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Abstract. A phenomenological model of particle production and 

hadronisation in high energy collisions is formulated using Dirac fields in 

Yukawa-like interaction and the resulting stochastic equation is solved 

numerically. Different initial conditions are used to compare particle-

particle ( ψ ψ ) and particle-antiparticle ( ψ* ψ ) interactions. It is shown 

that in this simplified view, there is a clear difference between the final 

multiplicity distributions resulting from the two initial conditions. To 

model the restricted phase space (limited pseudorapidity) measurements in 

experiment, a “loss” function is also proposed to account for the 

undetected particles close to the beam line. 

1 Introduction 

Particle production is a high energy phenomena that stems from the Einstein’s relativistic 

physics. It is highly relevant in the domain of quantum systems interacting at energies that 

are significantly larger than the mass scales of known matter. Experiments done at the LHC 

and all previous collaborations aim to study matter at smaller and smaller length scales with 

each generation to probe the physics of the early universe. Particle production and 

hadronisation is an important aspect of what happened after the big bang and our 

understanding of it is incomplete. Standard model physics is perturbative by design and we 

do not have a complete map of what goes on in the large coupling sector of Quantum 

Chromodynamics (QCD), which is the relevant theory for particle production. 

Our understanding of QCD in terms of perturbation theory is limited due to the running 

nature of the coupling constant. Studies of branching models circumvent this problem in an 

interesting way. Branching models derived from perturbation theories result in stochastic 

equations of evolution that are independent of the coupling. It is therefore a valid 

assumption that these equations are still applicable when the coupling is strong [1]. Over 

the years, such branching models have proved to be a helpful guide to studying branching 

processes in high energy experiments†. This is one of the non-perturbative approaches 

employed to model physics of the soft sector. The study of hadronic multiplicity at high 

energies is a highly contested topic as there is no first principles explanation from QCD to 

the observed data. This further strengthens the case for stochastic phenomenological studies 

 
* Corresponding author: p.agarwal@u.nus.edu 
† A concise discussion on various branching models and their properties can be found in 

[1]. 
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that take into consideration the relevant physics while making certain simplifying 

assumptions to deal with the problem at hand. 

The most popular parton branching equation was first discussed by Giovannini [2]. His 

branching model has been extensively studied in the final decades of the last century [3-17]. 

Such branching models work under the following assumptions: particle production occurs 

in three distinct steps. First, partons showers are created through the branching process 

birthing from a bunch of highly virtual partons. Next, these partons hadronise through an 

unknown process. Finally, these hadrons are detected in our experiment subject to detector 

design and efficiency. This final step is best handled through combinatorics. Unfortunately, 

the process of hadronisation is still not very well understood. 

In this work, we propose a stochastic branching model based on these principles with 

the interaction term λ ψ* φ ψ. This is similar to the effective nuclear force described by 

Yukawa interaction and an exchange of pions. Although Yukawa processes have been 

studied in quite some detail in the literature, as a branching process they are mostly studied 

as a φ3 process [18]. This is one of the more successful models that has the Furry 

distribution as its solution [19,20]. However, since this is a scalar theory, there is no 

distinction between particles and antiparticles. It is therefore impossible to probe the 

difference, if any, between particle-particle and particle-antiparticle interactions [21]. 

Giovannini’s parton branching equation also fails at this count. It does not make any 

distinction between quark and anti-quark branching probabilities. We shall address these 

shortcomings in this work and showcase how this distinction between particle-particle and 

particle-antiparticle interactions manifests itself in our model. 

2 Stochastic Branching Models 

 
Fig. 1. A schematic diagram to represent a typical production tree‡. 

 

Our setup aims to model the difference between pp and p̄p collisions [21] which 

Giovannini's parton branching equation [2] does not address. Multiplicity distributions from 

a quantum field theory can be derived using the Alterelli-Parisi equation [22] (also known 

as the DGLAP equation) 

 

D’(x,t) = ∫ dz D(z,t) P(x/z) z-1                                         (1) 

 

where the integral runs from x to 1 and the derivative on the left is with respect to t. D(x,t) 

is the 1-particle inclusive distribution and P(x) is the splitting function that dictates the 

outgoing distribution of incoming momentum at any given vertex. The variables (z, x) are 

the momentum fraction of the state in question whereas t is the evolution parameter 

 
‡ Figure is borrowed from reference [18]. 
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measuring the virtuality of the initial state. 1-particle inclusive distribution D(x) describes 

the probability of producing 1 particle with momentum fraction x. 

The physical idea is that we start out with a state that has very high virtuality and, as it 

branches into more and more particles, the final state approaches the mass shell (Fig. 1). 

There is a renewed interest in the DGLAP equation in recent years as it is used to study 

inclusive production and branching in conformal field theories [23]. 

An interesting note here is that the evolution equation for the multiplicity distribution 

can also be derived as a stochastic branching process. The evolution parameter t can in this 

sense be treated as a “time” parameter. As discussed in [1] and [18], the φ3 branching 

process simply follows the Furry branching process of pure birth. The Furry distribution 

has been used rather successfully to model particle production through geometric models 

[19,20]. In fact, it is one of the limiting cases of Giovannini’s branching model. However, it 

still has limitations described previously pertaining to limited physical applicability at 

higher energies. It nevertheless proves the strength of stochastic methods to modelling 

particle production. It is this approach that we shall follow in our current work. A more 

detailed analysis using the DGLAP equation is left to a future study. 

3 The Evolution Equation  

There are three fundamental processes possible in our model dictated by the same 

fundamental vertex: ψ Bremsstrahlung, ψ* Bremsstrahlung and ψ* ψ pair production. 

Fig. 2. The three branching processes allowed in our model. 

 

The equation for stochastic evolution of this system can be easily derived. We assign a 

probability to each of the three kinds of branching processes: A for ψ Bremsstrahlung, A* 

for ψ* Bremsstrahlung and B for ψ* ψ pair production. A state with n particles, m 

antiparticles and o scalars has probability given by Pmno and evolves in a small step dt as 

 

Pmno(t + dt) = (1 - nA dt – mA* dt - oB dt) Pmno (t)  

  + nA dt Pmn,o-1 (t) + mA* dt Pmn,o-1 (t)          (2) 

  + (o + 1) B dt Pm-1,n-1,o+1 (t) . 

 

Therefore,  

 

P’mno(t) = nA (Pmn,o-1 - Pmno) + mA* ( Pmn,o-1 - Pmno)  

            + B ((o + 1) Pm-1,n-1,o+1 - o Pmno),          (3) 

 

where we have suppressed the t dependence on the right-hand side for brevity. This 

equation does not have a closed form analytic solution. We therefore use numerical 

methods to solve it. 
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There is a small caveat to this distribution. In a high energy experiment, what we 

measure in the end state is the number of charged particles. Since we wish to model this 

charged particle multiplicity distribution Pn, we need to sum over all neutral scalars and 

count all charged particles. Pn is given by 

 

    Pn = ∑i+j=n ∑o Pijo .            (4) 

 

Another important note here is that for particle-particle and particle-antiparticle 

interactions, our initial condition always contains 2 initial charged particles. Our model 

therefore produces non-zero values only for even multiplicities since all branching 

processes increase the particle number by 2. This is expected as these numbers are for full 

phase space, i.e., - ∞ < η < ∞§. Since most pp and p̄p data is restricted phase space due to 

detector design, we introduce a “loss” function to account for particles lost down the beam 

line. 

4 The Loss Function 

To account of particles lost outside the detector region and down the beam line, we can 

perform a convolution of our multiplicity distribution with a probability distribution that 

describes the loss. The final multiplicity distribution P̄n should be calculated as follows: 

 

P̄n = ∑ i Pn+i pi            (5) 

 

where pi is the probability of losing i particles. Following Occam's razor, we assume the 

simplest form of pi: 

 

pi = Binomial (i, n+i, p)           (6) 

 

where Binomial (i, n+i, p) is the probability mass function of the binomial distribution. pi, 

therefore, gives us the probability of losing i particles given that n+i particles are produced 

assuming that p is the probability of losing the particle. Employing such a loss function 

gives us non-zero values for all multiplicities, as is observed in restricted phase space data 

for pp and p̄p collisions. Ideally, what we expect is that this probability of loss will increase 

as we constrain our pseudorapidity window since more and more particles go undetected. 

5 Method for Numerical Integration 

As mentioned earlier, the evolution equation does not have any closed form solution. 

Numerical methods are therefore required to further study our model and make contact with 

data. Numerical integration was done by performing 4th order Runge-Kutta integration 

(RK-4) for 4 different values of the step-size (h = 0.1, 0.05, 0.01, 0.005) and then using 

polynomial interpolation to find the values for h = 0. This was done mainly to improve 

normalisation as RK-4 regularly under-predicts the solution. This error is dependent on the 

step size h and therefore, treating the total probability of the final state found by the 

integrator as a function of h should give better results through interpolation. Indeed, this 

 
§ The UA5 data used for the fit is for a restricted pseudorapidity window. However, the full 

phase space data reported by UA5 is all even multiplicities as well, as anticipated by our 

distribution. 
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resulted in significant improvements in normalisation while saving on computational 

complexity. 

Most of the numerical work was done in Python. However, C++ code was wrapped 

using Simplified Wrapper and Interface Generator (SWIG) [24] for performance and 

efficiency gains whenever required. For example, integrating from t = 0 to t = 4.0 took ~ 43 

minutes in Python. The same calculation with wrapped C++ code in Python took ~ 13 

seconds. 

6 Results and Discussion 

The following figure shows the effect of having different values of A and A* on the 

multiplicity distribution for ψ ψ interactions and ψ* ψ interactions. 

 

 
Fig. 3. Multiplicity plots when A = A* = 0.8 and A = 0.8, A* = 0.9. 

 

This is one of the main highlights of this work: from these plots we can conclude that in 

our model, matter-antimatter asymmetry shows up as a difference in the multiplicity 

distributions for the particle-particle and particle-antiparticle collisions. Some preliminary 

fitting using p̄p data from the UA5 collaboration [25] for pseudorapidity window -3 < η < 3 

gives us very different values for A and A* as is tabulated below. For this fit, we get a very 

promising value for χ2 / d.o.f. of 53.27/75. Our model, therefore, successfully captures the 

feature we were probing for. A detailed analysis of this result should include a fit to pp data 

from the LHC for the same pseudorapidity window and same energy. This is one of the 

approaches currently under consideration. 

 

 
Fig. 4. Preliminary fit of our model to data from UA5 at √s = 900 GeV. 
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Table 1. Model parameter values. 

A A* B p t 

0.19 0.774 0.74 0.186 5.6 

 

7 Conclusion 

A phenomenological branching model for particle production that captures matter-

antimatter asymmetry is presented. The stochastic equation is solved numerically and 

preliminary fits to data from the UA5 collaboration seem promising. Future work on the 

model would involve performing Monte Carlo Markov Chain fitting to do Bayesian 

parameter estimation and fitting to other datasets. It is expected that the parameter p in the 

“loss” function should depend only on the pseudorapidity window over which the 

multiplicity is measured. Further, fitting to pp data from the LHC for the same energy and 

pseudorapidity window should prove to be a good test for the model. Once the model is 

rigorously tested against datasets, there are all kinds of phenomenological studies that can 

be performed. An interesting direction of recent study has been towards modified 

combinants of multiplicity distribution [26-28]. Some preliminary calculations show 

promising results from our distribution towards these interesting quantities. These 

directions are currently being explored. 
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