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Abstract.

The talk addresses a problem of Casimir apparatus in weak gravitational field, surrounded
by a dense medium. The falling of the apparatus has to be governed by the equivalence
principle, taking into account proper contributions to the weight of the apparatus from
its material part and from distorted quantum fields. We discuss general ex pression for
the corresponding force in terms of the effective action. By way of example we compute
explicit expression for Archimedes force, acting on the Casimir apparatus of finite size,
immersed into thermal bath of free scalar field. It is shown that besides universal term,
proportional to the volume of the apparatus, there are non-universal quantum corrections,
depending on the boundary conditions.

1 Introduction

Reflections about matter dynamics in gravitational field are among the most fruitful themes in the
history of physics. Well known legends about Newton, inspired by the falling apple in his mother’s
garden, or about Galileo, dropping balls from the top of the Leaning Tower of Pisa are good ex-
amples. In modern times, classical tests of General Relativity such as light deflection by the Sun’s
gravity, weighting-the-photon experiments of Pound-Rebka type , Shapiro delay, neutron interferom-
etry in gravitational field, and ALPHA, AEGIS and GBAR experiments at CERN, exploring falling
antimatter, continue the same line of studies.

Of particular interest are quantum field theoretic physics in classical gravitational field, where
Hawking radiation is the best known phenomenon. Needless to say that the problem of genuine
gravitational interaction between parts of intrinsically quantum object (for example, between two
entangled photons) cannot be addressed in semiclassical approach, leaving aside the fact that it is
beyond our current experimental abilities. It is to be stressed that we have no direct experimental
information how an elementary particle like proton gravitationally interacts with another one, and
Newton gravity law has never been tested experimentally for small distances, even in 1 ym range.
Therefore its naive extrapolation to distances of the order 1073 meters could be plainly wrong, as
various extra dimensions scenarios suggest. In other words, the "ultimate" ultraviolet fundamental
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scale can have nothing to do with the conventional Planck distance (calculated from long-distance
asymptotic of the gravitational interaction, described by the Newton constant G).

Coming back to the case when semiclassical treatment is appropriate, the simplest example is
non-relativistic motion of a test body in external weak gravitational field. The basic fact governing
this type of motion is well known from school textbooks: the force acting on the body is proportional
to its mass and directed along the free fall acceleration:

f:mg:pVg (1)

where p = m/V is average density and V is the body’s volume. Simplicity of this formula should
not camouflage a highly nontrivial fact, that the force depends on the only parameter of the body - its
mass (and not, for example, on its chemical composition, entropy etc). Combined with the Newton’s
second law of motion this fact has, of course, direct relation to the celebrated equivalence principle.
The situation gets more complex if the test body is immersed into gas or fluid. The expression (1)
is to be replaced in this case by
f=(p-ppVe )
where py is the fluid’s density, and the term proportional to py is known as Archimedes force. The
expression (2) has many approximations behind it and there are a few relevant small parameters. First,
the independence of this force on any characteristic features of the body other than its volume is by
no means trivial. It is based on smallness of a ratio of gas/fluid molecules size to that of the body (and
also holes in the body’s surface etc), which makes continuous medium approximation applicable.!
Another parameter is the Planck constant 7 - the result (2) is of course purely classical and may get
quantum corrections, for example, if typical quantum correlation length in the fluid is comparable
with the body size. Also needless to say that (2) is valid in non-relativistic and weak gravitational
field approximations. Last but not least, the expression (2) is invariant under shifts p — p + const.
It is "self-renormalized" in this sense and piece of vacuum (or any other medium in stationary case)

with the "mass" .
= f av (T 3)
C

does not "fall" in gravitational field, because there is compensating "pressure” on this piece of exactly
the same magnitude from surroundings, directed upwards.

We analyze weighting the Casimir apparatus in weak gravitational field in this talk. This problem
has attracted some attention in recent years [1-8] and there used to be controversy in the literature
we will mention below. We argue that the key point is physically correct definition of the weighting
procedure, since there is no possibility to weight Casimir energy alone - one always measure the
weight of Casimir apparatus as a whole. The weighting procedure and the results are to be universal
and applicable to any Casimir apparatus, not only to two parallel plate Casimir cavity, usually taken
as example. Our aim is to discuss such procedure and to apply it to concrete case of Casimir cavity in
thermal bath of massless scalar field.

2 Archimedes Force

The basic ingredient is quantum field theoretical average of energy-momentum tensor (7, (x)), where
average over fields is computed with the standard integration measure D®, normalized to have
(1) = 1. In geometric setup used by us in this paper,> Casimir apparatus is encoded by some x-
dependent measure deformation, DP — D’ P, corresponding to constraints the fields have to obey on

I'This is just what helped Archimedes to find out the volume of King’s Hiero crown in well known legend.
2By the word "geometric" we mean neglect of dynamical properties of the boundaries like frequency-dependence etc.
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the boundary or in interior of the apparatus. For example, in classical Casimir setup of two infinite
ideally conducting parallel planes interacting with electromagnetic field this deformation looks like

DA,(x) = DALX) §(F (x5 = an)d(F* (x5 = ar)) )

where F* is dual field strength, a;, a, - coordinates of the planes along the third axis (the axes 1 and 2
are in the planes). The form of the above expression is quite general and in many cases one can write
D'O = DD A[D] with some functional of the fields. One could think of Casimir plates as of "passive
detectors", which measure parallel electric and normal magnetic field at the position of their location
and always return zero value. This is like having quantum or classical particle in a corridor made
of hard walls so that any subsequent measurement of the particle coordinate will definitely return a
result inside the corridor. Uncertainty relation causes pressure on the boundaries (walls and plates
in the examples above), which depends, in particular, on how hard (conductive) they are. In general
words, we are interested in relations between what and how precise a detector is able to measure and
its own dynamics. It is important to remember, however, that the "detectors" in the above examples
are artificial and make no record of the results.

Coming back to the Casimir apparatus in weak gravitational field, writing the metric as g,, =
Nuv + 2hy,,, one gets for the energy shift at the leading order of semiclassical approximation [3]

OE, = — f d®x Ty (X)(TH)(x) 3)

In geometric setup the average (T+')(x) has two parts - the "material" one, corresponding to the
objects (planes, cavities, robes, springs etc) the Casimir apparatus is made of, and the "field" part. For
nonrelativistic case spatial components of the energy-momentum tensor are suppressed by inverse
powers of the speed of light, |T00| > |T’7 | and only temporal component of the metric tensor hyy(x)
is relevant. This can be correct approximation for the material part of (T#")(x), but certainly not for
its "field" part we are interested in here. Consequently it is easy to check, that various choices of
the metric £, lead to different answers for 0E,, even if all these choices correspond to uniform field
with free fall acceleration g. Moreover, the energy becomes orientation-dependent for some choices,
in gross contradiction with the equivalence principle and scalar nature of mass. This is physically
unacceptable and should be resolved.

The source of the problem was identified in [2, 3] as gauge non-invariance of (5). Indeed, (5) is
invariant under weak field gauge transformation h,, — hy, + 0,&, + 0,¢, only if 9,T*" = 0. The
energy-momentum tensor is covariantly conserved for the combined "material + field" system

v, T" =0 (6)

but not for the "field" part alone. Thus two logically possible alternative paths can be chosen: either
one is to include the material part and carefully work with the full energy-momentum tensor, obeying
(6), or one is to argue, that this or that choice of the metric is more physical than another choices and
compute the force using the distinguished metric. Mostly the latter path was followed in the literature
with the motivation for preferable role of Fermi metric choice hy =8z ; h ; = 0 and the result for
the weight of Casimir energy (in classical two plates case)

n*tic

== 7
7204 @

E
f:g—ZCS where E¢ =
c

and S stays for the plates area. The energy-momentum tensor of the system is given by (T+") =
(Ec/a) x diag(1,—1, -1, 3) between the plates and zero outside [9].
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Thus, the cavity feels small upward push and Casimir energy gravitates as any other form of energy
in accord with the equivalence principle. In a sense, the answer (7) could have been written without
any computations, if E¢ is known. However, the arguments based on physically distinguishable role
of a particular parametrization of the metric are difficult if not impossible to generalize to other cases.
In particular, it is not clear how to write the next order O(h,,,h,,.) correction to (7). It is also important,
that the result (7) by its nature should be quite general, which, however, is also not clear taking into
account that the methods used for its derivation (see e.g. [2]) heavily use properties of particular two
infinite parallel planes geometry. This calls for systematic derivation applicable beyond the weak field
approximation and for arbitrary Casimir apparatus.

We argue here that weighting methodology suggested in [10] can be naturally adopted to the
Casimir apparatus weighting problem. We consider static metric of the following form

ds® = 900(353)6’2611‘2 + 933(x3)dx§ + dXZL (8)

with the choice of x3-coordinate axes such that ggo(x3 = 0) = —1 (we denote x3 coordinate as z below
for simplicity of notation). We are to weight, following the symmetry of the above choice, two large
identical boxes with some identical boundary conditions for the fields on their internal boundaries
(see Figure 1). We put inside the box number 2 the Casimir apparatus of much smaller size, i.e. we
assume a set of conditions encoded by some functional

Blp(x)] =0 for xeV ©)]

put on the fields inside the volume of the apparatus V or, in particular case, only on its boundary
S = dV. There is no apparatus in the box number 1. Then, following [10] we consider a function:

wi(z) = f d*xy V=900 - 933(T N (10)
Sk

The index k = 1, 2 is the box label and integration goes over section of the boxes at constant z (sections
are assumed to be of arbitrary shape, but z-independent, i.e. geometry is cylindrical). The measures
(...)x take into account Casimir apparatus conditions (9) in the box 2. For Minkowskii space with the
metric g, = 1, = diag(-1,1,1, 1) the function (10) is nothing but the integrated pressure, i.e. for
z = 0 it is the force acting on the bottom plane of the box. It is obvious that all contributions to this
force from "material" parts of the boxes are identical.
The difference of the above defined integrated pressures at z = 0 we call, by definition, the weight
of our Casimir apparatus:
f = w2 (0) —w(0) Y
To express this force in terms of energy-momentum tensor integrals, we are to take into account that
the total energy-momentum tensor is covariantly conserved inside each box. For the metric choice (8)

the equation (6) reads
ow(z =g
A ST f X, goo(T™) (12)
4
Sk

0z

where we have used the definition (10). Integrating (12) over the entire boxes and assuming
lim [(T33),(z) — (T*),(z)] = 0 (which physically corresponds to finiteness of the Casimir appara-

tus), we obtain the following final answer

1 0
f=5 | dx \/—goo(Z)(gg—(;(Z)) [(T)2(2) = (T%)1(2)] (13)

We discuss this result in the next section.
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3 Discussion and applications

The most important property of the expression (13) is its independence on spatial components of the
metric and energy-momentum tensors. To get that the particular form (8) of the metric tensor was
crucial. It is clear, in particular, that the weighting procedure we use would not be operational for the
case of transverse coordinates xi, x, - dependent metric tensor. On the other hand, one has no need
to take g33 = 1 and nowhere we have used weak field approximation. Therefore in is legitimate to
expand (13) over difference (—1 — ggp). The leading term corresponds to the standard choice ggg =
—-1+2gz/c® + O(1/c*):

1
=g [ @ [0 - 1) (14)

For Casimir plates discussed above equation (14) reproduces the result (7). On the other hand, in
classical limit we come back to (2) taking into account that

f dx (T (x) = mc* f d*x(T"),(x) = 7 Vipoay (15)

Viody Viody

and (T%),(x) = (T%),(x) for x outside the body. Needless to say that this last condition does not
take place for quantum "field part" of the total energy-momentum tensor, since the body distorts fields
around it and its energy is delocalized in this sense.

The important issue is UV-divergencies of (13). Since the force is physical observable, we expect
they all get renormalized. The detailed picture of such renormalization can be rather tricky, as for
example [1, 5] clearly show. We have to take care only about divergencies, related to the Casimir
apparatus, since all other obviously cancel in (13). General intuition suggests that the former ones
renormalize the nonrelativistic mass the the material objects the apparatus is made of. From this
point of view, while distinction between "body" and "medium" is clear in non-relativistic and non-
quantum limits, it is somehow lost in general case since the body in question - Casimir apparatus -
is surrounded by the cloud of quantum fields, distorted by its presence and this distortion contributes
to its total rest mass. Contrary to classical vacuum, which at least in principle can be cleaned to any
desired level, allowing independent measurement of each contribution, one cannot "clean" quantum
vacuum by eliminating fluctuating quantum fields out of it.

Let us also make a comment on next-to-leading corrections to (14). They come from two places:
expansion of metric-dependent multiplier in (13) and expansion of energy-momentum tensor average.
It is convenient to rewrite (13) as

0Ohoo(2) 1 (W, — Wy)
=2 | & ( ® ) 16
f f e Vgn@ 99002 (16

where W; is the corresponding effective action and the standard definition

2 oW
(I'"(x) = — a7

V=9 69}11/

was used. Next-to-leading correction has the following form:

Ohoo(z
r=hi- [ (g—z())mg(z) (7900 = (T, ()] +
3hoo(2))f 4 6 (W,-Wp

+4 | &x (— d*x hop(x’ 18
f oz ) S Sgm) |y 1o
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We see that the dependence on spatial components of the metric appears at the next order. Another
correction to the classical Archimedes force - "weight of quantum fluctuations" - corresponds to the
last term. It is worth mentioning [11] that in Casimir systems with massless fields fluctuations of
energy-momentum tensor components

f 3 (TP (T (X)) — (TP () - (TN (19)

are typically not small with respect to average (T+”(x)), so both the second and the third terms in the
right hand side of (18) are in general of the same order.

For general geometry of the Casimir body the right hand side of (13) or (14) is given by some
complicated expression, and no universal dependence of the Archimedes force on the body’s volume
like in (2) can be expected. To get the latter universality there should be small parameter in the system,
as we discussed above. An interesting example is Casimir apparatus in the thermal bath. If geometric
size of the apparatus is large compared to thermal wavelength

fic
r> — 20
ko (20)
one could think of large temperature expansion as being a good approximation. Technically we can
realize it using effective action and heat kernel expansion formalism in Euclidean space [12]. It is
convenient to start with expression for free energy

BFp = —long(I) e SIP] (1)

where the action for massless minimally coupled free scalar field is given by the standard expression

S = %foﬁ dr fddx ® (-0O) @ and covariant D’ Alembertian is O = V,V¥. In Euclidean formalism
(see, e.g. [13, 14]) one considers theory in d + 1-dimensional Euclidean space-time with the topology
RYx S', where length of the latter compact dimension is denoted as 8. The fields satisfy the conditions
of periodicity in Euclidean time @ (x,7) = ® (x,7 + (). Parameter § will be associated with inverse
temperature in what follows: 8 = (kzT)~".

As is well known, the temperature-dependent part of one-loop Euclidean effective action can be

represented in terms of the corresponding thermal heat kernel K#(s|x, y):

N

N =

BFs=— f ds (TrRP(s) — TeR (5)) 22)
0

where K#(s) is periodic in Euclidean time solution of the equation

(% - D) RP (st ) = 1 - 5(5)0(x, ) @3

with s playing the role of proper time. It can be shown (see [14] and references therein) that tempera-
ture dependence of the trace of finite temperature heat kernel can be factorized as

TeRP(s) = (4:% 05 (0, e_%) f d'x tr R (s]x, X) (24)

where 603(a, b) is Jacobi function and we denote d-dimensional zero-temperature kernel K> (s) as
Ky(s).
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The key result [16—19] (see also review [12] and references therein) is expression for the heat
kernel asymptotic expansion on the manifold M in powers of the proper time:

R 1 <
f d'x tr Ry(s|x, x) = 2 > (5" An + 5By (25)
where the coefficients are given by

A, = j;/( d'x \-g(x) a,(x) ; Bup= fa Mdd_lx VY(X) baa(x) (26)

for integer and half-integer powers. Here g(x) and y(x) denote the determinants of the bulk and
induced boundary metrics, respectively. The surface integrals at the boundaries B,,/, are build of local
invariants incorporating such local characteristics of the surface as its extrinsic curvature K, etc.

In the problem under discussion the manifolds M correspond to intrinsic space inside the boxes.
Let us denote as Vj,, the volume of the boxes (identical for the box 1 and the box 2), then by V we
denote the volume of Casimir apparatus, located in the box 2. In the same way we denote as S p,, the
identical surface area of the boxes and by S - the surface area of Casimir apparatus. Then taking into
account that @y = 1, one obtains, at the leading order, for the free energy in the box 1 (without Casimir
apparatus)

1 { 31
oo Ty S pox + OB 27

o = ~gg 7 Voor b g g S + OB @7)

while for the box 2, excluding the apparatus:
oo o Ly b L, 806 28)

B 9() B 8 B3

The parameter b, proportional to by, from (26), encodes boundary conditions for the field, for particu-
lar case of Dirichlet boundary conditions » = 1, while » = —1 for Neumann ones [17, 19]. In principle,

one can consider the case (quasistationary for small thermal conductivity of the material the apparatus
is made of) with different temperatures inside and outside the apparatus and add contribution to the
total free energy in the box 2 from the internal volume of the apparatus:

- 2 3) 1
pin _ T b£—5 0B 29
B 90 ,34 87 B ) @9)

Then, using the relation

U=r, -1 (30)

B~ 9B
for internal energy, we get for the leading and first sub-leading contributions to Archimedes force (14)

7 (n? (ks {3) SNIAY

f-mg=g- (30 (7 T(,m)(%) Vb2 (T + o) 5] S 31

This result is worth commenting. First, as it should be by design of our weighting procedure, all
factors depending on geometry of the boxes have been cancelled. The expansion goes in parameter
(fic/kpT)(S /V) which is assumed to be small according to condition (20). The first term in the right
hand side is nothing but the weight of thermal photon gas.® This term is universal and scales as

3This physics described by (31) should not be misinterpreted as physics of flying balloons with heated air inside, where key
factor is pressure gradient dependence on temperature.



EPJ Web of Conferences 126, 02029 (2016) DOI: 10.1051/epjcont/201612602029
ICNFP 2015

volume. The next-to-leading non-universal term depends on boundary conditions and scales as area.
Due to scalar nature of the problem both inside and outside parts of the boundary contribute with the
same sign and this term does not vanishes but doubles for equal inside and outside temperatures. The
importance of such terms and surface-dependent effects they describe for various metrology problems
like precise calibration of thermometers etc was stressed in [15].

The effects discussed above are extremely tiny. It is important, on the other hand, to remember
that genuine interplay of gravity and quantum takes place not only at Planck energies, but at normal
Earth-like conditions, with extreme weakness as a price to pay. We know a few examples in the
history of physics then multiplicity could save the case, e.g. huge value of N4ygaaro allows to reach
limits on the lifetime of a proton far exceeding the age of the Universe, luminosity in collider physics
is a key to observe strongly suppressed processes etc). In this respect, the problem to find proper (and
experimentally reasonable) "multiplicity factor" for weak gravity of quantum states/energies does not
look hopeless. Indeed, there are suggestions to use advanced techniques from gravitational wave
search [20, 21] to nail such effects. There can surely be surprises prepared by the Lord for us here.
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