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Abstract.

The talk addresses a problem of Casimir apparatus in weak gravitational field, surrounded

by a dense medium. The falling of the apparatus has to be governed by the equivalence

principle, taking into account proper contributions to the weight of the apparatus from

its material part and from distorted quantum fields. We discuss general ex pression for

the corresponding force in terms of the effective action. By way of example we compute

explicit expression for Archimedes force, acting on the Casimir apparatus of finite size,

immersed into thermal bath of free scalar field. It is shown that besides universal term,

proportional to the volume of the apparatus, there are non-universal quantum corrections,

depending on the boundary conditions.

1 Introduction

Reflections about matter dynamics in gravitational field are among the most fruitful themes in the

history of physics. Well known legends about Newton, inspired by the falling apple in his mother’s

garden, or about Galileo, dropping balls from the top of the Leaning Tower of Pisa are good ex-

amples. In modern times, classical tests of General Relativity such as light deflection by the Sun’s

gravity, weighting-the-photon experiments of Pound-Rebka type , Shapiro delay, neutron interferom-

etry in gravitational field, and ALPHA, AEGIS and GBAR experiments at CERN, exploring falling

antimatter, continue the same line of studies.

Of particular interest are quantum field theoretic physics in classical gravitational field, where

Hawking radiation is the best known phenomenon. Needless to say that the problem of genuine

gravitational interaction between parts of intrinsically quantum object (for example, between two

entangled photons) cannot be addressed in semiclassical approach, leaving aside the fact that it is

beyond our current experimental abilities. It is to be stressed that we have no direct experimental

information how an elementary particle like proton gravitationally interacts with another one, and

Newton gravity law has never been tested experimentally for small distances, even in 1 μm range.

Therefore its naive extrapolation to distances of the order 10−35 meters could be plainly wrong, as

various extra dimensions scenarios suggest. In other words, the "ultimate" ultraviolet fundamental
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scale can have nothing to do with the conventional Planck distance (calculated from long-distance

asymptotic of the gravitational interaction, described by the Newton constant G).

Coming back to the case when semiclassical treatment is appropriate, the simplest example is

non-relativistic motion of a test body in external weak gravitational field. The basic fact governing

this type of motion is well known from school textbooks: the force acting on the body is proportional

to its mass and directed along the free fall acceleration:

f = mg = ρVg (1)

where ρ = m/V is average density and V is the body’s volume. Simplicity of this formula should

not camouflage a highly nontrivial fact, that the force depends on the only parameter of the body - its

mass (and not, for example, on its chemical composition, entropy etc). Combined with the Newton’s

second law of motion this fact has, of course, direct relation to the celebrated equivalence principle.

The situation gets more complex if the test body is immersed into gas or fluid. The expression (1)

is to be replaced in this case by

f = (ρ − ρ f )Vg (2)

where ρ f is the fluid’s density, and the term proportional to ρ f is known as Archimedes force. The

expression (2) has many approximations behind it and there are a few relevant small parameters. First,

the independence of this force on any characteristic features of the body other than its volume is by

no means trivial. It is based on smallness of a ratio of gas/fluid molecules size to that of the body (and

also holes in the body’s surface etc), which makes continuous medium approximation applicable.1

Another parameter is the Planck constant � - the result (2) is of course purely classical and may get

quantum corrections, for example, if typical quantum correlation length in the fluid is comparable

with the body size. Also needless to say that (2) is valid in non-relativistic and weak gravitational

field approximations. Last but not least, the expression (2) is invariant under shifts ρ → ρ + const.

It is "self-renormalized" in this sense and piece of vacuum (or any other medium in stationary case)

with the "mass"
1

c2

∫
dV 〈T 00〉 (3)

does not "fall" in gravitational field, because there is compensating "pressure" on this piece of exactly

the same magnitude from surroundings, directed upwards.

We analyze weighting the Casimir apparatus in weak gravitational field in this talk. This problem

has attracted some attention in recent years [1–8] and there used to be controversy in the literature

we will mention below. We argue that the key point is physically correct definition of the weighting

procedure, since there is no possibility to weight Casimir energy alone - one always measure the

weight of Casimir apparatus as a whole. The weighting procedure and the results are to be universal

and applicable to any Casimir apparatus, not only to two parallel plate Casimir cavity, usually taken

as example. Our aim is to discuss such procedure and to apply it to concrete case of Casimir cavity in

thermal bath of massless scalar field.

2 Archimedes Force

The basic ingredient is quantum field theoretical average of energy-momentum tensor 〈Tμν(x)〉, where

average over fields is computed with the standard integration measure DΦ, normalized to have

〈1〉 = 1. In geometric setup used by us in this paper,2 Casimir apparatus is encoded by some x-

dependent measure deformation, DΦ→ D′Φ, corresponding to constraints the fields have to obey on

1This is just what helped Archimedes to find out the volume of King’s Hiero crown in well known legend.
2By the word "geometric" we mean neglect of dynamical properties of the boundaries like frequency-dependence etc.
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the boundary or in interior of the apparatus. For example, in classical Casimir setup of two infinite

ideally conducting parallel planes interacting with electromagnetic field this deformation looks like

DAρ(x) → DAρ(x) δ(F̃μ3(x3 = a1))δ(F̃μ3(x3 = a2)) (4)

where F̃μν is dual field strength, a1, a2 - coordinates of the planes along the third axis (the axes 1 and 2

are in the planes). The form of the above expression is quite general and in many cases one can write

D′Φ = DΦ Δ[Φ] with some functional of the fields. One could think of Casimir plates as of "passive

detectors", which measure parallel electric and normal magnetic field at the position of their location

and always return zero value. This is like having quantum or classical particle in a corridor made

of hard walls so that any subsequent measurement of the particle coordinate will definitely return a

result inside the corridor. Uncertainty relation causes pressure on the boundaries (walls and plates

in the examples above), which depends, in particular, on how hard (conductive) they are. In general

words, we are interested in relations between what and how precise a detector is able to measure and

its own dynamics. It is important to remember, however, that the "detectors" in the above examples

are artificial and make no record of the results.

Coming back to the Casimir apparatus in weak gravitational field, writing the metric as gμν =

ημν + 2hμν, one gets for the energy shift at the leading order of semiclassical approximation [3]

δEg = −
∫

d3x hμν(x)〈T μν〉(x) (5)

In geometric setup the average 〈T μν〉(x) has two parts - the "material" one, corresponding to the

objects (planes, cavities, robes, springs etc) the Casimir apparatus is made of, and the "field" part. For

nonrelativistic case spatial components of the energy-momentum tensor are suppressed by inverse

powers of the speed of light,
∣∣∣T 00

∣∣∣ � ∣∣∣T i j
∣∣∣ and only temporal component of the metric tensor h00(x)

is relevant. This can be correct approximation for the material part of 〈T μν〉(x), but certainly not for

its "field" part we are interested in here. Consequently it is easy to check, that various choices of

the metric hμν lead to different answers for δEg, even if all these choices correspond to uniform field

with free fall acceleration g. Moreover, the energy becomes orientation-dependent for some choices,

in gross contradiction with the equivalence principle and scalar nature of mass. This is physically

unacceptable and should be resolved.

The source of the problem was identified in [2, 3] as gauge non-invariance of (5). Indeed, (5) is

invariant under weak field gauge transformation hμν → hμν + ∂μξν + ∂νξμ only if ∂μT
μν = 0. The

energy-momentum tensor is covariantly conserved for the combined "material + field" system

∇μT μν = 0 (6)

but not for the "field" part alone. Thus two logically possible alternative paths can be chosen: either

one is to include the material part and carefully work with the full energy-momentum tensor, obeying

(6), or one is to argue, that this or that choice of the metric is more physical than another choices and

compute the force using the distinguished metric. Mostly the latter path was followed in the literature

with the motivation for preferable role of Fermi metric choice c2h00 = gz ; hi j = 0 and the result for

the weight of Casimir energy (in classical two plates case)

f = g
EC

c2
S where EC = − π

2
�c

720a3
(7)

and S stays for the plates area. The energy-momentum tensor of the system is given by 〈T μν〉 =
(EC/a) × diag(1,−1,−1, 3) between the plates and zero outside [9].
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Thus, the cavity feels small upward push and Casimir energy gravitates as any other form of energy

in accord with the equivalence principle. In a sense, the answer (7) could have been written without

any computations, if EC is known. However, the arguments based on physically distinguishable role

of a particular parametrization of the metric are difficult if not impossible to generalize to other cases.

In particular, it is not clear how to write the next order O(hμνhρσ) correction to (7). It is also important,

that the result (7) by its nature should be quite general, which, however, is also not clear taking into

account that the methods used for its derivation (see e.g. [2]) heavily use properties of particular two

infinite parallel planes geometry. This calls for systematic derivation applicable beyond the weak field

approximation and for arbitrary Casimir apparatus.

We argue here that weighting methodology suggested in [10] can be naturally adopted to the

Casimir apparatus weighting problem. We consider static metric of the following form

ds2 = g00(x3)c2dt2 + g33(x3)dx2
3 + dx2

⊥ (8)

with the choice of x3-coordinate axes such that g00(x3 = 0) = −1 (we denote x3 coordinate as z below

for simplicity of notation). We are to weight, following the symmetry of the above choice, two large

identical boxes with some identical boundary conditions for the fields on their internal boundaries

(see Figure 1). We put inside the box number 2 the Casimir apparatus of much smaller size, i.e. we

assume a set of conditions encoded by some functional

B[φ(x)] = 0 for x ∈ V (9)

put on the fields inside the volume of the apparatus V or, in particular case, only on its boundary

S = ∂V . There is no apparatus in the box number 1. Then, following [10] we consider a function:

wk(z) =

∫
S k

d2x⊥
√−g00 · g33〈T 33〉k (10)

The index k = 1, 2 is the box label and integration goes over section of the boxes at constant z (sections

are assumed to be of arbitrary shape, but z-independent, i.e. geometry is cylindrical). The measures

〈...〉k take into account Casimir apparatus conditions (9) in the box 2. For Minkowskii space with the

metric gμν = ημν = diag(−1, 1, 1, 1) the function (10) is nothing but the integrated pressure, i.e. for

z = 0 it is the force acting on the bottom plane of the box. It is obvious that all contributions to this

force from "material" parts of the boxes are identical.

The difference of the above defined integrated pressures at z = 0 we call, by definition, the weight

of our Casimir apparatus:

f = w2(0) − w1(0) (11)

To express this force in terms of energy-momentum tensor integrals, we are to take into account that

the total energy-momentum tensor is covariantly conserved inside each box. For the metric choice (8)

the equation (6) reads

∂w(z)

∂z
=
∂
√−g00

∂z

∫
S k

d2x⊥ g00〈T 00〉 (12)

where we have used the definition (10). Integrating (12) over the entire boxes and assuming

lim
z→∞

[〈T 33〉2(z) − 〈T 33〉1(z)] = 0 (which physically corresponds to finiteness of the Casimir appara-

tus), we obtain the following final answer

f =
1

2

∫
d3x

√
−g00(z)

(
∂g00(z)

∂z

) [
〈T 00〉2(z) − 〈T 00〉1(z)

]
(13)

We discuss this result in the next section.
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3 Discussion and applications

The most important property of the expression (13) is its independence on spatial components of the

metric and energy-momentum tensors. To get that the particular form (8) of the metric tensor was

crucial. It is clear, in particular, that the weighting procedure we use would not be operational for the

case of transverse coordinates x1, x2 - dependent metric tensor. On the other hand, one has no need

to take g33 = 1 and nowhere we have used weak field approximation. Therefore in is legitimate to

expand (13) over difference (−1 − g00). The leading term corresponds to the standard choice g00 =

−1 + 2gz/c2 + O(1/c4):

f0 = g
1

c2

∫
d3x

[
〈T 00〉2(z) − 〈T 00〉1(z)

]
(14)

For Casimir plates discussed above equation (14) reproduces the result (7). On the other hand, in

classical limit we come back to (2) taking into account that∫
Vbody

d3x 〈T 00〉2(x) = mc2 ;

∫
Vbody

d3x 〈T 00〉1(x) = ρ f c
2Vbody (15)

and 〈T 00〉2(x) = 〈T 00〉1(x) for x outside the body. Needless to say that this last condition does not

take place for quantum "field part" of the total energy-momentum tensor, since the body distorts fields

around it and its energy is delocalized in this sense.

The important issue is UV-divergencies of (13). Since the force is physical observable, we expect

they all get renormalized. The detailed picture of such renormalization can be rather tricky, as for

example [1, 5] clearly show. We have to take care only about divergencies, related to the Casimir

apparatus, since all other obviously cancel in (13). General intuition suggests that the former ones

renormalize the nonrelativistic mass the the material objects the apparatus is made of. From this

point of view, while distinction between "body" and "medium" is clear in non-relativistic and non-

quantum limits, it is somehow lost in general case since the body in question - Casimir apparatus -

is surrounded by the cloud of quantum fields, distorted by its presence and this distortion contributes

to its total rest mass. Contrary to classical vacuum, which at least in principle can be cleaned to any

desired level, allowing independent measurement of each contribution, one cannot "clean" quantum

vacuum by eliminating fluctuating quantum fields out of it.

Let us also make a comment on next-to-leading corrections to (14). They come from two places:

expansion of metric-dependent multiplier in (13) and expansion of energy-momentum tensor average.

It is convenient to rewrite (13) as

f = 2

∫
d3x

(
∂h00(z)

∂z

)
1√
g33(z)

δ(W2 − W1)

δg00(z)
(16)

where Wk is the corresponding effective action and the standard definition

〈T μν(x)〉 = 2√−g
δW

δgμν
(17)

was used. Next-to-leading correction has the following form:

f = f0 −
∫

d3x

(
∂h00(z)

∂z

)
h33(z)

[
〈T 00〉2(x) − 〈T 00〉1(x)

]
+

+4

∫
d3x

(
∂h00(z)

∂z

) ∫
d4x′ hαβ(x′)

δ

δgαβ(x′)
δ(W2 − W1)

δg00(x)

∣∣∣∣∣∣
h=0

(18)
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We see that the dependence on spatial components of the metric appears at the next order. Another

correction to the classical Archimedes force - "weight of quantum fluctuations" - corresponds to the

last term. It is worth mentioning [11] that in Casimir systems with massless fields fluctuations of

energy-momentum tensor components∫
d4x′ [〈T μν(x)Tαβ(x′)〉 − 〈T μν(x)〉 · 〈Tαβ(x′)〉] (19)

are typically not small with respect to average 〈T μν(x)〉, so both the second and the third terms in the

right hand side of (18) are in general of the same order.

For general geometry of the Casimir body the right hand side of (13) or (14) is given by some

complicated expression, and no universal dependence of the Archimedes force on the body’s volume

like in (2) can be expected. To get the latter universality there should be small parameter in the system,

as we discussed above. An interesting example is Casimir apparatus in the thermal bath. If geometric

size of the apparatus is large compared to thermal wavelength

r � �c

kBT
(20)

one could think of large temperature expansion as being a good approximation. Technically we can

realize it using effective action and heat kernel expansion formalism in Euclidean space [12]. It is

convenient to start with expression for free energy

βFβ = − log

∫
DΦ e−S [Φ] (21)

where the action for massless minimally coupled free scalar field is given by the standard expression

S = 1
2

∫ β
0

dτ
∫

ddx Φ (−�) Φ and covariant D’Alembertian is � = ∇μ∇μ. In Euclidean formalism

(see, e.g. [13, 14]) one considers theory in d + 1-dimensional Euclidean space-time with the topology

R
d×S1, where length of the latter compact dimension is denoted as β. The fields satisfy the conditions

of periodicity in Euclidean time Φ (x, τ) = Φ (x, τ + β). Parameter β will be associated with inverse

temperature in what follows: β = (kBT )−1.

As is well known, the temperature-dependent part of one-loop Euclidean effective action can be

represented in terms of the corresponding thermal heat kernel K̂β(s|x, y):

βFβ = −1

2

∞∫
0

ds

s

(
TrK̂β(s) − TrK̂(s)

)
(22)

where K̂β(s) is periodic in Euclidean time solution of the equation

(
d

ds
− �

)
K̂β(s|x, y) = 1̂ · δ(s)δ(x, y) (23)

with s playing the role of proper time. It can be shown (see [14] and references therein) that tempera-

ture dependence of the trace of finite temperature heat kernel can be factorized as

TrK̂β(s) =
β

(4πs)1/2
θ3

(
0, e−

β2

4s

) ∫
ddx tr K̂d(s|x, x) (24)

where θ3(a, b) is Jacobi function and we denote d-dimensional zero-temperature kernel K̂∞(s) as

K̂d(s).
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The key result [16–19] (see also review [12] and references therein) is expression for the heat

kernel asymptotic expansion on the manifold M in powers of the proper time:

∫
ddx tr K̂d(s|x, x) =

1

(4πs)
d
2

∞∑
n=0

(
snAn + sn/2Bn/2

)
(25)

where the coefficients are given by

An =

∫
M

dd x
√
−g(x) an(x) ; Bn/2 =

∫
∂M

dd−1x
√
γ(x) bn/2(x) (26)

for integer and half-integer powers. Here g(x) and γ(x) denote the determinants of the bulk and

induced boundary metrics, respectively. The surface integrals at the boundaries Bn/2 are build of local

invariants incorporating such local characteristics of the surface as its extrinsic curvature Kμν etc.

In the problem under discussion the manifolds M correspond to intrinsic space inside the boxes.

Let us denote as Vbox the volume of the boxes (identical for the box 1 and the box 2), then by V we

denote the volume of Casimir apparatus, located in the box 2. In the same way we denote as S box the

identical surface area of the boxes and by S - the surface area of Casimir apparatus. Then taking into

account that a0 = 1, one obtains, at the leading order, for the free energy in the box 1 (without Casimir

apparatus)

F
(1)

β
= − π

2

90

1

β4
Vbox + b

ζ(3)

8π

1

β3
S box + O(β−2) (27)

while for the box 2, excluding the apparatus:

F
(2,out)

β
= − π

2

90

1

β4
(Vbox − V) + b

ζ(3)

8π

1

β3
(S box + S ) + O(β−2) (28)

The parameter b, proportional to b1/2 from (26), encodes boundary conditions for the field, for particu-

lar case of Dirichlet boundary conditions b = 1, while b = −1 for Neumann ones [17, 19]. In principle,

one can consider the case (quasistationary for small thermal conductivity of the material the apparatus

is made of) with different temperatures inside and outside the apparatus and add contribution to the

total free energy in the box 2 from the internal volume of the apparatus:

F
(2,in)

β
= − π

2

90

1

β4
in

V + b
ζ(3)

8π

1

β3
in

S + O(β−2) (29)

Then, using the relation

U = Fβ − T
∂Fβ

∂β
(30)

for internal energy, we get for the leading and first sub-leading contributions to Archimedes force (14)

f − mg = g
�

c

⎛⎜⎜⎜⎜⎜⎝ π
2

30

(
T 4

in − T 4
out

) (kB

�c

)4

· V − b
ζ(3)

4π

(
T 3

in + T 3
out

) (kB

�c

)3

· S

⎞⎟⎟⎟⎟⎟⎠ (31)

This result is worth commenting. First, as it should be by design of our weighting procedure, all

factors depending on geometry of the boxes have been cancelled. The expansion goes in parameter

(�c/kBT )(S/V) which is assumed to be small according to condition (20). The first term in the right

hand side is nothing but the weight of thermal photon gas.3 This term is universal and scales as

3This physics described by (31) should not be misinterpreted as physics of flying balloons with heated air inside, where key

factor is pressure gradient dependence on temperature.
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volume. The next-to-leading non-universal term depends on boundary conditions and scales as area.

Due to scalar nature of the problem both inside and outside parts of the boundary contribute with the

same sign and this term does not vanishes but doubles for equal inside and outside temperatures. The

importance of such terms and surface-dependent effects they describe for various metrology problems

like precise calibration of thermometers etc was stressed in [15].

The effects discussed above are extremely tiny. It is important, on the other hand, to remember

that genuine interplay of gravity and quantum takes place not only at Planck energies, but at normal

Earth-like conditions, with extreme weakness as a price to pay. We know a few examples in the

history of physics then multiplicity could save the case, e.g. huge value of NAvogadro allows to reach

limits on the lifetime of a proton far exceeding the age of the Universe, luminosity in collider physics

is a key to observe strongly suppressed processes etc). In this respect, the problem to find proper (and

experimentally reasonable) "multiplicity factor" for weak gravity of quantum states/energies does not

look hopeless. Indeed, there are suggestions to use advanced techniques from gravitational wave

search [20, 21] to nail such effects. There can surely be surprises prepared by the Lord for us here.

Acknowledgements

One of the authors (V.Sh.) thanks Yu. Gusev for discussions. The work was partly supported by the

RFBR Grant 14-22-03030.

References

[1] K. A. Milton, K. V. Shajesh, S. A. Fulling and P. Parashar, Phys. Rev. D 89 064027 (2014)

[2] K. V. Shajesh, K. A. Milton, P. Parashar and J. A. Wagner, J. Phys. A 41 164058 (2008)

[3] S. A. Fulling, K. A. Milton, P. Parashar, A. Romeo, K. V. Shajesh and J. Wagner, Phys. Rev. D

76 025004 (2007)

[4] K. A. Milton, P. Parashar, K. V. Shajesh and J. Wagner, J. Phys. A 40 10935 (2007)

[5] K. A. Milton, Lect. Notes Phys. 834 39 (2011)

[6] G. Bimonte, E. Calloni, G. Esposito, G. M. Napolitano and L. Rosa, arXiv:0904.4864 [hep-th].

[7] G. Bimonte, E. Calloni, G. Esposito and L. Rosa, Phys. Rev. D 76 025008 (2007)

[8] G. Bimonte, E. Calloni, G. Esposito and L. Rosa, Phys. Rev. D 74 085011 (2006); [Phys. Rev.

D 75 049904 (2007)] [Phys. Rev. D 75 089901 (2007)] [Phys. Rev. D 77 109903 (2008)]

[9] L. S. Brown and G. J. Maclay, Phys. Rev. 184 1272 (1969).

[10] T.Padmanabhan, Gravitation: Foundations and Fronties, Cambridge University Press, 2010.

[11] V. Sopova and L. H. Ford, Phys. Rev. D 66 045026 (2002)

[12] D. V. Vassilevich, Phys. Rept. 388 279 (2003)

[13] Y. Gusev and A. Zelnikov, Class. Quant. Grav. 15 13 (1998)

[14] Y. V. Gusev, Russ. J. Math. Phys. 22 9 (2015)

[15] Y.V.Gusev, Russ. J. Math. Phys. 23 1 (2016)

[16] B. S. DeWitt., Phys.Rev. 162 1195 (1967).

[17] L. Dolan and R. Jackiw., Phys. Rev. D9 3320 (1974).

[18] J. S. Dowker and G. Kennedy., J. Phys. A: Math. Gen. 11 895 (1978).

[19] I. G. Avramidi., Physics of Atomic Nuclei 56 138 (1993).

[20] E. Calloni et al., Phys. Rev. D 90 022002 (2014)

[21] E. Calloni et al., arXiv:1511.04269 [gr-qc].

  
 

  
DOI: 10.1051/,126 12602029EPJ Web of Conferences epjconf/201602029 (2016)

ICNFP 2015

8


