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An analysis of the fonvard-backward asymmetry in z0 decays using data from 

the Collider Detector at Fermilab provides a measurement of sin 2 Bw. The 

forward-backward asymmetry is measured to be (5.2 ± 5.9 (stat)± 0.4 (sys))%, 

which implies sin2 Bw = 0.228~g:gi~ (stat)± 0.002 (sys), after QCD, QED, and 

weak corrections. vVhen higher order weak corrections are included, the mea­

sured value of sin2 Bw is consistent with previous measurements over a broad 

range of top quark masses. 
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Chapter 1 

Introduction 

The Standard Model of electroweak interactions [1, 2, 3] successfully unites the electromag­

netic and weak interactions, and describes a wide range of physical phenomena with great 

accuracy. The origins of the Standard Model lie in weak interaction phenomenology as it 

was understood in the late 1950's. It was recognized that the charged weak interactions 

share important similarities with the electromagnetic interaction, and that a unification of 

the two interactions might be possible. In 1961, Glashow [1] proposed a model in which the 

weak and electromagnetic interactions are described by vector boson fields whose operators 

obey an SU(2)L x U(l)y group structure. In this model, the charged weak interactions are 

mediated by w± bosons, and the electromagnetic interaction is mediated by the photon. 

The model also predicts the existence of a new z0 boson, which mediates a neutral weak 

interaction, and predicts many of the properties of the neutral current interaction. The 

neutral current predicted by Glashow was first observed in neutrino interactions in 1973 

[4], and the W [5] and z0 [6] bosons themselves were later observed at the CERN proton­

antiproton collider. At present, many experiments are probing the detailed structure of the 

Standard Model, checking for consistency and searching for new phenomena. 

This thesis describes a measurement of the forward-backward asymmetry in the angular 

distributibn of electrons from pp -1- zo -1- e+e- events. From the asymmetry measurement 
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one can derive a value for the "mixing angle", 0w. This angle describes the mixing of 

the SU(2h and U(l)y sectors of the Standard Model, and is an integral parameter of the 

theory. If the Standard Model is correct, then the measured values of 0w must be the 

same for all physical phenomena. Measurement of the mixing angle with many different 

processes, then, is an important test of the consistency of the model. 
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Chapter 2 

Theory 

By 1960, the phenomenology of the charged weak interactions was beginning to be under­

stood, but there was no complete theory, like QED, for the weak interactions. It was clear, 

however, that both the weak and electromagnetic interactions share important properties: 

each uses a single coupling constant to describe a large number of physical phenomena, 

and both are mediated by spin-one fields. As early as 1957 Schwinger [7] suggested that 

the weak and electromagnetic forces were generated by an isospin triplet of fields; the two 

charged fields generated the weak interactions, while the neutral field was responsible for 

electromagnetism. This simple model ran into phenomenological trouble, but it is of histor­

ical importance as the first to suggest that the weak and electromagnetic interactions could 

be unified. 

In 1961, Glashow [1] proposed a "partial symmetry" for the weak and electromagnetic 

interactions. In this model, weak interactions are described by two components of an isotopic 

spin group, SU(2)v which has coupling constant g and couples only to left-handed particles 

and right-handed antiparticles. The form of the SU(2h interaction is determined by weak 

interaction phenomenology. The· electromagnetic interaction is included by introducing a 

U(l) group with coupling constant g' which couples to hypercharge, in analogy with the 

Gell-Mann-Nishijima [8] model relating strangeness, baryon number, isospin, and charge in 

3 



strong interactions. The electric charge is given by 

Q = 13 y 
+ 2' (2.1) 

where 13 is the third component of isospin, and Y is the weak hypercharge. This implies a 

form for the electromagnetic current: 

]·em= J3 + 11-Y 
µ µ 2 µ. (2.2) . 

The structure of the hypercharge interaction is determined by requiring agreement between 

this implied form and the observed electromagnetic interaction. 

In this SU(2)L 0 U(l)y theory of electroweak interactions, the interaction Lagrangian 

consists of currents coupled to vector fields, and is given by 

(2.3) 

There are four vector fields: the three fields wt associated with the three SU(2h generators 

and a field Bµ associated with the U(l)y group. The charged weak interactions are mediated 

by two of the SU(2h fields, 

(2.4) 

which describe the charged w± vector bosons. The electromagnetic interaction is described 

by a linear combination of the WJ and Bµ fields. There remains, then, a second linear 

combination of WJ and Bµ, orthogonal to the electromagnetic combination, which describes 

a weak neutral current interaction. The existence of this new neutral current interaction is 

an important prediction of the theory. 

The linear combinations of WJ and B µ which correspond to the photon and the zo, the 

vector boson which mediates the weak neutral current, are determined by requiring that 

the photon and z0 be mass eigenstates. One then finds that the photon and z0 fields are 

given by 

Zµ 

W! sin 0w + Bµ cos 0w 

W! cos Ow - Bµ sin Ow. 

4 
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The mixing angle 0w describes the mixing of the SU(2h and U(l)y sectors in physical 

processes, and is an integral parameter of the electroweak theory. The value of the mixing 

angle is not predicted by the theory, and must be measured experimentally. 

With these forms for the physical fields, the interaction Lagrangians for the physical 

fields become 

f'NC 
~int 

·Y 

-i(g sin 0w J! + g' cos Bi,/; )Aµ 

·Y 
-i(gcos0wJ!- g'sin0wJ; )Zµ. 

(2.7) 

(2.8) 

Adopting the form for the electromagnetic current given in Equation 2.2, and equating the 

electromagnetic interaction given in Equation 2.7 with that of QED, 

f'C)ED __ . ( ·em)µA 
~mt - ie J µ, (2.9) 

one finds that g, g', and the electromagnetic coupling constant e are related by 

e = g sin 0w = g1 cos 0w. (2.10) 

Using Equation 2.2 and the relations of Equation 2.10, the neutral current interaction of 

Equation 2.8 becomes 

cffC - -i g JNC zµ 
mt - cos 0w µ ' 

(2.11) 

where the neutral current JfjC is given by 

(2.12) 

Equation 2.11 implies that the neutral current interaction couples with strength g / cos 0w, 

while the charged current couples with strength g. The relative strength of the charged and 

neutral couplings is given by 
M2 

- w p- 2 . 
Mzcos 2 0w 

(2.13) 

While the model proposed by Glashow successfully unites the weak and electromagnetic 

interactions, it leaves some questions unanswered. First, the SU(2)£ ® U(l)y symmetry is 
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"broken" - the WJ and B µ fields do not themselves mediate physical processes, but mix to 

produce the photon and z0
. Second, there is a large mass difference between the (massless) 

photon and the heavy particles which transmit the weak force. Both of these problems were 

solved in 1967 when Weinberg [2] and Salam [3] recast the Glashow model in the form of 

a spontaneously broken gauge symmetry. It only remained for 'tHooft [9] to prove in 1971 

that the Glashow-vVeinberg-Salam theory was renormalizable to complete the so-called 

Standard Model. 

The Standard Model of electroweak interactions predicts the existence of a weak neutral 

interaction, and also predicts the properties of this interaction. Any test of the properties of 

the weak neutral interaction is therefore a direct test of the Standard Model. Many physical 

processes are sensitive to the value of the mixing angle 0w, so many of the experimental 

tests of the Standard Model involve a measurement of 0w, or, more commonly, sin2 0w. If 

the Standard Model is correct, then the measured values of sin2 0w must be the same ( after 

the appropriate higher order corrections) for all physical phenomena. Measurement of the 

mixing angle in many processes, then, is an important test of the consistency of the model. 

2.1 Angular Distributions in Weak Interactions 

The SU(2h sector of the electroweak theory is left-handed; i.e. it couples only to left­

handed fermions and right-handed antifermions. The left-handed coupling establishes a 

preferred direction in particle interactions and leads to parity violation, one of the most dis­

tinctive characteristics of weak interactions. The w± bosons, described entirely by SU(2h, 

violate parity maximally, while the photon is parity conserving. The z0
, however, has both 

parity conserving and parity violating components. The parity violating nature of the weak 

interactions leads to measurable _asymmetries in the angular distributions of weak processes. 

Parity violation is best illustrated in the charged weak interactions, which violate parity 

maximally. The charg(;!d weak interaction has a vector minus axial vector form, with currents 
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Figure 2.1: Feynman diagram for inverse muon decay, e-De-+ µ-Dµ, 

given by [10] 

(2.14) 

where 1µ and 1
5 are Dirac I matrices. The left-handed helicity operator ½(1 - 1

5) is 

implicit in the current. The handedness of the interaction has profound effects on the 

angular distribution in many reactions. An example is inverse muon decay, e-De-+ µ-v 11 , 

which proceeds by virtual w- exchange as shown in Figure 2.1. In this reaction a right­

handed antineutrino and a left-handed electron annihilate to produce a spin-one w- boson. 

The momenta and angular momentum projections for the particles are shown in Figure 2.2. 

Angular momentum conservation requires that the spin of the w- be aligned with the 

spins of the incoming fermions. When the w- decays, it produces a left-handed muon 

and a right-handed antineutrino. Angular momentum conservation requires that the spin 

polarizations of the final particles be the same as that of the parent w-, which, in turn, has 

the same polarization as the initial particles. As a result, the decay muon is preferentially 

emitted in the direction of the incoming electron. In short, the left-handed coupling of the 

charged weak interaction establishes preferred directions for the particles' spins, and angular 

momentum conservation ensures that the preferred direction is maintained throughout the 

reaction. This is a clear violation of parity, in that the cross section changes with spatial 

7 



e V 

µ 

V 

Figure 2.2: Momenta and spins in inverse muon decay, e Ve -+ µ vµ, A single arrow 
indicates the direction of a particle's momentum vector, while the double arrow shows the 
projection of the particle's spin. 

1nvers10n. 

Assuming massless fermions, the angular distribution of the emitted muon in the inverse 

muon decay example is given by [11] 

da 2 -d 
0 

= (1 + cos 0) , 
cos 

(2.15) 

where 0 is defined to be the angle between the incoming electron and outgoing muon in the 

rest frame of thew-, as shown in Figure 2.2. A convenient quantity for characterizing the 

angular distribution is the forward-backward asymmetry, AFB, defined by 
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1 da da 
-d 

0 
d(cos0) - -- d(cos0) 

0 cos -1 d cos 0 AFB = -----_,,1 ___ _...__--"--------

/ dda
0 

d(cos0) J-1 cos 

The forward-backward asymmetry in inverse muon decay is 75%. 

(2.16) • 

The neutral current is described as a mixture of the weak isospin and electromagnetic 

currents. with mixing angle 0w, as shown in Equation 2.12: 

The weak isospin component of the neutral current leads to a parity violating V - A form 

for the neutral current interaction. ,vhich is then slightly modified by the (vector) electro­

magnetic current. The relative magnitudes of the parity violating and parity conserving 

components of the weak neutral current are determined by the mixing angle 0iv, 

The vertex factor for the neutral interaction is given by 

(2.1 i) 

taking IJ and Q f to be the third component of weak isospin and the charge of the fermion, 

respectively. This vertex factor can be simplified using the relations of Equation 2.10 to 

give 

(2.18) 

where the vector and axial vector fermion couplings gt and g{ are given by 

3 Q . 2 0 f If - 2 f sm iv 
9v = , 2 sin 0w cos 0w 

gf = IJ 
A 2 sin 0wcos 0w 

(2.19) 

Due to the weak component of the neutral current interaction, the zo couples more strongly, 

though not exclusively, to left-handed fermions and right-handed antifermions. Using the 

same helicity and angular momentum conservation arguments used in the charged current 

example, one finds that inf J-+ zo -+ f' f' interactions the outgoing fermion ( antifermion) 

is preferentially emitted in the direction of the incoming fermion (antifermion). This implies 
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that there will be an asymmetry in the decay angular distribution of the zo. Assuming 

massless fermions, the angular distribution of fermions in z0 production is given by [11] 

(2.20) 

where 0 is defined to be the angle between the incoming fermion and the outgoing fermion 

in the rest frame of the z0
. The forward-backward asymmetry is given by 

(2.21) 

The magnitude of the asymmetry depends on the values of the vector and axial vector 

couplings of the zo, which, in turn, depend only on sin2 Bw and the (known) values of 

fermion charge and isospin. One can therefore infer a value for sin2 Bw from a measurement 

of the charge asymmetry in z0 decays. 

There is another way of producing and understanding a forward-backward asymmetry, 

even in a theory which is parity-conserving. It was Putzolu [12] who first pointed out 

that asymmetries can arise from the interference between diagrams having different charge 

conjugation parities. Take, as an example, two Feynman diagrams which contribute to the 

same physical process, and have matrix elements M1 and M2. The cross section for this 

process is proportional to the square of the sum of the matrix elements, 

(M1 + M2)*(M1 + M2) 

IM11 2 + IM21 2 + MiM2 + M2M1. 

(2.22) 

(2.23) 

The cross section has four terms; two terms which correspond to the squares of the individual 

matrix elements, and two interference terms. 

One can apply the charge conjugation operator to each of these matrix elements. Charge 

conjugation of a matrix element is mathematically well-defined, and is equivalent to ex­

changing all particles for antiparticles (without changing the particles' spins) and recalcu­

lating the matrix element. One finds that the matrix elements can have definite charge 
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conjugation parities. For the purposes of this example, the matrix elements M1 and M 2 

are assumed to have opposite charge conjugation parities, 

C' < M1 > = + < A11 > 

C' < A12 > = - < M2 >, 

(2.24) 

(2.25) 

where C' is used to imply charge conjugation. When the cross section is calculated using 

the charge-conjugated matrix elements, one finds 

(M1 + M2)*(M1 + M2) 

IM11 2 + IM21 2 
- MiM2 - M2M1. 

(2.26) 

(2.27) 

The interference terms in the cross section change sign under charge conjugation. Interfer­

ence between diagrams with different charge conjugation parities leads to a cross section 

which is not invariant under charge conjugation. This charge conjugation violation can lead 

to a forward-backward asymmetry. The forward-backward asymmetry, then, is not evi­

dence for parity violation; a forward-backward asymmetry can appear even in interactions 

(like QED) which are parity conserving. While the forward-backward asymmetry seen in 

zo decays is due predominantly to the parity-violating nature of the weak neutral current, 

there are higher order QED and weak corrections which also contribute to the asymmetry. 

These higher order contributions are discussed in Chapter 6. 

2.2 z0 Production in Hadronic Collisions 

There are three complications which arise when considering zo production in hadronic 

collisions. First, hadrons are not the fundamental fermions which interact to produce Z0 's. 

The QCD parton model describes hadrons as bound states of quarks, and it is these quarks 

which interact. Experimentally measured distribution functions describe the momentum 

distribution of the quarks inside hadrons. Since the colliding quarks generally do not have 

equal and opposite momenta in the lab frame, the center of mass frame of the collision moves 
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Figure 2.3: Lowest order Feynman diagrams for pp--+ e+e-. 

with respect to the lab frame. Second, there is an overwhelming QCD background to the 

process qiJ.--+ zo--+ q1if.1• Experimentally, then, one can distinguish only the leptonic decays 

of z0 's produced in hadronic collisions. This thesis examines only the process qiJ. --+ z0 --+ 

e+e-. Third, at lowest order, both photon exchange and z0 exchange contribute to electron 

pair production in hadronic collisions; the Feynman diagrams for these processes are shown 

in Figure 2.3. Any measurement must include the effects of both of these processes. 

A calculation of the cross section for pp --+ e+c based on the diagrams of Figure 2.3 

gives [13, 14] 

de, 

dcos0 
i fo1 

dxa fo1 

dxb ~q(xa, s)iJ.(xb, s) c-2~
2

) { Q~Q~(l + cos
2 0) 

+2QqQeRex(s)[gvgt-"(1+cos2 0) + 2g5lg~ cos 0] 

(2.28) 

+lx(s)l 2[((9v )2 + (g;i.)2)((gt-" )2 + (g~)2)(1+cos2 0) + 8gt,g5lgt-"li cos 0]} 

where 0 is defined to be the angle between the outgoing electron and incoming quark ( or 

outgoing positron and incoming antiquark) in the rest frame of the electron pair, as shown 

in Figure 2.4. The leading factor of 1/3 is a color factor which comes from averaging over 

initial quark color states. The functions q(xa, s) and iJ.(xb, s) are the quark momentum 

distribution functions in the proton and antiproton; Xa and Xb are the momentum fractions 
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Figure 2.4: iJ, the angle between the outgoing electron and the incoming quark in the rest 
frame of the electron pair. 

carried by the quark and antiquark, and s is the square of the center of mass collision 

energy. The sum is over quark species. The z 0 propagator x(s) is given by 

x(s) = . M2 : .M r . s- z i z z 
(2.29) 

The first and third terms in the cross section are due to photon exchange and z 0 exchange, 

respectively, while the second term arises from the quantum mechanical interference of 

these two subprocesses. Each term has a component proportional to (1+cos2 0) which is 

symmetric in cos iJ, and both the zo and interference terms have antisymmetric components 

proportional to cos iJ. The antisymmetric component of the interference term comes from 

interference between the photon and the axial vector component of the z 0 and leads to 

observable asymmetries away from the region of the zo resonance. These asymmetries have 

been observed in e+e- --+ µ+µ- and e+e- --+ r+r- interactions by many experiments [15]. 

The photon-z0 interference term is antisymmetric in s with respect to s = M¼, While 

the interference term is important in the charge asymmetries seen away from the z 0
, its 

contribution to the forward-backward asymmetry in a region symmetric ins about s = M} 

is small (of order 1.5% for the region 75 < -./1 < 105 GeV). 

The measured asymmetry in pp--+ z 0 --+ e+e- depends on the quark momentum dis-
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tribution functions in tw? ways. First, the asymmetry is a function of both the quark 

couplings and the lepton couplings to the z0 . Since the u-type and d-type quark couplings 

to Z0 's are different, the observed asymmetry depends on the relative contributions of u­

type quarks and d-type quarks in zo production. Second, 0 is properly defined by the quark 

and antiquark directions. In practice, only the directions of the protons and anti protons are 

known; one assumes that the initial quark is moving in the proton direction and the initial 

antiquark is moving in the antiproton direction. While this is always true for interactions 

involving valence quarks, it is wrong half the time for interactions in which both quarks 

come from the Fermi sea. Since the sign of cos 0 is mismeasured for half of the sea-sea 

interactions, the sea-sea interactions give a symmetric "background" contribution to the 

angular distribution. Any determination of sin2 0w from the asymmetry, then, will depend 

on the size of the sea-sea contribution to z0 production. 

Figure 2.5 shows the forward-backward asymmetry integrated over the region 75 < 

vis< 105 GeV as a function of sin2 0w. The dotted and dashed curves are for uu--+ e+e­

and dd--+ e+e- processes, respectively, while the solid line shows the asymmetry in pp--+ 

e+e- interactions, assuming the EHLQ 1 [16] parametrization of the proton and anti proton 

momentum distribution functions. Note that the asymmetry goes to 0 near sin2 0w = 0.250. 

When sin2 0w equals 0.250, the vector coupling of the zo to charged leptons is 0, and the 

asymmetry in qq --+ e+e- due to z0 exchange goes to zero. There is a small residual 

contribution to the asymmetry from the ,-z0 interference term in the cross section, which 

causes the asymmetry to go to zero at a value of sinthe near 0.245. For values of sin2 0w 

near the expected value of 0.23 [17], the asymmetries for u-type and d-type quarks are 

very similar, and so the measured asymmetry in pp interactions is expected to be rather 

insensitive to the relative size of the u-type and d-type contributions to z0 production. 

At sin2 0w = 0.23, the expected asymmetry in pp interactions for EHLQ 1 distribution 

functions in the region 75 <vis< 105 GeV is 5.54%. 

It is clear from Figure 2.5 that there may be more than one value of sin2 0w which pro-
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Figure 2.5: Forward-backward asymmetry as a function of sin2 0w. The dotted curve shows 
the u-type asymmetry while the dashed curve shows the asymmetry ford-type quarks. The 
solid curve is the observed asymmetry for EHLQ 1 momentum distribution functions. 
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duces a given forward-backward asymmetry. When solving for the sin2 0w value associated 

with the measured asymmetry, there may be more than one solution. The value of sin2 0w 

is constrained to be near 0.23 by other neutral current data [17], and so the solution nearest 

this expected value is used. 

Due to QCD effects such as initial state gluon bremsstrahlung, the z0 •s are produced 

with varying amounts of transverse momentum, pf. When a z0 is produced with non-zero 

pf, the proton and anti proton directions are not collinear in the rest frame of the dileptons, 

and so the quark directions are not completely determined; the quarks can only be said to be 

travelling in approximately the direction of the proton or antiproton, and the approximation 

gets worse as pf increases. Since the initial quark directions are ill-defined, cos(} can no 

longer be precisely measured. One must therefore define a new z axis in the dilepton rest 

frame to take the place of the quark direction when making angular measurements. Several 

definitions have been proposed [18]. For this thesis, the method of Collins and Soper [19], 

in which the z axis is taken to be the bisectrix of the proton and minus the antiproton 

directions, as shown in Figure 2.6, is chosen. In effect, the Collins-Soper definition divides 

the pf contribution equally between the quark and antiquark, and possesses the feature 

that z reduces to the quark direction in the limit pf -+ 0. A Lorentz-invariant form for 

cos 0 as defined by Collins and Soper is given by [19] 

(P~- + P;_)(P~+ - P;+) - (Peo_ - P;_)(P~+ + P;+) 

Me+e-JM;+e- + P:j, 
cos()= (2.30) 

where P:_ and P:+ are the electron and positron 4-vectors, and Me+e- is the dielectron 

invariant mass. 

All of the alternate, pf dependent, definitions of iJ are approximations which begin to 

break down for z0 •s with large transverse momentum. The cos 0 distribution will therefore 

be smeared somewhat by the high pf events, and the observed angular distribution will be 

flatter and more symmetric than that predicted by the lowest order cross section. While 

the Collins-Soper definition is used in the measurement of cos {J in the data, sin2 0w is 
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Figure 2.6: The Collins-Soper definition of the angle 0. The z axis bisects the proton and 
minus the antiproton directions. 

extracted based on the lowest order cross section of Equation 2.29. The effect of the cos 0 

smearing on the measurement of sin2 0w must be determined. The size of this smearing 

effect is discussed in Chapter 6. 

2.3 Higher Order Effects 

There are many higher order diagrams which contribute to dielectron production in hadronic 

collisions, and some of these diagrams affect the measured asymmetry. The higher order 

QCD processes which produce z0 's with transverse momentum smear out the angular dis­

tribution somewhat. Many higher order QED processes contribute directly to the asym­

metry. The size of all of these contributions to the asymmetry must be calculated before 

one can extract a meaningful value for sin2 0w from the asymmetry measurement. Fur­

thermore, when higher order weak effects are included, values for sin 2 0w determined from 
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different physical processes get different corrections and are no longer directly comparable 

[20]. In particular, the value of sin2 0w det~rmined from the charge asymmetry is not di­

rectly comparable to the value determined from the measurement of the W and z0 masses, 

sin2 0w = 1 - Jvlfv/ MJ, until higher order corrections are made and a particular definition 

for sin 2 0w is adopted. The calculation of these higher order effects is complicated, and 

further discussion is deferred to Chapter 6. 
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Chapter 3 

The CDF Experiment 

The CDF experiment has two main components: the combination accelerator and storage 

ring system which produces collisions between protons and antiprotons, and the CDF detec­

tor, which analyzes the final state particles produced when a proton and antiproton collide. 

This chapter contains a brief description of the accelerator, and describes the detector 

elements used in the current analysis. 

3 .1 The Accelerator 

The accelerator complex at the Fermi National Accelerator Laboratory contains seven sep­

arate accelerator/storage components. Figure 3.1 shows an overhead view of the Fermilab 

accelerator complex. A Cockroft-Walton generator (not shown in Figure 3.1) produces a 

beam of 750 keV H- ions, which is then injected into a linear accelerator. The linear accel­

erator accelerates the H- ions to approximately 500 Me V, and injects them into the circular 

Booster ring. The Booster accelerates the beam of ions to 8 GeV, strips both electrons off 

of the H- ions to leave bare protons, and injects the protons into the Main Ring. The 

Main Ring is a proton synchrotron 2 kilometers in diameter. It was once used to produce 

beams of 400 GeV protons for use in fixed target experiments, but now serves as an injector 
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Figure 3.1: An overhead view of the Fermilab accelerator complex. The fixed target beam 
lines are shown, as is the position of the BO intersection region where the CDF detector is 
located. 
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for the Tevatron ring and as a source of 120 GeV protons for antiproton production. The 

Tevatron accelerator uses a ring of superconducting magnets, and is housed in the same 2 

km diameter tunnel as the Main Ring. The Tevatron accepts 150 Ge V particles from the 

~fain Ring and accelerates them to 900 Ge V. 

The antiproton production system produces antiprotons with a large initial energy 

spread, and then uses two storage rings to reduce this energy spread and store a nearly 

monoenergetic beam of antiprotons. Antiprotons are produced when 120 GeV protons 

from the Main Ring hit a tungsten target. The antiprotons are focused by a current pulsed 

lithium lens, and are then directed into a storage ring called the Debuncher. The antipro­

tons enter the Debuncher in a short time pulse, and have energies of approximately 8.5 GeV 

with an energy spread of about 2%. Two techniques are used in the Debuncher to reduce 

the energy spread and the transverse motion of the beam; bunch rotation and stochastic 

cooling [21]. Bunch rotation is a radio frequency technique in which the energy spread of 

an antiproton pulse is reduced by increasing its time spread. In stochastic cooling, a probe 

senses the position of the beam, and sends a signal across a chord of the accelerator ring 

to a kicker. The kicker then applies a correction to the beam as it passes by. After two 

seconds in the Debuncher, the beam is directed into the Accumulator, where it undergoes 

further stochastic cooling. The Accumulator is used both to cool the antiprotons and to 

store them, and accepts a new antiproton pulse from the Debuncher every two seconds. 

After several hours in the Accumulator, the antiprotons end up in a tight core with a very 

narrow energy distribution. 

·when a sufficient number of anti protons have been collected, six bunches of antiprotons 

are extracted from the core in the Accumulator, and injected into the Main Ring. There 

they are accelerated to 150 Ge V and injected into the Tevatron, where six bunches of protons 

are already circulating. Since protons and antiprotons have opposite charges, the proton 

and anti proton bunches will circulate in opposite directions inside the same accelerator ring. 

The 6 antiproton bunches will intersect with the 6 proton bunches at 12 points around the 
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accelerator ring. A radio frequency process called cogging moves the intersection points 

around the ring so that one of the 12 intersections is located inside the CDF detector. 

When the proton and antiproton bunches are aligned properly, they are simultaneously 

accelerated to 900 GeV. 

The rate at which the protons and antiprotons collide is characterized by a quantity 

called luminosity. The luminosity is given by 

(3.1) 

where Np and Np are the number of protons and antiprotons per bunch, C is the bunch 

crossing rate, and a is the rms width of the Gaussian beam profile. (The proton_ and 

antiproton beams are assumed to have the same rms width, and the beams are assumed to 

overlap completely.) The rms width for particle beams is related to the beam emittance E 

and the accelerator f3 function by 

2 E/3(s) 
(J' =--. 

671" 
(3.2) 

The emittance E is a measure of the transverse phase space occupied by the beam. It 

is independent of the beam's position around the ring, but grows with time. The beta 

fundion /3( s) describes the transverse envelope of the beam. /3( s) is determined by the 

focusing magnets in the accelerator, and varies withs, the position around the accelerator 

ring. Superconducting quadrupole magnets located on either side of and near to the nominal 

collision point reduce the f3 function at the collision point, thereby reducing a and increasing 

the luminosity. The luminosity falls exponentially as a function of time, due to emittance 

growth and proton and antiproton losses due to collisions. Characteristic beam lifetimes 

are of the order of 12 hours. 

The total inelastic cross section for pp interaction at 1.8 Te V is approximately 70 mb, 

where one barn (b) is 10-24cm2. A large fraction of the total inelastic cross section consists of 

small angle scattering in which the final state particles escape undetected down the beam 

pipe. Two planes of scintillator counters, discussed in Section 3.2.4, surround the beam 
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Figure 3.2: The integrated luminosities delivered by the accelerator and recorded by the 
CDF detector. 

pipe and detect final state particles which are emitted at angles greater than approximately 

1.25° with respect to the proton and antiproton beams. These scintillator counters signal 

the presence of an inelastic collision and are used to trigger the readout of the detector. 

The effective cross section seen by the scintillator counters is approximately 44 mb; i.e. 

the inelastic cross section for pp interactions in which final state particles are produced 

at angles greater than 1.25° is 44 mb. At a luminosity of 2 X 1030cm-2s-1 , the CDF 

detector observes pp collisions at a rate of 88 kHz. At this luminosity, approximately 31% 

of the beam crossings produce a pp collision in which particles strike the CD F detector, 

and approximately 9% of the beam crossings have more than one such collision. Peak 

luminosities grew from 3 x 1029cm- 2s-1 at the beginning of the 1988-1989 data run to over 

2 x 1030cm- 2s-1 . 

The integrated luminosity is a measure of the total number of collisions produced. Fig-

23 



ure 3.2 shows the total integrated luminosity delivered by the accelerator, and the integrated 

luminosity collected by the CDF detector and written to tape. The overall data collection 

efficiency during the 1988-1989 run was approximately 50%. 

3.2 The CDF Detector 

The Collider Detector at Fermilab ( CDF) is a large multipurpose solenoidal detector de­

signed to observe the leptons and jets produced in pp collisions. A detailed description 

is given in the literature [22]. Perspective and elevation views of the CDF detector are 

shown in Figure 3.3. CDF uses a right handed coordinate system in which x lies in the 

horizontal plane, y is vertical, and z is in the direction of the proton beam. The coordinate 

system is indicated on the perspective view of the CDF detector in Figure 3.3 Below are 

descriptions of individual detector elements, with special emphasis on the elements used in 

the asymmetry analysis. 

3.2.1 '!racking Detectors 

Nearest the interaction point are eight time projection chambers (VTPC) which measµre 

the position of the event vertex and the R-z positions of charged tracks. Together the 

chambers extend 2.8 m along the beam direction, centered on the nominal interaction 

point, and extend in radius from R = 6.8 cm to R = 21 cm. Each chamber consists of two 

separate drift volumes, extending 15 cm in the z direction, which are separated by a high 

voltage grid. Each drift volume ends in an octagonal proportional chamber endcap which 

is divided into octants, each octant having 24 sense wires arranged perpendicular to the 

radial direction. Adjacent chambers are rotated relative to one another by approximately 

11 ° to eliminate inefficiencies at octant boundaries and provide </> information. 

Charged particles leave ionized tracks in the drift volume as they pass through the 

detector. The electrons from the track drift in the z direction toward the proportional 
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Figure 3.3: Perspective (top) and elevation views of the CDF detector. The coordinate 
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chamber endcap, where they are detected. The time of arrival of the electrons gives the 

R-z position of the track. Track positions in the z direction are measured to better than 

500µm. By extrapolating the R-z VTPC tracks back to the beam axis, one can determine 

the position of the event vertex (for events with only one vertex) with a resolution of 1 mm. 

Surrounding the VTPC is a large cylindrical drift chamber (CTC) which is used to 

measure the R-¢ position of charged particle tracks and, in conjunction with a 1.4 Tesla 

magnetic field, the particle momentum. The CTC extends 3.2 m in the z direction and has 

inner and outer radii of 0.3 m and 1.3 m, respectively. The CTC uses 84 layers of sense 

wires, organized into 9 "superlayers". The sense wires in each superlayer are organized 

into R-¢ cells, which are tilted 45° with respect to the radial direction. The electrons from 

the ionized tracks drift in crossed E and B fields inside the CTC; the tilt of the R-¢ cells 

compensates for the Lorentz angle of the electron drift, and ensures that the electrons move 

in the azimuthal direction. This azimuthal drift simplifies the conversion from time to 

distance. In five of the superlayers, 12 wires are strung axially along the beam direction, 

while in the remaining 4 superlayers 9 wires are tilted ±3° with respect to the beamline to 

obtain stereo information about the z positions of tracks. Figure 3.4 shows an R-¢ view of 

the CTC. The superlayers and the 45° tilt of the cells can be clearly seen. 

In some sense, the CTC is self-calibrating. The TDC pedestal offset ( or to) for each 

channel can be determined by demanding that tracks be continuous as they cross the plane 

of sense wires in a single R-</> cell. The drift velocity is determined by demanding that the 

tracks be continuous as they cross the boundary between two R-</> cells. Knowledge of the 

wire positions, the to offset, and the drift velocity is sufficient to convert TDC track data 

into R-</> positions. Drift velocity and to data are analyzed online during each run, and 

written to database files for use during offiine track reconstruction. 

Positions along a track in the CTC are determined to better than 200µm in the R-¢ 

direction and 6mm in the z direction. The momentum of a track is determined with a 

resolution bptf Pl < 0.002 in the region 40° < 0 < 140°. By constraining the track to pass 
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Figure 3.4: R-</> view of the CTC. The 9 superlayers are clearly seen, as is the 45° tilt of 
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through the nominal R-</> position of the beam, the effective path length of the track is 

extended from 1 m to 1.3 m. The momentum resolution, which goes as 1/(Bl2) where l is 

the track length, is reduced to optf p; = 0.0011. 

Outside the CTC are three layers of drift tubes (CDT) which use drift times and charge 

division to measure the R-</> and z positions of tracks, respectively. Typical resolutions are 

2.5 mm in the z direction and 200µm in R-</>. 

3.2.2 Calorimeters 

Electromagnetic and hadronic calorimeters are used to measure the energies and positions 

of electromagnetic showers and jets. Calorimeter coverage extends to within 2° of the pro­

ton and antiproton beams and covers the full azimuth. The calorimeters are mechanically 

divided into three subsystems ( central, plug and forward) as shown in Figure 3.3. Within 

each calorimeter, coverage is divided into projective towers which point toward the interac­

tion point. The polar segmentation is in units of pseudorapidity, T/, where T/ = -ln(tan 0 /2). 

Pseudorapidity is used as an approximation to the true rapidity y, where y is defined by 

y = !ln E + Pz 
2 E- Pz 

(3.3) 

Rapidity is a convenient quantity for calorimeter segmentation for jet physics. Since rapidity 

is an additive quantity under Lorentz boosts, both the shape of a jet in y-<p space ( i.e. its 

extent fly x fl</>) and the calorimeter segmentation are invariant under the longitudinal 

boosts inherent in pp collisions. True rapidity depends on mass, however, and for particles of 

different masses there is no single relation between polar angle and rapidity. Pseudorapidity 

is a simple approximation which gives good results for particle with energies very much larger 

than their masses. In the central region (IT/I < 1.1), each projective tower subtends 15° in</> 

and 0.1 unit of pseudorapidity T/· In the plug (1.1 < IT/I < 2.2) and forward (2.2 < IT/I < 4.2) 

regions, the towers subtend 5° in </> and 0.1 units of T/· 

All of the calorimeters are of the sampling variety: they use alternating layers of absorber 
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Figure 3.5: Cutaway view of a central calorimeter wedge showing the central electromagnetic 
calorimeter and light transmission system. 

in which the incident particles shower and an active material which samples the energy fl.ow 

of the showers. In the central region plastic scintillator is used as a sampling medium in 

both the electromagnetic and hadronic calorimeters. The plug and forward calorimeters 

use proportional tube chambers with segmented cathode pad readout. 

Central Calorimeters 

The central electromagnetic (CEM) and central hadronic (CHA) calorimeters are con­

structed in 15° wedges, which are then assembled to form a barrel with full azimuthal 

coverage. Figure 3.5 is a cutaway view of a central calorimeter wedge showing the elec­

tromagnetic calorimeter. The CEM calorimeter is a sandwich of 31 layers of 5 mm thick 

polystyrene scintillator and 30 layers of i inch thick aluminum clad lead sheets. To maintain 

a constant thickness in radiation lengths as polar angle changes, some lead is replaced with 
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acrylic and the scintillator behind the acrylic is painted black. On average, each tower is 

18 radiation lengths thick. The scintillator light is collected through wavelength shifters on 

both sides of the wedge. The wavelength shifters transmit the light to acrylic light guides 

which are attached to photomultiplier tubes located at the rear of each wedge. 

Each of the CE:\1 towers has been calibrated using 50 GeV electrons from a test beam. 

This calibration has been maintained to approximately 2.5% over several years by means 

of a cross calibration to Cs137 source signals. A map of the response across the face of 

an individual tower has also been obtained from the test beam. The response is found 

to vary by some 6% across the face of a tower, due to shower leakage at the edges of the 

calorimeter and to variations in light collection in the scintillator-wavelength shifter system. 

The measured energy resolution for electromagnetic showers is 

(aE)
2 

( 13.5_% )
2 

+ (1. 7%)2, 
E ../Esm0 

. ( 3.4) 

where the constant term is the average uncertainty in the individual tower calibrations. 

A gas proportional strip chamber (CES) is embedded in the CEM calorimeter near 

shower maximum to measure the shape and position of electromagnetic showers. vVires run 

parallel to the beam direction and give a</> view of electromagnetic showers, while cathode 

strips are positioned perpendicular to the wires and provide z information. Typical position 

resolutions are 2 mm in both the strip and wire views for 50 GeV electrons from a test beam. 

The central hadronic (CHA) and endwall hadronic (WHA) calorimeters measure the 

hadronic energy in the central region. The CHA modules are located in the wedges just 

behind the CEM. They are constructed from a sandwich of 32 layers of 1.0 cm scintillator 

and 2.5 cm steel. The WHA calorimeter occupies the transition region between the central 

barrel and the plug. Because the particle energies here are greater for the same transverse 

energy Er, the steel of the WHA is thicker than that of the CHA. The WHA is a sandwich 

of 15 layers of 1.0 cm scintillator and 5.0 cm steel. As in the CEM, the scintillator light 

from the CHA and WHA is read out through a system of wavelength shifters and acrylic 
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Figure 3.6: View of a plug electromagnetic calorimeter quadrant. 

light guides. Pions from a test beam are used to calibrate both the CHA and the WHA, 

and the calibration is maintained with Cs137 sources. The typical resolution (a/ E) for 50 

GeV pions is 11% for the CHA and 14% for the WHA. 

Plug Calorimeters 

The plug electromagnetic (PEM) and plug hadronic (PHA) calorimeters cover the polar 

angles from 10° to 30° and 150° to 170° (1.1 < 1771 < 2.4). The PEM calorimeters are 

divided into 4 quadrants, and consist of 34 layers of proportional tubes alternating with 2. 7 

mm lead sheets. A PEM quadrant is shown in Figure 3.6. The proportional tubes are made 

of a resistive plastic and are epoxied to sheets of copper-clad GlO which have been etched 

to form projective towers of cathode pads. When a particle showers in the calorimeter, the 

gas in the proportional tubes is ionized. The electrons move quickly toward the anode wire, 

leaving a cloud of slowly moving positive ions behind. These positive ions induce a charge 
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on the cathode pads, which is integrated by the front end electronics. The cathode pads 

in the PEM are ganged to form projective towers with three depth segments, containing 

5, 24, and 5 layers. The depth segmentation provides information about the longitudinal 

development of electron showers. The anode signals for each layer in the quadrant are also 

read out, and provide additional longitudinal information. Ten layers of the PEM near 

shower maximum in the region 1.2 < lr7/ < 1.9 are equipped with finely segmented r; and ¢ 

cathode strips as well as cathode pads. The strips are used to provide better position and 

shape resolution for electromagnetic showers. 

The gain of the proportional tubes is a function of the density and composition of the 

gas which flows through them. This so-called gas gain is monitored by a system of small 

proportional tubes and Fess sources. The 6 keV photon from the Fess source deposits a 

known amount of energy in the monitor tube. By measuring the charge collected on the 

anode wire of the monitor tube, one can measure the gain of the gas. The response of the 

calorimeter as a function of gas gain is determined during the test beam calibration, and 

the data are adjusted online for the gas gain on a run by run basis before being written to 

tape. 

The resolution function of the PEM is determined from studies of electrons from a test 

beam and is found to be 

(7 28% 201 
E = vE + 10. 

(3.5) 

The PHA calorimeters are divided into twelve 30° stacks, and consist of 20 layers of 

proportional tubes separated by 5 cm of steel. The cathode pads are ganged to form 

projective towers, and anode signals are ·read out of each layer of the stacks. As with all 

gas calorimeters, the calorimeter response is a function of the gas gain, and the data are 

corrected for gas gain variations before being written to tape. The resolution of the PHA 

is determined from studies of pions from a test beam and is found to be 

:!.. = 8~ +4%. 
E vE 
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Forward Calorimeters 

The forward electromagnetic (FEM) and hadronic (FHA) calorimeters cover the region 

from 2° to 10° (2.4 < 'TJ < 4.2). The FEM is divided into quadrants, and consists of a 

sandwich of 30 layers of proportional tubes and 4.5 mm lead sheets. The cathode pads are 

ganged in groups of 15 layers to form projective towers with two depth segments. Each 

90° anode plane is divided into 5 anode regions, each of which is read out separately. The 

energy response to electrons from a test beam is linear up to 100 GeV, and the resolution 

is determined to be 

a 25% 
E = vE +0.5%. (3.7) 

The FHA is also divided into quadrants, and is composed of 27 layers of proportional tubes 

and 5 cm steel plates. Each anode plane is divided into 6 regions, which are read out in 

addition to the projective towers of cathode pads. The low-,B quadrupoles of the accelerator 

penetrate into the FHA, and require part of the small angle coverage to be cut away. The 

FHA covers the full azimuth only for ITJI < 3.6. The FHA energy resolution is approximately 

a 140% 
E= .jE' (3.8) 

Data from both the FEM and the FHA are corrected for variations in gas gain before being 

written to tape. 

3.2.3 Muon Detectors 

Although not used in this analysis, the muon detectors are a source of important physics 

which is, in some sense, complimentary to the physics derived from electron measurements. 

There are two muon detection systems at CDF: a set of muon chambers located in the 

central wedges, and toroidal muon spectrometers located behind the forward calorimeters. 

The central muon ( CMU) chambers consist of four layers of drift tubes and are located 

inside the central calorimeter wedges, behind the CHA. The muon chambers cover the 

angular region 56° < 0 < 124°, and the full azimuth. Tracks found in the muon chambers 
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are matched to CTC trac~s for momentum measurement. The forward muon spectrometers 

(FMU) cover the regions from 3° to 16° and 164° to 177°. Each spectrometer consist of 

two magnetized steel toroids with three layers drift chambers and two layers of scintillation 

counters. Tracks are reconstructed with a momentum resolution of 13%, and are matched 

to VTPC tracks. The scintillation counters provide trigger information. 

3.2.4 The Trigger 

The trigger system makes use of two planes of scintillator counters ( beam-beam counters, 

or BBC) mounted on the front face of the forward calorimeters. Each scintillator plane 

consists of 16 scintillator paddles arranged in a square about the beam pipe and covering 

the region 3.2 < rJ < 4.5. Hits in the BBC signal that an inelastic pp collision has taken 

place. In addition to its trigger duties, the BBC is the primary luminosity monitor, provides 

a measurement of the time of the interaction for the tracking chambers, and can make a 

crude measurement of the vertex position. 

The CDF trigger is itself a four-level combined hardware and software system. The 

initial level (Level 0) is the minimum bias trigger. It requires at least one of the 16 trigger 

counters on each side of the interaction to fire within a 15 ns window centered on the beam 

crossing. The Level 0 decision is available within 100 ns of the collision. After a valid Level 

0 trigger, data taking is inhibited to give the next trigger levels time to make decisions. 

The Level 1 calorimeter trigger uses fast analog signals from the front end electronics. 

Signals are ganged into trigger towers measuring /:lry = 0.2 by l:lcp = 15°, and are weighted 

by sin 0 to provide a crude estimate of transverse energy. Analog comparators and summers 

look for trigger towers with large energy depositions and calculate the total scalar transverse 

energy in the event. The Level 1 trigger decision is made within 7µs. If there is no valid 

Level 1 trigger, the front end electronics are reset, in time for the second beam crossing after 

the initial Level 0 trigger. If a valid Level 1 trigger exists, data taking remains inhibited 

and the Level 2 trigger takes over. 
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The Level 2 trigger digitizes the fast analog signals used in Level 1, and has access to 

data from fast hardware track processors. Level 2 uses the digitized calorimeter information 

to form energy clusters. The cluster energies, positions, and widths are then passed, along 

with track information, to a set of programmable processors. These processors apply simple 

algorithms for identifying physics signals and generate the Level 2 trigger decision. The 

Level 2 decision is made, on average, in approximately 20µs, although this time can vary 

with the complexity of the event and the processor algorithms. If there is no valid Level 

2 trigger, the front end electronics are reset and data taking is resumed. If a valid Level 

2 trigger exists, then the entire detector is digitized and the digitized data is formatted. 

The formatted event is sent to the Level 3 processors for further analysis, and the front end 

electronics are reset after readout. 

The Level 3 trigger is software-based. An entire formatted event is loaded into one of 

60 Motorola 68020 based microprocessors, each of which is capable of running the CDF 

offline analysis code. The Level 3 trigger has access to all the data in an event, and uses 

streamlined versions of the offline reconstruction algorithms to harden the Level 2 trigger 

thresholds. Events passing the Level 3 selection algorithms are written to tape. 
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Chapter 4 

Event Reconstruction and 

Selection 

Event reconstruction begins with the raw ADC and TDC data which is written to tape, 

and ends with a sample of identified zo and photon events. This chapter describes the 

reconstruction steps and the event selection criteria which culminate in the final sample of 

z0 events. 

4.1 Energy Reconstruction 

Jets and electrons are reconstructed from the calorimeter ADC data. The raw calorimeter 

ADC data are corrected for amplifier gain, gas gain, and gross pedestal offsets by the data 

acquisition system before being written to tape. Small pedestal shifts are subtracted in 

the offl.ine analysis. The ADC data are converted to energies by multiplying by a detector 

dependent conversion factor determined from studies of testbeam data. Due to broken 

wires, some anode planes in the.gas calorimeters are turned off, reducing the signal seen in 

the ganged cathode pad towers. Tower energies are corrected to compensate for these dead 

anode planes. The ADC to energy conversion produces an TJ·<P array of calorimeter tower 
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energies and lists of anode plane energies. 

There are four types of noise in the calorimeter tower array which must be removed 

before further processing. First, single phototubes in the central calorimeters can give 

anomalously large signals, due to high voltage breakdown within the phototube or from 

Cerenkov light from particles which shower in the lightguides. Each calorimeter tower is 

viewed by two phototubes, and real energy can be distinguished from noise by requiring 

that both phototubes register the presence of energy. 

Second, low energy neutrons produced in hadronic showers indirectly produce large 

energy deposits in the gas calorimeters. These low energy neutrons are able to penetrate 

the calorimeters, and have a large cross section for interactions with protons. The neutrons 

knock loose protons from the hydrogen rich ethane gas filling the proportional tubes or from 

the plastic walls of the proportional tubes in the plug calorimeters. These protons range 

out quickly, losing all their energy through ionization of the gas in the proportional tube. 

This ionization appears as a large energy deposit over a small number of cathode pads in 

a single layer of the calorimeter. This noise is removed by an algorithm which searches for 

highly localized energy depositions. 

Third, there is occasional high voltage leakage from the ends of the PEM proportional 

tubes. This produces a large signal in a single anode layer and in a small number of cathode 

pads near the perimeter of the PEM. The same algorithm which removes the neutron noise 

removes these localized energy spikes. 

Fourth, ground loops in the signal cables running from the calorimeters to the front end 

electronics produce purely electronic noise in the PHA and FHA. Each ribbon cable carries 

signals from 12 adjoining calorimeter towers. The cable noise appears as a nearly uniform 

signal in all 12 of the towers in a cable, with no corresponding signal in any of the anode 

layers. This noise is removed by an algorithm which searches for the characteristic 12 tower 

pattern. 
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4.2 Electron Identification 

The electron identification process begins with an energy clustering algorithm. Electro­

magnetic clusters are then matched to tracks found in the tracking chambers, and various 

electron quality parameters are calculated. 

4.2.1 Clustering 

The electron clustering algorithm searches the 77-¢ array of calorimeter towers for "seed" 

towers having transverse electromagnetic energy, EfM, greater than 3 GeV. Adjoining 

towers sharing a side or a corner are associated with the cluster if they have EfM > 0.1 

GeV. Clustering proceeds until there are no adjoining towers above threshold or until the 

cluster reaches a predetermined size. This size limit is based on the size of real electron 

showers and the physical size of the towers in each detector, and is fixed to be 3 towers in 77 

by 1 tower in ¢ in the CEM, 5 by 5 towers in the PEM, and 7 by 7 towers in the FEM. The 

transverse hadronic energy in the cluster, E[IAD, is summed separately. Electromagnetic 

clusters are retained only if the total cluster EfM is greater than 5 Ge V and the ratio of 

hadronic to electromagnetic transverse energies, EfAD / EfM, is less than 0.125. 

After clusters are formed, the electron identification algorithm loops over all the re­

constructed tracks in the event and extrapolates them into the calorimeters. Tracks with 

extrapolated positions which lie within an electromagnetic cluster region are associated with 

the cluster. The associated track with the highest transverse momentum, Pt, is taken to be 

the electron track. 

4.2.2 Electron Quality Parameters 

Two electron quality parameters are defined for all the calorimeter elements and help to 

separate electrons from jets and other background. The ratio of hadronic to electromagnetic 

transverse energies, EfADjEfM (abbreviated HAD/EM), is sensitive to hadronic energy 
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associated with an electromagnetic cluster. Isolation (abbreviated J) is a measure of the 

energy near the electromagnetic cluster. Isolation is defined by 

( 4.1) 

where Efone is the total transverse energy contained in a cone of radius r = ((6.17)2 + 

( 6.¢ )2 )112 < 0.4 centered on the electromagnetic cluster. A small number of jets fragment 

in such a way that one or more very energetic 7!"
0 's are produced along with a few low 

energy charged particles. The 7r
0 's decay quickly into photons which shower in the electro­

magnetic portion of the calorimeter to produce an electromagnetic cluster. The electron 

track requirement can be satisfied by one of the low energy charged particles. Background 

of this type can be removed by looking for residual (hadronic) energy in or near the electron 

cluster. 

There can be additional energy deposition near a real electron due to the "under~ying 

event" - the low energy spray of particles inevitable in pp collisions. Analysis cuts on 

HAD/ EM or I are never fully efficient, then, due to this underlying energy. 

Various other electron quality parameters have been defined for each calorimeter, based 

primarily on the shape of showers from electrons from test beams. The electron finding 

algorithm calculates these quantities for each identified electromagnetic cluster. For the 

CEM, five additional parameters are used for electron selection: 

• E / p, the ratio of cluster energy to the momentum of the matched CTC track. 

• LSHR, a measure of the lateral distribution of energy in a cluster. The z position 

of the electron shower in the calorimeter as measured by the strip chamber is used 

in conjunction with a test beam parametrization to predict the distribution of en­

ergy among the calorimeter towers in the cluster, and the measured distribution is 

compared to this predictio"n. The quantity LSHR is defined by 

E,(!.dj _ £Prob 
LSHR = 0.14 * ~ 1 1 

~ Jo.142 * E + (6.Efr0
b)2 
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where Efdi is the measured energy in a tower adjacent to the seed tower, Errob is the 

energy expected in that tower based on strip chamber information, E is the cluster 

energy, and 6.Errob is the uncertainty on E{'rob associated with a 1 cm uncertainty 

in the strip chamber position measurement. 

• x;trip, a measure of shower shape in the strip chamber. The energy distribution in the 

cathode strips is compared to a parametrization derived from electrons from a test 

beam. 

• 6.x, 6.z, the difference in x and z, in centimeters, between the strip cluster and the 

extrapolated CTC track. The relative alignment of the CTC and the strip chambers 

has been measured in situ using a sample of 12000 electrons. 

Two parameters are used for selecting plug electrons: 

• X~x 3 , a measure of the transverse shape of the calorimeter cluster. The energy dis­

tribution in the calorimeter towers in a 3 X 3 region centered on the seed tower is 

compared to a parametrization derived from electrons from a test beam. 

• VTPC occupancy, a loose track requirement. A "road" beginning at the collision point 

and pointing at the calorimeter cluster is defined. The VTPC occupancy is defined 

to be the number of VTPC hits detected along the road divided by the number of 

VTPC wires crossed by the road. If the road passes too near one of the internal VTPC 

structural members, the occupancy defaults to 1.0. 

One parameter is used in selecting forward electrons. The ratio E front! Etotal is the ratio 

of cluster energy deposited in the front half of the FEM to the total cluster energy. Real 

electrons deposit most of their energy in the first half of the FEM. 
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4.3 Energy Corrections 

A number of energy corrections must be made to compensate for relative tower response 

and variations in detector calibrations. Ultimately, all calorimeter energies are tied to or 

compared with an absolute momentum scale determined by the CTC. 

To establish an absolute CTC momentum scale, it is necessary first to calibrate the 

drift velocities and TDC offsets using charged particle tracks from minimum bias events, as 

described in Section 3.2.1 and then to correct for errors in the CTC wire positions. Errors 

in the azimuthal alignment of the CTC wires are studied using a sample of 17000 inclusi_ve 

electrons. By equalizing the mean of the E/p distribution for the positrons and electrons 

in the inclusive sample, azimuthal offsets are determined for each of the 84 wire layers 

in the CTC. This E/p alignment correction is checked using cosmic rays. To the track 

reconstruction algorithms, cosmic rays which traverse the CTC and pass near the beam 

axis appear as two oppositely charged tracks originating from a vertex near the beam. If 

the CTC wires are aligned correctly, the two tracks reconstructed from a cosmic ray should 

have the same curvature and should have the same reconstructed vertex. 

The CTC momentum scale is determined by the magnetic field. The absolute magnetic 

field has been mapped to ±0.05%, and so the CTC momentum scale is well known a priori. 

The momentum scale is checked using a sample of J/'lj;---. µ+µ- and v---. µ+µ- events. The 

measured J /'1/J mass agrees with published values within its 0.03% statistical uncertainty, 

and the vis 0.1% ± 0.1% high. 

Three energy corrections are applied to the CEM data. First, the CEM calorimeter 

response to electrons varies across the face of a calorimeter tower. This response has been 

measured in a test beam, as described in Section 3.2.2, and is found to vary by approximately 

6% across the tower face. The position of an electron within the tower is determined from 

strip chamber information, and a position dependent correction is applied. Second, the CEM 

response varies on a tower by tower basis. Using a sample of 17000 inclusive electrons, the 
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Figure 4.1: The E/p distribution from a radiative Monte Carlo compared to the E/p dis­
tribution from 1800 w± -+ ev events after energy corrections are made to the W data. 

relative tower responses are measured by measuring the average of the E/p distribution 

on a tower by tower basis. Typical tower to tower corrections are of order 3%. Third, an 

overall correction factor determined from 1800 w± -+ ev events is used to tie the CEM 

energy scale to the absolute scale determined from CTC momentum measurements. A 

Monte Carlo simulation which includes radiative effects is used to predict the shape of 

the E/p distribution. Matching the mean of the E/p distribution from 1800 measured 

w± -+ ev events to the Monte Carlo prediction indicates that the CEM energy scale must 

be scaled up by 1.7%. The E/p distributions from the radiative Monte Carlo and from 

the data after corrections are shown in Figure 4.1. Using these corrections, CDF has used 

65 zo events in which both electrons are found in the CEM to measure the z0 mass to be 

91.1 ± 0.5 GeV /c2 (23], in good agreement with the SLC result of 91.14 ± 0.12 GeV /c2 [24] 

and the average LEP result 91.161 ± 0.031 GeV /c2 (25]. 
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There are three energy corrections which are applied to the PEM data, in addition to 

the dead layer correction discussed in Section 4.3. First, the PEM calorimeter response 

varies on a tower by tower basis. The tower to tower variations in each quadrant have 

been measured using electrons from a test beam, and a correction factor is applied. Typical 

tower to tower variations are of the order 6%. Second, the PEM calorimeter response is 

nonlinear for high energy electrons. This nonlinearity has been measured using test beam 

electrons, and is found to be approximately 7% at 200 GeV. Third, quadrant to quadrant 

variations are measured using z0 events in which one decay electron is contained in the 

CEM. Quadrant correction factors are found by constraining the average zo mass found in 

each quadrant to the average mass value from a quadrant whose response is well measured 

in test beam studies. After these corrections, the zo mass found using CEM-PEM events 

is 90.7 ± 1.9 GeV /c2 , in good agreement with the published CEM-only z0 mass. 

The FEM response is nonlinear for very high energy electrons, and a nonlinearity cor­

rection must be applied in addition to the dead layer correction. The FEM response has 

been measured with test beam electrons up to 200 GeV. Due to longitudinal boosts, how­

ever, the energies of electrons from zo decay can range up to 400 Ge V in the FEM. The 

test beam results are extrapolated by measuring the average z0 mass as a function of FEM 

electron energy using z0 •s in which one electron is contained in the CEM. By constraining 

the CEM-FEM masses to the CEM-CEM z0 mass, the energy nonlinearity is determined, 

and the FEM energy scale is tied to the CEM scale. The nonlinearity correction increases 

the cluster energy by approximately 10% for 200 GeV electrons. FEM quadrant to quadrant 

variations are measured using the energy spectrum of the neutron induced energy spikes. 

These neutron data are in good agreement with the quadrant to quadrant variations seen 

in zo events. 
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4.4 Event Selection 

Event processing and selection proceeds in several distinct steps. First, all events are 

processed with the so-called "production" code: calorimeter ADC data are converted to 

energies, full track reconstruction is performed, 1 and the electron identification algorithm 

(as well as jet, muon, and other physics algorithms) is applied. Events having one or more 

identified electromagnetic clusters are written to an initial set of summary tapes. Next, this 

initial set of summary tapes is processed by a simple program which applies loose electron 

energy and quality cuts to find candidate w± and z0 events; the zo events are used in the 

asymmetry analysis, while the w± events are used to measure various efficiencies. The zo 

candidates are required to have two electromagnetic clusters with transverse energies greater 

than 10 Ge V, and the w± candidates must have one CEM electron with transverse energy 

greater than 10 GeV, and missing transverse energy (;Et, an indirect signature for neutrinos 

which have large transverse momentum and escape the detector without interacting) greater 

than 20 GeV. The w± and z0 candidate events are written to a second set of summary 

tapes. The final event selection is made using this second set of w± and z0 summary 

tapes. Energy corrections as discussed above are applied, and energy-dependent quality 

parameters are recalculated. More restrictive electron quality cuts and transverse energy 

thresholds are applied to the corrected data, along with fiducial volume restrictions, an 

event vertex cut, and a trigger requirement to produce samples of well-measured W's and 

z0 's. These cuts and requirements are described below. 

4.4.1 Electron Quality Requirements 

The angle () is defined to be the angle between the incoming quark ( or antiquark) and the 

outgoing electron ( or positron) .. This definition is charge dependent, and so the charge of 

1 The track reconstruction used in the ''production" processing does not include the azimuthal correction 
factors discussed in Section 4.3. Some charge dependent differences are therefore expected in the final event 
sample. 
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Et > 15 GeV 
E/p < 1.5 

LSHR < .20 
x2 , strip < 15 
l.6.xj < 1.5 cm 
I .6.zl < 3.0 cm 

Iso(r=...!) < .10 

Table 4.1: Tight CE1I electron quality cuts. 

CEM: Et > 15 GeV 
E/p < 1.5 

Iso(r=.4) < .10 

PEM: Et > 15 GeV 
x2 3x3 < 20 

VTPC occupancy > 0.5 
HAD/EM < .05 
Iso(r=.4) < .10 

FEM: Et > 15 GeV 
E front/ Etotal > .6 

HAD/EM < .05 
Iso(r=.4) < .10 

Table 4.2: Electron quality requirements for the second electron in a zo event. 

at least one of the electrons from the zo decay must be measured. For the asymmetry 

measurement, then, at least one of the electrons must be produced in the central region 

and leave a well reconstructed track in the CTC. Each event is required to have at least 

one electron in the CEM with transverse energy greater than 15 GeV and which passes the 

cuts listed in Table 4.1. A second electromagnetic cluster with transverse energy greater 

than 15 Ge V is required. The second cluster can be contained in any calorimeter, and 

must pass the looser quality cuts shown in Table 4.2. Figures 4.2 through 4.4 show the 

distributions of the various quality parameters for electrons in the zo data sample. For each 

of the parameters, the electron is required to pass all of the quality requirements except for 
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Figure 4.2: Electron quality parameters for electrons in the CEM. Arrows indicate the value 
of the quality requirement. 
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Figure 4.3: Electron quality parameters for electrons in the PEM. Arrows indicate the value 
of the quality requirement. 
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Figure 4.4: Electron quality parameters for electrons in the FEM. Arrows indicate the value 
of the quality requirement. 
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the parameter being plotted. Arrows indicate the cut values. 

4.4.2 Fiducial Requirements 

In addition to the electron quality cuts, the electrons in the Wand zo samples are restricted 

to a fiducial detector volume in which the calorimeter response is well understood and 

energies are reliably measured. For the most part, this simply means avoiding cracks and 

dead spaces between calorimeter modules, although some dead PEM towers are explicitly 

removed. Electrons in the CEM are restricted in the following ways: 

• Dead spaces between adjacent wedges are excluded by requiring that the extrapolated 

track position be within 21 cm in </> from the tower center. This requires electrons to 

be more than 3 cm from the 15° wedge boundaries. 

• The crack at B = 90° between the two halves of the central calorimeter barrel is 

excluded. The extrapolated track position is required to have lzl > 9 cm. 

• The cluster seed tower must not be the outermost tower in the central wedge. The 

projective geometry for this tower is somewhat extreme; a large amount of radiator 

and scintillator is removed, as discussed in Section 3.2.2, and large energy corrections 

are required. 

• A cryogenic and electrical feed through for the superconducting solenoid penetrates one 

of the central calorimeter wedges. This wedge has seven normal towers, one highly 

modified tower, and two missing towers. Electrons are excluded from the missing and 

modified towers in this wedge. 

Electromagnetic clusters in the PEM are restricted from border regions and dead calorimeter 

towers as follows: 

• The seed tower must not be in any of the towers adjacent to the </> boundary between 

quadrants. 
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• The seed tower must not be in the two outermost or two innermost T/ annuli. This 

excludes the cracks between the CEM and PEM and between the PEM and FEM. 

• The seed tower is excluded from 16 dead PEM towers. Of these 16 towers, 13 are in 

regions already excluded by the quadrant boundaries. 

Electromagnetic clusters in the FEM are restricted from quadrant borders and from regions 

with partial hadronic coverage as follows: 

• The seed tower must not be in any of the towers adjacent to the ¢> boundary between 

quadrants. 

• The seed tower is must not be in the 5 innermost T/ annuli. This excludes a region in 

which there is only partial hadronic coverage; the low beta quadrupoles penetrate the 

FHA, as discussed in Section 3.2.2, and hadronic coverage is limited in this region. 

A plot of the allowed ry-rp regions is shown in Figure 4.5. The fiducial cuts reduce the 

detector acceptance by approximately 29%. 

4.4.3 Vertex Requirement 

The proton and antiproton bunches circulating in the accelerator have finite lengths, and 

so collisions can occur at some distance from the nominal interaction point. The position 

of the collision, as determined by the vertex of VTPC tracks, is Gaussian distributed about 

the nominal position with a sigma of 30 cm. The projective tower geometry is distorted 

for events with large vertex displacement. Furthermore, the detector's hermiticity is com­

promised; particles from displaced vertices can escape without detection through the crack 

between the plug and forward calorimeters. To preserve the detector geometry, events are 

required to have vertex positions within ±60 cm of the nominal interaction point. 

50 



FEM PEM CEM PEM FEM 
360 

DD DD 
DD DD ¢ 

DD DD 
DD 

I 

DD 
I 
I 
I 
I 

0 
I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 

-4 -3 -2 -1 0 1 2 3 4 

7J 

Figure 4.5: Calorimeter fiducial region for electrons. Three dead towers in the PEM and 
the cryogenic solenoid feedthrough at 90° are indicated 
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4.4.4 Electron Trigger Requirement 

There are a number of different triggers which will accept z0 events, and a single event 

may satisfy more than one set of trigger requirements. In order to understand the trigger 

efficiency and potential trigger biases, the data are required to satisfy a single trigger. vVith 

all events satisfying one set of trigger requirements, only one trigger efficiency and bias 

estimate need be calculated. 

All the events are required to satisfy the so-called ELECTRON _12 trigger. This is a 

Level 2 based trigger, and requires: 

• an electromagnetic cluster in the CEM with transverse energy greater than 12 GeV, 

• the ratio of hadronic to electromagnetic transverse energy HAD/ EM < 12.5%, 

• a track from the fast track processor matched in ¢ to the calorimeter cluster, and 

having transverse momentum Pt> 6 GeV. 

This trigger requires a valid Level O trigger from the BBC and a Level 1 trigger requiring 

at least one CEM trigger tower with Et greater than 6 GeV as prerequisites. 

Much of the data was collected with no Level 3 electron trigger requirement. During 

the latter part of the run a Level 3 algorithm was introduced which required the Level 

2 ELECTRON _12 trigger as a prerequisite. This Level 3 algorithm calculates the LSHR 

variable and uses a more sophisticated tracking algorithm to harden the 6 Ge V Pt threshold. 

For the asymmetry analysis, the final analysis cuts are more restrictive than those imposed 

by the Level 3 algorithm, and so the fundamental trigger efficiency is determined by the 

Level 2 trigger. 

The efficiency of the ELECTRON _12 trigger is measured using events which pass a 

similar prescaled 7 Ge V trigger. The efficiency of the ELECTRON _12 trigger as a function 

of Et is shown in Figure 4.6. The trigger becomes fully efficient before 15 Ge V, and the 

trigger efficiency for electrons passing the tight CEM cuts and having transverse energies 
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Figure 4.6: The efficiency of the ELECTRON _12 trigger as a function of electron cluster 
transverse energy. 

greater than 15 GeV is measured to be 97.3 ± 0.5%. 

4.4.5 The Final zo Sample and the Angular Distribution 

Applying the dielectron cuts to a data sample corresponding to an integrated luminosity of 

4.4 pb-1 produces a sample of 302 events. A 4-vector is defined for each of the electrons 

in this sample. The direction of the electron 4-vector is determined by the position of 

the z vertex and the direction of the electron track in the CTC for CEM electrons, and 

by the vertex and the plug strip cluster or the energy weighted cluster centroid for PEM 

and FEM electrons. In all cases, the energy component of the 4-vector is taken to be the 

corrected calorimeter cluster energy. The invariant mass distribution of the 302 dielectron 

events is shown in Figure 4. 7. There is a prominent zo peak on a Drell-Yan continuum. 

(The efficiency for low mass Drell-Yan pairs falls due to the electron Et requirement.) 

Backgrounds appear to be low. The zo sample is taken to be the 252 events with 75 < 
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Figure 4.8: The uncorrected cos 0 distribution for the 252 events in the invariant mass 
region 75 < Mee < 105 Ge V. 

Mee < 105 GeV. A log likelihood fit of the mass values to a simple Breit-Wigner form 

yields a zo mass of 91.05 ± 0.23 GeV, in good agreement with the published CDF zo mass 

of 91.1 ± 0.5 GeV /c2 [23]. 

The angle 0 is calculated using the Collins-Soper method, as discussed in Section 2.2 

and defined in Equation 2.30. The angular distribution dN / d cos 0 of the 252 z0 events is 

shown in Figure 4.8. The angular distribution has the parabolic shape predicted by the 

differential cross section of Equation 2.29, and there are more events with positive values of 

cos 0, as expected. The electron Et cut reduces the acceptance for events with large values 
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of I cos 01, and so there are a reduced number of events in the outermost bins of Figure 4.8. 

Additional acceptance issues are discussed below. 

4.5 Electron Selection Efficiency 

The efficiencies for the electron quality cuts and isolation requirement are determined di­

rectly from the W and zo data [26]. The efficiency of a particular quality requirement 

is determined from a z0 data sample in which all quality requirements except the one in 

question are made. Data samples selected in this way contain good electrons with little 

background, and are unbiased with respect to the quality parameter in question. The 

efficiency of a quality cut is defined to be 

N(pass) 
E = -----'----'----

N( unbiased sample) 
( 4.3) 

where N (pass) is the number of electrons which satisfy the quality requirement in ques­

tion, and N ( unbiased sample) is the number of electrons in an unbiased data sample as 

discussed above. Isolation is always required for both electrons, and the isolation efficiency 

is determined in a separate calculation. The total electron efficiency, then, is given by the 

product of the isolation efficiency and the measured efficiency for isolated electrons. Elec­

tron efficiencies (excluding isolation efficiency) determined from the z0 data are given in 

Table 4.3 [26]. The efficiency of the tight combination of CEM cuts is slightly larger than 

the product of the efficiencies of the individual cuts. This is because the E/p and !~xi cut 

are slightly correlated. 

Efficiencies for the tight and loose CEM cuts are also determined from the W data[26]. 

The W's are selected by requiring each event to have one isolated CEM electron which 

satisfies the fiducial volume cuts, and has Et greater than 25 GeV and a track with Pt 

greater than 7.5 GeV pointing at the cluster. No further electron quality requirements are 

made, and this data sample is unbiased with respect to all of the quality parameters except 

isolation. The W events are further required to have /Jt greater than 20 GeV, and /)t 
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Quality Parameter f from zu data f from W data 
CEM: E/p 0.912 ± 0.020 0.916 ± 0.005 

LSHR 0.985 ± 0.008 0.975 ± 0.003 
2 

Xstrip 0.976 ± 0.011 0.974 ± 0.003 
l~zl 0.985 ± 0.008 0.979 ± 0.003 
l~xl 0.963 ± 0.013 0.966 ± 0.004 

All tight CEM cuts 0.873 ± 0.023 0.877 ± 0.007 
All loose CEM cuts 0.912 ± 0.020 0.916 ± 0.005 

PEM: Had/EM 0.992 ± 0.008 -
2 0.992 ± 0.008 X3x3 -

VTPC Occupancy 0.958 ± 0.019 -
All PEM cuts 0.941 ± 0.022 -

FEM: Had/EM 1.000 ± 0.005 -

E front/ Etotal 0.977 ± 0.023 -

All cuts 0.977 ± 0.024 -

Table 4.3: Efficiencies for individual electron quality parameters determined from the W 
and z0 data samples. 

significance greater than 2.5, where the significance is defined to be 

J;t . 
OJJ1 = ~' ( 4.4) 

where the sum represents the scalar sum of the transverse energy in all the calorimeter 

towers. The significance cut helps to reject dijet events in which a mismeasurement of one 

of the jets contributes a large /Et, To remove residual background from dijet events in which 

one jet is poorly measured, the W events are required to have no jet with Et greater than 

10 GeV opposite in azimuth ( i.e. within ±30° of the direction opposite in azimuth) of the 

electron cluster. The efficiencies of the electron quality cuts (excluding isolation efficiency) 

determined from the W data are also given in Table 4.3 [26]. The efficiencies determined 

from the W and zo data samples agree well. 

The isolation efficiency depends on the amount of underlying event energy contained 

in the r = 0.4 isolation cone, as discussed in Section 4.2.2. The isolation efficiency is 

calculated by artificially moving the electron clusters from z0 decays to different regions in 

the detector, and recalculating the isolation parameter at each new position [26]. Moving 
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Figure 4.9: Isolation cones used in the calculation of the isolation efficiency. The circles 
indicate the cones of radius 0.4, and the X's sho the location of the electrons in the original 
zo event. 

the electron positions in this way samples different parts of the underlying event, and allows 

one to measure the effect of underlying event fluctuations on the isolation parameter. In 

practice, the size of an electron shower in 77-</> space varies with 77, and so the cluster 77 should 

remain fixed when varying the position. Furthermore, for events in which both electrons are 

deposited in the CEM, care must be taken when changing electron positions so that the two 

electron clusters never overlap. Figure 4.9 shows an 77-</> plot of a typical z0 event, along 

with the new isolation cones used in the efficiency calculation. The isolation efficiencies 
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Electron Isolation Efficiency 
CEM 0.985 ± 0.003 
PEM 0.976 ± 0.007 
FEM 0.977 ± 0.011 

Table 4.4: Electron isolation efficiencies. 

determined for each detector are given in Table 4.4 [26]. 

The isolation efficiency for CEM electrons has been checked using the Wand Z data [26]. 

By requiring the electrons to pass all the quality cuts except isolation, one can calculate the 

isolation efficiency in the same manner used to calculate the efficiency of the quality cuts. 

The isolation efficiency measured using the W data is 0.977 ± 0.003 [26], and is 0.977 ± 0.011 

[26] from the zo sample, in agreement with the CEM value in Table 4.4. 

A 

4.6 cos 0 Acceptance 

A Monte Carlo event generator and a simple detector simulation are used to determine 

the acceptance of the CDF detector and analysis cuts as a function of cos 0. The detector 

geometry and electron Et cut are easily simulated. The electron quality and isolation cuts 

are simulated simply by accepting and rejecting events based on the measured efficiency 

of the cuts. This is much faster than a full simulation of each detector component. The 

efficiencies used are the product of the electron quality and isolation efficiencies given in 

Tables 4.3 and 4.4, and are taken to be 

fcEM(tight) 

fcEM(loose) 

0.860 ± 0.023 

0.898 ± 0.020 

0.918 ± 0.023 

fFEM = 0.954 ± 0.026 

59 



The ISAJET Monte Carlo (version 6.22) [27] is used as the event generator for the 

acceptance calculation. The EHLQ 1 [16] parametrization is used to describe the quark 

momentum distribution functions. The steps in the acceptance calculation are as follows: 

l. Generate pj5---, e+e- events 

2. ~fake histogram of dN/dcosB using generated quantities for events with 75 GeV < 

Mee< 105 GeV 

3. Smear the event vertex with O"vertex = 30.0 cm 

4. Extrapolate the electron 4-vectors to the detector. 

5. Make fiducial cuts on the extrapolated position consistent with those made on the 

data. 

6. Smear the electron energy by the calorimeter resolutions: 

CEM (aE/E) 2 

PEM aE/E 

FEM aE/E 

(0.135/-/E sinB)2 

0.28/./E 

0.25/./E 

7. Make the Et cut on each electron (15 GeV). 

+ (0.017)2 

+ .02 

+ .005 

8. Discard electrons in each detector based on the combined efficiencies for the electron 

quality cuts given above 

9. Make histogram of dN / d cos 0 using smeared quantities for events passing the above 

acceptance cuts and having 75 GeV <Mee< 105 GeV 

10. The cos 0 dependent acceptance is defined to be the bin-by-bin ratio of the histogram 

of step 9 and the histogram of step 2 
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Figure 4.10: Longitudinal momentum of z0 •s. The points show the CDF data and the line 
shows the ISAJET Monte Carlo prediction. 

Figures 4.10 through 4.12 show comparisons between kinematic quantities generated by 

the Monte Carlo calculations and the real data. The longitudinal and transverse momenta 

of the zo are shown in Figures 4.10 and 4.11, respectively. There is good agreement 

between the data and the Monte Carlo for these two kinematic quantities, implying that the 

Monte Carlo generates events with the proper kinematics. Figure 4.12 shows the detector 

occupancy for electrons as a function of calorimeter T/ band. The gaps are due to the fiducial 

cuts between calorimeter elements. The Monte Carlo and data agree well, implying that 

the simple simulation correctly reproduces the detector geometry, the vertex smearing, and 

the relative detector efficiencies. 

A plot of acceptance versus cos 0 is shown in Figure 4.13. Histogram bins have been 

combined in a symmetric fashion in order to increase the statistical accuracy of the ac­

ceptance measurement; potential asymmetries in the detector acceptance are discussed in 

Section 5.2.4. The size of the statistical error bars is small compared to the size of the 
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plotting symbol. The acceptance for small values of I cos Bl is reduced by kinematics and 

the requirement that one electron be located in the CEM. Events with small I cos Bl values 

are produced with /J ~ 90°; longi tu din al motion of the z0 often boosts both the decay 

electrons in events of this type out of the central region and into the gas calorimeters. The 

acceptance is significantly reduced for I cos Bl > 0.9 for two reasons. First, the Et's of the 

electrons in events with large values of cos 0 tend to peak at low values, due to simple 

kinematics (Et rv EsinB), and a large number of these events are lost due to the Et cut. 

Second, there is an upper limit on cos O defined by the geometric extent of the FEM and 

CEM calorimeters and the requirement that one of the electron clusters be located in the 

CEM. The angular distribution is corrected bin-by-bin for acceptance to produce the plot 

of 1 / <7 d<7 / d cos O shown in Figure 4.14. 

4. 7 Background Estimates 

There are four sources of background events in the zo data sample which are considered; 

• real electrons from semileptonic decays of heavy quarks, 

• the tail of hadronic jet fragmentation which produces high energy 7r
0 's as leading 

particles, as discussed in Section 4.2.2, 

• W----+ ev + jet events in which the jet produces an electromagnetic duster, 

The first two sources are lumped together and investigated using isolation. The second two 

are investigated using Monte Carlo techniques. 

4.7.1 QCD Background · 

The QCD background is estimated from three studies of the invariant mass spectrum and an 

isolation parameter called Imax, where I max is defined to be the larger of the isolation values 
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Figure 4.14: The cos 0 distribution after acceptance corrections. 
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Figure 4.15: Maximium isolation Imax for dielectron events in the mass region between 75 
and 105 GeV /c2• 

for the two electromagnetic clusters in the event. A plot of Imax for events with two electrons 

passing all the electron quality cuts except isolation and having invariant masses between 

75 and 105 GeV /c2 is shown in Figure 4.15. The Imax distribution shown in Figure 4.15 

peaks at a somewhat higher value than the distributions of isolation shown in Figures 4.2 

through 4.4. The QCD background is assumed to be flat in Imax above Imax = 0.1, and 

then to fall linearly with Imax in the region 0 < Imax < 0.1, going to 0 at Imax = 0. This 

is approximately consistent with the behavior of Imax for identified photon conversions and 

7r 0 's in the data, and with the behavior of bb events generated with the ISAJET Monte 

Carlo, as shown in Figure 4.16. The QCD background is expected to be a steeply falling 

function of the invariant mass. For the purposes of the background estimation, the QCD 

background is assumed to fall linearly with invariant mass in the region of the z0
, going to 

0 at 120 GeV. 

A plot of Imax versus invariant mass for events with two electrons passing all the electron 
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Figure 4.16: Distributions of maximum isolation, Imax, for identified photon conversions 
and 1r

0 's from the CDF data and bb Monte Carlo events. 

quality cuts except isolation is shown in Figure 4.17. (This plot is made without the 

ELECTRON_l2 trigger requirement.) Three background estimates are made using the 

events in the regions marked a··· e and Z. The region marked Z contains 257 events 

assumed to be z0 's with a small amount of background. Regions d and e contain 14 and 3 

events, respectively, which are assumed to be Drell-Yan events with background. Region b 

contains 24 events, and is assumed to be mostly background with a few real z0 events with 

Imax values which have fluctuated up. Regions a and c contain 10 and 4 events respectively, 

and are assumed to be pure background; there are too few Drell-Yan events in these mass 

regions to contribute through Imax fluctuations. 

In the first of the three background estimation methods, the known isolation efficiency 

is used to estimate the number of real zo fluctuations in region b. Assuming an average 

isolation efficiency of 0.98, the probability of one of the two electrons from a z0 decay having 

Imax > 0.l is given by P = 1.0 - (0.98)2 = 0.04. Assuming, for the moment, that the 257 

events in the Z region are all good z0 's, this implies that there are 10.6 good zo events 

in the b region, and therefore 13.4 background events in region b. One can now use the 
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Figure 4.17: Maximum isolation, Imax, versus invariant mass for events with two electro-
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assumed behavior of the background in Imax to extrapolate the 13.4 background events in 

the b region back into the Z region. This extrapolation predicts 7 background events in the 

z0 sample. 

In the second method, the background is assumed to fall linearly with invariant mass, 

and the 1--l background events in in regions a and care extrapolated to predict 14 background 

events in the b region. These 14 background events in region b are, in turn, extrapolated 

into the Z region using the assumed behavior of Imax to predict 7 background events in the 

z0 sample. 

In the third method, the invariant mass spectrum for Drell-Yan plus zo events is nor­

malized to the number of events in the Z region, and then used to predict 6.5 and 4.3 

Drell-Yan events in regions d and e, respectively. This implies that the remaining 6 events 

in regions d and e are background. These 6 background events are extrapolated using the 

linearly falling invariant mass spectrum to predict 6 background events in the z0 sample. 

The three QCD background estimates agree well with one another. The background in 

the zo sample due to QCD sources is taken to be 7 ± 3 events. 

4.7.2 vV-+ ev + jet Background 

The background due to W --, ev + jet where the jet fakes a second electron is interesting 

because the distribution of electrons from the W decay is itself asymmetric, and may have a 

significant effect on the observed zo asymmetry. The background due to W + jet production 

is estimated using a combination of data studies and Monte Carlo simulation. The relative 

rates of zo and W + jet production are measured from the data, as is the probability of 

a jet fragmenting to produce an electromagnetic energy cluster, while the kinematics are 

studied with a Monte Carlo. 

The ratio of the W and zo cross sections, R = <7 · B(W --, ev)/<7 · B(Z __, e+e-), is 

measured to be 10.2 (28]. Using this ratio and the measured number of z0 events in the 

data sample, one estimates that there are approximately 2570 W --, ev events in which the 
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electron from the W decay would pass the CE:.I electron cuts listed in Table 4.1. Of these 

W events, 26.6% are produced with a jet having transverse energy greater than 15 GeV 

[29]. 

The probability of a jet faking an electron in the central detector is small due to the E/p 

requirement. and is estimated to be approximately 1/2000 [30]. The background from \V 

+ jet events in which the jet is in the central region of the detector is therefore expected to 

be negligible. and only events with jets located in the gas calorimeters are considered. The 

properties of jets in the gas calorimeters have been measured using a dijet sample in which 

one of the jets is required to be in the central region of the detector [31]. An upper limit 

on the number of jets which would pass the electron quality requirements can be estimated 

from the ratio of hadronic to electromagnetic transverse energies, HAD /E:.I, for jets in the 

gas calorimeters. It is estimated that 0.5% of the jets in the PE1I would pass the 0.05 

HAD /E:-.I cut shown in Table 4.2. and that 2.2% of the jets in the FL\,f would pass the 

HAD /E:-.I cut. 

The PAPAGEXO [32] :.Ionte Carlo is used to produce W + jet events with the proper 

decay kinematics. The event vertex is smeared, and the electron and jet 4-vectors are 

extrapolated into the detector. Both the electron and the jet are required to have transverse 

energies greater than 15 Ge V. The electron from the W decay is required to be in the central 

region, and the jet is required to be in one of the gas calorimeters; no requirement is made 

on the neutrino from the \V decay. An ··invariant mass" is constructed using the electron 

and jet 4-vectors; the invariant mass calculated in this way is required to be in the range 

75 GeV < .\-fe-jet < 105 GeV. Finally, the event is weighted by the probability that the 

jet would pass the HAD /EM quality cut. Of the events in which both electron and the jet 

have transverse energies greater than 1.5 GeV, fev,:er than 0 . .53% pass the kinematic and 

HAD /E1'I cuts. After combining the calculation of the total W event rate with the )Jonte 

Carlo results, it is estimated that there are fewer than 0.4 events in the z0 sample from \V 

+ jet events in which the jet fakes a second electron. 
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Figure 4.18: Angular distribution of W + jet events in which the jet fakes a second electron. 

Although the angular distribution of electrons from W decays are very asymmetric, 

as shown in Section 2.1, the W in the event is not reconstructed properly; the electron 

and the jet are assumed to be the outgoing electrons from a zo decay, and the resulting 

angular distribution is distorted. The cos 0 distribution for events of this type is shown 

in Figure 4.18, where cos {J is calculated from Equation 2.30 using the electron and jet 

4-vectors. There is a residual asymmetry of 36% due to the asymmetry in the electron 

distribution from the decay of the W. 

4.7.3 zo--+ 7+7- Background 

The background due to z0 ...... r+r- events in which both r's decay to electrons is estimated 

using the ISAJET Monte Carlo. z0 ----. r+r- ----. e+veDre-DeVr events are generated with 

ISAJET, and fiducial and electron Et cuts are applied. The generated events are scaled 

to the 1988-1989 integrated luminosity, assuming a· B(Z0 ...... r+r-) = 200nb and a r ----. 
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Figure 4.19: Invariant mass distribution of zo --+ r+r- --+ e+veVre-DeVr Monte Carlo 
events, after scaling to the integrated luminosity for the 1988-1989 run. 

evevr branching fraction of 0.18. The invariant mass spectrum of dielectrons is shown in 

Figure 4.19 after the luminosity scaling. One event passes the fiducial and Et cuts, and 

0.02 events are contained in the region 75 < Mee < 105 GeV. The zo--+ r+r- background 

in the z 0 --+ e+ e- sample is negligible. 
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Chapter 5 

Data Analysis 

There are several different ways of extracting the forward-backward asymmetry from the 

angular distribution. This chapter discusses the methods used to measure both AFB and 

sin2 0w, and presents an analysis of the systematic uncertainties on the measurement. 

5.1 Determining AFB and sin2 0w 

Three methods are used to determine sin2 0w and AFB from the angular distribution; two 

different fits to a functional form, and a direct technique. Values for sin 2 0w are determined 

from the two fitting methods by fitting the data to the full lowest order cross section of 

Equation 2.29, and extracting sin2 0w directly. Values for the asymmetry are determined 

by fitting to a simpler parabolic form, 

da 2 , , 
--, = ( 1 + cos 0) + ,B cos 0; 
dcos0 

the forward-backward asymmetry is given by 

3 
AFB= -,8. 

8 

(5.1) 

(5.2) 

The MINUIT [33] function minimization package is used to minimize either a log-likelihood 

or a chi-square function for the fits. In the direct method, AFB is measured directly from 
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the acceptance corrected 1/ a da / d cos 0 distribution of Figure 4.14 using the definition of 

Equation 2.16. A value for sin2 0w is then determined from this asymmetry value. Each of 

these three methods is described below, paying particular attention to acceptance effects. 

To simplify equations presented below, the lowest order cross section of Equation 2.29 

is represented by the simple form 

da 2 , , 
--, = A(l + cos 0) + B cos0 
dcos0 

(5.3) 

where A and Bare functions of sin2 0w and include integrations over structure functions and 

kinematic variables. (The forward-backward asymmetry is given by AFB= il) It is also 

convenient to describe the detector acceptance by a function E( cos2 0), which is explicitly 

symmetric in cos 0. 

5.1.1 Negative log likelihood fit 

The method of choice for measuring sin2 0w is an unbinned, event by event negative log like­

lihood fit to the dN / d cos 0 distribution of Figure 4.8. A disadvantage of any log likelihood 

fit is that the value of the likelihood is not readily converted into a measure of the goodness 

of the fit. For the asymmetry analysis, however, a log likelihood fit has the advantage that 

the estimation of sin2 0w and AFB is independent of the acceptance if the acceptance is 

symmetric in cos 0. 

The log likelihood fit begins with a normalized probability distribution function derived 

from the simplified cross section of Equation 5.3: 

P(sin2 0w, cos 0) = f ((1+cos2 0) + B /A cos 0). (5.4) 

After the normalization, all the information about the forward-backward asymmetry and 

sin2 0w is contained in the B / A term. The acceptance is incorporated into the analysis by 

defining a new normalized acceptance-corrected probability function P' which includes the 

acceptance function E( cos2 0): 

P'(sin2 0w, cos 0) = ~NE( cos2 0) ((1+cos2 0) + B /A cos 0), 
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where N is a normalization factor given by 

N -l -_ 31-1 ( 2 0A)( 2 A) 0A 31-1 ( 2 A A A -
8 

1: cos 1 + cos 0 d cos + - 1: cos 0)A/ B cos 0d cos 0 
-1 8 -1 

(5.6) 

31-1 2 A 2 A A - 1:(cos 0)(l+cos 0)dcos0+ 0. 
8 -1 

The normalization factor N is determined by the components of the probability distribution 

P' which are even with respect to cos 0; the odd components integrate to zero. N is 

independent of both sin2 0w and the asymmetry. The acceptance-corrected probability 

distribution P' now describes the angular distribution measured with the CDF detector 

and electron quality cuts described in Section 4.4.1. 

The likelihood, £, and the negative log likelihood for a given data sample are defined 

by 

£ 

-ln£ 

IT N Ei( cos2 0)Pi(sin2 0w, cos 0) 
i 

- ~ln(N1:i(cos2 0))-~lnPi(sin2 0w,cos0) 
i i 

(5.7) 

(5.8) 

where Pi and Ei are the probability and acceptance weight for the ith data event. The 

best estimate of sin2 0w (or AFB) for a given data sample is the value of sin2 0w which 

maximizes the likelihood £ or minimizes - ln £ for the sample. For a given data sample, 

the term l:ln(N1:i(cos2 0)) is a constant, independent of sin2 0w, and does not affect the 
i 

minimization of -In£ and the estimation of sin2 0w or AFB· For the negative log likelihood 

fit, then, the parameter estimation is independent of the acceptance if the acceptance is 

symmetric in cos 0. 

Plots of - ln £ versus /3 from Equation 5.1 and versus sin2 0w for the uncorrected an­

gular distribution of Figure 4.8 are shown in Figures 5.1 and 5.2, respectively. The log 

likelihood functions are smooth, and have minima at /3 = 0.1333 (which implies an asym­

metry AFB= 5.00%) and at sin2 0w = 0.2314 (using EHLQ 1 distribution functions). The 

68.3% (la) confidence intervals for the fitted values of /3 or AFB and sin2 0w can be es­

timated from the -ln £ functions [34]. The 68.3% confidence interval corresponds to an 
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Figure 5.1: Negative log likelihood, - ln £, versus (3. The 68.3% confidence interval is 
indicated by the arrows. 
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Figure 5.2: Negative log likelihood, - ln £, versus sin2 0w. The 68.3% confidence interval 
is indicated by the arrows. 
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increase of ½ in the value of - ln .C above the minimum value. This increase is shown by 

the dashed lines in Figures 5.1 and 5.2, and the confidence intervals are indicated by the 

arrows. The - ln .C function for the f3 parameter is nearly symmetric about its minimum, 

and the confidence interval is also symmetric about the estimated value of /3. The forward­

backward asymmetry is determined from the -ln.C fit to be AFB= (5.0 ± 5.9 (stat))%. 

The - ln .C function for sin2 0w is somewhat asymmetric about its minimum, and so the 

confidence interval is not symmetric about the estimated sin2 0w value. The - ln .C fit of the 

angular distribution of Figure 4.8 to the lowest order cross section of Equation 2.29 gives 

sin2 0w = 0.231~8:8K While the forward-backward asymmetry and sin2 Bw are directly re­

lated, as shown in Figure 2.5, this relationship is not strictly linear. Due to the curvature of 

the asymmetry function in the region near sin2 0w = 0.23, a confidence interval symmetric 

about a fitted value of AFB is not symmetric about the sin2 0w value corresponding to the 

fitted value of AFB· 

5.1.2 Binned x2 fit 

The second method for measuring sin 2 0w is a binned x2 fit to the acceptance corrected 

(1/ o )do/ d cos 0 distribution of Figure 4.14. In this fit', the x2 statistic is defined by 

(5.9) 

where Yi is the number of entries in the ith bin of the (1/ o )do/ d cos 0 distribution, y( Xi) is 

the number of entries in the bin centered at Xi predicted by the angular distribution, and Oi 

is the statistical uncertainty on the number of entries in the ith bin. The best estimate of 

sin2 0w ( or AFB) is the value of sin2 0w which minimizes the x2 statistic. An advantage of 

the x2 method is that the value of the x2 statistic gives some insight into the quality of the 

fit. This method, however, depends explicitly on the acceptance measured in Section 4.6, 

and is also sensitive to the relative normalizations of the predicted and measured angular 

distributions. 
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Figure 5.3: Contour plot of x2 as a function of /3 and a normalization factor. The location 
of the minimum and the 68.3% and 99.4% confidence contours are indicated. 

To ensure that the measured angular distribution is suitably normalized, a normalization 

factor is allowed to vary along with sin2 0w in the x2 fits. Furthermore, the acceptance 

corrections to the contents of the outermost bins of the angular distribution are relatively 

large, and so small fluctuations in the contents of these bins can have a large effect on 

the distribution after the corrections are applied. The two outermost bins are therefore 

excluded from the x2 fits. 

A contour plot of x2 as a function of /3 from Equation 5.1 and a normalization factor 

is shown in Figure 5.3. Figure 5.4 shows a contour plot of x2 as a function of sin2 0w and 

a normalization constant. The x2 contours are smooth, and have minima at /3 = 0.1097, 

implying AFB= 4.11%, and at sin2 0w = 0.2338 (assuming EHLQ 1 distribution functions). 

The x2 value at each minimum is 5.6, which, for 16 degrees of freedom, implies a confidence 

level for the fits of 99.7%. As with the ln..C fits, confidence regions can be estimated from 

the x2 function. The 68.3% (la) and 95.4% (2a) confidence regions, corresponding to 
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Figure 5.4: Contour plot of x2 as a function of sin2 Ow and a normalization factor: The 
location of the minimum and the 68.3% and 99.4% confidence contours are indicated. 

increases of 1 and 4, respectively, in the value of x2 above the minimum value, are shown 

in Figures 5.3 and 5.4. The la confidence region is approximately symmetric in {3 about 

the estimated value, and gives AFB = (4.1 ± 6.2 (stat))%. As in the ln.C case, the la 

confidence region is asymmetric in sin2 Ow, and gives sin2 Ow= 0.234~8:8i~· Note that the 

semi-axes of the elliptical contours of constant x2 are aligned with the axes corresponding 

to the normalization constant and to {3 or sin2 Ow. This implies that the normalization 

constant is uncorrelated with {3 or sin2 Ow, and that the estimated values of {3 and sin2 Ow 

are independent of the estimated normalization factor. 
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5.1.3 Direct Measurement of AFB 

The third method is direct measurement of AFB based on the definition of Equation 2.16: 

1 dO' 
-- d(cos0)-

o d cos 0 
dO' 

-d 
0 

d(cos0) 
-1 cos 

J_
l cfo 
-d 

0 
d(cos0) 

-1 cos 

This method of determining the asymmetry is acceptance dependent, and the measurement 

is made using the acceptance corrected ( 1/ O' )dO' / d cos B distribution of Figure 4.14. The 

integrated cross sections are determined simply by summing the contents of the bins in the 

forward and backward regions of the (l/O')d0'/dcos0 distribution. As with the binned x2 

method, the bins nearest I cos Bl = 1.0 are excluded and the measurement is corrected for 

this restricted I cos Bl range. After corrections, the direct method gives the result AFB = 

(5.4 ± 6.8 (stat))%. The value of sin2 0w is determined by comparing the acceptance­

corrected measured value of AFB with the values predicted by the lowest order cross section 

with EHLQ 1 distribution functions to give sin2 0w = 0.230~~:~i~ (stat). 

5.1.4 Background Subtraction and Summary 

There are an estimated 7 ± 3 background events in the zo sample, which are assumed to 

have an angular distribution symmetric in cos 0. If the background in the data sample is 

small and symmetric in cos 0, the observed asymmetry is described by the simple relation 

AFBlobserved = AFBltrue · (1 - x), (5.10) 

where x is the fraction of background events in the sample. Using this relation and the 

estimate of 7 non-dielectron background events from Section 4. 7, the results are corrected 

for background by increasing the observed forward-backward asymmetry by a relative 2.8% 

and by decreasing the sin2 0w values by approximately 0.0004. The uncertainty on the 

background measurement is treated as a systematic uncertainty, and is discussed in Sec­

tion 5.2.2. 
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Sumary of Fit Results 
Method sin:.:: 0w AFB x'}, /d.o.f. 

Log likelihood 0 231-tU.Ul/ 
· -0.015 5.0 ± 5.9% 

Binned x'}, 0 234+U.Ulll 
• -0.016 4.1 ± 6.2% 5.6/16 

Direct count 0.230:::."o:gi~ 5.4 ± 6.8% 

Table 5.1: Results of the various parameter determinations after background corrections 

The zo sample is estimated to have fewer than 0.4 background events due to vV -+ ev + 

jet, where the jet fakes a second electron. This background is small, but has an asymmetry 

of 36% as shown in Figure 4.18. For a small asymmetric background, the change in the 

measured asymmetry is given by 

~AFB= X • AFB\background, (5.11) 

where x is the fraction of background events in the sample and AFB I background is the inherent 

asymmetry of the background events. For the background due to W + jet, the change in 

the asymmetry is less than 0.06%, and is considered to be negligible. 

The results of the three methods after background corrections are given in Table 5.1. The 

various values of AFB and sin2 Ow show good agreement, as do the statistical uncertainties. 

The negative log likelihood is the preferred method for determining sin2 0w because it is 

independent of the acceptance measurement and has the smallest statistical uncertainty. It 

is the log likelihood value which will be quoted as a final result. 

5.2 Systematic Uncertainties 

There are several potential sources of systematic uncertainty on the asymmetry measure­

ment, arising from both physics effects and detector effects. Below we discuss each in turn 

and estimate the size of these systematic effects. 
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sinz 0w AFB(%) 
Method µ (T µ (T 

Log likelihood 0.2315 ± 0.0008 0.0170 ± 0.0006 4.97 ± 0.26 6.35 ± 0.21 
Binned x2 0.2305 ± 0.0009 0.0206 ± 0.0007 5.35 ± 0.34 7.62 ± 0.25 

Direct count 0.2316 ± 0.0009 0.0198 ± 0.0006 4.95 ± 0.33 7.27 ± 0.24 

Table 5.2: Mean and sigma of fits to multiple toy Monte Carlo data samples 

5.2.1 Fitting Uncertainties 

Possible biases in the fitting procedures are investigated using a toy Monte Carlo. 500 data 

samples are generated according to the distribution 

da 2 A A --, = (1 + cos 0) + 0.1350 cos 0; 
dcos0 

(5.12) 

this corresponds to a forward-backward asymmetry of 5.06% and the value sin2 0w = 

0.2313. Each Monte Carlo data sample contains 252 "events" which have been "accepted" 

based on the cos() acceptance shown in Figure 4.13: The toy Monte Carlo data samples, 

then, have the same characteristics as the real zo sample. Each sample is analyzed using all 

three methods, and a distribution of the results of each method is made. Each distribution 

is fitted to Gaussian form, and the mean and sigma of the Gaussian is determined for each 

of the distributions. The means of the distributions of extracted values should agree with 

the input of the toy Monte Carlo, and the sigmas of the distributions should agree with 

the statistical uncertainties on the real z0 sample. The results of these studies are given in 

Table 5.2. The means agree within their statistical uncertainties with the toy Monte Carlo 

input parameters. The sigmas are comparable to the statistical uncertainties derived from 

the MINUIT fits to the the z0 sample and shown in Table 5.1. The log likelihood method 

is seen to have the smallest statistical uncertainty of the three methods. 

All unbiased parameter estimators should give the same results when applied to the an 

infinitely large data sample. With a finite number of events, however, there can be statistical 

fluctuations in the results of multiple estimation methods, and the results of two different 
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sin" 0w AFB(%) 
Fitter pair µ a µ a 
ln£ - x2 0.0010 ± 0.0004 0.0093 ± 0.0003 -0.38 ± 0.16 3.48 ± 0.11 

ln,C - Direct 0.0000 ± 0.0004 0.0098 ± 0.0003 0.01 ± 0.16 3.67 ± 0.12 
x2 

- Direct -0.0011 ± 0.0005 0.0118 ± 0.0004 0.40 ± 0.20 4.42 ± 0.14 

Table 5.3: Mean and sigma of the distribution of the differences between fits to the toy 
Monte Carlo data samples. 

estimators cannot be expected to agree perfectly. The size of these statistical fluctuations 

is investigated using the toy Monte Carlo samples discussed above. Values for each of the 

500 samples are determined with all three methods, and the differences between each of the 

methods is taken for each sample. The_ mean of the distribution of differences should be 0 

for two unbiased estimation methods, and the sigma is a measure of the statistical scatter 

expected between the two different methods when applied to the same data sample. The 

results are given in Table 5.3. The log likelihood and direct methods give consistent results, 

but the x2 estimation seems systematically shifted. The scatter of values determined from 

the z0 _sample and given in Table 5.1 are all well within the expected limits. 

The three methods of measuring AFB and sin2 0w are found to agree within statistical 

uncertainties; no systematic bias is evident in the z0 sample itself. Both the log likelihood 

and the direct methods are unbiased. The x2 method, however, seems to give results 

which are systematically shifted by approximately 0.4% in AFB and 0.001in.sin2 0w. The 

systematic uncertainty on th~ log likelihood fit is taken to be the statistical uncertainty 

on the mean of the distribution of log likelihood fits to the toy Monte Carlo samples; any 

systematic effect smaller than this uncertainty is unmeasurable with the current Monte 

Carlo statistics. The systematic uncertainty on AFB is taken to be 0.26% and on sin2 0w is 

0.0008. 
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5.2.2 Uncertainty in the Background Estimation 

The asymmetry and sin2 0w values reported in Table 5.1 have been corrected for a small 

background contribution. The size of the background contribution is itself uncertain, and 

so there is an uncertainty on the size of the background correction. The background un­

certainty of 3 events and the relation of Equation 5.10 implies an uncertainty of 0.0002 on 

sin 2 0w and a relative 1.2% on the asymmetry. 

5.2.3 Calorimeter Energy Scale 

The calorimeter energy scale affects the measured angular distribution by affecting the 

boost into the rest frame of the electron pair. A global energy scale change has no effect, 

but differences in the energy scales between calorimeter elements can change the mea~ured 

cos 0 values. 

Energy scale effects are investigated using data generated with the ISAJET [27] Monte 

Carlo. 50 data samples of 700 pp --+ e+c events each are generated. Values for cos 0 

are determined using the generated electron 4-vectors, and values for AFB and sin2 0w are 

extracted for each data sample. The electrons are then extrapolated to the calorimeter 

faces, and the 4-vectors scaled by detector-dependent scale factors to simulate energy scale 

differences. New cos 0 values are calculated for each event, and new AFB and sin2 0w values 

are extracted for each data sample. The distribution of differences between the first and 

second sets of AFB and sin2 0w values is a measure of the systematic effect of energy scale 

changes. 

Raising the PEM and FEM energy scales by 5%, a typical size for the energy correc­

tions discussed in Section 4.3, has little effect. The mean of the distribution of differences 

of sin2 0w values is -0.00002 ± 0.00001. Raising the energy scale of all the calorimeter 

elements in the West half of the detector by 5% has a slightly larger effect. The mean of the 

distribution of differences of sin2 0w values is 0.00008±0.00007. The systematic uncertainty 
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due to energy scale effects is taken to be 0.00008 on sin2 0w and 0.03% on AFB, 

5.2.4 Asymmetry in cos 0 Acceptance 

All the results presented so far assume that the detector acceptance is symmetric in cos 0. 

An asymmetric acceptance, however, can enhance or reduce the observed asymmetry. It is 

important, therefore, to measure ( or set limits on) any asymmetry in the acceptance. 

The acceptance is symmetric in cos 0 if the acceptance of the physical detector is sym­

metric in T/ or if the detector acceptance is independent of the charge of the electrons. This 

is illustrated in Figures 5.5a-c. Figure 5.5a shows an R-z view of a random z0 decay in the 

CDF detector. Figure 5.5b shows the same event, but with the z components of the electron 

and positron 4-vectors reversed; this changes T/ to -ry for each lepton and changes the sign 

of cos 0. If the detector acceptance is symmetric in T/ (even if it is charge dependent), then 

the acceptance will be the same for the event configurations shown in Figures 5.5a and 

5.5b, independent of the sign of cos 0. Since the acceptance is independent of the sign of 

cos 0, it must be symmetric in cos 0. If the detector acceptance is symmetric in T/, then it is 

also symmetric in cos 0. Figure 5.5c shows the event of Figure 5.5a, but with the identities 

of the electron and positron exchanged; the event topology in Figures 5.5a and 5.5c is the 

same, but the sign of cos 0 is different. If the acceptance is independent of the signs of the 

electron and positron (even if it is T/ dependent), then the acceptance is the same for the 

events in Figures 5.5a and 5.5c, independent of the sign of cos 0. Again, since the accep­

tance is independent of the sign of cos 0, it must be symmetric in cos 0. The acceptance is 

symmetric in cos iJ if the detector acceptance is charge independent. An asymmetry in the 

cos 0 acceptance, then, must be due to a detector effect which is both charge dependent and 

T/ dependent. No obvious effect of this type has been seen in the CDF detector, and there 

are no obvious charge related biases in the W---+ ev and z0
---+ e+e- data samples. 

An asymmetry in the cos 0 acceptance can be described as a charge dependent, T/ depen­

dent inefficiency; events are lost or rejected in a biased fashion. Limits on the size of any 
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Figure 5.5: Event topologies and the sign of cos 0. The acceptance is symmetric in cos 0 if 
the detector acceptance is symmetric in T/ or charge independent. 
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potential asymmetry in the acceptance can therefore be set by examining the efficiencies 

of the charge dependent parameters which determine the cos 0 acceptance. If an efficiency 

is very high, then its potential bias is low. In the analysis which follows, the calorimeter 

response is assumed to be charge independent, and therefore incapable of producing an 

asymmetry in the acceptance. The analysis concentrates on track related efficiencies in the 

central detector region. 

Trigger Bias 

The Level 2 ELECTRON _12 trigger requires a track from a hardware fast track processor, 

and is therefore potentially biased. The trigger efficiency is measured to be 97.3% efficient, 

however, and so any bias must be in the 2.7% of the events which fail the trigger. If all of 

the events which fail the ELECTRON _12 trigger have cos 0 values with the same sign, then 

the forward-backward asymmetry is changed by 1.65% and sin2 0w is changed by 0.0043. 

In fact, though, the situation is very much better than this. Any bias in cos 0 comes from an 

TJ dependent ( and charge dependent) bias in the central detector; the T/ dependence implies 

that the acceptance depends on the physical position of an electron within the central 

detector. For any given central electron, though, the slgn of cos 0 can change depending on 

the second electron in the event. This is shown in Figures 5.6a and 5.6b. The position of 

the central electron in each figure is the same, but the sign of cos 0 depends on the second 

electron, and is different for Figures 5.6a and 5.6b. Any bias in cos 0 due to the central 

electron, then, is washed out by the second electron. 

A reliable estimate of the possible bias due to the trigger ( or any other) efficiency requires 

a Monte Carlo simulation. The trigger efficiency is simulated with a linear function of charge 

and T/ given by 

€-Trigger= 0.973 + (1.000 - 0.973)(Q X TJ), (5.13) 

where Q and T/ are the charge and pseudorapidity of a CEM electron in a z0 event. This 

efficiency function is 100% at Q X TJ = 1.0, the limit of the central fiducial region, and 
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Figure 5.6: Asymmetries in the cos iJ acceptance due to event topology and detector bias. 
Charge and r, dependent biases on central electrons are washed out by the second electron. 
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the overall efficiency is constrained to be 97.3%, as measured. ISAJET is used to generate 

650 Monte Carlo event samples of 252 events each. A trigger simulation is applied twice 

to each event sample; once to produce a subsample of events selected with an unbiased 

trigger efficiency of 97.3%, and once to produce a subsample of events selected with the 

biased trigger efficiency of Equation 5.13. Values for AFB and sin2 Bw are extracted for the 

biased and unbiased subsamples, and compared. The trigger bias is given by the systematic 

difference in the AFB and sin 2 Bw values determined from the biased and unbiased event 

samples. The distribution of the differences in AFB values for biased and unbiased event 

samples has the mean -0.18 ± 0.02%, and the distribution of the differences in sin2 Bw 

values has the mean 0.00049± 0.00007. There is a measurable difference between the biased 

and unbiased event samples. The systematic uncertainty on AFB due to potential trigger 

bias is assigned to be 0.18%, and the uncertainty on sin2 Bw is taken to be 0.0005. 

Track Reconstruction 

The track reconstruction efficiency for the isolated, high Pt tracks associated with electrons 

in W and zo decays is estimated to be 99 ± 1 % [35]. (For a sample of cosmic rays, the track 

reconstruction efficiency is measured to be 99.86%.) Assuming a reconstruction efficiency 

of 99% linear in Q X T/, as shown in Equation 5.13 and applying the Monte Carlo analysis 

described above, the systematic uncertainty on AFB is found to be 0.14% and the uncertainty 

on sin2 Bw is 0.0004. 

Electron Quality Requirements 

The electron quality requirements can introduce an asymmetry in the cos 0 acceptance 

as well. The PEM and FEM calorimeter based quality requirements are assumed to be 

charge independent, and therefore symmetric in cos 0. The VTPC occupancy requirement 

is insensitive to the curvature of particles in the solenoidal magnetic field and is assumed 

to be charge independent. 
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Potential biases in the CEM electron quality requirements are investigated using a high 

statistics electron sample from vv± decays and a Kolmogorov-Smirnov test. The W's are 

selected by requiring each event to have one isolated CEM electron with Et greater than 

15 Ge V satisfying fiducial volume cuts and the tight CEM electron quality requirements of 

Table 4.1. The \V events are further required to have $t greater than 20 GeV, $t significance 

greater than 2.5, no jet greater than 10 GeV opposite in ¢ to the electron, and transverse 

mass greater than 50 GeV, where the transverse mass lvlt is defined by 

(5.14) 

where <Pe and <PQ, are the azimuthal angles of the electron and the $t vector, respectively. 

The electrons from the W events must satisfy the same electron requirements as the zo 

electrons. If there are biases in the electron requirements, the W and zo electrons will be 

affected in the same way, and any potential bias will be more easily observed with the higher 

statistics of the W sample. 

The Kolmogorov-Smirnov (or K-S) test is used to compare two sample distributions, 

and gives a measure of the probability that both sample distributions are drawn from the 

same parent probability distribution. The K-S test is valid for unbinned distributions 

of a single variable, and is based on cumulative ( or integrated) probability distribution 

functions. If one defines a range of interest from Xmin to Xmax containing N events with 

values Xi,i = 1, ... ,N, then the cumulative probability distribution function SN(x) gives 

the fraction of the data points which lie in the range of interest but have values less than x. 

SN(x), then, has the value Oat x = Xmin and 1 at x = Xmax, and increases in steps of 1/N 

at each Xi, For two cumulative distribution functions SN(x) and S'N(x), the K-S statistic 

D is defined as the absolute value of the maximum difference between SN( x) and S'N( x) 

over the interval from Xmin to Xmax, i.e. 

D = maxlSN(x) - S'N(x)j. (5.15) 

If the two samples have nearly the same cumulative probability distribution, then the dif-
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ference D will be small. 

The K-S test is a hypothesis test; it attempts to disprove (at some confidence level) the 

hypothesis that the two sample distributions are drawn from the same parent distribution. 

The distribution of the K-S statistic D is known for two sample distributions which are 

drawn from the same parent distribution. One can therefore calculate for a given value 

of D the probability that the two sample distributions are drawn from the same parent 

distribution. While one can never prove that two samples come from the same parent 

distribution, one can use the D distribution to prove that, at some confidence level, the two 

samples are not drawn from the same distribution. 

The K-S test is used to find charge and T/ dependent differences in the distributions of the 

CEM electron quality parameters. If, according to the K-S test, a parameter distribution is 

significantly different for electrons and positrons, then the parameter is charge dependent. 

Similarly, if the K-S test indicates that a parameter's distributions are different for electrons 

in the East and West halves of the detector, then the parameter is T/ dependent. If one of 

the quality parameters is both charge and T/ dependent, then it is assumed to be biased, and 

its effect on the asymmetry is measured with the Monte Carlo technique described above. 

The K-S tests indicate that, at the 95% confidence level, there are significant differences 

in the E/p and .6.z distributions for electrons in the East and West halves of the detector, 

and in the .6.x distribution for positrons and electrons. Differences are also seen in the other 

distributions for these three quality parameters, and so these three parameters are assumed 

to be biased. The cumulative probability distributions for positrons and electrons and for 

electrons in the East and West halves of the detector are shown in Figure 5. 7 for these three 

quality parameters. The East-West and positron-electron distributions are consistent, at 

this confidence level, for the LSHR, x;trip, and isolation parameters. The LSHR, X;trip 

and isolation parameters depend only on calorimeter information, and are believed to be 

unbiased. 

The efficiency of the .6.z cut is measured to be 98.5% from the studies of z0 electrons as 
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Figure 5.7: Cumulative probability distributions for the E/p, l~xl, and l~zl quality pa­
rameters for positrons and electrons and for electrons in the East and West halves of the 
CDF detector. 

92 



+ /- Probabilities 

1.0 

0,8 

0.6 

0.4 

0.2 

0.0 
0.6 0.8 1 1.2 1.4 

E/P 

+ /- Probabilities 

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 
-1.5 -1-0.5 0 0.5 1 1.5 

l.::lxl cm 

Figure 5.8: Cumulative probability distributions for the E/p and l~xl quality parameters 
for positrons and electrons after shifting the positron distributions. 

described in Section 4.5. Inserting this efficiency into Equation 5.13 and using the Monte 

Carlo to estimate the size of the bias, the systematic uncertainty on on AFB is found to be 

0.06%, and the uncertainty on sin2 Bw is 0.0002. 

The efficiencies of the E/p and ~x cuts are smaller than that of the ~z cut; 91.2% for 

E/p and 96.3% for ~x. Measuring the bias directly from these efficiencies would overesti­

mate their effect. Instead, the potential bias is measured from the difference in the efficien­

cies for positrons and electrons. The E/p and ~x distributions are shifted for positrons and 

electrons, as can be seen in Figure 5.7. This is consistent with a charge-dependent error on 

the track reconstruction. By shifting the positron and electron distributions by some small 

amount, one can restore the charge independence of these two cuts. Figures 5.8a and 5.8b 

show the E/p and ~x distributions for positrons and electrons after shifts of 0.0101 in E/p 

and 0.0543 cm in ~x. The cumulative probability distributions agree well after the shifts. 
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The actual electron selection cuts are made on the unshifted distributions, however, and so 

there are relative differences in the efficiencies for positrons and electrons. The efficiency 

of the E/p cut for positrons is measured to be 99.92% of the efficiency of the E/p cut for 

electrons. Similarly, the efficiency of the .6.x cut for positrons is measured to be 99.92% of 

the efficiency of the ~x cut for electrons. These relative efficiencies are inserted into r he 

;,fonte Carlo, and estimates of the potential bias are derived. The Monte Carlo studies are 

statistics limited for these two parameters, and indicate uncertainties of 0.006% on AFB 

and 0.00002 on sin2 0w for both the E/p and .6.x requirements. 

The individual systematic uncertainties for the .6.z, .6.x, and E/p cuts are added in 

quadrature to arrive at an overall systematic uncertainty for the electron quality require­

ments. The overall uncertainty is assigned to be 0.06% on AFB and 0.0002 on sin2 0w. 

5.2.5 Quark Distribution Functions 

The relationship between the observed forward-backward asymmetry and sin2 0w depends 

on the relative contributions of u-type and d-type valence and sea quark production. The 

values derived for sin2 0w therefore have an implicit dependence on the momentum distribu­

tion functions for the quarks inside the proton. There are uncertainties in the distribution 

function parametrizations, particularly at small x where the proton structure functions are 

not experimentally well-measured. The systematic uncertainty on sin2 0w due to distribu­

tion function uncertainties is estimated by fitting the data using several different distribution 

function parametrizations[16, 36, 37, 38]. The results of log likelihood fits to the z0 data 

are shown in Table 5.4 for several distribution functions, along with the ratio of u-type to 

d-type contributions and the ratio of sea-sea to valence contributions for each parametriza­

tion. The systematic uncertainty on sin2 0w due to uncertainty in the distribution functions 

is taken to be 0.00035, half the' spread in the fitted sin2 0w values. The uncertainty in the 

distribution functions does not imply an uncertainty on the measured asymmetry; the dis­

tribution functions are used only in relating the observed forward-backward asymmetry to 
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Log-Likelihood Fit Results 
1988-1989 Data 

CDF PRELIMINARY 
Parametrization '70 sm w Uncertainty u/d Ratio Sea/Valence 

EHLQ 1 [16] 0.2314 0.0158 2.34 0.23 
EHLQ 2 [16] 0.2314 0.0158 2.29 0.24 

DO 1 [36] 0.231.5 0.0163 1.58 0.30 
DO 2 [36] 0.2309 0.0167 1.58 0.30 

DFLM 1 [37] 0.2316 0.0158 2.09 0.24 
DFLM 2 [37] 0.2315 0.0159 2.09 0.25 
DFLM 3 [37] 0.2311 0.0158 2.16 0.25 
MRSE [38] 0.2315 0.0162 1.79 0.28 
MRSB [38] 0.2313 0.0162 1.96 0.27 

Table 5.4: Log likelihood fit results for various parton distribution function parametrizations 

AFB sin:.i 0w 
ln£ fitter 0.26% 0.0008 

QCD Background 0.06% 0.0002 
Energy Scale 0.03% 0.0001 

Electron Trigger 0.18% 0.0005 
Track Reconstruction 0.14% 0.0004 

Electron Selection 0.06% 0.0002 
Parton Distribution - 0.0004 

I Add in Quadrature 0.36% 0.0011 I 

Table 5.5: Systematic uncertainties on AFB and sin2 0w. 

sin2 0w. 

5.2.6 Summary of Systematic Uncertainties 

The systematic uncertainties on the measurement of the forward-backward asymmetry and 

sin2 0w are summarized in Table 5.2.6. The uncertainty in the momentum distribution 

functions affects only the determination of sin2 0w from the measured asymmetry, not the 

asymmetry measurement itself. In all cases, the systematic uncertainties are very much 

smaller than the statistical uncertainty on the measurement. When the individual uncer-
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tainties are added in quadrature, the overall uncertainty on AFB is 0.35% and on sin2 0w is 

0.0011. 
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Chapter 6 

Radiative Corrections 

There are many higher order diagrams which contribute to inclusive dielectron production 

in pp collisions. The QCD diagrams shown in Figure 6.1 produ~e dielectrons with non-·zero 

transverse (to the beam direction) momentum, pf. The order a 3 electroweak contributlons 

to qij_-+ e+e-C,) shown in Figure 6.2 [39] are also a source of dielectron events. These 

higher order processes have a significant effect on the angular distribution of the dielec­

trons. Initial state QCD radiation smears the cos 0 values reconstructed from the electron 

4-vectors, as discussed in Section 2.2, while higher order QED processes contribute directly 

to the forward-backward asymmetry. The physics processes which produce the (measured) 

forward-backward asymmetry includes all of these higher order contributions. The sin 2 0w 

values, however, are extracted from the measured asymmetry using only the lowest order 

-<
l, P,7 __ q_ l2 • 

p--.......... -k 
2 

4 

Figure 6.1: Next order QCD contributions to z0 production. 
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cross section. The extracted sin2 0w values must therefore be corrected to account for the 

higher order contributions to the forward-backward asymmetry. Furthermore, when higher 

order weak corrections are included, the values of sin2 0w determined from different physical 

processes require very different corrections, and care must be taken in comparing different 

measurements of sin2 0w. 

The higher order corrections divide themselves naturally into QCD, QED, and weak 

corrections. The QCD corrections are independent of the electroweak corrections and can 

be treated separately. The electroweak corrections are more complex, and must be treated 

within the framework of a renormalization scheme. The on-shell renormalization scheme 

first proposed by Ross and Taylor (40] and described in Reference (41] uses the fermion 

masses, a, Mz, Mw, and MHiggs as input parameters, and has the property that the 

QED diagrams are separable as a class. Jn this renormalization scheme, the QED sector 

is separately renormalizable, and QED quantities can be calculated independent of the 

remaining weak corrections. In the on-shell renormalization scheme, sin2 0w is not an 

independent parameter, but is most naturally defined in terms of the W and z0 masses by 

. 2 0 I - 1 Mfv sm W Sirlin = - --2 · 
Mz 

( 6.1) 

This is the so-called Marciano-Sirlin (42] definition of sin2 0w. 

In the subsequent sections, the effects of each of the different categories of higher or­

der corrections on the forward-backward asymmetry and the interpretation of sin 2 0w are 

examined. The object of these correction procedures is first to account for higher order con­

tributions to the measured asymmetry, and then to derive a value for a commonly accepted 

definition of sin2 0w based on the corrected asymmetry. Explicit formulas and equations 

used in the analysis of the higher order contributions are given in Appendix A. 
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6.1 QCD Corrections to the Asymmetry 

The scattering angle 0 is defined to be the angle between the outgoing electron and incoming 

quark ( or outgoing positron and incoming antiquark) in the rest frame of the electron pair. 

The initial quark directions, however. are not always well-defined in pp collisions. Due to the 

higher order QCD processes shown in Figure 6.1. z0 's are produced with varying amounts 

of transverse momentum, pf. \\'hen a z0 is produced with non-zero pf. the proton and 

anti proton directions are not collinear in the rest frame of the dielectrons, and so the quark 

directions can not be completely determined: the quarks can only be said to be travelllng in 

approximately the direction of the proton or antiproton, and the approximation gets worse 

as pf increases. Since the initial quark directions are ill-defined, cos 0 can no longer be 

precisely measured. 

In practice, a nev.; z axis is defined in the dielectron rest ·frame to take the place of the 

quark direction when making angular measurements. The definition used in this analysis is 

that of Collins and Soper [19], in which the z axis is taken to be the bisectrix of the proton 

and minus the antiproton directions, as shown in Figure 2.6. As described in Section 2.2, 

the Collins-Soper definition divides the pf contribution equally between the quark and 

antiquark, and has the property that z reduces to the quark direction in the limit pf----+ 0. 

The Collins-Soper definition of cos 0 is an approximation which begins to break down at 

high values of pf. The cos 0 distribution will therefore be smeared somewhat by the high 

pf events, and the measured asymmetry will be smaller than the true asymmetry due to 

this smearing of cos 0 measurements. The size of this effect can be determined from the 

QCD corrected angular distribution. 

There are several calculations of the differential cross section for zo production and decay 

which include the diagrams of Figure 6.1, and incorporate the Collins-Soper definition of 

cos Bes explicitly [18, 19, 43]. Reference [43] gives the result 1 (for the z0 contribution to 

1 The crc:65 section also depends on ¢, where¢ is the azimuthal angle of the outgoing electron defined ,vith 
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Figure 6.3: Plots of the pf dependent QCD correction factors A0 and A3• Taken from 
Reference (43]. 

the cross section only) 

da 

d cos0cs dpf ::r{[((gt,)2 + (gA.)2)((gi)2 + (g1)2)] 

x ((1+cos2 0cs + ½Ao(l - 3 cos2 Bes))] 

+8gvg;i_gig;i_(l - A3) cos 0cs} 

(6.2) 

where µdCF is the measured zo pf spectrum. Ao and A3 are functions of pf and reduce to 0 
PJ 

as pf-+ 0. Plots of Ao and A3, taken from Reference (43], are shown in Figure 6.3. Equa-

tion 6.3 predicts the measured angular distribution, including the effects of pf smearing 

of cos iJ values, in the Collins-Soper frame. From this angular distribution a sin2 0w inde­

pendent, pf dependent multiplicative correction factor for the asymmetry can be derived. 

respect to the plane contaip.ing the proton and anti proton in the rest frame of the electron pair. Equation 6 .3 
has been integrated over ¢ to remove this dependence. 
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Figure 6.4: Transverse momentum of z0 's after corrections to remove resolution smearing. 
The points show the CDF data and the line shows an ISAJET based parametrization. 

Integrating Equation 6.2 over cos 0 to find the measured asymmetry, one derives 

(6.3) 

where AFBlpf=O is the forward-backward asymmetry at pf= 0. The pf dependent changes 

to the full angular distribution of Equation 2.29 are made by substituting (1 + cos2 Bes+ 

½Ao(l- 3 cos2 Bes)) for (1+cos2 0) and (l-A3) cos Bes for cos 0. The result of Equation 6.3 

applies as well for the full cross section. 

The measured zo pf spectrum can be parametrized by a modified form of the pf spec­

trum used in the ISAJET [27] Monte Carlo. After correcting the data for smearing ciue to 

the finite resolution of the energy measurements, the zo pf spectrum is well described by 

the parametrization [44] 

d~ = 70535.(pt)((pf) 2 + 26.00)-1.666
· 

dpt 
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The data and the parametrization are shown in Figure 6.4 [44]. Convolving this measured pf 

spectrum with (1 - A3) as shown in Equation 6.3, the QCD corrections are found to reduce 

the measured asymmetry by a relative 1.2% with respect to the lowest order asymmetry at 

pf = 0. This implies that the value of sin2 0w extracted from the lowest order cross section 

must be increased by 0.0002. 

6.2 QED Contributions to the Asymmetry 

The order a 3 QED contributions to qij_ --+ e+ C ('-y) are shown in groups III, IV, V, and VI 

of Figure 6.2. They consist of all the graphs having an additional real or virtual photon. 

Note that the fermion loop correction to the photon propagator, shown in group IX of 

Figure 6.2 is excluded from the current discussion of QED corrections, but will be included 

with the z0 and ,-z0 propagator corrections in the weak corrections. To order a 3 , the cross 

section has contributions from (1) the lowest order diagrams (which are of order a 2), (2) 

the interference between the lowest order diagrams and the diagrams having an additional 

virtual photon (virtual diagrams), and (3) the diagrams having a real photon emitted from 

the initial or final fermions (bremsstrahlung diagrams). The bremsstrahlung diagrams have 

a 3-body final state, in contrast to the two-body final state of lowest order and virtual 

diagrams. The total cross section for qif. --+ e+e-(,), then, is given by the sum of the 

two-body and three-body cross sections. Both the 2-body and 3-body cross sections are 

infrared divergent. These divergences cancel when the two cross sections are added, and so 

the total cross section is infrared-finite. 

The bremsstrahlung contribution can be divided into a "soft" part and a "hard" part 

by an infrared cutoff ko in the fraction of a fermion's energy carried off by a bremsstrah­

lung photon. The soft photons having energy fractions less than ko are not resolved by 

the detector, and appear as part of the electron shower in the calorimeter. This soft brem­

sstrahlung contribution is indistinguishable from a 2-body final state, and so it can be 
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calculated analytically and added to the virtual cross section. The sum of the virtual and 

soft bremsstrahlung contributions is infrared finite, as is the remaining hard bremsstrahlung 

cross section. 

The hard bremsstrahlung photons are potentially very energetic, and can be produced 

at large angles to their parent fermions. The hard photons, then, can interact independently 

with the detector. Furthermore, the higher order soft contributions change the dielectron 

angular distribution in a non-trivial way, and thus the QED corrections to the asymmetry 

will depend on the detector geometry and acceptance. Because of these inherent detector 

dependences, the QED corrections are best studied with a Monte Carlo event generator 

which includes both hard and soft corrections, and a detector simulation. 

6.2.1 Soft QED Contributions 

The soft portion of the order 0:
3 QED cross section is calculated by many authors for 

e+ e- ---+ f ](--y) at LEP and SLC, but is largely ignored for qif.---+ f J (, ). This being the case, 

the LEP /SLC results are time-reversed to get predictions for qq---+ e+e-(,). The matrix 

elements for the virtual diagrams are invariant under time reversal, and so the published 

results can be used without change. The soft bremsstrahlung contributions differentiate 

between initial and final state radiation, and require a little more care. 

The soft corrections used in the current analysis are taken from Reference [14]. The 

authors include all the diagrams in groups III, IV, V, and VI of Figure 6.2, and include the 

contribution of soft photons to all orders in 0: by exponentiation of the leading logarithms 

of the soft bremsstrahlung terms as described in Reference [45]. 

In the LEP calculations, the soft initial state bremsstrahlung corrections incorporate 

terms of the form 

1 
M 2 - (s - 4E~E) 

(6.5) 

where M 2 = M1 - iMzf z, Eis the energy of the electron beams in the LEP accelerator, 

~E = koE is the maximum energy of a photon from initial state bremsstrahlung, and 
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s = 4E2 is the square of the center of mass energy of the machine. The term (s - 4EflE) 

is interpreted as the square of the effective center of mass collision energy of the interaction 

after initial state bremsstrahlung. Terms of this form enter the cross section in multiplicative 

scale factors and in a correction to the phase of the zo resonance. The "prescription" for 

converting these terms to a form usable for qij_--+ e+e- interactions is to interpret E as the 

energy of the outgoing electrons in the center of mass frame, llE as the energy of a photon 

from final state bremsstrahlung, and s as the square of the dielectron invariant mass. The 

square of the effective center of mass collision energy of the interaction before final state 

bremsstrahlung is then (s + 4EllE). To convert the LEP calculations to pp calculations, 

one must change the sign of the llE term in the bremsstrahlung coefficients, and to change 

the interpretation of s. 

The forward-backward asymmetry is corrected in different ways by each of the types of 

QED diagrams. The virtual vertex corrections can be absorbed into a renormalization of 

the photon and z0 couplings to fermions. This is an s dependent correction which affects 

both the symmetric and antisymmetric parts of the cross section and leaves the asymmetry 

unchanged. 

The soft initial state bremsstrahlung correction is an s dependent, multiplicative cor­

rection to the cross section which has no effect on the asymmetry. The soft final state 

bremsstrahlung contribution has a multiplicative part which does not change the asymme­

try, but it also has a part which affects the phase angle of the zo resonance, which does 

affect the asymmetry. In the presence of soft final state bremsstrahlung, the z0 line shape 

grows a "shoulder" on the low mass side of the resonance, as shown in Figure 6.5. The 

shoulder is due to events produced on resonance which then radiate a photon as they de­

cay; the reconstructed dielectron invariant mass of these events is decreased by the photon 

radiation. The asymmetry of the events in the shoulder region is characteristic of resonance 

production, however, and is larger than expected. This can be seen in Figure 6.6, where 

the the forward-backward asymmetry is plotted as a function of Mee· The size of this effect 
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Figure 6.5: Dielectron cross section as a function of center of mass collision energy, with 
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Figure 6.6: Forward-backward asymmetry as a function of center of mass collision energy, 
with (solid) and without ( dotted) order ( a 3) QED contributions. 
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increases as the cutoff ko increases. 

The initial and final state bremsstrahlung diagrams have different charge conjugation 

parities [46], and so the interference between these diagrams will contribute to the charge 

asymmetry, as discussed in Section 2.1. The size of the correction to the asymmetry from 

the radiative z0 diagrams is found to vary strongly with the cutoff ko [47]; it is small for 

large values of ko (8AFB ':::'. -0.07% at ko = 0.1) and increases as ko increases (8AFB c:: 

-0.80% at ko = 5 x 10-4). 

The QED box diagrams have an additional virtual photon propagator, and therefore 

have different charge conjugation parities from the lowest order diagrams with which they 

interfere. The box diagrams, then, also contribute to the observed charge asymmetry. The 

contribution is small (8AFB ':::'. 0.08%) and is independent of both sin2 0w and k0 • 

It is convenient to show the QED corrections as a function of the charge asymmetry, 

Ac, where the charge asymmetry is defined by 

dcr I dcr I 
Ac=_d_c~o_s_B---'--'+~c~os~0~---__ d_c_o_s_0---'--~c~os~0 

_d_cr , I + dcr I 
d COS 0 +cos0 d cos 0 - cos0 

(6.6) 

The corrected and uncorrected charge asymmetries on resonance for uu -+ e+e-, dd ----+ 

e+e-, and µp,-+ e+e- are shown in Figure 6.7. The dashed lines show tree level calculations, 

while the solid lines include all the soft QED corrections evaluated at ko = 0.01. The size 

of the QED corrections depends on the sign and magnitude of the initial fermion's charge. 

6.2.2 Hard Contributions and the Radiative Monte Carlo 

Hard photon emission smears the measured dielectron quantities; initial state bremsstrah­

lung can disturb the reconstruction of cos 0 by adding a small amount of transverse momen­

tum, and final state bremsstrahlung can directly affect the energy and direction of outgoing 

electrons. Unlike the soft corrections, which can either increase or decrease the asymmetry 

depending on the charges of the fermions in the interaction, the hard corrections always 
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decrease the measured asymmetry by smearing the cos 0 distribution. Since hard photons 

emitted in the process ff ---+ e+ e- 1 can interact in the detector and affect the measurement 

of electron quantities and iJ, a proper treatment of the hard photon contribution requires a 

}Jonte Carlo event generator and a detector simulation. 

The Monte Carlo generator used in this analysis is a modified version of the generator 

developed for the CDF z0 mass analysis [48]. It is based on the hard bremsstrahlung 

calculations of Reference [49] and includes the soft corrections of Reference [14]. The hard 

bremsstrahlung calculation includes only final state radiation; hard initial state radiation 

has little effect on z0 production in hadronic collisions. Collinear photons from initial st~te 

radiation generally escape undetected down the beampipe. Large angle radiation from the 

quarks can produce transverse momentum pf, which can affect the reconstruction of the 

final state in the manner described above for the QCD corrections. This effect is very small 

for photons, and is ignored in this analysis. 

The Monte Carlo generates the proper 2 and 3 body angular distributions using a 

rejection method, and then weights each event by the convolution of the cross section 

with quark distribution functions. Since the angular part of the cross section is generated 

separately, the weight needs only account for the s dependence of the cross section. For the 

2-body state, the cross section used in the weight is the soft QED cross section evaluated 

at cos iJ = 0. For the 3-body state, the cross section used is the lowest order cross section 

evaluated ~t cos 0 = 0 multiplied by 88( ko), where 88( ko) is the probability of producing 

a photon with energy fraction greater than ko, and is derived by integrating the photon 

energy spectrum from ko to 1. Forms for the photon spectrum and 8~(ko) are given in 

Reference [49] and in the Appendix. 

The Monte Carlo event generation proceeds as follows: 

1. Values for x1 and x2, the fractional momenta of the quarks, are generated, and the 

resulting invariant mass is checked against the desired mass limits. 
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2. The event is assignee)_, with equal probability, to one of 4 possible production processes: 

( a) u quark from the proton, u quark from the anti proton, (b) d quark from the 

proton, d quark from the anti proton, ( c) u quark from the proton, u quark from the 

antiproton, and ( d) d quark from the proton, d quark from the anti proton. A weight 

is then calculated based on the parton distribution functions for u or d quarks and 

the fractional momenta calculated previously. 

3. The event is chosen, with equal probability, to have a 2-body or 3-body final state. 

4. The angular distribution of the outgoing particles is generated with a rejection proce­

dure . For 2-body final states, the angular distribution of Reference [14] is used, while 

3-body final states are generated according to the distribution of Reference [49]. 

5. A weight for the event is calculated from the cross section as a function of .§, as 

described above. 

6. The overall weight for the event is calculated from the product of the the weight from 

the quark distribution functions and the weight from the cross section. 

The final state 4-vectors and the event weight are the input for the detector simulation. 

The detector simulation must include the geometric features of the detector and the resolu­

tions of the various detector elements, and must also be able to simulate the effects of the 

bremsstrahlung photons. Moreover, it must be fast; the QED corrections require several 

million events to be simulated in order to achieve the desired statistical accuracy. 

The detector simulation used in this analysis is a modified form of the simulation used 

to determine the acceptance and described in Section 4.6. The 2-body final states are 

simulated the same manner as the events used in the acceptance calculations. For the 3-

body final states, the photon showers in the calorimeter and the effect of the photon on 

the electron measurement becomes important. For photons emitted at very small angles 

to the electron, the electron and photon showers are indistinguishable. The "electron" will 
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be accepted by the analysis cuts, and the total energy measured by the calorimeter is the 

sum of the electron and photon energies. For photons with small energies, the effect of the 

photon on the electron measurement is small. The electron will pass the analysis cuts, and 

the photon will have little effect on the electron's energy or direction. For photons having 

an intermediate energy emitted at a moderate angle with respect to the electron, the effect 

of the photon is less clear. Electrons with energetic photons very near by may fail a shower 

shape cut like the strip x2 in the CEM or the 3 x 3 x2 in the PEM. Events with separated 

electron and photon showers may fail the isolation cut. 

These electron acceptance effects are studied using a sample of 20000 radiative Monte 

Carlo events which are simulated with the full CDF detector simulation program. The 

simulated events are then passed through the electron selection cuts used in this analysis. 

Using these simulated events, the photon angles and energies which still allow the electrons 

to pass the selection cuts can be identified. The available photon phase space can be 

parametrized, and the parametrization used quickly to accept or reject events. Figure 6.8 

shows a plot of the photon-electron angle versus the fractional energy of the photon for 

electrons in the PEM which pass all of the selection cuts. Photons emitted at angles larger 

than 0.4 radians are outside the R = 0.4 isolation cone and have no effect on the electron 

measurement. Photons emitted at angles less than 0.4 radians, but having energies less 

than 10% of the electron's energy will also pass the isolation cut. Photons having energies 

larger than 10% of the electron energy must be emitted closely enough to the electron that 

the clustering routine will see only one electromagnetic cluster. Furthermore, the photon's 

energy must be low enough or its angle small enough that it pass the shower shape cuts. In 

general, as the photon's energy increases, the angle must decrease in order for the electron 

to pass the electron quality cuts. In the central region, the electron must also pass an E / p 

cut of 1.5. The photon energy, then, can never be greater than half of the electron's energy. 

The forbidden regions for photon emission in energy-angle space are shown in Figure 6.8. 

Only a few (less than 6% for ko = 0.01) of the 3-body events are excluded by the photon 
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Figure 6.8: Photon angle versus fractional momentum of the photon for simulated electrons 
which satisfy the electron quality requirements. 
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Figure 6.9: Asymmetry as a function of sin2 0w after QED corrections. 

simulation cuts. 

The fast simulation of 3-body decays proceeds in the same fashion as the 2-body simu­

lation, but with two extra steps: (1) if the photon is in the forbidden region of energy-angle 

space, the event is rejected, and (2) if the photon is within ±1 calorimeter "7 segment of the 

electron in the CEM calorimeter, and within ±1 calorimeter "7 segment and ±1 calorimeter 

¢ segment of the electron in the gas calorimeters, the photon and electron 4-vectors are 

summed to simulate the measured "electron" 4-vector. 

6.2.3 QED Results 

The radiative Monte Carlo is used to calculate the forward-backward asymmetry for various 

values of sin2 0w, assuming ko = 0.01. The results of these calculations are shown in 

Figure 6.9. The solid line shows the lowest order prediction for the asymmetry, assuming 

EHLQ 1 distribution functions, and the data points are the result of the QED Monte Carlo. 
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Figure 6.10: Forward-backward asymmetry as a function of the infrared cutoff, ko. 

The effect of the higher order QED diagrams is to reduce the observed asymmetry by a 

small amount, independent of sin2 0w. A fit to the Monte Carlo data yields the result 

AFBIMeasured = AFBIBorn - 0.50%. (6. 7) 

The fit is indicated by the dashed curve in Figure 6.9. After removing the QED contribution 

to the asymmetry from the measured asymmetry, one arrives at the QED corrected results 

AFBIBorn = 5.7% and sin2 0w = 0.230. 

The size of the QED corrections depends on the value of ko, as discussed above. The 

value chosen for ko, 0.01, is representative of the resolution of the detector and of various 

threshold cuts in the data collection and analysis procedures, but there is considerable 

latitude in the choice of ko. The theoretical uncertainty on the QED contribution to the 

asymmetry associated with ko is estimated using the radiative Monte Carlo. The forward­

backward asymmetry is calculated at sin2 0w = 0.230 using various values of ko. Figure 6.10 

shows the calculated asymmetry versus ko. The theoretical uncertainty is chosen to be half 
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the total spread in AFB· This gives an uncertainty of 0.0054 for the QED contribution to 

AFB and 0.0014 for the correction to sin2 Bw. 

6.3 Weak Corrections 

The order a 3 weak corrections to qij -----+ e+e- are shown in groups VII, VIII, IX, XI and 

XIII of Figure 6.2. These include the box and vertex diagrams having additional weak 

bosons as well as the loop corrections to the photon and zo propagators. To order a 3 , the 

weak corrected cross section has contributions from the lowest order diagrams and from the 

interference between the lowest order diagrams and the diagrams including an extra weak 

boson or a propagator loop. The effect of the loop corrections to the propagators can be 

absorbed into a renormalization of the photon and zo couplings to fermions which leaves 

the asymmetry unchanged. The weak vertex corrections have both vector and axial vector 

components, and, along with the box diagrams, contribute to the measured asymmetry. 

U nHke the QED corrections, though, the renormalization of the z0 couplings is of more 

interest than the (small) changes in the asymmetry from the additional vertex and box 

contributions. A renormalization of the z0 couplings to fermions implies a renormalization 

of sin2 Bw, in which case both the value of sin2 Bw and its precise definition may change. 

In order to perform meaningful calculations of the weak corrections, one must choose a 

renormalization scheme and a definition for sin2 Bw. For the asymmetry analysis, the on­

shell renormalization scheme first proposed by Ross and Taylor [40] and documented in Ref­

erence [41] is used. In this renormalization scheme sin2 Bw is not an independent parameter, 

but is most naturally defined, to all orders in perturbation theory, by the Marciano-Sirlin 

[42] definition of Equation 6.1: 

. 2 0 I - 1 Mtv sm W Sir/in = - M} · 

This is not the most convenient definition of sin2 Bw for an analysis of most z0 data. The 

W mass has a rather strong (quadratic) dependence on the mass of the top quark, due to 
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Figure 6.11: Top quark-bottom quark loop contribution to the W self energy. 

the top quark-bottom quark loop contribution to the W self energy shown in Figure 6.11, 

while the z0 mass ( and other z0 observabl~s) depend only weakly on the top mass. When 

determining sin2 Owlsirlin from one of the zo observables, one must incorporate the top 

quark mass dependence of Mw into the calculation._ As a result, sin2 Owlsirlin determined 

from z0 observables will have a quadratic dependence on the top quark mass. 

Many of the previous experimental measurements of sin2 Ow have been analyzed us­

ing the Marciano-Sirlin definition sin2 Owlsirlin [17], so for purposes of comparison with 

these results the Marciano-Sirlin form of sin2 Ow is calculated from the measured forward­

backward asymmetry. This is particularly convenient for comparison with the recent direct 

measurements of 1 - M(v/ MJ made by the CDF and UA2 collaborations. 

The electroweak calculations of Reference [41] assume a minimal Higgs structure, with 

standard couplings and two Higgs doublet fields. The loop corrections to the propagators 

have a weak (logarithmic) dependence on the mass of the Higgs boson in addition to their 

dependence on the top quark mass. All calculations, unless otherwise stated, assume a 

Higgs mass of 100 GeV. The dependence of the final result on the mass of the Higgs boson 

is shown explicitly below. 
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The order o:3 weak cross section is calculated in Reference [ 41] for e+ e- -+ f J. As 

with the virtual QED diagrams, the matrix elements for the weak diagrams are invariant 

under time reversal, and so the results of [41] can be used directly to calculate the weak 

corrected cross section for qij-+ e+e-. The electroweak calculations of Reference [41] use the 

::-.Iarciano-Sirlin definition of sin2 0w; unless otherwise noted, the Marciano-Sirlin definition 

of sin2 0w is assumed in all the equations given below. 

It is difficult to calculate the weak corrections to the asymmetry independent of the 

renormalization effects of the propagator loops. An iterative procedure is used to calculate 

the value of sin2 0wlsirlin as a function of the mass of the top quark, including both the 

renormalization effects of the propagator loops and the contributions to the asymmetry from 

the vertex and box diagrams. For each value of the top quark mass, values for sin2 0wlsirlin 

are selected and the order o:3 weak cross section is integrated to find the asymmetry as 

a function of sin2 0wlsirlin· The value of sin2 0wlsirlin which reproduces the measured 

asymmetry, after QCD and QED corrections, is found numerically. A plot of sin2 0wlsirlin 

including all weak corrections is shown as a function of the top quark mass in Figure 6.12. 

The quadratic dependence on the mass of the top quark is evident. 

The relative effects of the vertex, box, and propagator contributions to the cross section 

can be determined by removing the vertex and box contributions and repeating the iterative 

calculation of sin2 0wlsirlin· The result of this propagator-only calculation is shown by the· 

solid line in Figure 6.13. For comparison, the result of the full calculation is shown by 

the dashed line in Figure 6.13. Removing the vertex and box contributions increases the 

extracted values of sin2 0w by 0.0012, independent of the top quark mass. The effect of 

the vertex and box contributions is to increase the asymmetry by approximately 0.29%, 

independent of the mass of the top quark. 

The weak corrections also depend logarithmically on the mass of the Higgs boson. Fig­

ure 6.14 shows a plot of sin2 0wlsirlin as a function of the top quark mass for Higgs boson 

masses of 10, 100, and 1000 GeV. The Higgs mass dependence is much smaller than the 
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Figure 6.13: sin2 Bwlsir/in derived from iterative integrations of the order (li) weak cross 
section without (solid) and with ( dashed) weak vertex and box contributions. 
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dependence on the top quark mass. 

While the Marciano-Sirlin definition of sin2 0w is useful for comparison with measure­

ments of the Wand z 0 masses, there is a second definition of sin2 0w, based on an effective 

order o:3 neutral current which is more appropriate for the asymmetry measurement. The 

mixing angle 0w describes the mixing of the SU(2h and U(l)y sectors of the Standard 

Model, and in particular describes the mixing of the weak isospin and electromagnetic com­

ponents in the lowest order weak neutral current of Equation 2.12. At higher order, however, 

other mixing occurs which affects the neutral current. The diagrams in group XIII of Fig­

ure 6.2 show photon-z0 mixing in the one loop weak radiative corrections. This photon-z0 

mixing changes the relative contributions of the weak isospin and electromagnetic current 

couplings to fermions. The effects of the photon-z0 mixing terms can be absorbed into an 

effective neutral current with a suitable redefinition of sin2 0w. 

At order a 3 the weak neutral current has contributions from the diagrams shown in 
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Figure 6.15. The total neutral current coupling is the sum of the contributions of the 

diagrams in Figure 6.15, and is given by [41, 50] 

(6.8) 

(6.9) 

where II1 z and IITr are the renormalized 1-Z and photon self energies, respecti,vely, and the 

Marciano- Sirlin definition is used for 0w. Comparing Equations 6.10 and 2.12, one sees 

that the structure of the lowest order neutral current can be recovered by defining a new 

mixing angle, Ow, with the relation 

sin2 Ow sin
2 

0w - cos 0w sin 0wRe ( 1 ~ri~:i 
8
)) 

sin2 0w(l - t::..r'). 

(6.11) 

(6.12) 

The factor t::..r' incorporates the top quark and Higgs mass dependence of the propagator 

corrections. Plots of t::..r' versus top quark mass are shown in Figure 6.16 for Higgs boson 
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Figure 6.16: The correction factor t:i.r' as a function of top quark mass for three different 
values of Higgs boson mass. 

masses of 10, 100, and 1000 GeV; the top quark and Higgs mass dependence of t:i.r' is similar 

to that of sin2 Bwlsirlin· Note that the sin2 0w defined by the effective neutral current is 

equivalent to the sin2 0w defined for effective 4-fermion processes by Kennedy and Lynn 

[51]. 

As discussed in Section 2.1, the forward-backward asymmetry is directly related to the 

spin structure of the weak neutral current. It follows, then, that the sin2 0w defined by the 

order a 3 effective neutral current is the most natural definition of sin2 0w for the asymmetry 

measurement. The value of sin2 0w extracted from the asymmetry, after correction for 

QCD, QED, and weak contributions to the asymmetry, is a direct measurement of sin2 0w 

and yields sin2 0w = 0.228. The top quark and Higgs mass dependence of sin2 0w can 

be investigated using the relation of Equation 6.12, the values of sin2 Bwlsirlin shown in 

Figure 6.14, and the calculated values of t:i.r' shown in Figure 6.16. Figure 6.17 shows 

values for sin2 0w calculated using Equation 6.12 as a function of the top quark mass for 3 
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Figure 6.17: sin2 0w derived from the asymmetry as a function of top quark mass for three 
different values of Higgs boson mass. 

different values of the Higgs boson mass. The value of sin2 Ow extracted from the asymmetry 

is nearly independent of the masses of the top quark and the Higgs boson. 
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Chapter 7 

Summary of Results 

The forward-backward asymmetry in pp -+ zo -+ e+e- events is measured to be (5.2 ± 

5.9 ( stat )±0.4 (sys))%, after correcting for a small background contribution and for smearing 

due to QCD effects. The value sin2 0w = 0.228~8:8H (stat)± 0.002 (sys) is extracted from 

the measured asymmetry, and includes QCD, QED and weak radiative corrections. The 

quoted systematic uncertainty on sin2 0w includes a theoretical uncertainty from the QED 

corrections as well as systematic uncertainties related to the asymmetry measurement. This 

measurement of sin2 0w is in good agreement with the values sin2 0w = 0.2291 ± 0.0040 

[52] and sin2 0w = 0.230 ± 0.006 [53] measured from the mass and partial width of the z0 

by the ALEPH and 13 collaborations, respectively, and with the value sin2 0w = 0.24~8:8l 

measured from the asymmetry in 33 selected dilepton events by the UAl collaboration [54]. 

For comparison with other experimental results, the Marciano-Sirlin definition of sin 2 0w 

is adopted, where 

. 2 0 I 1 Mi sm W Sirlin = - Af 2 • 
z 

(7.1) 

Figure 7.1 shows sin2 0wlsirlin as derived from the asymmetry measurement as a function 

of the top quark mass ( assuming the mass of the Higgs boson is 100 Ge V). The dashed 

lines show the combined statistical and systematic uncertainties on the measurement. Also 

shown in Figure 7.1 are the values 1- Mi/M1 = 0.232 ± 0.006(stat) ± 0.005(sys) measured 
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Figure 7.1: Central value and uncertainties on sin2 Bwlsirlin derived from the asymmetry. 
At right are values for 1 - Mtv / M} from CDF (a) and U A2 (b). 

directly from thew± mass measured by CDF [55] and the average LEP zo mass [25], and 

1 - M(v/ M} = 0.220 ± 0.009(stat) ± 0.005(sys) measured by the UA2 collaboration [56]. 

Figure 7 .2 shows the allowed regions ( at the 90% confidence level) in the sin 2 Bwlsirlin-top 

quark mass plane from a comprehensive analysis of previous weak neutral current measure­

ments [17]. The sin2 Bwlsirlin values extracted from the forward-backward asymmetry and 

shown in Figure 7.1 are consistent with current measurements of 1 - M(v/ M} and with 

previous neutral current measurements over a broad range of top quark masses. 

The total uncertainty on the asymmetry measurements is dominated by the statistical 

uncertainty. In the next five years, CDF is expected to increase its total integrated lu­

minosity by a factor of 25 or more. This will be a sufficient amount of data to determine 

sin2 Bw within a statistical uncertainty of 0.003. This will provide a measurement of sin2 Ow 

competitive with that derived from the Wand zo masses, which has a larger systematic un­

certainty than the asymmetry measurement. If the top quark is not discovered in the next 
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five years, then precision .electroweak measurements performed at CDF and other experi­

ments should provide an indirect measurement of the mass of the top quark by measuring 

its effect on higher order contributions. 
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Appendix A 

Explicit Formulas for the 

Radiative Corrections 

This appendix collects all the formulas used in the radiative corrections to the process 

qq -> e+e-(1 ). These results and equations have been culled from several theoretical 

papers, and represent a distillation of the work of many other authors. 

The on-shell renormalization scheme first proposed by Ross and Taylor [40] is used. 

This renormalization scheme uses the fermion masses, a, Mw, Mz, and MHiggs as input 

parameters, and assumes a standard Higgs sector with two complex Higgs doublet fields. As 

mentioned in Chapter 6, sin2 0w is not an independent parameter in this renormalization 

scheme, but is most naturally defined in terms of the W and zo masses by 

sin2 0wlsirlin = M(v 
1- Af2. 

z 

Unless noted otherwise, this Marciano-Sirlin [42] definition of sin2 0w is assumed in all the 

equations given below. 

One of the advantages of the on-shell renormalization scheme is that the QED contribu­

tions to qij-. e+e-(,) can be separated from the weak contributions and treated separately. 

At order a3, then, the cross section for qq-+ e+e-(1 ) can be described as the sum of the 
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lowest order cross section and the QED and ,veak corrections to the cross section: 

da dao daQED daWeak 

dn = dn + dn + dn (A.l) 

Below are given explicit formulas for the QED and weak corrections to the cross section. 

A.1 QED Contributions to the Cross Section 

The order o: 3 QED contributions to qq __. e+e-('1 ) are shown in groups III, IV, V, VI, and IX 

of Figure 6.2. They consist of all the graphs having an additional virtual or real photon. The 

fermion loop correction to the photon propagator is excluded from the QED corrections, 

and is included with the contributions of the other boson propagators. As discussed in 

Chapter 6, the QED corrections to the cross section include the interference between the 

lowest order and virtual diagrams and the contributions from the bremsstrahlung diagrams. 

The bremsstrahlung contributions can be divided into a "soft" part and a "hard" part by 

an infrared cutoff ko in the fraction of a fermion's energy carried off by a bremsstrahlung 

photon. The soft bremsstrahlung contribution is calculated analytically and added to the 

virtual QED corrections, while the hard bremsstrahlung contribution to the cross section is 

calculated using a Monte Carlo technique. 

The virtual and soft bremsstrahlung corrections are taken from the calculations of Ref­

erence [14], unless otherwise noted. The calculations in Reference [14] are for the process 

e+e- __. Jf(,) at LEP and SLC. The results of these calculations are time reversed to get 

predictions for qiJ.-+ e+e-('r). The matrix elements for the virtual diagrams are invariant 

under time reversal, and so the results in Reference [14] can be applied directly. The soft 

bremsstrahlung diagrams differentiate between initial and final state radiation, however, 

and are not invariant under time. reversal. The soft initial state bremsstrahlung corrections 

for e+ e- -+ ff(,) at LEP and SLC include terms of the form given in Equation 6.5: 

1 
M 2 - (s - 4EtlE)' 
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where M 2 = MJ- iMzf z, Eis the energy of the electron beams in the accelerator, b.E is 

the energy of a photon from initial state bremsstrahlung, and s is the square of the center 

of mass energy of the machine. The term ( s - 4Eb.E) is interpreted as the square of the 

effective center of mass collision energy of the interaction after initial state bremsstrahlung. 

As explained in Chapter 6, the "prescription" for converting these terms to a form usable 

for qij_-----+ e+ e-( 1 ) interactions is to interpret E as the energy of the outgoing electrons in the 

center of mass frame, D.E as the energy of a photon from final state bremsstrahlung, and 

s as the square of the dielectron invariant mass. The square of the effective center of mass 

collision energy of the interaction before final state bremsstrahlung is then (s + 4Eb.E). 

To convert the e+e- -----+ f ]( 1 ) calculations to forms which are applicable to pp interactions, 

one must change the sign of the b.E term in the bremsstrahlung coefficients and change the 

interpretation of s. 

The cross section for qij_-----+ e+e-(,), including the lowest order, virtual, and soft brem­

sstrahlung QED corrections is given by 

(A.2) 

where the QED corrected photon, interference, and z0 cross sections a'Y, a1Z, and az are 

given by 

a' (A.3) 

,Z ,Z a 1 + 1 1 + 1 a5 

[ ( 
V' v,z A' A'z ,z)] 

a0 Cm 1 +Cs+ ;Qe.QJ X + 2 + 2 aJZ (A.4) 

[ 
,z ,zl} 

Q Q Mzfz (TT' Tr,z)ao +(A'_ A'z)~ -a e f M2 v2 - v2 aZ 2 2 aZ · 
s- z O 0 

(A.5) 
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The lowest order cross sections aJ, aJz, and af are given by 

aJ Q;Q}(l + cos2 0) 

2QeQ1Rexz[gvgi(1+cos2 0) + 2gAg{ cos0] 

where the propagator xz is given by 

s 
xz = . ' s -MJ+ iMzfz 

(A.6) 

(A.7) 

(A.9) 

The cross sections al, alz, and af are given by the lowest order cross sections with t_he 

(1+cos2 0) and 2 cos 0 terms interchanged, i.e. 

zz zz 2A a al'' ' = aJ'' ' ((1 + cos 0) +-+ 2 cos 0). (A.10) 

The terms CJR, C]j, and CfR are bremsstrahlung terms. These terms account for multi­

photon emission by exponentiating leading logarithms as described in Reference [45]. These 

bremsstrahlung terms are given by 

C,z 
IR {( 

Mr ) (!:l.E 1 )(2cx/rr)Q~/3. 

Re 
1 + i M; -Zs E 1 + s(!:l.E/E)/(s - M 2) 

(A.11) 

!:l.E l (2cx/rr)Q;/3e !:l.E l (2cx/rr)QeQJ/3int 

El+ s(b,.E/E)/(s - M 2) E 1 + (b,.E/E)- M 2/s 

(!),,£)(2cx/rr)Q}/3t [ 2a s - Mt l 
x -E 1+-/3eMf (1P-1Pz), 

. 7r z z 
(A.13) 

where the complex zo mass M 2 is 

M 2 = Mt-iMzfz. (A.14) 
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The /3 coefficients are defined as follows: . 

/3e 

/3J 

ln(s/m~) - 1 

ln(s/m}) - 1 

2ln(t/u), 

(A.15) 

(A.16) 

(A.17) 

where me and m J are the masses of the outgoing electron and incoming fermion, respectively, 

and t and u are the Mandelstam variables 

s ' 
t = -2(1 - cos 0), 

The Breit-Wigner phases IP z and IP are given by 

IPz = arctan(~~s) ' z z 
(A.18) 

if,. _ (MJ- s - s(!lE/ E)) 
~ - arctan Mzr z . (A.19) 

These phase angles are responsible for the radiative tail below the zo resonance shown in 

Figures 6.5 and 6.6. The term C8 collects together vertex correction factors and is 

(A.20) 

The X term comes from the interference of the soft initial state and final state bremsstrah­

lung diagrams, and has the form 

(A.21) 

where the dilogarithm Li2 is defined by the integral 

L. ( ) _ - fold ln(l - xz) 12 Z - X , 
0 X 

(A.22) 

and can be quickly calculated using the following series expansion [57]: 

• 
00 -lnn+l(l - z) 

L12(z) = ~En ( l)' , 
n=O n+ · 

(A.23) 
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where the coefficients Bn are the so-called Bernoulli numbers. Summing the first 18 co­

efficients of the series gives sufficient numerical accuracy for almost any application. The 

v,,,z and A. ,,,Z terms come from the two photon and photon z0 box diagrams. The two 

photon box contributions are 

V_1 -11 -

V' 2 

A' 1 

. 1 1-c 1 l+c 
(1 + Cr ln -

2
- - ( 1 - Cr ln -

2 
-

2 21-c 2 2l+c -c(l + c)- ln -
2

- - c(l - c)- ln -
2

-

c 1-c 2 1-c 
-(
1
-_---,c2,-) + ln -

1
-+-c - c(l + c)- ln -

2
-

2 1 + C -c(l - c)- ln -
2

-

(1 + c)- 1 ln _l _-_c + (1 - c)- 1 ln _l _+_c 
2 2 

2 21-c 2 2l+c -c(l + c)- ln -
2

- + c(l - c)- ln -
2

-

2 1 2 1-c 2 l+c 
(1 - c )- - c(l + c)- ln -

2
- + c(l - c)- ln -

2
-, 

(A.24) 

(A.25) 

(A.26) 

(A.27) 

where c = cos 0. The photon zo box contributions have a compact form taken from Refer­

ence [41], 

with 

where 

A(s,t) 

V(s,t) 

V(s,t)-V(s,u) 

A(s,t) + A(s,u) 

ln---+-ln 1--s - M
2 

{ t M
2 

( s ) 
s + t s -M2 s M 2 
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(A.29) 

(A.30) 

(A.31) 

(A.33) 



where the definition M 2 = M} - iMzI' z is used for the complex zo mass. 

The bremsstrahlung cross section for q(p-)q(p+)-+ e+(q+)e-(q_),(k), exact up to order 

(me/ E) 2 and (mq/ E)2 terms, is given by [58] 

where 

Y = - ~~~~ [A(s') (:~ + :;) + B(s') (:{ + ~i)] 
+ Q~ [A(s')(t2 + t'2 ) + B(s')( u2 + u'2)] 

4s'K,+/'i,-

- ~~s~~ [A(s)(:; + :;) + B(s)(:; + :;) ] 

+ Q~ [A(s)(t2 + t'2 ) + B(s)(u2 + u'2 )] 
4s/'i,+K,'.... 

Q qQ e [ u u' t t
1 

] 

+ 4ss1 K,+K,'.... + K,_ K,+ - K,+K,+ - K,_ K,'.... 

x[C(s,s')(t2 + t'2) + (D(s,s')(u2 + u'2 )] 

(s - s')MI'QqQe µ v p (J' + 
2 1 1 EµvpCJ'P+P-q+q-K,+K,_K,+K,-

x[E(s,s')(t2 
- t'2 ) + (F(s,s')(u2 

- u'2)] 

(A.34) 

(A.35) 

where c is the antisymmetric tensor with Eo123 = 1, and the kinematic terms are given by 

s (P+ + P-)2 (A.36) 

t (P+ - q+)z (A.37) 

u (p+-q_)z (A.38) 

s' = (q++q_)z (A.39) 

t' = (P- - q_)2 (A.40) 

u' = (P- - q+)2 (A.41) 

/'i,± P±. k (A.42) 

/'i,I 
± q±. k. (A.43) 
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The coefficients in the bremsstrahlung cross section are given by 

A( 8) = 1 + 2Rexz( 8 )(gt,gf,, - l4gi) 

+lxz(8)/2[((gv)2 + (gA)2)((gf,, )2 + (gi)2)- 4gvgAgfrgiJ (A.44) 

B( 8) 1 + 2Rexz( 8 )(gfgi + gAgi) 

+lxz(s)/2[((gv)2 + (gA)2)((gf,,)2 + (gi)2) + 4gvgAgfrgiJ (A.45) 

C(8, 8
1
) = 1 + [Rexz(8) + Rexz(8')](gvgfr- gAgi) 

+Re(xz(8)Xz(8'))[((gv)2 + (gA)2)((gf )2 + (gi)2)- 4gvl4.gf,,g3t](A.46) 

D( 8, 8
1

) 1 + [ Rexz( 8) + Rexz( 81
)] (gygf + gAgi) 

+Re(xz(8)xz(8'))[((gf i2 + (gA)2)((gf,, )2 + (g~)2) + 4gvgAgfrgiJ(A.47) 

E( 8, 8
1
) gt,g\- ;Agi [lxz(~')l2 - lxz(8)12] lxz(8)/2/xz(8')l2(8 - 8') 

88 8 8 
( (gt, )2 + (g;i_)2)gf,, gi - ( (gf,, )2 + (gi)2)gt,g;i_ 

828,2 (A.48) 

F(8, 81
) 

gt,gf,, + g.Agi [lxz(8')12 lxz(8)12] I ( )l2I ( ')l2( ') 
2 

/ I - XZ 8 XZ 8 8 - 8 88 8 8 
( (gv )2 + (gA)2)gig1 + ( (gf,, )2 + (g1)2)gt,g.A 

8 28,2 (A.49) 

The first two terms in Equation A.35 correspond to initial state bremsstrahlung, and the 

second two terms correspond to bremsstrahlung from the final state. The last two terms 

in Equation A.35 come from the interference between the initial state and final state brem­

sstrahlung diagrams. 

The energy spectrum for bremsstrahlung photons is obtained by integrating Equa­

tion A.35, and is naturally divided into initial state, final state, and interference terms, 

where 

ao(8
1
); (1n ~~ - 1) [1 + ( ~) 

2

] ¼ 

a ( 8 s') [ (s') 2

] 1 ao(s)- ln - - 1 + ln - 1 + - -
11' m~ s s k 
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(A.50) 

(A.51) 

(A.52) 



2a3 . 2£ - k = -[C(s, s') - D(s, s')] k . 
s ' 

(A.53) 

The lowest order cross section O'o(s) used in Equations A.51 and A.52 is the differential 

cross section integrated over n: 

(A.54) 

As discussed in Section 6.2.2, the radiative :Monte Carlo used for the asymmetry analysis 

calculates only the contribution of hard final state bremsstrahlung ( the third and fourth 

terms of Equation A.35) to the 3-body cross section. The fraction of events which have a 

hard final state photon with energy fraction greater than ko is determined by integrating 

the bremsstrahlung photon energy spectrum of Equation A.52 from the cutoff k = koE 

upward. The fraction of events with a photon with energy fraction larger than ko is given 

by [-±9] 

- ln- -1 2a [( s ) 
7i m~ 

x (1n J:_ - 1(1 - k0 )(3 - ko))- 11"

2 

ko 4 6 

+Li2(ko) - ¼(1- ko)(3- ko)ln(l - ko) 

+Hl - ko )(5 - ko)] . (A.55) 

A.2 Weak Contributions to the Cross Section 

The cross section for qq --+ e+e-, including the lowest order contributions and the weak 

corrections is given by 

da a 2 , -- = -G1(s,t)(l + cos20) + G3(s,t)cos0, dn 4s 
(A.56) 
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J vr 
J 

Al'. 
J 

v! 
J 

At 
J Xj 

1 Qe 0 Q1 0 XI= X; 

2 gv g.A g( g~ X2 = XZ 

3 Qe 0 g( gi X3 = X;Z 

4 g!, g.A Q1 0 X4 = X;Z 

5 F:;/(s) FJ(s) Q1 0 Xs = X; 

6 Qe 0 FJ1(s) F]1(s) X6 = X; 

7 Ffe(s) Fje(s) g( g~ X7 = XZ 

8 gv g.A Ftt(s) FJ/(s) XB = xz 

9 ( (gv )2 + (g1)2) 2gvg5i ((g( )2 + (g{)2) 2g(g{ X9 

10 2gvg5i ( (gv )2 + (g;1J2) 2g(g{ ( (g( )2 + (g{)2) XIO 

11 1 1 1 1 
2sin2 0w 2sin2 0w 2sin2 0w 2sin2 0w Xll 

Table A.l: Vector and axial vector components and corrected propagators used in the weak 
corrections to qij -+ e+ e-. 

where 

11 

G1(s, t) Re L (vJV{* + A1A'J.*)(v/v1* + Af A{*)xjXk 
j,k=l 

11 

G3(s,t) = Re L(VfA%*+A1Vf*)(V/A{*+A{V/*)XiXk-
j,k=l 

(A.57) 

(A.58) 

The vector and axial vector components Vf'1 and A1,f, and the propagators Xi are taken 

from Reference [41] and shown in Table A.1. The electromagnetic vertex factors F'J.A.'f are . ' 

given ( for charged fermions) by 

(A.59) 
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with 

G~ 

GY', 

3 = --
4 2 A3(s,Mw) 
sw 

1 3 = --
1 2 A2(s,Mw) + - 2 A3(s,Mw) 
2sw 4sw 

d l 3 
GL = - 2 A2(s,Mw)- - 2 A3(s,Mw), 

6sw 4sw 

(A.60) 

(A.61) 

(A.62) 

(A.63) 

where G~, GL, and Gf are for leptons, u-type quarks, and d-type quarks, respectively. The 

abbreviated notation 

sw = sin0w cw= cos0w (A.64) 

is used to make the equations more compact. The functions A2 and A3 have the form 

A2(s,M) = 7 
-- - 2w - (2w + 3)ln(w) 

2 

+2(1 + w)2 [1n(w)ln(1: w)- Li2(-! ) ] 
-i7r [3 + 2w - 2(w + 1)2ln(

1
: w)] 

5 2w 2 ~- 1 = - - - + -(2w + l)v'4w - 1 arctan --;=== 
6 3 3 y'4w - 1 

-~w(w + 2)(arctan. 1 

1 
)

2 

3 y4W - 1 

(A.65) 

(A.66) 

where w = M 2/s, with M = Mz or Mw, and O < s < 4Mi1r, The weak neutral current 

vertex factors Fte,/f are given (for charged fermions) by 
' 

with 

4
:[gt((gt)2 + 3(g{)2)A2(s,Mz) + F[J 

4
: [g{ ( 3(gt )2 + (g{)2)A2( s, M z) + F[J 

1 3cw 
3 A2(s,Mw) - -

4 3 A3(s,Mw) 
8swcw sw 
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PE = 

The x propagators from Table A.1 are defined by 

s 
Xi = ' ( ) t"rz(s)2 

8 + I;'Y 8 
- s-Wz+EZ(s) 

s 
xz = 

s - M2 + tZ(s) - tr:(s)2 
Z s+E"Y(s) 

stiZ(s) 
= [s + ti(s )][s - MJ + tz(s )] - tiZ(s )2 

a 
X9 = 27!' [J(s, t, Mz) - I(s, u, Mz)] 

a 
x10 = 

2
1l"[Is(s,t,Mz)+Is(s,u,Mz)] 

Xll = ~ { [I(s,t,Mw)+Is(s,t,Mw)] 
27!' 

[-I(s, u, Mw) + Is(s, u, Mw)] 

The functions I and Is are 

for I{= -½ fermions 

for I{=+½ fermions 

fs(s,t,M) = -
8
-{s+~t+

2
;

2 
[1h(l+ ~)- 7!'

2 

-ln2 (-Y1
)] 

s + t 2 s + t M 6 Y2 

+-ln -- + --ln --1 ( t ) Y2 - Yl ( Yl ) 
2 M 2 2 Y2 

+ s + 2t -4M
2
t/s + 2M

4/t- 2M
4
/s. J(s,t,M)} 

2(s + t)(x2 - x1) 
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(A.71) 

(A.72) 

(A.73) 

(A.74) 

(A.75) 

(A.76) 

(A.77) 

(A.78) 



with 

I(s,t,M) 

J(s, t, lvl) 

,r1,2 

= Is(s,t,M)+2ln2 (-Y1)+ 
2 

·J(s,t,M) 
Y2 XI - X2 

x1 x1 x2 x2 = Li2 + Li2-- - Li2-- - Li2--
x1 - Y1 x1 - Y2 x2 - Yl x2 - Y2 

= !(1 ± 
2 

1-- 1+-._L\J2 ( M2)) 
s t 

1( ~) Y1,2 = 2 1 ± y 1 - 7-s-

The renormalized vector boson self energies are given by 

f:'Y(s) = I;'Y(s) + s8Z{ 

= I;'Yz(s) _ ~.,,z(o) + 8 { 2 I:'Yz(o) _ cw (8M} _ 8Mfv)} 
M} sw M} Mty 

= I:z(s) - 8M1 + 8Zf(s - M}) 

= ~w(s) - 81\ffv + 8Zf (s - Mty). 

The renormalization constants are 

8Z{ = 

8Zf = 

8Zf = 

and 

Note, too, that 

8 I: 'Y 
-IP(O) = 

08 
(0) 

-IP(O) _ 2 ctv - stv I;-YZ(O) cw - stv (8M} _ 8Mty) 
2 2 M2 + 2 M2 M2 swcw z 8W z w 

-IP(O) _ 2 cw ::,rZ(o) + cw (8M} _ 8Mty) 
sw AI} sw M} Mty 

8Mi2v = ReI:w(Mty) 

8MJ = ReI:z(MJ). 

ffY,'YZ,Z,W ( 8 ) = ! ReI:'Y,'Yz,z,w ( s) 
s 

fir,rz,z,w ( 8 ) = ! Retr,,Z,Z,W ( s ). 
s 
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(A.81) 

(A.82) 

(A.83) 

(A.84) 

(A.85) 

(A.86) 

(A.87) 

(A.88) 

(A.89) 

(A.90) 

(A.91) 

(A.92) 

(A.93) 



The unrenormalized vector boson self energies ~'Y,'YZ,Z,W contain terms of the form 

2 (m2) l:::i.j = 
4 

_ D - 1 + ln41r - ln µg , (A.94) 

where D is the number of dimensions used in the dimensional regularization, , is the Euler 

constant, p is a mass scale, and mj is a particle mass. In the renormalized self energies, 

the singular and constant terms of Equation A.94 cancel, but the mass dependent terms 

remain. To simplify the calculations, the l:::i.j terms in the unrenormalized self energies are 

replaced by terms of the form 

in which the singular and constant terms of Equation A.94 are removed and the (arbitrary) 

mass scale µ is set to 1. The abbreviated notation 

w = Mfv, h=MfI (A.96) 

is used to make the equations more compact. With these substitutions and abbreviations, 

the unrenormalized vector boson self energies are given by 

I:'(s) = a {4" C 2 [ , 2 SJ 41r 3 yNf Qf sl:::i.f + (s + 2m1)F(s,m1,m1) - 3 (A.97) 

-3Ll.\v- (3, + 4w)F(s, Mw,Mw)} 

a { 4" C f [ , 2 SJ 
4

1r - 3 yNf Qnv sl:::i.f + (s + 2m1)F(s,m1,m1) - 3 (A.98) 

+-1-[(3cw + !)s + 2w]1:::i.w cwsw 6 

+-1-[(3cW+ !)s + (4cW + i)w]F(s,Mw,Mw) + 9 s } 
cwsw 6 3 cwsw 

a { 4 '°' ( I 2 ( 1 5 ( S . )) - - Lt 2 gA) s l:::i.1 + - - ln --2 - it: 
41r 3 1 3 m 1 =e,µ,r 

(A.99) 

1 LNf [((gt)2 + (g{)2)(st::i.'t + (s + 2m})F(s,m1,m1) - i) 
f-:/=v · 

- / 2 m}(t::i.'t+ F(s,m1,m1))] 
8cwsw 

[( 
19 1 ) ( 1 1 ) 2] , 3 - 6sW + 6cw s + 4 + cw - sw Mz l:::i.w 
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+ [ (-c~v( 40s + 80w) + (cw- sfv)2(8w + s) + 12w )F(s,Mw, Mw) 

( lOz - 2h + s + (h- z)
2
)F(s,MH,Mz)- 2hln!!._ - 2zln z 

s w w 

+(lOz - 2h + s) (1 - h + z ln MH - ln MHMz) 
h- z Mz w 

+~3s(l + (cfv- sfv)2 
- 4cfv)] 2

1 
2 } 

. 12c1vs1v 

Cl' 1 { 1 '""' [· :J 'J I = -4 T -3 ~ (s - ~mr).6.1 
1l" siv . I 2 =e,µ.,T 

+ (s - r;/ - ';! )F( s, o, mr) + ~s - rr~/l 
+! L [D.+ (s - ~mt- m:_) + D.~ (s - ~m:_ - mi) 

3 q-doub/ets 2 2 2 2 2 2 

( 
mt+ m:_ (mt - m:_)2) + s -

2 
-

28 
F(s,m+,m-) 

+ (s - mt+ m:_) (1 -_mt + m: ln m+) - ~] 
2 mt- m:. m_ 3 

[
19 ( Sfy)] I 

2 s + 3w 1- cw D.w 

[stvz - c~ (1z + 7w + 10s - 2(z _-
8 

w)
2

) 

-i ( w + z - i - (z ~sw)
2

) ]F(s, Mz,Mw) 

+ 8~ (-4w - 10s + 2;
2

)F(s,O,Mw) 

+i (sw - h + i + (h ~sw)
2

)F(s,MH,Mw) 

(A.100) 

[cw (7z + 7w + 10s - 4(z - w))- swz + ! (2w - ~)]-z-ln ~ 
3 6 2 z-w w 

-(~w + !__) _h_ ln !!._ - cw (1z + 7w + 32 s) 
3 12 h - w w 3 3 

+sl,,z + w, +4w - z - h) - '} ( 4w + 3:,)} 

The function F(s, m1, m2) is defined by the integral 

F(s,m1,m2) = 

(A.101) 
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and has the analytic form [59] 

where 

0 < µ_ 

µ_ < 0 < ll+ (A.102) 

(A.103) 

(A.104) 

There are more simple expressions for F( s, m1, m2) for a few special cases. If one of the 

masses is zero, then 

F(s,O,m) = 1 + (~
2 

- 1) ln(l -~2 - iE)-

For small values of s (s ~ mt,m~), 

F(s,m,m) 

while for large values of 8 (s ~ mr,m~), 
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