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Abstract: This paper introduces an improved Grover Adaptive Search (GAS) algorithm.
The GAS algorithm has been prove to achieve quadratic acceleration in the Constrained
Polynomial Binary Optimization (CPBO) problem. Nevertheless, the acceleration effect of
the GAS algorithm can be decreased by the poor threshold selection. This article uses the
Quantum Approximate Optimization Algorithm (QAOA) to improve the initial threshold
selection, thereby accelerating the convergence speed of the original GAS algorithm. The
acceleration effect of the improved GAS algorithm is presented by the Max-Cut problem
and the CPBO problem.

Keywords: GAS; QAOA; quantum computing

1. Introduction

Solving the large-scale quadratic unconstrained binary optimization (QUBO) [1,2]
problem and CPBO problem with classical heuristic algorithms presents many challenges
and disadvantages. In fact, the QUBO and CPBO problem is NP-hard [3,4], which means
that as the size of the problem increases, exhaustively searching for all possible solutions to
find the optimal one becomes infeasible due to the exponential growth of the complexity of
time. Moreover, the classical heuristic algorithms (such as simulated annealing, genetic
algorithms, and tabu search) are prone to becoming stuck in local optima. Consequently,
these algorithms may not identify the optimal global solution for large or complex QUBO
problems, frequently resulting in suboptimal solutions. Additionally, the objective function
of the QUBO problem may consist of complex interaction terms, further increasing the
difficulty of solving the problem. Although some classical algorithms can be parallelized
to enhance performance, the efficiency of parallelization is frequently constrained by
the intrinsic nature of the algorithm. In certain instances, parallelization may result in
additional overhead and may not signally enhance the efficiency of the solution.

Compared with the classical algorithm, quantum algorithms show potential in solving
the large-scale QUBO problem. The QAOA [5-8] leverages the properties of quantum
mechanics to explore the solution space more efficiently. One potential benefit of quantum
mechanics is that it can process multiple pieces of information at the same time. This
ability can greatly improve the speed and efficiency of computation when dealing with
large-scale problems. The GAS [9,10] algorithm is a quantum search algorithm based on
the Grover [11,12] algorithm. It can be used to solve the CPBO [13] problem. The GAS
algorithm utilizes an artificial threshold as the initial benchmark to identify all values that
surpass it in the quest for a better solution. However, if the threshold is not appropriately
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chosen, the algorithm’s performance can degrade significantly, resulting in the loss of its
acceleration advantage.

This paper introduces an improved GAS algorithm that uses the QAOA to select
the initial threshold to avoid the problem of the algorithm’s performance degradation
mentioned above when dealing with CPBO problems. We evaluate our algorithm both on
a simplified credit card scoring problem (CPBO problem) and the Max-Cut [14] problem
(QUBO problem). Comparing the experimental results, the average time complexity of the
experiments with the improved GAS algorithm is 56.74% lower than the GAS method in
the credit card scoring problem.

The remainder of this paper is organized as follows. In the Results section, we define
the credit card scoring problem, describe the details of the improved GAS algorithm,
and apply the proposed algorithm to both the credit card scoring problem and the Max-Cut
problem. Finally, we provide a conclusion.

2. Define CPBO Problem

The credit card scoring problem is very important in the modern financial system.
Usually, after designing an evaluation model, this problem can be converted to a CPBO
problem to find the best credit cart portfolio. The Table 1 explains the meaning of the
variable and objective function is given as

F(x1,%p, ., xn) = Y crtj(1—hi)x; — ctihix;, xi € {0,1}, neN, (1)
0<i<n

where x; represents whether the credit card is picked, # is the total number of the credit
cards, and h; € [0,1],¢c; € R, t; € [0,1] and r € R represent the bad debt rate, the total loan,
the loan approval rate, and the interest rate for card 7, respectively.

Table 1. Notations.

Notation Description
F(xq,x0,...,%n) Payoff function

n The number of credit card
C Total loan of each card

r Credit card interest rate

ti Card i loan approval rate
h; Bad debt rate for card i

In practice, several constraints have to be considered in the credit card scoring problem.
Here, we consider a simple constraint } 3y _;<, x; = B.
The CPBO problem is defined as

argmax F(xq,x2,...,%,), .k Z xX; =
x;€{0,1} 0<i<n
ie{1,2,..n}

Penalty Factors and Initial States

To incorporate the aforementioned constraint into the payoff equation, two different
approaches have been considered for constructing the constraint in the QAOA module
and the GAS module. Specifically, for the GAS module, the initial state and objective are
defined as follows:

lo)c =

3

=

It
=
=
\
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FO(x1,x0,...,%,) = F(x1,%2, ..., %n) — P( Y oxi— B)?,
0<i<n
where the budget constraint is added as a penalty term to F, with P being the
penalty coefficient.
The P should be chosen to be large enough s.t. F ) > F,sz,)x > F) for all infeasible
states, yielding

F(”)(xl,xz, oo, xy) = max F(xq,xo,...,%,),

F(f)(xl,x2,...,xn) =  max F(xy,x2,...,%).
Lo<i<n¥i=B
In the credit card scoring problem, we choose P < LZ, s.t. the performance
(max{n—B,B})

of GAS is not expected to deteriorate with the P. The m is the number of qubits available to
store the result.
For the QAOA module, we set the Dicked state which satisfies the budget constraints
as the initial state [8].
1 iy .
|1/)0>M: —_— Z |1112...ln>.

(g) 'il/iZ'n-vine{O,l}
i1+ip+-+iy=B
3. The Improved GAS Algorithm

The improved GAS algorithm combines the advantages of the QAOA and GAS algo-
rithm to solve the CPBO problem. The overall flow of the algorithm is shown in Figure 1,
our algorithm improves the original GAS with a better initial threshold selection.

4 )
s a 4 "
Pre-processing of problem Pre-processing of problem
function F function F
\, | 7 \ | S
4 N 4 N
Scaling and converting to Scaling and converting to
quantum operator quantum operator
\ | 7 \ | 7
O , © ~
Confirm p Initialize and optimize Threshold = y
QAOA circult parametersy, Initialize and run GAS circult
. 1 v \,
— ¢ L /% —
Result:y Py ?
Y is initial threshold
\ F 3

whether the probabilities of all
qubit vectors corresponding to
Update threshold °— the same value add up to greater —om
than the threshold value or
iterations greater than the limit

Figure 1. The chart shows all the steps of the improved GAS algorithm; the left part is the QAOA
module which is used to calculate the initial threshold y. The right part is the GAS module which is
used to receive and update y and calculate the final result.
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(h=21) (L—2) (In — Zn)

3.1. The QAOA Module

QAOA can leverage quantum superposition to represent multiple solution states
simultaneously in a single computational step, thereby improving search efficiency. More-
over, classical algorithms often rely on heuristic searching or gradient descent, making them
prone to getting stuck in local optima. For NP-hard problems, solving them on classical
computers requires exponential time, while QAOA theoretically offers the potential for
exponential speedup. Finally, since this case involves a CPBO problem and we only need to
obtain an approximate solution, QAOA not only theoretically demonstrates the possibility
of polynomial speedup but also inherently possesses an approximate adiabatic evolution
property, which makes it well suited to finding approximate solutions. Therefore, in our
study, we used QAOA to construct the threshold value. To use the QAOA, we convert F ()
into a quantum operator.

A

Ii-2) (L—2)

(

, P = crt;(1 — h;)~—= — ct;h;——%, 2
. 5 S = el S et @
where Z; denotes the Pauli-Z gate, acting on the i-th qubit. Due to the XY full mixer being
able to ensure that the number of ones in the state remains unchanged, thus satisfying the
constraint conditions, we use the XY full mixer to search for the optimal solution in all
feasible states to explore a broader solution space and increase the probability of finding
the global optimum. The XY full mixer is given as

auB) = T1 RV ),

(i,j) €Sm

and the ﬁf(jy are arranged into 1 subsets of 5! commuting operations where i + j mod n = k
in subset k. (For example, for n =3, S = {(1, 3), (2, 3), (1, 2)} with the subsets {(1, 3)}, {(2, 3)},
{(1, 2)}.) If the n is even, we first generate the subsets for the n — 1. The first step is to
generate the subsets as described above. Then, for each subset, we add the missing pair
of qubits. (For example, for the n = 4, we add (2, 4) to the first subset {(1, 3)}, (1, 4) to the
second, and so on. The resulting set is {(1, 3), (2, 4), (2, 3), (1, 4), (1, 2), (3, 4)}), where M
represents the XY full mixer model. Under this model, the set S contains all pairs of qubits,
where the order is chosen such that as many gates as possible can be performed in parallel,
thus minimizing the depth of the circuit. If # is odd,
IQI(;W)([;) — PR YY)

The QAOA algorithm uses adiabatic evolution to get the final result, with the following
quantum state depending on the parameters ¥ = (1,72,...,7p) and B=(B1PB2..-, Bp),
with p (p is the depth of the QAOA quantum circuit) being the number of iterations,

19p(7, B) >m= Un(Bp)eMF ... Qaa(B2)e ™ Ui (Br)e M F o) .

Finally, all qubits are measured with respect to the standard basis in order to determine
the mean value,

<F>a7,ﬁ = <1P«7’E|ﬁ|1/},73>
The mean value is then passed to a classical optimizer, which gives new values to the

parameters y and B to minimize the expectation (F >A? 2
The QAOA circult can be shown as Figure 2.
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|x_0} R i

IX}J 1 initial [ RZZ
|x5> | state || RZ module(y) module(f)
ENIE -

Figure 2. This circuit implies the equation U » (,B)e*i'yﬁ =TT )esu f{ij( B) [iijyesy e~ W22, 1T, ez,
The RZ module represents [T, e~¥7%“%i. The RZZ module represents I j)esu e~ IWiZiZy, Wi is the
coefficient of the ZiZ]- in PQ 404; the w; is the coefficient of the Z; in ﬁQ AOA-

3.2. GAS Module
The GAS algorithm has three components:

1. The A, prepares an n-qubits input register to represent the equal superposition of
all |x), and m-qubits output register to (approximately) represent the corresponding
objective function | f(x) — y)m.

2"—1

Ay]0)[0) = 1@ L [<)alf() =

where |x) is the binary encoding of the integer x.
2. The oracle O recognizes the states of interest and multiplies their amplitudes by —1.

Olx)n|z)m = sign(z)|x)n|z)m-

3. The Grover diffusion operator D has the effect of flipping all amplitudes in the
quantum state according to their mean. This causes all the amplitudes of the states of
interest to be magnified, while the amplitudes of all other states are decreased. For
more details on building the GAS algorithm, see the Appendix A.

D = H®"mH1(2|0)(0| — ) H®"+m+L,

Furthermore, applying the Grover operator AyDA‘yLO r times to state A,|0), for an
integer r > 0 will maximally amplify the amplitudes of the states of interest.

To ensure the probability of sampling the target state of at least 1/2, the optimal
number of ¥ depends on the number of all states M = 2" and the number of target states N,
withr = [5,/%].

This is a quadratic speed-up with respect to the classical search. Since N is in general
unknown, in this article, we take a randomised strategy to set N.

When we use the GAS algorithm to solve credit card scoring problems, it is necessary
to convert the payoff equation into the matrix form.

ﬁGAS = Z crti(l - hl-)xl- - ctihixi - P( Z X; — B)z

0<i<n 0<i<n
n n 3)
= Z Q,»jxixj + Z bix; +c. x;=0,1,
ij=1 i=1
—P 0 0
—-2Pp —-P .- 0
where Q = . ) 1,

—2P —2P ... —P
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b= [ZPB Forti(1— ) —chhy -+ 2PB+crtn(1— hy) — ctnhn]
The improved GAS algorithm (Algorithm 1) pseudocode is given below:

Algorithm 1: Improved-GAS algorithm

Input: f:k«+ R", @ =[0...n], O[jlicjpn) € (0,1), A > 1;
Output: y
. set shot_QAOA = 512;
: set P = Fy;
s seti=1;
: set shot_GAS = 200 and max_iter = 60;
. set threshold = 0.7;
repeat
Run QAOA circuit;
Measure result;
Update ©;
: until The difference between the updated © of the optimizer and the last @ is less
than a certain precision;
11:
12: Run QAOA circuit;
13: ¥y = y; = Measure result;

O PN ey

—_
o

14:

15: repeat

16:  Select the rotation count r; from the set{ |k/2],..., [k — 1]} randomly;

17: Run the GAS quantum circuit and apply Grover Search with r; iterations using

oracles Ay, and O,,. We denote the outputs y respectively;
18: if y < y; then

19: Y=Vi;

20: ans = y;;

21: else

22: ans = y;

23: i=i+1;

24: end if

25: until The i = max_iter or y correspond to all of the frequencies greater than the
threshold;

4. Test Case

In this section, we present an experiment. Currently, the credit card scoring problem
we considered includes 1000 credit card data, and the existing machines are not enough to
run that amount of data at the same time. So we have to divide the credit card data into
200 groups and test with 10 cards” data each time. All of the following experiments are
performed with the initial ¥ = 10 in the GAS module and p = 2 in the QAOA module.

Figure 3a,b represent the result of the credit card scoring problem. In Figure 3a,
the blue line represents the time complexity of the GAS algorithm, which is calculated
by the actual number of iterations multiplied by the quantum circuit depth, and the red
line represents the time complexity of the improved GAS algorithm, which is obtained by
adding the complexity of the GAS algorithm to the complexity of the QAOA algorithm;
the time complexity of the QAOA is obtained by multiplying the number of layers p
by the maximum number of updates of ®. The Y-label represents the total complexity,
and the X-label represents the different test cases. According to Figure 3a, we can conclude
that the time complexity of the improved GAS algorithm is better than that of the GAS
algorithm. In Figure 3a, there are three different-colored lines, each line represent the
improved GAS algorithm, the GAS algorithm and the QAOA. The Y-label represents the
value of the algorithm, the X-label still represents the different test cases. It can be seen
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from the figure that the accuracy of the improved GAS algorithm is still consistent with the
other two algorithms.

Optimal value of mix alogrithm(creditcard), p=2

The complexity of mix alogrithm(creditcard), p=2 —— QAOA GAS
~¥- GAS

Qa0A

120000 Y Y —— QAOA_GAS
i i —v- GAS

Iy ik
\ A

100,000 i

40,000

20,000 04

@) (b)

Figure 3. (a) is speed chart of the credit card scoring problem; (b) is accuracy chart of credit card
scoring problem.

Next, we test our algorithm on a Max-Cut problem with 20 nodes and 12 edges,
as shown in Figure 4a,b. Obviously, in the QUBO problem, the improved GAS algorithm
performs better than the GAS algorithm in time complexity. Similarly, the improved GAS
algorithm has advantages over the QAOA algorithm in terms of accuracy. Note that the
accuracy of the improved GAS algorithm should theoretically be the same as that of the
GAS algorithm. However, in this experiment, we set the max-iteration which causes both
the GAS algorithm and the improved GAS algorithm to stop before turning over the correct
result. For this reason, the GAS algorithm or the enhanced GAS algorithm may not achieve
the desired accuracy. Overall, the experiment achieved the expected results. The algorithm
used a shallow QAOA algorithm to find the solution, which was faster than both the deep
QAOA algorithm and non-quantum algorithms. Compared with the GAS algorithm, its
time consumption was negligible.

Optimal value of mix alogrithm(Max-cut), p=2

80
The complexity of mix alogrithm(Max-cut), p=2
.~ 5
25000 S //'\\ g B 75
Do ] v ~ 704 iy X

175,000

150,000
£ 15000
100,000

75.000

45 ] Voo —— QAOA_GAS
50000 1/ —— QAOA_GAS ! “ 4 =g GAS
—¥- GAs - 4 o QADA
25,000 T T T T T T T T T T
i 2 3 H 5 o 7 8 9 10 2 3 4 5 6 7 8 9 10
test case fest case
(a) (b)

Figure 4. (a) is speed chart of the Max-Cut; (b) is accuracy chart of the Max-Cut.

Moreover, unlike the GAS algorithm, where the threshold value is either randomly
chosen or manually set, the new algorithm avoids this issue. The GAS algorithm determines
whether a condition is met by checking the sign bit. If the initial threshold is lower than the
solution value, the iteration will continue indefinitely unless a maximum iteration count is
set. Conversely, if the threshold is higher than the solution value but the gap is too large,
the iterative update logic may lead to excessive iterations.

As previously discussed, the time required for a single iteration of the entire algorithm
model is approximately | ¥ \/gj The formula indicates that if a good initial value is
provided, the time complexity increases as the number of iterations grows. This explains
why the execution time of the new algorithm has been significantly reduced.
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5. Conclusions

In this paper, we introduce an improved GAS algorithm which uses QAOA to generate
the initial threshold y applied to the GAS algorithm to solve the CPBO problem. Our
approach improves the speed of the GAS algorithm without affecting the accuracy. In this
study, we demonstrate the efficacy of our algorithm in two distinct domains: the credit
card scoring problem and Max-Cut problem. In this manuscript, we focus on integers
and two decimal places since, as the number of decimal places increases, the number of
qubits required must also increase, potentially exceeding the computing power of existing
machines. Since this algorithm can be adapted to credit card problems, and credit card
data typically consist of both an integer part and a decimal part (rounded to two decimal
places), the model can be fully applied to search problems with similar data characteristics.
Examples include stock selection problems, real bounding box filtering in object detection,
and more.

Furthermore, by improving the quantum circuit construction of the algorithm and
leveraging advancements in quantum hardware, it will be possible to process data with
more decimal places. In the NISQ era, this search algorithm provides a more efficient
approach to handling CPBO problems and offers a new solution for data cleaning and
classification in the Al era.

This algorithm can serve as a valuable complement to existing methods and play a
significant role in CPBO problems.
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Appendix A
Appendix A.1

The main idea of the GAS algorithm is to construct Ay and Oy for a given threshold y
such that the y flag all states xe {0,1} satisfying f(x) < y, such that we can use the Grover
algorithm to find a solution £ that makes f(£) smaller than y. Then, we set the y = f(%)
and repeat the process until some formal termination criteria are met.

Appendix A.2. Construct Operator A

In this section, we show how to construct the operator O. Due to the m-register
representing the corresponding |Fgas — y)m, we have to use a relatively simple structure
to achieve this operator. The simplest implementation is to use the phase gate R(6): when
the gate is applied to one qubit, it rotates the phase of the amplitudes of the states, having 1
in the position corresponding to that qubit.



Entropy 2025, 27, 240

90f 10

Consider that if there is a kx;x; term that exists in Ec 45, when we use matrix restore
k, the k can be expressed as 4;;. If we apply UG(%%k) followed by the inverse Quantum
Fourier Transform (QFT) to an m-qubit register, we end up with k(mod2™) being encoded
in the register.

Note that credit card scoring problems have a degree of monomials less than or equal
to 2, so we only need to control single qubits and pairs of qubits (i.e there only exists a; or

ajj,i,j € [0,n) in Fg ).

0 —|RE™ )

m-i-1— R(2'8) —

m — RO |—

Figure A1l. A circuit for unitary operator Ug (6), where 8 € [—, 1) is applied to an m-qubit register.
The symbol R denotes the phase gate, which rotates the amplitudes of states containing 1 in the
position corresponding to the qubit to which it is applied.

lxo) +H *

) H I

%) H

fad H

1Zm) | H [ UsGoman [ UeGoma) [ ©FT!

Figure A2. This circuit represents operator A, each Ug operator represents the non-zero term in Fg 4,
and the main function of the circuit is the encode of an integer k € [—2"12"""), which can apply to
a register of m-qubits in an equal superposition.

Appendix A.3. Construct Operator O

At each stage of the algorithm, a fixed coefficient is incorporated into the polynomial,
and the remaining negative values are identified. This implies that the oracle is only
required to recognize negative integers. Since values are represented in complement-on-
two, where the most significant (left-most) bit designates the sign of the number, a single
quantum bit in the value register can be employed to identify negative integers. The con-
ventional oracle that multiplies target amplitudes by —1 may be utilized. It should be noted
that the oracle remains unchanged throughout the iterations, as the addition of a constant
to the polynomial may result in overflow within the value register. Consequently, in order
to circumvent this issue, it may be necessary to increase the number of qubits in the value
register by one.

Appendix A.4. Construct Operator D and Update y

The operator D is the last stage of algorithm. When we combine all the operations
together, we get the F5 45 +  from the quantum circuit. The circuit of Figure A3 is executed
in order to achieve the desired counts. In the event that the counts are divided by the
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total number of samples, and the result is less than the set threshold, the circuit must be
repeated until the algorithm reaches the maximum number of iterations, or the threshold is
exceeded. It is possible for it to be observable that multiple maxima have the same value.
In order to address this issue, a pruning operation has been implemented which involves
determining whether the same frequency corresponds to the same value and then selecting
one of them then terminate the algorithm.

%), b I

Zhm-14 Foasty (FGAS-I'y)T ~

1Zm) -
|0) T

.
L

Figure A3. In this circuit (the Fg4g + y module contains operator D), there are n binary variables in
the Fg 45 + v, and the global indicator qubit (shown at the bottom of the circuit) is set to |1) if and
only if Fgas + y—where y is the threshold parameter from the GAS algorithm that is less than 0.
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