativistic results of the triton binding en-
ergies not only for the Kharkov potential 1 but also for the new N4LO chiral
potential [8] and, additionally, for the older realistic CDBonn potential [9]. In
Table 1 the triton binding energies for these potentials, are demonstrated.

Using the CDBonn potential and the Tucson-Melbourne 3N force we have
investigated the Nd elastic scattering [10]. Relativistic calculations [10],[11],[12]
show only small effects for elastic scattering cross sections and practically no
effects for spin observables. Relativistic effects in the nucleon-induced deuteron

1Only the 5channel result of the Kharkov potential was already shown in [13].
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Table 1: The theoretical predictions for the triton binding energy (in MeV),
resulting from the solutions of the relativistic and nonrelativistic Faddeev equa-
tions with 42 3N-partial-wave states (jmax = 5). The numbers in brackets are
obtained by the CPS scheme [3], used to transform the nonrelativistic poten-
tials into the relativistic ones, and for the opposite transition in the case of the
Kharkov potential.

Potential type Nonrelativistic calc. Relativistic calc. Difference

CDBonn [9] -8.249 ( -8.150 ) 0.099
N4LO (R=0.9 fm) -7.832 ( -7.706 ) 0.126
N4LO (R=1.0 fm) -7.867 ( -7.748 ) 0.119
N4LO (R=1.1 fm) -7.847 ( -7.733 ) 0.115
Kharkov [7] ( -7.528 ) -7.641 0.067

breakup have been investigated in [14]. The study of Nd scattering based on the
Kharkov potential is also in progress.
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