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An analysis of the forward-backward asymmetry in Z° decays using data from
the Collider Detector at Fermilab provides a measurement of sin?fy. The
forward-backward asymmetry is measured to be (5.2 % 5.9 (stat) £ 0.4 (sys))%,
which implies sin? fy = 0.228f8:8%g (stat) £ 0.002 (sys), after QCD, QED, and
weak corrections. When higher order weak corrections are included, the mea-

sured value of sin? @y is consistent with previous measurements over a broad

range of top quark masses.
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Chapter 1

Introduction

The Standard Model of electroweak interactions [1, 2, 3] successfully unites the electromag-
netic and weak interactions, and describes a wide range of physical phenomena with éreat
accuracy. The origins of the Standard Model lie in weak interaction phenomenology as it
was understood in the late 1950’s. It was recognized that the charged weak interactions
share important similarities with the electromagnetic interaction, and that a unification of
the two interactions might be possible. In 1961, Glashow [1] proposed a model in which the
weak and electromagnetic interactions are described by vector boson fields whose operators
obey an SU(2); x U(1)y group structure. In this model, the charged weak interactions are
mediated by W* bosons, and the electromagnetic interaction is mediated by the photon.
The model also predicts the existence of a new Z° boson, which mediates a neutral weak
interaction, and predicts many of the properties of the neutral current interaétion. The
neutral cﬁrrent predicted by Glashow was first observed in neutrino interactions in 1973
(4], and the W [5] and Z° [6] bosons themselves were later observed at the CERN proton-
antiproton collider. At present, many experiments are probing the detailed structure of the

Standard Model, checking for consistency and searching for new phenomena.

This thesis describes a measurement of the forward—backward asymmetry in the angular

distribution of electrons from pp — Z° — eTe™ events. From the asymmetry measurement



one can derive a value for the “mixing angle”, fyy. This angle describes the mixing of
the SU(2); and U(1)y sectors of the Standard Model, and is an integral parameter of the
theory. If the Standard Model is correct, then the measured values of fy must be the
same for all physical phenomena. Measurement of the mixing angle with many different

processes, then, is an important test of the consistency of the model.



Chapter 2

Theory

By 1960, the phenomenology of the charged weak interactions was beginning to be under-
stood, but there was no complete theory, like QED, for the weak interactions. It was clear,
however, that both the weak and electromagnetic interactions share important properties:
each uses a single coupling constant to describe a large number of physical phenomena,
and both are mediated by spin~one fields. As early as 1957 Schwinger [7] suggested that
the weak and electromagnetic forces were generated by an isospin triplet of fields; the two
charged fields generated the weak interactions, while the neutral field was responsible for
electromagnetism. This simble model ran into phenomenological trouble, but it is of histor-

ical importance as the first to suggest that the weak and electromagnetic interactions could

be unified.

In 1961, Glashow [1] proposed a “partial symmetry” for the weak and electromagnetic
interactions. In this model, weak interactions are described by two components of an isotopic
spin group, SU(2);, which has coupling constant g and couples only to left-handed particles
and right-handed antiparticles. The form of the SU(2); interaction is determined by weak
interaction phenomenology. The electromagnetic interaction is included by introducing a
U(1) group with coupling constant ¢’ which couples to hypercharge, in analogy with the

Gell-Mann-Nishijima [8] model relating strangeness, baryon number, isospin, and charge in



strong interactions. The electric charge is given by

Y

— 734 =
Q=r+, (2.1)

where I° is the third component of isospin, and Y is the weak hypercharge. This implies a

form for the electromagnetic current:

JEm = I3+ 5y (2.2)
The structure of the hypercharge interaction is determined by requiring agreement between
this implied form and the observed electromagnetic interaction.

In this SU(2); ® U(1)y theory of electroweak interactions, the interaction Lagrangian

consists of currents coupled to vector fields, and is given by
S = 4 I\UTy7 g_/ Y\p
Lint = —ig(J ) W, —i 5 (4 )¢By. (2.3)

There are four vector fields: the three fields W,i associated with the three SU(2), generators

and a field By, associated with the U(1)y group. The charged weak interactions are mediated
by two of the SU(2) fields,

wiE = Wi F ), (2.4)
which describe the charged W* vector bosons. The electromagnetic interaction is described
by a linear combination of the Wz’ and B, fields. There remains, then, a second linear
combination of Wg and B, orthogonal to the electromagnetic combination, which describes
a weak neutral current interaction. The existence of this new neutral current interaction is

an important prediction of the theory.

The linear combinations of W/f‘ and By, which correspond to the photon and the 79, the
vector boson which mediates the weak neutral current, are determined by requiring that
the photon and Z° be mass eigenstates. One then finds that the photon and 70 fields are
given by

Ay = Wg sin 8w + By, cos Oy (2.5)
Zy = WB cos @ — By sin Oy (2.6)

4



The mixing angle 6y describes the mixing of the SU(2); and U(1)y sectors in physical
processes, and is an integral parameter of the electroweak theory. The value of the mixing
angle is not predicted by the theory, and must be measured experimentally.

With these forms for the physical fields, the interaction Lagrangians for the physical

fields become

Y

= —i(gsin(?sz-i-g'cosOW%—)A“ (2.7)
jY

e = —i(gcos&w]ﬁ——g'sin@w%)Z“. (2.8)

Adopting the form for the electromagnetic current given in Equation 2.2, and equating the

electromagnetic interaction given in Equation 2.7 with that of QED,

L3P = —ie(j)" Ay, (2.9)
one finds that g, ¢/, and the electromagnetic coupling constant e are related by

e = gsin O = ¢’ cosfyy. (2.10)

Using Equation 2.2 and the relations of Equation 2.10, the neutral current interaction of
Equation 2.8 becomes

NC_ . § NC
['int - _Z_CQS 0W Jl‘ Z’u, (2.11)

where the neutral current J ﬁv C is given by
JNC = J3 —sin® o™ (2.12)

Equation 2.11 implies that the neutral current interaction couples with strength g/ cos 6w,
while the charged current couples with strength g. The relative strength of the charged and

neutral couplings is given by
Miy

= 2.13
M%cos2 Ow ( )

P

While the model proposed by Glashow successfully unites the weak and electromagnetic

interactions, it leaves some questions unanswered. First, the SU(2); ® U(1)y symmetry is



“broken” — the Wg and B fields do not themselves mediate physical processes, but mix to
produce the photon and Z°. Second, there is a large mass difference between the (massless)
photon and the heavy particles which transmit the weak force. Both of these problems were
solved in 1967 when Weinberg [2] and Salam (3] recast the Glashow model in the form of
a spontaneously broken gauge symmetry. It only remained for ‘tHooft [9] to prove in 1971
that the Glashow-Weinberg—Salam theory was renormalizable to complete the so—called

Standard Model.

The Standard Model of electroweak interactions predicts the existence of a weak neutral
interaction, and also predicts the properties of this interaction. Any test of the properties of
the weak neutral interaction is therefore a direct test of the Standard Model. Many physical
processes are sensitive to the value of the mixing angle fy, so many of the experimental
tests of the Standard Model involve a measurement of fy, or, more commonly, sin? 9-W- if
the Standard Model is correct, then the measured values of sin? fyy must be the same (after
the appropriate higher order corrections) for all physical phenomena. Measurement of the

mixing angle in many processes, then, is an important test of the consistency of the model.

2.1 Angular Distributions in Weak Interactions

The SU(2); sector of the electroweak theory is left-handed; i.e. it couples only to left—
handed fermions and right-handed antifermions. The left-handed coupling establishes a
preferred direction in particle interactions and leads to parity violation, one of the most dis-
tinctive characteristics of weak interactions. The W* bosons, described entirely by SU(2);,
violate parity maximally, while the photon is parity conserving. The Z°, however, has both
parity conserving and parity violating components. The parity violating nature of the weak

interactions leads to measurable asymmetries in the angular distributions of weak processes.

Parity violation is best illustrated in the charged weak interactions, which violate parity

maximally. The charged weak interaction has a vector minus axial vector form, with currents
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Figure 2.1: Feynman diagram for inverse muon decay, e~ 7, — p~i,.

given by [10]

Jpeek = Jw-;-(l - 1), (2.14)
where 7, and 45 are Dirac v matrices. The left-handed helicity operator %(1 —795) is
implicit in the current. The handedness of the interaction has profound effects on the
angular distribution in many reactions. An example is inverse muon decay, ™7, — p~ 7y,
which prorceeds by virtual W~ exchange as shown in Figure 2.1. In this reaction a right—
handed antineutrino and a left-handed electron annihilate to produce a spin—one W™~ boson.
The momenta and angular momentum projections for the particles are shown in Figure 2.2.
Angular momentum conservation requires that the spin of the W~ be aligned with the
spins of the incoming fermions. When the W~ decays, it produces a left-handed muon
and a right-handed antineutrino. Angular momentum conservation requires that the spin
polarizations of the final particles be the same as that of the parent W—, which, in turn, has
the same polarization as the initial particles. As a result, the decay muon is preferentially
emitted in the direction of the incoming electron. In short, the left—-handed coupling of the
charged weak interaction establishes preferred directions for the particles’ spins, and angular
momentum conservation ensures that the preferred direction is maintained throughout the

reaction. This is a clear violation of parity, in that the cross section changes with spatial
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Figure 2.2: Momenta and spins in inverse muon decay, e™ 0, — p~7,. A single arrow
indicates the direction of a particle’s momentum vector, while the double arrow shows the
projection of the particle’s spin.

inversion.

Assuming massless fermions, the angular distribution of the emitted muon in the inverse
muon decay example is given by [11]

do
dcosf

= (14 cos )2, (2.15)

where 6 is defined to be the angle between the incoming electron and outgoing muon in the
rest frame of the W™, as shown in Figure 2.2. A convenient quantity for characterizing the

angular distribution is the forward-backward asymmetry, Arg, defined by



Arp =

1 do do
d _ <
A dcosf (cos6) [1 dcosf d{cos6)
I .
/ do d(cos8)

_1dcos¥

(2.16) -

The forward-backward asymmetry in inverse muon decay is 75%.

The neutral current is described as a mixture of the weak isospin and electromagnetic

currents. with mixing angle yy, as shown in Equation 2.12:
NC I i 2 EM
Jy 7 =J2 ~sin OwJ#

The weak isospin component of the neutral current leads to a parity violating V — A form
for the neutral current interaction, which is then slightly modified by the (vector) electro-
magnetic current. The relative magnitudes of the parity violating and parity conserving

components of the weak neutral current are determined by the mixing angle 6,y

The vertex factor for the neutral interaction is given by

_Z'g

S AR TTS & S 02 9res — T340 5 4=
Y- (I7 —2Q fsin” by — I57°), (2.17)

taking I} and (5 to be the third component of weak isospin and the charge of the fermion,

respectively. This vertex factor can be simplified using the relations of Equation 2.10 to

give
— iey*(gl - g}7®) (2.18)
where the vector and axial vector fermion couplings g‘f/ and g;'; are given by
gl = I~ 20, sin” iig gh = ————i—— (2.19)
2sin By cos Oy 2 sin Oy cos B

Due to the weakAcomponent of the neutral current interaction, the Z® couples more strongly,
though not exclusively, to left-handed fermions and right-handed antifermions. Using the
same helicity and angular momentum conservation arguments used in the charged current
example, one finds that in ff — Z° — f'f interactions the outgoing fermion (antifermion)

is preferentially emitted in the direction of the incoming fermion (antifermion). This implies



that there will be an asymmetry in the decay angular distribution of the Z°. Assuming

massless fermions, the angular distribution of fermions in Z° production is given by [11]

do
dcosf

o ((g))+ (gDl ) + (¢)D)(1 + cos? 0) + 8ghghighgh coso  (2.20)

where 6 is defined to be the angle between the incoming fermion and the outgoing fermion

in the rest frame of the Z°. The forward-backward asymmetry is given by
3¢yghall ol

((e)? + () (el ) + ()P

The magnitude of the asymmetry depends on the values of the vector and axial vector

AFB = (2.21)

couplings of the Z°, which, in turn, depend only on sin?fw and the (known) values of
fermion charge and isospin. One can therefore infer a value for sin” fyy from a measurement

of the charge asymmetry in Z° decays.

There is another way of producing and understanding a forward—béckward asymmetry,
even in a theory which is parity—conserving. It was Putzolu [12] who first pointed out
that asymmetries can arise from the interference between diagrams having different charge
conjugation parities. Take, as an example, two Feynman diagrams which contribute to the
same physical process, and have matrix elements M and Ma. The cross section for this

process is proportional to the square of the sum of the matrix elements,

IMI? = (M1 + My)*(My+ M) | (2.22)

M1l + Mo + MMz + MMy (2.23)

The cross section has four terms; two terms which correspond to the squares of the individual
matrix elements, and two interference terms.

One can apply the charge conjugation operator to each of these matrix elements. Charge
conjugation of a matrix element is mathematically well-defined, and is equivalent to ex-
changing all particles for antiparticles (without changing the particles’ spins) and recalcu-

lating the matrix element. One finds that the matrix elements can have definite charge
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conjugation parities. For the purposes of this example, the matrix elements M7 and M,

are assumed to have opposite charge conjugation parities,

C'<Mi> =+<M;> (2.24)

C'<Mz> =-< Msy>, (2.25)

where C' is used to imply charge conjugation. When the cross section is calculated using

the charge-conjugated matrix elements, one finds

M2 = (My+ M) (M + My) (2.26)

IMif? + [Mo|? = MIM2 — M3M;. (2.27)

The interference terms in the cross section change sign under charge conjugation. Interfer-
ence between diagrams with different charge conjugation parities leads to a cross section
which is not invariant under charge conjugation. This charge conjugation violation can lead
to a forward-backward asymmetry. The forward—backward asymmetry, then, is not evi-
dence for parity violation; a forward-backward asymmetry can appear even in interactions
(like QED) which are parity conserving. While the forward-backward asymmetry seen in
Z° decays is due predominantly to the parity-violating nature of the weak neutral current,
there are higher order QED and weak corrections which also contribute to the asymmetry.

These higher order contributions are discussed in Chapter 6.

2.2 79 Production in Hadronic Collisions

There are three complications which arise when considering Z° production in hadronic
collisions. First, hadrons are not the fundamental fermions which interact to produce Z%’s.
The QCD parton model describes hadrons as bound states of quarks, and it is these quarks
which interact. Experimentally measured distribution functions describe the momentum
distribution of the quarks inside hadrons. Since the colliding quarks generally do not have

equal and opposite momenta in the lab frame, the center of mass frame of the collision moves
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Figure 2.3: Lowest order Feynman diagrams for pp — ete™.

with respect to the lab frame. Second, there is an overwhelming QCD background to the
process qf — Z° — ¢'§’. Experimentally, then, one can distinguish only the leptonic decays
of Z%’s produced in hadronic collisions. This thesis examines only the process ¢§j — 70 —
ete™. Third, at lowest order, both photon exchange and Z° exchange contribute to electron
pair production in hadronic collisions; the Feynman diagrams for these processes are shown

in Figure 2.3. Any measurement must include the effects of both of these processes.

A calculation of the cross section for pp — ete™ based on the diagrams of Figure 2.3

gives (13, 14]

do 1 1 ol )

j ~ 3 d )2(zs,8) | 55 ) {Q7Qe(L + cos?d 2.2

T s 3 Admaz zp qZQ(wa,s)Q(:cb,s)( 55 ){Qqu( + cos? ) (2.28)
+2Q ¢QeRex(3)[g5 91/ (1 + cos? §) + 2g%9% cos 4]

+IXG)PI(97)? + (o) + (98)P)(L + cos? B) + 896 gagt g% cos ]}

where @ is defined to be the angle between the outgoing electron and incoming quark (or
outgoing positron and incoming antiquark) in the rest frame of the electron pair, as shown
in Figure 2.4. The leading factor of 1/3 is a color factor which comes from averaging over
initial quark color states. The functions ¢(zg4,3) and §(zp,3) are the quark momentum

distribution functions in the proton and antiproton; ¢4 and xp are the momentum fractions
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Figure 2.4: §, the angle between the outgoing electron and the incoming quark in the rest
frame of the electron pair.

carried by the quark and antiquark, and § is the square of the center of mass collision

energy. The sum is over quark species. The Z° propagator x(8) is given by

~

3
§—M%-|—iMZrZ'

x(8) = (2.29)

The first and third terms in the cross section are due to photon exchange and Z° exchange,
respectively, while the second term arises from the quantum mechanical interference of
these two subprocesses. Each term has a component proportional to (1 + cos? é) which is
symmetric in cos §, and both the Z° and interference terms have antisymmetric components
proportional to cos§. The antisymmetric component of the interference term comes from
interference between the photon and the axial vector component of the Z° and leads to
observable asymmetries away from the region of the Z0 resonance. These asymmetries have
been observed in ete™ — ptpu~ and ete™ — 7Fr~ interactions by many experiments [15].
The photon-Z? interference term is antisymmetric in § with respect to § = M% While
the interference term is important in the charge asymmetries seen away from the Z°, its
contribution to the forward—backward asymmetry in a region symmetric in § about § = M %

is small (of order 1.5% for the region 75 < /3 < 105 GeV).

The measured asymmetry in pp — Z° — ete™ depends on the quark momentum dis-
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tribution functions in two ways. First, the asymmetry is a function of both the quark
couplings and the lepton couplings to the Z°. Since the u-type and d-type quark couplings
to Z%’s are different, the observed asymmetry depends on the relative contributions of u-
type quarks and d-type quarks in Z° production. Second, 6 is properly defined by the quark
and antiquark directions. In practice, only the directions of the protons and antiprotons are
known; one assumes that the initial quark is moving in the proton direction and the initial
antiquark is moving in the antiproton direction. While this is always true for interactions
involving valence quarks, it is wrong half the time for interactions in which both quarks
come from the Fermi sea. Since the sign of cos is mismeasured for half of the sea-sea
interactions, the sea—sea interactions give a symmetric “background” contribution to the
angular distribution. Any determination of sin? fyy from the asymmetry, then, will depend

on the size of the sea—sea contribution to Z° production.

Figure 2.5 shows the forward—backward asymmetry integrated over the region 75 <
V'3 < 105 GeV as a function of sin? 8. The dotted and dashed curves are for ui — ete™
and dd — ete™ processes, respectively, while the solid line shows the asymmetry in pp —
ete™ interactions, assuming the EHLQ 1 [16] parametrization of the proton and antiproton
momentum distribution functions. Note that the asymfnetry goes to 0 near sin? fyy = 0.250.
When sin? 6y equals 0.250, the vector coupling of the Z° to charged leptons is 0, and the
asymmetry in q§ — eTe~ due to Z° exchange goes to zero. There is a small residual
contribution to the asymmetry from the 7-Z° interference term in the cross section, which
causes the asymmetry to go to zero at a value of sinthe near 0.245. For values of sin? Oy
near the expected value of 0.23 [17], the asymmetries for u-type and d-type quarks are
very similar, and so the measured asymmetry in pp interactions is expected to be rather
insensitive to the relative size of the u—type and d-type contributions to 70 production.
At sin® 6y = 0.23, the expected asymmetry in pp interactions for EHLQ 1 distribution

functions in the region 75 < V3 < 105 GeV is 5.54%.

It is clear from Figure 2.5 that there may be more than one value of sin? @y which pro-
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Figure 2.5: Forward-backward asymmetry as a function of sin? fyy. The dotted curve shows
the u—type asymmetry while the dashed curve shows the asymmetry for d—type quarks. The
solid curve is the observed asymmetry for EHLQ 1 momentum distribution functions.
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duces a given forward-backward asymmetry. When solving for the sin? @y value associated
with the measured asymmetry, there may be more than one solution. The value of sin® 6y
is constrained to be near 0.23 by other neutral current data [17], and so the solution nearest

this expected value is used.

Due to QCD effects such as initial state gluon bremsstrahlung, the Z%’s are produced
with varying amounts of transverse momentum, pZ. When a Z° is produced with non-zero
ptZ , the proton and antiproton directions are not collinear in the rest frame of the dileptons,
and so the quark directions are not completely determined; the quarks can only be said to be
travelling in approximately the direction of the proton or antiproton, and the approximation
gets worse as ptZ increases. Since the initial quark directions are ill-defined, cosé can no
longer be precisely measured. One must therefore define a new % axis in the dilepton rest
frame to take the place of the quark direction when making angular measurements. Several
definitions have been proposed [18]. For this thesis, the method of Collins and Soper '[19],
in which the % axis is taken to be the bisectrix of the proton and minus the antiproton
directions, as shown in Figure 2.6, is chosen. In effect, the Collins—Soper definition divides
the ptZ contribution equally between the quark and antiquark, and possesses the feature
that 2 reduces to the quark direction in the limit pf — 0. A Lorentz-invariant form for

cos § as defined by Collins and Soper is given by [19]

o (P 4+ PL)(PO, — PY) ~ (PY — PL)(PY + F3)

cosf =
Me+e— V Mez"'e- + Piz"

where Pé‘_ and Péﬂ_ are the electron and positron 4-vectors, and M+~ is the dielectron

(2.30)

invariant mass.

All of the alternate, ptZ dependent, definitions of 6 are approximations which begin to
break down for Z%’s with large transverse momentum. The cos§ distribution will therefore
be smeared somewhat by the high p# events, and the observed angular distribution will be
flatter and more syrﬂmetric than that predicted by the lowest order cross section. While

the Collins—Soper definition is used in the measurement of cosd in the data, sin? By is
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Figure 2.6: The Collins—Soper definition of the angle §. The 2 axis bisects the proton and
minus the antiproton directions.

extracted based on the lowest order cross section of Equation 2.29. The effect of the cos§
smearing on the measurement of sin® fy must be determined. The size of this smearing

effect is discussed in Chapter 6.

2.3 Higher Order Effects

There are many higher order diagrams which contribute to dielectron production in hadronic
collisions, and some of these diagrams affect the measured asymmetry. The higher order
QCD procesées which produce Z%’s with transverse momentum smear out the angular dis-
tribution somewhat. Many higher order QED processes contribute directly to the asym-
metry. The size of ali of these contributions to the asymmetry must be calculated before
one can extract a meaningful value for sin? 6y from the asymmetry measurement. Fur-

thermore, when higher order weak effects are included, values for sin?fyy determined from
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different physical processes get different corrections and are no longer directly comparable
[20]. In particular, the value of sin? 8y determined from the charge asymmetry is not di-
rectly comparable to the value determined from the measurement of the W and Z° masses,
sin?fy =1-— ]VI‘?V/M%, until higher order corrections are made and a particular definition
for sin? @y is adopted. The calculation of these higher order effects is complicated, and

further discussion is deferred to Chapter 6.
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Chapter 3

The CDF Experiment

The CDF experiment has two main components: the combination accelerator and storage
ring system which produces collisions between protons and antiprotons, and the CDF detec-
tor, which analyzes the final stafe particles produced when a proton and antiproton collide.
This chapter contains a brief description of the accelerator, and describes the detector

elements used in the current analysis.

3.1 The Accelerator

The accelerator complex at the Fermi National Accelerator Laboratory contains seven sep-
arate accelerator/storage components. Figure 3.1 shows an overhead view of the Fermilab
accelerator complex. A Cockroft-Walton generator (not shown in Figure 3.1) produces a
beam of 750 keV H~ ions, which is then injected into a linear accelerator. The linear accel-
erator accelerates the H™ ions to approximately 500 MeV, and injects them into the circular
Booster ring. The Booster accelerates the beam of ions to 8 GeV, strips both electrons off
of the H™ ions to leave bare protons, and injects the protons into the Main Ring. The
Main Ring is a proton synchrotron 2 kilometers in diameter. It was once used to produce

beams of 400 GeV protons for use in fixed tafget experiments, but now serves as an injector
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Figure 3.1: An overhead view of the Fermilab accelerator complex. The fixed target beam
lines are shown, as is the position of the B0 intersection region where the CDF detector is
located.
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for the Tevatron ring and as a source of 120 GeV protons for antiproton production. The
Tevatron accelerator uses a ring of superconducting magnets, and is housed in the same 2

km diameter tunnel as the Main Ring. The Tevatron accepts 150 GeV particles from the

Main Ring and accelerates them to 900 GeV.

The antiproton production system produces antiprotons with a large initial energy
spread, and then uses two storage rings to reduce this energy spread and store a nearly
monoenergetic beam of antiprotons. Antiprotons are produced when 120 GeV protons
from the Main Ring hit a tungsten target. The antiprotons are focused by a current pulsed
lithium lens, and are then directed into a storage ring called the Debuncher. The antipro-
tons enter the Debuncher in a short time pulse, and have energies of approximately 8.5 GeV
with an energy spread of about 2%. Two techniques are used in the Debuncher to reduce
the energy spread and the transverse motion of the beam; bunch rotation and stochastic
cooling [21]. Bunch rotation is a radio frequency technique in which the energy spread of
an antiproton pulse is reduced by increasing its time spread. In stochastic cooling, a probe
senses the position of the beam, and sends a signal across a chord of the accelerator ring
to a kicker. The kicker then applies a correction to the beam as it passes by. After two
seconds in the Debuncher, the beam is directed into the Accumulator, where it undergoes
further stochastic cooling. The Accumulator is used both to cool the antiprotons and to
store them, and accepts a new antiproton pulse from the Debuncher every two seconds.
After several hours.in the Accumulator, the antiprotons end up in a tight core with a very

narrow energy distribution.

When a sufficient number of antiprotons have been collected, six bunches of antiprotons
are extracted from the core in the Accumulator, and injected into the Main Ring. There
they are accelerated to 150 GeV and injected into the Tevatron, where six bunches of protons
are already circulating. Since protons and antiprotons have opposite charges, the proton
and antiproton bunches will circulate in opposite directions inside the same accelerator ring.

The 6 antiproton bunches will intersect with the 6 proton bunches at 12 points around the
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accelerator ring. A radio frequency process called cogging moves the intersection points
around the ring so that one of the 12 intersections is located inside the CDF detector.
When the proton and antiproton bunches are aligned properly, they are simultaneously

accelerated to 900 GeV.

The rate at which the protons and antiprotons collide is characterized by a quantity

called luminosity. The luminosity is given by

NyN5C

where N, and Nj are the number of protons and antiprotons per bunch, C is the bunch
crossing rate, and o is the rms width of the Gaussian beam profile. (The proton and
antiproton beams are assumed to have the same rms width, and the beams are assumed to
overlap completely.) The rms width for particle beams is related to the beam emittance €

and the accelerator 8 function by

of = . (3.2)

The emittance ¢ is a measure of the transverse phase space occupied by the beam. Tt
is independent of the beam’s position around the ring, but grows with time. The beta
function F(s) describes the transverse envelope of the beam. [(s) is determined by the
focusing magnets in the accelerator, and varies with s, the position around the accelerator
ring. Superconducting quadrupole magnets located on either side of and near to the nominal
collision point reduce the § function at the collision point, thereby reducing ¢ and increasing
the luminosity. The luminosity falls exponentially as a function of time, due to emittance
growth and proton and antiproton losses due to collisions. Characteristic beam lifetimes

are of the order of 12 hours.

The total inelastic cross section for pp interaction at 1.8 TeV is approximately 70 mb,
where one barn (b) is 10~ *4cm?. A large fraction of the total inelastic cross section consists of
small angle scattering in which the final state particles escape undetected down the beam

pipe. Two planes of scintillator counters, discussed in Section 3.2.4, surround the beam
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Figure 3.2: The integrated luminosities delivered by the accelerator and recorded by the
CDF detector.

pipe and detect final state particles which are emitted at angles greater than approximately
1.25° with respect to the proton and antiproton beams. These scintillator counters signal
the presence of an inelastic collision and are used to trigger the readout of the detector.
The effective cross section seen by the scintillator counters is approximately 44 mb; i.e.
the inelastic cross section for pp interactions in which final state particles are produced
at angles greater than 1.25° is 44 mb. At a luminosity of 2 x 103%m=2%s~1, the CDF
detector observes pp collisions at a rate of 88 kHz. At this luminosity, approximately 31%
of the beam crossings produce a pp collision in which particles strike the CDF detector,
and approximately 9% of the beam crossings have more than one such collisicn. Peak
luminosities grew from 3 x 102cm~2s~! at the beginning of the 1988-1989 data run to over

2 % 103%cm~2s~1,

The integrated luminosity is a measure of the total number of collisions produced. Fig-
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ure 3.2 shows the total integrated luminosity delivered by the accelerator, and the integrated
luminosity collected by the CDF detector and written to tape. The overall data collection

efficiency during the 1988-1989 run was approximately 50%.

3.2 The CDF Detector

The Collider Detector at Fermilab (CDF) is a large multipurpose solenoidal detector de-
signed to observe the leptons and jets produced in pp collisions. A detailed description
is given in the literature [22]. Perspective and elevation views of the CDF detector are
shown in Figure 3.3. CDF uses a right handed coordinate system in which z lies in the
horizontal plane, y is vertical, and z is in the direction of the proton beam. The coordinate
system is indicated on the perspective view of the CDF detector in Figure 3.3 Below are
descriptions of individual detector elements, with special emphasis on the elements used in

the asymmetry analysis.

3.2.1 Tracking Detectors

Nearest the interaction point are eight time projection chambers (VTPC) which measure
the position of the event vertex and the R-z positions of charged tracks. Together the
chambers extend 2.8 m along the beam direction, centered on the nominal interaction
point, and extend in radius from R = 6.8 cm to R = 21 cm. Each chamber consists of two
separate drift volumes, extending 15 cm in the z direction, which are separated by a high
voltage grid. Each drift volume ends in an octagonal proportional chamber endcap which
is divided into octants, each octant having 24 sense wires arranged perpendicular to the
radial direction. Adjacent chambers are rotated relative to one another by approximately

11° to eliminate inefficiencies at octant boundaries and provide ¢ information.

Charged particles leave ionized tracks in the drift volume as they pass through the

detector. The electrons from the track drift in the z direction toward the proportional
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Figure 3.3: Perspective (top) and elevation views of the CDF detector. The coordinate
system is indicated on the perspective view.
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chamber endcap, where they are detected. The time of arrival of the electrons gives the
R-z position of the track. Track positions in the z direction are measured to better than
500um. By extrapolating the R-z VTPC tracks back to the beam axis, one can determine

the position of the event vertex (for events with only one vertex) with a resolution of 1 mm.

Surrounding the VIPC is a large cylindrical drift chamber (CTC) which is used to
measure the R-¢ position of charged particle tracks and, in conjunction with a 1.4 Tesla
magnetic field, the particle momentum. The CTC extends 3.2 m in the 2z direction and has
inner and outer radii of 0.3 m and 1.3 m, respectively. The CTC uses 84 layers of sense
wires, organized into 9 “superlayers”. The sense wires in each superlayer are organized
into R-¢ cells, which are tilted 45° with respect to the radial direction. The electrons from
the ionized tracks drift in crossed E and B fields inside the CTC; the tilt of the R-¢ cells
compensates for the Lorentz angle of the electron drift, and ensures that the electrons move
in the azimuthal direction. This azimuthal drift simplifies the conversion from time to
distance. In five of the superlayers, 12 wires are strung axially along the ‘beam direction,
while in the remaining 4 superlayers 9 wires are tilted +3° with respect to the beamline to
obtain stereo information about the z positions of tracks. Figure 3.4 shows an R-¢ view of

the CTC. The superlayers and the 45° tilt of the cells can be clearly seen.

In some sense, the CTC is self-calibrating. The TDC pedestal offset (or tg) for each
channel can be determined by demanding that tracks be continuous as they cross the plane
of sense wires in a single R-¢ cell. The drift velocity is determined by demanding that the
tracks be continuous as they cross the boundary between two R-¢ cells. Knowledge of the
wire positions, the to offset, and the drift velocity is sufficient to convert TDC track data
into R-¢ positions. Drift velocity and to data are analyzed online during each run, and

written to database files for use during offline track reconstruction.

Positions along a track in the CTC are determined to better than 200um in the R-¢
direction and 6mm in the z direction. The momentum of a track is determined with a

resolution 6p;/p? < 0.002 in the region 40° < 8 < 140°. By constraining the track to pass
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through the nominal R-¢ position of the beam, the effective path length of the track is
extended from 1 m to 1.3 m. The momentum resolution, which goes as 1/(BI?) where [ is

the track length, is reduced to 6p;/p7 = 0.0011.

Outside the CTC are three layers of drift tubes (CDT) which use drift times and charge
division to measure the R-¢ and z positions of tracks, respectively. Typical resolutions are

2.5 mm in the z direction and 200um in R-¢.

3.2.2 Calorimeters

Electromagnetic and hadronic calorimeters are used to measure the energies and positions
of electromagnetic showers and jets. Calorimeter coverage extends to within 2° of the pro-
ton and antiproton beams and covers the full azimuth. The calorimeters are mechanically
divided into three subsystems (central, plug and forward) as shown in Figure 3.3. Within
each calorimeter, coverage is divided into projective towers which point toward the interac-
tion point. The polar segmentation is in units of pseudorapidity, n, where n = —In(tan8/2).

Pseudorapidity is used as an approximation to the true rapidity y, where y is defined by
(3.3)

Rapidity is a convenient quantity for calorimeter segmentation for jet physics. Since rapidity
is an additive quantity under Lorentz boosts, both the shape of a jet in y-cﬁ space (i.e. its
extent Ay x A¢) and the calorimeter segmentation are invariant under the longitudinal
boosts inherent in pp collisions. True rapidity depends on mass, however, and for particles of
different masses there is no single relation between polar angle and rapidity. Pseudorapidity
is a simple approximation which gives good results for particle with energies very much larger
than their masses. In the central region (|| < 1.1), each projective tower subtends 15° in ¢
and 0.1 unit of pseudorapidity 5. In the plug (1.1 < |n| < 2.2) and forward (2.2 < || < 4.2)

regions, the towers subtend 5° in ¢ and 0.1 units of 7.

All of the calorimeters are of the sampling variety: they use alternating layers of absorber

28



Y

PHOTOTUBES £= ;
S

— LIGHT
GUIDES

e WAVE SHIFTER
e SHEETS

1EAD
SCINTILLATOR
SANDWICH —.

STRIP e
CHAMBER

“

Figure 3.5: Cutaway view of a central calorimeter wedge showing the central electromagnetic
calorimeter and light transmission system.

in which the incident particles shower and an active material which samples the energy flow
of the showers. In the central region plastic scintillator is used as a sampling medium in
both the electromagnetic and hadronic calorimeters. The plug and forward calorimeters

use proportional tube chambers with segmented cathode pad readout.

Central Calorimeters

The central electromagnetic (CEM) and central hadronic (CHA) calorimeters are con-
structed in 15° wedges, which are then assembled to form a barrel with full azimuthal
coverage. Figure 3.5 is a cutaway view of a central caloriméter wedge showing the elec-
tromagnetic calorimeter. The CEM calorimeter is a sandwich of 31 layers of 5 mm thick
polystyrene scintillator and 30 layers of % inch thick aluminum clad lead sheets. To maintain

a constant thickness in radiation lengths as polar angle changes, some lead is replaced with
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acrylic and the scintillator behind the acrylic is painted black. On average, each tower is
18 radiation lengths thick. The scintillator light is collected through wavelength shifters on
both sides of the wedge. The wavelength shifters transmit the light to acrylic light guides

which are attached to photomultiplier tubes located at the rear of each wedge.

Each of the CEM towers has been calibrated using 50 GeV electrons from a test beam.
This calibration has been maintained to approximately 2.5% over several years by means
of a cross calibration to Cs'37 source signals. A map of the response across the face of
an individual tower has also been obtained from the test beam. The response is found
to vary by some 6% across the face of a tower, due to shower leakage at the edges of the

calorimeter and to variations in light collection in the scintillator-wavelength shifter system.

The measured energy resolution for electromagnetic showers is

2 2 )
(%E) = (%) +(LT%)?, (3.4)
where the constant term is the average uncertainty in the individual tower calibrations.
A gas proportional strip chamber (CES) is embedded in the CEM calorimeter near
shower maximum to measure the shape and position of electromagnetic showers. Wires run
parallel to the beam direction and give a ¢ view of electromagnetic showers, while cathode

strips are positioned perpendicular to the wires and provide z information. Typical position

resolutions are 2 mm in both the strip and wire views for 50 GeV electrons from a test beam.

The central hadronic (CHA) and endwall hadronic (WHA) calorimeters measure the
hadronic energy in the central region. The CHA modules are located in the wedges just
behind the CEM. They are constructed from a sandwich of 32 layers of 1.0 cm scintillator
and 2.5 cm steel. The WHA calorimeter occupies the transition region between the central
barrel and the plug. Because the particle energies here are greater for the same transverse
energy E7, the steel of the WHA is thicker than that of the CHA. The WHA is a sandwich
of 15 layers of 1.0 cﬁ scintillator and 5.0 cm steel. As in the CEM, the scintillator light

from the CHA and WHA is read out through a system of wavelength shifters and acrylic
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Figure 3.6: View of a plug electromagnetic calorimeter quadrant.

light guides. Pions from a test beam are used to calibrate both the CHA and the WHA,
and the calibration is maintained with Cs'37 sources. The typical resolution (o/E) for 50

GeV pions is 11% for the CHA and 14% for the WHA.

Plug Calorimeters

The plug electromagnetic (PEM) and plug hadronic (PHA) calorimeters cover the polar
angles from 10° to 30° and 150° to 170° (1.1 < || < 2.4). The PEM calorimeters are
divided into 4 quadrants, and consist of 34 layers of proportional tubes alternating with 2.7
mm lead sheets. A PEM quadrant is shown in Figure 3.6. The proportional tubes are made
of a resistive plastic and are epoxied to sheets of copper—clad G10 which have been etched
to form piojective towers of cathode pads. When a particle showers in the calorimeter, the
gas in the proportional tubes is ionized. The electrons move quickly toward the anode wire,

leaving a cloud of slowly moving positive ions behind. These positive ions induce a charge
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on the cathode pads, which is integrated by the front end electronics. The cathode pads
in the PEM are ganged to form projective towers with three depth segments, containing
5, 24, and 5 layers. The depth segmentation provides information about the longitudinal
development of electron showers. The anode signals for each layer in the quadrant are also
read out, and provide additional longitudinal information. Ten layers of the PEM near
shower maximum in the region 1.2 < || < 1.9 are equipped with finely segmented  and ¢
cathode strips as well as cathode pads. The strips are used to provide better position and

shape resolution for electromagnetic showers.

The gain of the proportional tubes is a function of the density and composition of the
gas which flows through them. This so—~called gas gain is monitored by a system of small
proportional tubes and Fe®> sources. The 6 keV photon from the Fe®® source deposits a
known amount of energy in the monitor tube. By measuring the charge collected on the
anode wire of the monitor tube, one can measure the gain of the gas. The response of the
calorimeter as a function of gas gain is determined during the test beam calibration, and
the data are adjusted online for the gas gain on a run by run basis before being written to

tape.

The resolution function of the PEM is determined from studies of electrons from a test

beam and is found to be
o _ 28%
E  VE

The PHA calorimeters are divided into twelve 30° stacks, and consist of 20 layers of

+2%. (3.5)

proportipnal tubes separated by 5 cm of steel. The cathode pads are ganged to form
projective towers, and anode signals are read out of each layer of the stacks. As with all
gas calorimeters, the calorimeter response is a function of the gas gain, and the data are
corrected for gas gain variations before being written to tape. The resolution of the PHA

is determined from studies of pions from a test beam and is found to be

1_86%
E  VE

+ 4%. (3.6)
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Forward Calorimeters

The forward elecp_romagnetic (FEM) and hadronic (FHA) calorimeters cover the region
from 2° to 10° (2.4 < 7 < 4.2). The FEM is divided into quadrants, and consists of a
sandwich of 30 layers of proportional tubes and 4.5 mm lead sheets. The cathode pads are
ganged in groups of 15 layers to form projective towers with two depth segments. Each
90° anode plane is divided into 5 anode regions, each of which is read out separately. The
energy response to electrons from a test beam is linear up to 100 GeV, and the resolution

is determined to be

25% .
=VE + 0.5%. (3.7)

The FHA is also divided into quadrants, and is composed of 27 layers of proportional tubes

t| @

and 5 cm steel plates. Fach anode plane is divided into 6 regions, which are read out in
addition to the projective towers of cathode pads. The low—3 quadrupoles of the accelerator
penetrate into the FHA, and require part of the small angle coverage to be cut away. The

FHA covers the full azimuth only for || < 3.6. The FHA energy resolution is approximately
o 140%
E~ JVE°

Data from both the FEM and the FHA are corrected for variations in gas gain before being

(38)

written to tape.

3.2.3 Muon Detectors

Although not used in this analysis, the muon detectors are a source of important physics
which is, in some sense, complimentary to the physics derived from electron measurements.
There are two muon detection systems at CDF: a set of muon chambers located in the
central wedges, and toroidal muon spectrometers located behind the forward calorimeters.
The central muon (CMU) chaﬁbers consist of four layers of drift tubes and are located
* inside the central calorimeter wedges, behind the CHA. The muon chambers cover the

angular region 56° < 8 < 124°, and the full azimuth. Tracks found in the muon chambers
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are matched to CTC tracks for momentum measurement. The forward muon spectrometers
(FMU) cover the regions from 3° to 16° and 164° to 177°. Each spectrometer consist of
two magnetized steel toroids with three layers drift chambers and two layers of scintillation
counters. Tracks are reconstructed with a momentum resolution of 13%, and are matched

to VIPC tracks. The scintillation counters provide trigger information.

3.2.4 The Trigger

The trigger system makes use of two planes of scintillator counters ( beam-beam counters,
or BBC) mounted on the front face of the forward calorimeters. Each scintillator plane
consists of 16 scintillator paddles arranged in a square about the beam pipe and covering
the region 3.2 < n < 4.5. Hits in the BBC signal that an inelastic pp collision has taken
place. In addition to its trigger duties, the BBC is the primary luminosity monitor, provides
a measurement of the time of the interaction for the tracking chambers, and can make a

crude measurement of the vertex position.

The CDF trigger is itself a four-level combined hardware and software system. The
initial level (Level 0) is the minimum bias trigger. It requires at least one of the 16 trigger
counters on each side of the interaction to fire within a 15 ns window centered on the beam
crossing. The Level 0 decision is available within 100 ns of the collision. After a valid Level

0 trigger, data taking is inhibited to give the next trigger levels time to make decisions.

The Level 1 calorimeter trigger uses fast analog signals from the front end electronics.
Signals are ganged into trigger towers measuring An = 0.2 by A¢ = 15°, and are weighted
by sin 8 to pfovide a crude estimate of transverse energy. Analog comparators and summers
look for trigger towers with large energy depositions and calculate the total scalar transverse
energy in the event. The Level 1 trigger decision is made within 7us. If there is no valid
Level 1 trigger, the front end electronics are reset, in time for the second beam crossing after
the initial Level 0 trigger. If a valid Level 1 trigger exists, data taking remains inhibited

and the Level 2 trigger takes over.
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The Level 2 trigger digitizes the fast analog signals used in Level 1, and has access to
data from fast hardware track processors. Level 2 uses the digitized calorimeter information
to form energy clusters. The cluster energies, positions, and widths are then passed, along
with track information, to a set of programmable processors. These processors apply simple
algorithms for identifying physics signals and generate the Level 2 trigger decision. The
Level 2 decision is made, on average, in approximately 20us, although this time can vary
with the complexity of the event and the processor algorithms. If there is no valid Level
2 trigger, the front end electronics are reset and data taking is resumed. If a valid Level
2 trigger exists, then the entire detector is digitized and the digitized data is formatted.
The formatted event is sent to the Level 3 processors for further analysis, and the front end

electronics are reset after readout.

The Level 3 trigger is software-based. An entire formatted event is loaded into one of
60 Motorola 68020 based microprocessors, each of which is capable of running the CDF
offline analysis code. The Level 3 trigger has access to all the data in an event, and uses
streamlined versions of the offline reconstruction algorithms to harden the Level 2 trigger

thresholds. Events passing the Level 3 selection algorithms are written to tape.
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Chapter 4

Event Reconstruction and

Selection

Event reconstruction begins with the raw ADC and TDC data which is written to tape,
and ends with a sample of identified Z° and photon events. This chapter describes the
reconstruction steps and the event selection criteria which culminate in the final sample of

79 events.

4.1 Energy Reconstruction

Jets and electrons are reconstructed from the calorimeter ADC data. The raw calorimeter
ADC data are corrected for amplifier gain, gas gain, and gross pedestal offsets by the data
acquisition system before being written to tape. Small pedestal shifts are subtracted in
the offline analysis. The ADC data are converted to energies by multiplying by a detector
dependent conversion factor determined from studies of testbeam data. Due to broken
wires, some anode planes in the gas calorimeters are turned off, reducing the signal seen in
the ganged cathode pad towers. Tower energies are corrected to compensate for these dead

anode planes. The ADC to energy conversion produces an 7-¢ array of calorimeter tower
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energies and lists of anode plane energies.

There are four types of noise in the calorimeter tower array which must be removed
before further processing. First, single phototubes in the central calorimeters can give
anomalously large signals, due to high voltage breakdown within the phototube or from
Cerenkov light from particles which shower in the lightguides. Each calorimeter tower is
viewed by two phototubes, and real energy can be distinguished from noise by requiring

that both phototubes register the presence of energy.

Second, low energy neutrons produced in hadronic showers indirectly produce large
energy deposits in the gas calorimeters. These low energy neutrons are able to penetrate
the calorimeters, and have a large cross section for interactions with protons. The neutrons
knock loose protons from the hydrogen rich ethane gas filling the proportional tubes or from
the plastic walls of the proportional tubes in the plug calorimeters. These protons range
out quickly, losing all their energy through ionization of the gas in the proportional tube.
This ionization appears as a large energy3 deposit over a small number of cathode pads in
a single layer of the calorimeter. This noise is removed by an algorithm which searches for

highly localized energy depositions.

Third, there is occasional high voltage leakage from the ends of the PEM proportional
tubes. This produces a large signal in a single anode layer and in a small number of cathode
pads near the perimeter of the PEM. The same algorithm which removes the neutron noise

removes these localized energy spikes.

Fourth, ground loops in the signal cables running from the calorimeters to the front end
electronics produce purely electronic noise in the PHA and FHA. Each ribbon cable carries
signals from 12 adjoining calorimeter towers. The cable noise appears as a nearly uniform
signal in all 12 of the towers in a cable, with no corresponding signal in any of the anode
layers. This noise is removed by an algorithm which searches for the characteristic 12 tower

pattern.
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4.2 Electron Identification

The electron identification process begins with an energy clustering algorithm. Electro-
magnetic clusters are then matched to tracks found in the tracking chambers, and various

electron quality parameters are calculated.

4.2.1 Clustering

The electron clustering algorithm searches the 7-¢ array of calorimeter towers for “seed”
towers having transverse electromagnetic energy, EtEM , greater than 3 GeV. Adjoining
towers sharing a side or a corner are associated with the cluster if they have EFM > 0.1
GeV. Clustering proceeds until thefe are no adjoining towers above threshold or until the
cluster reaches a predetermined size. This size limit is based on the size of real electron
showers and the physical size of the towers in each detector, and is fixed to be 3 towers in 7
by 1 tower in ¢ in the CEM, 5 by 5 towers in the PEM, and 7 by 7 towers in the FEM. The
transverse hadronic energy in the cluster, E’tHAD , 1s summed separately. Electromagnetic
clusters are retained only if the total cluster EFM is greater than 5 GeV and the ratio of

hadronic to electromagnetic transverse energies, EZAP/EFM s less than 0.125.

After clusters are formed, the electron identification algorithm loops over all the re-
constructed tracks in the event and extrapolates them intb the calorimeters. Tracks with
extrapolated positions which lie within an electromagnetic cluster region are associated with
the cluster. The associated track with the highest transverse momentum, py, is taken to be

the electron track.

4.2.2 Electron Quality Parameters

Two electron quality parameters are defined for all the calorimeter elements and help to
separate electrons from jets and other background. The ratio of hadronic to electromagnetic

transverse energies, EFAP | EFM (abbreviated HAD/EM), is sensitive to hadronic energy
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associated with an electromagnetic cluster. Isolation (abbreviated I) is a measure of the

energy near the electromagnetic cluster. Isolation is defined by

3 EtCone _ EtEAI

I= (4.1)

EtCone ’

where E°"€ is the total transverse energy contained in a cone of radius r = ((An)? +
(A¢)2)1/2 < 0.4 centered on the electromagnetic cluster. A small number of jets fragment
in such a way that one or more very energetic 7%’s are produced along with a few low
energy charged particles. The 7%’s decay quickly into photons which shower in the electro-
magnetic portion of the calorimeter to produce an electromagnetic cluster. The electron
track requirement can be satisfied by one of the low energy charged particles. Background
of this type can be removed by looking for residual (hadronic) energy in or near the electron

cluster.

There can be additional energy deposition near a real electron due to the “underlying
event” - the low energy spray of particles inevitable in pp collisions. Analysis cuts on

HAD/EM or I are never fully efficient, then, due to this underlying energy.

Various other electron quality parameters have been defined for each calorimeter, based
primarily on the shape of showers from electrons from test beams. The electron finding
algorithm calculates these quantities for each identified electromagnetic cluster. For the

CEM, five additional parameters are used for electron selection:

e F/p, the ratio of cluster energy to the momentum of the matched CTC track.

o LSHR, a measure of the lateral distribution of energy in a cluster. The z position
of the electron shower in the calorimeter as measured by the strip chamber is used
in conjunction with a test beam parametrization to predict the distribution of en-
ergy among the calorimeter towers in the cluster, and the measured distribution is

compared to this prediction. The quantity LSHR is defined by
E,Adj - EiPTOb

LSHR = 0.14 %
2: \ﬂ).142 « E + (AEProb)2

(4.2)
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where E{qd] is the measured energy in a tower adjacent to the seed tower, Eip"’b is the
energy expected in that tower based on strip chamber information, E is the cluster
energy, and AEF7 is the uncertainty on EiP 700 associated with a 1 cm uncertainty

in the strip chamber position measurement.

° X?tri}ﬂ a measure of shower shape in the strip chamber. The energy distribution in the
cathode strips is compared to a parametrization derived from electrons from a test

beam.

o Az, Az, the difference in z and z, in centimeters, between the strip cluster and the
extrapolated CTC track. The relative alignment of the CTC and the strip chambers

has been measured in situ using a sample of 12000 electrons.
Two parameters are used for selecting plug electrons:

o X33, a measure of the transverse shape of the calorimeter cluster. The energy dis-
tribution in the calorimeter towers in a 3 X 3 region centered on the seed tower is

compared to a parametrization derived from electrons from a test beam.

e VTPC occupancy, aloose track requirement. A “road” beginning at the collision point
and pointing at the calorimeter cluster is defined. The VTPC occupancy is defined
to be the number of VITPC hits detected along the road divided by the number of
VTPC wires crossed by the road. If the road passes too near one of the internal VIPC

structural members, the occupancy defaults to 1.0.

One parameter is used in selecting forward electrons. The ratio E front/ Etotal is the ratio
of cluster energy deposited in the front half of the FEM to the total cluster energy. Real

electrons deposit most of their energy in the first half of the FEM.
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4.3 Energy Corrections

A number of energy corrections must be made to compensate for relative tower response
and variations in detector calibrations. Ultimately, all calorimeter energies are tied to or

compared with an absolute momentum scale determined by the CTC.

To establish an absolute CTC momentum scale, it is necessary first to calibrate the
drift velocities and TDC offsets using charged particle tracks from minimum bias events, as
described in Section 3.2.1 and then to correct for errors in the CTC wire positions. Errors
in the azimuthal alignment of the CTC wires are studied using a sample of 17000 inclusive
electrons. By equalizing the mean of the E/p distribution for the positrons and electrons
in the inclusive sample, azimuthal offsets are determined for each of the 84 wire layers
in the CTC. This E/p alignment correction is checked using cosmic rays. To the track
reconstruction algorithms, cosmic rays which traverse the CTC and pass near the beam
axis appear as two oppositely charged tracks originating from a vertex near the beam. If
the CTC wires are aligned correctly, the two tracks reconstructed from a cosmic ray should

have the same curvature and should have the same reconstructed vertex.

The CTC momentum scale is determined by the magnetic field. The absolute magnetic
field has been mapped to £0.05%, and so the CTC momentum scale is well known a prior:.
The momentum scale is checked using a sample of J/+¢» — ptu~ and v — pTu~ events. The
measured J/1¢ mass agrees with published values within its 0.03% statistical uncertainty,

and the v is 0.1% + 0.1% high.

Three energy corrections are applied to the CEM data. First, the CEM calorimeter
response to electrons varies across the face of a calorimeter tower. This response has been
measured in a test beam, as described in Section 3.2.2, and is found to vary by approximately
6% across the tower face. The position of an electron within the tower is determined from
strip chamber information, and a position dependent correction is applied. Second, the CEM

response varies on a tower by tower basis. Using a sample of 17000 inclusive electrons, the
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relative tower responses are measured by measuring the average of the E/p distribution
on a tower by tower basis. Typical tower to tower corrections are of order 3%. Third, an
overall correction factor determined from 1800 W* — ev events is used to tie the CEM
energy scale to the absolute scale determined from CTC momentum measurements. A
Monte Carlo simulation which includes radiative effects is used to predict the shape of
the E/p distribution. Matching the mean of the E/p distribution from 1800 measured
W% — ev events to the Monte Carlo prediction indicates that the CEM energy scale must
be scaled up by 1.7%. The E/p distributions from the radiative Monte Carlo and from
the data after corrections are shown in Figure 4.1. Using these corrections, CDF has used
65 Z° events in which both electrons are found in the CEM to measure the Z° mass to be
91.14 0.5 GeV/c? [23], in good agreement with the SLC result of 91.14 £ 0.12 GeV/c? [24]

and the average LEP result 91.161 4 0.031 GeV/c? [25].
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There are three energy corrections which are applied to the PEM data, in addition to
the dead layer correction discussed in Section 4.3. First, the PEM calorimeter response
varies on a tower by tower basis. The tower to tower variations in each quadrant have
been measured using electrons from a test beam, and a correction factor is applied. Typical
tower to tower variations are of the order 6%. Second, the PEM calorimeter response is
nonlinear for high energy electrons. This nonlinearity has been measured using test beam
electrons, and is found to be approximately 7% at 200 GeV. Third, quadrant to quadrant
variations are measured using Z° events in which one decay electron is contained in the
CEM. Quadrant correction factors are found by constraining the average Z° mass found in
each quadrant to the average mass value from a quadrant whose response is well measured
in test beam studies. After these corrections, the Z° mass found using CEM-PEM events

is 90.7 + 1.9 GeV/c?, in good agreement with the published CEM-only Z° mass.

The FEM response is nonlinear for very high energy electrons, and a nonlinearity cor-
rection must be applied in addition to the dead layer correction. The FEM response has
been measured with test beam electrons up to 200 GeV. Due to longitudinal boosts, how-
ever, the energies of electrons from Z° decay can range up to 400 GeV in the FEM. The
test beam results are extrapolated by measuring the average Z° mass as a function of FEM
electron energy using Z%’s in which one electron is contained in the CEM. By constraining
the CEM-FEM masses to the CEM-CEM Z° mass, the energy nonlinearity is determined,
and the FEM energy scale is tied to the CEM scale. The nonlinearity correction increases
the cluster energy by approximately 10% for 200 GeV electrons. FEM quadrant to quadrant
variations are measured using the energy spectrum of the neutron induced energy spikes.
These neutron data are in good agreement with the quadrant to quadrant variations seen

in Z° events.
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4.4 Event Selection

Event processing and selection proceeds in several distinct steps. First, all events are
processed with the so—called “production” code: calorimeter ADC data are converted to
energies, full track reconstruction is performed, ! and the electron identification algorithm
(as well as jet, muon, and other physics algorithms) is applied. Events having one or more
identified electromagnetic clusters are written to an initial set of summary tapes. Next, this
initial set of summary tapes is processed by a simple program which applies loose electron
energy and quality cuts to find candidate W* and Z° events; the Z0 events are used in the
asymmetry analysis, while the W¥ events are used to measure various efficiencies. The Z°
candidates are required to have two electromagnetic clusters with transverse energies greater
than 10 GeV, ahd the W* candidates must have one CEM electron with transverse energy
greater than 10 GeV, and missing transverse energy ( Fy, an indirect signature for neutrinos
which have large transverse momentum and escape the detector without interacting) greater
than 20 GeV. The W% and Z° candidate events are written to a second set of summary
tapes. The final event selection is made using this second set of W* and Z° summary
tapes. Energy corrections as discussed above are applied, and energy—dependent quality
parameters are recalculated. More restrictive electron quality cuts and transverse energy
thresholds are applied to the corrected data, along with fiducial volume restrictions, an
event vertex cut, and a trigger requirement to produce samples of well-measured W’s and

Z%s. These cuts and requirements are described below.

4.4.1 Electron Quality Requirements

The angle 6 is defined to be the angle between the incoming quark (or antiquark) and the

outgoing electron (or positron). This definition is charge dependent, and so the charge of

L The track reconstruction used in the “production” processing does not include the azimuthal correction
factors discussed in Section 4.3. Some charge dependent differences are therefore expected in the final event
sample. v
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Ey > 15 GeV
Elp < 15
LSHR < .20
thrip < 15
|Az] < 1.5 cm
Azl < 3.0 cm

Iso(r=.4) < .10

Table 4.1: Tight CEM electron quality cuts.

CEM: Ey > 15 GeV
E/p 1.5
Iso(r=4) < .10

A

PEM: Ey > 15 GeV
X§x3 < 20
VTPC occupancy > 0.5
HAD/EM < .05
Iso(r=.4) < .10

FEM: Ey > 15 GeV

Efront/Etotal >

HAD/EM < .05
Iso(r=.4) < .10

Table 4.2: Electron quality requirements for the second electron in a Z° event.

at least one of the electrons from the Z° decay must be measured. For the asymmetry
measurement, then, at least one of the electrons must be produced in the central region
and leave a well reconstructed track in the CTC. Each event is required to have at least
one electron in the CEM with transverse energy greater than 15 GeV and which passes the
cuts listed in Table 4.1. A second electromagnetic cluster with transverse energy greater
than 15 GeV is required. The second cluster can be contained in any calorimeter, and
must pass the looser quality cuts shown in Table 4.2. Figures 4.2 through 4.4 show the
distributions of the various quality parameters for electrons in the Z° data sample. For each

of the parameters, the electron is required to pass all of the quality requirements except for
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Figure 4.2: Electron quality parameters for electrons in the CEM. Arrows indicate the value
of the quality requirement.
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Figure 4.3: Electron quality parameters for electrons in the PEM. Arrows indicate the value
of the quality requirement.
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of the quality requirement.
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the parameter being plotted. Arrows indicate the cut values.

4.4.2 Fiducial Requirements

In addition to the electron quality cuts, the electrons in the W and Z® samples are restricted
to a fiducial detector volume in which the calorimeter response is well understood and
energies are reliably measured. For the most part, this simply means avoiding cracks and
dead spaces between calorimeter modules, although some dead PEM towers are explicitly

removed. Electrons in the CEM are restricted in the following ways:

Dead spaces between adjacent wedges are excluded by requiring that the extrapolated
track position be within 21 c¢m in ¢ from the tower center. This requires electrons to

be more than 3 cm from the 15° wedge boundaries.

o The crack at 8 = 90° between the two halves of the central calorimeter barrel is

excluded. The extrapolated track position is required to have |z| > 9 cm.

o The cluster seed tower must not be the outermost tower in the central wedge. The
projective geometry for this tower is somewhat extreme; a large amount of radiator
and scintillator is removed, as discussed in Section 3.2.2, and large energy corrections

are required.

¢ A cryogenic and electrical feedthrough for the superconducting solenoid penetrates one
of the central calorimeter wedges. This wedge has seven normal towers, one highly
modified tower, and two missing towers. Electrons are excluded from the missing and

modified towers in this wedge.

Electromagnetic clusters in the PEM are restricted from border regions and dead calorimeter

towers as follows:

e The seed tower must not be in any of the towers adjacent to the ¢ boundary between

quadrants.
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e The seed tower must not be in the two outermost or two innermost 1 annuli. This

excludes the cracks between the CEM and PEM and between the PEM and FEM.

o The seed tower is excluded from 16 dead PEM towers. Of these 16 towers, 13 are in

regions already excluded by the quadrant boundaries.

Electromagnetic clusters in the FEM are restricted from quadrant borders and from regions

with partial hadronic coverage as follows:

o The seed tower must not be in any of the towers adjacent to the ¢ boundary between

quadrants.

o The seed tower is must not be in the 5 innermost 7 annuli. This excludes a region in
which there is only partial hadronic coverage; the low beta quadrupoles penetrate the

FHA, as discussed in Section 3.2.2, and hadronic coverage is limited in this region.

A plot of the allowed 7n-¢ regions is shown in Figure 4.5. The fiducial cuts reduce the

detector acceptance by approximately 29%.

4.4.3 Vertex Requirement

The proton and antiproton bunches circulating in the accelerator have finite lengths, and
so collisions can occur at some distance from the nominal interaction point. The position
of the collision, as determined by the vertex of VTPC tracks, is Gaussian distributed about
the nominal position with a sigma of 30 cm. The projective tower geometry is distorted
for events with large vertex displacement. Furthermore, the detector’s hermiticity is com-
promised; particles from displaced vertices can escape without detection through the crack
between the plug and forward calorimeters. To preserve the detector geometry, events are

required to have vertex positions within 60 cm of the nominal interaction point.
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Figure 4.5: Calorimeter fiducial region for electrons. Three dead towers in the PEM and
the cryogenic solenoid feedthrough at 90° are indicated
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4.4.4 Electron Trigger Requirement

There are a number of different triggers which will accept Z° events, and a single event
may satisfy more than one set of trigger requirements. In order to understand the trigger
efficiency and potential trigger biases, the data are required to satisfy a single trigger. With
all events satisfying one set of trigger requirements, only one trigger efficiency and bias

estimate need be calculated.,

All the events are required to satisfy the so—called ELECTRON_12 trigger. This is a

Level 2 based trigger, and requires:

e an electromagnetic cluster in the CEM with transverse energy greater than 12 GeV,
e the ratio of hadronic to electromagnetic transverse energy HAD/EM < 12.5%,

e a track from the fast track processor matched in ¢ to the calorimeter cluster, and

having transverse momentum p; > 6 GeV.

This trigger requires a valid Level 0 trigger from the BBC and a Level 1 trigger requiring

at least one CEM trigger tower with E; greater than 6 GeV as prerequisites.

Much of the data was collected with no Level 3 eiectron trigger requirement. During
the latter part of the run a Level 3 algorithm was introduced which required the Level
2 ELECTRON_12 trigger as a prerequisite. This Level 3 algorithm calculates the LSHR
variable and uses a more sophisticated tracking algorithm to harden the 6 GeV p; threshold.
For the asymmetry analysis, the final analysis cuts are more restrictive than those imposed
by the Level 3 algorithm, and so the fundamental trigger efficiency is determined by the
Level 2 trigger.

The efficiency of the ELECTRON_12 trigger is measured using events which pass a
similar prescaled 7 GeV trigger. The efficiency of the ELECTRON_12 trigger as a function
of E,; is shown in Figure 4.6. The trigger becomes fully efficient before 15 GeV, and the

trigger efficiency for electrons passing the tight CEM cuts and having transverse energies
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Figure 4.6: The efficiency of the ELECTRON_12 trigger as a function of electron cluster
transverse energy.

greater than 15 GeV is measured to be 97.3 + 0.5%.

4.4.5 The Final Z° Sample and the Angular Distribution

Applying the dielectron cuts to a data sample corresponding to an integrated luminosity of
4.4 pb~! produces a sample of 302 events. A 4-vector is defined for each of the electrons
in this sample. The direction of the electron 4-vector is determined by the position of
the z vertex and the direction of the electron track in the CTC for CEM electrons, and
by the vertex and the plug strip cluster or the energy weighted cluster centroid for PEM
and FEM electrons. In all cases, the energy component of the 4-vector is taken to be the
corrected calorimeter cluster energy. The invariant mass distribution of the 302 dielectron
events is shown in Figure 4.7. There is a prominent Z° peak on a Drell-Yan continuum.
(The efficiency for low mass Drell-Yan pairs falls due to the electron E; requirement.)

Backgrounds appear to be low. The Z° sample is taken to be the 252 events with 75 <
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Figure 4.8: The uncorrected cosf distribution for the 252 events in the invariant mass
region 75 < Mee < 105 GeV.

Mee < 105 GeV. A log likelihood fit of the mass values to a simple Breit—Wigner form
yields a Z9 mass of 91.05 £ 0.23 GeV, in good agreement with the published CDF Z° mass
of 91.1 £ 0.5 GeV/c? [23].

The angle 8 is calculated using the Collins—Soper method, as discussed in Section 2.2
and defined in Equation 2.30. The angular distribution dN/d cos§ of the 252 Z° events is
shown in Figure 4.8. The angular distribution has the parabolic shape predicted by the
differential cross section of Equation 2.29, and there are more events with positive values of

cos é, as expected. The electron E; cut reduces the acceptance for events with large values
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of [cos 8|, and so there are a reduced number of events in the outermost bins of Figure 4.8.

Additional acceptance issues are discussed below.

4.5 Electron Selection Efficiency

The efficiencies for the electron quality cuts and isolation requirement are determined di-
rectly from the W and Z° data [26]. The efficiency of a particular quality requirement
is determined from a Z° data sample in which all quality requirements except the one in
question are made. Data samples selected in this way contain good electrons with little
background, and are unbiased with respect to the quality parameter in question. The

efficiency of a quality cut is defined to be

(= N(pass)
~ N(unbiased sample)

(4.3)

where N(pass) is the number of electrons which satisfy the quality requirement in ques-
tion, and N(unbiased sample) is the number of electrons in an unbiased data sample as
discussed above. Isolation is always required for both electrons, and the isolation efficiency
is determined in a separate calculation. The total electron efficiency, then, is given by the
product of the isolation efficiency and the measured efficiency for isolated electrons. Elec-
tron efficiencies (excluding isolation efficiency) determined from the Z0 data are given in
Table 4.3 [26]. The efficiency of the tight combination of CEM cuts is slightly larger than
the product of the efficiencies of the individual cuts. This is because the E/p and |Az]| cut

are slightly correlated.

Efficiencies for the tight and loose CEM cuts are also determined from the W data[26].
The W'’s are selected by requiring each event to have one isolated CEM electron which
satisfies the fiducial volume cuts, and has F; greater than 25 GeV and a track with p;
greater than 7.5 GeV pointing at the cluster. No further electron quality requirements are
made, and this data sample is unbiased with respect to all of the quality parameters except

isolation. The W events are further required to have FE; greater than 20 GeV, and Fi

56



Quality Parameter ¢ from Z° data | ¢ from W data
CEM: E/p 0.912+£0.020 | 0.916 £ 0.005
LSHR 0.985 £ 0.008 | 0.975 % 0.003
x%m-p 0.976 £ 0.011 | 0.974 £ 0.003
[Az]| 0.985 +£0.008 | 0.979 4+ 0.003
|Az| 0.963 +0.013 | 0.966 + 0.004
All tight CEM cuts | 0.873 £0.023 | 0.877 £ 0.007
All loose CEM cuts | 0.9124+0.020 | 0.916 £ 0.005
PEM: Had/EM 0.992 £ 0.008 -
X343 0.992 £ 0.008 -
VTPC Occupancy | 0.958 +0.019 -
All PEM cuts 0.941 £ 0.022 -
FEM: Had/EM 1.000 £ 0.005 -
Efront/ Etotal 0.977 £ 0.023 -
All cuts 0.977 £ 0.024 -

Table 4.3: Efficiencies for individual electron quality parameters determined from the W
and Z° data samples. :

significance greater than 2.5, where the significance is defined to be

ag, = Et
) >3

where the sum represents the scalar sum of the transverse energy in all the calorimeter

(4.4)

towers. The significance cut helps to reject dijet events in which a mismeasurement of one
of the jets contributes a large E;. To remove residual background from dijet events in which
one jet is poorly measured, the W events are required to have no jet with F¢ greater than
10 GeV opposite in azimuth (i.e. within £30° of the direction opposite in azimuth) of the
electron cluster. The efficiencies of the electron quality cuts (excluding isolation efficiency)
determined from the W data are also given in Table 4.3 [26]. The efficiencies determined

from the W and Z0 data samples agree well.

The isolation efficiency depends on the amount of underlying event energy contained
in the t = 0.4 isolation cone, as discussed in Section 4.2.2. The isolation efficiency is
calculated by artificially moving the electron clusters from Z° decays to different regions in

the detector, and recalculating the isolation parameter at each new position [26]. Moving
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Figure 4.9: Isolation cones used in the calculation of the isolation efficiency. The circles
indicate the cones of radius 0.4, and the X’s sho the location of the electrons in the original
70 event.

the electron positions in this way samples different parts of the underlying event, and allows
one to measure the effect of underlying event fluctuations on the isolation parameter. In
practice, the size of an electron shower in 7-¢ space varies with 7, and so the cluster n should
remain fixed when varying the position. Furthermore, for events in which both electrons are
deposited in the CEM, care must be taken when changing electron positions so that the two
electron clusters never overlap. Figure 4.9 shows an 7-¢ plot of a typical Z0 event, along

with the new isolation cones used in the efficiency calculation. The isolation efficiencies
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Electron Isolation Efficiency
CEM 0.985 £ 0.003
PEM 0.976 £ 0.007
FEM 0.977 £ 0.011

Table 4.4: Flectron isolation efficiencies.

determined for each detector are given in Table 4.4 [26].

The isolation efficiency for CEM electrons has been checked using the W and Z data [26].
By requiring the electrons to pass all the quality cuts except isolation, one can calculate the
isolation efficiency in the same manner used to calculate the efficiency of the quality cuts.
The isolation efficiency measured using the W data is 0.97740.003 [26], and is 0.97740.011

[26] from the Z° sample, in agreement with the CEM value in Table 4.4.

4.6 cosf Acceptance

A Monte Carlo event generator and a simple detector simulation are used to determine
the acceptance of the CDF detector and analysis cuts as a function of cos§. The detector
geometry and electron F; cut are easily simulated. The electron quality and isolation cuts
are simulated simply by accepting and rejecting events based on the measured efficiency
of the cuts. This is much faster than a full simulation of each detector component. The
efficiencies used are the product of the electron quality and isolation efficiencies given in

Tables 4.3 and 4.4, and are taken to be

€cEM(igny = 0.860 £ 0.023
€CEM(loosey = 0.898 £ 0.020
epem = 0.918 £ 0.023
erem = 0.954 £ 0.026
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The ISAJET Monte Carlo (version 6.22) [27] is used as the event generator for the

acceptance calculation. The EHLQ 1 [16] parametrization is used to describe the quark

momentum distribution functions. The steps in the acceptance calculation are as follows:

10.

Generate pp — ete™ events

. Make histogram of dN/d cos# using generated quantities for events with 75 GeV <

Mee < 105 GeV

. Smear the event vertex with cyertex = 30.0 cm

Extrapolate the electron 4-vectors to the detector,

Make fiducial cuts on the extrapolated position consistent with those made on the

data.

Smear the electron energy by the calorimeter resolutions:

(0.135/v/Esin8)? + (0.017)?
0.28/VE + .02
FEM og/E = 025/VE + .005

CEM (ogp/E)?

PEM  og/E

. Make the Fy cut on each electron (15 GeV).

Discard electrons in each detector based on the combined efficiencies for the electron

quality cuts given above

Make histogram of dN/d cos § using smeared quantities for events passing the above

acceptance cuts and having 75 GeV < Mee < 105 GeV

The cos § dependent acceptance is defined to be the bin—by-bin ratio of the histogram

of step 9 and the histogram of step 2
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Figure 4.10: Longitudinal momentum of Z%’s. The points show the CDF data and the line
shows the ISAJET Monte Carlo prediction.

Figures 4.10 through 4.12 show comparisons between kinematic quantities generated by
the Monte Carlo calculations and the real data. The longitudinal and transverse momenta
of the Z0 are shown in Figures 4.10 and 4.11, respectively. There is good agreement
between the data and the Monte Carlo for these two kinematic quantities, implying that the
Monte Carlo generates events with the proper kinematics. Figure 4.12 shows the detector
occupancy for electrons as a function of calorimeter n band. The gaps are due to the fiducial
cuts between calorimeter elements. The Monte Carlo and data agree well, implying that
the simple simulé,tion correctly reproduces the detector geometry, the vertex smearing, and

the relative detector efficiencies.

A plot of acceptance versus cos 8 is shown in Figure 4.13. Histogram bins have been
combined in a symmetric fashion in order to increase the statistical accuracy of the ac-
ceptance measurement; potential asymmetries in the detector acceptance are discussed in

Section 5.2.4. The size of the statistical error bars is small compared to the size of the
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histogram shows the ISAJET Monte Carlo prediction.
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plotting symbol. The acceptance for small values of |cosf| is reduced by kinematics and
the requirement that one electron be located in the CEM. Events with small | cos 6] values
are produced with 6 ~ 90°; longitudinal motion of the Z° often boosts both the decay
electrons in events of this type out of the central region and into the gas calorimeters. The
acceptance is significantly reduced for Icos(;] > 0.9 for two reasons. First, the Fy's of the
electrons in events with large values of cosd tend to peak at low values, due to simple
kinematics (E; ~ Esinf), and a large number of these events are lost due to the E; cut.
Second, there is an upper limit on cosf defined by the geometric extent of the FEM and
CEM calorimeters and the requirement that one of the electron clusters be located in the
CEM. The angular distribution is corrected bin—by-bin for acceptance to produce the plot

of 1/o do/d cosf shown in Figure 4.14.

4.7 Background Estimates

There are four sources of background events in the Z° data sample which are considered;
e real electrons from semileptonic decays of heavy quarks,

the tail of hadronic jet fragmentation which produces high energy 7%s as leading

particles, as discussed in Section 4.2.2,
o W — ev + jet events in which the jet produces an electromagnetic cluster,
o real electrons from decays of 7’s in 7% — rtr= = etv.p-e” Devr events.

The first two sources are lumped together and investigated using isolation. The second two

are investigated using Monte Carlo techniques.

4.7.1 QCD Background -

The QCD background is estimated from three studies of the invariant mass spectrum and an

isolation parameter called Iz, where Iingz is defined to be the larger of the isolation values
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65



60 —

Events / 0.01

0 0.05 0.1 0.15 0.2 0.25 0.3

max

Figure 4.15: Maximium isolation Ijye, for dielectron events in the mass region between 75

and 105 GeV/c?.

for the two electromagnetic clusters in the event. A plot of [, for events with two electrons
passing all the electron quality cuts except isolation and having invariant masses between
75 and 105 GeV/c? is shown in Figure 4.15. The Imgq distribution shown in Figure 4.15
peaks at a somewhat higher value than the distributions of isolation shown in Figures 4.2
through 4.4. The QCD background is assumed to be flat in I,z above Ipgy = 0.1, and
then to fall linearly with Imaz in the region 0 < Ipnez < 0.1, going to 0 at Inmge = 0. This
is approximately consistent with the behavior of I, for identified photon conversions and
7% in the data, and with the behavior of bb events generated with the ISAJET Monte
Carlo, as shown in Figure 4.16. The QCD background is expected to be a steeply falling
function of the invariant mass. For the purposes of the background estimation, the QCD

background is assumed to fall linearly with invariant mass in the region of the Z°, going to

0 at 120 GeV.

A plot of Ijpay versus invariant mass for events with two electrons passing all the electron

66



v Conversion to e*e” 7% + EM cluster bb -+ e‘e”
CDF Data CDF Data Monte Carlo

Tl

0 0.1 0.2 0.3
I

max

Figure 4.16: Distributions of maximum isolation, Ijeg, for identified photon conversions
and 7%’ from the CDF data and bb Monte Carlo events.

quality cuts except isolation is shown in Figure 4.17. (This plot is made without the
ELECTRON_12 trigger requirement.) Three background estimates are made using the
events in the regions marked a---e and Z. The ;‘egion marked Z contains 257 events
assumed to be Z%’s with a small amount of background. Regions d and e contain 14 and 3
events, respectively, which are assumed to be Drell-Yan events with background. Region b
contains 24 events, and is assumed to be mostly background with a few real Z° events with
Lpaz values which have fluctuated up. Regions @ and ¢ contain 10 and 4 events respectively,
and are assumed to be pure background; there are too few Drell-Yan events in these mass

regions to contribute through Ipy., fluctuations.

In the first of the three background estimation methods, the known isolation efficiency
is used to estimate the number of real Z° fluctuations in region b. Assuming an average
isolation efficiency of 0.98, the probability of one of the two electrons from a Z° decay having
Imaz > 0.1 s given by P = 1.0 — (0.98)% = 0.04. Assuming, for the moment, that the 257
events in the Z region are all good Z%’s, this implies that there are 10.6 good Z° events

in the b region, and therefore 13.4 background events in region b. One can now use the
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assumed behavior of the background in I;n.; to extrapolate the 13.4 background events in
the b region back into the Z region. This extrapolation predicts 7 background events in the
70 sample.

In the second method, the background is assumed to fall linearly with invariant mass,
and the 14 background events in in regions a and ¢ are extrapolated to predict 14 background
events in the b region. These 14 background events in region b are, in turn, extrapolated
into the Z region using the assumed behavior of I, to predict 7 background events in the
Z° sample.

In the third method, the invariant mass spectrum for Drell-Yan plus Z° events is nor-
malized to the number of events in the Z region, and then used to predict 6.5 and 4.3
Drell-Yan events in regions d and e, respectively. This implies that the remaining 6 events
in regions d and e are background. These 6 background events are extrapolated usiﬁg the

linearly falling invariant mass spectrum to predict 6 background events in the Z° sample.

The three QCD background estimates agree well with one another. The background in

the Z% sample due to QCD sources is taken to be 7 £ 3 events.

4.7.2 W — ev + jet Background

The background due to W — ev + jet where the jet fakes a second electron is interesting
because the distribution of electrons from the W decay is itself asymmetric, and may have a
significant effect on the observed Z°? asymmetry. The background due to W + jet production
is estimated using a combination of data studies and Monte Carlo simulation. The relative
rates of Z® and W + jet production are measured from the data, as is the probability of
a jet fragmenting to produce an electromagnetic energy cluster, while the kinematics are

studied with a Monte Carlo.

The ratio of the W and Z° cross sections, R = o+ B(W — ev)/o - B(Z — eTe™), is
measured to be 10.2 [28]. Using this ratio and the measured number of Z° events in the

data sample, one estimates that there are approximately 2570 W — ev events in which the
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electron from the W decay would pass the CEM electron cuts listed in Table 4.1. Of these
W events, 26.6% are produced with a jet having transverse energy greater than 15 GeV
[29].

The probability of a jet faking an electron in the central detector is small due to the E/p
requirement, and is estimated to be approximately 1/2000 [30]. The background from W
+ jet events in which the jet is in the central region of the detector is therefore expected to
be negligible. and only events with jets located in the gas calorimeters are considered. The
properties of jets in the gas calorimeters have been measured using a dijet sample in which
one of the jets is required to be in the central region of the detector [31]. An upper limit
on the number of jets which would pass the electron quality requirements can be estimated
from the ratio of hadronic to electromagnetic transverse energies, HAD/EM, for jets in the
gas calorimeters. It is estimated that 0.5% of the jets in the PEM would pass the 0.05
HAD/EM cut shown in Table 4.2, and that 2.2% of the jets in the FEM would pass the

HAD/EM cut.

The PAPAGENO [32] Monte Carlo is used to produce W + jet events with the proper
decay kinematics. The event vertex is smeared, and the electron and jet 4-vectors are
extrapolated into the detector. Both the electron and the jet are required to have transverse
energies greater than 15 GeV. The electron from the W decay is required to be in the central
region, and the jet is required to be in one of the gas calorimeters; no requirement is made
on the neutrino from the W decay. An “invariant mass” is constructed using the electron
and jet 4-vectors; the invariant mass calculated in this way is required to be in the range
75 GeV < M._jet < 105 GeV. Finally, the event is weighted by the probability that the
jet would pass the HAD/EM quality cut. Of the events in which both electron and the jet
have transverse energies greater than 15 GeV, fewer than 0.53% pass the kinematic and
HAD/EM cuts. After combining the calculation of the total W event rate with the Monte
Carlo results, it is estimated that there are fewer than 0.4 events in the Z° sample from W

+ jet events in which the jet fakes a second electron.
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Figure 4.18: Angular distribution of W + jet events in which the jet fakes a second electron.

‘Although the angular distribution of electrons from W decays are very asymmetric,
as shown in Section 2.1, the W in the event is not reconstructed properly; the electron
and the jet are assumed to be the outgoing electrons from a Z° decay, and the resulting
angular distribution is distorted. The cos§ distribution for events of this type is shown
in Figure 4.18, where cosf is calculated from Equation 2.30 using the electron and jet
4-vectors. There is a residual :;.Lsymmetry of 36% due to the asymmetry in the electron

distribution from the decay of the W.

4.7.3 7Z° - vt~ Background

The background due to Z® — 777~ events in which both 7’s decay to electrons is estimated
using the ISAJET Monte Carlo. Z° — rtr— = ety e Uov, events are generated with
ISAJET, and fiducial and electron E; cuts are applied. The generated events are scaled

to the 1988-1989 integrated luminosity, assuming o - B(Z° — 7+7~) = 200nb and a 7 —
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Figure 4.19: Invariant mass distribution of 7% - vt~ — etv.pre Dovr Monte Carlo
events, after scaling to the integrated luminosity for the 1988-1989 run.

evevr branching fraction of 0.18. The invariant mass spectrum of dielectrons is shown in
Figure 4.19 after the luminosity scaling. One event passes the fiducial and E} cuts, and
0.02 events are contained in the region 75 < Mee < 105 GeV. The 7% — r+7~ background

in the Z° — ete™ sample is negligible.
3
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Chapter 5

Data Analysis

There are several different ways of extracting the forward-backward asymmetry from the
angular distribution. This chapter discusses the methods used to measure both Ay and

sin? fyy, and presents an analysis of the systematic uncertainties on the measurement.

5.1 Determining Apg and sin® §y

Three ﬁlethods are used to determine sin? fy and Apg from the angular distribution; two
different fits to a functional form, and a direct technique. Values for sin? 8y are determined
from the two fitting methods by fitting the data to the full lowest order cross section of
Equation 2.29, and extracting sin? y directly. Values for the asymmetry are determined

by fitting to a simpler parabolic form,

ds - = (1+ cos?) + Bcos¥; (5.1)
dcos@

the forward—backward asymmetry is given by
3
AFB = gﬂ (5.2)

The MINUIT [33] function minimization package is used to minimize either a log-likelihood

or a chi-square function for the fits. In the direct method, ArB is measured directly from
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the acceptance corrected 1/o do/dcosé distribution of Figure 4.14 using the definition of
Equation 2.16. A value for sin® @y is then determined from this asymmetry value. Each of
these three methods is described below, paying particular attention to acceptance effects.

To simplify equations presented below, the lowest order cross section of Equation 2.29

is represented by the simple form

do
dcos b

= A(1 4 cos?8) + B cosf (5.3)

where A and B are functions of sin? fy and include integrations over structure functions and
kinematic variables. (The forward-backward asymmetry is given by Apg = %%) It is also
convenient to describe the detector acceptance by a function €(cos? 9), which is explicitly

symmetric in cosf.

5.1.1 Negative log likelihood fit

The method of choice for measuring sin? 8y is an unbinned, event by event negative log like-
lihood fit to the dN/d cos § distribution of Figure 4.8. A disadvantage of any log likelihood
fit is that the value of the likelihood is not readily converted into a measure of the goodness
of the fit. For the asymmetry analysis, however, a log likelihood fit has the advantage that
the estimation of sin?6fw and App is independent of the acceptance if the acceptance is

symmetric in cos 8.
The log likelihood fit begins with a normalized probability distribution function derived
from the simplified cross section of Equation 5.3:
P(sin? Oy, cos §) = g ((1 + cos? ) + B/A cos 0) . (5.4)

After the normalization, all the information about the forward-backward asymmetry and
sin? O is contained in the B/A term. The acceptance is incorporated into the analysis by
defining a new normalized acceptance-corrected probability function P’ which includes the

acceptance function e(cos? §):

P'(sin? yy, cos §) = gNe(cos2 9) ((1 + cos?) + B/Acos é) , (5.5)
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where NV is a normalization factor given by

- 3 1 ; A s 3 - . \
Nl = g/1e(c0520)(1+cos29)dc080+g/le(cos20)A/Bcos(9dc059 (5.6)

3 1 R N N
= 3 /16((1082 0)(1 + cos®@)dcosf+ 0.

The normalization factor N is determined by the components of the probability distribution
P’ which are even with respect to cosf; the odd components integrate to zero. N is
independent of both sin?#yy and the asymmetry. The acceptance—corrected probability
distribution P’ now describes the angular distribution measured with the CDF detector

and electron quality cuts described in Section 4.4.1.

The likelihood, £, and the negative log likelihood for a given data sample are defined
by

L = I_INE,'(cos2 §) P;(sin? 8y, cos §) (5.7)
]

—Inl

- Zln(Ne,'(cosz 9)) — Zln P;(sin® By, cos 6) (5.8)
) 2

where P; and ¢; are the probability and acceptance weight for the ith data event. The

best estimate of sin? fyy (or ApB) for a given data sample is the value of sin? By which

maximizes the likelihood £ or minimizes —In £ for the sample. For a given data sample,

the term Zln(Ne,‘(cos2 §)) is a constant, independent of sin €@y, and does not affect the
7

minimization of — In £ and the estimation of sin? §y or App. For the negative log likelihood

fit, then, the parameter estimation is independent of the acceptance if the acceptance is

symmetric in cos#f.

Plots of —In £ versus 3 from Equation 5.1 and versus sin? §y for the uncorrected an-
gular distribution of Figure 4.8 are shown in Figures 5.1 and 5.2, respectively. The log
likelihood functions are smooth, and have minima at 8 = 0.1333 (which implies an asym-
metry Apg = 5.00%) and at sin? 8y = 0.2314 (using EHLQ 1 distribution functions). The
68.3% (10) confidence intervals for the fitted values of 8 or Arp and sin? Oy can be es-

timated from the —In £ functions [34]. The 68.3% confidence interval corresponds to an
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increase of % in the value of —In L above the minimum value. This increase is shown by
the dashed lines in Figures 5.1 and 5.2, and the confidence intervals are indicated by the
arrows. The —In L function for the 8 parameter is nearly symmetric about its minimum,
and the confidence interval is also symmetric about the estimated value of 3. The forward-
backward asymmetry is determined from the —In L fit to be App = (5.0 + 5.9 (stat))%.
The —1n £ function for sin? 8y is somewhat asymmetric about its minimum, and so the
confidence interval is not symmetric about the estimated sin? 8y value. The —In £ fit of the
angular distribution of Figure 4.8 to the lowest order cross section of Equation 2.29 gives
sin? Oy = 0.23 1+8 8%; While the forward-backward asymmetry and sin? 8y are directly re-
lated, as shown in Figure 2.5, this relationship is not strictly linear. Due to the curvature of
the asymmetry function in the region near sin? fy = 0.23, a confidence interval symmetric
about a fitted value of App is not symmetric about the sin® @y value corresponding to the

fitted value of ApB.

5.1.2 Binned 2 fit

The second method for measuring sin®fyy is a binned x? fit to the acceptance corrected

(1/0)do/d cos § distribution of Figure 4.14. In this fit, the x? statistic is defined by

Z(yz 331)) (5.9)

where y; is the number of entries in the ith bin of the (1/a)do/d cos § distribution, y(z;) is
the number of entries in the bin centered at z; predicted by the angular distribution, and o;
is the statistical uncertainty on the number of entries in the ith bin. The best estimate of
sin? Oy (or Arp) is the value of sin? @y which minimizes the x? statistic. An advantage of
the x? method is that the value of the x? statistic gives some insight into the quality of the
fit. This method, however, depends explicitly on the acceptance measured in Section 4.6,
and is also sensitive to the relative normalizations of the predicted and measured angular

distributions.
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Figure 5.3: Contour plot of x? as a function of § and a normalization factor. The location
of the minimum and the 68.3% and 99.4% confidence contours are indicated.

To ensure that the measured angular distribution is suitably normaliied, a normalization
factor is allowed to vary along with sin®6@w in the x? fits. Furthermore, the acceptance
corrections to the contents of the outermost bins of the angular distribution are relatively
large, and so small fluctuations in the contents of these bins can have a large effect on
the distribution after the corrections are applied. The two outermost bins are therefore

excluded from the x?2 fits.

A contour plot of x2 as a function of 3 from Equation 5.1 and a normalization factor
is shown in Figure 5.3. Figure 5.4 shows a contour plot of x? as a function of sin? By and
a normalization constant. The x? contours are smooth, and have minima at 8 = 0.1097,
implying App = 4.11%, and at sin? 8y = 0.2338 (assuming EHLQ 1 distribution functions).
The x? value at each minimum is 5.6, which, for 16 degrees of freedom, implies a confidence
level for the fits of 99.7%. As with the In £ fits, confidence regions can be estimated from

the x2 function. The 68.3% (1lo) and 95.4% (20) confidence regions, corresponding to
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Figure 5.4: Contour plot of x? as a function of sin?fy and a normalization factor. The
location of the minimum and the 68.3% and 99.4% confidence contours are indicated.

increases of 1 and 4, respectively, in the value of 2 above the minimum value, are shown
in Figures 5.3 and 5.4. The lo confidence region is approximately symmetric in 8 about
the estimated value, and gives App = (4.1 £ 6.2 (stat))%. As in the InL case, the lo
confidence region is asymmetric in sin? 8y, and gives sin? §yy = 0.23470.915. Note that the
semi-axes of the elliptical contours of constant x? are aligned with the axes corresponding
to the normalization constant and to 3 or sin?fw. This implies that the normalization
constant is uncorrelated with 3 or sin? fyy, and that the estimated values of 8 and sin? By

are independent of the estimated normalization factor.
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5.1.3 Direct Measurement of Apg

The third method is direct measurement of App based on the definition of Equation 2.16:

1 do do
A dcosd d(cos ) - /i dcosf d(cosf)
1 .

/ do 7 d(cos )

_1 dcos

AFB

This method of determining the asymmetry is acceptance dependent, and the measurement
is made using the acceptance corrected (1/o)do/dcos@ distribution of Figure 4.14. The
integrated cross sections are determined simply by summing the contents of the bins in the
forward and backward regions of the (1/0)do/d cos 8 distribution. As with the binned x2
method, the bins nearest | cosf| = 1.0 are excluded and the measurement is corrected for
this restricted Icosél range. After corrections, the direct method gives the result App =
(5.4 + 6.8 (stat))%. The value of sin?#@y is determined by comparing the acceptance-
corrected measured value of App with the values predicted by the lowest order cross section

with EHLQ 1 distribution functions to give sin? 8y = 0.23013:913 (stat).

5.1.4 Background Subtraction and Summary

There are an estimated 7 & 3 background events in the Z° sample, which are assumed to
have an angular distribution symmetric in cos g. If the background in the data sample is

small and symmetric in cos 8, the observed asymmetry is described by the simple relation

AFB|observed = AFBltrue - (1 —-z), (5.10)

where z is the fraction of background events in the sample. Using this relation and the
estimate of 7 non-dielectron background events from Section 4.7, the results are corrected
for background by increasing the observed forward-backward asymmetry by a relative 2.8%
and by decreasing the sin®#@y values by approximately 0.0004. The uncertainty on the
background measurement is treated as a systematic uncertainty, and is discussed in Sec-

tion 5.2.2.
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Sumary of Fit Results

Method sin” By ArB Xz/d.o.f.
Log likelihood | 0.2317551% | 5.0 £ 5.9%
Binned x* [0.2347008 [4.14+6.2% | 5.6/16
Direct count | 0.230757078 | 5.4 + 6.8%

Table 5.1: Results of the various parameter determinations after background corrections

The Z° sample is estimated to have fewer than 0.4 background events due to W — ev +
jet, where the jet fakes a second electron. This background is small, but has an asymmetry
of 36% as shown in Figure 4.18. For a small asymmetric background, the change in the

measured asymmetry is given by

AAFB =z - AFBlbackgrounda (5'11)

where z is the fraction of background events in the sample and ApB|sackground is the inherent
asymmetry of the background events. For the background due to W + jet, the change in

the asymmetry is less than 0.06%, and is considered to be negligible.

The results of the three methods after background corrections are given in Table 5.1. The
various values of Arp and sin® 8y show good agreement, as do the statistical uncertainties.
The negative log likelihood is the preferred method for determining sin @y because it is
independent of the acceptance measurement and has the smallest statistical uncertainty. It

is the log likelihood value which will be quoted as a final result.

5.2 Systematic Uncertainties

There are several potential sources of systematic uncertainty on the asymmetry measure-
ment, arising from both physics effects and detector effects. Below we discuss each in turn

and estimate the size of these systematic effects.
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sin? By Arp (%)
Method L o 7 o
Log likelihood | 0.2315 £ 0.0008 | 0.0170 £ 0.0006 | 4.97 £ 0.26 | 6.35 £ 0.21
Binned x? 0.2305 £ 0.0009 | 0.0206 £+ 0.0007 | 5.35 £ 0.34 | 7.62 £ 0.25
Direct count | 0.2316 £ 0.0009 | 0.0198 £ 0.0006 | 4.95 4+ 0.33 | 7.27 £ 0.24

Table 5.2: Mean and sigma of fits to multiple toy Monte Carlo data samples

5.2.1 Fitting Uncertainties

Possible biases in the fitting procedures are investigated using a toy Monte Carlo. 500 data

samples are generated according to the distribution

dé A .\
dc:sé = (1 + cos?8) + 0.1350 cos §; (5.12)

this corresponds to a forward—backward ﬁsymmetry of 5.06% and the value sin’fy =
0.2313. Each Monte Carlo data sample contains 252 “events” which have been “accepted”
based on the cosé acceptance shown in Figure 4.13. The toy Monte Carlo data samples,
then, have the same characteristics as the real Z° sample. Each sample is analyzed using all
three methods, and a distribution of the results of each method is made. Each distribution
is fitted to Gaussian form, and the mean and sigma of the Gaussian is determined for each
of the distriblutions. The means of the distributions of extracted values should agree with
the input of the toy Monte Carlo, and the sigmas of the distributions should agree with
the statistical uncertainties on the real Z% sample. The results of these studies are given in
Table 5.2. The means agree within their statistical uncertainties with the toy Monte Carlo
input parameters. The sigmas are comparable to the statistical uncertainties derived from
the MINUIT fits to the the Z° sample and shown in Table 5.1. The log likelihood method

is seen to have the smallest statistical uncertainty of the three methods.

All unbiased parameter estimators should give the same results when applied to the an
infinitely large data sample. With a finite number of events, however, there can be statistical

fluctuations in the results of multiple estimation methods, and the results of two different
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sin® Oy ArB (%)

Fitter pair I o 7 o

InL — x? 0.0010 4 0.0004 | 0.0093 + 0.0003 | —0.38 £ 0.16 | 3.48 £ 0.11
In L - Direct | 0.0000 £ 0.0004 | 0.0098 & 0.0003 | 0.01+0.16 | 3.6740.12
x* - Direct | —0.0011+£0.0005 | 0.0118 £ 0.0004 | 0.40+0.20 | 4.42+0.14

Table 5.3: Mean and sigma of the distribution of the differences between fits to the toy
Monte Carlo data samples.

estimators cannot be expected to agree perfectly. The size of these statistical fluctuations
is investigated using the toy Monte Carlo samples discussed above. Values for each of the
500 samples are determined with all three methods, and the differences between each of the
methods is taken for each sample. The mean of the distribution of differences should be 0
for two unbiased estimation methods, and the sigma is a measure of the statistical scatter
expected between the two different methods when applied to the same data sample. The
results are given in Table 5.3. The log likelihood and direct methods give consistent results,
but the x? estimation seems systematically shifted. The scatter of values determined from

the Z® sample and given in Table 5.1 are all well within the expected limits.

The three methods of measuring Arp and sin? @y are found to agree within statistical
uncertainties; no systematic bias is evident in the Z° sample itself. Both the log likelihood
and the direct methods are unbiased. The x? method, however, seems to give results
which are systematically shifted by approximately 0.4% in Arg and 0.001 in sin? G, The
. systematic uncertainty on the log likelihood fit is taken to be the statistical uncertainty
on the mean of the distribution of log likelihood fits to the toy Monte Carlo samples; any
systematic effect smaller than this uncertainty is unmeasurable with the current Monte
Carlo statistics. The systematic uncertainty on App is taken to be 0.26% and on sin? By is

0.0008.
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5.2.2 Uncertainty in the Background Estimation

The asymmetry and sin? 6y values reported in Table 5.1 have been corrected for a small
background contribution. The size of the background contribution is itself uncertain, and
so there is an uncertainty on the size of the background correction. The background un-
certainty of 3 events and the relation of Equation 5.10 implies an uncertainty of 0.0002 on

sin? 4y and a relative 1.2% on the asymmetry.

5.2.3 Calorimeter Energy Scale

The calorimeter energy scale affects the measured angular distribution by affecting the
boost into the rest frame of the electron pair. A global energy scale change has no effect,
but differences in the energy scales between calorimeter elements can change the measured

cos 8 values.

Energy scale effects are investigated using data generated with the ISAJET [27] Monte
Carlo. 50 data samples of 700 pp — ete™ events each are generated. ‘Values for cosé
are determined using the generated electron 4-vectors, and values for Apg and sin?fyy are
extracted for each data sample. The electrons are then extrapolated to the calorimeter
faces, and the 4—vectors scaled by detector—dependent scale factors to simulate energy scale
differences. New cos f values are calculated for each event, and new App and sin? 8y values
are extracted for each data sample. The distribution of differences between the first and
second sets of Apg and sin® fyy values is a measure of the systematic effect of energy scale
changes.

Raising the PEM and FEM energy scales by 5%, a typical size for the energy correc-
tions discussed in Section 4.3, has little effect. The mean of the distribution of differences
of sin? @y values is —0.00002 £ 0.00001. Raising the energy scale of all the calorimeter
elements in the West-half of the detector by 5% has a slightly larger effect. The mean of the

distribution of differences of sin® fyy values is 0.0000840.00007. The systematic uncertainty
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due to energy scale effects is taken to be 0.00008 on sin? 8w and 0.03% on Apg.

5.2.4 Asymmetry in cosf Acceptance

All the results presented so far assume that the detector acceptance is symmetric in cos §.
An asymmetric acceptance, however, can enhance or reduce the observed asymmetry. It is

important, therefore, to measure (or set limits on) any asymmetry in the acceptance.

The acceptance is symmetric in cos 8 if the acceptance of the physical detector is sym-
metric in 75 or if the detector acceptance is independent of the charge of the electrons. This
is illustrated in Figures 5.5a-c. Figure 5.5a shows an R-z view of a random Z° decay in the
CDF detector. Figure 5.5b shows the same event, but with the 2 components of the electron
and positron 4-vectors reversed; this changes n to —7 for each lepton and changes the sign
of cos 6. If the detector acceptance is symmetric in 7 (even if it is charge dependent), then
the acceptance will be the same for the event configurations shown in Figures 5.5a and
5.5b, independent of the sign of cosf. Since the acceptance is independent of the sign of
cos 8, it must be symmetric in cos §. If the detector acceptance is symmetric in 7, then it is
also symmetric in cos §. Figure 5.5¢ shows the event of Figure 5.5a, but with the identities
of the electron and positron exchanged; the event topology in Figures 5.5a and 5.5c¢ is the
same, but the sign of cos § is different. If the acceptance is independent of the signs of the
electron and positron (even if it is  dependent), then the acceptance is the same for the
events in Figures 5.5a and 5.5c, independent of the sign of cos 6. Again, since the accep-
tance is independent of the sign of cos 8, it must be symmetric in cos 6. The acceptance is
symmetric in cos 6 if the detector acceptance is charge independent. An asymmetry in the
cos 6 acceptance, then, must be due to a detector effect which is both charge dependent and
n dependent. No obvious effect of this type has been seen in the CDF detector, and there

are no obvious charge related biases in the W — ev and Z° — ete™ data samples.

An asymmetry in the cos b acceptance can be described as a charge dependent, 7 depen-

dent inefficiency; events are lost or rejected in a biased fashion. Limits on the size of any
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Figure 5.5: Event topologies and the sign of cos§. The acceptance is symmetric in cos @ if
the detector acceptance is symmetric in 7 or charge independent.
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potential asymmetry in the acceptance can therefore be set by examining the efficiencies
of the charge dependent I;arameters which determine the cos§ acceptance. If an efficiency
is very high, then its potential bias is low. In the analysis which follows, the calorimeter
response is assumed to be charge independent, and therefore incapable of producing an
asymmetry in the acceptance. The analysis concentrates on track related efficiencies in the

central detector region.

Trigger Bias

The Level 2 ELECTRON_12 trigger requires a track from a hardware fast track processor,
and is therefore potentially biased. The trigger efficiency is measured to be 97.3% efficient,
however, and so any bias must be in the 2.7% of the events which fail the trigger. If all of
the events which fail the ELECTRON_12 trigger have cos 6 values with the same sign, then
the forward-backward asymmetry is changed by 1.65% and sin? 6y is changed by 0.0043.
In fact, though, the situation is very much better than this. Any bias in cos § comes from an
7 dependent (and charge dependent) bias in the cent‘ral detector; the n dependence implies
that the acceptance depends on the physical position of an electron within the central
detector. For any given central electron, though, the sign of cosf can change depending on
the second electron in the event. This is shown in Figures 5.6a and 5.6b. The position of
the central electron in each figure is the same, but the sign of cos # depends on the second
electron, and is different for Figures 5.6a and 5.6b. Any bias in‘cosé due to the central

electron, then, is washed out by the second electron.

A reliable estimate of the possible bias due to the trigger (or any other) efficiency requires
a Monte Carlo simulation. The trigger efficiency is simulated with a linear function of charge
and 7 given by

€Trigger = 0.973 + (1.000 — 0.973)(Q X n), (5.13)

where Q and 7 are the charge and pseudorapidity of a CEM electron in a Z° event. This

efficiency function is 100% at @ x n = 1.0, the limit of the central fiducial region, and
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Figure 5.6: Asymmetries in the cos f acceptance due to event topology and detector bias.
Charge and n dependent biases on central electrons are washed out by the second electron.
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the overall efficiency is constrained to be 97.3%, as measured. ISAJET is used to generate
650 Monte Carlo event samples of 252 events each. A trigger simulation is applied twicé
to each event sample; once to produce a subsample of events selected with an unbiased
trigger efficiency of 97.3%, and once to produce a subsample of events selected with the
biased trigger efficiency of Equation 5.13. Values for Apg and sin? yy are extracted for the
biased and unbiased subsamples, and compared. The trigger bias is given by the systematic
difference in the App and sin? 6@y values determined from the biased and unbiased event
samples. The distribution of the differences in App values for biased and unbiased event
samples has the mean —0.18 + 0.02%, and the distribution of the differences in sin? Oy
values has the mean 0.00049+ 0.00007. There is a measurable difference between the biased
and unbiased event samples. The systematic uncertainty on App due to potential trigger

bias is assigned to be 0.18%, and the uncertainty on sin? 8y is taken to be 0.0005.

Track Reconstruction

The track reconstruction efficiency for the isolated, high p; tracks associated with electrons
in W and Z° decays is estimated to be 99+ 1% [35]. (For a sample of cosmic rays, the track
reconstruction efficiency is measured to be 99.86%.) Assuming a reconstruction efficiency
of 99% linear in @ X 7, as shown in Equation 5.13 and applying the Monte Carlo analysis
described above, the systematic uncertainty on App is found to be 0.14% and the uncertainty

on sin? 8y is 0.0004.

Electron Quality Requirements

The electron quality requirements can introduce an asymmetry in the cosf acceptance
as well. The PEM and FEM calorimeter based quality requirements are assumed to be
charge independent, and therefore symmetric in cos 6. The V’fPC occupancy requirement
is insensitive to the curvature of particles in the solenoidal magnetic field and is assumed

to be charge independent.
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Potential biases in the CEM electron quality requirements are investigated using a high
statistics electron sample from W¥ decays and a Kolmogorov—Smirnov test. The W's are
selected by requiring each event to have one isolated CEM electron with E; greater than
15 GeV satisfying fiducial volume cuts and the tight CEM electron quality requirements of
Table 4.1. The W events are further required to have #; greater than 20 GeV, gy significance
greater than 2.5, no jet greater than 10 GeV opposite in ¢ to the electron, and transverse

mass greater than 50 GeV, where the transverse mass M is defined by

My = \/ﬁtzta — cos(de — ¢g,))s (5.14)

where ¢, and ¢p, are the azimuthal angles of the electron and the J; vector, respectively.
The electrons from the W events must satisfy the same electron requirements as the Z°
electrons. If there are biases in the electron requirements, the W and Z9 electrons will be
affected in the same way, and any potential bias will be more easily observed with the higher

statistics of the W sample.

The Kolmogorov—Smirnov (or K-S) test is used to compare two sample distributions,
and gives a measure of the probability that both sample distributions are drawn from the
same parent probability distribution. The K-S test is valid for unbinned distributions
of a single variable, and is based on cumulative (or integrated) probability distribution
functions. If one defines a range of interest from iy t0 T,pey containing N events with
values z;,t = 1,..., N, then the cumulative probability distribution function Sy(z) gives
the fraction of the data points which lie in the range of interest but have values less than z.
Sn(z), then, has the value 0 at @ = Tmin and 1 at £ = Tmag, and increases in steps of 1/NV
at each z;. For two cumulative distribution functions Sy(z) and S (z), the K-S statistic
D is defined as the absolute value of the maximum difference between Sn(z) and Sy(z)

over the interval from zmin 10 Zmez, i€
D = maz|Sy(z) — Sn(z)|. (5.15)
If the two samples have nearly the same cumulative probability distribution, then the dif-
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ference D will be small.

The K-S test is a hypothesis test; it attempts to disprove (at some confidence level) the
hypothesis that the two sample distributions are drawn from the same parent distribution.
The distribution of the K-S statistic D is known for two sample distributions which are
drawn from the same parent distribution. One can therefore calculate for a given value
of D the probability that the two sample distributions are drawn from the same parent
distribution. While one can never prove that two samples come from the same parent
distribution, one can use the D distribution to prove that, at some confidence level, the two

samples are not drawn from the same distribution.

The K-S test is used to find charge and n dependent differences in the distributions of the
CEM electron quality parameters. If, according to the K-S test, a parameter distribution is
significantly different for electrons and positrons, then the parameter is charge dependent.
Similarly, if the K-S test indicates that a parameter’s distributions are different for electrons
in the East and West halves of the detector, then the parameter is 7 dependent. If one of
the quality parameters is both charge and 1 dependent, then it is assumed to be biased, and

its effect on the asymmetry is measured with the Monte Carlo technique described above.

The K-S tests indicate that, at the 95% confidence level, there are significant differences
in the E/p and Az distributions for electrons in the East and West halves of the detector,
and in the Az distribution for positrons and electrons. Differences are also seen in the other
distributions for these three quality parameters, and so these three parameters are assumed
to be biaséd. The cumulative probability distributions for positrons and electrons and for
electrons in the Fast and West halves of the detector are shown in Figure 5.7 for these three
quality parameters. The East—West and positron—electron distributions are consistent, at
this confidence level, for the LSHR, xfmp, and isolation parameters. The LSHR, xgm-p
and isolation parameters depend only on calorimeter information, and are believed to be

unbiased.

The efficiency of the Az cut is measured to be 98.5% from the studies of 70 electrons as
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Figure 5.7: Cumulative probability distributions for the E/p, |Az|, and |Az| quality pa-
rameters for positrons and electrons and for electrons in the East and West halves of the
CDF detector.
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Figure 5.8: Cumulative probability distributions for the E/p and |Az| quality parameters
for positrons and electrons after shifting the positron distributions.

described in Section 4.5. Inserting this efficiency into Equation 5.13 and using the Monte
Carlo to estimate the size of the bias, the systematic uncertainty on on App is found to be

0.06%, and the uncertainty on sin? 8y is 0.0002.

The efficiencies of the E/p and Az cuts are smaller than that of the Az cut; 91.2% for
E/p and 96.3% for Az. Measuring the bias directly from these efficiencies would overesti-
mate their effect. Instead, the potential bias is measured from the difference in the efficien-
cies for positrons and electrons. The E/p and Az distributions are shifted for positrons and
electrons, as can be seen in Figure 5.7. This is consistent with a charge-dependent error on
the track reconstruction. By shifting the positron and electron distributions by some small
amount, one can restore the charge independence of these two cuts. Figures 5.8a and 5.8b
show the E/p and Az distributions for positrons and electrons after shifts of 0.0101 in E/p

and 0.0543 cm in Az. The cumulative probability distributions agree well after the shifts.
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The actual electron selection cuts are made on the unshifted distributions, however, and so
there are relative differences in the efficiencies for positrons and electrons.l The efficiency
of the E/p cut for positrons is measured to be 99.92% of the efficiency of the E/p cut for
electrons. Similarly, the efficiency of the Az cut for positrons is measured to be 99.92% of
the efficiency of the Az cut for electrons. These relative efficiencies are inserted into the
Monte Carlo, and estimates of the potential bias are derived. The Monte Carlo studies are
statistics limited for these two parameters, and indicate uncertainties of 0.006% on Arp

and 0.00002 on sin? fyy for both the E/p and Az requirements.

The individual systematic uncertainties for the Az, Az, and E/p cuts are added in
quadrature to arrive at an overall systematic uncertainty for the electron quality require-

ments. The overall uncertainty is assigned to be 0.06% on Arg and 0.0002 on sin? fyy.

5.2.5 Quark Distribution Functions

The relationship between the observed forward-backward asymmetry and sin? fy depends
on the relative contributions of u-type and d-type valence and sea quark production. The
values derived for sin? fyy therefore have an implicit dependence on the momentum distribu-
tion functions for the quarks inside the proton. There are uncertainties in the distribution
function parametrizations, particularly at small z where the proton structure functions are
not experimentally well-measured. The systematic uncertainty on sin? 8w due to distribu-
tion function uncertainties is estimated by fitting the data using several different distribution
function parametrizations[16, 36, 37, 38]. The results of log likelihood fits to the Z° data
are shown in Table 5.4 for several distribution functions, along with the ratio of u-type to
d~type contributions and the ratio of sea—sea to valence contributions for each parametriza-
tion. The systematic uncertainty on sin? fy due to uncertainty in the distribution functions
is taken to be 0.00035, half the spread in the fitted sin® fy values. The uncertainty in the
distribution functions does not imply an uncertainty on the measured asymmetry; the dis-

tribution functions are used only in relating the observed forward—backward asymmetry to
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Log-Likelihood Fit Results
1988-1989 Data
CDF PRELIMINARY
Parametrization | sin® @y | Uncertainty | u/d Ratio | Sea/Valence
EHLQ 1[16) | 0.2314 | 0.0158 2.34 0.23
EHLQ 2 [16] 0.2314 0.0158 2.29 0.24
DO 1 [36] 0.2315 0.0163 1.58 0.30
DO 2 [36] 0.2309 | 0.0167 1.58 0.30
DFLM 1[37] | 0.2316 | 0.0158 2.09 0.24
DFLM 2 [37 0.2315 0.0159 2.09 0.25
DFLM 3 [37 0.2311 0.0158 2.16 0.25
MRSE [38] 0.2315 0.0162 1.79 0.28
MRSB [38] | 0.2313 | 0.0162 1.96 0.27

Table 5.4: Log likelihood fit results for various parton distribution function parametrizations

App sin?fw

In L fitter 0.26%  0.0008
QCD Background 0.06% 0.0002
Energy Scale 0.03% 0.0001

Electron Trigger 0.18% 0.0005
Track Reconstruction 0.14%  0.0004
Electron Selection  0.06%  0.0002
Parton Distribution - 0.0004

I Add in Quadrature 0.36% 0.0011 {

Table 5.5: Systematic uncertainties on App and sin? fyy.

sin® Ow.

5.2.6 Summary of Systematic Uncertainties

The systematic uncertainties on the measurement of the forward—-backward asymmetry and
sin? @y are summarized in Table 5.2.6. The uncertainty in the momentum distribution
functions affects only the determination of sin? 8y from the measured asymmetry, not the
asymmetry measurement itself. In all cases, the systematic uncertainties are very much

smaller than the statistical uncertainty on the measurement. When the individual uncer-
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tainties are added in quadrature, the overall uncertainty on Arp is 0.35% and on sin? 8y is

0.0011.
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Chapter 6

Radiative Corrections

There are many higher order diagrams which contribute to inclusive dielectron production
in pp collisions. The QCD diagrams shown in Figure 6.1 produce dielectrons with non-zero
transverse (to the beam direction) momentum, pZ. The order o3 electroweak contributions
to ¢q§ — eTe () shown in Figure 6.2 [39] are also a source of dielectron events. These
higher order processes have a significant effect on the angular distribution of the dielec-
trons. Initial state QCD radiation smears the cos § values reconstructed from the electron
4-vectors, as discussed in Section 2.2, while higher order QED processes contribute directly
to the forward—bdckwa.rd asymmetry. The physics processes which produce the (measured)
forward-backward asymmetry includes all of these higher order contributions. The sin? 8y

values, however, are extracted from the measured asymmetry using only the lowest order

{ <ln
__8 e K P
R <( ) k k q, L, 2
2 4 l' + 7 h
. ol <
N

4 l2

Figure 6.1: Next order QCD contributions to Z° production.
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Figure 6.2: Order (a3) QED and weak diagrams contributing to ¢§ — ete~. Taken from
Reference [39].
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cross section. The extracted sin? 8y values must therefore be corrected to account for the
higher order contributions to the forward-backward asymmetry. Furthermore, when higher
order weak corrections are included, the values of sin? fyy determined from different physical
processes require very different corrections, and care must be taken in comparing different

measurements of sin? yy.

The higher order corrections divide themselves naturally into QCD, QED, and weak
corrections. The QCD corrections are independent of the electroweak corrections and can
be treated separately. The electroweak corrections are more complex, and must be treated
within the framework of a renormalization scheme. The on-shell renormalization scheme
first proposed by Ross and Taylor [40] and described in Reference [41] uses the fermion
masses, o, Mz, Mw, and Mpsges as input parameters, and has the property that the
QED diagrams are separable as a class. In this renormalization scheme, the QED sector
is separately renormalizable, and QED quantities can be calculated independent of the
remaining weak corrections. In the on-shell renormalization scheme, sin? 6y is not an

independent parameter, but is most naturally defined in terms of the W and Z° masses by

. My
sin €W|Si1‘l‘i'n =1- W. (61)
Mz

This is the so-called Marciano-Sirlin [42] definition of sin® 8y,

In the subsequent sections, the effects of each of the different categories of higher or-
der corrections on the forward-backward asymmetry and the interpretation of sin? By are
examined. The object of these correction procedures is first to account for higher order con-
tributions to the measured asymmetry, and then to derive a value for a commonly accepted
definition of sin? @y based on the corrected asymmetry. Explicit formulas and equations

used in the analysis of the higher order contributions are given in Appendix A.
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6.1 QCD Corrections to the Asymmetry

The scattering angle 4 is defined to be the angle between the outgoing electron and incoming
quark (or outgoing positron and incoming antiquark) in the rest frame of the electron pair.
The initial quark directions., however. are not always well-defined in pp collisions. Due to the
higher order QCD processes shown in Figure 6.1. Z%'s are produced with varying amounts
of transverse momentum. ptZ. When a Z% is produced with non-zero p;Z, the proton and
antiproton directions are not collinear in the rest frame of the dielectrons, and so the quark
directions can not be completely determined: the quarks can only be said to be travelling in
approximately the direction of the proton or antiproton, and the approximation gets worse
as ptZ increases. Since the initial quark directions are ill-defined, cos§ can no longer be

precisely measured.

In practice, a new # axis is defined in the dielectron rest frame to take the place of the
quark direction when making angular measurements. The definition used in this analysis is
that of Collins and Soper [19]. in which the % axis is taken to be the bisectrix of the proton
and minus the antiproton directions, as shown in Figure 2.6. As described in Section 2.2,
the C'cﬂlins~Soper definition divides the ptZ contribution equally between the quark and

antiquark, and has the property that 2 reduces to the quark direction in the limit ptZ — 0.

The Collins-Soper definition of cos § is an approximation which begins to break down at
high values of ptZ. The cos§ distribution will therefore be smeared somewhat by the high
ptZ events, and the measured asymmetry will be smaller than the true asymmetry due to
this smearing of cos § measurements. The size of this effect can be determined from the
QCD corrected angular distribution.

There are several calculations of the differential cross section for Z° production and decay
which include the diagrams of Figure 6.1, and incorporate the Collins-Soper definition of

cos fcs explicitly [18, 19, 43]. Reference [43] gives the result ! (for the Z° contribution to

1 The cross section also depends on ¢, where ¢ is the azimuthal angle of the outgoing electron defined with
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Figure 6.3: Plots of the ptZ dependent QCD correction factors A% and A3. Taken from
Reference [43].

the cross section only)

do do

e A=A (AR CAGIC IR TS (6.2)

x[(1+ cos? 8o + %Ao(l — 3 cos? 8cs))]

+89Y7929%9%(1 — Asz) cos 905}

where dip"z is the measured Z° ptZ spectrum. Ag and As are functions of ptZ and reduce to 0
i

as pf — 0. Plots of Ag and A3, taken from Reference [43], are shown in Figure 6.3. Equa-
tion 6.3 predicts the measured angular distribution, including the effects of ptZ smearing
of cos 6 values, in the Collins—Soper frame. From this angular distribution a sin? Oy inde-

pendent, ptZ dependent multiplicative correction factor for the asymmetry can be derived.

respect to the plane containing the proton and antiproton in the rest frame of the electron pair. Equation 6.3
has been integrated over ¢ to remove this dependence.
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Figure 6.4: Transverse momentum of Z%’s after corrections to remove resolution smearing.
The points show the CDF data and the line shows an ISAJET based parametrization.

Integrating Equation 6.2 over cos § to find the measured asymmetry, one derives

do
' AFB[Measured = AFBI;{:O /W (1 - Ag) dpt27 (6'3)
t

where AFBIP‘Z=0 is the forward-backward asymmetry at p? = 0. The p# dependent changes
to the full angular distribution of Equation 2.29 are made by substituting (1 + cos?fcs +
$40(1-3 cos? fcs)) for (1+ cos? 6) and (1— Aj3) cos fcs for cos §. The result of Equation 6.3
applies as well for the full cross section.

The measured Z° ptZ spectrum can be parametrized by a modified form of the ptZ spec-
trum used in the ISAJET [27] Monte Carlo. After correcting the data for smearing due to
the finite resolution of the energy measurements, the Z° ptZ spectrum is well described by

the parametrization [44]

do
o7 = 105380 )((p)" + 26.00) 7% (6.4)
t
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The data and the par;metrization are shown in Figure 6.4 [44]. Convolving this measured p?
spectrum with (1 — A3) as shown in Equation 6.3, the QCD corrections are found to reduce
the measured asymmetry by a relative 1.2% with respect to the lowest order asymmetry at
ptZ = 0. This implies that the value of sin® fyy extracted from the lowest order cross section

must be increased by 0.0002.

6.2 QED Contributions to the Asymmetry

The order a® QED contributions to ¢§ — ete~(7) are shown in groups III, IV, V, and VI
of Figure 6.2. They consist of all the graphs having an additional real or virtual photon.
Note that the fermion loop correction 'Eo the photon propagator, shown in group IX of
Figure 6.2 is excluded from the current discussion of QED corrections, but will be included
with the Z0 and 7-Z° propagator corrections in the weak corrections. To order a3, the cross
section has contributions from (1) the lowest order diagrams (which are of order o?), (2)
the interference between the lowest order diagrams and the diagrams having an additional
virtual photon (virtual diagrams), and (3) the diagrams having a real photon emitted from
the initial or final fermions (bremsstrahlung diagrams). The bremsstrahlung diagrams have
a 3-body final state, in contrast to the two-body final state of lowest order and virtual
diagrams. The total cross section for ¢ — ete~(7), then, is given by the sum of the
two—body and three-body cross sections. Both the 2-body and 3-body cross sections are
infrared divergent. These divergences cancel when the two cross sections are added, and so

the total cross section is infrared—finite.

The bremsstrahlung contribution can be divided into a “soft” part and a “hard” part
by an infrared cutoff kg in the fraction of a fermion’s energy carried off by a bremsstrah-
lung photon. The soft photons having energy fractions less than k¢ are not resolved by
the detector, and appear as par‘t of the electron shower in the calorimeter. This soft brem-

sstrahlung contribution is indistinguishable from a 2-body final state, and so it can be
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calculated analytically and added to the virtual cross section. The sum of the virtual and
soft bremsstrahlung contributions is infrared finite, as is the remaining hard bremsstrahlung

cross section.

The hard bremsstrahlung photons are potentially very energetic, and can be produced
at large angles to their parent fermions. The hard photons, then, can interact independently
with the detector. Furthermore, the higher order soft contributions change the dielectron
angular distribution in a non-trivial way, and thus the QED corrections to the asymmetry
will depend on the detector geometry and acceptance. Because of these inherent detector
dependences, the QED corrections are best studied with a Monte Carlo event generator

which includes both hard and soft corrections, and a detector simulation.

6.2.1 Soft QED Contributions

The soft portion of the order o® QED cross section is calculated by many authors for
ete™ — ff(v)at LEP and SLC, but is largely ignored for ¢4 — ff(7). This being the case,
the LEP/SLC results are time-teversed to get predictions for g7 — ete~(7y). The matrix
elements for the virtual diagrams are invariant under time reversal, and so the published
results can be used without change. The soft bremsstrahlung contributions differentiate

between initial and final state radiation, and require a little more care.

The soft corrections used in the current analysis are taken from Reference [14]. The
authors include all the diagrams in groups III, IV, V, and VI of Figure 6.2, and include the
contribution of soft photons to all orders in a by exponentiation of the leading logarithms

of the soft bremsstrahlung terms as described in Reference [45].

In the LEP calculations, the soft initial state bremsstrahlung corrections incorporate

terms of the form
1
M? — (s —4EAF)

where M2 = M% — iMzTz, E is the energy of the electron beams in the LEP accelerator,

(6.5)

AE = koF is the maximum energy of a photon from initial state bremsstrahlung, and
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s = 4E? is the square of the center of mass energy of the machine. The term (s — 4EAF)
is interpreted as the square of the effective center of mass collision energy of the interaction
after initial state bremsstrahlung. Terms of this form enter the cross section in multiplicative
scale factors and in a correction to the phase of the Z° resonance. The “prescription” for
converting these terms to a form usable for ¢§ — ete™ interactions is to interpret E as the
energy of the outgoing electrons in the center of mass frame, AF as the energy of a photon
from final state bremsstrahlung, and s as the square of the dielectron invariant mass. The
square of the effective center of mass collision energy of the interaction before final state
bremsstrahlung is then (s + 4EAE). To convert the LEP calculations to pp calculations,
one must change the sign of the AE term in the bremsstrahlung coefficients, and to change

the interpretation of s.

The forward—backward asymmetry is corrected in different ways by each of the types of
QED diagrams. The virtual vertex corrections can be absorbed into a renormalization of
the photon and Z° couplings to fermions. This is an s dependent correction which affects
both the symmetric and antisymmetric parts of the cross section and leaves the asymmetry

unchanged.

The soft initial state bremsstrahlung correction is an s dependent, multiplicative cor-
rection to the cross section which has no effect on the asymmetry. The soft final state
bremsstrahlung contribution has a multiplicative part which does not change the asymme-
try, but it also has a part which affects the phase angle of the Z° resonance, which does
affect the asymmetry. In the presence of soft final state bremsstrahlung, the 7° line shape
grows a “shoulder” on the low mass side of the resonance, as shown in Figure 6.5. The
shoulder is due to events produced on resonance which then radiate a photon as they de-
cay; the reconstructed dielectron invariant mass of these events is decreased by the photon
radiation. The asymmetry of the events in the shoulder region is characteristic of resonance
production, however, and is larger than expected. This can be seen in Figure 6.6, where

the the forward-backward asymmetry is plotted as a function of Mee. The size of this effect
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increases as the cutoff kg increases.

The initial and final state bremsstrahlung diagrams have different charge conjugation
parities [46], and so the interference between these diagrams will contribute to the charge
asymmetry, as discussed in Section 2.1. The size of the correction to the asymmetry from
the radiative Z° diagrams is found to vary strongly with the cutoff kg [47]; it is small for
large values of kg (6Arg >~ —0.07% at ko = 0.1) and increases as kg increases (6AFB =~

—0.80% at ko = 5 x 107%).

The QED box diagrams have an additional virtual photon propagator, and therefore
have different charge conjugation parities from the lowest order diagrams with which they
interfere. The box diagrams, then, also contribute to the observed charge asymmetry. The

contribution is small (§Arp ~ 0.08%) and is independent of both sin? y and kq.

It is convenient to show the QED corrections as a function of the charge asymmetry,

Ac, where the charge asymmetry is defined by

do do
AC = d(;i?jsg +cos § dZ?g —cosé. (6.6)
= + ~
dcosb +cosé dcos@ — cosf

The corrected and uncorrected charge asymmetries on resonance for ui — ete™, dd —
ete™,and pji — eTe™ areshown in Figure 6.7. The dashed lines show tree level calculations,
while the solid lines include all the soft QED corrections evaluated at kg = 0.01. The size

of the QED corrections depends on the sign and magnitude of the initial fermion’s charge.

6.2.2 Hard Contributions and the Radiative Monte Carlo

Hard photon emission smears the measured dielectron quantities; initial state bremsstrah-
lung can disturb the reconstruction ﬂof cos § by adding a small amount of transverse momen-
tum, and final state bremsstrahlung can directly affect the energy and direction of outgoing
electrons. Unlike the soft corrections, which can either increase or decrease the asymmetry

depending on the charges of the fermions in the interaction, the hard corrections always
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decrease the measured asymmetry by smearing the cos § distribution. Since hard photons
emitted in the process ff — ete™y can interact in the detector and affect the measurement
of electron quantities and 6, a proper treatment of the hard photon contribution requires a

Monte Carlo event generator and a detector simulation.

The Monte Carlo generator used in this analysis is a modified version of the generator
developed for the CDF Z° mass analysis [48]. It is based on the hard bremsstrahlung
calculations of Reference [49] and includes the soft corrections of Reference [14]. The hard
bremsstrahlung calculation includes only final state radiation; hard initial state radiation
has little effect on Z° production in hadronic collisions. Collinear photons from initial state
radiation generally escape undetected down the beampipe. Large angle radiation from the
quarks can produce transverse momentum ptZ , which can affect the reconstruction of the
final state in the manner described above for the QCD corrections. This effect is very small

for photons, and is ignored in this analysis.

The Monte Carlo generates the proper 2 and 3 body angular distributions using a
rejection method, and then weights each event by the convolution of the cross section
with quark distribution functions. Since the angular part of the cross section is generated
separately, the weight needs only account for the 8 dependence of the cross section. For the
2-body state, the cross section used in the weight is the soft QED cross section evaluated
at cosf = 0. For the 3-body state, the cross section used is the lowest order cross section
evaluated at cosf = 0 multiplied by 55(100), where 65(1@'0) is the probability of producing
a photon with energy fraction greater than kg, and is derived by integrating the photon

energy spectrum from k¢ to 1. Forms for the photon spectrum and 66(15:0) are given in

Reference [49] and in the Appendix.

The Monte Carlo event generation proceeds as follows:

1. Values for 21 and z,, the fractional momenta of the quarks, are generated, and the

resulting invariant mass is checked against the desired mass limits.
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. The event is assigned, with equal probability, to one of 4 possible production processes:
(a) u quark from the proton, % quark from the antiproton, (b) d quark from the
proton, d quark from the antiproton, (c) @ quark from the proton, u quark from the
antiproton, and (d) d quark from the proton, d quark from the antiproton. A weight
is then calculated based on the parton distribution functions for u or d quarks and

the fractional momenta calculated previously.
. The event is chosen, with equal probability, to have a 2-body or 3-body final state.

. The angular distribution of the outgoing particles is generated with a rejection proce-
dure . For 2-body final states, the angular distribution of Reference [14] is used, while

3-body final states are generated according to the distribution of Reference [49].

. A weight for the event is calculated from the cross section as a function of 8, as

described above.

. The overall weight for the event is calculated from the product of the the weight from

the quark distribution functions and the weight from the cross section.

The final state 4—vectors and the event weight are the input for the detector simulation.

The detector simulation must include the geometric features of the detector and the resolu-

tions of the various detector elements, and must also be able to simulate the effects of the

bremsstrahlung photons. Moreover, it must be fast; the QED corrections require several

million events to be simulated in order to achieve the desired statistical accuracy.

The detector simulation used in this analysis is a modified form of the simulation used

to determine the acceptance and described in Section 4.6. The 2-body final states are

simulated the same manner as the events used in the acceptance calculations. For the 3-

body final states, the photon showers in the calorimeter and the effect of the photon on

the electron measurement becomes important. For photons emitted at very small angles

to the electron, the electron and photon showers are indistinguishable. The “electron” will

110



be accepted by the analysis cuts, and the total energy measured by the calorimeter is the

sum of the electron and photon energies. For photons with small energies, the effect of the

photon on the electron measurement is small. The electron will pass the analysis cuts, and

the photon will have little effect on the electron’s energy or direction. For photons havingv
an intermediate energy emitted at a moderate angle with respect to the electron, the effect

of the photon is less clear. Electrons with energetic photons very near by may fail a shower

shape cut like the strip x? in the CEM or the 3 x 3 x? in the PEM. Events with separated

electron and photon showers may fail the isolation cut.

These electron acceptance effects are studied using a sample of 20000 radiative Moﬁte
Carlo events which are simulated with the full CDF detector simulation program. The
simulated events are then passed through the electron selection cuts used in this analysis.
Using these simulated events, the photon angles and energies which still allow the electrons
to pass the selection cuts can be identified. The available photon phase space can be
parametrized, and the parametrization used quickly to accept or reject events. Figure 6.8
shows a plot of the photon—electron angle versus the fractional energy of the photon for
electrons in the PEM which pass all of the selection cuts. Photons emitted at angles larger
than 0.4 radians are outside the R = 0.4 isolation cone and have no effect on the electron
measurement. Photons emitted at angles less than 0.4 radians, but having energies less
than 10% of the electron’s energy will also pass the isolation cut. Photons having energies
larger than 10% of the electron energy must be emitted closely enough to the electron that
the clustering routine will see only one electromagnetic cluster. Furthermore, the photon’s
energy must be low enough or its angle small enough that it pass the shower shape cuts. In
general, as the photon’s energy increases, the angle must decrease in order for the electron
to pass the electron quality cuts. In the central region, the electron must also pass an E/p
cut of 1.5. The photon energy, then, can never be greater than half of the electron’s energy.
The forbidden regions for photon emission in energy—angle space are shown in Figure 6.8.

Only a few (less than 6% for ko = 0.01) of the 3-body events are excluded by the photon
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Figure 6.8: Photon angle versus fractional momentum of the photon for simulated electrons
which satisfy the electron quality requirements.
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Figure 6.9: Asymmetry as a function of sin? fyy after QED corrections.

simulation cuts.

The fast simulation of 3-body decays proceeds in the same fashion as the 2-body simu-
lation, but with two extra steps: (1) if the photon is in the forbidden region of energy—angle
space, the event is rejected, and (2) if the photon is within 1 calorimeter 7 segment of the
electron in the CEM calorimeter, and within +1 calorimeter 1 segment and £1 calorimeter
¢ segment of the electron in the gas calorimeters, the photon and electron 4-vectors are

summed to simulate the measured “electron” 4—vector.

6.2.3 QED Results

The radiative Monte Carlo is used to calculate the forward-backward asymmetry for various
values of sin® @y, assuming ko = 0.01. The results of these calculations are shown in

Figure 6.9. The solid line shows the lowest order prediction for the asymmetry, assuming

EHLQ 1 distribution functions, and the data points are the result of the QED Monte Carlo.
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The effect of the higher order QED diagrams is to reduce the observed asymmetry by a

small amount, independent of sin?fyy. A fit to the Monte Carlo data yields the result

AFB'Measured = AFBIBorn - 0.50%. (6.7)

The fit is indicated by the dashed curve in Figure 6.9. After removing the QED contribution
to the asymmetry from the measured asymmetry, one arrives at the QED corrected results
AFB|Born = 5.7% and sin? Gy = 0.230.

The size of the QED corrections depends on the value of kg, as discussed above. The
value chosen for kg, 0.01, is representative of the resolution of the detector and of various
threshold cuts in the data collection and analysis procedures, but there is considerable
latitude in the choice of k9. The theoretical uncertainty on the QED contribution to the
asymmetry associated with kg is estimated using the radiative Monte Carlo. The forward-
backward asymmetry is calculated at sin? 6y = 0.230 using various values of kq. Figure 6.10

shows the calculated asymmetry versus ko. The theoretical uncertainty is chosen to be half
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the total spread in App. This gives an uncertainty of 0.0054 for the QED contribution to

App and 0.0014 for the correction to sin? fyy.

6.3 Weak Corrections

The order a® weak corrections to q§ — eTe™ are shown in groups VII, VIII, IX, XI and
XIII of Figure 6.2. These include the box and vertex diagrams having additional weak
bosons as well as the loop corrections to the photon and Z9 propagators. To order a3, the
weak corrected cross section has contributions from the lowest order diagrams and from the
interference between the lowest order diagrams and the diagrams including an extra weak
boson or a propagator loop. The effect of the loop corrections to the propagators can be
absorbed into a renormalization of the photon and Z° couplings to fermions which leaves
the asymmetry unchanged. The weak vertex corrections have both vector and axial vector
components, and, along with the box diagrams, contribute to the measured asymmetry.
Unlike the QED corrections, though, the renormalization of the 70 couplings is of more
interest than the (small) changes in the asymmetry from the additional vertex and box
contributions. A renormalization of the Z° couplings to fermions implies a renormalization

of sin? @yy, in which case both the value of sin? @y and its precise definition may change.

In order to perform meaningful calculations of the weak corrections, one must choose a
renormalization scheme and a definition for sin? fyy. For the asymmetry analysis, the on—
shell renormalization scheme first proposed by Ross and Taylor [40]) and documented in Ref-
erence [41] is used. In this renormalization scheme sin? @y is not an independent parameter,
but is most naturally defined, to all orders in perturbation theory, by the Marciano-Sirlin

[42] definition of Equation 6.1:

My

2 _
sin® Ow|sirtin = 1 — —5-
Mz

This is not the most convenient definition of sin? fy for an analysis of most Z0 data. The

W mass has a rather strong (quadratic) dependence on the mass of the top quark, due to
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Figure 6.11: Top quark-bottom quark loop contribution to the W self energy.

the top quark-bottom quark loop contribution to the W self energy shown in Figure 6.11,
while the Z° mass (and other Z° observa,blés) depend only weakly on the top mass. When
determining sin? w|girtin from one of the Z® observables, one must incorporate the top
quark mass dependence of My into the calculation. “As a result, sin? 0w |siriin determined

from Z° observables will have a quadratic dependence on the top quark mass.

Many of the previous experimental measurements of sin? 8y have been analyzed us-
ing the Marciano-Sirlin definition sin? 8yy|sitin [17], so for purposes of comparison with
these results the Marciano-Sirlin form of sin? 8y is calculated from the measured forward—
backward asymmetry. This is particularly convenient for comparison with the recent direct

measurements of 1 — M%,/M% made by the CDF and UA2 collaborations.

The electroweak calculations of Reference [41] assume a minimal Higgs structure, with
standard couplings and two Higgs doublet fields. The loop corrections to the propégators
have a weak (logarithmic) dependence on the mass of the Higgs boson in addition to their
dependence on the top quark mass. All calculations, unless otherwise stated, assume a
Higgs mass of 100 GeV. The dependence of the final result on the mass of the Higgs boson

is shown explicitly below.
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The order a3 weak cross section is calculated in Reference [41] for ete~ — ff. As
with the virtual QED diagrams, the matrix elements for the weak diagrams are invariant
under time reversal, and so the results of [41] can be used directly to calculate the weak
corrected cross section for ¢q§ — eTe~. The electroweak calculations of Reference [41] use the
Marciano-Sirlin definition of sin? fyy; unless otherwise noted, the Marciano-Sirlin definition

of sin? Ay is assumed in all the equations given below.

- It is difficult to calculate the weak corrections to the asymmetry independent of the
renormalization effects of the propagator loops. An iterative procedure is used to calculate
the value of sin? 8w |sirtin as a function of the mass of the top quark, including both the
renormalization effects of the propagator loops and the contributions to the asymmetry from
the vertex and box diagrams. For each value of the top quark mass, values for sin? Ow|Sirtin
are selected and the order o® weak cross section is integrated to find the asymmetry as
a function of sin?8w/|sirtin. The value of sin? 8yy|sirtin Which reproduces the measured
asymmetry, after QCD and QED corrections, is found numerically. A plot of sin? 6w | Si,,;n
including all weak corrections is shown as a function of the top quark mass in Figure 6.12.

The quadratic dependence on the mass of the top quark is evident.

The relative effects of the vertex, box, and propagator contributions to the cross section
can be determined by removing the vertex and box contributions and repeating the iterative
calculation of sin? 8y |sirtin. The result of this propagator-only calculation is shown by the-
solid line in Figure 6.13. For comparison, the result of the full calculation is shown by
the dashed line in Figure 6.13. Removing the vertex and box contributions increases the
extracted values of sin? @y by 0.0012, independent of the top quark mass. The effect of
the vertex and box contributions is to increase the asymmetry by approximately 0.29%,

independent of the mass of the top quark.

The weak corrections also depend logarithmically on the mass of the Higgs boson. Fig-
ure 6.14 shows a plot of sin? 8yy|siriin as a function of the top quark mass for Higgs boson

masses of 10, 100, and 1000 GeV. The Higgs mass dependence is much smaller than the
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Figure 6.12: sin? 0w |sirtin derived from the asymmetry and iterative integrations of the
order () weak cross section.
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Figure 6.13: sin® 8yy|siriin derived from iterative integrations of the order () weak cross
section without (solid) and with (dashed) weak vertex and box contributions.

118



0.24

0.23 Mg = 1000 GeV
i My = 100 GeV

E _ My = 10 GeV
E L
? 0.22 N
o L
= [
g 0.21
b A
S L
= i
mi 0.20 [ M U S S ST ST RS S
= 50 100 150 200 250
@ Top Quark Mass (GeV/c?)

Figure 6.14: sin? 6w |Sirtin derived from the asymmetry as a function of top quark mass for
three different values of Higgs boson mass.

dependence on the top quark mass.

While the Marciano—Sirlin definition of sin? fyy is useful for comparison with measure-
ments of the W and Z° masses, there is a second definition of sin? fw, based on an effective
order o neutral current which is more appropriate for the asymmetry measurement. The
mixing angle fy describes the mixing of the SU(2); and U(1)y sectors of the Standard
Model, and in particular describes the mixing of the weak isospin and electromagnetic com-
ponents in the lowest order weak neutral current of Equation 2.12. At higher order, however,
other mixing occurs which affects the neutral current. The diagrams in group XIII of Fig-
ure 6.2 show photon-Z% mixing in the one loop weak radiative corrections. This photon-Z°
mixing changes the relative contributions of the weak isospin and electromagnetic current
couplings to fermions. The effects of the photon-Z° mixing terms can be absorbed into an

effective neutral current with a suitable redefinition of sin? fyy.

At order a3 the weak neutral current has contributions from the diagrams shown in
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Figure 6.15: Diagrams contributing to the weak neutral current at order a3.

Figure 6.15. The total neutral current coupling is the sum of the contributions of the

diagrams in Figure 6.15, and is given by [41, 50]

TNC = el — gk %ﬂm%w (6.8)
- mfﬁ{'r"[lﬁ — 2Qsin® By — Iyr®}y
+ ivﬂQflf—}fS—();jdf (69)
= mi{w[ﬁ — 2Q ¢(sin® By — cos By sin ow— L +7Ii§jg ))]
i I.?Pyuvs}w, (6.10)

where 1L,z and IIyy are the renormalized 4-Z and photon self energies, respectively, and the
Marciano— Sirlin definition is used for #y. Comparing Equations 6.10 and 2.12, one sees
that the structure of the lowest order neutral current can be recovered by defining a new

mixing angle, @y, with the relation

sinfw = sin® Oy — cos By sin G Re (T—%I%) (6.11)

sin? By (1 — Ar'). (6.12)

The factor Ar’ incorporates the top quark and Higgs mass dependence of the propagator

corrections. Plots of Ar’ versus top quark mass are shown in Figure 6.16 for Higgs boson
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Figure 6.16: The correction factor Ar’ as a function of top quark mass for three different
values of Higgs boson mass.

masses of 10, 100, and 1000 GeV; the top quark and Higgs mass dependence of A7/ is similar
to that of sin? 6w |sirtin- Note that the sin? 8y defined by the effective neutral current is
equivalent to the sin? 0%y defined for effective 4—fermion processes by Kennedy and Lynn
[51].

As discussed in Section 2.1, the forward-backward asymmetry is directly related to the
spin structure of the weak neutral current. It follows, then, that the sin? fy defined by the
order o3 effective neutral current is the most natural definition of sin? fyy for the asymmetry
measurement. The value of sin? 6y extracted from the asymmetry, after correction for
QCD, QED, and weak contributions to the asymmetry, is a direct measurement of sin? fyy
and yields sin?fy = 0.228. The top quark and Higgs mass dependence of sin? @y can
be investigated using the relation of Equation 6.12, the values of sin? Ow|Sirtin shown in
Figure 6.14, and the calculated values of Ar’ shown in Figure 6.16. Figure 6.17 shows

values for sin? @y calculated using Equation 6.12 as a function of the top quark mass for 3
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Figure 6.17: sin? @y derived from the asymmetry as a function of top quark mass for three
different values of Higgs boson mass.

different values of the Higgs boson mass. The value of sin? 8y extracted from the asymmetry

is nearly independent of the masses of the top quark and the Higgs boson.
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Chapter 7

Summary of Results

The forward-backward asymmetry in pp — Z® — ete™ events is measured to be (5.2
5.9 (stat)+0.4 (sys))%, after correcting for a small background contribution and for smeéring
due to QCD effects. The value sin? Gy = 022810517 (stat) £ 0.002 (sys) is extracted from
the measured asymmetry, and includes QCD, QED and weak radiative corrections. The
quoted systematic uncertainty on sin®fyy includes a theoretical uncertainty from the QED
corrections as well as systematic uncertainties related to the asymmetry measurement. This
measurement of sin?fyy is in good agreement with the values sin? 8y = 0.2291 + 0.0040
[52] and sin? Ay = 0.230  0.006 [53] measured from the mass and partial width of the Z°
by the ALEPH and L3 collaborations, respectively, and with the value sin? 6y = 0.2470:03

measured from the asymmetry in 33 selected dilepton events by the UA1 collaboration [54].

For comparison with other experimental results, the Marciano-Sirlin definition of sin? Gy

is adopted, where
Miy

7% (7.1)

sin? Oy | sirtin = 1 —

Figure 7.1 shows sin® 8w |sirlin as derived from the asymmetry measurement as a function
of the top quark mass (assuming the mass of the Higgs boson is 100 GeV). The dashed
lines show the combined statistical and systematic uncertainties on the measurement. Also

shown in Figure 7.1 are the values 1 — M{,/M% = 0.23240.006(stat) £ 0.005(sys) measured
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Figure 7.1: Central value and uncertainties on sin? 0w |sirtin derived from the asymmetry.
At right are values for 1 — M#,/M% from CDF (a) and UA2 (b).

directly from the W* mass measured by CDF [55] and the average LEP Z° mass [25], and
1 — MZ/M2% = 0.220 £ 0.009(stat) + 0.005(sys) measured by the UA2 collaboration [56].
Figure 7.2 shows the allowed regions (at the 90% confidence level) in the sin? 8yy|sirtin—top
quark mass plane from a comprehensive analysis of previous weak neutral current measure-
ments [17]. The sin? 0w |sirtin values extracted from the forward—backward asymmetry and
shown in Figure 7.1 are consistent with current measurements of 1 — M{,/M% and with

previous neutral current measurements over a broad range of top quark masses.

The total uncertainty on the asymmetry measurements is dominated by the statistical
uncertainty. In the next five years, CDF is expected to increase its total integrated lu-
minosity by a factor of 25 or more. This will be a sufficient amount of data to determine
sin? @y within a statistical uncertainty of 0.003. This will provide a measurement of sin? Oy
competitive with that derived from the W and Z° masses, which has a larger systematic un-

certainty than the asymmetry measurement. If the top quark is not discovered in the next
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Figure 7.2: Allowed regions (90% confidence level) in the sin? 8yy|sirin—my plane. From the
comprehensive analysis of neutral current measurements in Reference [17].
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five years, then precision electroweak measurements performed at CDF and other experi-
ments should provide an indirect measurement of the mass of the top quark by measuring

its effect on higher order contributions.
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Appendix A

Explicit Formulas for the

Radiative Corrections

This appendix collects all the formulas used in the radiative corrections to the process
q§ — eTe™(y). These results and equations have been culled from several theoretical

papers, and represent a distillation of the work of many other authors.

The on-shell renormalization scheme first proposed by Ross and Taylor [40] is used.
This renormalization scheme uses the fermion masses, a, Mw, Mz, and Mgi4ys as input
parameters, and assumes a standard Higgs sector with two complex Higgs doublet fields. As
mentioned in Chapter 6, sin? @y is not an independent parameter in this reno;malization
scheme, but is most naturally defined in terms of the W and Z° masses by

. M}
sin? bwlsirtin = 1-— _A—l—%{
Unless noted otherwise, this Marciano-Sirlin [42] definition of sin? 8y is assumed in all the
equations given below.
One of the advantages of the on—shell renormalization scheme is that the QED contribu-

tions to ¢§ — eTe~ () can be separated from the weak contributions and treated separately.

At order a®, then, the cross section for ¢g§ — eTe~ () can be described as the sum of the
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lowest order cross section and the QED and weak corrections to the cross section:

do dUO dchED da.?Veak
-t a0 T Tan

(A.1)

Below are given explicit formulas for the QED and weak corrections to the cross section.

A.1 QED Contributions to the Cross Section

The order a® QED contributions to ¢ — eTe~(7) are shown in groups III, IV, V, VI, and IX
of Figure 6.2. They consist of all the graphs having an additional virtual or real photon. The
fermion loop correction to the photon propagator is excluded from the QED corrections,
and is included with the contributions of the other boson propagators. As discussed in
Chapter 6, the QED corrections to the cross section include the interference between the
lowest order and virtual diagrams and the contributions from the bremsstrahlung diagrams.
The bremsstrahlung contributions can be divided into a “soft” part and a “hard” part by
an infrared cutoff kp in the fraction of a fermion’s energy carried off by a bremsstrahlung
photon. The soft bremsstrahlung contribution is calculated analytically and added to the
virtual QED corrections, while the hard bremsstrahlung contribution to the cross section is

calculated using a Monte Carlo technique.

The virtual and soft bremsstrahlung corrections are taken from the calculations of Ref-
erence [14], unless otherwise noted. The calculations in Reference [14] are for the process
ete~ — ff(7) at LEP and SLC. The results of these calculations are time reversed to get
predictions for ¢§ — ete™(y). The matrix elements for the virtual diagrams are invariant
under time reversal, and so the results in Reference [14] can be applied directly. The soft
bremsstrahlung diagrams differentiate between initial and final state radiation, however,
and are not invariant under time reversal. The soft initial state bremsstrahlung corrections

for ete~ — ff(7) at LEP and SLC include terms of the form given in Equation 6.5:

1
M? = (s — 4EAE)’
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where M? = M%- —i1Mzl'z, F is the energy of the electron beams in the accelerator, AF is
the energy of a photon from initial state bremsstrahlung, and s is the square of the center
of mass energy of the machine. The term (s — 4EAFE) is interpreted as the square of the
effective center of mass collision energy of the interaction after initial state bremsstrahlung.
As explained in Chapter 6, the “prescription” for converting these terms to a form usable
for q§ — ete™ () interactions is to interpret E as the energy of the outgoing electrons in the
center of mass frame, AF as the energy of a photon from final state bremsstrahlung, and
s as the square of the dielectron invariant mass. The square of the effective center of mass
collision energy of the interaction before final state bremsstrahlung is then (s + 4EAE).
To convert the ete~ — ff(v) calculations to forms which are applicable to pp interactions,
one must change the sign of the AFE term in the bremsstrahlung coefficients and change the

interpretation of s.

The cross section for ¢q§ — eTe~(7), including the lowest order, virtual, and soft brem-

sstrahlung QED corrections is given by

2
5_;’2 = 2 (07 +077 + 0%, (A.2)

where the QED corrected photon, interference, and Z° cross sections o7, o2 and o are

given by
o7 = odClp 1+C’s+ngQf X+V17+A‘17LS&A (A.3)
T 1+ cos28
a VY4 V% A+ AV o)
1?7 = ach]§{1+cs+;Qle<X+ L > L= 5 -t (A.4)
(4
o? = aOchZR{1 +Cs ~ —Qely (X + W 4 APPS ZZ)
MzT ol e
—aQeQs 00y (V“’ ADRCE +(A7 4%y b (A.5)
0
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The lowest order cross sections oy, O'gZ, and crOZ are given by

o = QiQ%(1+ cos®f) (A.6)
03? = 2QcQRexzlghol(1+ cos? b) + 2497 cos ] (A7)
of = IxzlPlef)? + (62 (d)? + (g9))(1 + cos? ) + 88959897, cos 6], (A.8)

where the propagator xz is given by

s
s—M%%—iMZrZ'

Xz = (A.9)

vZ

The cross sections o3, 0d”, and o# are given by the lowest order cross sections with the

(1 + cos?§) and 2 cos § terms interchanged, i.e.
oPV8Z = oP72((1 + cos? §) & 2 cos 9). (A.10)

The terms CJp, C}Yg, and C¥g are bremsstrahlung terms. These terms account for multi-
photon emission by exponentiating leading logarithms as described in Reference [45]. These

bremsstrahlung terms are given by

(Za/w)(Qgﬁe+Qleﬁini+Q2ﬁf)
Cly = (%) ! (A.11)
2
67Z _ R l ) MZI‘Z A_E" 1 (2a/7r)Qeﬂ€
1R = R\ Mt N\ E T S(AE/E)/(s - M?)
AE 1 (o) T)QeQy Bint AEN (@/m)QQ3814+QeQs Bint) Al
“\E M?/s 1= (BE/E) (T) (A-12)
7 AE 1 (2‘]/7")Q2eﬂe AE 1 (ZG/W)Qleﬂint
Cir 1 E 1+ s(AE/E)/(s — M?) E 1+ (AE/E)- M?/s
AEN\@A™RI T 2q s — M3
== g P A.13
where the complex Z° mass M? is
M?% =M% - iMzT 2. (A.14)
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The 5 coefficients are defined as follows: .

Be = ln(s/m?) -1 (A.15)
By = 1n(3/m%)——1 (A.16)
Bt = 2In(t/u), (A.17)

where m, and.m s are the masses of the outgoing electron and incoming fermion, respectively,

The Breit-Wigner phases &7 and & are given by

M2 —s
d7 = arctan Z AR
z ( Moy ) (A.18)
2 _ o _
® = arctan (MZ LZ;(ZAE/E)> (A.19)

These phase angles are responsible for the radiative tail below the Z° resonance shown in

Figures 6.5 and 6.6. The term Cj collects together vertex correction factors and is

Co = S2(@2e + Q3 + 2(@2 + QDG - 1), (4.20)

The X term comes from the interference of the soft initial state and final state bremsstrah-

lung diagrams, and has the form

X = In? (-%) _In? <— -8“-’) — 2Li (——) + 2Li, (—3) (A21)

where the dilogarithm Liy is defined by the integral
1 -
Lig(2) = — / dzh‘—(l—z—fz—), (A.22)
0 ,

and can be quickly calculated using the following series expansion [57]:

"1 -2
Lis() = 3 Bt (nﬁ), T -z) (A.23)

n=0

131



where the coefficients B, are the so-called Bernoulli numbers. Summing the first 18 co-

efficients of the series gives sufficient numerical accuracy for almost any application. The

V7% and ATZ terms come from the two photon and photon Z° box diagrams. The two

photon box contributions are

Vi o= (1+c)_11n1;c —(l—c)_llnl-;c

—¢(1+¢)"?In? L-c_ (1 —¢)"%1n? % (A.24)
W= el

—e(1— ) 2n LEC (A.25)
Al = (1+c)"11n1;c+(1—c)'11n1-gc

—c(1+ c)_2ln2 1—;6~ +¢(1 - c)_2 1n? % (A.26)
A = A=A 149 el - )P (A.27)

where ¢ = cosf. The photon Z% box contributions have a compact form taken from Refer-

ence [41],
viZ = W 4 omivy? (A.28)
A" =AY 4 omiA)?, (A.29)
with
VY2 = V(s,t)—-V(s,u) (A.30)
A" = A(s,t)+ A(s,u) (A.31)
where
s— M? t 2 S
A(s,t) = P {111 —M2+ ln(l-—m)
s+ 2t + M? t . M?*-s . , t
e lp Y= — ) - Lig( ——= A.32
s+t [1 lenM2+t+L12(M2> 12< M?)H( )
M2
V(s,t) = A(s,t)+ 2Ly (1 + 7—) (A.33)
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where the definition M? = M?2 % —1MzT 7 is used for the complex 79 mass.

The bremsstrahlung cross section for ¢(p_)d(p+) — e¥(g+)e™(g-)v(k), exact up to order

(me/E)? and (my/ E)? terms, is given by [58]

dbo ol
0 7.0 = 7 Y
dQeedqidg” ddy 2m2s

(A.34)

where

Y = —T%%;[A( )(tz + ;’;’2) +B(3’)<% +%f)]
+%‘[4( N2+ 12) + B(s")(u? + v2)]

2 2 2 u/2 u2
(502 o0 )
+;;Q73—,—[A(s)(t2 + %) + B(s)(u” + u?)]

SKI KL

QeQe[ u ' t ¢/

4(133’ [ B '_]
x[C(s, st + t’z) + (D(s,s')(u2 + u'z)]

(.s —s )MFQqu

264 KoKl KL

X[E(s, ") (t* = %) + (F(s,5")(u® — u)] (A.35)

Kik KoKl Ryl KoK

EpvpoPyp” ah g’

where ¢ is the antisymmetric tensor with €p323 = 1, and the kinematic terms are given by

s = (rtp)t (4.36)
t = (pr—g4)° (A.37)
v o= (p+—q-) . (A.38)
$ = (grta)? (4.39)
t = (p-—q-) (A.40)
W= (p- - g4)? (A41)
Ky = pi-k (A.42)
Ky = q&k. (A.43)
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The coefficients in the bremsstrahlung cross section are given by

A(s)

B(s)

C(s,s)

D(s,s)

E(s,s)

F(s,s)

1+ 2Rexz(s)(9¥ 9% — 949%)

+Hixz()((69)? + (9D (68)® + (92)°) — 4b 99t 9] (A.44)
1+ 2Rexz(s)(g5-9% + 94g%)

+Hxz(D[((99)% + (gD ()* + (99)?) + 495 959 64 (A45)
1+ {Rexz(S) + Rexz(S’)} (9%9% — 949%)

+Re(xz(s)xz(¢)(99)* + (62 (6%)? + (69)?) — 49¥-0%9%9%](A.46)
1+ {Rexz(s) + Rexz(s’)] (9% 97 + g49%4)

+Re(xz(s)x2(s)I((g5 )2 + (92))(gd)? + (9%)?) + 495 9597 9%1(A.47)

g9a¥ — 95%9% Tlxz(sH?  Ixz(s)*]
by = aga T _ D2y, o) o - )
((95)° + (929 g% = ((e1)* + (6%)*) g 94
2472 (A.48)
9598 + 9494 TIxz(sD?  |xz(s)*]
by + Gaga [DZIE_ DO o) 2P - o)
((g5)* + (gD Debgl + (gh)* + (d2)Hg¥ 94 A49
323/2 ( ' )

The first two terms in Equation A.35 correspond to initial state bremsstrahlung, and the

second two terms correspond to bremsstrahlung from the final state. The last two terms

in Equation A.35 come from the interference between the initial state and final state brem-

sstrahlung diagrams.

The energy spectrum for bremsstrahlung photons is obtained by integrating Equa-

tion A.35, and is naturally divided into initial state, final state, and interference terms,

where

do  do? do® dot

-ttt (A.50)
do? N s S\1
7’{:— = 0'0(3 )-7; (hl mg - 1) l:]. + (S) ] k (A51)
dot ! N 2 1
% - ao(s)%on;% ~1+41In %) [1 + (3;) ]; (A.52)

134



do? 203 , 2B -k
dk T[C(S,S)—D(S,S)] L

: (A.53)

The lowest order cross section og(s) used in Equations A.51 and A.52 is the differential

cross section integrated over (:

do

op{s) = /d—O—dQ
a?

Z
= o [l +a3+ )

1 .
= g(@ﬁ@% +2QeQ r9¥9) Rexz

+H5)? + @D () + (@h)Plxzl) - (A:54)

As discussed in Section 6.2.2, the radiative Monte Carlo used for the asymmetry analysis
calculates only the contribution of hard final state bremsstrahlung (the third and fourth
terms of Equation A.33) to the 3-body cross sectioﬁ. The fraction of events which have a
hard final state photon with energy fraction greater than kg is determined by integrating
the bremsstrahlung photon energy spectrum of Equation A.52 from the cutoff & = koF
upward. The fraction of events with a photon with energy fraction larger than &g is given

by [49]

6h(ko) = 2?"Km$—1>
1 L (1 = ko)(3 = ko) 7r_2
x(na—;( — ko)(3 - 0)— 5
+Lig(ko) — -}(l — ko)(3 — ko)ln(1 — ko)

F1(1— ko)(5 - ko)] . (A.55)

A.2 Weak Contributions to the Cross Section

The cross section for ¢q§ — eTe™, including the lowest order contributions and the weak

corrections is given by

-df— = gzG (s,t)(1 + cos? 0) + G3(s,t) cos @ (A.56)
dQ ~ 4s B ' ’
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J 4 A5 Z A Xj
1 Qe 0 Qr 0 X1 = Xy
2 9v 9a b oh X2 = Xz
3 Qe 0 gxf/ 9,{1 X3 = XvZ
4 9% 94 Qf 0 X4 = X2
5 Fy¥(s) FI(s) Qf 0 X5 = Xy
6 Qe 0 Y (s) FY(s) X6 = X
7 FFe(s) FZ(s) ol A X7 =XZ
8 9 a4 F(s) FZI(s) X8 = X7
O ()2 + 0D 2wbeh (elP+EhD  2ebdl X0
10 255 @9+ DY 2beh @2+ DY x
N AT P T TOy o X1

Table A.1: Vector and axial vector components and corrected propagators used in the weak
corrections to g§ — ete~.

where
11
Gi(s,t) = Re > (VFVE + 4540V VI + AT AL )Xk (A.57)
Jk=1 :
11
Ga(s,t) = Re Y (VAL + AV AL + AV pxi. (A58)
j:k‘_‘l

The vector and axial vector components Vje’f and A;’f , and the propagators x; are taken

from Reference [41] and shown in Table A.1. The electromagnetic vertex factors‘FVefff are

)

given (for charged fermions) by

FY = Q5o + ()P Aals, Mz) + G (A.59)
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(84
FY = Qr2efghha(s, Mz) + GY) (A.60)
with
3
G = ~ 1 Msls, Mw) (A.61)
W
Gy = - 12 1\2(3,MW)+—32—A3(3,MW) (A.62)
12s3y sty
G = L Ao(s, M) — ——A
L - 62 2(‘3» W) 7 3(5,MW)a (A63)
SW 4SW ,

where G, GY,and G% are for leptons, u-type quarks, and d-type quarks, respectively. The

abbreviated notation
Sw = sin fw cw = cos Oy (A.64)

is used to make the equations more compact. The functions Ay and Az have the form

Aa(s, M) = —; - 2w — (2w + 3)In(w)
+2(1 4 w)? [1n(w)ln<1 * ‘“) ~Lig -1)]
w w
1
—ir [3 + 2w — 2(w + 1) 1n<—”;"ﬁ)] (A.65)
1
As(s, M) = g - %D + %(Qw + 1)v/4w — larctan /T
2
— %w(w +2) (arctan \/-—;71—.—__1) (A.66)
where w = M?2/s, with M = Mz or Mw, and 0 < s < 4M@,. The weak neutral current
vertex factors Fg’iizf are given (for charged fermions) by
o
F = (o) +3(gh))Aa(s, Mz) + F] (A.67)
a
FF = LBl + (gh)P)bals, Mz) + Ff] (A.68)
with
FLo= 2 Ag(s, M) — 22 Ag(s, M) (A.69)
’ 8siyew 483y
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F} = —%—éf%Ag(s,Mw) + Z—;AB(SJV[W) (A.70)
FE o= —18;%568‘%”1\2(3,MW) - z—%VKAs(s,MW)- (A.71)
The x propagators from Table A.1 are defined by
B s

T s - o e
Xz = - s e (A.73)

s—M%+EZ(3)—%E%

s (s)

X2 = (el — M3+ S7(s)] — ST (A7)

xo = 5oll(s.t,Mz) ~ I(s,u, M) (A.75)

Yo = %[Is(s,t,MZ)JrIs(s,u,MZ)] (A.76)

a | U(s,t, Mw) + Is(s,t, Mw)] for I{ = —1 fermions

= (A.77)

X1 =
(—I(s,u, Mw) + Is(s,u, Mw)] for I3f = +1 fermions

The functions I and Is are

s [s+2t+2M?[ . ¢ w2 of Y1
Is(s,t,M) = s+t{ st D) [L12<1+M2)— 5 —lIn <_y2>

1 t Y2— 1 n
+21n<—M2>+ > 1n( yz)

s+ 2t —4M?%t)s 4+ 2M* [t — 2M*/s
2(s+t)(z2 — 21)

: J(s,t,M)} (A.78)
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I(s,t,M) = I5(s,t,ﬁ\[)+21n2<—y—l> + - J(s,t, M) (A.79)
Y2 1 —x2
with
J(s,t, M) = Lip—— 4 Lip— 2t — _Lip— 22 _ 1,22 (A.80)
T1— 0N 1 — Y2 T2 — W T2 — Y2

1 402 M2
12 = =1 - = Al
19 2( i\/ - <1+ - )) (A.81)
1 4M?2
Y12 Sl TE1-— (A.82)

The renormalized vector boson self energies are given by

il

S7(s) = B(s)+ 8862 (A.83)
. LY2(0) ey [6ME SME

vZ = YY) -2 o2 \V) W z _ My
£7(s) (s) (0) + s{ M sw \ 3T M (A.84)
$2(s) = D%(s) - 6ME+ 62F(s - MB) (A.85)
SWs) = SW(s) - 6MP + 628 (s — ME). (A.86)

The renormalization constants are

oY
by — sty 72(0) | oy — sy [6ME 6MPE
§2f = -I7(0) -2 —H Mg 4+ Y MZ?- M2W (A.88)
SiyCiv z Sw Z w
P 2Y2(0) oy (ML 6 MG :
W ) — 2w E0) |y (M7 My A.89
023 © sw M3 +5%V M My (4.89)
and
6ME = ReSW(M3Z) (A.90)
§M% = ReDZ(M3). (A.91)
Note, too, that
H‘y,'yZ,Z,W'(S) — ERQE‘Y:‘YZyZaW(s) (A.QQ)
S
ﬁv,'yZ,Z,VV(S) — lRez‘;'r,'rZ‘Z,W(s). (A.93)
S
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The unrenormalized vector boson self energies £77%%W contain terms of the form

Aj= L Y+ Ind4r —In (T—g—> (A.94)
4—D w2 )’

where D is the number of dimensions used in the dimensional regularization, v is the Euler

constant, 4 is a mass scale. and mj is a particle mass. In the renormalized self energies,

the singular and constant terms of Equation A.94 cancel, but the mass dependent terms

remain. To simplify the calculations, the Aj terms in the unrenormalized self energies are
replaced by terms of the form

A= -Inm} (A.95)

in which the singular and‘ constant terms of Equation A.94 are removed and the (arbitrary)

mass scale y is set to 1. The abbreviated notation
z=M% w=ME, h=M§ (A.96)

is used to make the equations more compact. With these substitutions and abbreviations,

the unrenormalized vector boson self energies are given by
83 4 C A2 2 S
S(s) = E{E ;Nf Q% [m; 4 (s + 2mB)F(s,mp, my) - 5] (A.97)

—3A% — (3s + 4w)F (s, MW,MW)}

a 4 S A
n12(s) = E{_g Xf:N)ngg‘j; [sAif + (s + Zm%)F(s,mf,mf) - 5} (A.98)
+ 1 3cd + 1 s+ 2wiA]
CWSW WTe w
L 3¢t +l s+ (4ct +§wF(sM Mw) + =
CWSW WTg wTs W, W Yew sw

nZ(s) = f;{% T 2(g‘A)2s< f-{—%—ln(—%—ie)) (A.99)

l=e,u,r l

%;Nfc [((9{/)2 + (g£)2)<sA’f + (s +2m3)F(s,mg,myf) — %)
Fv .

3
_mm}(yf N F(s,mf,mf))]

19 1 1 1 21+,
= 44 - — - |MEZIA
[( 6s%v+6c%v>”( e W> ] w
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+ K—c‘é.v(élOs +80w) + (cdy — s¥)%(8w + 5) + 12w>F(s,MW, M)
h — z)?
S

h z
<102—2h+5+ ( F(s,Mg,Mz) - 2hln — — 2zIln —
w
h+2z, Mg

w
MMz
10z — 2h 1-
+(102 + s )( P 1 My —In " )

2
+§5<1 + (cfy — sh)? - 46%{/)]

: a 1 |1 : 3
EIV(S) = /—-T{g Z [(S*ETR?)A? (A.100)

3 8

|
[S%;Vz—ﬁ(7z+7w+105—2(z— w)’ )
1 s (z-w)

2
+ z - 2 — T)]F(S,MZ,MW)

»

——~{w
2 2
+——§z< 4w—103+2i>F(3,0,MW)

+

|

(w h+ = +(—5)—2-)F(s My, Mw)

<l

(7z+7w+103—4(z—w))—s%,yz+é(2w— i)] 1wl

3 z—w w
2
(gw-i-i)——-h—ln—g—c—w(h-{—?w-i-gs)

The function F(s,m1,mg2) is defined by the integral

F(s,mi,mg) = —1+m% .
1 .
_'/dwln:ﬂzs—z(s+m%—m%)+m%—ze (A.101)
myma
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and has the analytic form [59]

S S S
F(s,m1,m2) = 1+(m18m2_m1+m2)m@

m% — m% mi

=
+§,/,u+«/u- In % 0<p-
_% /l4+/—pi— arctan % p- <0< py (A102)
A () <

where

py = (mp+my)?—s (A.103)

(my —my)? — s. (A.104)

Il

e

There are more simple expressions for F(s,my,my) for a few special cases. If one of the

masses is zero, then

m? | s .
F(s,0,m)=1+ T——l n 1——7;&3—15 . (A.105)
For small values of s (s € m%,m3),
2 2 2,2 2
$ mi + my mimsg mi
F(s,mi1,mg) = ( 1 - In — (A.106)
Y A s Ay
s
= —5 A.107
Fs,mm) = o) (4107
while for large values of s (s > m?,m3),
8 m% + m% my
F(s,mi,m3)=1-1n 5 51n —. (A.108)

mima my — My mo
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