WA ThEP
Fachbereich Physik

Johannes Gutenberg-Universitidt Mainz

Dissertation

zur Erlangung des Grades

,Doktor der Naturwissenschaften*

Algorithmische Methoden
zur Berechnung von
Vierbeinfunktionen

Richard Kreckel

geboren in Bingen/Rh.

Mainz, 2002

Datum der miindlichen Priifung: 19. Juli 2002

The practical scientist is trying to solve tomorrow’s problem
with yesterday’s computer; the computer scientist, we think
often has it the other way around.

Press et alii [PTVF 1992, section 1.2]

Inhaltsverzeichnis

Einleitung 1
I. Berechnung von Schleifenintegralen 9
1. Feynmandiagramme 11
1.1. Quantenfeldtheorien und das Standardmodell 11
1.2. Standardmethoden zur Berechnung von Feynmandiagrammen 12
1.3. Kinematische Abhéngigkeiten 17
1.4. Die bisher untersuchten Funktionen (,Mainz I und Mainz ITI“) 18
1.5. Beschriankte Integrationsgebiete nach Residuenintegration? 20
2. Die skalaren Zweischleifen-Vierbeinfunktionen 25
2.1. Die Vierbeinfunktion (,Mainz III*) 25
2.2. Die einschridnkenden Bedingungen L. 34
2.3. Umformung der einschrankenden Bedingungen 41
2.4. Ausblick: Das weitere Vorgehen 0L 49
II. Computeralgebra fiir Schleifenrechnungen 53
3. GiNaC: Motivation und Design 55
3.1. Die Motivation fiir GiNaC 5}
3.2. Das Design von GiNaC Lo 64
4. GiNaC: Implementierung 77
4.1. Die wichtigsten Klassen 0oL 7
4.2. Kanonisierung von Produkten: die Klassen ,mul’ und ,ncmul’ 78
4.3. Vereinfachungen in der Klasse ,power’ 79
4.4. Die Numerik-Klasse o 83
4.5. Pseudofunktioneno 88
4.6. Laurentreihen: die Klasse ,pseries’ 89
4.7. Die Matrix-Klasse 98
5. Kritische Analyse des GiNaC-Ansatzes 113

5.1. Effizienz 113

Vi Inhaltsverzeichnis

5.2. Handhabbarkeit oL 118
5.3. Erweiterbarkeit Lo 123
5.4. Schlussfolgerungen und Ausblick 127
A. Hilfsmittel aus der komplexen Analysis 133
A.1. Der Cauchy’sche Residuensatz in einer Veranderlichen 133
A.2. Hauptwertintegrale 137
A.3. Schnitte, Umkehrungen elementarer Funktionen und all das. 138
B. ,pvegas’: parallele MC-Integration 151
B.l. Vegas. o e 151
B.2. Parallelisierungo 152
B.3. Nebenintegrale 155
B.4. Parallele Zufallszahlen 0. 156
B.5. Praktische Erfahrungen und Perspektiven 159
Glossar 165
Schlagwortverzeichnis 171

Literaturverzeichnis 177

Abbildungsverzeichnis

0.1.
0.2.
0.3.
0.4.

1.1.
1.2.
1.3.
1.4.
1.5.

2.1.
2.2.
2.3.
2.4.
2.5.
2.6.
2.7.
2.8.
2.9.

3.1.
3.2.
3.3.
3.4.
3.5.
3.6.

4.1.
4.2.
4.3.
4.4.
4.5.
4.6.
4.7.
4.8.
4.9.

GRACE Systemflussdiagrammo 3
DiANA Systemflussdiagramm 4
Symbolische Meniistruktur von CompHEP)
Struktur von xloops 6

Schematische Gleichung als Beispiel partieller Integration 16
Die gekreuzte Dreibeinfunktiono 18
Die Master- und daraus abgeleitete Topologien 19
Alle Beitriage in den zugeordneten Impulsen werden endlich 22
Gebiete der zugeordneten Impulse bei gekreuzten Funktionen 23
Die Topologie ITa) 26
Mogliche skalare Vierbeintopologien 27
Verbleibende Terme nach einer Residuenintegration 35
Wahlfreiheit bei [dl1/(P(1)Pa(1)) . . .« o oo oo 35
Verbleibende Terme nach zwei Residuenintegrationen 37
Graphische Darstellung eines faktorisierten Polynoms in #-Funktionen 46
Alternative Darstellung eines Polynoms in #-Funktionen. A7
Terme nach zwei verschiedenen Integrationsmethoden zur planaren Box 49
Graphische Darstellung der ky-lo-Gebiete bei der planaren Box 50
Die Klassenhierarchie von GiNaC 65
Mogliche unevaluierte Darstellung von 2d3(4a +6b—3 —b) 73
Naive Darstellung von 2d®(4a+5b—3) 73
Realistische Darstellungen von 2d*(da+5b—3) 74
Baumdurchschreitung: Preorder und Postorder 74
Laufzeiten fiir Denny Fliegners Konsistenztest 76
Die Klassenhierarchie von CLN 84
Laufzeiten der Multiplikation in CLN 85
Laufzeiten der Multiplikation in verschiedenen Softwarepaketen 86
Methodenaufruf bei Pseudofunktionen 89
Laufzeiten fiir die Laurententwicklung von I'(x)|,—0 97
Schleifenumordnung bei der Matrix-Multiplikation 102
Uberfliissige Minorenberechnung bei Laplace-Entwicklung 104
Partitionierungen zum Beweis der Sylvester-Identitat 108

Dreiecksmatrix vs. Staffelmatrix 110

viii

Abbildungsverzeichnis

o.1.
0.2
2.3.
0.4.

Al
A.2.
A3.
A4
A,
A.6.
AT
A.9.
A8.

B.1.
B.2.
B.3.
B.4.
B.5.
B.6.
B.7.
B.8.

Zeitliche Entwicklung der Effizienz von GiNaC 114
Speicherbedarf verschiedener CA-Systeme 116
GiNaCs Darstellungsgraph von 2sinh(x)?/cosh(z)? —1/cosh(z) 117
STL Template Speicherallozierung 118
Zum Deformationssatz 133
Integrationswege bei der Hauptwertintegration 138
Die Blétter von /z und &/z 139
Der Imaginérteil von log(z) 140
Real- und Imaginérteil des Arcustangens 142
Real- und Imaginarteil des Arcussinus 145
Real- und Imaginarteil des Arcuscosinushyperbolicus 146
Real- und Imaginarteil des Dilogarithmus 147
Integrationsweg zum Schnitt von Lig(2)o 147
Sampling-Methoden 152
Konvergenzvergleich dreier verschiedener Parallelisierungsansétze 153
Schieberegister-, Tausworthe und Kirkpatrick-Stoll-Reihe 157
Effizienz von pvegaso 159
Laufzeitverhalten von pvegas 0L 160
Delaunay-Triangulation des 3-Wiirfels 160
Vergleich der Gitterstruktur von Vegas und ParInt 161

Unterteilungsbaum eines Gitters 161

Tabellenverzeichnis

1.1.
1.2.

4.1.
4.2.

5.1.
5.2.

Al.

B.1.
B.2.

Anzahl § der externen Parameter der n-Bein-Funktionen in D = 4 Dimensionen 18
Die zwei moglichen Kombinationen von Bedingungen 22

Laufzeiten zur Generierung und Ausmultiplikation symbolischer Determinanten 104

Anzahl der elementaren Rechenoperationen zur Determinantenberechnung . . 107
Eckpunkte in der zeitlichen Entwicklung der Effizienz von GiNaC 114
Vergleich symbolischer Pakete nach Robert Lewis und Michael Wester 115
Auflistung der Schnitte in der komplexen Ebene 149
pvegas ist auf allen derzeit géngigen Parallelrechnern lauffahig. 158
Argumente im pvegas Prototyp oL 163

Einleitung

There are two ways of constructing a software design: One way is to
make it so simple that there are obviously no deficiencies, and the
other way is to make it so complicated that there are no obvious
deficiencies. The first method is far more difficult.

Charles A.R. Hoare [Hoar 1981

Die Durchfiihrung von physikalischen Berechnungen sprengt seit einiger Zeit nicht nur in nu-
merischer Hinsicht den Rahmen dessen, was mit Bleistift auf Papier durchfiihrbar ist. Auch
symbolische Umformungen verlangen immer mehr nach einer automatischen Uberpriifung oder
konnen gar vollautomatisiert durchgefithrt werden. So ergab es sich, dass die theoretische
Physik betrachtlich zur Entwicklung der Computeralgebra beitragen konnte. Erste Compu-
teralgebrasysteme (CAS) in den 1960er Jahren waren hauptsichlich Lisp-basierte Pakete zur
Manipulation von Polynomen und rationalen Gleichungen und zum heuristischen Integrieren
auf dem Niveau eines Studenten in den ersten Studiensemestern. Rechnungen in Quantenfeld-
theorien stellten damals schon dufserste Anspriiche in Bezug auf Rechengeschwindigkeit und
Skalierbarkeit. Das erste erfolgreiche System, das direkt aus der Hochenergie kam — das 1963
von Martinus Veltman entwickelte Schoonschip — war konsequenterweise direkt in der Ma-
schinensprache des Rechners IBM 7094 geschrieben. Erst nachdem Schoonschip 1983 in der
Maschinensprache der populdren Motorola 68000 Prozessorfamilie neu geschrieben worden
war gewann es eine gewisse Verbreitung [VeWi 1993|. 1968 stellte Anthony Hearn mit REDU-
CE ein interaktives Lisp-basiertes System vor, welches speziell fiir physikalische Rechnungen
entwickelt worden, aber weit universeller einsetzbar war als Schoonschip. Es erlang rasch ei-
ne breite Beliebtheit. Weitere Systeme, die direkt aus der Hochenergiephysik kamen waren
SMP — das von Stephen Wolfram geschriebene Vorlaufersystem des seit 1988 kommerziellen
Mathematica — und FORM von Jos Vermaseren. Diese beiden Systeme sind in der Sprache
C implementiert,’ was wohl hauptsichlich die wachsende Popularitit und Verbreitung dieser
Sprache in den 1970er und 80er Jahren wiederspiegelt.

Die Berechnung von Strahlungskorrekturen in Quantenfeldtheorien insbesondere erfordert um-
fangreiche Berechnungen. In den letzten Jahrzehnten hat sich gezeigt, dass die zugrundelie-
genden Verfahren héufig einer algorithmischen Behandlung zugénglich sind. Die Formulierung
einer Ubergangsamplitude anhand ihres Feynmandiagrammes fiihrt zum Beispiel auf Schlei-
fenintegrale, die ausgefiihrt werden miissen. Aber auch schon auf Baumebene sind rechnerge-
stiitzte Verfahren unabdingbar, da die Anzahl der Diagramme bestenfalls exponentiell, meist
mit der Fakultit der #uReren Beine anwiichst: In einer ¢*-Theorie betrigt die Anzahl der

! Die erste Version von FORM war allerdings noch in FORTRAN geschrieben.

2 Einleitung

Feynmandiagramme, die auf Baumebene zu einem Prozess mit n dufseren Beinen beitragen,
beispielsweise F(n) = (2n —5)!l = (2n—5)---5-3 - 1.

Eine ganze Reihe von Softwarepaketen zur Berechnung von Amplituden sind in den letzten
zehn Jahren vorgestellt worden. Hier soll und kann kein Uberblick mit Anspruch auf Vollstén-
digkeit gegeben werden. Einen solchen gewéhrt beispielsweise [HaSt 1998|. Lediglich anhand
einiger wichtiger Pakete mochte ich hier Betrachtungen aufzeigen, die fiir das Design meines
Erachtens nach eine prominente Rolle spielen sollten.

GRACE [IKKKST 1993| und CompHEP [BDIPS 1994] beschréinken sich im Wesentlichen auf
Baumebene und vermdgen nur spezielle Einschleifenintegrale zu berechnen. GRACE bedient
sich hierfiir ausnahmslos der Feynmanparametrisierung, wobei im besten Falle eine Integration
numerisch auszufiihren bleibt. Beide Systeme kénnen dort aber viele komplette Prozesse im
Standardmodell inklusive der nétigen Phasenraumintegrationen durchfiihren.

Das in Mainz entwickelte xloops basiert auf einer Serie von Publikationen [Krei 1991,
Krei 1992a, Krei 1992b, CKK 1994/, in denen erstmals die Zerlegung in Parallel- und Othogo-
nalraum fiir Zweischleifen-Integrale ausgedehnt wurde — zuvor wurde diese Technik schon von
verschiedenen Gruppen erfolgreich auf Ein-Schleifen-Integrale angewendet. Eine Implemen-
tierung dieser Methoden als Sammlung von Maple-Routinen beschrinkte sich zunéchst auf
Ein-Schleifen-Integrale [BFK 1995] und wurde spéter erfolgreich auf Zweischleifen-Integrale
bis maximal zwei dufere Beinen ausgedehnt |[BFK 1998|.

Pakete zur Schleifenrechnung werden iiblicherweise an der erfolgreichen Durchfiihrung einer
oder mehrerer Rechnungen bewertet. Im Laufe meiner Arbeit im Umfeld des xloops-Projektes
bin ich zu der Uberzeugung gelangt, dass dieser Ansatz jedoch zu bequem ist. Ein Softwa-
resystem kann punktuell noch so erfolgreich sein — es ist von geringem Wert, wenn es nicht
erweiterbar ist, von Fremden nicht benutzt und von neuen Diplomanden und Doktoranden
kaum durchschaut werden kann. Unbrauchbar wird es dann, wenn es so verschachtelt ist,
dass keine Komponente gedndert werden kann, ohne dass dies unerwartete Auswirkungen an
anderen Stellen hat. Geféhrlich wird es, wenn solche unerwartete Auswirkungen unbemerkt
bleiben, weil versdumt worden ist, bekannte und mit unabhéngigen Methoden verifizierte Er-
gebnisse durch automatisierte Regressionstests abzusichern gegen strukturelle Fehler die sich
beim vermeintlichen Reparieren von Programmierfehlern einschleichen.

So ist es bislang nicht gelungen, den allgemeinen Fall der Dreibeinfunktion auf Zweischleifen-
Niveau in xloops zu integrieren. Abgesehen von zahlreichen neuen numerischen Instabilitéiten,
die in dieser Methode aufzutreten scheinen |Frin 2000] lag das Hauptproblem an der wenig
durchsichtigen Architektur von xloops. Diese wiederum ist eine Konsequenz der veralteten
symbolischen Sprache von Maple, die zusammen mit Tcl/Tk, welches auch nicht als Vorbild
strukturierter Programmiersprachen herhalten kann, als Vehikel fiir die gesamten Berechnun-
gen dienen musste. Dies fiihrte zu einem bedauerlichen Stillstand des Projektes.

Leider scheint dies in Softwarepaketen aus der theoretischen Hochenergiephysik ein allgemein
verbreiteter Zustand zu sein (die Experimentalphysiker gehen haufig professioneller vor). Ein
paar Blicke auf Softwareengineering konnen hier Besserung verschaffen. Ein besonderes Pro-
blem bildet die Tatsache, dass die bekannten Pakete in der Anzahl der benutzten externen Pro-
grammiersprachen und damit auch Programmierparadigmen proliferieren. Dies zwingt zwar
zu Modularitét, aber zu einer Ungewollten. Und es erschwert den Einstieg in die Arbeit an
einem solchen System unnotig. Abbildung 0.1 zeigt dies im Falle des Systems GRACE. Die

Einleitung 3

User Input l Theory ‘

l

Particles and Vertices ‘
(Model File)

(particles, order, etc.) l

| Diagram Generator |

l Diagram description

Kinematics

Database | Matrix Element Generator

yLoop Tree
[Symbolic Code |

| REDUCE, FORM |

Matrix Element

Kinematics Library
Code Generated Code (CHANEL, Loop)

FORTRAN Code

Convergence BASES Parameter
Information Monte Carlo Integral File

SPRING
Event Generator

Cross Section
Distribution

Abbildung 0.1.: Das Systemflussdiagramm von GRACE (aus [Béla 1999)).

Sprachen FORTRAN und C dominieren hier, jedoch miissen zur symbolischen Rechnung auch
REDUCE und FORM herangezogen werden. In xloops hat Maple diese Rolle iibernommen.

Die meisten Systeme mit dem Baustein FORM als symbolischer Maschine leiden darunter,
dass dieses System wirkliche Programmierung praktisch nicht unterstiitzt. Die Struktur einer
ForM-Datei ist immer die Folgende: Deklarationen (Symbole, z.B. Symbol a;), Spezifizie-
rungen, Definitionen (z.B. Local F;), Anweisungen (atomare Instruktionen wie .sort
aber auch Flusskontrolle wie if () und while()) und Ausgabeanweisung (wie .print).?
Da ein Programmieren ohne echte Programmierumgebung jedoch undenkbar ist, ziehen Soft-
warepakete zur Schleifenberechnung fiir die fehlenden Konstrukte andere nicht-symbolische
Systeme auf einer hoheren Ebene heran. Im klassischen xloops war dies zum Beispiel Tel/Tk —
obwohl die Unterstiitzung zur Programmierung im dort verwendeten Symbolikpaket MapleV
weit iiber diejenige von FORM hinausgeht.

Auch das System DIANA [F1Te 1999a] bietet eine graphische Benutzeroberfliche® [F1Te 2000].
DiANA ist im Wesentlichen ein Graphengenerator der iiber die rein topologische Generie-
rung hinausgeht und FORM-Programme erzeugt die alle Graphen zu einem gegebenen Prozess

2 Es gibt zwar ,Prozeduren” in FORM, diese werden jedoch nicht aufgerufen mit Parameteriibergabe auf
einem Stack, sondern sie werden lediglich von einem Préprozessor expandiert. ,Makros“ wire eigentlich
eine treffendere Bezeichung.

3 DIANA’s Benutzerschnittstelle ist iibrigens derjenigen des alten XI00PS nicht ganz unihnlich.

4 Einleitung

BEGIN

!

| initial dataverification|

~ Al Yes Generating program
d,;?%i;ams a";e for evaluation of
final result

No

Read current diagram Performing gener ated

program
Should

this dlagran’])

bepro ? END

Generating program
for evaluation of
current diagram

Performing generated
program

Abbildung 0.2.: Das Systemflussdiagramm von DIANA (aus [F1Te 1999a]).

darstellen. Es beansprucht vor allem dort Féhigkeiten, wo xloops bis dato wenig zu bieten
hat: auf der automatischen Summierung von Feynmangraphen fiir einen gegebenen physi-
kalischen Prozess. Allerdings miissen die einzelnen Graphen dann von anderen Programmen
berechnet werden. Hierzu bedient es sich der eigens fiir diesen Zweck geschaffenen Sprache
TM [FlTe 1999b]. Es sei dahingestellt ob die Einfiihrung einer weiteren Programmiersprache
wirklich eine Erleichterung darstellt und ob die von ihr ausgefiihrte Tétigkeit der Makroex-
pansion nicht durch vorhandene, weit verbreitete und getestete Makrosprachen wie etwa dem
allgegenwartigen m4 bewerkstelligt werden konnte.

Ein zukiinftiges xloops-Paket sollte nach Mdoglichkeit Mehrsprachigkeit soweit wie méglich ver-
meiden. Als algebraisches System kann GiNaC alle notwendigen symbolischen Manipulationen
direkt in C++ erledigen. Ob darauf aufbauend eine graphische Benutzerschnittstelle wirklich
sinnvoll ist kann in mittlerer oder ferner Zukunft entschieden werden. Als ungemein wertvoll
hat sich erwiesen, dass jede nichttriviale Funktionalitdt von automatischen Regressionstests
stets wieder auf Korrektheit iiberpriift wird. Ansonsten ist die Software stets der absolut
nicht unrealistischen Gefahr ausgesetzt, dass eine Anderung an einem Modul unbemerkt die
Korrektheit eines anderen Moduls zerbricht. Alle bekannten Pakete zur Schleifenberechnung
weisen meines Erachtens hier grofse Defizite auf. Auch das bisherige xloops ist hierfiir ein trau-
riges Beispiel. Solche Regressionstests sollten moglichst die gesamte Funktionalitit abdecken

Einleitung 5

Menu 1

QED

Fermi model

St. model(unit. gauge)
St. model(Feyn. gauge)
MSSM (unit. gauge)
MSSM (Feyn. gauge)
CREATE NEW MODEL

Menu 2 l
Menu 4
Enter process -
Edit model Entter process: -
Del | partons:)
Menu 3 elete mode CMS Energy in GeV: __
Exclude diagrams with: ____
Parameters
Constraints Menu 5

Particles Squaring

Vertices View diagrams
Menu 6

View squared diagrams

Symbolic calculation
Menu 7 EEEUCE progrr]am
; - ake n_comphep_c
View squared diagrams
Write results Make n_comphep_f

Numerical Interpreter

Menu 8 C-compiler
REDUCE code Fortran compiler
MATHEMATICA code
FORM code

C code(for num. calc.)
Fortran Real*8 code
Fortran Real*16 code

Abbildung 0.3.: Symbolische Meniistruktur von CompHEP (aus [Pukh 1999]).

und orthogonal gestaltet sein, um selbst nicht iiberméafig umfangreich zu werden.

Benutzer von xloops mussten bislang fiir einen bestimmten kinematischen Fall einen Knopf mit
der betreffenden Topologie anklicken und darin die Teilchenarten sowie die &uferen Impulse
eingeben. Alsdann wurden die divergenten von den konvergenten Anteilen (in dimensionaler
Regularisierung und unter Beriicksichtigung von Abzugstermen) abgetrennt, die divergenten
Anteile symbolisch, also exakt, berechnet und eine Zweifachintegraldarstellung fiir den konver-
genten Anteil generiert. Auf Wunsch (sprich: Knopfdruck) konnte dieser dann numerisch von
einem Monte-Carlo- (MC-) Integrator approximiert werden. Ein solches meniigesteuertes Vor-
gehen erschwert aber die Berechnung von physikalischen Prozessen, in denen im Zweischleifen-
Fall manchmal viele Hundert Diagramme zu berechnen sind. Dann wird die vermeintliche
Vereinfachung fiir den Benutzer ndmlich zu einem uniiberwindbaren Hindernis. CompHEP
leidet mit seinen tief verschachtelten Meniis unter demselben Problem. Hier muss ein solider
Graphengenerator zur Verfiigung gestellt werden, der abhingig von einem auswechselbaren
physikalischen Modell (spezifiziert als Feynmanregeln) alle Diagramme zu einem gegebenen
Prozess mitsamt Symmetriefaktoren erzeugt.

Fiir ein zukiinftiges xloops wére also auch eine neue Aufarbeitung des Themas Graphengenerie-
rung empfehlenswert. Das bisherige Vorgehen ist weitgehend heuristischer Natur und funktio-
niert im Wesentlichen durch Anhéngen dufterer Beine an die Einschleifen- und Zweischleifen-
Mastertopologien. Die bisherigen Implementierungen sind recht unbefriedigend — und kénnen
auch kaum auf Dreischleifendiagramme fortgesetzt werden. Ein sehr effizienter graphentheore-
tischer Ansatz wurde in [Nogu 1993] vorgestellt. Die begleitende FORTRAN-Implementierung
QGRAF lasst aber insofern sehr zu wiinschen iibrig, als dass sie keine Schnittstellen zur Wei-

6 Einleitung

ginsh / Cint
Xwindows —Oberflache (evtl. graphische Oberflache)
interaktive Eingabe
graphische Eingabe Verwaltung ganzer Prozesse
Verwaltung ganzer Prozesse €+
(TeliTk) Einsetzen der Feynmanregeln
Identifikation der Schleifenintegrale
Graphengenerator (C++)
,,,,,,,,,,,,,, (fehlend) Zweischleifenmodul
i (¢
E'”??tze_” der Feynmanre_ge n Einschleifenmodul ©
Identifikation der Schleifeningg (C++)
(Maple V) . 5
GiNaC = FG?
. . . . C
Einschleifen—|| Zweischleifen @ 2| S
. . = 0o
integrale integrale CLN 38 a3
(C++) i T Q
numerische und analytische Integ. | Se=====ee=e=e=== R g
analytische Berechnungt - - - - - (MapleV) ___ | § (_2
numerische Integ. (C 1 Assembler) 9] o]
(Maple V) (C++IVEGAS) ~ (optional) | ©« o

Abbildung 0.4.: Die Struktur des alten Xl0ops (aus [Brue 1997]) und eine Vision des Neuen.

terverarbeitung der generierten Graphen besitzt — lediglich Textausgabe ist implementiert.
Fiir GRACE wurde der dort benutzte Algorithmus auch reimplementiert [Kane 1995] — das
Modul heiftt dort GRC. Der Aufwand ist recht iiberschaubar und setzt nicht einmal sym-
bolische Manipulationen voraus. Die Spezifizierung physikalischer Modelle erfolgt sowohl in
QGRAF als auch in GRC jeweils in Form einer Modelldatei, die eingelesen und in eine interne
Darstellung umgewandelt wird. Moglicherweise wird die Zunkunft hier eine Vereinheitlichung
bringen in Form von als XML sperzifizierten Feynmanregeln. Entsprechende Bestrebungen
wurden angekiindigt, es liegt aber zu diesem Datum noch kein konkreter Vorschlag vor.

xloops konnte auch von einer allgemeinen Verfiigbarkeit profitieren so dass es leichter zu testen
ist. Die Abhéngigkeit von Maple in einer bestimmten Versionsnummer hat sich hier als sehr
storend herausgestellt. Das war einer der Griinde fiir die Entwicklung von GiNaC. Heute ist
dies interessanterweise nicht mehr ganz so dringend wie 1998: Nach dem Erscheinen von GiNaC
wurden noch ein paar weitere bedeutende Pakete, die Computeralgebra tangieren, von einer
restriktiven Lizenz beziehungsweise nicht einsehbaren Quellcodes zu einer Lizenz unter dem
GNU-Modell gestellt: NTL (April 2000), Pari (November 2000) und Singular (April 2001).
Zeitgeist, Zufall oder Memreplikation?

Abbildung 0.4 vergleicht das bisherige xloops und wagt eine Zunkunftsvision, wie die struk-
turellen Abhéngigkeiten in einer zukiinftigen Version aussehen kénnten beziehungsweise sich
derzeit abzeichnen. Besonders hervorzuheben ist meines Erachtens, dass symbolische Vehikel
nur dann herangezogen werden sollten, wenn dies unabdingbar ist. Wir haben zwar mit GiNaC
nun ein System, welches leistungsfihig genug ist, die in Xloops vorkommenden Rechnungen zu
unterstiitzen, jedoch sind wir nicht gefeit vor selbstgemachten ausufernden Abhéngigkeiten,
die die Wartbarkeit nur unnotig erschweren. Die symbolische Doméne ist ungleich aufwéndiger
als die numerische und es lohnt sich ihr so weit wie moglich aus dem Wege zu gehen.

Zum Aufbau dieser Arbeit: Das erste Kapitel steckt die Biihne, auf der sich die hier ent-

Einleitung 7

wickelten Berechnungsmethoden abspielen sollen, ab und gibt einen Uberblick iiber das in
Mainz entwickelte und bisher praktizierte Repertoire. Das zweite erweitert dieses Repertoire
um ein neues Stiick — die Zweischleifen-Vierbeinfunktionen. Im dritten Kapitel werden dann
die Sprechiibungen nachgeholt, indem die bisher benutzten Computeralgebrasysteme einer
griindlichen Untersuchung unterzogen werden. Dabei wird sich herausstellen, dass die bisher
benutzten Sprachen fiir die Inszenierung groferer Stiicke ungeeignet sind und GiNaC wird
als Ersatz vorgestellt. In Kapitel vier wird der Fundus durchstobert wobei aus der Vielzahl
der Requisiten nur ein paar bislang nicht oder nur unvollstdndig beschriebene ausgewahlt
werden. Dabei wird die Absicht weniger sein, eine Anleitung fiir die Benutzung der GiNaC-
Bibliothek zu geben — hierfiir ist die offen verfiighare Dokumentation zustdndig. Vielmehr
sollen einige Implementationsentscheidungen motiviert werden, fiir deren Darlegung es sonst
kein geeignetes Forum gibt. Das fiinfte Kapitel versucht von einer — soweit es mir moglich
ist — distanzierten Sichtweise, dieses System zwischen vergleichbaren Systemen einzuordnen.
In zwei Anhéngen werden ein paar Hilfsmittel skizziert, in einem Glossar einige fiir Physiker
nicht allzu gebrauchliche Begriffe erlautert.

Wenn es bisweilen den Anschein hat, dass hier mehr Fragen aufgeworfen als beantwortet
werden, dann ist dies weder Zufall, noch beabsichtigt, sondern unvermeidlich.

Teil |I.

Berechnung von Schleifenintegralen

1. Feynmandiagramme

Science is what we understand well enough to explain to a computer.
Art is everything else we do.
Donald E. Knuth, Reader’s Digest, Juli 1987

1.1. Quantenfeldtheorien und das Standardmodell

Die Notwendigkeit, quantisierte Felder der Beschreibung relativistischer Teilchen zugrunde
zu legen, erwichst aus zwei Griinden: Erstens zwingt uns die Einstein’sche Masse-Energie-
Beziehung, den Ein-Teilchen-Standpunkt aufzugeben. Zweitens sind die Triger von Uber-
gangsamplituden U(t) = (z|e "#!|y) fiir einzelne freie Teilchen akausal — sie konnen erst durch
in entgegengesetzte Richtung propagierende Antiteilchen aufterhalb des Lichtkegels exakt zum
Verschwinden gebracht werden (siehe zum Beispiel [PeSc 1995, Abschnitt 2.1]).

Renormierbare Quantenfeldtheorien werden durch eine Lagrangedichte L£(¢,d,¢), abhéngig
von verschiedenen Feldern ¢(z#) und ihren Ableitungen, vollstandig beschrieben. Massen und
Kopplungskonstanten sind Parameter dieser Lagrangedichte. Die die Dynamik beschreiben-
den Feldgleichungen kénnen aus dem Extremalprinzip 65 = 6 [Ld*z = 0 daraus abgeleitet
werden. Quantisiert werden solche Feldtheorien entweder kanonisch durch Postulierung von
Vertauschungs- beziehungsweise Antivertauschungsrelationen oder durch den Pfadintegralfor-
malismus. In beiden Féllen kann durch Entwicklung in den Kopplungskonstanten des Wechsel-
wirkungsterms eine Stérungsreihe konstruiert werden, deren Elemente auf intuitive Weise mit
Feynmangraphen korrespondieren — dies vereinfacht eine systematische Buchhaltung. Wech-
selwirkungen konnen auch weniger ad hoc durch lokale Eichtransformationen in die Theorie
eingeflochten werden. Der dabei notwendig werdende Zusammenhang A,, der die Eichinva-
rianz des 0, ¢-abhéngigen Teils in der Lagrangedichte garantiert, wird dann als Tréger der
Wechselwirkung interpretiert. Dabei stellt sich in Abwesenheit spontaner Symmetriebrechung
heraus, dass die Masse der zugehorigen Austauschteilchen exakt verschwinden muss — genau
wie dies fiir Photonen und Gluonen auch der Fall ist.

Das Standardmodell der Elementarteilchenphysik lasst sich als Quantenfeldtheorie mit spon-
taner Symmetriebrechung beschreiben. Die volle Symmetriegruppe lautet SU(3), x SU(2), x
U(1)y,, worin SU(3), die Symmetriegruppe der QCD-Farbladung, SU(2), diejenige des schwa-
chen Isospins und U(1), die der schwachen Hyperladung ist. Der Grundzustand ist nicht
invariant unter SU(2), x U(1),,, sondern nur unter der Untergruppe U(1),, der Symmetrie-
gruppe der Quantenelektrodynamik — weshalb das Photon im Gegensatz zu den anderen Eich-
bosonen des elektroschwachen Sektors W+ und Z° masselos bleibt. Im einfachsten Fall, dem

12 1. Feynmandiagramme

Weinberg-Salam-Modell, wird hierfiir als Higgs-Sektor ein skalares Isospin-Dublett eingefiihrt
und nebenbei verleiht das Higgs-Teilchen auch den Fermionen {iber eine einfache Yukawa-
Kopplung ihre Masse.

Das Standardmodell setzte sich durch, als auf theoretischer Seite in einer der Sternstunden
der Computeralgebra seine Renormierbarkeit [t'Ho 1971a, t'Ho 1971b| und seine Anomalie-
freiheit (siehe beispielsweise [ItZu 1993, Abschnitt 6-2-4|) gezeigt werden konnten. Auferdem
vermag es auf experimenteller Seite den gesamten wenig systematischen ,Teilchenzoo* und
die darin unmotiviert vorkommenden Quantenzahlen (strangeness, etc...) erfolgreich zu er-
klaren und anschauungsmafig zu ersetzen. Dennoch ist das Standardmodell nicht vollstandig
befriedigend. Unschon ist, dass es bisher nicht gelungen ist, die Gravitation mit einzubeziehen
und auch die grofe Anzahl der 25 freien Parameter! ist nicht gerade ein Zeichen von Eleganz.
Es erklart ebenso wenig die Zweiteilung der Materie in einen stark wechselwirkenden und
einen nicht stark wechselwirkenden Sektor wie die augenfillige Hierarchie der Teilchenmas-
sen. Aufkerdem wird darin die schwache Hyperladungen etwas ad hoc ins Spiel gebracht um sie
an die experimentell beobachtbaren Ladungen anzupassen. Die drittelzahligen Quarkladungen
und die Gleichheit von Proton- und Elektronladung bleibt damit unerklért.

Aufgrund dieser Unzulédnglichkeiten und der schweren Zugénglichkeit hochster Energien wach-
sen die Anspriiche an den Vergleich von Theorie und Experiment stetig an. Ein Paradebeispiel
ist die in den letzten Jahren stattgefundene indirekte Eingrenzung der notorisch unzuging-
lichen (weil nur logarithmisch in Schleifenrechnungen eingehende) Masse des Higgs-Bosons,
obwohl seine Entdeckung immer noch aussteht. Die Berechnung von hoheren Termen in der
Storungsreihe muss automatisiert werden, um sie einerseits iiberhaupt erst durchfiihrbar und
andererseits vertrauenswiirdig zu machen. Die danach moglichen Vergleiche mit experimen-
tellen Messungen bergen ein umfangreiches physikalisches Potenzial. Eine kleine Auswahl aus
den {iiblichen Werkzeugen fiir diese Berechnungen wird im Folgenden beschrieben.

1.2. Standardmethoden zur Berechnung von
Feynmandiagrammen

Der Vergleich von Experiment auf der einen und Theorie auf der anderen Seite erfordert seit
langem schon die Berechnung von geschlossenen Schleifen in Feynmandiagrammen — min-
destens seit 1947, als das anomale magnetische Moment des Elektrons erstmalig gemessen
worden ist. Dieser Fall wird seitdem in stets verfeinerter Messung der ebenso verbesserten
Schleifenrechnung gegeniibergestellt. Auf diesem Gebiet wurden Vertexkorrekturen bis hin
zur Vierschleifen-Ordnung berechnet, teilweise mit immensem numerischem Aufwand. Auf
anderen Teilgebieten der Teilchenphysik reichen weniger Schleifen aus, um schon an die Gren-
zen des Messbaren /Errechenbaren zu gelangen. So zum Beispiel in der vollen elektroschwachen
Wechselwirkung, wo die Anwesenheit vieler Massenskalen kithne Rechnungen wie in der rei-
nen QED vereitelt — bis vor wenigen Jahren reichte es hiufig aus, einfach a = e*/47 bei

! Es sind ohne die Gravitationskonstante 25, wenn man davon ausgeht, dass die kiirzlich entdeckte Evidenz
fiir Neutrinooszillationen einen kompletten zweiten CKM-Sektor mit drei Massen und vier Mischungswin-
keln mitbringt.

1.2. Standardmethoden zur Berechnung von Feynmandiagrammen 13

Q? = M} 7u fixieren. Drei hiufig praktizierte Methoden fiir solche Rechnungen werden in
diesem Abschnitt kurz skizziert.

Feynmanparametrisierung

Mit diesem Verfahren kénnen inverse Propagatoren, die wir im Folgenden immer mit P;(p#) =
pup" — m? + ip notieren wollen, in Schleifenintegralen durch die derselbe Impuls flieft kom-
biniert werden. Dafiir miissen aber zusétzliche Parameter eingefithrt werden. Die Ausgangsi-
dentitat hierfiir ist

1 [(n—1)!
7P1P2---Pn_/0 dxl...dxn5(2$i—1)(:EIP1+‘..+%P”).

Sie kann durch Ableitung auch auf beliebige Potenzen 1/P;" erweitert werden. Nach einer
solchen Kombination von Propagatoren unter dem Integral iiber [* ist es oft mdglich, {iber
die Lage der kausalen Pole in der komplexen [°-Ebene Aussagen zu machen. Befinden sie sich
beispielsweise im zweiten und vierten Quadranten, so kann durch die Wick-Rotation 9 — 4l°
die Metrik in eine euklidische iiberfiihrt und die Winkelintegration ausgefiihrt werden. Das
verbleibende Integral iiber den Abstand |ly| =: [hat die Gestalt

b dlilﬁ
R
was fiir positives A leicht berechnet werden kann, siehe [Ryde 1985, PeSc 1995]:
oo 18 (2T (o — 8
[Tt = TE) gty)
o (P+A)e 202 T'(a)

Ist jedoch A nicht mehr positiv definit, wie es bei Zweischleifen-Integralen der Fall ist, so ist
Vorsicht an der Polstelle des Integranden geboten. Man kann dann

= 1’ 1 B A —a 8 o 148
/0 Ui atae — 2O ETIATB(GR am 5

benutzen.

Im Falle der Zweibeinfunktion bleiben auf Einschleifenebene damit Einfach-Integraldarstel-
lungen iibrig, bei Dreibeinfunktionen Zweifach-Integraldarstellungen und so weiter. In vielen
Féllen konnen Feynmanparameter danach ausintegriert werden, besonders wenn wenige oder
gar keine Massenskalen vorliegen. Auf Zweischleifenebene bleiben fiir die planare Dreibein-
funktion im allgemeinen Fall zum Beispiel fiinf numerische Integrationen iibrig, was je nach
Konvergenzverhalten schon zu viel sein kann fiir eine brauchbare numerische Genauigkeit.

Das obige Integral iiber [ist aber fiir negatives 2a — — 1 divergent. Ein altehrwiirdiges
Regularisierungsverfahren besteht denn auch in der Einfithrung eines Abschneideparameters
A fiir [. Aquivalent dazu kénnen Propagatoren im Integral derart abgewandelt werden, dass
von masselosen Propagatoren ein Propagator mit einer fiktiven grofsen Masse A abgezogen wird
(Pauli-Villars Regularisierung). Die Abhéngigkeit der greenschen Funktionen von A miissen
durch Renormierung der Lagrangedichte spéter so ausgeglichen werden, dass die physikalischen
Grofsen nicht von diesem fiktiven Parameter abhéngig sind.

14 1. Feynmandiagramme

Dimensionale Regularisierung und PO-Zerlegung

Die Regularisierung der Divergenzen mit einem Abschneideparameter hat sich als nicht allzu
tragfihig herausgestellt. So verletzt sie insbesondere die Eichinvarianz. Die dimensionale Re-
gularisierung geht davon aus, dass Gleichungen wie (1.1) wortlich zu nehmen sind — die rechte
Seite ist schliellich bis auf isolierte Pole in der komplexen [-Ebene wohldefiniert. Wenn man
die Dimension D als freien Parameter betrachtet und die Abweichung von der physikalischen
Raumzeit mit D = 4 — 2¢ parametrisiert, dann werden alle Schleifenintegrale zu meromor-
phen Funktionen mit Polen bei € = 0 und kénnen in Laurent-Reihen entwickelt werden. Dieses
Verfahren erhélt die Eichinvarianz, weshalb es sich als Standardmethode der Regularisierung
durchgesetzt hat.

Das D-dimensionale Integral gehorcht — wie das gewohnliche Integral auch — den vier Axiomen:

e Linearitat:
Fiir beliebige komplexe Zahlen o und 3 gilt

/ 1Pz (af (@) + Bg(2)) = a / "z f(z)+ /)

e Skalierung:
Fiir beliebiges s € C konnen Skalenfaktoren mithilfe einer Verallgemeinerung der Jacobi-
Determinante aus dem Integral herausgezogen werden:

/d% f(sz) = sD/d% f(z).

e Translationsinvarianz:
Da sich das Integrationsintervall iiber den gesamten homogenen D-dimensionalen Raum
erstreckt, gilt fiir alle Vektoren y

/de flz+y)= /d% f(z). (1.2)

¢ Rotationsinvarianz:
Der D-dimensionale Raum soll auch isotrop sein. Bei rotationssymmetrischen Integranden
f(x?) kann man das verallgemeinerte Oberflichenintegral daher ausfiihren:

[gty = 20 [t) (13)
x f(x*) = T x x°). .
I'(D/2) Jo
Hierin ist I?(”TD//;) der Flacheninhalt der Einheitssphére in D Dimensionen.

Falls der Integrand nicht rotationssymmetrisch ist, kann das verallgemeinerte Oberflachen-
integral (1.3) nicht vollstandig ausgefithrt werden. Eine solche Rotationsvarianz kommt in
Schleifenintegralen durch Abhéngigkeit von externen Impulsen zustande. Wenn die lineare
Hiille der dufteren Impulse aber nicht den gesamten Raum aufspannt, dann kann jener aufge-
spalten werden in den D)-dimensionalen Parallelraum, der gerade als lineare Hiille der duferen

1.2. Standardmethoden zur Berechnung von Feynmandiagrammen 15

Impulse definiert ist, und sein orthogonales Komplement, den D -dimensionalen Orthogonal-
raum. Dies bezeichnet man als PO-Zerlegung und es gilt natiirlich D, + Dj = D. Der nicht
ganzzahlige Anteil von D steckt dabei ausschlieflich in D, . Alle Schleifenimpulse lassen sich
dann schreiben als

T = (Tg,...,Tp-1,%1)

und fiir den Anteil ; hat Gleichung (1.3) immer noch Giiltigkeit, wihrend die verbleibenden
Integrale iiber den Parallelraum als (Riemann’sche) Integrale ganzzahliger Dimension aufge-
fasst werden diirfen.

Partielle Integration

Die partielle Integration [ChTk 1981] ist ein Verfahren, in dem komplizierte Feynmandia-
gramme auf Einfachere zuriickgefiihrt werden. Ausgangspunkt ist die Translationsinvarianz
des offenen D-dimensionalen Integrales (1.2) in der Form:

/de 0 (z) =0. (1.4)

Ox,,

Durch Ausfiihren dieser partiellen Ableitung vor der Integration werden mehrere Integrale
in Verbindung gesetzt, wodurch das Aufstellen von Rekursionsformeln moglich wird. Durch
geeignetes Zusammenfiigen dieser Rekursionsformeln kénnen komplizierte Integrale als eine
Linearkombination von wenigen sogenannten Masterintegralen dargestellt werden, die nur
einmal berechnet werden miissen.

Als ein Beispiel skizzieren wir wie das im Falle der skalaren Master-Zweischleifenfunktion
(Abbildung 1.1 links), funktioniert. Wenn die Propagatoren 1/FP;, i = {1...5} mit Exponenten
v; € v ={v1...vs5} versehen sind, so lautet das Feynman-Integral

1
J() = [d’kd"”l
(Z) / PlVl P2V2 P3V3 P4V4 P5V5
oder, mit einer festgelegten Impulswahl,
J(v) = / dPk dP1 !
) ((k=p)? —mi +ip)” ((I+p)* —m3 +ip)™
1

1.
><(ka_mg‘f‘ip)l’s(lg_m?1+l-p)u4((l+k)2_mg_l_z.p)us; (5)

worin p* der durchfliefende dufsere Impuls ist. Durch lineare Transformationen der Scheifenva-
riablen [und k£ kann immer ein beliebiger Propagator frei von allen anderen Impulsen gemacht
werden; beispielsweise wird durch | — [— k£ der Propagator Ps; nur von [abhéngig. Wenn wir
dann den Operator (0/0l*)I* auf den Integranden alleine anwenden, so haben wir genau eine
Ableitung der Gestalt (1.4) konstruiert, mit

[H

T = b =g+ i) (kP = md+ i) (= 4 ip)™

16 1. Feynmandiagramme

OO

Abbildung 1.1.: Schematische Gleichung als Beispiel partieller Integration. Die Punkte auf den
Propagatoren deuten an, dass diese zu quadrieren sind. Die linke Seite ist endlich, das heifst, die
Ordnungen €2, ¢! und €% der beiden Graphen auf der rechten Seite heben sich gegenseitig weg.

Die Propagatoren 1/P;* und 1/P;® sind schon als unabhéngig von der Integrationsvariable [
vor das Integral (1.4) gezogen und weggekiirzt worden. Die Ableitung kann nun ausgefiihrt
werden. Der Term 0/0l*I* liefert einen Beitrag D, die Ableitungen von 1/P;" inkrementieren v;
und bringen Impulse in den Zahler, die wiederum mit [* kontrahiert werden. Unter Ausnutzung
der Impulserhaltung an den Vertizes und mit geeigneten Erweiterungen kann man auf diese
Art die sogenannte Dreiecksregel fiir J(v) herleiten:

[— 127 (57 =17+ m] —m; —m3) —vad™ (5" — 3"+ mj — mZ — m})
+D — 21/5 — Vg — Uy + 2V5m§5+] J(y) = 0 (16)
Die Operatoren 1%, 2%, ... darin sind Konvention: Sie inkrementieren oder dekrementieren

den entsprechenden Index von J(r) und sind vor der Ausfithrung des Integrals anzuwenden.
Ein einfacher Fall ergibt sich, wenn alle Massen m; verschwinden:

1

D—2V5—l/2—l/4

J(v) =

v [1,27(57—17) + 1ud™ (57— 37)] J(v).

Gilt ferner vy = v, = v3 = vy = v5 = 1, so erhilt man die einfache Beziehung aus Abbil-
dung 1.1, in der das nichttriviale Diagramm der linken Seite als Linearkombination von zwei
trivialen Diagrammen ausgedriickt wird.

Dieses Verfahren ist leicht algorithmisierbar und findet erfolgreiche Anwendungen. Technische
Probleme darin bereitet die gegenseitige Kiirzung von Divergenzen, die verlangt, dass man
geschickt Buch fiihrt iber die benétigte Ordnung in € um moglichst keine tiberfliissigen Terme
zu berechnen. Die auftretenden Rekursionsrelationen beinhalten wie die Dreiecksregel (1.6)
nur Ringoperationen zwischen den einzelnen Integranden J. Das Verfahren neigt insgesamt
jedoch sehr schnell zu einem explosionsartigen Anschwellen in der Zahl der Terme — ein Ar-
beitsspeicherbedarf von mehreren hundert Gigabyte ist derzeit keine Seltenheit [BCK 2001].
Aus diesen beiden Griinden ist und bleibt FORM der einzige angemessene Traktor zum Bestel-
len dieses Feldes. Eine fruchtbare Variation iiber diesem Thema ist auch die Herleitung von
Differenzialgleichungssystemen in den Mandelstam-Variablen, die die verbleibenden Integrale
erfiilllen, um diese damit bisweilen sogar numerisch auszurechnen |[Remi 1997].

Entwicklung nach dulleren Impulsen

Auch in der Entwicklung nach dufteren Impulsen werden komplizierte Feynmanintegrale auf
Einfachere zuriickgefiihrt, hier jedoch auf solche, die eine leichter zu handhabende &dufere
Impulsstruktur besitzen, ndmlich im Idealfall auf Vakuumgraphen. Um das Verfahren zu skiz-
zieren gehen wir wieder aus von Gleichung (1.5), und beobachten, dass J insgesamt nicht nur

1.3. Kinematische Abhingigkeiten 17

eine Funktion von v und m = {m; ... ms} sondern auch vom externen Impulsfluss p# ist. Da
sich aus p* aber nur ein einziges Lorentzskalar p* bilden lisst, kann J nur hiervon abhingen.
Die Entwicklung von skalaren Funktionen J(v,m, p?) nach p? muss aus Griinden der Lorentz-
kovarianz statt mit der einfachen Impulsableitung 0/dp, mit dem d’Alembert-Operator im
Impulsraum O, = §?/9p,dp" geschehen. Jedes regulire J(p?) kann so entwickelt werden:

(Dpj(p2)) ‘p=0p2 (DIQQJ(pQ» |p=0
2D 8D(D +2)
Wenn man 0O, auf das Integral (1.5) anwendet, so erhdlt man wieder inkrementierte und

dekrementierte Exponenten v; im Nenner. Man kann das Ergebnis wieder mit den Operatoren
1%, 2%, ... formulieren:

J(p*) = J(0) +

(r")* +0((P*)’)- (1.7)

O, (2, m, p%)
= A[(1+ 1.+ 1= D/2)(n1 4+ 2% + v1(n + 1)mi(17)? + 1o (e + 1)m3(27)?
+ v ((mi +m3 —m3)172% —172737) | J (v, m, p?).

Nach Anwendung von O," setzt man p = 0 und erhélt so eine Linearkombination von Va-
kuumdiagrammen als Entwicklungsparameter in p?. Diese Vakuumdiagramme kénnen aber
haufig ausgerechnet werden. Viele konnen analytisch mithilfe von Gamma-Funktionen oder
hypergeometrischen Funktionen ausgedriickt werden, einige andere konnen iiber partielle Inte-
gration mit ersteren verkniipft werden — auf jeden Fall sind sie auch im massiven Fall leichter
analytisch in den Griff zu bekommen als die Zweibeinfunktionen [DaT 1992].

Auch dieses Verfahren ist einer algorithmischen Behandlung ausgesprochen zugénglich. Es
stokt aber an seine Grenzen, wenn die Reihenentwicklung fiir kleine Impulsquadrate (1.7)
beim Auftreten von Imaginéarteilen, also an der ersten kinematischen Schwelle, zusammen-
bricht. Das Verfahren wurde auch erweitert um die Entwicklung fiir grofe k? oberhalb der
hochsten kinematischen Schwelle [DaST 1993|. Im Bereich der Schwellen selbst hilft héufig
Padé-Approximation iiber die Konvergenzprobleme hinweg [BFT 1993|. Es ist auch leicht ein-
zusehen, dass die Entwicklung in &ufseren Parametern rapide mit der Anzahl der Parameter
an Komplexitit gewinnt.

1.3. Kinematische Abhangigkeiten

Alle skalaren Zweischleifen-Funktionen konnen in der Form

1
D D
— 1.
J /d k/d le,m13+k,m2Pk,m3~--’ (1.8)

geschrieben werden mit mindestens drei inversen Propagatoren der Form P,,,, = (I + p)* —
m?+ip. Hierin ist [ein Schleifenimpuls, und p eine Linearkombination externer Viererimpulse.
In den nicht ausgeschriebenen Propagatoren kénnen auch allgemeinere Linearkombinationen
wie Puiygkm, vorkommen. Es wird gleich darauf verzichtet, einen Index 7 an die einzelnen p
anzuhingen, da es moglich ist, sie alle gleichzusetzen.?

2 In |Frin 1996, Abschnitt 6.1] wurde fiir einen ausgewihlten Fall durchexerziert was geschieht wenn ver-
schiedene infinitesimale Imaginérteile mit verschiedenen Relationen p; < p; eingesetzt werden — mit dem
wenig verbliiffenden Ergebnis, dass beide Verfahren dquivalent sind.

18 1. Feynmandiagramme

Abgesehen von internen Parametern, also Massen, sind die skalaren Zweischleifen-Funktionen
wie alle skalaren greenschen Funktionen wahlweise Funktionen von dufseren Impulskomponen-
ten oder invarianten Skalarprodukten derselben. Deren Anzahl ist durch Impulserhaltung und
die Dimensionalitit des Raumes D gegeben. Allgemein
Aukere Beine n Parameter §(n) ist eine n-Beinfunktion wegen Impulserhaltung abhén-
01 0 gig von n — 1 ein- bzw. auslaufenden Impulsen. Daraus

é 1 errechnet sich leicht die Anzahl der Parameter als die

3 3 Anzahl der unabhéngigen Lorentzskalare p;,p;", die sich

A 6 daraus bilden lassen. Man erhélt in D = 4 die neben-

n>4 An — 10 stehende Tabelle. Die 0-Bein-Funktionen (,Vakuumbla-

— sen®) hiangen wie die 1-Bein-Funktionen (,,Tadpoles“) we-
Tabelle 1.1.: Anzahl § der externen gen Impulserhaltung nicht von dufleren Parametern ab.

Parameter der n-Bein-Funktionen in Die Zweibein-Funktionen (,Selbstenergien®) hiingen nur
D = 4 Dimensionen

von einem aufseren Impuls ab, man kann sie im Ruhsys-
tem des Teilchens beispielsweise durch dessen Ruhmasse beschreiben. Die Dreibeinfunktionen
(,Vertexfunktionen) hingen von zwei dufkeren Impulsen ab, also von # = 3 Parametern, z.B.
den drei Invarianten, die man aus zwei Impulsen bilden kann und die Vierbeinfunktionen ent-
sprechend von sechs Parametern. Bei hoheren Greensfunktionen als den Fiinfbeinfunktionen
erhoht sich die Anzahl der Parameter jeweils um 4, da die hinzukommenden Impulse als Li-
nearkombinationen der schon vorhandenen gebildet werden kénnen, von denen 4 den Raum
aufspannen.

1.4. Die bisher untersuchten Funktionen (,,Mainz | und
Mainz I1")

Die Mainzer Methoden zur Berechnung von Feymandiagrammen beschrianken sich auf Zwei-
schleifenfunktionen. Sie haben eine gewisse Allgemeinheit in dem Sinne, dass sie nicht vom
Vorhandensein einer sehr eingeschriankten Menge von Massenskalen pro Diagramm ausgehen.
Dies macht sie im Prinzip vielseitiger einsetzbar als andere Verfahren — zum Beispiel in der
elektroschwachen Wechselwirkung des Standardmodells oder auch in der SU(3)xSU(3) chira-
len Storungstheorie, wo zumindest die drei Massenskalen aus dem Oktett der pseudoskalaren
Mesonen my, mg und m, zur Ordnung p°® in Zweischleifen-Diagrammen mit den effektiven
Kopplungen der £,-Lagrangedichte berechnet werden miissen. Diese drei Massen sind verschie-
den, aber von der gleichen Grokenordnung, und dem muss das Verfahren Rechnung tragen.

Vom topologischen Standpunkt aus konnen wir uns alle Zweischleifenfunktionen mit beliebiger
Anzahl externer Beine konstruieren, indem wir diese an die ,,Mastertopologie” anheften. Ab-
bildung 1.3 zeigt rechts ein paar ausgewahlte Beispiele. Einige davon
haben einschldgige Namen. So bezeichnet man beispielsweise IIa)
als ,Sunset-Graphen®, Ib) als ,planare Dreibeinfunktion“, IIb) als
sgekreuzte Dreibeinfunktion und IIIc) als ,Acnode-Graphen®. Die
zweidimensionale Darstellung verschleiert bisweilen Symmetrieeigen-
Abbildung 1.2.: Die ge— schaften der Topologie. So macht erst die nebenstehende Abbildung
kreuzte Dreibeinfunktion die Symmetrieeigenschaften der gekreuzten Dreibeinfunktion IIb)

1.4. Die bisher untersuchten Funktionen (,,Mainz | und Mainz II*) 19

a) Zweibein—-Topologien b) Dreibein—Topologien c¢) Vierbein—-Topologien

OO
O @
o O

)
O

Abbildung 1.3.: Die Zweischleifen-Mastertopologie und wie daraus systematisch Mehrbeinfunktio-
nen durch Anheften dufserer Beine konstruiert werden kénnen.

offensichtlich. Ferner ist die Methode des Anheftens dufterer Beine an Mastertopologien un-
handlich bei drei oder mehr Schleifen und erschwert das Auffinden der Symmetriefaktoren. Ein
systematischeres, graphentheoretisches Vorgehen wie etwa dasjenige von QGRAF [Nogu 1993]
ist dieser Ad-hoc-Methode offensichtlich iiberlegen.

In Abbildung 1.3 fehlen ferner faktorisierende Zweischleifen-Topologien, also solche, die sich
als Produkt zweier Einschleifen-Graphen darstellen lassen. Diese lassen sich zwar analytisch
ausdriicken; durch den Beitrag ¢! des einen Graphen zum endlichen Beitrag des anderen
muss die e-Entwicklung allerdings um eine Ordnung weiter getrieben werden als dies fiir
einfache Einschleifen-Topologien notig ist. Die Behandlung innerhalb des alten xloops skizzie-
ren |Brue 1997, Fran 1997|.

Die Zweibeinfunktionen (,,Mainz 1)

Die Zweibeinfunktionen auf Zweischleifen-Niveau werden von xloops nach einem in [Krei 1991|
skizzierten Verfahren berechnet. Es findet Anwendung sowohl bei skalaren als auch bei Ten-
sorintegralen [Krei 1993|. Darin wird von den Schleifenimpulsen / und %k zunéchst deren Par-
allelraumkomponente [y und kg abgespalten und die Orthogonalraumkomponenten /; und k|
in D — 1 Dimensionen sphérisch symmetrisiert. Bis auf einen relativen Winkel 9 zwischen [}
und k,; kann man die Winkelintegrationen ausfiihren. Fiir die ©-Integration geht dies jedoch
nur in ganzzahliger Dimension D. Falls das Integral nicht endlich ist werden hierzu geeignete
Abzugsterme aufgesucht, die das Integral endlich machen — die divergenten Teile lassen sich
analytisch berechnen. Danach kann man D = 4 setzen und stets sowohl die ¥-, als auch die [, -
und k| -Integrationen ausfiihren. Die verbleibenden beiden Integrationen sind mit numerischen
Methoden zugénglich [Fran 1997].

20 1. Feynmandiagramme

Dieses Verfahren ist besonders dann sehr attraktiv, wenn viele verschiedene Massenskalen im
Integral vorkommen. Sind alle Massen gleich oder verschwinden sehr viele Massen exakt, dann
gibt es iiberlegenere Methoden, die ohne Zweifach-Integraldarstellung auskommen.

Die Dreibeinfunktionen (,,Mainz II*)

Auf Zweischleifen-Niveau sind hier vor allem die planare und die gekreuzte Vertexfunktion
(1L und —=X) interessant. Das verwendete Verfahren [Krei 1992b] beruht wieder darauf,
den zweidimensionalen Parallelraum abzutrennen. Die Orthogonalraumvariablen werden darin
tiblicherweise als [; = /s und k; = Vit geschrieben. In D = 4 werden sie von zwei Winkeln
begleitet, die beide sofort aufintegriert werden konnen, einer davon trivial. Hiernach werden die
inversen Propagatoren in den Variablen /; und %, linearisiert, indem man die Ersetzungen [y —
lo+1y und kg — ko+kq vornimmt — wir werden dieser Linearisierung ab Seite 26 noch mehrmals
begegnen. Dies macht den Integranden einer Integration in /; und k; mithilfe des Cauchy’schen
Residuensatzes zugénglich. Als ein Nebeneffekt werden dabei die Integrationsgrenzen in [y und
ko in Abhéngigkeit duferer Impulsvariablen in endliche Dreiecke transformiert (siehe néchster
Abschnitt). Sowohl die s- als auch die ¢-Integration konnen noch analytisch ausgefiihrt werden.
Die verbleibende Zweifach-Integraldarstellung wird wieder numerisch integriert, wobei das
Integrationsgebiet nun durch &ufsere Impulskomponenten parametrisierte Dreiecke in der /-
ko-Ebene sind.

Auch dieses Verfahren wird in Anwesenheit vieler verschiedene Massenskalen am attraktiv-
sten [Kili 1996, Frin 1996, Frin 2000]. Die numerischen Schwierigkeiten selbst im planaren
skalaren Fall sind jedoch immer noch Gegenstand einer Untersuchung.

1.5. Beschrankte Integrationsgebiete nach
Residuenintegration?

Bei dem Mainzer Verfahren fiir Dreibeinfunktionen wurden zwei Residuenintegrationen durch-
gefiihrt und wir werden in Kapitel 2 sehen, dass bei den Vierbeinfunktionen sogar vier Inte-
grationen mit dem Cauchy’schen Residuensatz erledigt werden konnen. Beide Male werden
die Integrationsgrenzen in anderen Integrationsvariablen stark eingeschrankt. Es wurde be-
hauptet, dass die Gebiete in denen danach die numerische Integration durchgefiihrt wird,
immer endlich sein miissen. Wir werden in diesem Abschnitt sehen, dass dies kein Zufall ist,
andererseits aber auch nicht zwingend so sein muss.

Die Residuenintegration wird immer in solchen Variablen durchgefiihrt, in denen die inversen
Propagatoren P; linearisiert worden sind. Bei dieser Linearisierung werden die linearisierten
Variablen stets multipliziert mit einer weiteren Impulsvariable, die wir die ,zugeordnete” Va-
riable nennen und mit einer Tilde markieren wollen: Enthélt das noch nicht linearisierte P den
Term {2 — [2, so fiihrt die Ersetzung | — [+ diesen iiber in [2 + 211. Bei der Dreibeinfunktion
entsprach [y der zugeordneten Variable von [; und kq derjenigen von k;. Die zugeordneten
Variablen { und & werden zunéchst nicht weiter ausintegriert — ihr Vorzeichen zusammen mit

1.5. Beschrankte Integrationsgebiete nach Residuenintegration? 21

dem Vorzeichen des Imaginérteils von P bestimmt, ob das Residuum beitragt oder nicht. An-
ders herum formuliert verschwindet das Integral, wenn die zugeordnete Variable das falsche
Vorzeichen hat.

Um genauer einzusehen, unter welchen Umsténden die Gebiete in den zugeordneten Variablen
endlich werden, brauchen wir zweierlei: Erstens einen Vorschlag fiir einen Mechanismus, wie
aufkerhalb endlicher Gebiete die Terme konspirieren, so dass sie sich zu Null addieren, und
zweitens eine Art Parametrisierung dieses Mechanismus. Die folgenden Uberlegungen basieren
auf einer in [FKT 1997, Seite 15] skizzierten Idee.

Der Mechanismus besteht darin, dass bei einer Residuenintegration eines Terms der Form
1/(PyPyPs - - -) immer wieder doppelt vorkommende Terme auftreten: Der Satz A.4 iiber die
Residuensumme sagt gerade, dass die Summe iiber alle Residuen verschwinden muss. Also
sind nicht alle Residuen voneinander unabhéngig. Wie dieser Mechanismus nun bei zwei li-
nearisierten Variablen angreift, klart das folgende Lemma:

Lemma 1.1 Betrachte ein Integral der Form

o o 1
J(21, 22, 23) 1= /Oodk:/oodl =)=kt 1T %) (1.9)

mit komplexen Koeffizienten z; = x; + 1y;. J ist nur dann von Null verschieden, wenn alle
Vorzeichen von y; gleich sind.

Wir bemerken zunéchst, dass man nach Substitution von k& — —k — [das Integral mit der
Vertauschung z; <> z3 zuriickerhélt. Ebenso kann man beliebige andere Vertauschungen her-
beifiihren: Das Integral J ist symmetrisch unter allen z; < z;.

Zum Beweis des Lemmas integriert man J unter Zuhilfenahme von Satz A.4 und erhélt:

271
k4 2z + z3)

(27i)?
2+ 29+ 2y

J = {9(y2)—9(—1/3>}/_00dk (k— 21)(

= {0(y2) —0(—y3) H{O(y1) —0(—(y2 + v3))} (1.10)

Man iiberpriift leicht anhand einer Wahrheitstabelle, dass der Vorfaktor aus #-Funktionen
genau dann 1 ist, wenn die Vorzeichen der y; alle gleich sind und in den tbrigen Fallen
verschwindet. O

Die inversen Propagatoren P; sind bei unseren Methoden zur Drei- und Vierbeinfunktion —
nach ihrer Linearisierung und Ausklammern von Faktoren linear in den zugeordneten Impulsen
l;, [und Kombinationen duferer Impulskomponenten ¢; — genau von der Form aus (1.9). Die
Imaginarteile der z; lauten dann

Y= —P/(l;?‘i‘%)

Yo = —p/(l~+Q2>

Yz = —|—p/(]N€+l~+Q3)

22 1. Feynmandiagramme

8,743

4,795 k d,~0s X

Abbildung 1.4.: Nach Residuenintegration verbleiben nur endliche Dreiecke in den zugeordneten
Impulsen.

wobei ¢; hier abkiirzend fiir beliebige Linearkombinationen externer Impulskomponenten ste-
hen.

Da laut Lemma 1.1 fiir einen Beitrag alle Vorzeichen der Ima-
yi >0 ¥ <0 gindrteile y; gleich sein miissen, kénnen nur zwei Kombinatio-
nen vorkommen: entweder alle positiv oder alle negativ. Man
kann dies direkt in Bedingungen an k und [iibersetzen und fin-
det so die beiden in der nebenstehenden Tabelle aufgefiihrten
Moglichkeiten. Diese entsprechen endlichen Dreiecken, wie sie
Tabelle 1.2.: Die zwei mdgli- in Abbildung 1.4 graphisch dargestellt sind. Das Gebiet kann

]~i<—CI1]~f>—Q1
<= > =g
k?+l>—(]3 k:+l<—q3

chen Kombinationen von Be- zwar zu einem Punkt entarten, wenn die Diagonale k+1l=—q
dmgun?en den Kreuzungspunkt der Horizontalen [= —go mit der Verti-
kalen £k = —q; schneidet, es kann jedoch nicht ganz verschwinden. Falls im linken Dreieck

die Diagonale iiber den Kreuzungspunkt hinaus verschoben wird erhélt man das rechte Drei-
eck und umgekehrt. Unbeschrinkte Gebiete, die z.B. nach mindestens einer Seite hin keine
Beschrankung haben, kénnen also nicht auftreten.

Dies bleibt auch dann noch richtig, wenn eine beliebige Anzahl weiterer linearisierter Propaga-
toren (k — z;)~! und (I — z;) ! hinzugefiigt werden. Nach geeigneten Partialbruchzerlegungen
kann man den Integranden dann immer als Summe von Termen der Art (1.9) schreiben. Die
einzelnen Imaginérteile haben ja auch immer die Gestalt y; = —p/ (if + ¢;) beziehungsweise
y; = —p/ (I + ¢;) mit (reellwertigen) Kombinationen #uferer Impulskomponenten im Nenner.
Gekreuzte Topologien hingegen sind notorisch schwieriger und es lohnt sich, sie besonders
sorgfiltig zu untersuchen. Wenn zwei Propagatoren beide Integrationsvariablen [und k in
linearisierter Form enthalten, so kann man durch eine lineare Verschiebung stets dafiir sorgen,
dass ein inverser Propagator linear in [4 £ ist, ein anderer linear in [— k£ und alle weiteren
nur entweder [oder k enthalten. Wir interessieren uns also fiir die #-Funktionen, die in der
Integration von

A~ o0 o 1
(Zlaz2az3> \/;OO \/;OO (k_zl)(l—k—ZQ)(k+l+23)

1.5. Beschrankte Integrationsgebiete nach Residuenintegration? 23

T T
L a,-a; -d,7d;
0,79, B "/ql_qs
' (G092 (A9 92 o "
| | i N

Abbildung 1.5.: Nach Residuenintegration von gekreuzten Funktionen kénnen die abgebildeten
endlichen Gebiete zurtickbleiben. Dies muss aber nicht immer so sein; siche Text.

erzeugt werden. Wie zuvor im planaren Fall kann man dieses Integral leicht mithilfe von
Satz A.4 ausfithren:

A 00 211
J = {0(y2)—0(—ys)} /_oodk (k= 21)(2k + 2z + z3)
(27i)?
= {0092) = 0(=4) HOl) ~0(~ o2+ y)) b5

Die Struktur der @-Funktionen ist aber im Vergleich mit (1.10) dieselbe geblieben. Daher
miissen auch alle Vorzeichen der Imaginarteile wieder gleich sein, um beitragen zu konnen.
Ubersetzt man dies auf die zugeordneten Impulse [und k, so findet man, dass nur die endlichen
Integrationsgebiete aus Abbildung 1.5 iibrigbleiben.

Wenn von vornherein alle kausalen p gleich gesetzt werden, kann es allerdings dazu kommen,
dass der kausale Faktor p vor der zweiten Anwendung des Residuensatzes in einem der inversen
Propagatoren verschwunden ist. Dann ist ein z; rein reell und unser Mechanismus bricht
zusammen. Wenn y; = 0, dann ist die entsprechende @-Funktion in (1.10) laut Satz A.6
zu ersetzen durch einen Faktor !/, so dass keine einschrinkende Bedingung mehr vorliegt.
Die Endlichkeit der Integrationsgebiete in den zugeordneten Impulsvariablen wird dadurch
kompromittiert. Bei der gekreuzten Dreibeinfunktion — ist dies der Fall, wobei dort aber
durch eine geeignete Koordinatentransformation Terme ausserhalb endlicher Dreiecke wieder
gegeneinander weggekiirzt werden konnen, so dass die Integrationsgebiete doch wieder endlich
werden. Auch bei den Vierbeinfunktionen treten immer wieder solche Félle auf, die dann durch
nichttriviale Kiirzungen — allerdings schon auf dem Niveau der #-Funktionen — verschwinden.
Eine solche nichttriviale Kiirzung sieht sehr héufig wie folgt aus:

was manifest frei ist von allen halbzahligen Gewichten. Bei der gekreuzten Vierbeinfunkti-
on | X kann es allerdings zu Gebieten kommen, die einen sich ins Unendliche erstreckenden

24 1. Feynmandiagramme

Streifen in der Ebene der zugeordneten Variablen bilden. Ob diese wie bei der Dreibeinfunk-
tion durch geeignete Transformationen zum Verschwinden gebracht werden koénnen, ist noch
unklar. Der oben skizzierte Mechanismus kann hierfiir jedenfalls nicht alleine verantwortlich
sein.

2. Die skalaren
Zweischleifen-Vierbeinfunktionen

Beware of bugs in the above code;
I have only proved it correct, not tried it.
Donald E. Knuth, in einer Notiz an Peter van Emde Boas

Uber die Vierbeinfunktionen ist auf Zweischleifen-Ebene bisher recht wenig bekannt. Kiirzlich
wurde mit einer Feynmanparametrisierung und anschlieffender Integration der Feynmanpa-
rameter mithilfe einer Mellin-Barnes-Darstellung fiir Summen ein analytisches Ergebnis fiir
sowohl die planare als auch die gekreuzte skalare Box gefunden [Smir 1999, Tau 1999]. Diese
Darstellungen gelten aber nur dann, wenn alle internen und externen Teilchen masselos sind,
das Diagramm also nur von zwei Parametern abhéngt. Das Verfahren konnte auf Tensorin-
tegrale erweitert werden [AGORT 2000, SmiVe 1999] und sogar auf spezielle massive Fiélle,
allerdings nur mit einer einzigen Massenskala [Smir 2000, Smir 2001].

In der chiralen Stérungstheorie ist das als Acnode-Graph bekannte Diagramm von besonde-
rem Interesse, sobald zur Ordnung p® Zweischleifenintegrale bestehend aus L£o-Vertizes zu den
effektiven Vertizes aus Lg und den Einschleifenintegralen bestehend aus £4- und Ls-Vertizes
beitragen. Er ist von besonderer Bedeutung in den Prozessen vy — 77" und n — 7%y, da
diese zur Ordnung p? verschwinden. Wenn aber wie in SU(2)xSU(2) chiraler Stérungstheo-
rie alle internen Teilchen gleiche Massen m, haben, dann wird die Parametermannigfaltigkeit
stark eingeschriankt und die Rechnungen sind weitgehend analytisch durchfithrbar [Bier 2000].
Das in diesem Kapitel verfolgte Verfahren fiir skalare Vierbeinfunktionen basiert auf einer
Uberlegung von Dirk Kreimer [Krei 1994] und kommt ganz ohne Nebenbedingungen in der
Wahl der bis zu zwolf Parameter aus. Es ist daher viel allgemeiner als die anderen Verfahren,
erfordert aber erhebliche zusétzliche Arbeit, wenn man den numerischen Vergleich anstrebt.
Dies liegt daran, dass die anderen Verfahren nur Eckpunkte im Parameterraum abdecken kon-
nen, bei dem hier beschriebenen genau an diesen Eckpunkten aber numerische Instabilitdten
auftreten, die per Hand behoben werden miissen.

2.1. Die Vierbeinfunktion (,,Mainz I11°)

Das Integral

D D 1
1= [[(18)

26 2. Die skalaren Zweischleifen-Vierbeinfunktionen

héangt jetzt von sechs voneinander unabhéngigen dufleren kinematischen Variablen ab. Eine
mogliche Wahl sind die Mandelstam-Variablen s, ¢ und v zusammen mit den Massen m;,
i € {1...4} der auferen Teilchen und der Bedingung s + ¢t +u = >, m?. Fiir die Integra-
tionen wird jedoch auch hier wieder ein spezielles Bezugssystem gewahlt werden miissen, so
dass sechs dufsere Impulskomponenten explizit festzulegen sind. Eine mdgliche kinematische
Konfiguration des skalaren Acnode-Graphen lautet

1
J = /d4k/d4l
£ Py (1) Py (1 + 1) Prng (k + p2 — 13) Py (k — 13) Py (k + 1)
plf = (q17QI7070>
mlt pg = (q2’_q$70a0)
s = (¢,Ds,py,0) .

Die Struktur der Vierbeintopologien lésst sich wie in Abbildung 2.2 klassifizieren. Hierin sind
in der ersten Zeile die Topologien mit sieben internen Propagatoren aufgelistet, in den dar-
auffolgenden Zeilen IT und III jeweils diejenigen, die durch Streichung eines Propagators aus
der Zeile dariiber entstehen. Die planare Box Ib) aus Abbildung 2.2
ist identisch mit I¢) in Abbildung 1.3. Die gekreuzte Box Ia) in Abbil-
dung 2.2 findet sich in 1.3 als IIc) wieder. Schliefslich ist IIIb) in Abbil-
dung 2.2 der aus 1.3 als Il ¢) bekannte Acnode-Graph. Auch hier wieder
verschleiert die zweidimensionale Darstellung Symmetrien, wie neben-
stehende dreidimensionale Version des Graphen ITa) aus 2.2 deutlich
macht. In der letzten Spalte finden sich iibrigens die planare und gekreuz-
Abbildung 2.1.: Die te Dreibeinfunktion wieder und auch eine faktorisierende Topologie. Die
Topologie I1a) ab diesem Abschnitt entwickelten Methoden werden sich prinzipiell auf
all diejenigen Graphen anwenden lassen, bei denen jede geschlossene Schleife mindestens drei
Propagatoren enthélt. Das sind gerade die nicht grau hinterlegten in Abbildung 2.2. Uber sie
ist in allgemeinen Féllen bisher am wenigsten bekannt. Sie sind natiirlich fiir Streuprozesse
interessant, aber auch fiir 3-Teilchen-Zerfalle.

Integration der vier ,inneren” Schleifenvariablen

Die in [Krei 1994] vorgeschlagene Methode fiir Vierbeinfunktionen beruht auf der Idee, vier der
Schleifenintegrationen mithilfe des Residuensatzes (Satz A.3) auszufithren. Die Anwendung
des Residuensatzes wird sehr vereinfacht, wenn die inversen Propagatoren P; linear sind in
der zu integrierenden Variablen, da dann die Polstellen trivial aufzufinden sind und keine
Quadratwurzeln eingefiihrt werden, die die weitere Integration verkomplizieren wiirden.

Diese Linearisierung kann wegen der Signatur der Minkowskimetrik in zwei von vier Variablen
sofort durchgefiihrt werden. Wahlen wir [; und k; als die zu linearisierenden Variablen und
wenden die Transformation

lo —>l0+l1, k0—>k30+/€1 (21)
an, so wird aus einem Propagator P,
(l+p)?—m*+ip=(lo+po)* — (L +1p1)° = (b +p2)* = (I3 + p3)* —m* + ip
— (lo+po)> +2L (lo+po—p1) —pi — (b +p2)* — (ls +p3)> —m* +ip. (2.2)

2.1. Die Vierbeinfunktion (,,Mainz I11) 27

a) gekreuzte Topologiehb) planare Topologien | c) reduzierte und faktorisierende Topologien

. N <#

T X XX -
S AvAR

Abbildung 2.2.: Mégliche skalare Vierbeintopologien. Die grau hinterlegten sind nicht mit in dieser
Arbeit behandelten Methoden zugénglich.

Darin bezeichnen p; beliebige dufere Impulskomponenten. Diese Transformation darf sofort
angewendet werden da die nicht grau hinterlegten skalaren Topologien in Abbildung 2.2 ab-
solut konvergieren. Wir nennen wieder /; und % die linearisierten Variablen und [y und £y die
zugeordneten Variablen.

Schliefst man den Integrationsweg in der oberen komplexen Halbebene und benutzt den Re-
siduensatz um die /- und k;-Integrationen auszufithren, so erhédlt man Bedingungen an die
Integrationsgebiete der zugeordneten Schleifenvariablen [y und ky. Diese Bedingungen stam-
men von den Vorzeichen der Imaginérteile der Pole in den linearisierten Variablen, die von
den zugeordneten Variablen abhingig sind. Das Residuum tragt nur bei, wenn die Polstelle
im Integrationsweg liegt, wenn der Imaginirteil also positiv ist.! Diese Bedingungen betreffen
lediglich die zugeordneten Variablen lo- und kg, da keine weiteren Schleifenvariablen (z.B. Iy,
etc.) im [;-linearen Term in (2.2) auftauchen. Wir werden im néchsten Unterabschnitt auf die
Bedingungen zuriickkommen und sie klassifizieren.

Da die Integrationen iiber die Variablen [, I3, ko und k3 immer noch unbeschrinkt sind,
liegt es nahe, auch bei zweien davon den Residuensatz anzuwenden. Wie erwahnt wird dies
erheblich erleichtert, wenn die inversen Propagatoren zuvor linearisiert werden konnen. Die
Linearisierung in (2.1) war moglich wegen der Signatur der Lorentz-Metrik, insbesondere
wegen des relativen Vorzeichens zwischen der 0- und der 1-Komponente im Skalarprodukt. Da
der Orthogonalraum eindimensional ist, kann er wegen Lorentz-Invarianz 0.B.d.A. in eine der
Koordinatenachsen gelegt werden, zum Beispiel [, = I3 und k, = k3. Dadurch verschwinden
die p3 in Gleichung (2.2) und es wird moglich im Falle der Vierbeinfunktionen ein weiteres
relatives Vorzeichen einzufithren und dann genau wie oben zu linearisieren. Dies ermdglicht
der folgende

I Schlieft man statt dessen den Integrationsweg in der unteren komplexen Halbebene, so gibt es einen Beitrag
dann und nur dann, wenn der Imaginérteil negativ ist. Dies schlégt sich geméf (A.4) aber nur in einem
allgemeinen Vorzeichen nieder, welches dem umgekehrten Umlaufsinn entspricht. Dies macht die freie Wahl
des Integrationsweges manifest und wir werden im Folgenden immer in der oberen Halbebene schliefsen.

28 2. Die skalaren Zweischleifen-Vierbeinfunktionen

Satz 2.1 (Kreimer-Rotation) Seien P, = q,q" — m? + ip inverse Propagatoren mit I'm-
pulsfluss ¢" (dufere und innere Impulse) und j der Lorentzindez einer Orthogonalraumkom-
ponente. Dann gilt:

1
/ /]lez) Pk (1 + k;)2) Pe(K2) ---
1

(2.3)

/ / £ Pi(=13) P (=l + k5)2) Pi(—k2) -+

Beweis: Im Orthogonalraum mischen die Schleifenvariablen nicht mit dufseren Impulsen; die
inversen Propagatoren sind also von der Form

P() = 13+ (reelle Zahl) + ip,
Pi((j+k5)?) = (L +kj)? + (reelle Zahl) + ip,
Pi(k3) = k7 + (reelle Zahl) + ip.

Daher liegen die Pole des Integranden in den komplexen [;, k; und (l; + k;)-Ebenen alle im
ersten und dritten Quadranten. Da die Integranden fiir grofe [;, k; und [; 4+ k; schnell genug
abfallen, liegt es nahe, eine Rotation um 7/2 im Uhrzeigersinn zu unternehmen. Dies 1duft
gerade auf die gewiinschte Anderung des Vorzeichens in (2.3) heraus. Gemischte inverse Pro-
pagatoren des Typs P, stehen dieser Rotation dabei im Wege, da die Nullstellen in den
komplexen k;- oder [;-Ebenen alleine betrachtet nicht auf den ersten oder dritten Quadranten
beschréankt sind. Um die Rotation ausfiihren zu konnen miissen alle Pole in [}, k; und [; + k;
also zunéchst in dieselben Quadranten verschoben werden. Wegen der Symmetrie des Inte-
granden kann man sich auf den ersten Quadranten in der reellen k;-1;-Ebene beschranken und
schreiben:

/ / JPZ B+k((zj+1 ki)?) Pe(K2) -
/ / (Pz 2) Pror (L +1k) 2) Pp(k2) -

1
) P — k) P)

Nun reparametrisieren wir diesen Quadranten mit der Substitution l]2- — wov? und k:]2 —
(1 —u)v?

1

/m/m (a (002) Py (i + VI 02 0?) Po((1—w) o) -

1
' Py (uv?) Py (Vu — V1= u)?0?) Pe((1 = u) v?) -) (2.4)

Die Faktoren u, (1 —u) und (y/u £ /1 — u)? sind positiv im Integrationsintervall, so dass
die Polstellen in der komplexen v-Ebene alle im ersten und dritten Quadranten liegen. Daher

2.1. Die Vierbeinfunktion (,,Mainz I11) 29

kann man nun den Integrationsweg der v-Integration um den vierten Quadranten schliefen,
wobei die Jacobi-Determinante ihr Vorzeichen wechselt:

o0

1
—vdv

(P[(—UU2) Prr(—(Vu+ V1 —=u)?v?) Po(—(1 —u)v?) -

=i

1
R P~V — V=0) B =))) |

Invertieren der Transformationen, die zu (2.4) gefiithrt haben, liefert die Behauptung des Sat-
zes.]

Bei gekreuzten Funktionen mit zwei gemischten Propagatoren konnen auch Propagatoren
mit P, auftreten. Es ist jedoch klar, dass alle Schritte in obigem Beweis auch dann noch
Giiltigkeit haben. Er ldsst sich sogar mit P’((alj + bk:j)z) mit beliebigem festem a und b
genauso herleiten.

Ist 0.B.d.A. j = 3, so wirkt dies wie eine Abédnderung der iiblichen Minkowski-Metrik
(+,—,—,—) in eine (+, —, —, +)-Metrik. Daher der Name ,Rotation“ in Analogie zur ,Wick-
Rotation® (siehe z.B. [ItZu 1993|), bei der in &hnlicher Weise die Zeitachse rotiert wird um
von einer Minkowski’schen in eine euklidische Metrik zu transformieren. Die hier vorgestellte
Transformation ist jedoch grundlegend verschieden von der Wick-Rotation, bei der eine analy-
tische Fortsetzung am Ende der Rechnung gefunden werden muss, um die Greensfunktion fiir
beliebige dufere Impulse zu erhalten. Der Vorzeichenwechsel in (2.3) jedoch ist eine einfache
analytische Identitit, die in jeder Orthogonalraumvariablen einzeln Giiltigkeit besitzt.?

Nach Ausfiihren der Residuenintegration war die urspriingliche Struktur von (1.8) in ly, ks, I3
und k3 unverdndert geblieben, so dass man nach der Rotation in eine (4, —, —, +)-Metrik die
Transformationen

I3 — I3+ o, ks — ks + ko (2.5)

ausfithren kann um analog zu (2.2) eine Linearisierung in den Variablen [, und ks zu erhalten.
Nach diesen Operationen kann die Residuenintegration in allen inneren Variablen ausgefiihrt
werden. Die dazu notwendige Vertauschung der Integrationsreihenfolge ist wegen der absoluten
Konvergenz des Integrals wieder erlaubt.

Wie oben erwidhnt bestimmt das Vorzeichen des linearen Koeffizienten (I3 in (2.2)), ob eine
Polstelle innerhalb oder aufkerhalb des geschlossenen Integrationsweges liegt. Daher erhalt man
bei jeder Integration einer inneren Variablen eine Summe von Residuen wo jeder Summand
mit einer Heaviside’schen #-Funktion in den &ufseren Variablen kg, ly, k3 und I3 gewichtet wird.

Bei der Residuenintegration in den linearisierten Impulsvariablen sorgen nun zwei Beziehungen
dafiir, dass die Anzahl der Terme nach vier hintereinander geschalteten Integrationen iiber-
schaubar bleibt. Die erste ist eine Konsequenz des Satzes iiber die Residuensumme Satz A.4,
der besagt, dass die Summe der Residuen einer holomorphen Funktion verschwindet. Die An-
wendung dieses Satzes auf linearisierte Variablen fithrt zu Korollar A.5 und ist in Anhang A
beschrieben.

2 Der Unterschied zwischen der Wick-Rotation und Kreimer-Rotation manifestiert sich auch dadurch, dass
die Pole der Propagatoren bei letzterer weiterhin nahe an der reellen Achse bleiben, so dass es nicht erlaubt
ist, sofort p = 0 zu setzen.

30 2. Die skalaren Zweischleifen-Vierbeinfunktionen

Die zweite Beziehung zwischen den Termen, die bei der Residuenintegration auftritt, ist eine
Folge der aufeinanderfolgenden Integration der in /; und Iy linearen inversen Propagatoren
Py, Ps,..., P,. Solche Paare von Schleifenimpulsen, die in Propagatoren doppelt vorkommen,
werden in Folge als Zwillingsvariable bezeichnet werden. Die versprochene Beziehung kann
wie folgt ausgedriickt werden:

Lemma 2.2 Betrachte den Term, den man durch zweimalige Anwendung des Residuensatzes
erhdlt: Zundchst durch die Berechnung des von P; herrihrenden Residuums an der Nullstelle
lgl) und dann durch Berechnung des von P; herriihrenden Residuums an der Nullstelle léj)

(wobei l?) schon eingesetzt ist). Dieser Term unterscheidet sich nur durch ein Vorzeichen von
demgjenigen Term, den man durch umgekehrte Residuenberechnung erhdlt: Zundchst durch die
Berechnung des von P; herrihrenden Residuums an l§]) und dann durch Berechnung des von

P; herriihrenden Residuums an léi).

Zum Beweis schreiben wir die inversen Propagatoren als P;(l1,l2) = «; + Bali + Bials und
bemerken, dass man die Polstellen 1", 1 1$? und 1§ erhélt durch Auflésen des inhomogenen
linearen Gleichungssystems

Pi(ly, 1) \ _ (Bir B L Y1 (0

<Pj(lhlz)>_(%’>+(5ﬂ 5]'2)([2)_(0)’ 20
unter der Voraussetzung, dass det(/3) # 0. Die beiden Reihenfolgen in der Wahl der Residuen
entsprechen direkt den beiden Reihenfolgen, wie man dieses System 16sen kann: Entweder man
16st die erste Zeile um das Ergebnis in die zweite Zeile einzusetzen oder umgekehrt. Die Lo-
sungen, eingesetzt in die verbleibenden P(q), sind natiirlich dieselben. Also gilt lgi) = lgj) und
léi) = léj). Dies beweist die Proportionalitiat der beiden Residuen. Die Proportionalitétskon-
stante —1 erhélt man, indem man das Residuum nach der (1,7) — (2, j)-Reihenfolge explizit

ausrechnet. Es lautet:

1
J[iyj] = . A) P P) o
(ﬁ215]2 leﬁﬂ) 3 n|lgl),l§])
Dies ist aber antisymmetrisch unter der Vertauschung von ¢ und j. O

Man beobachte, dass der Term (5;15;2 — Bj10;2) im Nenner obigen Residuums eine 2 x 2-
Determinante ist. Dieses Phénomen wird auf den néchsten Seiten verstandlich gemacht wer-
den.

Die in Vierbeinfunktionen so ausgewerteten Residuen aus Produkten von inversen Propaga-
toren Py(ly,1s) HORE) konnen algebraisch recht umfangreich werden. Selbst bei Benutzung leis-
tungsfiahiger symbolischer Manipulationssysteme koénnen Rechenzeiten in der Gréfsenordnung
von Minuten entstehen, nur um polynomiale Vereinfachungen wie das Kiirzen von grofiten ge-
meinsamen Teilern durchzufithren. Es ist daher erstrebenswert, die Ausdriicke von vorneherein
so einfach wie mdoglich zu konstruieren. Tatsdchlich gibt es bei zweifacher Residuenintegration
eine interessante Kiirzung im auf Zéhler und Nenner normalisierten Residuum. Diese Kiirzung
ist systematisch und lasst sich ausnutzen um einen Bruch zu generieren, in dem keine weiteren
Kiirzungen vorkommen werden.

Um die versprochene Kiirzung zu sehen werden wir etwas auf die in der Beschreibung der
Matrix-Klasse (Kapitel 4) erlauterten Eliminationsverfahren vorgreifen miissen. Wir gehen

2.1. Die Vierbeinfunktion (,,Mainz I11) 31

wie folgt vor: Fasst man das Aufsuchen der Nullstellen der P; und Einsetzen in die verblei-
benden P, als lineares Eliminationsverfahren auf, so findet man, dass es dquivalent zur Gaufs-
Elimination ist. Als Entrée wenden wir die Gaufs-Elimination auf ein passend konstruiertes
Gleichungssystem an und finden die Kiirzung als Rechenergebnis. Anschliefend werden wir die
Gaufs-Elimination gegen die divisionsfreie Elimination austauschen. Die Sylvester-Identitét
(Satz 4.2 auf Seite 107), die von der divisionsfreien- auf die teilerfreie Bareiss-Elimination
fithrt, wird hier ebenso zur Anwendung kommen. Dies ermdglicht uns sogar, eine Verallgemei-
nerung auf mehr als zwei Variablen einzusehen.

Wir schreiben die in [; und [, linearen inversen Propagatoren als lineares Gleichungssystem:3

Pi(ly, o) B bz h
Py(ly,1o) = | Bu Pn @ lr . (2.7)
Ps(ly,12) Os1 P2 as 1
Das Residuum an der Nullstelle I\ = —% von P;(l;) findet man durch Einsetzen
1 2mi

—
Pi(l1,12) Pa(l, o) Ps (1, 12) ﬁnPQ(l)(lz)Pg(l)(ZQ)

und dies entspricht dem ersten Schritt der Gaufk-Eliminationsvorschrift (4.9), nach dem das
Gleichungssystem

Ba1512 - Ba101

1 _
ORI AN P === 2= | (1,
Pg(l)(lg) By 1 532_ﬁ31ﬁ12 ag_ﬁmm 1
B B
iibrigbleibt. Im zweiten Eliminationsschritt wird die Nullstelle l§2) = —ah/ph, =
—(ay — %)/(ﬁgg — %) von PV in I eingesetzt
2mi (27i)? (27i)?
Opl) 5z p® 3213
Pk By CRRSYE ﬁn(ﬁm— Qﬁl 12>P3(2)
11

und das verbleibende (eindimensionale) Gleichungssystem ist

<532 _ 535?2) <a2 _ 521%)

/ /
PR — o P _ (s - ﬁWl) _
S B, B

3 Weitere Pj, konnen natiirlich analog notiert werden. Dies wird sich aber als nicht nétig herausstellen.
Nachdem die Nullstellen 15” von Py (l1,12) und Z§2) von Py(ly,1s)] ;o aufgefunden worden sind, kénnen wir
1

sie einfach in die verbleibenden Py einsetzen und anmultiplizieren.

32 2. Die skalaren Zweischleifen-Vierbeinfunktionen

Bringen wir alles auf einen Hauptnenner, multiplizieren aus und kiirzen gemeinsame Faktoren
aus Zahler und Nenner, so finden wir wieder eine Determinante im Nenner:

(2mi)*

Bll <522 - ﬁ2ﬁllﬁ52>

(27i)?
511522043 + 512062531 + 061521532 - 531522061 - 521512043 - 511532062.

Hieraus ergibt sich der folgende niitzliche Satz:

Satz 2.3 Betrachte den Term, den man nach zweimaliger Anwendung des Residuensatzes auf

m, n > 3 am von Py in ly erzeugten Pol lgl) und danach am von Py in ly erzeugten

Pol l§2) erhdlt. Mit der Notation aus Gleichung (2.7) lautet dieser Term

1 1
Res Res = B Bz
o=t =D Pr(l,l2) -+ - Po(ly, l2) / Bor Bz an | Py 1Py P 18P
Bs1 PBs2 s

Bei dem insgesamt wegkiirzbaren gemeinsamen Faktor handelt es sich im Ubrigen um
B11(P11 022 — Pa112), also einen durchaus nichttrivialen Term von dritter Ordnung in Impuls-
variablen. Der Satz erlaubt daher betréchtliche Vereinfachungen. Man bemerke zudem, dass
aus dem Satz auch das Vorzeichen in Lemma 2.2 folgt, da die Determinante antisymmetrisch
ist unter Vertauschung zweier Zeilen oder Spalten. Insbesondere entspricht die Vertauschung
der ersten und der zweiten Zeilen genau der Vertauschung der Integrationsreihenfolge in Lem-
ma 2.2.

Die Quintessenz der Eliminationsmethode besteht darin, dass nach zweimaliger Gauf-
Elimination in der Koeffizientenmatrix der Propagatoren das Residuum rechts unten stehen
bleibt. Um das Auftreten der Determinante und die Vereinfachungen besser zu verstehen grei-
fen wir nun etwas vor und wenden anstatt des Gaufs- das teilerfreie Eliminationsverfahren von
Bareiss (4.11) auf das Gleichungssystem (2.7) an. Analog zu Gleichung (2.1) erhdlt man nun
die Einsetzung

1 211
Py(1y,12) Po(l1, lo) P3(1y, l2) ﬁnP (lz)/ﬁnP (lz)/ﬁ11

worin pl(l) und pz(l) nun durch den ersten Eliminationsschritt bestimmt sind:

]52(1)([2) — (5:52 a) > < > > _ (Bazfii — Pz aofin — P > (ly >
15351)(52) B 5:/32 07:,3 1 Bs2011 — G152 asBin — Baian 1)

Das Analogon zu (2.1) lautet nun

271

ﬁnp (lz)/ﬁllp (b)/ﬁn
(2mi)* B (27i)?

BB/ B PP) (BiiBhy) B (BaaBis — BorBra) /B P2 (Bus (BazBur — Bor rz))

—

2.1. Die Vierbeinfunktion (,,Mainz I11) 33

und 153(2) folgt aus dem zweiten Eliminationsschritt zu

- (o o I
P?E) = ag«;ﬁéz—ﬁ:’«:zo‘/z

= (063511 - 531041)(522511 - 521512) - (532511 - 531512)(042511 - 521061)-

Die Sylvester-Identitét (Satz 4.2) verlangt nun, dass dieses @43, — (hd = Pg(g) von (311 ohne
Rest geteilt wird und das Ergebnis die Determinante

-) bu Pz aa
P 3 / B =1\ B P
Ba1 Bs2 a3

ist. Dies ist prinzipiell erweiterbar auf grofere Systeme derselben Art, wenn der Residuensatz
in mehr als zwei Variablen angewendet werden soll.

Der Satz iiber die Residuensumme zusammen mit Lemma 2.2 machen das Verfahren erst
iibersichtlich, indem sie die Anzahl der auftretenden Terme limitieren. Im Falle der planaren
Boxfunktion ||| beschriankt der Satz iiber die Residuensumme die Anzahl der Summanden
von 144 auf 36 und Lemma 2.2 identifiziert jeweils vier der 36 miteinander, so dass nur
9 ibrigbleiben. Satz 2.3 erlaubt uns, den ggT von Zihler und Nenner der verbleibenden
Summanden zu isolieren, ohne ihn mit einem ggT-Algorithmus berechnen zu miissen, was zwar
nicht unméglich aber sehr aufwéndig wére (einige Minuten pro Rechnung bei voll expandierten
inversen Propagatoren).

Aufserdem sollte an dieser Stelle auf die fiir eine Implementierung wertvolle Tatsache hinge-
wiesen werden, dass eine solchermafen vereinfachte Darstellung unanfillig ist gegen unechte
Divisionen durch Null. Ein Ergebnis, dargestellt als Bruch aus Zahler und Nenner, kann nur
dann eine Division durch Null hervorrufen, wenn der Nenner wirklich verschwindet. Verschach-
telte Briiche hingegen konnen in Zéhler und Nenner einzelne Divisionen durch Null enthalten,
die in normalisierter Form {iberhaupt nicht auftreten wiirden, die Normalisierung jedoch verei-
teln. Anders ausgedriickt: hebbare Singularitéiten werden friihzeitig beseitigt. Das ist dasselbe
Muster wie das des weiter unten (im Kasten auf Seite 106) beschriebenen Implementierungs-
problemes bei der Gaufs-Elimination.

Fliinfbeinfunktionen?

Nach der Betrachtung von Zwei-, Drei- und Vierbeinfunktionen stellt sich die Frage, ob das
Verfahren prinzipiell auf skalare Funktionen mit noch mehr &uferen Impulsen ausgedehnt
werden kann. Wenn die Anzahl der dufseren Beine n > 5 ist, gibt es keinen Orthogonalraum
und auch die Dreierkomponenten der inneren Schleifenimpulse mischen mit dufteren Parame-
tern. Die Tatsache n > 5 jedoch garantiert, dass die Konvergenz der Integrale nach geeigneter
Partialbruchzerlegung noch ausreicht, so dass lineare Verschiebungen erlaubt sind. Auf diese
Weise konnen die Dreierkomponenten von den duferen Parametern befreit und das Verfahren
auf eine Linearkombination von Vierbeinfunktionen zuriickgefiihrt werden.

34 2. Die skalaren Zweischleifen-Vierbeinfunktionen

Das Verfahren in drei Dimensionen?

Man kénnte fragen, warum wir bei der Linearisierung stets den quadratischen Anteil des Schleifen-
impules l; in ly und denjenigen von ls in l3 untergebracht haben. Die linearisierende Substitution

lo—lo+11,l3 =13 +1s: BB -2+ -m?tip — 122l —20l3+ 15 —m?+ip
kénnte ersetzt werden durch
lo—lo+1 +lg: BB -4+ -m?tip — 12— 2ol —2bly — 2115 +12 —m? +ip

und entsprechend fiir den k-Schleifenimpuls. Dabei blieben die 3-Komponenten der Schleifen-
impulse unangetastet mit dem Vorteil, dass man die Kreimer-Rotation nicht benétigt und das
ganze Verfahren so auch in drei Raumzeitdimensionen, also ohne verfiigharem Orthogonalraum,
anwendbar wéare. Das Problem bereitet die dabei auftretende Mischung der Impulskomponenten
[1 und ly. Nehmen wir als Integrationsreihenfolge 11, lo an. Nach der [y-Integration féllt zwar wie
gewohnt ein inverser Propagator weg, dafiir taucht nun aber l5 im Residuum auf. Aufserdem héngt
das Integrationsgebiet nun von einer Kombination von ly und ly sowie dufseren Impulsen ab. Die
lo-Abhéngigkeit des Gebietes verbietet aber gerade die Anwendung des Residuensatzes bei der
néchsten Integration.

2.2. Die einschrankenden Bedingungen

Wir benutzen den Satz iiber die Residuensumme (Korollar A.5) sowie Lemma 2.2 und Satz 2.3
um eine Masterformel fiir die vier inneren Integrationen zu gewinnen, die sich fiir eine program-
matische Implementierung eignet. Dann untersuchen wir die dabei anfallenden symbolischen
Bedingungen an die verbleibenden vier Integrationen und schlagen Methoden vor, diese in
iiberschaubare Form zu bekommen.

Die einschrinkenden Bedingungen kénnen geméf Korollar A.5 in Form von Heaviside’schen 6-
Funktionen geschrieben werden. Als Fingeriibung erldutern wir dies anhand von zwei Propaga-
toren P;(1) und Py(1), spéater werden mehr hinzu kommen. Fiithrt man die Residuenintegration

des Integrals
1
dl———
/ Pi(1) Pi(l)

aus, wobei P;(l) und Py(l) gegeben sind durch das lineare Gleichungssystem

()= ()

Py (1) Br ay L)’

so sind die Nullstellen von P;(I) und Py(I), also [= —q;/8; und I*®) = —a; /B3, in der
komplexen Ebene aufzusuchen. Wir kénnen nun ausnutzen, dass die Koeffizienten der internen
Impulse, also die 3, keinen Beitrag vom kausalen ip haben. Wir werden gleich sehen, dass dies

auch nach mehrfacher Residuenintegration noch giiltig bleiben wird. Das von P;(l) herriihrende
Residuum liefert also nur dann einen Betrag, wenn Im(—«;/3;) = — Im(«;)/3; positiv ist. Das

2.2. Die einschriankenden Bedingungen 35

(a) Pl(l)ng(l) (b) Pl(l)Pgl(l)Pg(l) () PP () P ()Pl

1

Abbildung 2.3.: Verbleibende Terme nach einer Residuenintegration im linearisierten Schleifenim-
puls [fiir drei verschiedene Integranden.

volle Ergebnis lautet dann

1 _ 1 1
/ dsarm = TS sons T RS Bonw)
1ey3 EQ

Es ist instruktiv, sich dieses Ergebnis symbolisch als Baum zu verdeutlichen, wie in Abbil-
dung 2.3(a). Ausgehend von einem Produkt inverser Propagatoren (Wurzel) entstehen zwei
Summanden (Aste). Der Strich am Ende des 2-Astes deutet an, dass diese Integration nach
dem Satz A .4 iiber die Residuensumme nicht ausgefiithrt wird sondern sich nur in der zweiten
f-Funktion im Zahler dufsert.

Dieses Vorgehen zeichnet ein P, vor allen anderen aus und es ist

nicht ganz trivial, welchem der Vorzug zu geben ist. Tatséchlich

kann die Integration so auf Wege geleitet werden, die einer weiteren

symbolischen Behandlung entweder mehr oder weniger zugénglich

sind. Natiirlich ist das Endergebnis nach dem Satz {iber die Residu-

ensumme invariant unter der Auswahl des ,abgeschnittenen” Astes. Abbildung 2.4.: Wahlfrei-
Fiir den nebenstehend abgebildeten Fall mag man diese Invarianz heit bei Jdl1/(Pi()Pa(1))
noch sofort einsehen, da das Ergebnis manifest invariant unter der Vertauschung der Indizes
ist. Im ersten Fall lautet es schliefllich

o |
/ Y OR0 = J (Brl + an) (3ol +)
0(—Im(a1)/B1) — O(=Im(aa)/B2) 0(=Im(ay)/B1) — 0(—Im(az)/Bs)

51P2‘1<1) 52041 - 51&2

36 2. Die skalaren Zweischleifen-Vierbeinfunktionen

Aber fiir mehr als zwei Propagatoren ist die Situation ganz anders. Das Ergebnis, welches
man mit unserem Verfahren bei drei Propagatoren durch Abschneiden des Ps-Astes erhélt

1 B 1
J POPDFD) Ja (Bul + o) (Bl + a2) (ol + v3)
O(—Im(ay)/B1) — 0(—Im(as)/Bs) N 0(—Im(az)/B2) — 0(—=Im(az)/0s)

BiPaiy Pl B2 P12 Psly2)
B (0(=Im(ay)/B1) — 0(—Im(as)/5s)) N B2 (0(—Tm(ap)/B2) — 0(—Tm(v3)/B5))
(51042 - ﬁ2011)(ﬁ1043 - ﬁ3041) (ﬁ2041 - 51042)(52043 - 53042)

ist nur durch eine Konspiration der #-Funktionen im Zahler identisch mit dem KErgebnis,
welches man durch Abschneiden des P,-Astes erhélt:

dl 1
/ Pi(1)Pa(1) Ps(1)
Br(0(—TIm(en)/B1) — 0(—Im(c2)/52)) N 33 (0(—Im(as)/0s) — 6(—Im(a)/B2))
(51062 - 52041)(51043 - 53041) (53041 - 51063)(53062 - 52063) .

In der Praxis kann man die Wahlfreiheit des ,abgeschnittenen Integrationsastes ausnutzen,
um das symbolische Ergebnis zu vereinfachen.

Vollig analog zu Gleichung (2.8) kann man nun darangehen, die Residuenintegration in mehr
als zwei inversen linearen Propagatoren zu betrachten. Fiir drei durch

P(1) Bi I

P =16 o (1 >
Pi(l) B o

bestimmte P(l) kommt gegeniiber (2.8) zunéchst einmal ein additiver Term vom zusétzlichen

P, ausgewertet an der Nullstelle IV hinzu. AuRerdem tritt ein additiver Faktor auf, den man
durch die Vertauschung der Indizes ¢ und j erhélt:

1
| ewmwm
. 1 1 1
- (2m)<RE%P(l)P(l)Pk() RS BB O)P ()+1%880P(Z)P(Z)Pk(l)>
(- tnou)/5) — - Toow)5) | O T /5) ~ - Tonow) By
(Bicj — Bjcu) Pi(1) (Bjci = Bia) P (1)) . ‘

Im Prinzip haben wir hier eine Partialbruchzerlegung vorgenommen — man vergleiche die
Gleichungen (2.9) und (A.5). Die zwei Terme entsprechen den zwei Punkten an den Asten in
Abbildung 2.3(b), die zweite #-Funktion in den Zahlern des Ergebnisses kommen wieder vom
abgeschnittenen Zweig.

= (2m)<

Die verbleibenden Integrationsvariablen stecken alle in o, o;; und oy,. Diese werden im Nenner
gemischt mit §; und [, also mit reellen Impulsvariablen — Terme der Form a;ay, treten dabei
nicht auf. Folglich sind die s im néchsten Integrationsschritt wieder reell. Berticksichtigen wir
noch, dass dies auch im ersten Integrationsschritt so war, da die P, ja geméaf Gleichung (2.2)
gebildet worden sind, so sehen wir das folgende beruhigende Lemma ein:

2.2. Die einschriankenden Bedingungen 37

1 1
(a) Py (l1,l2)P>(l1,l2) P3 (11 ,l2) (b) Pi(l1,02)P2(11,l2) P3(l1,l2) Pa(ly,l2)

Abbildung 2.5.: Verbleibende Terme nach zwei Residuenintegrationen in linearisierten Zwillingsva-
riablen |1 und ly. Die abgeschnittenen Aste miissen nicht mehr berechnet werden.

Lemma 2.4 Bei unserem Verfahren bleiben die Koeffizienten der Schleifenimpulse stets reell.
Anders ausgedrickt: in Gleichung (2.7) gilt Bom € R, o, € C.

Dieses Lemma rechtfertigt riickwirkend die Schreibweise der Argumente der #-Funktionen in
Gleichungen (2.8) und (2.9). Auferdem stellt es eine Invariante des Verfahrens dar und eignet
sich damit vorziiglich zur Fehlerdetektion in der Implementierung.

Wir werden nun eine zweite Integration explizit ausfiihren, da die einschrénkenden Bedingun-
gen bei der Integration von Zwillingsvariablen noch explizit konstruiert werden miissen. Dazu
gehen wir wieder von der Darstellung der inversen Propagatoren als linearem Gleichungssys-
tem in den Zwillingsvariablen /; und Il wie in (2.7) aus:

Pi(lh 52) 51'1 51'2 (%) L
P,) | = B Bz oy ly
Pi(ly,1s) Br1 Bre o 1

Berechnet werden soll das Integral

1
dlydl ,
/ Y P(1y, 1) Py (1, 1) Pa(ly, 1)

wobei wir den Nenner des Ergebnisses schon aus Satz 2.3 kennen. Wir miissen nun an der von
P;, P; und P, produzierten Polstelle das Residuum berechnen. Nachdem die /;-Integration wie
in (2.8) ausgefiihrt worden ist, wurden die Nullstellen der P, in Iy

_ Pl + o o) _ _Bplb+ay

i Bin b Bi1
) J

38 2. Die skalaren Zweischleifen-Vierbeinfunktionen

implizit in den verbleibenden Impulsen eingesetzt:

Pj(l2)|l§i) i (@'15;‘2 - ﬁﬂﬁﬂ)lQ + i(ﬁﬂ%‘ - 5]'1041‘)
Pk(l2)| (@) = L (6@'15]@2 - ﬁz’zﬁkl)b + i (ﬁz’l@k - ﬁkl@i)
l Bi Bi (2.10)
Pz'(b)‘) L (ﬁjlﬁm - 5]'2@1)[2 + i(ﬁjlai - ﬁilOéj)
ll ﬁjl /6_]1
Pr(l2)],) i (ﬁjlﬁkz - 5j25k1)52 + i(ﬁjlak - ﬁm&j)
ll 5]1 /6_]1

Wir suchen wieder die Nullstellen in der komplexen l5-Ebene auf und erhalten als Ergebnis

1
dl+dl =
/ 2P (1, 1) Py (1, 1) Pe(ly, 1)

Im(a;) Im(ay) Bir Im(oyj) — Bj1 Im(ov;) B Im(ag) — Brr Im(ay;)
<{0< 5.) ﬁmk)}{e(e o Rl G e v w >}

_ {0<Im(aj)) B Q(Im(ak))}{9<ﬁj1 Im(e;) —fin 1m(%‘)> _ 9(@'1 Im(ok) — B Im(%‘))})

Bj1 B Bj1Bi2— Bj2Bi B18k2— B2k
27i)? Bin B2
« (2m1) b e o (2.11)
Br1 Bra ax

Mit i =1, j = 2 und k = 3 entsprechen die beiden Summanden genau den Asten 1-2 und 2-1 in
Abbildung 2.5(a). Falls im urspriinglichen Integral weitere Propagatoren P,(l1,(3)... P, (l1,1s)
vorkamen, so sind diese in (2.11) eingesetzt zu verstehen. Sie miissen lediglich an den Null-
stellen

j6d) — oo _ P — aifl 9.12
! ! Bj2ﬁi1 - ﬁjlﬁiQ ()
6 — o) _ i = 050 (2.13)

? B Bj2Bin — Bj1Bi

ausgewertet werden, analog zu Satz 2.3 von Seite 32. Fiir vier Propagatoren erhélt man bei-
spielsweise das System von Abbildung 2.5(b).

Es sollte noch angemerkt werden, dass eine Implementierung dieses Verfahrens in einem sym-
bolischen System eine solche Einsetzung in zum Beispiel P,(l1,l2) = Bnily + Buals + «, nicht
naiv vornehmen sollte. Sonst wird namlich der = Integritatsbereich der Polynome iiber den
a und [verlassen und die entstehenden Rechnungen im Quotientenkoérper sind ungleich auf-
wandiger. Stattdessen konnen Zahler und Nenner der entstehenden Terme getrennt verwaltet
werden. Dabei hilft, dass die Nenner in (2.12) und (2.13) identisch sind. Wenn man diesen
Nenner ;281 — Bj18i2 zum Zahler des Ergebnisses multipliziert, so kann man die Ersetzung

2.2. Die einschriankenden Bedingungen 39

im Nenner des Ergebnisses wieder als Determinante schreiben:

(ﬁﬂﬁzl _ﬁjlﬁZQ)

l(w (z i = 5711(04]'@2—%5]'2) + 5712(04@'53'1—%@1) + Oén(ﬁﬂﬁﬂ—ﬁjlﬁm)

Bin B2
= 5;‘1 ﬁjg Qi
ﬁnl ﬁnZ (079

Wir sind nun in der Lage, die versprochene Masterformel geschlossen anzugeben.

Satz 2.5 (Masterformel fiir Residuenintegration in Zwillingsvariablen) Seien n in-
verse Propagatoren gegeben durch

Pl(lla lz) 511 512 (€51]
PQ(lla l2) ﬁ21 ﬁ22 Q9 ll
. = . . . 2
: : : : 1
Pn(lla l2) ﬁnl Bn2 (079

und seien die darin auftretenden (;; alle reell. Wir schreiben abkiirzend fiir die bendtigten
3 x 3-Determinanten

51'1 51'2 (%)
Bijr =1 Bpn By «;
Br1 B2 g

Wenn das Integral f dlidl, Hl 1 P(l 5 existiert und die By, fiir alle paarweise verschiedenen
1,7,k nicht Null sind, dann gilt:

- 1
dlydl —_— =
/ ' 2H3<z1,z2>

Im(o;) Im(cv,) }
ﬁzl) (Bnl)
ﬁzl Im Oé] ﬁ]l Im(az)) N 9<ﬁ21 Im(an) _Bnl Im(az)) }
5115]2 B@Zﬁ]l ﬁilﬁrﬂ _Bﬂﬁnl

> Q5
S fof
o)
R
(27m)2 (Bj2Bia — Bj1Bi2)"~

Bz]n H Bz]l

I#i,5,n

ﬁjlﬁrﬂ _ﬁj2ﬁn1

Dieses Zwischenergebnis ist fiir eine Implementierung eminent geeignet. Es muss nur eine
Darstellung fiir die #-Funktionen geschrieben werden, die rationalen Koeffizienten bleiben
iibersichtlich und wie auf Seite 33 erlautert in der Anzahl beschrankt. Zweckméfigerweise

40 2. Die skalaren Zweischleifen-Vierbeinfunktionen

konnen die Faktoren (27i)? sowie ganzzahlige Faktoren in Pl-(lgj),lék)) herausdividiert und
getrennt abgespeichert werden,* wenn man eine passende Datenstruktur wihlt, die Zihler

und Nenner in voneinander getrennten Feldern verwaltet.

Mogliche Entartungen

Eine stédndig auftretende Entartung in diesem Verfahren beruht darauf, dass wir unseren inver-
sen Propagatoren P immer identische kausale Imaginérteile 2p mitgegeben haben. Wir hatten
diese auch verschieden wéhlen konnen, was aber neben der Einfithrung zusétzlicher symbo-
lischer Variablen eine aufwindige Fallunterscheidung zur Folge hétte. In den #-Funktionen
wiirden dann nédmlich immer Terme der Form p; — p; vorkommen von denen das Vorzeichen
zu bestimmen wire. Ist aber p; = p;, so kommt es bei der Einsetzung der Polstellen wahrend
einer Residuenintegration durch Differenzbildung bisweilen dazu, dass ein Imaginérteil vollig
verschwindet. Dann wird eine darauffolgende Residuenintegration entlang der reellen Achse
durchgefiithrt mit einem Pol direkt auf dem Integrationsweg. Betrachtet man dieses Integral
als Hauptwertintegral, so kann man die Integration aber mit dem Satz A.6 durchfiihren. In
allen obigen Gleichungen ist dann einfach 6(0) durch 1/ zu ersetzen.

Bei dem Auftreten von Determinanten im Nenner stellt sich natiirlich immer die Frage, ob
diese nicht vielleicht verschwinden. Zunéchst einmal gibt es den Fall, dass in einer Matrix zwei
Zeilen identisch sind:

Pi(lla l2) B Bia L
Pj(lla lz) = Bin B2 ly
Pi(ly,15) Br1 Bra g 1

Dies kann in Feynmandiagrammen passieren, wenn zwischen zwei identischen skalaren Pro-
pagatoren ein duferes Teilchen ankniipft ohne Viererimpuls zu iibertragen. Das bedeutet na-
tiirlich P; = P; oder aber einen quadrierten Propagator P; in der urspriinglichen Amplitude,
was jedoch nach Gleichung (A.9) noch mit einer Residuenintegration handhabbar ist. (Topo-
logien mit der Schleifeneinsetzung HOH, wie etwa Id) in Abbildung 2.2, sind natiirlich auch
betroffen. Diese konnen aber mit Methoden aus dem Standardrepertoire behandelt werden,
etwa als Dispersionsintegral.)

Problematischer wird es, wenn eine Teilentartung auftritt, wie zum Beispiel

Pi(lla lz) ﬁil ﬁiQ Q; L
Pj(lla lz) = ﬁil ﬁiQ Q; Iy)
Py(ly,1s) Br1 Bra g 1

also 31 = ;1 und ;2 = B2, aber a; # a;, um den schon behandelten Fall quadrierter Propa-
gatoren auszuschliefflen. Man beachte, dass die Determinante dann nicht einmal verschwindet.
Ein Feynmandiagramm mit externen Teilchen ohne Impulsiibertrag aber verschiedenen in-
ternen Massen entspricht diesem Fall. Dabei geht zum Beispiel nach der [;-Integration ein

4 In GiNaC bietet es sich an, hierfiir integer_content () zu missbrauchen. Es ist aber nur fiir expandierte
multivariate Polynome tiber Z definiert. Aufgrund der Imaginérteile wird dem Aufruf daher eine Zerlegung
in Real- und Imaginérteil mittels eines Funktors vorangesetzt.

2.3. Umformung der einschrinkenden Bedingungen 41

Propagator verloren, da nun Pg(lgl)) und Pl(lf)) keine lo-Abhéngigkeit mehr enthalten. Ver-
zichten wir auf die doppelte Integration in Zwillingsvariablen und fiithren die [;-Integration
durch, so erhalten wir:

1
/ 0)P (0) Pl)
_ (2m)< Bi{0(—=Im(a;)/Bn) — O0(—Im(ag)/Br1) }
(a;— ;) ((Bi1 Br2 — B Biz)lo + (arBin — i Br1))
Bin{0(—Im(ay)/Bin) — 0(—Im(ay)/Br1)})
(i =) ((Bi1 Bra — Br1Biz)l2 + (o fBin — i Br1)) '

Die nachfolgende Integration iiber [ist hier nicht mehr ausfithrbar, es sei denn es waren
urspriinglich noch mehr P(ly,[;) vorhanden, die die Konvergenz wieder herstellen. Die obige
Summe sieht nur auf den ersten Blick integrabel aus, wenn man sie auf den Hauptnenner
bringt. Die Differenz der dort auftretenden Pg(lﬁ”) und Pg(l?)) im Zéahler wird dann zwar
auch frei von [5. Die #-Funktionen im Zahler vereiteln dieses Vorhaben jedoch leider, so dass
dies jeweils nur in Teilgebieten moglich ist.

2.3. Umformung der einschrankenden Bedingungen

Die einschrdnkenden Bedingungen, also die #-Funktionen in Gleichung (2.14), kénnen nicht als
algebraische Ausdriicke im allgemeinsten Sinne (beispielsweise in der GiNaC-Klasse ex) ab-
gespeichert werden, da wir sie besonders untersuchen und den anonymen = Evaluator daher
umgehen miissen. Lediglich ihre Argumente als rationale Funktionen sind allgemeine alge-
braische Ausdriicke. Stattdessen enthélt jeder additive Term in der Amplitude nach der Re-
siduenintegration ein eigens dafiir vorgesehenes Objekt einer Klasse constraint, welches die
Logik implementiert. Die Klasse constraint stellt semantisch gesehen selbst eine Summe aus
Produkten von Differenzen von #-Funktionen dar. Da insgesamt vier Residuenintegrationen
ausgefithrt werden von denen jede eine Differenz der Form 0(—Im(«;)/5;) — 0(—Im(av,)/5n)
mit sich bringt, haben die Produkte maximal vier Terme. Von diesen Produkten wiederum
gibt es am Ende jeweils vier Stiick, da iiber zwei Paare von Zwillingsvariablen integriert wird,
von denen laut Lemma 2.2 jeweils zwei additive Terme sich nur durch ein Vorzeichen unter-
scheiden.

Diese rigide Form legt eine Implementierung nahe, in der Addition und Multiplikation von
Hand den speziellen Bediirfnissen angepasst werden. Hierfiir wurden ein paar Klassen defi-
niert, die in ineinander verschachtelter Form benutzt werden. Von innen nach aufen sind dies
constraint_atom, das eine Differenz aus zwei 6-Funktionen darstellt. Ein constraint_atom
kann im uninitialisierten Status sein, in dem sie semantisch als Eins zu lesen ist, da noch keine
einschrankenden Bedingungen aufgetreten sind. Die Methode constraint_atom: :empty () ge-
stattet es, diesen Zustand abzufragen. Die Containerklasse constraint_product ist ein Qua-
drupel von constraint_atom. Und die Containerklasse constraint schlieflich ein Quadrupel
von constraint_product. Man muss nur die bei deren Konstruktion bendtigten Rechenregeln
fiir Addition und Multiplikation explizit programmieren.

42 2. Die skalaren Zweischleifen-Vierbeinfunktionen

Zunéchst einmal konnen positive Faktoren aus den Argumenten der #-Funktionen eliminiert
werden:

O(n- P) — O(P). (2.15)

Fiir ganzzahlige n > 0 und voll expandierte Polynome tiber Z leistet eine Division durch den
Riickgabewert der GiNaC-Funktion integer_content () den gewiinschten Effekt.

Falls die Argumente der #-Funktionen quadratisch vorkommen, so kann man sie eliminieren,
da sie immer aus Imaginérteilen aufgebaut werden und daher per Konstruktion rein reell sind.
Allgemeiner kann man dies mithilfe der quadratfreien Faktorisierung erreichen, die wir nun
kurz skizzieren. Enthélt ein Polynom

P(z) = Pi(x)Pj(z) Py () Py, () - - (2.16)

einen Faktor n-fach, so enthélt die Ableitung diesen Faktor n— 1-fach:

Durch iterative Bestimmung des ggT eines Polynoms und seiner Ableitung kann so leicht ei-
ne Faktorisierung der Art (2.16) erreicht werden, wobei die einzelnen P, (z) noch nicht voll
faktorisiert sein miissen — das Polynom 22 — 1 kann mit dieser Methode beispielsweise nicht
faktorisiert werden, da der ggT von 22 — 1 und 2z 1 ist. Im multivariaten Fall findet man
zunéchst eine beliebige Variable z auf und sucht die Faktoren in der Ableitung nach x. Man
wiederholt das Verfahren dann in jedem der aufgefundenen Faktoren und in einer ndchsten
Variablen so lange, bis keine freien Variablen mehr aufgefunden werden. Durch diese rekur-
sive Anwendung wird die quadratfreie Faktorisierung in der Praxis besser, je mehr Variable
vorhanden sind und je niedriger der fithrende Exponent ist. Diese Beobachtung wird gleich in
Satz 2.6 prazisiert werden.

Diese quadratfreie Faktorisierung erlaubt eine programmatische Vereinfachung der Argumente
der #-Funktionen:

O(P;- P~ P+) — (L P+). (2.17)
Diese Umformung ist offensichtlich richtig, da sign(P7) = 1 und mithin sign(P3,) = sign(Py;),
etc.
Hat man nun eine #-Funktion mit einem Produkt als Argument, so kann man diese als Summe
von #-Funktionen umschreiben. §(P;P;) ist genau dann 1, wenn P; und P;; entweder beide
positiv oder beide negativ sind:

O(PiPy;) = 0(F;)0(Py) + 0(—F;)0(—Fy).

Zusatzlich gilt
O(—z) =1-6(x), (2.18)

2.3. Umformung der einschrinkenden Bedingungen 43

womit man dies weiter umschreiben kann zu:

0(FPy) = 6(F)0(P;)+ (1—0(F))(1 —0(Py))
= 20(P)0(Fs) — 0(F) — 0(F;) + 1.

Falls hierin P;; wieder in ein Produkt faktorisieren sollte, kann man das Verfahren wiederholen
und elegant als rekursive Prozedur programmieren. Die ersten paar Ergebnisse lauten:

O(P.P) = 20(P)O(Pu) —6(P) = 6(Pu) + 1 ‘
Q(Pipupiii) = (Pz)e() (m)
_QQ(Pz) (m) 29() ()_QH(RZ)Q(PZZZ)
+0(P) +0(Ps) + 0(Pui)
Q(PZPMPZZZPM)) = (PZ)G() (m)e(PZ)

— 48(P)O(P)(Pi) — 40(P)B(P)6(Py) (2.19)
_49(]31) (zzz) (P) 49() (w)e(PZ’ii)

+20(P)0(Py;) + 20(P,)0(Py;) + 20(P,)0(Py,)

+ 20(P;)0(Py;) + 20(P;)9(Pw>+29(Piii)0(Piv)

(Z>_ (u)_ (W>_9()

Vs

Die mit dieser Prozedur gewonnenen Polynome aus #-Funktionen kénnen Quadrate enthalten.
Man kann sie jedoch alle eliminieren, da die #-Funktion idempotent ist. Es gilt die Vereinfa-
chungsregel der Tautologie:

O(P)" =0(P). (2.20)

Im Fall P = 0 wére sie falsch, da #(0) =1/. Falls P manifest verschwindet, ist die Vereinfachung
O(P) — 1/» aber schon ausgefiihrt worden und die Regel kommt gar nicht erst zur Anwendung.
Falls P nicht manifest verschwindet, sondern nur in Grenzféillen wenn P zu einem spéteren
Zeitpunkt an bestimmten kinematischen Punkten symbolisch ausgewertet wird, dann liegt
genau eine Gebietsgrenze vor. Diese stellt aber eine Menge vom Mak 0 dar und ist daher fiir
die verbleibenden Integrationen irrelevant — was die Anwendung der Idempotenzregel auch
wieder sicher macht.

In den beiden Umformungsregeln (2.18) und (2.20) ist iibrigens auch der logische Widerspruch
automatisch beinhaltet:

o(P)o(—P) 2 9(P)(1—6(P)) = 0(P) — 0(P)>?
22 9Py —o(P) = 0.

Falls sich beim Leser bis hierhin der Verdacht eingeschlichen haben sollte, dass es sich bei
all dem um eine boolsche Pradikatenlogik handelt, so muss er an dieser Stelle ausgeraumt
werden. Die Argumente der #-Funktionen entsprechen zwar Pradikaten in dem Sinne, dass
0(P)=1< P > 0, und das Produkt 0(P;)0(F;;) kann darin als logisches ,,Und*“ (A) geschrie-
ben werden, aber die Summe 6(P;) + 0(P;;) ist kein Aquivalent zum logischen ,Oder* (V), da
sie fiir P; > 0 und P;; > 0 den Wert 2 annehmen kann. Unter anderem folgt daraus, dass wir

44 2. Die skalaren Zweischleifen-Vierbeinfunktionen

auch kein Aquivalent zu den de Morgan’schen Regeln —aA—b < —=(aVb) und —aV—-b < —=(aAb)
unter unseren Instrumenten zur Termumschreibung vorfinden.

Sollte nach diesen Vereinfachungen das Polynom von #-Funktionen faktorisieren, so kann
man diese Faktorisierung auf jeden Fall mit dem Algorithmus fiir quadratfreie Faktorisierung
auffinden:

Satz 2.6 Gegeben sei ein Polynom P(t) tber dem Ring der ganzen Zahlen in n freien Va-
riablen t = {t1,ts,...,t,}. Wenn alle t; € t die Idempotenz t; = t? erfillen, dann st die
quadratfreie Faktorisierung von P(t) nach Anwendung der Idempotenz identisch mit der vol-
len Faktorisierung.

Zum Beweis gehen wir von der vollen Faktorisierung P; () P;;(t) Py (L) - - - von P(t) aus und zei-
gen, dass der Algorithmus der quadratfreien Faktorisierung tatséchlich alle Faktoren auffinden
kann. Es ist klar, dass bei Polynomen iiber den ganzen Zahlen eine beliebige Variable ¢t € { nur
in einem der Faktoren P;(t), P;(t), ... vorkommen kann, weil sonst in der ausmultiplizierten
Form mindestens ¢? auftreten wiirde (da der Ring der ganzen Zahlen die Charakteristik 0
hat). Wir zerlegen ¢ in { =t U 7 und nehmen 0.B.d.A. an, dass ¢ in P; vorkommt. Dann ist

mit zwei noch unbekannten Polynomen p(7) und ¢(7). Fiir die Ableitung von P(t) nach ¢ gilt

und fiir den ggT

ggT(P(t), 2P(t)) = ggT (p(1).

Wenn ggT(p(7), ¢(1)) = 1, dann ist P;(£) gefunden. Die Variable ¢ kommt im Rest nicht mehr
vor und daher kann es keine weiteren Faktoren in ¢ mehr geben. Andererseits hat Pi(t) =
(p(7)t + q(7)) dann und nur dann noch weitere Faktoren, wenn ggT(p(7),q(7)) # 1 ist.
Diese werden dann aber durch Anwendung des Verfahrens in den verbleibenden Variablen
7 gefunden. Durch Iteration iiber alle ¢ € { werden so alle Faktoren sukzessive gefunden —
unabhédngig von der gewahlten Reihenfolge der ¢;. O

&

Dieser Satz ist zwar sehr hilfreich beim Aufsuchen einer solchen Faktorisierung — er kommt
jedoch mit einem kleinen Wermutstropfen einher: Es wird davon ausgegangen, dass das zu
faktorisierende Polynom in expandierter Form und nach Anwendung der Idempotenz t? = t;
vorliegt. Die Anwendung der Idempotenz fiithrt zwar zu einer Vereinfachung in dem Sinne,
dass im expandierten Darstellungsbaum des Polynoms keine neuen Aste entstehen sondern
nur welche verschwinden; sie kann eine faktorisierende Struktur jedoch auch zerstoren. Aus
(t1 4 t2)(t1 + t3) wird zum Beispiel t; + t1t3 + toty + tot3 und das faktorisiert iberhaupt nicht
mehr. Andererseits ist die faktorisierende Struktur immerhin invariant unter Transformationen
der Form 6(z) — 1 — 0(—x), da 6(—z) beziehungsweise #(x) in genau einem der Faktoren
vorkommt: Schreiben wir ¢ := 6(z) und ¢’ := 6(—x), so findet die quadratfreie Faktorisierung
p(1) — p(7)t' + q(1) genauso als Faktor auf wie das urspriingliche p(7)t + (7).

2.3. Umformung der einschrinkenden Bedingungen 45

Nun erzwingt die Anwesenheit von duferen Impulskomponenten in den #-Funktionen leider
die Erstellung eines immensen Entscheidungsbaumes. An jedem Zweig wiirden dann Poly-
nome aus dufseren Impulskomponenten nach ihrem Vorzeichen unterschieden. Selbst wenn
man diesen (exponentiellen) Aufwand nicht scheut, ist es nach dem derzeitigen Stand von
Inferenzmaschinen fiir Entscheidungen in symbolischen Gleichungssystemen recht zweifelhaft,
ob die richtigen Tautologien und Widerspriiche in dem System von #-Funktionen fiir eine
Vereinfachung gefunden werden kénnen [WeGo 1991]. Aus diesem Grunde muss ab nun ein
pragmatischer Standpunkt eingenommen werden: die dufseren Impulskomponenten sollen alle
numerisch vorliegen.

Unter dieser Voraussetzung kann eine weitere niitzliche Vereinfachung vorgenommen wer-
den. Wir haben bisher die Vorzeichen der Argumente der #-Funktionen beliebig nach Glei-
chung (2.18) gewahlt. Sehr héufig ist aber eine Wahl niitzlicher als die andere. Wenn némlich
P, — P;; keine unbekannten Symbole mehr enthélt, also numerisch als reelle Zahl vorliegt, dann
wird durch §(P;) — 0(P;;) ein Streifen im Raum der in P; vorkommenden zugeordneten Schlei-
fenvariablen definiert. Wenn hingegen P; + P;; numerisch ist, dann definiert 6(P;) — 6(—F;)
einen Streifen im Raum der zugeordneten Variablen. Dann wird aber je nach Vorzeichen von
P; + P;; beziehungsweise P; — P;; durch 0(P;)0(—P;;) beziehungsweise 0(—F;)0(FP;;) jeweils
dasselbe Gebiet definiert. Wir kénnen nun testweise (2.18) anwenden um solche einfacheren
Faktoren zu finden. Dies alles ist noch kein strategisches Vorgehen und insbesondere kein
Algorithmus. Ein solcher muss unbedingt noch gefunden werden. Im Folgenden wird die An-
wendung dieser Instrumente zur Termumschreibung zur Veranschaulichung der Problematik
durchgefiihrt.

Beispiele fiir Umformungen einschriankender Bedingungen

Wir zeigen nun an einem einfachen aber realistischen Beispiel, wie die bisher beschriebenen
Umformungen in der Lage sind, die einschrinkenden Bedingungen nahezu automatisch in eine
geeignete Gestalt zu bringen, so dass die durch sie definierten Gebiete direkt abgelesen werden
konnen. Allerdings ist es noch nicht gelungen, die oben in diesem Abschnitt aufgezdhlten
Werkzeuge so zu dirigieren, dass dieser Prozess vollig automatisiert ablauft. Dies ist endgiiltig
aber notwendig, da die Rechnungen per Hand viel zu zeitraubend und fehleranfillig sind.

Wir beschriinken uns der Ubersichtlichkeit zuliebe auf zwei zugeordnete Variablen k und I,
welche nach der Residuenintegration in & und [durch Bedingungen eingeschréankt werden.
Ein héufiges Muster nach zweimaliger Anwendung von Gleichung (2.8) ist beispielsweise das
folgende Produkt von #-Funktionen:

0 = {0(-1) — 0(=k—D)}{0(~k—p) — 0k (k+1))} (2.21)

mit einer externen Impulskomponente p, fiir die 0.B.d.A. p > 0 gelten mag. In [Krec 1997a]
steckt es in Gleichungen (2.4) und (2.5) und wurde per Hand wie folgt analysiert. Der erste
Term {6(—I) — O(—k —1)} schilt aus der k-I-Ebene zwei Dreiecke heraus, eines davon mit
positivem und eines mit negativem Gewicht (Abbildung 2.6 links). Eines davon ist im zweiten,
das andere im vierten Quadranten, also ist das Produkt k1 stets negativ. Dies kann nun in den

zweiten Term {0(—k—p) —0(k [(k+))} eingesetzt werden, um ihn als {#(—k—p) —0(—k—I)} zu

46 2. Die skalaren Zweischleifen-Vierbeinfunktionen

O

Abbildung 2.6.: Graphische Darstellung des faktorisierten Polynoms in 6-Funktionen (2.21).

schreiben. Dies schélt dann die beiden Dreiecke aus Abbildung 2.6 mitte heraus. Das Produkt
ist das endliche Dreieck von Abbildung 2.6 rechts, begrenzt durch =k, k=—pundl=0.

Mit den Umformungen aus diesem Abschnitt kann man dieses Ergebnis auch reproduzieren.
Es wird sich herausstellen, dass es dabei eine fiir das automatische Identifizieren von Gebieten
wesentlich besser geeignete Form annimmt. Ausgehend von Gleichung (2.21) identifizieren wir
die vier vorkommenden Polynome

P k
Py = —k—p
P, = 1
Py, = —k—1

Damit hat © die Gestalt {0(—Py;) — 0(Py) H{0(Py;) — 0(—P; Py Py, }. Mit der Zerlegung (2.19)
fir 6(— P; P;;; P;,) erhélt man

{1 m - H(Pw)}
{- 1+0P>+mﬂo+9a%>+wP»
= 20(P)0(Pisi) = 20(P)0(Pa) — 20(Pist)(Piw) + 40(P)0(Pii) (P }.

Durch Ausmultiplikation dieses Produktes entsteht ein etwas uniibersichtliches Polynom aus
f-Funktionen:

O = —1+6(P)+0(P:) +20(Pui) + 26(Py)
— 0(Piis)* = 0(Py)? — 0(Py)0(Pyii) — 0(Pu)0(Pi)
_39()9(m>_39()9() 49(le)e(P)
+20(P)0(Pus)* +20(P,) (Po)? +20(Piii)*0(Piv) + 20(Pi)0(Py)
+80(F;)0(Pui)0(Pru) — 40(P)0(Pyii)*0(Piv) — 460(F;)0(Piss)0(P)?,

v

was nach Ausnutzen der Idempotenz und Zusammenfassen von gleichen Termen zusammen-
schrumpft zu:
© = —1+0(P)+60(Py)+0(Pu)+ 0(Pw)
— 0(P)0(Piii) — 0(P)0(Pi) — 0(P)0(Puii) — 0(Pi)0(Puv). (2.22)

2.3. Umformung der einschrinkenden Bedingungen 47

Abbildung 2.7.: Alternative, (2.23) entsprechende Darstellung des Polynoms in 6-Funktionen aus
Abbildung 2.6.

Dieses Ergebnis faktorisiert in © = {0(Py;) + 0(Py,) — 1}{1 — 6(F;) — 0(P;)}, was eigentlich
erstaunlich ist, da es gegeniiber (2.21) eine Vertauschung beschreibt: Es ist ausgeschrieben

0 ={0(0) +0(—k—1) — 1}{1—0(~k—p)} (2.23)

und die beiden Anteile lassen sich wie in Abbildung 2.7 veranschaulichen. Der linke Anteil ist
derselbe geblieben, aber der rechte ist in einen durch k& = —p und & = 0 beschriinkten Streifen
iibergegangen. Es ist dies eine Umformung, die nicht mdéglich und auch nicht richtig gewesen
ware ohne Wechselwirkung mit dem linken Gebiet. Das Endergebnis ist wieder das Dreieck
aus Abbildung 2.6, genau wie es sein muss. Aufserdem ist fiir das Erkennen des mittleren
Gebietes jetzt keine Information aus dem linken Gebiet mehr notwendig — fiir Abbildung 2.6
mussten wir noch k{ < 0 aus dem linken Gebiet ablesen um das mittlere zu erkennen.

Wir sind aber noch nicht ganz fertig. Die Polynome P; und P;; unterscheiden sich aufer durch
ein Vorzeichen nur durch die numerisch bekannte Konstante p. Unter Ausnutzung von (2.18)
kénnen wir die Vorzeichen von P; und Pj; beliebig manipulieren um wahlweise eines von vier
Produkten zu erzeugen. Weil wir p > 0 angenommen haben, ist ihre geometrische Interpreta-
tion auch bekannt:

-p 0 K

Die zweite und dritte Moglichkeit beschreiben kein endliches Gebiet und die Letzte beschreibt
gar kein Gebiet. Wenn die resultierenden Gebiete also beschréankt sind, dann birgt eine Trans-
formation in die erste Vorzeichenwahl die Moglichkeit, die Gebiete in faktorisierter Form
aufzufinden. Unsere Vorzeichenwahl ist aber gerade die vierte. Sie wird also testweise durch

48 2. Die skalaren Zweischleifen-Vierbeinfunktionen

die Transformation

0(k) — 1—9(~—1%)

0(—k —p) — 1—0(k+p)

modifiziert werden miissen. Damit wird aus (2.22)

O = 0(k + p)0(—k)0(1) + 0(k + p)0(—k)0(—k — 1) — O(k + p)8(—Fk).

Man kann dies entweder mit der quadratfreien Faktorisierung oder per Hand mit einer dop-
pelten Ersetzung

(k) — T4+6(—k—p)
0 — coeff(©,7°) + coeff (0, 70 (k + p)(—Fk)

faktorisieren und erhalt so
0 = {0(1) + 0(=k—1) — 1}0(—k)0(k+p).

Eine dhnliche Abbildung auf endlich dargestellte f-Funktionen im Term {0(I) + 6(—k—{) — 1}
erfordert nun kombinatorisches Zusatzwissen, welches von Hand beigesteuert werden muss,
da P;; + P, nun nicht numerisch ist sondern noch von k abhingt. Damit erhdlt man das
attraktive Ergebnis

© = 0() 0(—k — 1) 6(—k) 0(k+p),
wovon das Dreieck aus Abbildung 2.6 rechts sofort abgelesen werden kann.

Mit einem analogen Vorgehen ist es insbesondere auch moéglich, die auftretenden Gebiete der
planaren Box [[] in der Parametrisierung

1
Jrr = de:/le
o / P(l,my) P(l—p1,ma) P(l4+pg, m3) P(k-+p1—ps3, my4)
X

1
P(k+p1,m5) P(k:—pg,mﬁ) P(k:+l,m7)
plf = (q17q$a070)
mit pg = (q27_QI7070)
Py = (¢, Pz Py, 0)

(2.24)

zu finden. Dies funktioniert jedoch noch nicht vollautomatisch. Sie faktorisieren in ks-l3- und
ko-lo-Gebiete, wobei die k3-l3-Gebiete die vertrauten Dreiecke (beschriankt durch p,) beschrei-
ben, wihrend die kg-lo-Gebiete wie in Abbildung 2.9 zu liegen kommen. Dies bestétigt eine
frither durchgefiithrte Bestimmung der Gebiete, die noch ohne die Masterformel (2.14) aus-
kommen musste und in der die Gebiete per Hand abgelesen wurden [KKS 1998].

Ein numerischer Vergleich der planaren Box mit [Smir 1999] steht allerdings noch in weiter
Ferne. Fiir ihn miissten die Integrationsgebiete der Vierfachdarstellung erst zuverlassig (sprich:
automatisch) in numerisch zugéngliche Einheitsgebiete umgewandelt werden. Darauf wird im
nachsten Abschnitt etwas eingegangen.

2.4. Ausblick: Das weitere Vorgehen 49

I ko Iy kg I Iy ko ky
/,
/
4 2
/,
5 I
3
6 >
/1
7 7
1
1
//‘,
/1
4 1
//‘,
5 I
3
2 6 4
_ 2
7 7
/,
/
4 1
3 — 3
5 =
2
6 »
/

Abbildung 2.8.: Verbleibende Terme nach zwei verschiedenen Integrationsmethoden zur planaren
Box in der Darstellung (2.24): links nur unter Ausnutzung des Satzes iiber die Residuensumme und
rechts unter Ausnutzung der vollen Integrationsregel fiir Zwillingsvariablen. Die Integrationsreihen-
folge ist nicht die gleiche: links kann sie beliebig gewédhlt werden, rechts miissen l; und ls sowie ky
und ko hintereinander ausgefiihrt werden. Dies ist in diesem Fall fiir das Ergebnis aber nicht von
Relevanz.

2.4. Ausblick: Das weitere Vorgehen

Die so aufgefundenen Gebiete in den zugeordneten Variablen ks, [3, ko und [y sind entweder
Dreiecke oder Vierecke, die mit geeigneten linearen Transformationen in den zugeordneten
Variablen in Einheitsgebiete iiberfithrt werden kénnen. Beispielsweise kann das Dreieck aus
Abbildung 2.7 rechts durch die Ersetzung k/p = A\ — 1 und I/p = A(1 —) in ein Einheits-
quadrat (0...1) x (0...1) in der A-pu-Ebene iiberfithrt werden (mit der Jacobi-Determinanten
p?)). Fiir Vierecke gilt dies genauso, es miissen stets die Eckpunkte der Gebiete durch Losen
zweidimensionaler symbolischer linearer Gleichungssysteme aufgefunden werden, danach kann
durch eine Kombination aus Verschiebung und Scherung die verbleibende Integration in ei-
nem Einheitsgebiet dargestellt werden, wobei der Integrand weiterhin eine rationale Funktion
(in den neuen Integrationsvariablen) bleibt. Hierfiir muss aber zunéchst die Erkennung der
Gebiete automatisiert werden.

Die Integranden sind im Allgemeinen in den nach dieser Methode anfallenden Gebieten unter-
halb der Schwellen einer numerischen Integration mit Werkzeugen aus Anhang B zugénglich.
Ob dies oberhalb der Schwellen geht, muss aber bezweifelt werden. In den vorliegenden Inte-

50 2. Die skalaren Zweischleifen-Vierbeinfunktionen

lo b 1o lo
Ko ko Ko

Ao lo lo
Ko ‘ Ko ‘ Ko

Abbildung 2.9.: Graphische Darstellung der verbleibenden kg-ly Gebiete bei der planaren Box. Die
Parameter der die Gebietsgrenzen beschreibenden Geraden sind aufser von dufseren Impulskomponen-
ten noch von ks und I3 abhéngig. Von neun Gebieten sind drei verschwunden, da sie zu Widerspriichen
in den 6-Funktionen fiihrten. Die k3-l3-Gebiete sind einfacher, sie bestehen aus einfachen Dreiecken
wie in Abbildung 2.6 bzw. 2.7 und sind nur von &ufseren Impulskomponenten parametrisiert.

gralen wird der Imaginérteil durch die Sokhotsky-Plemelj-Relationen

lim dxﬂ = P.V./ dycM F ’iﬂ'/dl‘ f(x)d(z + x0) (2.25)

p—0 .%'—'—.I'Ojilp T + o

erzeugt, wobei die Integrationsgrenzen noch einzusetzen sind. Man erhélt sie durch Auftrennen
des Integranden in Real- und Imaginérteil, wobei der Imaginérteil eine Grenzwertdarstellung
der §-Distribution ist. Das darin vorkommende Hauptwertintegral (siche auch Anhang A)
ist aber fiir ein numerisches Programm erfahrungsgeméf wenig zugénglich, da adaptive Me-
thoden zwar bei endlichen Integralen passabel arbeiten, bei solchen, die nicht endlich sind
und erst durch die Hauptwertvorschrift endlich gemacht werden, aber kaum konvergieren
konnen. In kinematischen Spezialféllen war es moglich bis zu zwei weitere Integrationen ana-
lytisch durchzufithren [KKS 1998]. Dadurch wurde das Integral auch im Realteil oberhalb der
Schnitte regularisiert und dort fiir numerische Verfahren zugénglich gemacht. Die Ergebnisse
stimmen mit einer anderen Rechnung [PoTa 1996] iiberein. Dass dies tiberhaupt moglich war,
lag jedoch an Nebenbedingungen im Parameterraum der Funktion, die die Anzahl der freien
Parameter auf drei begrenzten.

Im Allgemeinen muss fiir eine weitere Integration ein systematisches Verfahren wie etwa das
von Horowitz [Horo 1971, DST 1988] verwendet werden. Dieser Algorithmus kann im Prinzip

2.4. Ausblick: Das weitere Vorgehen 51

zuverléssig die Stammfunktionen durch Logarithmen und inverse trigonometrische Funktio-
nen ausdriicken. Allerdings setzt die Implementierung dieses Verfahrens (insbesondere das
Einsetzen der Integrationsgrenzen) Kenntnisse iiber das Vorzeichen von ip voraus. Es stellt
sich aber heraus, dass der Vorfaktor von ip ein Polynom nicht nur in dufseren Impulsvariablen
und den inneren Massen, sondern auch in den verbliebenen inneren Schleifenimpulsen ist.
Dies wird Aussagen iiber die Vorzeichen vermutlich unméglich machen. Unterhalb der ersten
kinematischen Schwelle treten alle diese Probleme jedoch noch nicht auf.

Der Wert der hier dargestellten Ergebnisse besteht darin, dass der in [Krei 1994| aufgezeigte
Weg zur Berechnung von Vierbeinfunktionen unter Zulassung der gesamten Parameterman-
nigfaltigkeit auf ein berechenbares Mafl reduziert wurde. Dies gelingt mit dem Satz iiber die
Residuensumme und der Sylvester-Identitit. Ohne diese beiden Hilfsmittel iiberschreiten die
symbolischen Anforderungen auf absehbare Zeit die Kapazitit von verfiigharen Rechnern. Die
auftretenden Beschrdnkungen an die verbleibenden vier Integrationen sind zwar noch nicht
vollstandig automatisiert, jedoch liegt das Werkzeug hierfiir nun bereit. Insbesondere konnte
gezeigt werden, dass die quadratfreie Faktorisierung fiir alle notwendigen Operationen ausrei-
chend ist.

Teil I1.

Computeralgebra fiir
Schleifenrechnungen

3. GiNaC: Motivation und Design

These problems |of system building| arise from the desire to build a
nearly-autonomous system for mathematical problem representation
and solution: the intent is for the system to make it unnecessary for
the user to provide detailed programming at the level of data
representation of basic mathematical concepts.

Richard J. Fateman [Fate 1990]

Dieses Kapitel ist der Untersuchung der Grundlagen und praktischer Aspekte der Computeral-
gebra gewidmet. Es sollen einige allgemeine Funktions- und Designprinzipien angeschnitten
werden und die Griinde fiir das Entstehen von GiNaC dargelegt und strukturelle Implementa-
tionsmuster begriindet werden. Die Details der Implementierung werden, soweit sie in dieser
Arbeit beriihrt wurden, im néchsten Kapitel beschrieben.

Wenn Computeralgebra zwar kein neues Forschungsgebiet ist!, so ist es jedenfalls ein immer
noch sehr aktives. Auf kommerzieller Seite wird der Computeralgebrasystem- (CAS-?) Markt
beherrscht von einer kleinen Handvoll Systeme ohne nennenswerte offene Alternativen und
geforscht wird — leider — zu einem nicht unbeachtlichen Teil hinter verschlossenen Firmentiiren.
Ich hoffe, dass es gelingt, in diesem Kapitel aufzuzeigen, warum wir die Abkehr von diesen
Systemen im Rahmen des xloops-Projektes fiir notwendig hielten und warum dies der richtige
Ansatz ist.

3.1. Die Motivation fiir GiNaC

Die Probleme bei der Anwendung von handelsiiblichen Computeralgebrasystemen fallen in
zwei Gruppen: erstens ist fiir den Benutzer kaum nachvollziehbar, welche Algorithmen und
Umformungen vertrauenswiirdig sind und welche nicht. Zweitens erfiillen sie in linguistischer
Hinsicht nicht den gewachsenen Anforderungen moderner Programmierung. Die Vertrauens-
wiirdigkeit von Algorithmen und Umformungen kann prinzipiell nur einschitzen, wer sie nach-
vollzogen und verstanden hat oder auf einen Beweis vertraut. Programmierfehler in der Imple-
mentation sind hiermit nicht gemeint — selbst bei Einsicht der Quellen sind Implementierungen
nur in seltenen Féllen verifizierbar — vielmehr solche ,harmlosen Umformungen wie vz2 — z,

! Charles Babbage hatte schon 1836 die Idee, als er in sein Notitzbuch schrieb: ., This day I had for the
first time a general but very indistinct conception of the possibility of making an engine work out algebraic
developments—I mean without any reference to the value of the letters. (Zitiert nach [Larc 1999])

2 Ein besserer Name ist eigentlich das seltener gebrauchte Akronym SAC fiir Symbolic and Algebraic
Computation.

56 3. GiNaC: Motivation und Design

die nur bei eingeschranktem Wertebereich giiltig sind. Eine Unterscheidung zwischen solchen
Algorithmen, die vertrauenswiirdig sind und solchen die es nicht sind, ist daher eine Grat-
wanderung die nur mithilfe der Implementatoren durchfiithrbar ist. C. Bellarin und L. Paul-
son [BePa 1998] geben ein Beispiel, wo eine Auswahl der von Sumit [Bron 1996b| angebotenen
Algorithmen getroffen wird, die vertrauenswiirdig genug fiir das automatisierte Beweisen von
Theoremen aus der Codierungstheorie erscheinen — allerdings ohne diese Auswahl anhand
einer Negativliste mitsamt Gegenbeispielen zu untermauern.

Anfang der 90er Jahre war kaum ein erhéltliches System vor solchen Umformungen wie der
obigen gefeit [Stou 1991]. Maple bietet dem Benutzer noch heute die Option symbolic um sie
trotzdem durchzufiihren:
1 > simplify(sqrt(x~2));
2 csgn(x) x
3 > simplify(sqrt(x~2),symbolic);
4 X

Nicht alle Benutzer sind sich aber iiber die Bedeutung des Schliisselwortes symbolic bewusst
und verwenden es um Ausdriicke so weit wie moglich zu ,verkleinern®. Idealerweise enthalt
ein System nur vollig unbedenkliche Algorithmen. Dies kollidiert aber zumindest bei kommer-
ziellen Systemen mit Marktanforderungen und so sind diese Systeme eine Ansammlung von
Algorithmen, von denen viele ad hoc und nicht ganz vertrauenswiirdig sind.

Die zweite Problemklasse bilden die linguistischen Einschrankungen und Fallen, die den Pro-
grammierer in jedem derzeitigen System verfolgen. Hierfiir scheint das Bewusstsein auf Seiten
der Implementatoren weitaus weniger ausgepragt, so dass kaum auf Besserung gehofft wer-
den kann. Der Rest dieses Abschnittes stellt einige dieser Probleme anhand von Maple vor.
Die Fokussierung auf Maple entspricht lediglich meiner personlichen Anwendererfahrung und
sollte nicht als Parteiergreifung oder Freibrief fiir ein anderes System ausgelegt werden.?

Ein besonders heimtiickischer Fehler in MapleV ist die Verletzung des = Scopes, des Giil-
tigkeitsbereichs lokaler Variablen. Eine Reihe solcher Scopeverletzungen wurden systematisch
in [West 1999] (im treffend ., Mathematics versus Computer Science genannten Abschnitt)
aufgespiirt, indem zunéchst einer Variablen ein Wert zugewiesen wurde und sie danach als
Laufvariable in Summen, Produkten, Integralen oder Taylor-Reihen benutzt wurde. Alle ge-
testeten CASe mit Ausnahme von Derive hatten darin Schwierigkeiten, globale und lokale
Variablen auseinander zu halten. Hier seien noch zwei Beispiele aufgefiihrt, die noch etwas
subtiler sind. Das erste betrifft nur MapleVR4. Es handelt sich um den Versuch, die Reihen-
entwicklung des Dilogarithmus um den Ursprung zu berechnen:

i:=1:

series(polylog(2,x),x):

Error, (in sum) summation variable previously assigned,
second argument evaluates to, 1 =1 .. 6

] WD =

Hierin wird i nicht einmal als Laufvariable vom Benutzer angegeben. Die Funktion
series/polylog ruft tatsichlich sum mit Laufvariable i auf, ohne i zuvor als lokal zu de-
klarieren. Dass die Implementatoren selbst dariiber stolpern zeigt uns, dass die von Wester

3 Dies steht in amiisantem Widerspruch zu dem in der Einleitung zu [Stro 1994] genannten Effekt: ., Flaws in
the well-known language are deemed minor and simple workarounds are presented, whereas similar flaws
in other languages are simply unknown to the people doing the comparison or deemed unsatisfactory.”

3.1. Die Motivation fiir GiNaC 57

aufgedeckten Probleme keineswegs rein akademisch sind. Es macht auch eindriicklich klar,
dass Regressionstests in Systemen ohne lexikalischem Scope zusétzlich durch die Abhéngig-
keit externer Variablenbindungen erschwert werden.

Noch weitere Probleme dieser Art tauchen auf, wenn Variablennamen mit der cat ()-Funktion

bzw. deren Aquivalent, dem .-Operator, zusammengesetzt werden. Das folgende Beispiel zeigt
das Problem:

lprint(Q1, Q2);
RETURN([Q1,Q2]) ;
end:

1 Q1 := k:

2 Q2 := 1:

3

4 testfun := proc(x,y)

5 local Q1,Q2;

6 Q.1 := foo; # Modifikation globaler Variable!
7 Q2 := bar; # 0k: lokale Variable

8

9

~
S

Der Unterschied der beiden Zuweisungen ist nicht offensichtlich. Obwohl sowohl Q1 als auch
Q2 innerhalb der Prozedur testfun expressis verbis lokal definiert wurden, also die globale
Definition iiberschrieben werden sollte, wird in der ersten Zuweisung tatsdchlich die globale
Variable Q1 modifiziert:

1 > testfun(Q1l,Q2);
2 Q1 Dbar
3 [Q1, bar]

Das Beispiel ist besonders gefdahrlich aus zwei Griinden. Erstens sind solche Fehler schwer zu
finden. In dieser Arbeit wurde das Problem entdeckt, weil ich versuchte nachzuvollziehen, wie
ein ein halbes Jahr zuvor geschriebenes Programm funktioniert und es stets zerbrach, wenn
man die Zusammensetzung weglésst. Existierender Code ist daher voll von solchen Fehlern.
Zweitens ist der Fehler genau aus diesem Grund in Maple schwer zu beheben. Tut man es, so
ist gewiss, dass viele Programme ihren Dienst verweigern. xloops ist ein solches Beispiel: es sind
Stellen bekannt, in denen von diesem Problem ,Gebrauch gemacht wird und auch solche, wo
es schon zu Verwirrung und Fehlern fiihrte.

Wohlgemeinte didaktische Sperren sollen vermutlich die Verwendung ungeeigneter Daten-
strukturen in manchen Systemen vermeiden. Als Liste bezeichnet man in der Informatik ge-
meinhin eine Ansammlung von Objekten die miteinander linear (moglicherweise bidirektional)
verkettet sind. Die Zugriffszeit auf das n-te Element in einer Liste wichst also linear mit n
an, weshalb nur dann von Listen Gebrauch gemacht werden sollte, wenn schnelles Hinzufii-
gen/Entfernen von Elementen an zufélliger Position verlangt wird. Kurioserweise ist Maple
nicht davon abzubringen, den Benutzer ab Listen der Lange 100 zu Vorsicht beziiglich der
Zugriffszeit zu erziehen:

1+ > L := [seq(i,i=0..100)]:
2 > L[77] := 0
3 Error, assigning to a long list, please use arrays

58 3. GiNaC: Motivation und Design

Meines Erachtens nach sollte ein System aufser der unvermeidlichen Geschwindigkeitsstrafe
dem Programmierer bzw. Anwender keine willkiirlichen Uberraschungen bieten, die unter
Umstéanden ein Umstrukturieren ganzer Programme erzwingen (was bisweilen sogar unmdoglich
ist, wenn eine interne Routine Listen benutzt).

Sprachumstellungen von Version zu Version tragen ein iibriges dazu bei, die Langlebigkeit eines
Programmes in Grenzen zu halten. Einige ausgewihlte Beispiele aus den letzten Versionen von
Maple:

e Von MapleVR4 nach MapleVR5 wurde das Zeichen um den zuletzt evaluierten Ausdruck
abzurufen von " nach % umgestellt. Vermutliche Intention: Das doppelte Anfiihrungs-
zeichen sollte zur Begrenzung von Strings zur Verfiigung stehen; andere Systeme (z.B.
Mathematica) benutzen schon immer %.

e Von MapleV nach Maple6 wurde der Operator zum Zusammenfiigen von Namen von .
nach || umbenannt (ohne jedoch die von ihm verursachten Verwirrungen im Scope zu
beseitigen).

e Vor Maple6 wurden do-Schleifen mit od abgeschlossen. Seit Maple6 heifst es end do. od
steht noch zur Verfiigung, soll aber demnéchst abgeschafft werden. Analoges gilt fiir if
und fi. Vermutliche Intention: Verkleinerung der Schliisselwortmenge.

Selbst wenn es moglich sein sollte, die Portierung auf die jeweils aktuelle Version sofort vorzu-
nehmen (entwder per Hand oder mithilfe der mitgelieferten Ubersetzungswerkzeuge), so stief
man bisher immer noch auf Uberraschungen, die in einem professionellen Umfeld mit einem
angemessenen Mak an Regressionstests nicht auftreten diirften. Die jiingste Version Maple7
fallt beispielsweise dadurch auf, dass sie 2000!/1999! zu 1 vereinfacht, weil Zahler und Nenner
irrtiimlicherweise als syntaktisch identisch identifiziert werden — keine frithere Version hatte
damit Probleme. Obwohl Maple zweifelsfrei eines der derzeit leistungsstarksten symbolischen
Systeme ist, wird in Abwesenheit von ,Bugfix“-Releases die Herstellerabhéngigkeit innerhalb
eines grofseren Projektes hierbei leider schnell unverantwortlich.

Systemanforderungen

Es folgt eine Auflistung der Eigenschaften, die ein System aufweisen muss, um fiir die Soft-
wareimplementierung der Mainzer Methoden (und — mit wenigen Abstrichen — auch anderer
Anséitze) geeignet zu sein.

e Unexpandierte Darstellung multivariater Polynome:
Die anvisierten Berechnungen erfordern haufig das effiziente Hantieren mit in natiirli-
cher Weise vorfaktorisierten Polynomen (p* — m?)((p — k)*> — m3)--- wie sie aus in-
versen Propagatoren entstehen. Systeme, die alle dquivalenten multivariaten Polynome
zunachst in eine expandierte kanonische Form iiberfiihren indem sie sie ausmultiplizie-
ren und sortieren (wie FERMAT [Lewi 1997|, unter manchen Bedingungen [Koe 1999]
auch REDUCE, AXIOM [JeSu 1992] und sogar FORM), verschleiern die Propagatorstruk-
tur. In [Koe 1999| wird ein weiterer Vorteil der unexpandierten Darstellung am Beispiel

4 Erfahrene Maple-Anwender empfehlen in obigem Beispiel immer L:=subsop(77=0,L) ; zu schreiben, da
dies auch bei langen Listen funktioniert. Man beachte jedoch, dass damit die gesamte Liste kopiert wird.

3.1. Die Motivation fiir GiNaC 59

der Tschebyscheff-Polynome geschildert: Mit einem rekursiven ,Divide and Conquer-
Verfahren lassen sich diese Polynome sehr schnell in unexpandierter Form berechnen,
so ist z.B. Tg(z) = 2(2(222—1)*—1)? — 1. Fiir viele Anwendungen ist diese Form der
Darstellung schon vollig ausreichend, so z.B. fiir die numerische Auswertung entweder in
Gleitkomma- oder exakter rationaler Arithmetik — vorausgesetzt es ldsst sich zeigen, dass
die Darstellung gut konditioniert ist.

¢ Keine versteckten Grenzen:

Alle Klassen darstellbarer Objekte sollten nur durch verfiigharen Speicher und Rechenzeit
beschriinkt sein. Eine unaufhebbare Beschrinkung auf 2! — 1 Summanden in MAPLEV
ist nicht vertretbar. Manche Systeme bilirden dem Benutzer das Einstellen von Puffer-
groken auf, was zwar die Bedienung nicht gerade erleichtert aber noch akzeptabel ist,
wenn alle Pufferfunktionen vollkommen dokumentiert sind. (Leider ist auch dies nicht
selbstverstéandlich: in FORM2 stéfst man rasch auf die Beschréankung auf ganze Zahlen mit
einer Integerlidnge kleiner als 400 Byte.) Versteckte Grenzen miissen nicht immer die Spei-
cherverwaltung betreffen; sie konnen sich auch im Laufzeitverhalten dufsern. Maple zum
Beispiel wird im Laufe der Benutzung immer langsamer. Dies liegt daran, dass Nachschla-
getabellen fiir Rechenergebnisse ausufern und die Zugriffszeiten darin nicht von O(logn)
sind sondern eher linear.

e Offenheit und Erweiterbarkeit:

Die in den letzten Jahren in der Arbeitsgruppe ThEP durchgefiihrten Schleifenrechnun-
gen sind iiber ein minimales Mafs an Interoperabilitdt und punktuellen — haufig lediglich
numerischen — Vergleichen nicht hinausgekommen. Sie bleiben damit deutlich hinter den
gesteckten und im xloops-Projekt stets beschriebenen Zielen zuriick. Da man nicht erwar-
ten kann, das Endstadium der Entwicklung einer symbolischen Maschine zu erreichen,
bedeutet dies iibertragen, dass auf ein offenes und von folgenden Studentengenerationen
erweiterbares Design geachtet werden muss. Ein objektorientierter Ansatz und weitgehend
orthogonales Design kénnen hier hilfreich sein.

e Persistenz:
Algebraische Ausdriicke als Ergebnisse einer langen Rechnung sollten auf Festplatte ge-
schrieben und zu einem spiteren Zeitpunkt wieder eingelesen werden kénnen. Ublicher-
weise geschieht dies bei symbolischen Systemen durch Ausgabe der Ausdriicke in der Form
wie sie am Bildschirm dargestellt werden und Einlesen in genau dieser Form. Da dies in
C++ so nicht moglich ist, wurde in [Baue 2000] fiir GiNaC ein Objektpersistenzmodell
entwickelt.

Des weiteren sollte das System unbedingt portabel sein, um nicht in eine erneute Abhéngigkeit,
diesmal von einem Compilerhersteller, zuriickzufallen.

Eine kursorische Geschichte der Sprache C++

C++ ist, wie die meisten Programmiersprachen, das Ergebnis eines langwierigen und teilweise
wechselhaften Entwicklungsprozesses (bei den Ausnahmen handelt es sich um Experimentier-
und Lernsprachen). Wie der Name impliziert handelt es sich von wenigen — pathologischen
— Ausnahmen abgesehen um eine Ubermenge der Sprache C (in der der Operator ++ die

60 3. GiNaC: Motivation und Design

davorstehende Variable inkrementiert). In diesem Abschnitt soll etwas Licht auf die Kette von
Vorlaufern geworfen werden. Es werden sich dabei einige Parallelen zur Motivation fiir GiNaC
aufzeigen.’

Von C erbt C++ die traditionelle prozedurale Denkweise. Nun geht diese jedoch keinesfalls auf
C zuriick, sondern die Urspriinge sind selbst jenseits Cs Muttersprache B und Grofmutterspra-
che BCPL [Rich 1967] zu suchen, ndmlich in FORTRAN und Algol60. Der Entwicklungsschritt
von BCPL nach B fand 1969 in den Bell Telephone Laboratories statt, als K. Thompson auf
der Suche nach einer Sprache fiir das neuentwickelte Betriebssystem Unix war. Nach einem
gescheiterten Versuch mit FORTRAN hatte er sich entschlossen, eine eigene Sprache zu entwi-
ckeln. Die Maschine, auf der er seine Experimente durchfiihrte, war eine DEC PDP-7 mit 8192
Wortern der Léange 18 Bit. Solche Hardware erklart, warum weder BCPL noch B typisierte
Sprachen waren. Zwar gab es schon einige der noch heute iiblichen Spezifikatoren wie auto und
static, aber die Notwendigkeit einer Typisierung war einfach noch nicht vorhanden — konnte
man in einem 18-Bit Wort doch noch bequem eine brauchbare Gleitkommazahl unterbringen.
Schrieb man beispielsweise in BCPL

1 let a = 15; // Variable initialisieren in BCPL
2 let v = vec 4; // Quadrupel in BCPL

oder in B
1 auto a = 15; /* Variable inittalisieren in B */
2 auto v[4]; /* Quadrupel in B */

so wurde jeweils ein Array v aus 4 zusammenhéingenden Wortern fiir spéatere Benutzung
auf dem = Stack reserviert. Die Array-Semantik von C, in der x[n] &dquivalent ist zu einer
Dereferenzierung * (x+n), geht direkt auf BCPL zuriick. Die Syntax ist ein Erbe von B.°

Diese Situation dnderte sich mit dem Erscheinen neuer Hardware. Die PDP-11, die 1970 bei
Bell installiert wurde, war eine Byte-orientierte Maschine. D. Ritchie erweiterte B 1971 daher
zunachst um die Typen int und char und spéater um float. Um Variablen zu deklarieren
musste man ab nun den Typ spezifizieren:

1 int a = 15; /* Variable initialisieren in C */
2 int v[4]; /* Integer-Quadrupel in C */

Weitere Neuerungen betrafen Records, in C struct genannt, sowie eine flexiblere Zeigerse-
mantik wie z.B. Deklarationen vom Typ int (*f) (); fiir Pointer auf Funktionen, die int
zuriickliefern sollen. Ein besonderes Verdienst von C ist es, Klarheit bei den booleschen Ope-
ratoren geschaffen zu haben: So war das bitweise Und (and bzw. &) und das bitweise Oder
(or bzw. |) in BCPL und B iiberladen mit dem logischen Und und dem logischen Oder, falls
es innerhalb von if-Abfragen auftauchte. In diesem Falle handelte es aber nicht um Uberla-
dung eines Operators in verschiedenen Kontexten und daher auch nicht um guten Stil. Die
Bedeutungen sind unterschiedlich und kénnen im selben Kontext vorkommen, wie ein in C
gebrauchliches Maskenidiom deutlich macht:

® Die historischen Daten in diesem Abschnitt stammen aus [Ritc 1993], [Raym 1998] und [Stro 1994].

6 Leider ist die Syntax der Dereferenzierung etwas verungliickt: in verschachtelten Konstruktionen wire ein
Suffix-Operator natiirlicher zu lesen als ein Préfix-Operator. Aufierdem fiihrt die Wahl des Multiplikati-
onszeichens * bei Anfiangern immer wieder zu unnétigen Verwirrungen.

3.1. Die Motivation fiir GiNaC 61

if (a & 0x0f) {

/* Programmblock 1 */
} else {

/* Programmblock 2 */
}

I O S

Im Falle a=0xf0 wiirde die Interpretation als logisches Und den ersten Programmblock aus-
fithren, die Interpretation als bitweises Und den zweiten. Zur Unterscheidung wurden daher
fiir die logischen Operatoren die Symbole && und || eingefiihrt, und festgesetzt, dass die
Symbole & und | stets fiir bitweise Operatoren stehen.

In C war von Anfang an die Definition benutzereigener Datenstrukturen (Records) vorgese-
hen. Das Schliisselwort struct kann ohne weiteres als Keim eines Objektmodelles angesehen
werden. Aufzéhlungstypen hingegen (enum) kamen erst spdt hinzu und fithren wegen ihrer
Beschrinkung auf maschinendarstellbare ganze Zahlen bis heute eher ein Schattendasein.
Aufgrund seines Ursprungs als Sprache fiir die Implementierung des Betriebssystems Unix
erlaubt das Speichermodell von C die flexible Platzierung von Daten an drei verschiedenen
Orten: automatisch auf dem Stack, dynamisch auf dem Heap und drittens statisch, also an
einer festen Adresse.

C wurde 1990 von der ISO standardisiert [ISO 1990], wonach die verschiedenen Dialekte lang-
sam zu konvergieren begannen. Eine stark erweiterte zweite Auflage des Standards folgte neun
Jahre spéter [ISO 1999).

C++ war urspriinglich eine Spracherweiterung von C, die sehr frith (frithe 80er Jahre) die
Sprache um Klassen und Objekte erweiterte wie sie viele Programmierer an Simula zu schitzen
gelernt hatten.” Eine Klasse ist ein Zusammenschluss von Daten, der — anders als die in C schon
vorhandene struct — auch Funktionsanweisungen (,Methoden®) beinhalten kann. Das mit
dieser Spracherweiterung einhergehende héufigere Benennen von Typen machte eine stérkere
Typisierung als die in C iibliche notwendig. So ist es in C*++ beispielsweise nicht mehr erlaubt
durch void f() eine Funktion mit einer unspezifizierten Argumentenliste zu deklarieren.

Wie in jedem Objektmodell konnen Klassen um Funktionalitéit erweitert werden, indem man
eine neue Klasse von ihr ableitet. Die abgeleitete Klasse ,erbt* die Datenfelder und die Funk-
tionalitdt der Elternklasse und kann insbesondere Methoden auch iiberschreiben, sofern die
Elternklasse diese schon als virtuell deklariert hatte. Da ein Zeiger auf eine Basisklasse auch
fiir eine abgeleitete Klasse stehen kann, wird der = dispatch in C++ so bewerkstelligt, dass
jedem Objekt einer Klasse mit virtuellen Funktionen ein Zeiger auf eine Tabelle mit Zeigern
auf die giiltigen Funktionen mitgegeben wird.

Neu in C++ gegeniiber C ist auch die Uberladung von Funktionen nach ihren Argumen-
ten. Eine Funktion void f (int) wird vom Compiler unterschieden von einer Funktion void
f (double).® Dies dient hauptsichlich der Lesbarkeit von Programmen, da es immer gebriuch-
licher wurde, die Argumentenliste im Funktionsnamen zu enkodieren (wie die transzenden-
ten C-Funktionen in Anhang A oder im C-Quelltext der PARI-Bibliothek). Die entstandenen
Mehrdeutigkeiten auf Linker-Ebene wurden dadurch gelost, dass die Argumentenlisten nun

7 Der erste Name war konsequenterweise ,,C with Classes".

8 Eine Uberladung nach den Riickgabewerten wird in C++ nicht unterstiitzt da es dem Programmierer frei
steht den Riickgabewert zu ignorieren oder in einen anderen Typ zu ,casten” — dies steht einer Auflésung
der Mehrdeutigkeit durch den Compiler im Wege und ist eine von C geerbte Altlast.

62 3. GiNaC: Motivation und Design

vom Compiler in den Funktionsnamen enkodiert werden (= name mangling), und zwar meist
transparent fiir den Programmierer. Urspriinglich wurden solchermafen iiberladene Funk-
tionen durch das Schliisselwort overload gekennzeichnet, um unbemerkt eingefiihrte Mehr-
deutigkeiten zu vermeiden. Diese anfingliche Unsicherheit im Umgang mit Uberladung wich
schnell einer breiten Akzeptanz und die néchste logische Folgerung war, die von Algol68 be-
kannten tiberladenen Operatoren einzufiihren. Diese erlauben es, arithmetische Operationen
eigener Klassen intuitiv in Infix-Notation i+j zu schreiben, anstatt plus(i,j). Die Klasse
complex war lange das Paradebeispiel. Referenzen — auch ein Erbe von Algol68 — waren eine
notwendige Folge von iiberladenen Operatoren: grofse Objekte {ibergibt man idealerweise als
Zeiger anstatt als Kopie, in unserem Beispiel wiirde man also plus(&i,&j) schreiben, was
aber durch keinen iiberladenen Operator als &i+&j ausgedriickt werden kann, da dies in C
die Bedeutung der Addition auf Adressen hat. Das Problem wurde gelost, indem man nun
ausschliefslich bei der Deklaration einer Funktion spezifiziert, ob eine Variable als Wert oder
als Referenz iibergeben wird — anstatt bei der Deklaration und beim Aufruf.”

Untypisierte Sprachen erlauben typunabhéngige Programmierung. Dies kann durchaus sinn-
voll sein, wenn zum Beispiel ein Algorithmus zum Sortieren unabhéngig ist von dem, was
sortiert werden soll, solange darauf nur eine Ordnungsrelation definiert ist. In C hat es sich
zum Beispiel eingebiirgert, solche Aufgaben entweder mit Makros zu erledigen oder nur noch
mit Zeigern auf die zu verwalteten Objekte zu arbeiten. Im Falle des Sortierens wurde letzteres
sogar in Form der Bibliotheksfunktion gsort () in [ATT 1989 standardisiert. Die starke Typi-
sierung zwang zu einer Alternative und zur Einfithrung des womdglich leistungsstéirksten Be-
standteils von C++, den Templates. Mit ihnen kann eine vollige Trennung von typunabhéngigen
Algorithmen und darauf operierenden Datentypen erreicht werden. Mit der Standard Tem-
plate Library (STL) wurde eine Referenzimplementierung mit den am haufigsten gebrauchten
Containerklassen in den Sprachstandard aufgenommen. Sie nimmt dem Programmierer die
miihsame Arbeit der Implementierung von Vektoren, Listen und assoziativen Containern sei-
ner eigenen Datentypen ab und ldsst ihn sich auf das Wesentliche konzentrieren.

Nichtlokale Fehlerbehandlungsmechanismen (sogenannte , exceptions‘) erlauben uns, das Ver-
sagen einer Routine aufserhalb der unmittelbar aufrufenden Funktion korrekt zu handhaben
und eventuell einen anderen Programmpfad einzuschlagen. Sie waren schon lange bekannt und
geschiitzt (beispielsweise in Algol68) und wurden Anfang der 1990er Jahre in Form der derzeit
bekannten try {...} catch(...) {...} -Blocke in C++ integriert.

Ein objektorientierter Ansatz ist der Offenheit und Erweiterbarkeit des Programmes sehr
zutraglich. Er erlaubt es, Programme weitgehend entlang orthogonaler Richtlinien zu organi-
sieren. Die Datenstrukturen kénnen darin in gewissem Grade auf die zugrundeliegenden ma-
thematischen Strukturen abgebildet werden. Vererbung hilft, das Anwachsen der Programm-
komplexitat zu ziigeln: Hat eine Ansammlung von Software beispielsweise n Datenstrukturen,
die mittels m Schnittstellen miteinander interoperieren miissen, so wiachst die Komplexitat tra-
ditionell etwa mit dem Produkt n-m. Bringt eine Basisklasse aber schon etwas Funktionalitét
mit, so dass abgeleitete Klassen diese wiederverwenden konnen, so wichst die Komplexitat in
geringerem Mafse, im giinstigsten Falle vielleicht wie nlog(m).

9 Referenzen sind gewissermafen zu spit eingefiihrt worden. Sonst wiire this in jedem Objekt sicherlich
kein Zeiger, sondern eine Referenz.

3.1. Die Motivation fiir GiNaC 63

Es gibt natiirlich auch haufig ins Feld gefiihrte Probleme der Sprache. In dieser Arbeit rele-
vant wurden zum Beispiel die Nichtgenormtheit der Schnitte in der komplexen Ebene und die
Nichtexistenz von ganzzahligen Datentypen mit genau bekannter Grofe. Fiir beide Proble-
me ist mittelfristig jedoch Abhilfe in Sicht: die Revision des C-Standards [ISO 1999] definiert
die Schnitte in kompatibler Art und Weise (siche Anhang A) und fiihrt in der Header-Datei
<stdint.h> ganzzahlige Datentypen mit 8, 16, 32 und 64 Bit ein. Ein h&ufiges Problem sind
Binarinkompatibilitdten zwischen verschiedenen Versionen einer benutzten Bibliothek — nicht
nur als Folge der stiarkeren Typisierung: Die Grofe einer Klasse kann sich unvermittelt an-
dern, wenn eine Basisklasse ihre Grofse dndert, oder die Grofe der vtable kann sich dndern
durch Einfiigung neuer virtueller Methoden, mit unvorhersehbaren Konsequenzen zur Lauf-
zeit. Die iiblichen Losungswege sind das Auffiillen von abgeleiteten Klassen mit Fiillbytes, die
spater entfernt werden kénnen (,Padding”), mehrere Versionen der dynamischen Bibliothek
im System zu verteilen (beriichtigt als ,,DLL-H6lle") oder sie statisch gleich in die Applikati-
on zu linken. In einem frei verfiigharen System konnen diese architekturbedingten Probleme
allerdings vernachléassigt werden, da einer Neuiibersetzung der gesamten Bibliothek nichts im
Wege steht. Etwas enttduschender ist meiner Auffassung nach die Tatsache, dass C++ dem
Programmierer im Vergleich zu C keine neuen Hilfsmittel fiir Funktionen mit variabler Argu-
mentenzahl an die Hand gibt. In symbolischen Algorithmen wére dies bisweilen begehrenswert
— die in Abschnitt 4.5 beschriebenen Pseudofunktionen werden mit dem Problem auf ihre Art
umgehen miissen. Im etwas groferen Bild ist die gesamte Abhéngigkeit vom C-Linker fiir
C++ ein unerschopflicher Quell kleiner Probleme: Das Schliisselwort export ist aus diesem
Grunde bis heute unimplementiert geblieben und die auf Seite 119 beschriebene Abhéngigkeit
von Linker-Charakteristiken wére trivial zu beheben, wird aber nicht spezifiziert, da man den
Linker nicht als Teil des Sprachumfanges verstehen méchte.

Das Hauptargument fiir die Benutzung von C*++ in Projekten, die ldnger leben sollen als der
typische Revisionsabstand einer propietiren Softwarebasis ist der internationale Standard, in
diesem Falle [ISO 1998|. Er schiitzt das Projekt vor Willkiirlichkeiten, die die Benutzbarkeit
von Code zerbrechen, dessen Autor nicht mehr zum Portieren auf die neue Umgebung zur
Verfiigung steht.!?

Schlussfolgerung

Eine Einbettung des symbolischen /algebraischen Teils einer Berechnung in C++ bietet sich an
und verspricht folgende Vorteile:

10 Hiervon gibt es menschlich bedingte Ausnahmen. Die in dieser Arbeit aufgetauchte Debatte um einen
GCC-Bugreport, nachzulesen im GNATS Audit Trail gcc/1565 unter http://gcc.gnu.org/ zeigt, dass
bisweilen lediglich die Autoren des Standards in der Lage sind, dessen Wortlaut zu verstehen. Es ging
hierbei um die Frage, ob

1 #define NIL(xxx) XXX

2 #define G_O(arg) NIL(G_1) (arg)
3 #define G_1(arg) NIL(arg)

4 G_0(42)

vom C/C++-Priprozessor zu 42 oder zu NIL(42) expandiert werden soll. Diese Frage konnte nur aus der
Erinnerung eines der Standard-Autoren {iber die beabsichtigte Semantik gekléirt werden.

64

3. GiNaC: Motivation und Design

3.

Effizienz:

Durch Kompilation zu Maschinencode wird zeitkritischer Overhead vermieden. Dies mag
bei symbolischen Rechnungen wenig Vorteile bringen, macht sich aber insbesondere bei
der Integration mit nicht-symbolischen Rechnungen bemerkbar, wenn beispielsweise kleine
Schleifen mit effizienten Integerargumenten durchlaufen werden kénnen statt mit arith-
metischen Typen beliebiger Genauigkeit.

Strukturierte Sprachelemente:
Schleifenkonstrukte etc. sind in der Sprache enthalten und miissen nicht erst von Hand
implementiert werden.!!

Portabilitat:

Effiziente Compiler sind weit verbreitet, ein gewisses Mafs an Herstellerunabhéngigkeit ist
daher erzielbar.

Typsicherheit:
Schon zur Kompilierzeit wird abgesichert vor Operationen mit inkompatiblen Operanden.

Algebraische Syntax:

Die elementaren Operationen +, -, *, = == etc. konnen iiberladen und in Infix-Notation
intuitiv verwendet werden. Dies ermoglicht lesbarere Programme als Sprachen ohne Ope-
ratoriiberladung. Wir kénnen beispielsweise x+y schreiben, wo wir in Lisp (+ x y), in C
add(x,y,&z) und in Java x.add(y) schreiben miissten.

Integrationsfihigkeit:

Einer Schétzung zufolge [PrWe 1999] wird REDUCE in 50% der Rechenzeit lediglich ver-
wendet um FORTRAN- oder C-Code fiir die numerische Weiterverarbeitung zu erzeugen.
Dieser Prozess kann zwar nur zum Teil eliminiert werden, aber mit den Problemen der

Zweisprachigkeit wird der Benutzer gar nicht erst konfrontiert. (Siehe auch Kasten auf
Seite 69.)

Langlebigkeit:
Ct+ ist keine Modesprache, sondern die lingua franca wissenschaftlichen Rechnens in der

Hochenergiephysik. Dies gilt in der Experimentalphysik noch weitaus mehr als in der
Theorie.

2. Das Design von GiNaC

GiNaC soll als Bibliothek implementiert sein und mit symbolischen Ausdriicken (Symbolen,
Summen, Produkten, ...) direkt in dieser Sprache umgehen koénnen. Ahnlich wie die Anwei-
sung 1l=x+y; fiir den Typ int eine Zuweisung des Ergebnisses der Summe von x und y an
eine Variable 1 darstellt, sollen Anweisungen mit symbolischen Objekten geschrieben werden

11

Die Implementierung in Computeralgebrasystemen kann durchaus unbefriedigend sein. MapleV beispiels-
weise kennt zwar while. . .do aber nicht do. ..while. Dies kann bei einigen Algorithmen zu sehr unnatiir-
lichen und verdrehten Implementierungen fithren. Ein gutes Beispiel ist der Vergleich der in [GCL 1992]
abgedruckten Fassung des Yun’schen Algorithmus zur quadratfreien Faktorisierung mit der in GiNaC im-
plementierten Fassung. Letztere kommt dank do. . .while ohne eine Duplizierung des Schleifenblockes aus
und ist leichter verstandlich.

3.2. Das Design von GiNaC 65

jue3sUOD

besxtedxs
r"_"_ I |
ibes:dxe
I IsT |

XTIjeu
pIeopTIM

TeuoTieTaI

| abstrakte Klasse |

| Containerklassel(atomare Klassa

uot3jouny

...

XpTIea XpT
I0sus3
g |
o]
c
@
aQ
o
o
)
)
=
a
<
e
5
T
@
=
T
(%2
=
=)
S
—
o
=
N
o
l..E.._
Q
—

I0TOD

I pexepur |7 °
PIOFITIO

ist
abgeleitet : verwalte
von

[=]

Abbildung 3.1.: Ubersicht iiber die Klassenhierarchie von GiNaC 1.0 und einige Beziehungen zwi-
schen einzelnen Klassen.

ejTopsus]
V[EJ
IiI
= 0
n
[
a

konnen. Sind x und y beispielsweise aus dem Ko&rper der gebrochenrationalen Zahlen, so ist
das Ergebnis klarerweise wieder in diesem Korper. Sind sie dagegen Symbole ohne Bindung,
so ist das Ergebnis eine unevaluierbare Summe. Hatte y zuvor die Variablenbindung —x, so
ist das Ergebnis aber einfach die Null. Aus diesem einfachen Beispiel folgt, dass es wenig
sinnvoll ist, die Operatoren fiir Addition und Subtraktion so zu iiberladen, dass sie immer ein
Summenobjekt zuriickliefern.

Diese automatische Umformung wird von einem eingebauten anonymen =- Evaluator vorge-
nommen und sein Riickgabewert ist die Klasse aller darstellbaren Ausdriicke, genannt ex,
kurz fiir ,,expression’. Klasse ex ist ein sogenannter ,Wrapper*, eine Hiillklasse (in anderen
Zusammenhéngen auch ,Proxy“ genannt, so z.B. in der Terminologie von |[GHJV 1995]). Sie
ist extrem leichtgewichtig, da sie das eigentliche algebraische Objekt indirekt mittels eines
Zeigers darauf auf dem Heap als Referenz verwaltet. Um etwas préziser zu sein: mit ,extrem
leichtgewichtig® ist gemeint, dass ex aufser einem Zeiger nichts enthélt (auch keinen vptr),
also sizeof (ex)=sizeof (voidx*). Die Verwaltung als Zeiger dient zweierlei Zwecken: Erstens
haben damit alle Ausdriicke die gleiche Grofse, was eine Voraussetzung fiir das Erzeugen von
STL-Containern ist. Zweitens kann nur per Zeiger oder Referenz die zu einem Objekt passende
virtuelle Methode aufgerufen werden, wenn ex einen Methodenaufruf weiterdelegiert.

Eine Referenzzéahlung tragt dafiir Sorge, dass Objekte genau so lange leben wie sie in Gebrauch
sind. Einerseits ruft die Sprachimplementierung beim Verlassen eines Blockes automatisch die
Destruktoren der im Block deklarierten Objekte auf. Andererseits konnen nicht alle Objekte
geloscht werden, wenn wiederum andere Ausdriicke auf sie Bezug nehmen. Dass dies tatséch-

66 3. GiNaC: Motivation und Design

lich der Fall ist, dafiir sorgen der Copy-Konstruktor und der Zuweisungsoperator der Klasse
ex. Ist ein darstellbares Objekt auf dem Stack, so wird zunéchst einmal eine Kopie davon dy-
namisch auf dem Heap erzeugt und in allen weiteren Wrapper-Objekten nur noch ein Zeiger
darauf verwaltet:

1 symbol x("x");
2 ex f = 2%x; // legt Kopie vwon z auf dem Heap an
3 ex g =1, // kopiert Zeiger, erhéht Referenzzihler

Die aus der Sprache Perl [WCS 1996] bekannten Skalare verhalten sich unter Referenzierung
so dhnlich (auf den subtilen Unterschied wird auf Seite 71 eingegangen werden). Python ist
eine weitere populdre Programmiersprache, die vollig auf Referenzzdhlung beruht.

Mechanismen der Referenzzdhlung

Der Klasse ex obliegt die alleinige Zusténdigkeit fiir das korrekte Verwalten der von basic
abgeleiteten algebraischen Objekte auf dem Heap. Die zustandigen Methoden und ihre Funk-
tionsweise werden im Folgenden skizziert.

Erzeugen: Erzeuge Basisobjekt auf dem Heap, verwalte einen Zeiger darauf. Nicht nur Sum-
men und Produkte sondern auch einzelne Symbole und Zahlen sind Objekte — die Ob-
jektauflosung in GiNaC ist also extrem feinkdrnig. Wenn solche Objekte auch noch
sehr haufig vorkommen, kann dies zu einer gewissen Speicherverschwendung fiihren.
Diesem Problem versucht man haufig mit dem sogenannten ,Flyweight-Muster bei-
zukommen [GHJV 1995]. So konnte der ex-Konstruktor fiir kleine ganze Zahlen eine
Flyweight-Fabrik aufrufen, die zum Beispiel Zeiger auf schon erzeugte ganze Zahlen in
einem assoziativen Array speichert und nur noch den Referenzzdhler erhoht, falls die
Zahl schon vorhanden ist.

Kopieren: Der Copy-Konstruktor ex::ex(const ex &) kopiert den Zeiger auf das Basis-
objekt und inkrementiert dessen Referenzzihler. Der Copy-Konstruktor ist also nicht-
trivial und die nichtlokale Manipulation des von ex verwalteten Objektes macht sei-
ne Ausfiithrungskomplexitit zwar unabhéngig von der Grofe des verwalteten Objek-
tes, aber dennoch etwas langsam. Aus diesem Grund empfiehlt es sich, Objekte vom
Typ ex in Parametern stets als Referenz zu iibergeben — obwohl sie sehr klein sind
(sizeof (ex)=sizeof (void*)) und als Faustregel kleine Objekte in C++ sonst typi-
scherweise als Wert iibergeben werden sollten.

Zerstoren: Der Destruktor ex::"ex() dekrementiert zundchst den Referenzzihler des ver-
walteten basic-Objektes, und falls dieser auf Null gesunken ist, ruft er dessen delete-
Operator auf (welcher normalerweise nicht explizit tiberladen ist, sondern nur implizit
als Destruktoraufruf von virtual basic::"basic() definiert ist).

Zuweisen: Die Methode ex: :operator=(const ex &) implementiert die Zuweisung als suk-
zessives Zerstoren (falls der dekrementierte Referenzzéhler des verwalteten und von
basic abgeleiteten Objektes this->bp auf Null gesunken ist) und anschliefsendes Kopie-
ren (durch Zuweisung des basic-Zeigers und Inkrementieren dessen Referenzzihlers).

3.2. Das Design von GiNaC 67

Vergleichen: Die Methode .compare() etabliert eine kanonische Aquivalenzrelation auf den
GiNaC-Objekten: Zwei gleiche Objekte sollen unter a.compare(d) 0 zuriickliefern (Re-
flexivitéit), ansonsten +1, wobei a.compare(b)= —b.compare(a) (Symmetrie) und
a.compare(b)==+1 A b.compare(c)==+1 = a.compare(c)= +1 (Transitivitit) gelten
sollen. Hierbei wird in vier Schritten vorgegangen: Beim Vergleich zweier ex miteinan-
der bietet es sich an, zunéchst nur die Pointer auf die eingehiillte Klasse zu vergleichen:
sind diese identisch, so kann sofort 0 zuriickgegeben werden. Als Néchstes werden die
jedem Objekt von einer = Hashfunktion zugeordneten Hashwerte € {0...2%—1} vergli-
chen, wobei die Aquivalenzrelation vermoge des Vergleiches natiirlicher Zahlen etabliert
wird. Im Falle einer Hashkollision werden die RTTI-Schliissel (run-time type informa-
tion) der entsprechenden Klassen verglichen, und falls auch diese identisch sind, wird
auf eine von der entsprechenden Klasse bereitgestellte Methode . compare_same_type ()
zuriickgegriffen, die die Eigenschaften der Aquivalenzrelation explizit definieren muss.

Das Erzeugen von Ausdriicken kann ein Problem fiir die Effizienz der Bibliothek sein. Die
meisten Funktionen in GiNaC miissen, da der Riickgabewert wiahrend des Kompilierens noch
nicht bekannt ist, ein allgemeines Objekt der Klasse ex zuriickgeben. Da die Riickgabe jedoch
nicht auf dem Heap sondern auf dem Stack erfolgt, muss bei der Entgegenahme des Ergebnis-
ses in der aufrufenden Funktion das Objekt erst in den Heap kopiert — also dynamisch alloziert
— werden. Das Objekt wird also zweimal kopiert. Besser wire es, wenn die aufgerufene Funk-
tion das von basic abgeleitete Objekt selbst schon dynamisch auf dem Heap erzeugt. Damit
der Konstruktor ex: :ex(const basic &) aber nicht trotzdem noch einmal kopiert, muss er
die Moglichkeit haben festzustellen, ob das Objekt schon dynamisch alloziert ist. Zu diesem
Zwecke markiert die aufgerufene Funktion das Objekt als auf dem Heap liegend, indem es
selbst das Flag status_flags::dynallocated setzt. Der gewohnliche Benutzer braucht sich
hierum nicht zu kiimmern. Es reicht normalerweise vollig aus, das Objekt einfach per return
mein_objekt; zuriickzugeben. Performanzkritische Methoden innerhalb der Bibliothek sollten
jedoch das Idiom return (new mein_objekt)->setflag(status_flags::dynallocated);
benutzen.'? Eine Riickgabe per return (new mein_objekt); darf niemals erfolgen. Sie er-
zeugt ein Speicherleck.

Eine Option: Fusion redundanter Ausdriicke

Im Prinzip ist es moglich, beim Vergleich zweier Hiillobjekte vom Typ ex miteinander eine
Objektabreicherung durch defensive Fusion redundanter Ausdriicke vorzunehmen und somit
Speicher zu sparen.'® Falls die Zeiger verschieden sind, die Objekte sich aber dennoch als

12 Ein verfiihrerischer Gedanke kommt bei diesem Schema unweigerlich immer wieder auf. Das Bit namens
status_flags: :dynallocated wird doch immer dann gesetzt, wenn ein Objekt explizit mittels new auf
dem Heap angelegt wird. Das Setzen dieses Bits kdnnte also automatisch von einem iiberladenen operator
new erledigt werden. Die Implementierung dieser Idee muss jedoch scheitern. Der operator new kann in
C++ lediglich den Speicher vorbereiten. Danach wird der Konstruktoraufruf ausgefiihrt und initialisiert den
Speicher. Eventuell von new gesetzte Werte werden dabei zwangsléaufig tiberschrieben. Fiir eine erschopfende
Diskussion warum ein automatisches Setzen dieses Bits in C++ auch mit anderen Tricks niemals sowohl
korrekt als auch portabel funktionieren kann siehe [Meye 1996, Kapitel 27].

13 Wir nennen die Fusion defensiv um sie zu unterscheiden von einer aggressiven Moglichkeit wie einer Durch-
musterung aller allozierten Ausdriicke. Dies wére jedoch mindestens ein O(log N)-Prozess und ist daher

68 3. GiNaC: Motivation und Design

gleich herausstellen, kann eines der Objekte vernichtet werden und in den Hiillobjekten ein
Zeiger umgelenkt und ein Referenzzéhler erhoht werden. Die Idee ldsst sich an einem kleinen
Programmausschnitt darstellen:

symbol x("x");

ex el = x+x;

ex e2 = 3%x-X;

if (el.compare(e2) == 0) {
/...

D N WD~

}

Wir markieren die darin konstruierten Objekte vom Typ ex als Kreise und die von basic
abgeleiteten Objekte mit Rauten zusammen mit dem Stand ihrer Referenzzéahler:

2 1 = x+x; el wird erzeugt und soll x+x verwalten, was auf
ex e X+xX g , 4' @

dem Heap sofort zu 2*x kanonisiert wird.

3 ex e2 = 3*x-X; e2 wird erzeugt und soll 3*x-x verwalten, was N
auf dem Heap zu 2+*x kanonisiert wird. Noch H<,\1
ist es aber ein anderes 2*x-Objekt als in Zeile .

4 if (el.compare(e2)==0) { el wird mit e2 verglichen. Die Gleichheit wird >

5 /... bestétigt und die von el und e2 referenzierten

<2

Objekte werden ,fusioniert”. Da einer der Refe- @H @
renzzahler auf Null sinkt, kann sein 2*xx-Objekt 2
vernichtet werden.

In dem Fall, dass zwei Objekte mit Referenzzahler > 1 verglichen werden, kann nicht prinzipiell

ausgeschlossen werden, dass die Zeiger ungeschickt umgelegt werden. Lediglich die Tendenz,

immer das Objekt mit dem ohnehin schon hoheren Referenzzéhler zu bevorzugen, ist an dieser

Stelle formulierbar. Zu diesem Zwecke wird in ex: :compare() aus der Zeile

1 return bp->compare (*other.bp);

der Anweisungsblock

1 const int cmpval = bp->compare(*other.bp);
2 if (cmpval==0) {

3 if (bp->refcount<=other.bp->refcount) {
4 if (--bp->refcount==0)

5 delete bp;

6 bp = other.bp;

7 } else {

8 if (--other.bp->refcount==0)

9 delete other.bp;

10 other.bp = bp;

11 }

12 ++bp->refcount;

13 }

14 return cmpval;

vollig unpraktikabel. Mathematica unterstiitzt mit der Funktion Share[] diese aggressive Fusion, verfiigt
aber — nach einer privaten Mitteilung von Henry Cejtin — nicht iiber die defensive Variante. Auch sonst
scheint die defensive Fusion bisher nicht in der Literatur beschrieben worden zu sein.

3.2. Das Design von GiNaC 69

Optimierte Codegenerierung vs. Compileroptimierung

Die meisten Computeralgebrasysteme haben die Fahigkeit, Programmcode fiir numerische Eva-
luation in Maschinengenauigkeit zu erzeugen. Die freien Symbole miissen bei der Ausfiihrung
nattirlich durch Werte aus einer Stiitzpunktmenge ersetzt werden. Viele Systeme kénnen den ge-
nerierten Code zudem schon optimieren. Da GiNaC keine ausgefeilten Methoden hierfiir hat, stellt
sich die Frage ob der erzeugte Code iiberhaupt konkurrenzfahig ist. Die Optimierung, die Maple
beim Aufruf C(f,optimized) durchfiihrt, besteht im Wesentlichen aus der Elimination aller red-
undanten Subausdriicke in f, geht also insbesondere tliber die hier vorgestellte defensive Fusion
zur Laufzeit hinaus. Betrachten wir das erste Beispiel aus der Maple-Dokumentation f(z) :=
1 — 22 + 322 — 223 + 2. Es wird unoptimiert zu 1.0-2.0%x+3.0%x*x-2. 0*x*x*x+pow (x,4.0)
transformiert, wobei sich schon der Aufruf von pow(float, float) dufserst negativ auf die Per-
formanz auswirkt. Im optimierten Modus werden zunéchst zwei temporadre Variablen t1=x*x und
t3=t1*tl erzeugt und dann f(x) mittels 1.0-2.0%x+3.0*t1-2.0%t1*x+t3 berechnet. Die Eli-
mination gemeinsamer Unterausdriicke ist unter dem Namen CSE (engl: common subexpression
elimination) aber eine gelaufige Compileroptimierung. Das Problem beim urspriinglichen Aus-
druck fiir f(x) ist, dass der Compiler bei der syntaktischen Suche nach Unterausdriicken keine
Umklammerung vornehmen darf. Die Sprachstandards gebieten aus Griinden der numerischen
Stabilitat die strenge Einhaltung der Assoziativitdtsreihenfolge, fiir C in [ISO 1999, Abschnitt
5.1.2.3] und fiir C++ in [ISO 1998, Abschnitt 1.9/. In [Baue 2000] wurde jedoch ein einfaches
Schema entworfen, in dem durch explizite Klammerung dem Compiler geholfen werden kann: Der
obige Ausdruck wird darin umgeschrieben zu 1.0-2.0%x+3.0% (x*x) -2. 0*x* (x*x) + (x*x) * (x*x),
so dass der Compiler den Ausdruck x*x wiederverwerten kann. In diesem Falle wird von jedem
modernen Compiler automatisch derselbe Code generiert wie bei der von Maple optimierten Rou-
tine. Es sei angemerkt, dass die obige Art der Umklammerung mathematisch dquivalent ist zur
auf Seite 112 beschriebenen schnellen Exponentiation. Die Optimierung wie sie beispielsweise von
MapleV durchgefiihrt wird ist also eigentlich eine Art Pleonasmus. Eine abschlieende Beurteilung
beziiglich Effizienz und Stabilitdt dieser beiden Ansédtze und auch externer Werkzeuge wie Cta-
del [Enge 1998] steht noch aus. Die in [PriWe 1999] vorgenommene analysiert jedenfalls nicht das
Endprodukt in Form von Maschinensprache und beriicksichtigt nicht das Wechselspiel zwischen
den verschiedenen Optimierungsschritten.

und die Variable ex: :bp muss als mutable deklariert werden, da die Methode als const dekla-
riert worden ist und somit verspricht, ex: :bp nicht zu verdndern. Analog zu ex: : compare ()
sollte dann eigentlich noch ex: :is_equal () abgedndert werden. Letzteres scheint aber in der
Praxis immer zu deutlich langsamerem Code zu fiihren.

Redundante Ausdriicke entstehen in symbolischen Umformungen tatséchlich recht hiufig und
das Fusionieren kann bei gewissen Umformungen ein enormes Einsparungspotenzial haben.
Da ex: :compare() aber eine Methode ist, die sich sehr empfindlich auf das Laufzeitverhalten
auswirkt und der obige Code sich in der Praxis bisher nur als minimal beschleunigend und
speichersparend (beides ca. 15% im Rahmen von [BKK 2001|) ausgewirkt hat, wird dieser Ab-
reicherungsmechanismus derzeit nicht benutzt.!* Aufierdem bieten die genauen Implikationen

14 Dass dieses Fusionieren Speicher spart ist sofort einsichtig. Eine Messung hat ergeben, dass bei typischen
Anwendungen im cmpval==0-Fall in mehr als 50% aller Falle Objekte fusioniert werden konnen. Dass es

70 3. GiNaC: Motivation und Design

dieser Technik fiir sich genommen wahrscheinlich ein reichhaltiges informatisches Untersu-
chungsfeld. Generell gibt es zwei mogliche Probleme dabei:

e Der Einfluss auf die Semantik von das Objekt modifizierenden Methoden muss genau
untersucht werden. Womoglich sollten alle Objekte vom Typ ex implizit als const ver-
standen werden, um semantische Verwirrungen auszuschliefsen. Dies kann syntaktisch zum
Beispiel dadurch erzwungen werden dass alle Riickgabewerte und alle Methoden als const
deklariert werden.

e Allgemein ist jeglicher Programmcode, der Zeiger auf von basic abgeleitete Objekte (zum
Beispiel const symbol *dummy = &ex_to<symbol>(el);) anlegt, um sie spiter wieder
zu verwenden, anféllig gegen Interferenzen mit dem Fusionieren. Das referenzierte Ob-
jekt konnte nédmlich in der Zwischenzeit vom Heap geloscht worden sein. Um potenzielle
Probleme zu vermeiden diirfen solche Zeiger ohne ein fiir die Referenzzéhlung zustéandiges
Hiillobjekt der Klasse ex nicht benutzt werden. GiNaC erlaubt aber gerade das Definieren
von diesen Objekten durch den Benutzer — es hat keine vollstandig ausgebildete ,, Bridge*
zwischen ex und den von ex verwalteten Klassen. Streng genommen koénnten wir diese
Sicherheit in der Sprache C++ niemals garantieren — der Benutzer kann im Zweifelsfalle
mit reinterpret_cast jeden Schutz umgehen.

Referenzzihlung und zirkuldre Verweise

Implementierungen von Referenzzéhlungsmechanismen sind haufig der Kritik ausgesetzt, dass
sie nicht vollig sicher gegen Speicherlecks sind. Ein Vergleich mit anderen Referenzzéhlern tut
daher an dieser Stelle gut. Es handelt sich meist um zirkuldre Referenzen, die nicht mehr
entflochten werden konnen. In Perl [WCS 1996] beispielsweise erzeugt die folgende Prozedur
ein Speicherleck:

sub memleak

{
Initialisiere zwetr Skalare
my $el = "x";
my $€2 = nyn;
Referenziere sie gegenseitig
$el = \$e2;
$e2 = \$el;

NSRS IS S T S B SN VU (RN

In den Zeilen 4 und 5 werden skalare Variablen (hier: Strings) angelegt, deren beider Refe-
renzzahler auf eins steht. In Zeile 7 wird durch die Anweisung, $el als Referenz auf $e2 zu
verstehen, der Referenzzihler von $e2 erhoht (und dabei dessen vorheriger Wert "x" vernich-
tet). Ebenso wird in Zeile 8 der Referenzzihler von $el auf zwei erhoht. Beim Verlassen des
Funktionsblockes werden die Referenzzdhler von $el und $e2 um eins erniedrigt und stehen
somit wieder auf 1. Danach konnen sie aber nicht mehr angesprochen werden. Es ist eine

sich aber iiberhaupt beschleunigend auswirkt liegt wiederum an der Methode ex: : compare () selbst: Beim
Vergleich zweier gleicher Objekte greift bei geteilten Ausdriicken die Abkiirzung tiber den Zeigervergleich,
bei ungeteilten miissen alle vier Schritte durchlaufen werden.

3.2. Das Design von GiNaC

71

zirkuldre Struktur entstanden, die unméoglich wieder aufgebrochen werden kann, da $el und
$e2 nicht mehr im Scope, also nicht mehr verfiighar sind.

Vergleichen wir dies mit einer scheinbar analogen Situation in GiNaC:

1
2 o
3
4
5
6
7
8
9

10}

void no_memleak(void)

// Initialisiere zwei skalare Ausdricke
symbol X("X") s y(nyn);

ex

el

ex e2 = y;

// Referenziere sie gegenseitig

el =
e2 = el;

e2;

Dies fithrt in GiNaC nicht zu einem Speicherleck. Letztendlich liegt das daran, dass die Refe-
renzzdhlung anders als bei Perl nicht bei den Schliisseln (dort: skalare Variablen, hier: Objekten
der Klasse ex), sondern bei den von ihnen referenzierten Werten (dort: Strings, hier: Objekte
der Klasse symbol) stattfindet. Um dies einzusehen ist es notwendig, die Referenzzéhlung ma-
nuell nachzuvollziehen. Wieder notieren kreistérmige Objekte die Klasse ex und rautenformige
Objekte eine von basic abgeleitete Klasse mit dem aktuellen Wert ihres Referenzzéahlers.

4 symbol x("x"),
y(uyn);

5 ex el = x;

6 ex e2 = y;

8 el = e2;

9 e2 = el;

Zwei Objekte der Klasse symbol werden auf

dem Stack erzeugt.

el wird erzeugt und soll x verwalten, aber x ist
noch nicht dynamisch alloziert. Also wird zu-
néchst eine Kopie davon auf dem Heap angelegt.

Ebenso wird e2 erzeugt und eine Kopie von y
auf dem Heap angelegt um von e2 verwaltet zu
werden.

Da el nun nicht mehr x verwaltet, sinkt der
Referenzzéhler des dynamisch allozierten x auf 0
weshalb es von ex: :operator= vernichtet wird.

ex::operator= erhoht den Referenzzahler des
dynamisch allozierten y und erniedrigt ihn
gleich wieder, da die von el und e2 verwalte-
ten Objekte identisch sind. Er fallt nicht auf 0,
daher wird nichts vernichtet. Die Anweisung ist
also eine Null-Operation.

?
&

|

l

®® ®@® ® @
QV)

|
/<>/

72 3. GiNaC: Motivation und Design

10 } Die Variablen x, y, el und e2 fallen aus dem — e
. () <
Scope, ihre Destruktoren werden aufgerufen. = \ N
Die Destruktoren von el und e2 erniedrigen den P, * 3 ®
Referenzzahler des dynamisch allozierten y je- <— Ol

weils um eins und der Letzte knipst das Licht
aus indem er dieses y vernichtet.

Wir konnen anmerken, dass die Sicherheit vor unbeabsichtigten Speicherlecks auch bei Va-
riationen der obigen Routine erhalten bleibt — immer vorausgesetzt natiirlich, dass der Pro-
grammierer nicht explizit ein solches durch unsachgeméfen Umgang mit new konstruiert.
Beispielsweise ist auch die folgende Routine sicher:

void no_memleak(void)
{
// Initialisiere zwei skalare Ausdricke
ex el(symbol("x"));
ex e2(symbol("y"));
// Referenziere sie gegenseitig
el e2;
e2 el;

1
2
3
4
5
6
7
8
9

Strenger formuliert konnte ein Speicherleck durch zirkuldre Referenzen dann auftreten, wenn
von basic abgeleitete Objekte gegenseitig aufeinander verweisen. Das ist aber nicht ohne
weiteres moglich, da diese Klassen keine Referenzen beinhalten. Auch Containerklassen wie
add oder mul enthalten nur Objekte vom Typ ex als Elemente. Die Trennung von algebraischen
Objekten und der sie verwaltenden Klasse ex gewahrleistet die Speichersicherheit.

Dieses Prinzip scheint auch in anderen auf Referenzzéhlung basierten Computeralgebrasyste-
men zur Anwendung zu kommen. Nach einer privaten Mitteilung von Henry Cejtin ist es auch
in Mathematica fiir den Benutzer prinzipiell unméglich, zirkulédre Ausdriicke zu erzeugen.

Darstellungsbaume

Da jeder symbolische Ausdruck selbst Unterausdruck in einem iibergeordneten Ausdruck sein
kann, muss ihre Darstellung eine Baumstruktur sein. Das unexpandierte multivariate Polynom
2d3(4a + 6b — 3 — b) kann beispielsweise in der in Abbildung 3.2 skizzierten Datenstruktur
reprasentiert werden. Dies ist aber aus Griinden der Effizienz nicht begehrenswert. Alle Com-
puteralgebrasysteme fithren daher Termumschreibungsregeln in einem sogenannten anonymen
Evaluator durch. Er fasst Terme zusammen und fiihrt sie in eine effizientere Darstellung tiber.
In der Abbildung 3.2 wird er in der Klammer 6b und —b zu 5b addieren, auch wenn sie nicht
beieinander stehen. Das Ergebnis ist der Darstellungsbaum aus Abbildung 3.3. Die vorgenom-
mene Vereinfachung entspricht trivialerweise auch einer Abreicherung von Objekten, kommt
die Variable b doch in 5b einmal weniger vor als in 6b — b. Sie betreffen aber jeweils nur einen
Ast in der Verzweigung. In unserem Beispiel war das nur die Summe 4a + 60 — 3 — b.

Die Darstellung in Abbildung 3.3 ist aber immer noch nicht besonders effizient. Die Bestandtei-
le von Polynomen sind immer irgendwelche symbolische Terme und numerische Koeffizienten
und wahrend der anonymen Evaluation werden Koeffizienten, die zu syntaktisch identischen

3.2. Das Design von GiNaC 73

mul

//
@ power add
I [T 1

/é@ fi'\@m
dodb db

Abbildung 3.2.: Mdgliche unevaluierte Darstellung von 2d*(4a + 6b — 3 — b).

mul
| [

//
@ power| add
I [1T

@O [[m B
Jhd s

Abbildung 3.3.: Naive (und ineffiziente) Darstellung des evaluierten Polynoms 2d3(4a + 5b — 3).

symbolischen Termen bestehen, zusammengefasst. Besser geeignet ist die distributive paar-
weise Darstellung aus Abbildung 3.4(a), bei der immer ein symbolischer Term mit einem
Koeffizienten zusammengefasst wird. Da viele Evaluationsregeln fiir Summen und Produkte
strukturell identisch sind, werden beide von einer Basisklasse expairseq abgeleitet (verglei-
che Abbildung 3.1). Die Semantik der Koeffizienten ist fiir Summen diejenige multiplikativer
Faktoren, wihrend sie fiir Produkte diejenige von Exponenten ist: Der Regel 2a + a — 3a bei
Summen entspricht a?a — a® bei Produkten. Eine betriichtliche Teilmenge der Evaluations-
regeln braucht so nur einmal implementiert zu werden.

Aufserdem gehort sowohl zu Summen als auch Produkten im Allgemeinen ein rein numerischer
Koeffizient, wie die 5 in 2a + 3b 4 5 oder 5a%b3. Dieser wird gesondert, also nicht paarweise,
schon in expairseq untergebracht. Das Ergebnis, der Darstellungsbaum in Abbildung 3.4(b),
erscheint zwar zunéchst etwas uniibersichtlicher, die Erfahrung zeigt aber, dass sich die Im-
plementierung aller polynomialen Methoden (expand, etc.) nicht unbetréchtlich vereinfacht
gegeniiber den symmetrischeren und weniger effizienten Darstellungen.

Nur solche Vereinfachungen, die in Komplexitit < n? ausgefithrt werden kénnen, werden

von GiNaC automatisch im anonymen Evaluator durchgefiihrt. Bei multivariaten Polynomen
heifst dies zum Beispiel, dass das Distributivgesetz Anwendung findet bei Multiplikation mit
numerischen Faktoren, jedoch nicht bei Multiplikationen mit symbolischen Skalaren. Maple’s
und MuPAD’s Evaluationsmaschinen verhalten sich sehr &hnlich. Diese Wahl ist natiirlich
willkiirlich und kann bei der praktischen Implementierung zu iiberraschenden Problemen fiih-
ren, die bei einer strengeren kanonischen Darstellung nicht auftreten wiirden. Die Probleme,

74 3. GiNaC: Motivation und Design

(a) Die paarweise Darstellung von Produk- (b) Paarweise Darstellung mit Sonderstel-
ten und Summen als Vektoren von Paaren lung isolierter numerischer Koeffizienten
aus Ausdriicken mit numerischen Koeffizi- (realisiert in GiNaC)

enten

Abbildung 3.4.: Realistische Darstellungen von 2d®(4a-+5b—3). In der paarweisen Darstellung sind
isolierte numerische Koeffizienten (wie die —3 in 4a + 5b— 3) stets ganze Ausdriicke mit numerischem
Koeffizienten 1.

die in den Kasten auf Seiten 75, 106 und 109 beschrieben werden, sind letztlich alle darauf
zuriickzufiihren.

Methodenfortpflanzung

Ganz im Geiste der objektorientierten Programmierung sind die Methoden auf Klassen in
der Regel rekursiv definiert, solange sie in ein Schema passen, das den Baum entweder top-
@ @ down oder bottom-up durchschreitet. Containerob-
TN TN jekte C(zq,...,x,_1) geben die entsprechende Me-
@ @ @ @ thode f zunéchst an ihre Kinder weiter, wenden ih-
SN SN re eigene Implementierung von f auf die Ergebnisse
@ @ @ @ f(zo) ... f(zn_1) an und geben das Gesamtergebnis
Abbildung 3.5.: Baumdurchschreitung: dann zuriick. Top-down (auch preorder traversal) un-
Preorder und Postorder terscheidet sich natiirlich nur dadurch von bottom-up
(postorder traversal), dass in ersterer Strategie f erst auf das Objekt selbst angwendet wird
und dann auf die Kinder, wihrend diese Reihenfolge in der zweiten Strategie umgekehrt ist.
Die Ziffern in Abbildung 3.5 kennzeichnen die so zustande kommenden Reihenfolgen.

Man denke zum Beispiel an die Differentiation. Ein Objekt der Containerklasse add diffe-
renziert erst seine Kinder und gibt dann die Summe der Ergebnisse zuriick, ein Objekt der
Containerklasse mul muss zusétzlich noch die Produktregel implementieren. Eine vollstéandi-
ge Auflistung der implementierten Regeln findet sich in [Baue 2000]. Obwohl das Verfahren
glasklar erscheint, verursachte es dennoch reichlich Kopfzerbrechen, bis eine ausreichende Ef-
fizienz erreicht war. Die Subtilitat liegt hier auf einer Wechselwirkung mit GiNaC’s Hashwert-
unterstiitztem syntaktischem Vergleichen von Ausdriicken und der internen Darstellungsweise
von Produkten und Summen (siehe Kasten auf Seite 75).

3.2. Das Design von GiNaC 75

Effizientes Differenzieren

Vor Version 0.6.3 waren die Ausdriicke, die GiNaC beim Differenzieren erzeugte, hdufig zu um-
stdndlich — hohere Ableitungen wurden mitunter hoffnungslos ineffizient. Die Ursache war eine
Wechselwirkung der Ableitungsregeln mit dem hashwertunterstiitzten syntaktischen Vergleichen
von Ausdriicken. So werden 2x(1+x) und x(2+2x) nicht automatisch als dquivalent erkannt, da
ihnen verschiedene Darstellungen zukommen. Die Ursache sieht man am leichtesten ein, wenn man
rationale Funktionen mehrfach ableitet. Man differenziert beispielsweise P'/P, P € Q[z] zweimal:

(P/), P/l (P/)2

P P e

Pl 7 P/// P//P/ P/P// (Pl)3 P/// P//P/ (P/)3

(-) - —9 +2 -3 +2
P P P2 P2 p3 P p2 p3

Der letzte Schritt kann von einer Maschine nur dann ausgefiihrt werden, wenn sie die Gleichheit der
beiden Terme £ Pf und £ Bz~ erkennt. Die Mdglichkeit hierfiir kann jedoch bei der Anwendung der
Produktregel schon in der ersten Ableitung verbaut werden. Setzt man zum Beispiel P = x + 23,

so erzeugt die Ableitung von P'/P nach x

(P’)/ B i (1+ 322)?
P/ Tz+a’ (z+23)%°

Leiten wir den zweiten Term nochmals ab, so erzeugt die Ableitung des Zéhlers 2(1 + 322%)6x,
wenn sie als ein mul-Objekt innerer Ableitung mal Argument (1 + 3x?) mit um Eins erniedrigtem
Exponenten mit dem Exponenten als Uberalles-Koeffizienten dargestellt wird. Stellt man sie statt-
dessen als innere Ableitung mal duferer Ableitung dar, so erhilt man 6(2 + 62%)z, da die Regel
2(1 + 32%) — (2 + 62?) fiir mul-Objekte automatisch angewendet wird. Dies ist zwar algebraisch
korrekt, fiihrt jedoch dazu, dass der entstehende Term nicht mehr automatisch zusammengefasst
2U432%) * jor aus der Ableitung des ersten Summanden entsteht. Weite-

($+$3)2)
res Differenzieren des Ergebnisses verschlimmert die Situation rasch. Man verifiziert auch leicht,

wird mit dem Term —6

dass selbst eine direkte Implementierung der Leibniz-Regel fiir héhere Ableitungen von Produkten
4 (PQ) =1, () 4= pL"" () keine Abhilfe schafft. Betroffene Ausdriicke kommen in Schlei-

dx™ NGRS Gl
fenrechnungen nicht selten vor, das Muster P'/P ist dort typisch — auferdem ist es natiirlich

gleich log(P)’.

Das Ausmultiplizieren mittels Aufruf von .expand() ist ein typisches Beispiel, wie Methoden
sich rekursiv durch einen Baum fortpflanzen. Die Performanz dieser héufig gebrauchten Me-
thode ist empfindlich von der internen Darstellung abhéngig. Wir wollen GiNaC mit ein paar
anderen symbolischen Maschinen vergleichen und benutzen hierzu den als Denny-Fliegner-Test

bekannten Benchmark.'® Er besteht aus drei Schritten:
e Sei e die (expandierte) Summe der n Symbole {ag, ...a, 1} quadriert: e « (31 a;)?
Der Ausdruck e besteht also aus n(n+1)/2 Termen.

e In e substituiere ag «— — Z?:_; a;. Es werden also in n Termen der Summe jeweils ein
Symbol ersetzt durch Ausdriicke bestehend aus n—2 Summanden.

15 Er ist benannt nach Denny Fliegner, der ihn wihrend der Parallelisierung von FORM zur Konsistenziiber-
priifung benutzte.

76 3. GiNaC: Motivation und Design

GiNaC 1.0 —— P
Mathematica 4--- --- --- e
MapleV R5 ------- T
Reduce 3.6+ Py i
100 MUPAD 1.3 -~ T ;

T
A\

Laufzeitt/s

1000

Grofien
Abbildung 3.6.: Laufzeiten verschiedener Symboliksysteme fiir Denny Fliegners Konsistenztest auf
einer Alpha-Architektur.

e Expandiere e. Das Ergebnis ist dann a’.

Abbildung 3.6 zeigt, dass die Systeme Mathematica, MuPAD [Fuch 1997] und GiNaC das
natiirliche n2-Skalierungungsverhalten aufweisen, wobei GiNaC das schnellste System ist. Die
zwei Systeme Reduce und Maple hingegen sind {iberraschend schnell bei kleinen Problemen,
werden jedoch zunehmend langsamer, wenn man das Problem vergréfert. Dies ist eine direk-
te Konsequenz der unterschiedlichen Speicherverwaltung: Maple und Reduce benutzen einen
Garbage-Collector wiahrend Mathematica, MuPAD und GiNaC eine Referenzzdhlung imple-
mentieren, was haufige Zeiger-Dereferenzierungen erfordert (ein aufwindiger Prozess, wenn
die gesuchten Daten nicht mehr in einem der Caches der Architektur liegen). Aufer dem
Skalierungsverhalten ldsst sich an den Endpunkten der Kurven auch noch die Effizienz der
Speicherverwaltung aus der Abbildung ablesen: Jedem System wurden fiir die Berechnung ma-
ximal 1GB Speicher zur Verfiigung gestellt und die Kurve endet bei der damit erreichbaren
Zahl n von Termen in e. Einige Systeme verschwenden diesen deutlich grofsziigiger als andere.

4. GiNaC: Implementierung

«Je me sers a rien, dit Bruno avec résignation. Je suis incapable
d’élever des porcs. Je n’ai aucune notion sur la fabrication des
saucisses, des fourchettes ou des téléphones portables. Tout ces objets
qui m’entourent, que j’utilise ou que je dévore, je suis incapable de les
produire; je ne suis méme pas capable de comprendre leur processus de
production. [...| mes compétences techniques personnelles sont
largement inférieures a celles de [’homme de Néanderthal.»

Michel Houellebecq: «Les particules élémentairesy

In diesem Kapitel werden Aspekte der Implementierung von GiNaC beschrieben. Dabei wird
das Hauptaugenmerk auf solchen Aspekten liegen, die im Rahmen dieser Arbeit behandelt
worden sind sowie auf der Motivation von Designentscheidungen die nicht an anderer Stelle
schon dargestellt worden sind.

4.1. Die wichtigsten Klassen

Alle von basic abgeleiteten Klassen aus Abbildung 3.1 nehmen automatisch an der Spei-
cherverwaltung teil, sobald sie von einem Objekt der Klasse ex verwaltet werden. Wenn es
sich um Containerklassen handelt, enthalten sie weitere Subobjekte vom Typ ex. Die Klassen
implementieren jedoch selbst auch automatische Umformungen in einem = Evaluator. Hierfiir
iiberschreibt in GiNaC jede Klasse eine Methode namens eval. In den folgenden Abschnitten
werden die einzelnen Klassen beschrieben und diese automatischen Umformungen aufgezahlt.

Vereinfachungen und kanonische Form

Die Menge der Vereinfachungen, die in einem CAS automatisch vom Evaluator durchgefiihrt
werden diirfen, muss sorgfiltig auf innere Konsistenz abgeklopft werden. Im Falle von Funk-
tionen und ihren Inversen ist zum Beispiel wohlbekannt, dass die Regel e** — x unbedenklich
ist, die Regel In e* — z jedoch nicht fiir beliebige x anwendbar ist, da die Exponentialfunktion
als Abbildung nicht injektiv ist (dies wird bisweilen Aslaksen-Test genannt, nach [Asla 1996]).
Eine automatische Vereinfachung darf also nicht durchgefiihrt werden, da dies zu Widersprii-
chen fiihren wiirde, wie das Beispiel Ine*™ = In(—1) = i verdeutlicht.! Alternativ diirfte

I REDUCE [Hear 1995 erlaubt sich, dies dennoch zu vereinfachen. Dies fiihrt jedoch an anderer Stelle zu
Uberraschungen, wie im folgenden Dialog:

78 4. GiNaC: Implementierung

man die Vereinfachung durchfiihren, wenn man dafiir in Kauf nimmt, die Entwindungszahl
K oder die n-Funktion (siche Anhang A) in die rechte Seite mit aufzunehmen. Es ist jedoch
noch kein Algorithmus bekannt, der diesen Zusatzterm im weiteren Verlauf der Rechnung im
Allgemeinen wieder zu eliminieren vermag [CDJLW 2001].

Ahnlich wie in Mathematica oder Maple stellen wir uns jedes freie Symbol in einer Rechnung
als unbekanntes Element aus C vor — schlieklich kann es zu einem spéteren Zeitpunkt durch
eine komplexe Zahl ersetzt werden. Denkbar wire an dieser Stelle, auch unfreie Symbole zu-
zulassen, indem man sie spezifiziert als Element eines Bereiches, zum Beispiel als reell. Daraus
aufgebaute Ausdriicke wiirden dann abgefragt werden konnen, ob sie aus diesem Bereich sind
(Polynome sind Element des grofsten Bereiches der in ihren Symbolen vorkommt). Dies ist mit
Bereichen noch realisierbar, bricht aber zusammen, wenn Eigenschaften wie Positivitit eines
Symbols spezifiziert werden sollen: Sind x,y > 0, so ist die Frage ob x —y > 0 ist, unentscheid-
bar und bedarf daher einer ternéren Logik oder zweiten Abfrage mit negiertem Prédikat (also
x — 1y < 0). Inferenzmaschinen fiir die Entscheidungsfindung solcher Pradikate sind jedoch
notorisch von exponentieller Komplexitéit und immer noch ein aktiver Wissenschaftszweig fiir
sich — genug Griinde warum wir uns nicht damit abgeben wollen und koénnen.

4.2. Kanonisierung von Produkten: die Klassen ,mul’
und ,ncmul’

Produkte von kommutierenden symbolischen Objekten werden in der Klasse mul dargestellt.
Nichtkommutative Produkte werden in der Klasse ncmul gesondert sortiert. Wenden wir uns
zunéchst den kommutativen Produkten zu. Wie schon in Abbildung 3.4(b) auf Seite 74 gezeigt,
besteht die Darstellung genau wie bei Summen aus Paaren von symbolischen Ausdriicken und
Zahlen. Wo bei der Klasse add die Zahlen multiplikative Faktoren darstellten, sind es bei der
Klasse mul Exponenten, in jedem Fall haben sie additive Semantik. Zusétzlich gibt es jeweils
noch ein zusétzliches numerisches Argument, in Abbildung 3.4(b) rechts dargestellt.

Der anonyme Evaluator der Klasse mul darf im Gegensatz zum Konstruktor allgemeine symbo-
lische Ausdriicke zuriickgeben und zum Beispiel im Produkt 2! - 27! die Faktoren mit gleichen
symbolischen Termen zusammenfassen zum nicht-Produkt 1. Er bedient sich der folgenden

1 1: log(exp(x));

2 x

3 2: log(exp(3%Pix*i)); 7 log(-1.0000)

4 log(-1)

5 3: log(exp(47/5%1)); % log(~-0.9997+0.0248%1)
6 (47%1)/5

Das System Yacas [Pink 2000] erlaubt sich dies sogar konsequent bei allen trigonometrischen Funktionen:

1 In(0) = Ln(Exp(x));

2 0ut(0) = x;

3 In(1) = ArcSin(Sin(x));
4 Out(1) = x;

4.3. Vereinfachungen in der Klasse ,power’ 79

Regelmenge, wobei ¢; fiir numerische Objekte und z; fiir nichtnumerische stehen soll:

ml(-c) — c
mul(z;-1) — x4
mul(C... -2,"-0) — 0
mul(... ¢/ -...-¢) — mul(...-(cc))
mul(... -2 -1-252-...) — mul(... -2 -x5%-...)
mul(add(... +c;-xqy + e wa+...) -¢) — add(... +(ccy)x1+ (cea)-xa+...)

Hierin tauchen Zahlen immer in der Form ¢!, also mit dem Exponenten 1 auf. Dafiir sorgt
der anonyme Evaluator der Klasse power (siehe néchster Abschnitt). Man bemerke, dass diese
Regelmenge im letzten Schritt das Distributivgesetz beinhaltet, wenn einer der Koeffizienten
numerisch ist. Die Anzahl der berechneten Terme bleibt dann namlich konstant, wahrend sie
im symbolischen Fall mit dem Produkt der Anzahl der Ausgangsterme ansteigt — hierfiir muss

explizit expand aufgerufen werden.

Nichtkommutative Produkte sind einfache Vektoren von nichtkommutativen Objekten — es
gibt keine Exponenten reprasentierende numerischen Koeffizienten. Da die einzelnen Objekte
darin verschiedenen Algebren angehdren konnen, schreiben wir zur Unterscheidung z;, z; € A,
und y;,y; € A,. Die Regelmenge des anonymen Evaluators lautet:

ncmul() — 1
ncmul (x;) — 23
ncmul (... -yl cco...) — mul(nemul(...) - (cic2))
ncmul (... -2y yp-... Xo-Yg-...) — mul(ncmul(zy-xo-...) -necmul(y; -ys-...))
ncmul (... -2zy-... -ncmul(ry-23-...)) — ncmul(r; -2y -23-...)

Numerische und andere kommutative Objekte werden also aus dem ncmul-Objekt herausgezo-
gen und in einem tibergeordneten mul-Objekt untergebracht. All dies geschieht vollig transpa-
rent fiir den Programmierer. Im Gegensatz zu den meisten anderen Computeralgebrasystemen
werden nichtkommutative Produkte mit dem iiberladenen *-Operator aus nichtkommutativen
Objekten aufgebaut.? Dies entspricht dem mathematischen Bild, dass die Eigenschaft, nicht
zu kommutieren, eine Eigenschaft der Objekte der Algebra ist, wahrend die aus Maple und
Reduce bekannte Schreibweise mit dem &*-Operator dem Bild entspricht, dass die Nichtkom-
mutativitiat eine Eigenschaft des Produktes in dieser Algebra ist. Beide Ansichten sind freilich
aquivalent, die Benutzung eines einzigen Operators ist jedoch sehr attraktiv, beseitigt sie doch
eine héaufige Fehlerquelle.

4.3. Vereinfachungen in der Klasse ,power’

Das Aufstellen von Regeln zur automatischen Vereinfachung von Potenzobjekten stellt sich als
besonders schwierig heraus. Im Gegensatz zu Summen und Produkten von einfachen Symbolen

2 [1SO 1998, Abschnitt 1.9.15] spezifiziert, dass ein Compiler iiberladene Operatoren niemals als kommutativ
annehmen darf.

80 4. GiNaC: Implementierung

ist es ist nicht moglich, eine kanonische Form anzugeben, die effizient den Gleichheitstest
solcher Objekte ermoglicht. Zudem gibt es Klassen von Potenzobjekten, bei denen, selbst wenn
man auf eine kanonische Form verzichtet, ein Gleichheitstest mit algorithmischen Mitteln gar
nicht moglich ist. Es gibt drei Klassen von algebraischen Zahlen: einfache Wurzeln (\/5),

verschachtelte Wurzeln (1/1 + v/2) und solche, die sich nicht als Wurzeln schreiben lassen,
sondern lediglich als Nullstellen algebraischer Gleichungen — wie die Lésung von 2° —z+1 = 0.
Da Letztere nicht mehr von Objekten der Klasse power dargestellt werden konnen, betrachten
wir kurz die Zweite. Eine kanonische Form zu finden, in die sich alle algebraischen Zahlen dieser
Klasse umformen lassen, ist zwar nicht prinzipiell unmoglich in dem Sinne, dass das Problem
zumindest noch wohldefiniert ist, erfordert aber im allgemeinen Fall bisher nicht bekannte
algorithmische Hilfsmittel [JeRi 1999, Land 2002]. Eine nahe liegende kanonische Form kénnte
darin bestehen, dass man verschachtelte Wurzeln stets umschreibt in Summen aus einfachen
Wurzeln — aus v/9 + v/32 macht man z.B. 1 + +/8. Falls der Grad der Verschachtelung zwei
nicht {iberschreitet und es sich lediglich um Quadratwurzeln handelt, gibt es Algorithmen, die
diese Vereinfachung bewiéltigen [DST 1988| (welche jedoch in keinem Computeralgebrasystem
fiir Erzeugung kanonischer Formen verwendet zu werden scheinen). Fiir Objekte mit hoheren
als Quadratwurzeln, wie die linke Seite der auf S. Ramanujan zuriickgehenden Identitat

{/\5/32/ — /27/5 = /1/25 4 3/3/25 — 3/9/25, (4.1)

scheinen jedoch gar keine Algorithmen bekannt zu sein um sie (falls moglich) in Summen ein-
facher Wurzeln wie die rechte Seite umzuwandeln. Es bleibt also die Frage, ob fiir Objekte der
ersten Klasse von algebraischen Zahlen, also unverschachtelte Wurzeln, eine kanonische Form
gefunden werden kann. Die Antwort lautet ja, aber der Aufwand wéchst zu stark, um eine
Implementierung sinnvoll erscheinen zu lassen. Wie man schnell einsieht wéren einfache Wur-
zeln zwar zerlegbar in Produkte aus einfachen Wurzeln von Primzahlen V15 — \3/§\3/5, welche
dann nach Grofe sortiert werden konnten, dies liefe aber offensichtlich auf Primfaktorzerle-
gung eventuell grofser ganzer Zahlen hinaus, was unangemessenen Rechenaufwand erfordert.
Wenn wir jetzt noch konstatieren, dass bisher nur auf numerische Argumente der innersten
Wurzeln eingegangen worden ist und die Komplikationen im symbolischen Fall noch gar nicht
erwahnt worden sind, glaubt man vielleicht, dass fiir Wurzeln iiberhaupt keine kanonische
Form praktikabel ist.

Fiir die Darstellung der Termumschreibungsregeln der Klasse power beginnen wir mit der

Definition 4.1 (Potenz) Als Definition setzen wir hier voraus
2% = etne (4.2)
wo der Logarithmus den Schnitt (sieche Anhang A) entlang der negativen reellen Achse habe:
Inz =In|z|+iargz, argx € (—m, |

Wir notieren, dass hieraus erst die Regel 2% — 2%*® zum Zusammenfassen in der Klasse mul

folgt: fiir beliebige komplexe x und y gilt schliesslich e*e? = e**¥, woraus natiirlich wegen 4.2
auch

l’a{L‘b = ealnweblnaj _ e(a-‘rb) Inz l,a-i—b

4.3. Vereinfachungen in der Klasse ,power’ 81

folgt Vz,a,b € C. Diese Regel wird schon in mul::eval() fiir numerische Exponenten ange-
wendet, flir symbolische bleibt die linke Seite vom Evaluator ganz unangetastet.

Da algebraische Korrektheit die Generalvoraussetzung bei allen Umformungen ist, aber Ver-
einfachungspotenzial ausgeschopft werden soll wo immer moglich, werden die Regeln fiir den
anonymen Evaluator (implementiert in der Methode power: :eval()) iiberraschend komplex.
Wir zéhlen im Folgenden diese Vereinfachungen mit ihrem jeweiligen Giiltigkeitsbereich auf
und beweisen sie.

power(z~1) — =z

power (z~0) — 1

power(1~z) — 1
power(ci~cy) —

Diese trivialen Vereinfachungsregeln folgen sofort aus der Definition. Die letzte Regel ist so
zu lesen, dass die Exponentiation numerisch ausgefiihrt wird, sofern dies exakt moglich ist,
etwa in 23 — 8 oder 27'/3 — 3 — auf die Ausnahme 0% fiir numerisches a werden wir weiter
unten auf Seite 83 noch einmal zuriickkommen. Diese Regel wird in der Praxis so modifiziert,
dass power: :eval() dafiir sorgt, dass der Wert des gebrochenrationalen Anteils des Expo-
nenten zwischen 0 und 1 zu liegen kommt, falls die Exponentiation nicht exakt ausgefiihrt
werden kann, also z.B. 7% — 77272 Es sei angemerkt, dass Identititen mit verschachtel-
ten Wurzeln wie Gleichung (4.1) oben mit diesem Mittel zwar nicht herleitbar sind, aber durch
Exponentiation zumindest schon in den Bereich der exakten automatischen Verifizierbarkeit
riicken.?

Firce Z: power(mul(---x;-2x9---)"¢c) — mul(---power(x;~c) - power(xy~c) ---)

Um diese Regel einzusehen fiihren wir eine Fallunterscheidung durch. Fiir ¢ = 0 ist es trivial.
Sei daher zunéchst ¢ > 0:

(.1'133'2)6 = £$1$2) s (.fll'g)l = X1 T1X2* Ty = .I'lc.fll'gc.
Vv v v

cX cX cX

Ist hingegen ¢ < 0, so fithrt man auf den Fall ¢ > 0 zurtick:

1 1 |

c —lel .~ lel C nC

(x122)¢ = = =z, "z, = afzs.
(2122)l! x‘f'x'zc‘

Falls der Exponent nicht ganzzahlig ist, so kann unter Umstédnden eine dhnliche Regel ange-
wendet werden:

Fir e, > 0: power (mul (x - ¢1)~co) — mul(power(x~cy) - 1))

Fire; <0 power (mul(x - ¢1)~cy) — mul(power(—x~cy) - ;%))

3 Tats#ichlich gehort eine Variation dieser Gleichung zur Suite der Regressionstests von GiNaC.

82 4. GiNaC: Implementierung

Ist ¢; € R positiv und x, ¢s € C beliebig (x symbolisch, da sonst mul: :eval() schon multipli-
ziert hétte), so darf diese Regel auch angewendet werden, da

(Cll,)cg — @ In(c1z) _ ecg(ln\clm|—|—zarg(clz))7
worin wegen

In|ciz| =In|e| +In|z] =Ineg +Infz| und arg(ciz) = arge

vereinfacht werden darf zu

(Cll')CQ _ 602(1nc1+ln\x\+zargz) — 602(lncl+1nz) — 1nc1€(:2 Inz — ClchCQ-
Fiir negative c; ist dies nicht richtig, da zum Beispiel im Falle ¢; = —1, ¢5 = % und x = /4
(clx)°2 — (e—i37r/4)% _ e—i37r/8, aber ¢;22? = eim/2pim/8 _ i5m/8.
FircseZoder —1<¢; <1: power (power (z~c¢y) ~cy) — power (z~(cy cz))

Wieder seien x, ¢; € C beliebig und wir fithren eine Fallunterscheidung durch: Sei ¢; > 0, dann
ist
1 1 ci1Ilnxz+-+ecilnx 1
(l,cl)cg — (fL‘Cl) .. (fL‘Cl) — gcl nr . -ecl nxr — eﬁ—/ — 60162 nxr — [L'Clc2.

\ , ~ - ca2 X
c2 X c2X
Im Falle ¢ < 0 fithrt man es durch Setzen von ¢y = —|co| wieder auf den ersten Fall zurtick:
(o) = — L _ el — gaer,

(e)lez = relel
Im Falle —1 < ¢; <1 und z, ¢y € C beliebig ist die Regel ebenfalls anwendbar. Beweis:

c1 c1 In |z|+icy arg(z)

r =€

Falls ¢; € R, ist |2¢1| = et ™l und arg(z*') — ¢; arg(x) = 2k7. Wenn nun —1 < ¢; < 1, dann
ist —m < ¢y arg(z) < m, und folglich k£ = 0, also

arg(z?) = ¢ arg(x)

Man beachte, dass dies fiir ¢; = —1 im Allgemeinen nicht mehr richtig ist, da die rechte Seite
—arg(z) dann auch —7 sein kann. Also ist

In(z) = In|a®|+iarg(z™)

= In(e ™) 4 ic, arg(x)
= ¢ In|z| 4 ic; arg(z) (weil ¢ In |z| € R)

= ¢ilnx.

Daher gilt

c1
(.%'61)62 — e@lnz — e(:gcllnx — 6162.

X

4.4. Die Numerik-Klasse 83

Ausnahmen

Die Ausnahme 0 fiir numerisches a ist nicht ganz unumstritten. Klar ist der Fall noch fiir
reelle a # 0, wo fiir a > 0 das Ergebnis 0 sein soll, fiir a < 0 ein Uberlauffehler auftritt.
Fiir a = 0 wird héufig 0° = 1 gesetzt (z.B. in [Stee 1990|, Abschnitt 12.5.3, die Spezifikation
der Lisp-Funktion expt, mit der schlichten Bemerkung ,, By definition, 0° = 1.%). Tatséchlich
ist die Kontroverse um 0" jahrhundertealt, wurde jedoch zunichst aus dem Blickwinkel der
Analysis gefiihrt. So ist beispielsweise 0° := lim._ge® = lim._oe*™¢ — ¢ = 1. Dies ist aber
ebenso willkiirlich wie 0° := lim._,o 0° = 0 oder eine andere Definition. Aufschlussreicher ist es,
algebraisch oder kombinatorisch an das Problem heranzugehen. So wird in [GKP 1989| darauf
hingewiesen, dass die binomische Formel (z+y)" =3 ";_, (Z) xRy fiir ¥ # 0 und y = 0 ihre
Giiltigkeit verliert, wenn man 0° # 1 setzt. Diese Argumentation zielt aber an den meisten
CAS-Implementierungen vorbei, da dort die Regeln 2 +0 — 2z und 2° — 1 ausgefiihrt werden,
bevor in der binomischen Formel 0° auftauchen kann. Es wiire doch sehr naiv anzunehmen,
dass die Eingabe (z + 0)? ein CAS an den Abgrund der Inkonsistenz treibt. Kombinatoriker
wiederum argumentieren, dass man die Anzahl der Abbildungen der leeren Menge auf die
leere Menge gerne als 0Y schreiben wiirde und dies daher 1 sein muss.

Da wir aber in einem symbolischen Programm normalerweise beim Einsetzen der Regel nicht
wissen, ob gerade Exponent oder Basis als Erstes gegen 0 gegangen ist, betrachtet GiNaC das
Auftreten von 0° vorsichtshalber generell als Fehler. Fiir alle anderen komplexen Exponenten
a ist der Fall jedoch wieder klar. Ist @ = c¢i rein imaginir, so formt man um 0 = "% und
sieht, dass das Ergebnis zwar auf dem Einheitskreis liegt, die Phase jedoch nicht definiert ist.
Fiir andere komplexe Exponenten kann man sich dann auf den Fall a = ¢ = 1 beschrinken

Ol — ipE! = { 0ot = 0.

01071 = %o

womit klar ist, dass 0% nur in der rechten komplexen Halbebene des Exponenten definiert ist.
Dies stimmt immerhin mit [Stee 1990] und Mathematica tiberein, nicht jedoch mit MUPAD,
MAPLE und REDUCE. Die letzteren beiden scheinen die Regel 0 — 0 vor den numerischen
Sonderfall vorzuziehen. (FORM hingegen kennt keine komplexen Zahlen und wendet die Regel
sogar fiir reelle, negative a an; Version 1 und 2 kommen fiir reine Symbole vollends durchein-
ander und vereinfachen 0 — a3.)

4.4. Die Numerik-Klasse

Das bei symbolischen Algorithmen haufige Phéanomen des Anwachsens von Zwischenergebnis-
sen (engl: intermediate expression swell) macht eine solide Handhabung von exakten Zahlen,
also ganzen Zahlen aus dem Integritédtsbereich Z oder dem dariiber gebildeten Quotientenkor-
per der rationalen Zahlen Q unabdingbar. Eine Beschrankung auf ints von Maschinengrofie
(wie etwa in der Bibliothek MAGNUM [Roth 1995]) oder auf Gleitkommazahlen mit fest einge-
stellter Mantisse (wie etwa 29 Dezimalstellen in Schoonschip [VeWi 1993]) ist nicht akzeptabel.
Die meisten Computeralgebrasysteme verfiigen daher iiber flexible Datentypen fiir ganze und
rationale Zahlen, die lediglich durch den vorhandenen Hauptspeicher beschrankt sind. Eine

84 4. GiNaC: Implementierung

cl number
T
cl N
T
cl R
cl RA cl F
T AN
cl I cl SF cl FF cl DF cl LF

Abbildung 4.1.: Ubersicht iiber die Klassenhierarchie von CLN. Nur die Basisklasse c1_number wird
von der GiNaC-Adapterklasse numeric verwaltet. Intern kommen die folgenden davon abgeleiteten
Klassen vor: c1_N (komplexe Zahlen), c1_R (reelle Zahlen), c1_RA (gebrochenrationale Zahlen), c1_I
(ganze Zahlen), c1_LF (Gleitkommazahlen beliebiger Genauigkeit).

Ausnahme bildet FORM [Verm 1991] 2, welches in weitgehender Abwesenheit eines Speicher-
managements einen (undokumentierten) Puffer von genau 400 Byte fiir jeweils eine ganze Zahl
zur Verfiigung zu stellen scheint.

GiNaC benutzt die Bibliothek CLN [HaKr 2000] fiir die Manipulation aller numerischen Ob-
jekte. Da die Benutzerschnittstelle von CLN ganz anders als diejenige von GiNaC gestaltet
ist, bildet eine ,, Adapter“-Klasse namens numeric die Schnittstelle von CLN auf diejenige von
GiNaC ab. Das Design von CLN selbst entspricht dem Muster der sogenannten , Bridge*:
die Abstraktion (Abbildung 4.1) ist vollstéindig getrennt von der Implementation, von der
der Benutzer nichts wissen muss und die sich sogar &ndern kann ohne die Kompatibilitét
zu gefihrden. Die nach aufen sichtbare Seite ist die in Abbildung 4.1 dargestellte Klassen-
hierarchie. Man beachte, dass sie vom Gesichtspunkt der objektorientierten Programmierung
Kopf zu stehen scheint: So ist die Klasse der ganzen Zahlen c1_I von der Klasse der rationa-
len Zahlen c1_RA abgeleitet, obwohl die Darstellung einer rationalen Zahl zwei ganze Zahlen
beinhaltet. Die nach aufen sichtbaren Klassen sind aber nur Schnittstellen und enthalten nur
Zeiger auf die eigentliche Implementierung, ganz analog zur Klasse ex in GiNaC. Diese Klas-
senabstraktion in C++ kann daher vollig konsistent mit den Einbettungen der mathematischen
Ringstrukturen sein, in der eine ganze Zahl beispielsweise auch eine rationale Zahl ist.

CLN war urspriinglich (in den frithen 1990er Jahren) eine reine C-Bibliothek und wurde spéter
in einen konsistenten C++-Rahmen eingebettet. Sie kann als Referenzimplementierung fiir die
Handhabung grofter Zahlen gelten. Wahrend Addition zweier ganzer Zahlen eine Routine mit
linearer Ordnung in der Lénge N der Argumente ist, ist die Multiplikation wesentlich aufwén-
diger. Die iibliche Schulbuch-Multiplikation ist von der Ordnung O(N?), aber es existieren Ver-
besserungen, wie etwa ein tiberraschend einfaches Verfahren von Karatsuba [KaOf 1962] mit
der Ordnung O(N™#23) ~ O(N'8) oder das wesentlich kompliziertere Verfahren von Schénha-
ge und Strassen [SchSt 1971|, welches die asymptotisch ideale Ordnung O(N log N loglog N)
aufweist. Diese fortgeschrittenen Verfahren haben zwar eine attraktive asymptotische Ord-

4.4. Die Numerik-Klasse 85

02_""I T T L | T T T T T L | T T L |]
100 £ CLN (Schulbuch)—— e
i CLN (Karatsuba)--------- P
CLN (FFT mod m)------- T e e
10* F Mathematica 4 n
3 e o]
i et
o
w 10° F /’__t_‘,, i
% F /
m L
= 10t .
=] E
c
% L
o 1072 F 4
o) E E
m E
107 ;
10_4 g_ * E
F e
L L L MR | L L T | L L TR | L L MR |
10° 10* 10° 10° 10’

L&angen in Bit
Abbildung 4.2.: Gemessene Laufzeiten der Multiplikation zweier gleich grofer ganzer Zahlen in

CLN fiir verschiedene dort implementierte Algorithmen. Der Vergleich mit Mathematica zeigt, dass
auch dieses System asymptotisch ideale Multiplikationsalgorithmen implementiert.

nung, die Konstante davor macht sie aber fiir kleine Zahlen unbrauchbar. In der Praxis miissen
also die Punkte, an denen der eine Algorithmus den anderen ablost, bestimmt, und automa-
tisch die passende Methode gewihlt werden. Abbildung 4.2 zeigt die Laufzeiten in CLN fiir
drei verschiedene Verfahren im Vergleich zu Mathematica. Man erkennt deutlich, dass auch
bei Mathematica betrachtlicher Aufwand in eine schnelle Multiplikation investiert worden ist.
Das asymptotische Verhalten und die Stufen in der Laufzeit als Funktion der Grofte der Ope-
randen am oberen Ende sind ein Indiz fiir eine FFT-basierte Methode, die ja meistens mit
2"-Blécken arbeitet.?

Eine schnelle Multiplikationsroutine kann fiir unsere symbolischen Rechnungen von direkter
Relevanz sein. So greifen Divisionsroutinen und Algorithmen zur ggT-Bestimmung in Z darauf
zuriick. Die in GiNaC implementierte heuristische ggT-Bestimmung multivariater Polynome
aus Z[X| macht Probedivisionen in Z [Baue 2000].

Die Fahigkeiten verschiedener Bibliotheken, bei der Multiplikation an die optimale asymptoti-
sche Geschwindigkeit heranzukommen, wurden eingehend in [Bern 2002| untersucht (graphisch
aufbereitet in Abbildung 4.3). Die dort gemessenen Laufzeiten sind fiir CLN noch suboptimal,
da die Bibliothek ohne Unterstiitzung der Assemblerroutinen aus der MPN-Schicht der GNU
Multi Precision Bibliothek GMP {iibersetzt wurde. Es muss auch beachtet werden, dass einige
Systeme vom Benutzer eine explizite Speicherallozierung fiir das Rechenergebnis verlangen,
was CLN (fiir den Benutzer) in transparenter Weise erledigt. Der Overhead hierfiir wird so

4 Bei Operandengrofen < 5000 Bit wurde im Falle von Mathematica die Zeit fiir eine leere Messschleife
beriicksichtigt. Fiir die Langsamkeit dort habe ich keine plausible Erklarung.

86 4. GiNaC: Implementierung

0_'—"""I T T T TTTIg LRI | LI | LRI | LA | B
10 CLN (1.1.4) . 3
i GMP (4.0.1) ------- A S
100 F BN (OpenSSL 0.9.6)------- T T
: NTL (5.2) =—-~ E

- Apfloat (2.33) - -
1 | o

Berechnungszeit/cyc.

B vl ol ol

10" 107 10° | 104 |105 10° 10

rual ol ol IS

Langen in Bit
Abbildung 4.3.: Gemessene Laufzeiten in Taktzyklen der Multiplikation zweier gleich grofser ganzer
Zahlen in CLN und verschiedenen anderen Softwarepaketen, nach Daten gemessen in [Bern 2002]. Als
Testsystem diente ein mit 900MHz getakteter AMD Athlon unter FreeBSD.

aber zur Multiplikation hinzugeschlagen. Insgesamt stellt sich CLN im Vergleich als durchaus
geeignet heraus um als Basis fiir ein symbolisches System zu dienen.

CLN eignet sich auch fiir numerische Berechnungen in Gleitkommazahlen mit beliebiger Ge-
nauigkeit, falls die tibliche Maschinendarstellung mit 53-Bit-Mantisse (C-Typ double, entspre-
chend FORTRAN-Typ real*8) partout nicht mehr ausreichend ist. Die Genauigkeit kann dy-
namisch festgesetzt werden — eine Neukompilierung des Programmes wie bei manchen anderen
Paketen ist nicht erforderlich. Sémtliche einfach transzendenten Funktionen sind schon vorhan-
den, wihrend doppelt transzendente wie der Dilogarithmus® noch fehlen. Die implementierten
Funktionen sind bemerkenswert schnell. Dies liegt an einem ,binary splitting” [HaPa 1998| ge-
nannten Verfahren, in dem die Aufsummierung einer Reihenentwicklung so umgeordnet wird,
dass ein Teil der Komplexitat in die Multiplikation grofer Zahlen aus Q verlagert wird. Diese
kann aber schneller als O(N?) bewerkstelligt werden und kiirzt so die Reihensummierung ab.
Erst im letzten Schritt wird dann wieder in die Fliekkommadarstellung zuriickumgewandelt.

Nun gibt es aufer CLN noch weitere Bibliotheken fiir beliebige Genauigkeit, die als ,,foun-
dation class* fir GiNaCs Zahlen in Frage kidmen. Victor Shoups NTL (Number Theo-
ry Library) [Shou 2000], David Baileys MPFun, Arjen Lenstras LIP, Mikko Tommilas
Apfloat [Tomm 2001] und nicht zuletzt die GMP-Bibliothek selbst. Es gibt eine Reihe von
wichtigen Eigenschaften, die aufter CLN jedoch keines dieser Pakete bietet und die CLN fiir
Computeralgebra préadestinieren:

Kleine ganze Zahlen sind unmittelbar:
Zwar kommen Koeffizienten > 232 bei der Manipulation von Polynomen iiber Z nicht

5 Dieser ist fiir beliebige Genauigkeit derzeit provisorisch in GiNaC implementiert.

4.4. Die Numerik-Klasse 87

selten vor, die meisten Koeflizienten bleiben jedoch klein. Es ist nun aber Verschwen-
dung, auf dem Heap Objekte anzulegen, die lediglich eine maschinendarstellbare ganze
Zahl repréasentieren, wenn man bedenkt, dass eine solche Zeigerdereferenzierung auf al-
len modernen Architekturen 5-10 Taktzyklen dauern kann und die Speicherallozierung als
solche tiber den Systemaufruf malloc() selbst noch einmal zwischen 40 und 200 Zyklen,
je nach Betriebssystem. In CLN ist die Darstellung der Basisklasse c1_number daher eine
C-union, die entweder einen Zeiger auf den Anfang des eigentlichen Objekts darstellt oder
eine unmittelbare ganze Zahl. Die fiir diese Unterscheidung notwendige Logik kann ohne
zusitzliche Funktionsaufrufe implementiert werden (dies geschieht in der Header-Datei
cln/object.h), wenn man ausnutzt, dass die Anfangsadressen vom System allozierter
Speicherbereiche (das ,,alignment*) nicht beliebig sind, sondern je nach System Vielfache
von zwei, vier oder acht sind. In diesen Adressen sind die am wenigsten signifikanten Bits
immer Null und damit redundant. Sie werden daher zur Markierung unmittelbarer Zahlen
herangezogen. Der Sprung bei n = 16 in Abbildung 4.3 erklart sich aus dem dadurch ein-
gefiihrten Overhead, da die Bitlange des Ergebnisses der Multiplikation etwa die Summe
der Bitldngen der Operanden ist.

Algebraische Korpereinbettungen werden honoriert:

Die Einbettung der natiirlichen Zahlen in die rationalen Zahlen und der reellen Zahlen in
die komplexe Zahlenebene wird berticksichtigt. Konstruiert man zum Beispiel eine rationa-
le Zahl aus ganzzahligem Zahler und Nenner, so wird automatisch der grofste gemeinsame
Teiler gekiirzt. Ist hiernach der Nenner 1, so wird das Ergebnis nicht als rationale Zahl
dargestellt, sondern sofort in eine ganze Zahl verwandelt. Analog werden komplexe Zahlen,
wenn der Imaginérteil exakt (also nicht als Gleitkommazahl) verschwindet, in reelle Zah-
len umgewandelt. Es werden also genau diejenigen von CASen gewohnten Umformungen
auf Zahlentypen durchgefiihrt, die gemeinhin als Typen-Retraktion bekannt sind.

Transparente Speicherverwaltung:

Die Speicherverwaltung von CLN basiert, wie diejenige von GiNaC, auf Referenzzédhlung.
Sie ist daher auch nicht unterbrechbar und fiir den Programmierer vollig transparent. Be-
liebig viele korrekt implementierte Speicherverwaltungen auf Basis von Referenzzahlung
kénnen in einem einzigen Programm koexistieren ohne miteinander zu interferieren. Dies
mag zwar trivial klingen, ist aber fiir manche andere Systeme tatsdchlich ein Problem.
MuPAD zum Beispiel benutzt die Numerik von PARI [Coh 2000], einer in reinem C ge-
schriebenen Bibliothek, bei der man sorgféltig Stackgrofen definieren muss. Es kommt vor,
dass der Benutzer mit unabgefangenen Pari-Fehlermeldungen konfrontiert wird — worauf
das Weiterarbeiten hoffnungslos wird. Im Falle von Magma [BCP 1997| gibt es Interferen-
zen in der Speicherverwaltung, diesmal mit dem System KANT V4 [Pohs 1996|, die bis
zu Systemabstiirzen fithren konnen.

GiNaC ist ferner bemiiht, die Anzahl individueller Objekte, die dieselbe Zahl représentieren,
gering zu halten. Der Grund ist weniger Speicherersparnis als ein Geschwindigkeitsvorteil:
Die Methode ex: :compare() kann anhand der Zeiger sofort Gleichheit feststellen und 0 zu-
riickliefern (siehe auch Fufnote auf Seite 69). Idealerweise ldsst man hierzu die Objekte vom
Typ numeric von einer Flyweight-Fabrik erzeugen, zumindest fiir die hdufig gebrauchten gan-
zen Zahlen mit Betrag kleiner als ein vorgegebener Schwellenwert. Dies stéftt jedoch auf ein
Hindernis bei der Implementierung: Eine solche Fabrik soll anstelle immer neuer Objekte Zei-

88 4. GiNaC: Implementierung

ger auf bereits erzeugte Objekte zuriickliefern. Sie kann nur in Konstruktoren der Klasse ex
eingebaut werden. Dem Benutzer steht aber immer die Mdglichkeit offen, selbst ein Objekt
vom Typ numeric auf dem Stack oder dem Heap zu erzeugen und dieses dann von einem ex
referenzieren zu lassen, wodurch die Flyweight-Fabrik umgangen wird. Letztendlich sind die
Probleme dieselben wie die auf Seite 70 bei der Fusion genannten: die ,,Bridge* abstrahiert
die Klasse ex nicht vollstéandig von den von basic abgeleiteten Klassen weg.

4.5. Pseudofunktionen

Die Klasse function implementiert Pseudofunktionen. Pseudofunktionen unterscheiden sich
von gewoOhnlichen Funktionen dadurch, dass sie keine Abbildungen, etwa f : C — C imple-
mentieren, sondern als symbolische Ausdriicke unevaluiert stehen bleiben diirfen, wenn keine
Vereinfachungen bekannt sind. So wird fiir ein Symbol x aus sin(x) wieder sin(x), ande-
rerseits aus sin(0) 0. Die Pseudofunktionen miissen also selbst Objekte einer von basic
abgeleiteten Klasse sein, die von ex verwaltet werden konnen. In dem Fall, dass eine Evaluie-
rung nicht moglich ist, muss von der entsprechenden eval ()-Funktion das in der Basisklasse
basic dafiir vorgesehene Bit evaluated gesetzt werden, um nicht eine Endlosrekursion zu
erzeugen.

Von den verschiedenen Moglichkeiten der Implementierung wurde eine flache Struktur aus-
gewahlt, in der alle Pseudofunktionen Objekte der Klasse function sind. Es erschien als zu
aufwindig fiir jede mathematische Funktion eine von einer Basisklasse abgeleitete Klasse ein-
zufithren. Der Implementator der Funktion miisste dann intime Kenntnisse von GiNaC haben
um die Methoden .destroy(), .copy(), .compare_same_type() fiir das Speichermanage-
ment sowie drei weitere Hilfsmethoden zum Archivieren zu schreiben. Zudem ,erben* mathe-
matische Funktionen nur selten Eigenschaften voneinander im Sinne der objektorientierten
Programmierung, so dass man davon wenig Gebrauch machen koénnte.

Pseudofunktionen werden zwecks = Kanonisierung unterschieden durch ihre Argumentenlis-
te sowie eine Seriennummer, die die Art der Funktion spezifiziert: Die Objekte sin(x) und
cos(x) unterscheiden sich lediglich durch diese Seriennummer. Niedergeschrieben in C++-
Programmen werden sie als handele es sich um gewohnliche Funktionen: die Hilfsfunktion
function sin(const ex&); konstruiert das entsprechende function-Objekt in fiir den Pro-
grammierer transparenter Weise.’

Den Objekten mit einer bestimmten Seriennummer werden Hilfsfunktionen zugeordnet wie
Ausgabeformate, Evaluationsalgorithmen, Differentiationsregeln und Reihenentwicklungsre-
geln. Das geschieht wie in Abbildung 4.4 skizziert mithilfe eines Registers, in denen Print-
Namen fiir die Ausgabe sowie Zeiger auf die kompilierten Hilfsfunktionen gespeichert werden.
Man kann sich diese Hilfsfunktionen als event handler vorstellen. Beim Aufruf von Methoden
wie .eval() oder .evalf () wird die entsprechende Funktion anhand der Seriennummer nach-
geschlagen und ausgefiihrt. Dieses Schema ist nicht gerade elegant, entspricht es doch in etwa
einer selbstgemachten vtable. Es ist ein Kompromiss, der einen ausreichend flexiblen Umgang

6 Die Option, Pseudofunktionen durch Funktoren erzeugen zu lassen, wurde auch untersucht. Als Objekte
kollidieren solcherlei Funktoren aber sehr leicht mit anderweitig deklarierten Funktionen: Es ist nicht
moglich innerhalb desselben Namespaces eine Funktion und ein Objekt namens sin zu haben.

4.6. Laurentreihen: die Klasse ,pseries’ 89

function
3 \ \

G

ex function::eval (int level)

{

return -1;

/] ...

return cos(x) .hold() ;

) /] ...

o return reg func[3].eval f(x);
84 1 reg_func[3] }

S

n 2 /,//’/’ std: :string name "cos" ’

8 3 i std::string TeX_ name "\cos"

3 R unsigned nparams 1

81 4 |« ex (*eval f) (ex) b ™ ex cos_eval (const ex &x)

ol Y ex (*evalf f) (ex) L {

315 AN ex (*derivative_f) (ex) & if ((x/(2*Pi)).is_integer())
5 \\\ L return 1;

g 6 . if ((x/Pi).is_integer())

i

\2

8517

o

g 8

g

0]

'
e

Abbildung 4.4.: Methodenaufruf bei Pseudofunktionen (leicht vereinfacht) im Falle der automati-
schen Evaluation von cos(m) — —1. Die Methode function: :eval() schligt das zur Seriennummer
3 gehdrende function_options Objekt in einer statischen Tabelle nach. Darin findet es den Zeiger
auf die zum Cosinus gehérende Evaluierungsfunktion.

mit symbolischen mathematischen Funktionen erlaubt und die Anzahl der pro Funktion zu
schreibenden Zeilen auf einem Minimum hélt.

4.6. Laurentreihen: die Klasse ,pseries’

Nichtabbrechende Taylor- und — allgemeiner — Laurent-Reihen werden in einer eigenen Klasse
namens pseries (,power series) reprasentiert. Es gibt zwei grundsétzliche Ansétze, solche
Reihen im Computer darzustellen. Der naheliegendste ist, die Koeffizienten bis zu einer vor-
gegebenen Ordnung zu entwickeln und abzuspeichern. Wenn die Folge durch Ableitung des
Ausgangsausdrucks” entstanden ist, so schreiben wir fiir die n-te Ableitung ausgewertet an
der Stelle a anstatt f™(z)|,—, kurz f(a). Die Taylor-Reihe hat dann die Darstellung

F(@)oma = f(a) + fP(a) + L P (a) + O(2*)

7 Wir werden noch sehen, dass nicht alle auftretenden Taylor-Reihen durch Ableitung erzeugt werden kénnen.

90 4. GiNaC: Implementierung

wobei fiir den Abbruch O(z?) eine geeignete Darstellung gefunden werden muss (in GiNaC ist
es eine dafiir vorgesehene Pseudofunktion). Ein alternativer Ansatz der Darstellung besteht
darin, die Reihe nur formal als ,zu Taylor-Entwickeln“ zu markieren und die Berechnung
der Koeffizienten erst dann durchzufiihren, wenn sie von einem anderen Teil des Programmes
gebraucht werden. Diese Technik bezeichnet man als lazy evaluation. Sie ist besonders geeignet,
wenn nicht von vornherein feststeht, bis zu welcher Ordnung eine Reihe entwickelt werden
soll, und sie hat Geschwindigkeitsvorteile, weil niemals mehr berechnet wird als unbedingt
notig ist. Allerdings verkompliziert sie Operationen zwischen mehreren solchen Reihen, wenn
man nicht eine Verschwendung von Speicherplatz in Kauf nehmen will. Um dies einzusehen
betrachten wir die Multiplikation zweier Reihen f(z)|,—, und g(x)|;—,. Nehmen wir an, beide
Reihen sind bis zur Ordnung n = 2 vorentwickelt, die Koeffizienten f(a), g(a), f*(a), gV (a),
@ (a) sowie g? (a) also berechnet. Ferner miissen jeweils ein uneingesetztes f® (z) und ¢ (z)
aufgehoben werden, um die Reihen spéter bei Bedarf weiterentwickeln zu kénnen. Das Produkt
(f - g)(x)]s=q ist leicht berechnet

g(a) +
'(a)g(a) + f(a)g™(a)) +
P (a)g(a) + 2f “ (a)g™ (a) + f(a)g® (a)) + O(2*) (4.3)

(f - 9)(@)e=a = fla
(ff
a (f

und in einem neuen Reihenobjekt gespeichert. Allerdings sollte jetzt auch wieder der Term
(f-g)® (x) mit der Reihe gespeichert Werden um spéter neue Terme nachgenerieren zu kénnen.
Dies ist aber nicht mehr moglich, da er 5 (z)g(x) +2fD(2)gW(z) + f(z)gP (x)) lautet,
aber die Terme f(z), g(z), fM(z) und g¢ 1) gar nicht mehr vorliegen. Lediglich f)(x) und
g®(x) wurden aufgehoben. Terme der Produktrelhe konnen also nicht mehr nachgeneriert
werden. Als Ausweg kdnnte man statt des letzten abgeleiteten Terms den unabgeleiteten Aus-
gangsausdruck aufheben. Die Nachgenerierung von Termen ist dann aber ebenso aufwandig
wie die gesamte Neuberechnung der Reihe. Alternativ kénnte man alle Terme ohne die Ein-
setzung |,—, aufheben. Dies ist jedoch problematisch, da diese Terme sehr haufig grofs sind
und erst durch die Einsetzung kollabieren. Eine Vervielfachung des von pseries-Objekten
belegten Speichers erscheint kaum angemessen.

)

Dass iiberhaupt eine eigene Klasse bendtigt wird anstatt mit Polynomen zu rechnen liegt
daran, dass man dadurch, dass eine Reihe in = bei einer Ordnung n abbrechend dargestellt
wird, effektiv modulo z" rechnet: das Inverse einer Reihe ag + a;x + axx?® + O(x?) ist wieder
eine Reihe ¢y + c17 + cor? + O(23) anstatt ein Element aus einem Quotientenkdrper iiber
Polynomen. Dies ermdoglicht eine Anzahl beachtlicher Vereinfachungen. So ist zum Beispiel
die Exponentiation von Reihen weniger aufwéndig als das Potenzieren von Polynomen, wenn
man ein von Leonhard Euler gefundenes Verfahren implementiert [Knu 1998, GCL 1992|. Sei
A(z) = ag + a;x + azx? . .. eine Taylor-Reihe. Wir wollen C(x) = A(z)P = ¢y + 1z + coz? . ..
berechnen. Wir leiten hierzu C(x) = A(z)? nach x ab, multiplizieren beide Seiten mit A(x)
und erhalten so

C'(2)A(z) = pA(x)' A(x)Alw)
= pC(x)A(x).

4.6. Laurentreihen: die Klasse ,pseries’ 91

Durch Ausmultiplizieren und Koeffizientenvergleich gelangt man so zu der Rekursionsformel
fir die ¢;

;= (ipai co + ((2 — 1)p — 1) a,_1¢1+ -+ (p - (Z - 1)) a1 Ci—l)/(ao Z.)a (4'4)

die sich l6sen lasst mit dem Startwert cy = a¢?. Sie lasst sich auch erweitern auf den Fall,
dass der fiihrende Koeffizient von A(z) nicht konstant ist. Hierzu multipliziert man A(z) mit
2™ und wiederholt die Ableitung der Rekursionsformel. Der fithrende Koeffizient von C(x) ist
dann ag?z™? und man findet, dass (4.4) immer noch giiltig ist.

Dies ist nicht nur effizient, sondern auch verallgemeinerbar. Lediglich dass p unabhéngig von
x ist, wurde ausgenutzt: diese Rekursionsformel bewahrt genauso fiir gebrochenrationale Ex-
ponenten p ihre Giiltigkeit oder fiir transzendente Exponenten wie 7 und sie lasst sich sogar
auf Puiseux-Reihen mit gebrochenrationalen Exponenten des Entwicklungsparameters verall-
gemeinern (siche Kasten auf Seite 92). Prinzipiell ist sie sogar fiir symbolische Exponenten
p anwendbar. Man vergleiche dies mit den beschrankten Moglichkeiten bei der Potenzierung
von univariaten Polynomen P(x)P.

Betrachten wir Reihenentwicklung als Beispiel der auf Seite 74 diskutierten Methodenfort-
pflanzung. Reihenentwicklung kann sehr elegant programmiert werden als Methode, die
bottom-up durch den Darstellungsbaum liuft.® GiNaC implementiert Reihenentwicklung fiir
alle eingebauten Funktionen.’ Die zugrundeliegende Datenstruktur (Klasse pseries) wurde
schon in [Baue 2000] beschrieben, ebenso die Rechenoperationen wie Addition, Multiplikation
etc. darauf. Hier sollen ein paar haufige Probleme mit Spezialfillen genannt und Losungen
diskutiert werden.

Fiir Ableitungen reicht es wie gesagt aus, den Darstellungsbaum von der Wurzel beginnend zu
durchschreiten. Ist das auch fiir Reihenentwicklung der Fall, die ja in der Regel auf Ableitungen
zurlickgreift? Abgesehen von verallgemeinerten Reihen wie Puiseux-Reihen, die im Rahmen
von GiNaC nicht benétigt werden, findet man drei Arten von Ausnahmen, in denen dies nicht
geht:

1) Die Ableitungen kénnen aus irgendeinem Grunde am Entwicklungspunkt nicht ausgewer-
tet werden (z.B. beim Dilogarithmus Liy'(0))

2) Es muss die Entwicklung an einem Verzweigungspunkt oder auf einem Schnitt berechnet
werden (z.B. Logarithmus log(0))

3) Es liegt ein Pol vor (z.B. Gamma-Funktion I'(—n),n € {0,1,2,...})

Aufserhalb dieser Fille wird einfach auf Taylor-Reihenentwicklung zuriickgegriffen (was na-
tiirlich die Kenntnis der Ableitungen voraussetzt). Dies geschieht, indem eine Exception an
die aufrufende Routine zuriickgeworfen wird, welche die Implementierung der Taylor-Reihe via
Ableitung in basic: :series() aufruft. Die eingeschlagenen Losungswege fiir die drei Klassen

8 Dennoch hatten bis auf Maple alle der in [West 1995] getesteten CAS erhebliche Schwierigkeiten mit der
Taylorentwicklung e~ “sin(z) ~ 2 — a? 4+ 2% — 552° + O(2°) an der Stelle 2 = 0, was fiir GiNaC nie
ein Problem darstellte. Da wir keinen Einblick in die Sourcen jener Systeme haben, kann man nur soviel
vermuten, dass dort entweder véllig andere Ansétze verwendet wurden, oder dass Produkte von Folgen
unimplementiert waren.

9 Einzige Ausnahme sind verallgemeinerte Reihen, in denen die Koeffizienten von z abhiingen, aber subpo-
lynomial anwachsen, die bisher noch nicht implementiert worden sind.

92 4. GiNaC: Implementierung

Eine Option: Puiseux-Reihen

Die derzeit von GiNaC darstellbaren Reihen haben alle ganzzahlige Exponenten, es kénnen stets
nur Taylor- oder Laurent-Reihen dargestellt werden. Die Exponenten sind zwar in ihrer Imple-
mentierung vom allgemeinem Typ ex, aber nur ganze Zahlen kommen vor. Es handelt sich hierbei
um eine Invariante der Klasse pseries. Puiseux-Reihen wie

log(1+ V)|, _, = z7 — to+ %x% — 12?4 %xg + O(x3)

wurden bisher nicht implementiert in der Annahme, dass sie in Schleifenrechnungen nicht vor-
kommen, sind doch die in dimensionaler Regularisierung auftretenden Reihen in ¢ stets Laurent-
Reihen. Diese Hoffnung war wohl etwas zu optimistisch. Dennoch konnten bisher auftretende Fiélle
transformiert werden auf Laurentreihen — durch x — 2 um in unserem Beispiel zu bleiben. Falls
dies einmal nicht mehr ausreichen sollte, muss pseries neu gestaltet werden. Insbesondere der
Datentyp, der mit der Methode .degree() den Grad und mit .1ldegree() den Grad des fiih-
renden Koeffizienten zuriickgibt, muss von int zu einem Typ gedndert werden, welcher rationale
Zahlen darstellen kann. Addition und Multiplikation von Puiseux-Reihen sind weitgehend analog
zu derjenigen fiir Laurent-Reihen. Wir skizzieren nun, wie sich auch skalare Exponentiation ver-
allgemeinern lasst.

Sei A(z) = ap+ a1z +ax®+---+O(z") und C(z) = A(z)P = co+c12™ +cox™ +- - -+ O(2"P)
mit q;,r; € Q. Wir berechnen zunéchst das kleinste gemeinsame Vielfache der Nenner aller g;,
Q =kgV(q1,q2,...). Dann ersetzen wir v — 2’ = 29:

Damit haben wir das Problem auf die gewéhnliche skalare Exponentiation zuriickgefiihrt, denn die
Exponenten von z’ in A(x') sind alle ganzzahlig. Durch Anwendung des Algorithmus fiir skalare
Exponentiation findet man die gesuchten Koeffizienten ¢; von C(z') und kann die Riickersetzung
' — z = 29 vornehmen um die gesuchte Reihe C(z) zu erzeugen. Auch dieses Verfahren
verallgemeinert in offensichtlicher Weise auf den Fall, dass der fiihrende Koeffizient von A(x)
nicht konstant ist.

von Ausnahmen werden im Folgenden anhand der genannten Beispiele vorgestellt. In Zukunft
notwendig werdende Implementierungen dieser Art sollten damit keine grundsétzlichen Pro-
bleme mehr bereiten.

Fall 1) Ableitungen konnen nicht ausgewertet werden:

Die Reihenentwicklung des Dilogarithmus um den Nullpunkt ist bekanntlich

1 1 1 1
Lig(l‘”xzo =z + sz + §ZL'3 + 1—61'4 + %$5 + O(ZL‘G),

woraus man abliest, dass die n-te Ableitung am Ursprung durch

. (n n!
Liy™ ()]4=0 = e

gegeben sein muss. Rechnet man es jedoch stur aus, so findet man

. log(l1 —=
L ()fap = — 2022

4.6. Laurentreihen: die Klasse ,pseries’ 93

was eine Division durch Null nach sich zieht, wenn man x = 0 einsetzt. Zukiinftige Versionen
von GiNaC konnten das Problem eventuell 16sen, indem sie Grenzwerte benutzen — der vor-
liegende Fall ist schon mit der Regel von I’Hopital 16sbar. Die derzeitige Notlosung besteht in
Abwesenheit von Grenzwerten aus einem vielleicht etwas grob anmutenden Trick. Wir wissen
ja, was die Reihenentwicklung ist, also konstruieren wir einfach ,per Hand’ eine solche Folge
und geben sie zuriick. Da aber nicht immer im Argument direkt entwickelt wird, sondern im
Allgemeinen eine Entwicklung der Form Lis(f(2))].—, mit f(p) = 0 verlangt wird, kaskadieren
wir die Reihenentwicklung. Zunéchst wird Lis(s)]s—0 = s + 7s* + $s° + ... in einem Hilfssym-
bol s erzeugt, dann die Taylor-Reihe des Arguments der Funktion f(x)|.—, fiir s substituiert.
Fasst man Terme gleicher Ordnung zusammen, so ergibt dies die gewiinschte Taylorreihe.

1 static ex Li2_series(const ex & x, // arqument of Li2

2 const relational & rel, // exzpansion variable and point
3 int ord) // order of expansion
+ A

5 const ex x_at_pt = x.subs(rel);

6 if (!x_pt.is_zero())

7 throw do_taylor(); // caught by function::series()

8 if (x_pt.is_zero()) {

9 const symbol s;

10 ex ser;

11 // construct manually the primitive exzpansion

12 for (int i=1; i<order; ++i)

13 ser += pow(s,i)/pow(i,2);

14 // substitute the argument’s series expansion

15 ser = ser.subs(s==x.series(rel,order));

16 // maybe that series tis terminating, so add a proper order term
17 epvector nseq;

18 nseq.push_back(expair(Order (1), order));

19 ser += pseries(rel, nseq);

20 // reexpansion will collapse the series again

21 return ser.series(rel.order);

22 }

23 // missing: treat other pathological cases...

24 }

Die Methode hat einen Haken: Zwar lassen sich damit korrekt vorgeschaltete Funktionen
taylorentwickeln, wie z.B. Lis(sin(z)),—o = 2432 —152°+O(z*), nicht jedoch nachgeschaltete,
wie sin(Lis(2)),—¢. Dann némlich tritt das Problem, welches wir gerade gelost haben, wieder
auf: Die Ableitung von sin(Lis(z)) kann nicht an der Stelle z = 0 ausgewertet werden, da
der Sinus nichts vom Dilogarithmus weifs. Sollte dies einmal ein echtes Problem darstellen,
so miissen entweder Grenzwerte implementiert oder das Design der Klasse pseries erheblich
verdndert werden.

Fall 2) Ein Verzweigungspunkt/Schnitt liegt vor:

Auf diesen wichtigen Fall muss wieder durch Einsetzen des Auswertepunktes in das Argument
getestet werden. Meist kann man die Verzweigungspunkte auf solche anderer Funktionen zu-
riickfithren (siehe Kasten), etwa auf denjenigen des Logarithmus, der dann nicht weiter in
Form von Laurentreihen ausgewertet wird. Dies geht bei allen transzendenten und hyperbo-
lischen Funktionen, auch bei doppelt transzendenten wie zum Beispiel beim Dilogarithmus

94 4. GiNaC: Implementierung

Verzweigungspunkte = Problempunkte?

Viele Computeralgebrasysteme erlauben die Laurententwicklung von Funktionen an Verzwei-
gungspunkten. Hierbei ist jedoch wichtig, dass die Lage des Schnittes korrekt wiedergegeben
wird, wobei Korrektheit anhand der Konsistenz mit der numerischen Evaluation zu verstehen ist.
Uber die kanonische Lage der Schnitte einiger hiufiger Funktionen informiert Tabelle A.1 auf
Seite 149. Im Falle der trigonometrischen Funktionen kann die Entwicklung — wie in jener Ta-
belle angegeben — zuriickgefiihrt werden auf die inerte Entwicklung des natiirlichen Logarithmus
am Verzweigungspunkt: log(x)|,—o = log(z). Eigenartigerweise werden einige Systeme hier aber
inkonsistent. Als Beispiel kann man atanh(z) um x = 1 entwickeln:

atanh(z),—1 = % (log(2) —log(1—z)) + +(z—1) + O((z—1)?)

Hierin wird der Schnitt bestimmt von log(1—x), verlauft also entlang der positiven reellen Achse
beginnend bei x = 1 in Ubereinstimmung mit Tabelle A.1. Man kann leicht verifizieren, dass sich
dies mit den in diesem Abschnitt vorgestellten Methoden von selbst ergibt, wenn man log(az)|,—o
nicht automatisch zu log(a) + log(x) entwickelt. Das ist ja auch in der Tat falsch fiir nichtpositive
Werte von a. Diese leichtfertige Entwicklung von log(ax)|,—o wird aber beispielsweise von MapleV
und Mathematica durchgefiihrt. Bei allen transzendenten Funktionen fiihrt das zu Problemen:
Im Falle von Mathematica sind die Schnitte entweder um m/2 in der komplexen Ebene gedreht
oder es treten zusétzliche Konstanten wie im = log(—1) im Ergebnis auf. Bei MapleV passiert
dies nicht, jedoch nur aufgrund expliziter Korrektur in allen einzelnen Funktionen, die fiir die
Reihenentwicklung zustédndig sind. Dies ist der Grund dafiir, dass in GiNaC seit Version 0.7.1 die
Entwicklung von log(az)|,—¢ vollig inert ist.

(siche Anhang A). Dessen Verzweigungspunkt bei x = 1 hat beispielsweise die Entwicklung
Lis(x)]p=1 = #72 + (1 —im — log(x—1)) (z—1) + O((z—1)?),

die speziell in Li2_series() kodiert werden muss. Auf Schnitten abseits von Verzweigungs-
punkten kann entweder die stetige analytische Fortsetzung gewihlt oder aber der Schnitt
durch eine #-Funktion ausgedriickt werden. Der Benutzer entscheidet hieriiber mit einem zu-
sétzlichen Parameter beim Aufruf der Reihenentwicklung. Die stetige Fortsetzung kann wie im
gewohnlichen Fall mittels Ableitung berechnet werden. Die Darstellung des Schnittes (siehe
Tabelle A.1) muss wieder separat kodiert werden, um beispielsweise die Darstellung

log(2)se—1 = im(1 —20(iz)) — (z + 1) — L(x + 1) + O((z + 1)?)

zu erzeugen. Anstelle der #-Funktion wird in GiNaC allerdings stets deren komplexe Fortset-
zung csgn() mit Unstetigkeit auf der imaginidren Achse herangezogen. Diese Sonderbehand-
lung an Schnitten muss fiir jede Pseudofunktion separat geschehen.

Fall 3) Eine Polstelle liegt vor:

An Polstellen werden iiblicherweise Rekursionsformeln, Reflexionsformeln und so weiter an-
gewendet. Das Problem wird somit in eine Form gebracht, in der eine rationale Funktion in
eine Laurent-Reihe entwickelt wird. Die Gamma-Funktion beispielsweise gehorcht der Rekur-
sionsformel

I(z) = %F(aﬁtl). (4.5)

4.6. Laurentreihen: die Klasse ,pseries’ 95

Wird die Entwicklung am Nullpunkt verlangt, so kann man statt I'(¢)|.—o natiirlich 1I'(14)|.—o
entwickeln. Allgemein ldsst sich so jeder Pol bei —m zunéchst ,wegschieben':

F(z+m+1)

(x+1) - (z+m)la=—m’ (4.6)

D(2)|o=—m = -

Eine Routine, die in GiNaC die Laurententwicklung einer bestimmten mathematischen Funk-
tion libernimmt, muss nur dann implementiert werden, wenn gewohnliche Taylorentwicklung
versagt. Dies kann freilich zwei verschiedene Griinde haben: 1) die Ableitungen sind nicht
bekannt und 2) es existieren Polstellen irgendwo in der komplexen Ebene. Gehen wir von
dem Fall aus, dass die Ableitungen alle bekannt sind (oder auch nur formal definiert), so ist
also fiir die Gamma-Funktion' eine Rekursionsformel zu implementieren, die wie in (4.6) auf
den Taylorfall zuriickgreift. Dieser braucht dann nicht mehr programmiert zu werden, denn
einfache Taylorentwicklung ist schon in basic::series() vorhanden. Man verwirklicht das
in Ct*+ am elegantesten, indem man eine Exception zurlickwirft an die aufrufende Routine:

1 static ex tgamma_series(const ex & x, // argument of tgamma

2 const relational & rel, // exzpansion variable and point
3 int ord) // order of expansion

4 1

5 const ex x_at_pt = x.subs(r);

6 if (!x_at_pt.info(info_flags::integer) || x_at_pt.info(info_flags::positive))
7 throw do_taylor(); // caught by function::series()

8 // if we got here we have to care for a simple pole at -m:

9 numeric m = -ex_to_numeric(x_at_pt);

10 ex ser_denom = 1;

11 for (numeric p; p<=m; ++p)

12 ser_denom *= x+p;

13 return (tgamma(x+m+1)/ser_denom).series(s, pt, ord+l);

14 3}

Das Programmbeispiel zeigt noch eine kleine Subtilitdt, die leicht zu Verwirrung fithrt. Was
man wirklich berechnen will ist normalerweise nicht die Entwicklung von I'(z)|,—., sondern
I(f(x))|z=.. Daher muss die Variable x_at_pt eingefithrt werden (Zeile 5) und diese darauf
getestet werden, ob sie in {0, —1, —2, ...} liegt. Danach wird der Nenner aus (4.6) konstruiert
(Zeilen 11-12), dann die Reihe gebildet und zuriickgegeben (Zeile 13). Man beachte, dass
dieses Vorgehen auch einige triviale Félle mitbehandelt, ohne dass dies explizit ausgedriickt
werden muss: Ist beispielsweise x unabhéngig von der Entwicklungsvariablen, so wird die
Exception do_taylor () ebenfalls geworfen und nur der nullte Term in der Taylorentwicklung,
also tgamma (x) ohne Ordnungsterm, zuriickgegeben.

Gerade die Entwicklung der Gamma-Funktion in eine Laurentreihe, wie sie in der dimensio-
nalen Regularisierung bendtigt wird, macht die Implementierung einer ganzen Sammlung von
Zusatzfunktionen erforderlich. Da dies in gewissem Mafe ein abgeschlossenes Modul in GiNaC

10 Die Gamma-Funktion I'(x) heift in GiNaC tgamma(x) in Ubereinstimmung mit [ISO 1999]. Der etwas
umstéindliche Name wurde gewéhlt, um sie von lgamma(x), dem natiirlichen Logarithmus der Gamma-
Funktion, zu unterscheiden. Die in anderen Standards wie [ATT 1986] definierte Funktion gamma(x) be-
rechnete ebenfalls In(I'(z)), was wohl der Grund dafiir ist, dass sich diese Syntax nicht durchgesetzt hat
und wir sie in GiNaC nicht verwenden.

96 4. GiNaC: Implementierung

darstellt, wird die Abhéngigkeitskaskade im Folgenden skizziert. Die Polentwicklung wurde ja
gerade auf die Taylorentwicklung am Punkt x = 1 zuriickgefiihrt, was bedeutet, dass samtliche
Ableitungen an diesem Punkt bekannt sein miissen. Man definiert die Digamma-Funktion)
als Ableitung des Logarithmus der Gamma-Funktion

U(e) = - log(T(x) =

und die n-te Polygamma-Funktion 1, als n-te Ableitung der Digamma-Funktion fir z € C:

$alz) = p(a).

~dan
(Es ist also ¢g(x) = ¢(z).) Am Punkt = 1 werden die Funktionswerte

(1) = —v
Ua(l) = (=)""nl¢(n +1)
angenommen [AbS 1972, GrRy 1994] wo ((z) die Riemann’sche (-Funktion ist, die also zumin-

dest an den Punkten {1,2,3,...} ausgewertet werden sollte. Fiir ungeradzahlige Argumente
ist dies nicht moglich, fiir geradzahlige kann man jedoch [TyKa 1980]

_ 1Bl
(m)!

berechnen. Den letzten Schritt in dieser Kette stellt die Implementierung der Bernoulli-Zahlen
B,, dar, die zum Beispiel rekursiv berechnet werden kénnen:

<m;1>Bk. (4.8)

¢(m) 2™t Ym e {2,4,6,...} (4.7)

m—1

—1

By =1, B,, =]
m- o

Die n-te Bernoulli-Zahl hingt also von allen vorherigen Bernoulli-Zahlen ab, was ihre Berech-
nung sehr aufwindig macht.!!

I Bernoulli-Zahlen treten in den Entwicklungen aller inversen trigonometrischen Funktionen auf. Dort geniigt

jedoch eine Gleitkomma-Berechnung, wofiir stabile Algorithmen bekannt sind. Hat man zum Beispiel —
wie im Falle von CLN - effiziente Riemann’sche Zeta-Funktionen numerisch implementiert, so reicht es
offensichtlich, den Spiefs umzudrehen und Gleichung (4.7) zu invertieren.
Zur exakten Auswertung sei angemerkt, dass die Summe (4.8) einer ,Divide and Conquer“-Strategie zu-
ganglich ist, womit in der Praxis noch Bsgggo berechenbar ist. Da jedoch zusétzlich zu B,, haufig auch
By, m < n bendtigt werden, ist ein Verfahren, welches eine vollstdndige Remember-Tabelle implemen-
tiert, vorzuziehen. Tatséchlich weisen alle gidngigen CASe das Laufzeitverhalten von Remember-Tabellen
auf. Am eflizientesten ist z.B. der Umweg iiber Tangens-Polynome, welche durch die Rekursionsformel
To(z) = (1 +22) T, _1(z) mit To(x) = z definiert sind. Die n — 1-te Tangens-Zahl T,,_; = T,,_1(0) ist
mit der Bernoulli-Zahl durch 7,,_; = (7)%’1¥Bn verkniipft [GKP 1989]. Das n-te Tangens-Polynom
ist von der Ordnung n + 1 und besitzt lediglich ganzzahlige Koeffizienten, was einer effizienten iterativen
Berechnung sehr entgegenkommt. GiNaC implementiert noch einen dritten Zugang, der zwar um die Hélfte
langsamer ist, jedoch ohne das Abspeichern der Tangens-Polynome fiir nachfolgende Berechnungen aus-
kommt. Es ist eine Variation des ,Divide and Conquer“-Verfahrens, dquivalent zur Implementierung der
Pari-Funktion bernvec().

4.6. Laurentreihen: die Klasse ,pseries’ 97

GiNaC 1.0

10000 Mathematica 4------ -]
E MapleV R5 ------- E
MuPAD 1.4.2 ---~

1000 |

2 100 ¢ ‘ -
‘D F |
N |
5 L |
© |

- 10k | 3

1k 3

0.1k -

EP’ L L L L 1 L L L L 1 L L L L 1 L L L L 1 L L L 1 1 L L L L 1 L L L L IE

10 15 20 25 30 35 40 45

Ordnungn

Abbildung 4.5.: Laufzeiten fiir die symbolische Laurententwicklung von I'(z)|y—o auf einer IA32-
Architektur.

Nun reicht die Auswertung von 1, (1) zwar aus fiir die Laurententwicklung an den Polstellen
der Gamma-Funktion, hinterlasst jedoch ein etwas unabgeschlossenes Bild: Zum einen ergibt
die Taylorentwicklung von I'(2 + €)].—g lediglich 1+ ¢(2)e + 1 (¥1(2) + ¢(2)?)e? + O(&?®) und
so weiter, da zwar ['(n) = (n—1)! evaluiert werden kann, jedoch tiber die Evaluation der
Polygamma-Funktionen noch nichts gesagt ist. Zum anderen wird auch die Laurententwick-
lung der ¢-Funktionen an ihren Polstellen bisweilen benétigt und bedarf einer Implementie-
rung. Beide Liicken kénnen geschlossen werden, indem mithilfe der Rekursionsformeln

Y(e+l) = (z)+a7!
Un(z+1) = ¥n(x) + (=1)"nlz™"!

die Funktionswerte fiir z € N und die Pole der Ordnung 1 bzw. n + 1 bei den {ibrigen x € 7
zuriickgefithrt werden auf Evaluationen am Punkt = 1 — ganz analog zum Vorgehen in (4.6).

Es ist bemerkenswert, dass diese jegliches Optimierungspotenzial ignorierende Vorgehensweise
tatséchlich schon zu einem Modul fiihrt, dass sich durchaus mit Konkurrenzprodukten messen
kann (Abbildung 4.5). Hier wurden auf einem mit 450MHz getakteten Intel P-IIT unter Linux
die Laufzeiten fiir Laurententwicklung der Gammafunktion bis zu hohen Ordnungen gemessen.
Maples supereffizienter Kernel bricht bei der Ordnung 35 mit der Fehlermeldung object too
large ab, da dann offenbar Zwischenergebnisse mit Summen aus 2!~1 Termen entstehen. Fiir
den Vergleichslauf musste die angeforderte Ordnung im Falle von Mathematica und MuPAD
um eins inkrementiert werden, um dieselben hochsten Koeffizienten zu erhalten wie Maple
und GiNaC. Ferner wurden alle Systeme gezwungen, ihr Ergebnis bis zu Koeffizienten zu
vereinfachen, die nur von {(m), 7 und der Euler-Konstanten v abhéngen. Im Fall Mathematica
musste dafiir noch ein zusétzliches FunctionExpand[] eingeschaltet werden um tatséchlich

98 4. GiNaC: Implementierung

ein Ergebnis der Form

1 ™ 7 ™y 7 CB)Y 3
M) =3 7+<12+ 2)‘” <12 T3)17 +0@)
zu erhalten (ansonsten liefert Mathematica unausgewertete Polygamma-Funktionen ,,(1)
zuriick). Gerade dieses FunctionExpand[] aber ist fiir den Grofteil der Rechenzeit verant-
wortlich (obere Mathematica-Kurve in Abbildung 4.5). Lésst man es weg so ist Mathematica
nur noch geringfiigig langsamer als GiNaC (untere Kurve). Das Knie in dieser Kurve begin-
nend bei n = 38 wird uns weiter unten auf Seite 116 noch einmal begegnen.

Die in dimensionaler Regularisierung ebenfalls manchmal benotigte analytische Evaluation der
hier betrachteten Funktionen fiir alle halbzahligen Argumente wird idealerweise zuriickgefiihrt
auf ganzzahlige Argumente. Hierzu werden nur die Verdopplungsformeln

L(2x) = (2m)7 72> PT(2)0(x + 3)
(2z) = log(2) + (Y(x) + ¢(z+3))/2
Un(22) = (Yu(@) + Pu(z + 3)) /2

aufgelost nach den Funktionen mit Argument x + %; alle anderen darin vorkommenden Funk-
tionen sind nun bekannt.

Zusammenfassend lésst sich feststellen, dass die Fortpflanzung einer auf einem Container-
objekt aufgerufenen Methode auf seine Kinder in vielen Féllen ein {ibersichtliches Verfah-
ren darstellt um mathematische Operationen auf komplexen Ausdriicken zu implementieren.
Im Beispiel der Laurententwicklung der Gamma-Funktion lduft die eleganteste Programmie-
rung zwar darauf hinaus, dass auch die Digamma-, die Polygamma-, die (-Funktion und die
Bernoulli-Zahlen effizient programmiert werden. Das Ergebnis ist jedoch ein natiirlicher, leicht
zu wartender und modularer Code, der abgeschlossen ist in dem Sinne, dass er alles zu leisten
vermag, was fiir dimensionale Regularisierung erforderlich ist.

4.7. Die Matrix-Klasse

Die Féhigkeit, mit zweidimensionalen Arrays beliebiger Elemente umzugehen, ist in jedem der
giangigen CAS implementiert. Bei der Darstellung von Matrizen in Computern unterscheidet
man vier verschiedene Ansétze, aus denen eine Auswahl zu treffen ist:

1. Explizite dichte Darstellung:
Eine n x m-Matrix wird spezifiziert durch vollstdndige Angabe aller ihrer Eintréage. Die
Darstellung ist iiblicherweise ein Vektor (manchmal auch eine Liste).

a) Numerische Matrizen: Die Eintrége sind tiblicherweise alle vom gleichen eingebau-
ten Typ wie float oder double. Darauf optimierte Algorithmen werden von einigen
rein numerischen Paketen wie beispielsweise MATLAB angeboten.

b) Symbolische Matrizen: Die Eintridge sind nicht von einem eingebauten numerischen
Typ sondern entweder symbolisch oder aus einem Ring oder einer rationalen Er-
weiterung eines Ringes, etwa Q.

4.7. Die Matrix-Klasse 99

Die aus dem numerischen Fall wohlbekannten Algorithmen lassen sich nur sehr einge-
schrankt auf den symbolischen Fall iibertragen. Dieser Abschnitt wird darlegen, warum
das so ist und wie in GiNaC der Versuch unternommen wird, mit vertretbarem Aufwand
dennoch moglichst effizient zu sein.

2. Explizite diinn besetzte Darstellung:

Eine n x m-Matrix wird spezifiziert durch Angabe aller interessanter Elemente, die an-
deren werden typischerweise als verschwindend angenommen. Dies ist besonders in der
Numerik von Interesse, wenn Matrizenoperationen aufwindig werden und eine Multi-
plikation schneller als etwa O(n?) verlangt wird. Als Darstellung bietet sich in C++ der
STL-Container map an, dessen Zugriffszeit von logarithmischer Ordnung ist — allerdings
bedingt durch die Implementierung als RB-Baum mit einem Overhead von drei Zeigern
und einer booleschen Variablen, also bis zu 28 Bytes plus Fiillbytes, nur fiir sehr grofe
diinn besetzte Matrizen in Erwéigung zu ziehen.

3. Implizite atomare Darstellung:
Jede Matrix wird dargestellt durch genau ein Symbol. Das CAS implementiert im We-
sentlichen die Arithmetik iiber einem nichtkommutativen Ring. Es war eine der Haupt-
triebfedern hinter GiNaC, Objekte wie Farb-, Dirac,- oder Isospinmatrizen gerade nicht
explizit als zusammengesetzte Objekte sondern implizit darzustellen {iber die Eigenschaf-
ten der von ihnen erzeugten Algebren. Dies geschieht jedoch nicht in der Matrix-Klasse
sondern ist Aufgabe der Klassen ncmul und indexed.

4. Implizite elementbasierte Darstellung:

Bei diesem recht neuen Ansatz, der erstmals in [Fate 2001] vorgeschlagen wurde, konnen
Matrizen ohne Wissen iiber ihre Dimension dargestellt und manipuliert werden. Zum
Beispiel kann die n x n Hilbert-Matrix dargestellt werden durch Spezifizierung ihrer Ele-
mente: h;; = 1/(i+j+1),4,7 € [0...n—1]. Unter bestimmten Voraussetzungen konnen
solche Matrizen addiert, multipliziert und sogar ihre Determinanten berechnet werden.
Diese lazy evaluation-Technik ist jedoch hauptséichlich zum automatisierten Beweisen
von Theoremen interessant und am besten in Sprachen mit echter Unterstiitzung von
Lambda-Kalkiil (wie Scheme oder Lisp) zugénglich.

In xloops miissen haufig lineare Transformationen ausgefiihrt werden wie zum Beispiel beim
Lorentztransformieren von Impulsen, oder es miissen kleine lineare Gleichungssysteme geldst
werden wie etwa beim Zusammenfassen von Integrationsgebieten oder beim Integrieren ra-
tionaler Funktionen mit der Horowitzschen Methode [Horo 1971]. Da die auftretenden Matri-
zen iiblicherweise klein sind, wurde die dichte explizite Darstellung gewahlt. Weiter unten
werden wir beschreiben wie durch sorgfiltige Implementierung der darauf agierenden Al-
gorithmen auch diese Darstellung bisweilen verbessert werden kann, um zum Beispiel das
O(n?)-Verhalten der Matrixmultiplikation fiir diinn besetzte aber dicht dargestellte Matrizen
abzukiirzen.

Das effiziente Implementieren von Paketen fiir Lineare Algebra ist mittlerweile ein eigener
kleiner Industriezweig — angefangen bei den Numerical Recipes reicht das Spektrum iiber
LINPACK, LAPACK und BLAS, bis zu kommerziellen Paketen wie IMSL und NAG. Diese

Pakete sind jedoch fiir sehr grofse numerische lineare Systeme entworfen worden und versuchen

100 4. GiNaC: Implementierung

daher, nicht nur die Zahl der Rechenoperationen sondern auch den verwendeten Speicherplatz
zu minimieren, sowie durch Rundungsfehler hervorgerufene Entartungen zu entdecken und
soweit moglich zu verhindern. Im Falle symbolischer Matrizenoperationen kommen die meisten
der dort verwendeten Tricks nicht in Frage, erstens aufgrund des enormen Anwachsens der
Zwischenausdriicke, und zweitens weil zwischen Symbolen keine Ordnungsrelation besteht. Das
Anwachsen der Zwischenausdriicke ist darauf zuriickzufithren, dass arithmetische Operationen
wie Addition, Multiplikation etc. eben nicht ausgefiihrt, sondern nur niedergeschrieben werden
konnen. So ist die Determinante der generischen 3 x 3-Matrix Miys

b
det Msy3 = det e =aei —afh —bdi +bfg+ cdh — ceg
h

K Q<
S-S 0

bereits ein Additionsobjekt mit 6 Multiplikationsobjekten als Eintrdgen. Schon die Determi-
nante einer generischen 5 x 5-Matrix wiirde mit ihren 120 Elementen hier eine halbe Seite
fiillen. Die Determinante der generischen symbolischen Matrix ist also ebenso rechenintensiv
wie die Permanente p = > o [17=, @i, die schon fiir numerische Matrizen NP-vollstindig
ist. Aufgrund der fehlenden Ordnungsrelation zwischen Symbolen kann man ferner auch nur
insofern von einem Pivotelement sprechen, als dass das Element nicht verschwindet. Diese
haufig iibersehene Tatsache konnte man als ,Symbolikfalle“ bezeichnen. Sie besagt, dass der
Komplexitétsgrad ein und desselben Algorithmus angewandt auf symbolische Objekte ein ho-
herer sein kann als angewandt auf numerische Objekte. Dies alles schliefst jedoch nicht aus,
dass gewisse Algorithmen, die in der numerischen Linearen Algebra zur Anwendung kommen,
auf symbolischen Systemen nicht auch anwendbar sind. So ist zum Beispiel die gewShnliche
Matrizenmultiplikation augenscheinlich ein Prozess der Komplexitit O(n?), jedoch gibt es
tatséchlich Algorithmen mit einer besseren asymptotischen Komplexitidt (wie derjenige von
Strassen |Stra 1969] mit O(n!%27 ~ n2#) oder von Coppersmith und Winograd [CoWi 1990]
mit O(n*37)), die im Prinzip auch auf symbolische Pakete iibertraghbar wiren. Da diese jedoch
die asymptotische Komplexitat ist und aufgrund der resultierenden grofsen Zwischenergebnisse
ohnehin zu tiberlegen ist, warum man dicht besetzte symbolische Matrizen der Grofe n = 100
multiplizieren muss, ist die Anwendung solch fortgeschrittener Algorithmen in symbolischen
Paketen zweifelhaft. Tatséchlich scheint kein symbolisches Paket zu existieren, welches von ih-
nen Gebrauch macht [DST 1988|. Daraus kann man nur lernen, dass es sich durchaus lohnt, die
bekannten primitiven Algorithmen vor einer Implementierung einmal genau auf ihre Effizienz
hin zu untersuchen. Dieser Abschnitt wird mit ein paar zwar nicht neuen, aber dennoch nicht
selbstverstéandlichen Ergebnissen dieser Analyse enden. Die Erfahrung hat gezeigt, dass dieses
Gebiet ein ungeheures Optimierungspotenzial enthélt, welches zumindest teilweise ausgenutzt
werden muss, um nicht spéter mit astronomischen Laufzeiten konfrontiert zu werden.

Darstellung der Matrix-Klasse

Zunichst einmal erldutern wir die Darstellung von Matrizen in GiNaC. Fiir die dichte Dar-
stellung bieten sich Vektoren an. Manche Lisp-basierte Systeme (wie MAXIMA und MACSY-
MA) benutzen die in Lisp nahe liegenden Listen, was oberflachlich betrachtet dquivalent zur
Benutzung von Vektoren ist. Dies ist jedoch ungeschickt: da die Zugriffszeit in einer Liste

4.7. Die Matrix-Klasse 101

nicht konstant ist, fiihrt es zu Uberraschungen bei der Implementierung von Matrixmultipli-
kation, die selbst im numerischen Fall dann wesentlich schlechter als O(n?®) sein kann. Zwar
kénnen zweidimensionale Container in der STL durch Iteration generiert werden (z.B durch
die Template-Instanzierung vector<vector<ex> > m;), jedoch téuscht dies eine zweidimen-
sionale Struktur nur vor, und verschachtelte Templates bereiteten bei manchen Compilern
Schwierigkeiten. Da die Représentation in einem objektorientierten Programmierparadigma
ohnehin vom Anwender weggekapselt wird, wurde eine Darstellung gewahlt, in der die Zeilen
einer Matrix hintereinander in einem Vektor abgespeichert werden und zwei Hilfsvariablen
iiber die Dimension der Matrix informieren. Die zweidimensionale Indizierung muss dann von
jeder einzelnen Methode konsistent auf die eindimensionale abgebildet werden. Eine Methode
zur Transponierung des Matrixobjektes schreibt sich dann in GiNaC wie folgt:

1 const class matrix

2 matrix::transpose(void) const

3 o

4 std: :vector<ex> trans(col*row);

5

6 for (unsigned r=0; r<col; ++r) {

7 for (unsigned c=0; c<row; ++c) {
8 trans [r*row+c] = m[c*col+r];
9 }

10 }

11 return matrix(col,row,trans);

12}

Hierbei bezeichnen row und col die Dimensionen (Zeilen und Spalten) und m ist die Dar-
stellung der Matrix im Objekt — also ein Vektor aus ex-Elementen der Lénge rowxcol. Man
beachte, dass die Indizierung des STL-Vektors iiber eckige Klammern geschieht statt iiber die
.at ()-Methode, das heifst, dass range-checking aus Griinden der Effizienz und der Hybris des
Programmierers innerhalb der Methoden nicht verwendet werden.

Die Frage ist erlaubt, warum eine dichte Darstellung gewéhlt worden ist statt einer diin-
nen (sparse) oder beiden Darstellungen mit einer Wahlméglichkeit fiir den Anwender. Eine
diinne Matrix liefse sich beispielsweise ideal durch einen assoziativen Array wie zum Beispiel
den STL-Container map<int,ex> beziehungsweise map<pair<int,int>,ex> darstellen. Die
Zugriffskomplexitéit in diesem Container ist zwar nicht explizit im Sprachstandard spezifi-
ziert, jedoch wird iiblicherweise implizit verstanden, dass eine map als sortierter RB-Baum
implementiert wird. Daher konnen Suchoperationen binér in O(log(n)) durchgefiihrt werden,
Einfiigungen sind jedoch von O(n).

Zunéchst einmal ist das Mischen dieser beiden Darstellungen notorisch schwierig. Addiert
man eine dicht besetzte Matrix D mit einer diinn besetzten S, so erwartet man als Ergebnis
natiirlich eine dichte Matrix und das System sollte auch eine solche Darstellung fiir D + S
wahlen. Multipliziert man eine dicht besetzte Matrix D mit einer diinn besetzten S, so ist
der Fall schon weniger klar und das Ergebnis DS kann sowohl dicht besetzt sein (z.B. D
beliebig, S = 1) als auch diinn (zB. j =0 & D;; =0,i>0 & §;; =0, also DS = 0).
Ferner haben Eliminationsverfahren die Eigenschaft, diinn besetzte Matrizen in dicht besetzte
Dreiecksmatrizen zu iiberfithren. Mischen dieser beiden Darstellungen erfordert also sténdige
Entscheidungen, entweder des Programmierers oder auf Konstruktorebene.

102 4. GiNaC: Implementierung

Abbildung 4.6.: Schleifenumordnung bei der Matrix-Multiplikation. Links die naive Implementie-
rung. Rechts eine Anordnung, die eine Abkiirzung der innersten Schleife zuldsst, wenn das mit ,,7*
markierte Element exakt verschwindet.

Gliicklicherweise lassen sich selbst in der hier gewéahlten dichten Darstellung bei einigen Stan-
dardalgorithmen Verbesserungen anbringen, die einen Teil der Vorteile der diinnen Darstellung
mitbringen. Man betrachte beispielsweise die Matrixmultiplikation, wie gesagt ein Prozess von
O(n?), zumindest bei dichten Matrizen. Die Komplexitit'? der folgenden Implementierung
geht fiir diinne Matrizen asymptotisch gegen O(n?):

1 const matrix

2 matrix::mul(const matrix & other) const

3 A

4 std: :vector<ex> prod(row*other.col);

5

6 for (unsigned r1=0; ri<row; ++rl) {

7 for (unsigned c=0; c<col; ++c) {

8 if (m[rixcol+c]==0)

9 continue; // Uberspringe nichste Schleife
10 for (unsigned r2=0; r2<other.col; ++r2)

11 prod[rixother.col+r2] += m[ril*col+c] * other.m[c*other.col+r2];
12 }

13 }

14 return matrix(row, other.col, prod); // Ctor aus Darstellung

15}

Hierin wurden die beiden inneren Schleifen gegeniiber der Schulbuch-Methode umgeordnet, so
dass die Eintrage in der Ergebnismatrix sukzessive aufakkumuliert anstatt Eintrag fiir Eintrag
vollstdndig berechnet werden. Dies erméglicht die Abkiirzung in Zeile 9, falls ein Element der
*this-Matrix (der linken Matrix) verschwindet.!?

12 Wir definieren den Begriff Komplexitit hier etwas unorthodox: Normalerweise bezeichnet man damit die
Anzahl der Kérperoperationen, also die Summe der Additionen, Subtraktionen, Multiplikationen und Di-
visionen. Hier verstehen wir darunter die Anzahl der aus dem Speicher zu holenden Objekte. Das ist
bei symbolischen Rechnungen realistischer, da der Aufwand der Koérperoperationen hier im Gegensatz zu
Gleitkommarechnungen nicht nach oben beschrankt ist.

Ohne die Abfrage, ob das Element aus der linken Matrix verschwindet, wird dieselbe Umordnung der beiden
inneren Schleifen {ibrigens auch bei der Multiplikation grofer Matrizen aus Gleitkommazahlen angewendet.
Sie vermeidet ndmlich ein n-maliges vollstandiges Auslesen der rechten Matrix. Stattdessen wird jede Zeile
erst n mal ausgelesen, bevor zur Néchsten iibergegangen wird. Dadurch verbleiben die Daten eher in
einem schnellen CPU-nahen Speicher, anstatt aus einem langsamen CPU-fernen Speicher geholt werden zu
miissen (,,Cache-Affinitdt*). Bei der Programmierung von Vektorrechnern gehort diese Unterscheidung zum
kleinen Einmaleins: das normale Verfahren wird dort als ijk-Methode bezeichnet, das oben vorgestellte
als ikj-Methode (Siehe zum Beispiel [CoTr 1995]).

13

4.7. Die Matrix-Klasse 103

Implementierte Eliminationsverfahren

Betrachten wir nun die Effizienz, mit der dicht besetzte symbolische Matrizen invertiert werden
kénnen, bzw. deren Determinante berechnet wird. Es wird sich dabei herausstellen, dass dies
weniger trivial ist als es zunéchst den Anschein hat. Die naheliegendste Methode ist, die
Definition der Determinante iiber die Permutationsgruppe S,

det M, = Z sign(o)mi gy - - - Mp o,

O'ESn

auch zu ihrer Bestimmung heranzuziehen. Fiir die generische 3 x 3-Matrix erhélt man
det M3 = aei — afh — bdi + bfg + cdh — ceg,

aber da dieser Fall exotisch ist und selten n? freie Symbole auftreten, kénnen normalerweise
in diesem Ergebnis Terme zusammengefasst werden.

Bei der als Laplace-Entwicklung bekannten Entwicklung nach einer ausgewéhlten Zeile oder
Spalte konnen solche Zusammenfassungen haufig frithzeitig ausgenutzt werden. Untersuchen
wir aber die Komplexitdat zundchst ganz allgemein, so stellen wir noch ein weiteres Verbes-
serungspotenzial fest, falls die Dimension grofer als drei ist. Die Laplace-Entwicklung der
generischen 3 x 3-Matrix nach der ersten Spalte liefert:

det ngg = =a {

c
!

b +bc
h gef'

e
h _d‘

Q@ Q2
> o

Bei 4 x 4-Matrizen fiihrt sie aber dazu, dass alle 2 x 2-Minoren doppelt berechnet werden:
Diejenige unten rechts bestehend aus den Elementen (2,2), (3,3), (2,3) und (3,2) kommt
beispielsweise jeweils in der Minore fiir die Elemente (0,0) und (1,0) vor (Abbildung 4.7).
Allgemein wird jede k x k-Minore in einer n x n-Matrix (n—k)! mal berechnet werden miissen,
wobei 1 < k < n—1. Die Anzahl der auszufiihrenden Multiplikationen betrigt jeweils k,
diejenige der Additionen £ — 1. Nun gibt es (Z) solcher Minoren, die Anzahl der Operationen
betragt also

Kpaplace = (24 1)(n — 2)!(’;) +(3+2)(n— 3)!(’;) +oot (Rt n—1),

was schon fiir moderate n schnell gegen K7 aplace > € n! konvergiert. Die nahe liegende Verbesse-
rung besteht im Abspeichern der Zwischenergebnisse, damit jede Minore nur einmal berechnet
wird. Die Anzahl der Operationen betragt dann nur noch

Kl aplace = (2+1)(Z) +(3+2)<§) +-+(n+n—1)=(n-12"-1)

und der Speicheraufwand maximal ~ Q(n%) Ausdriicke. (Im Schritt |n/2]| miissen aus (LnT/‘Q J)

abgespeicherten Minoren (Ln /;J +1) neue gebildet werden.) Dieses Verfahren ist in der Methode
matrix::determinant_minor() implementiert. Obwohl es vom Komplexitétsgesichtspunkt
nicht polynomial sondern exponentiell ist (siehe Tabelle 4.2), handelt es sich haufig um das

104 4. GiNaC: Implementierung

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Abbildung 4.7.: Uberfliissige Berechnung von 2 x 2-Minoren bei Laplace-Entwicklung einer 4 x 4-
Matrix ohne Zwischenspeichern. Die grauen Felder markieren die Minoren.

schnellste Verfahren — beispielsweise bei dichten Matrizen mit multivariaten Polynomen als
Eintrigen [GeJo 1976].

Der in [ShSt 1998| fiir symbolische Matrizen explizit empfohlene Algorithmus von Leverrier
(bisweilen auch als Algorithmus von Fadeev beschrieben) geht wie folgt vor. Sei M die n x n
Ausgangsmatrix. Man setzt B; = M und ¢; = Sp(M). Dann berechnet man

B; = M(B;j—1 — ¢;11), ci = Sp(B;)/1, i=2,...,n

Die ¢; sind genau die Koeffizienten des charakteristischen Polynoms von M und (—)"*lc,
mithin die Determinante.

Naiv in GiNaC implementiert liefert das Verfahren jedoch fiir die generische symbolische 3 x 3-
Matrix den unférmigen Ausdruck

det Mays = L(hetba+b(—a—i))d+ 1(g(—e—i)+gi+hd)c+ i f(hi+h(—a—i)+gb)
+ 3i(3(—a—e)i—te(—a—i)—bd—L1a(—e—i)) + sh(fe+dc+(—a—e)f)
+ 5 (gf+d(—e—i)+ed)b+ 3 (—3(—a—e)i—ite(—a—i)+3a(—e—i)—hf)a
+3(— 3(—a—e)i—gct+ie(—a—i)—3a(—e—i))e + 39(fb+(—a—e)c+ac),

der auf jeden Fall expandiert werden muss, wie man schon an den artifiziellen Briichen erkennt
— das Ergebnis muss ja ein Polynom iiber den ganzen Zahlen sein.

Tatséchlich ist das Ergebnis in Leverrier’s Verfahren selbst nicht ganz so unhandlich, wie es
aussieht, da hdufig auftretende Unterausdriicke in einem System wie GiNaC nur Referenzen
auf einmal abgelegte Ausdriicke darstellen. Erst beim Ausmultiplizie-

lgen lexpand ren mit expand () verursacht es erheblichen Aufwand. Der eigentliche
<0.01s 0.2s Rechenaufwand beim Bilden von symbolischen Determinanten besteht
0.0ls 0.94s also in der Notwendigkeit der Kanonisierung der auftretenden Aus-
0.02s 30.4s driicke. Die nebenstehende Tabelle gibt einen Eindruck vom explo-
0.04s 1202s sionsartigen Anschwellen der Komplexitat. In ihr sind exemplarische
Laufzeiten jeweils fiir die Generierung und die Kanonisierung von De-
terminanten dicht besetzter symbolischer n x n-Matrizen in GiNaC
und Ausmultiplikation aufgetrggen. Dar@us geht eindgutig bervor, dass der Algor%thmus fiir
von symbolischen De- symbolische Matrizen nicht geeignet ist. Er kann zwar deutlich verbes-
terminanten mit dem sert werden, indem man bei jedem Schritt bei der Spurbildung und
Leverrier-Verfahren. der Multiplikation ausmultipliziert, bleibt aber dennoch weit hinter

O Otk [3

Tabelle 4.1.: Laufzei-
ten zur Generierung

4.7. Die Matrix-Klasse 105

z.B. der Laplace-Entwicklung zuriick. Im numerischen Fall ist die Gauk- bzw. die Bareiss-
Entwicklung geeigneter. Der Algorithmus von Leverrier ist in GiNaC daher lediglich fiir die
Berechnung von charakteristischen Polynomen implementiert und auch dann nur, wenn alle
Eintrdge der Matrix Zahlen sind. Da insgesamt n Matrix-Multiplikationen auszufiihren sind,
ist seine Komplexitit dann von der Ordnung O(n?) bis O(n?), je nachdem ob die Matrix diinn
oder dicht besetzt ist.

Im folgenden wenden wir uns drei klassischen Eliminationsverfahren zu, die die Ausgangs-
matrix in eine (obere) Dreiecksmatrix iiberfithren. Der Algorithmus der Gauf-Elimination
lautet:

(0)

m; ;o = My
(k), (k)
k1 gy MMy j
E,j b = mz(',j) - ® - (4.9)

My ke

Hierin, wie auch bei allen folgenden Eliminationsschemata, laufen die Indizes 0 < k < n—1,
k <i<mn, k<j<n.Den Divisor mgfll bezeichnet man als Pivotelement.

Im numerischen Falle kann die Komplexitéat leicht berechnet werden. Wir beschranken uns
hier auf den Fall m = n: In jedem Eliminationsschritt werden 3 elementare Operationen
in der n’ x n’ Submatrix rechts unten ausgefiihrt, wobei n’ = n — 1...1. Die Anzahl der
Rechenschritte betriagt also

3 1
3((n—1)2+(n—2)2+---—|—22—|—12):n3—§n2+§n.

Die Determinante ist danach das Produkt der n Diagonalelemente. Damit ist die Gaufs-Spalte
in Tabelle 4.2 erklart.

Anhand eines Beispiels wird deutlich, welche Transformationen die Elemente der Matrix bei
den Eliminationsschritten durchlaufen:

6 -3 —4 9 6 -3 —4 9
-7 -5 6 =9 0 =17 43 3/
-8 -2 2 -1 0 0 —28f 169/,
4 -7 1 8 0 0 0 1705/p5

Obwohl alle Elemente urspriinglich aus einem Integritétsbereich waren (in diesem Falle aus
Z), wird dieser schon im ersten der drei Schritte verlassen. Ist das Ziel des Eliminationsver-
fahrens die Invertierung von Matrizen, so ist dies zu erwarten. Ist es aber die Berechnung der
Determinanten, die ja selbst als Polynom Element desselben Integritatsbereiches ist, so wére
es wiinschenswert, alle Zwischenschritte in demselben Integritédtsbereich durchzufiihren. Dies
gilt besonders fiir Polynome, wo der Aufwand fiir das Berechnen des gg'T' sehr grof sein kann.
Dient die Elimination der Loésung eines Gleichungssystemes, so liegen die Losungen zwar im
Quotientenkorper, aber die Notwendigkeit zu Dividieren kann bis zum schrittweisen Auflésen
verschoben werden. Die divisionsfreie Elimination (engl. division free elimination) umgeht
dieses Problem. Die Eliminationsvorschrift lautet bei diesem Algorithmus:

(0)

Mmij = Mij
k+1 k k k k
mg,j - mg,j)mé,i—mﬁ,k)m;,} (4.10)

106 4. GiNaC: Implementierung

Ein Implementationsproblem bei GauR-Elimination

r—1 22—z 1
0 =m= 1 a5 1

0 T 0

mt

Wenden wir den ersten Gauf-Eliminationsschritt an (k=0 in (4.9)) und konstruieren alle auftre-
tenden Terme geméfs unseren Regeln:

x—1 22—z 1
1 2_ 1
Wﬁ) = 1 4 ii—f T z—1
0 x 0

(1) (1)

Im néchsten und letzten Schritt wird durch das Pivotelement m; | geteilt. Es ist aber m; | = x —

z2—zx
r—1"

was verschwindet. Die defensive Vereinfachung hat das Pivotelement nicht zu 0 vereinfacht,

der naive Test auf 0 versagt und das Endergebnis enthélt das Element mg?% =z(1--1) /(2 ’f::f)

mit einer versteckten Division durch Null. Die Gaufs-Elimination verldsst den Integritidtsbereich
Z]x| und daher hilft auch kein Ausmultiplizieren in (4.9). Hier muss in jedem Schritt diejenige
Vereinfachung explizit aufgerufen werden, die im entsprechenden Quotientenkérper, hier also Q|x],
auf Null testen kann, also normal ().

Anhand unseres Beispieles sieht man, dass hier zwar keine Quotienten gebildet, die Zwischen-
ausdriicke jedoch sehr groft werden. Man sieht leicht ein, dass im Falle von Polynomen des
Grades m das Element (n,n) rechts unten nach der letzten Elimination den Grad 2™m hat:

6 -3 —4 9 6 -3 —4 9

-7 =5 6 -9 0 -51 8 9

-8 =2 2 -1 0 0 1308 —3042
4 -7 1 8 0 O 0 —3130380

Teilerfreie Elimination (engl: fraction free elimination) behebt dieses Problem der divisions-
freien Elimination durch die Beobachtung, dass das Pivotelement des letzten Eliminations-
schrittes alle Elemente der eliminierten Matrix teilt. In obigem Beispiel gilt in der dritten Zeile
6/1308 und 6/3042 und in der vierten 5186955, wo 86955 das rechte untere Element nach dem
vorletzten Eliminationsschritt ist (6% - 86955 = 3130380). Die Eliminationsvorschrift lautet
dann:

(0)

W%J = W%J
(), (k) k), (k)
(k1) MMy Mo = M g M5

= — (4.11)

My 1 k-1

4.7. Die Matrix-Klasse 107

Laplace-Entwickung Algorithmus
Permutations- ohne Zwischen- mit Zwischen- von Eliminationsverfahren
n gruppe speichern speichern Leverrier Gauls Bareiss
1 0 0 0 0 0 0
2 3 3 3 16 4 3
3 17 14 14 108 17 16
4 95 63 45 384 45 47
5 599 324 124 1000 94 104
6 4319 1955 315 2160 170 195
7 35279 13698 762 4116 279 328
8 322559 109599 1785 7168 427 511
9 3265919 986408 4088 11664 620 752
10 36287999 9864099 9207 18000 864 1059
>1 ~nn! ~en! ~2"n ~ 2n* ~nd N§n3

Tabelle 4.2.: Anzahl der elementaren Rechenoperationen (Additionen, Multiplikationen und Di-
visionen) zur Berechung der Determinanten einer Matrix in verschiedenen Algorithmen unter der
Annahme, dass die Rechenoperationen ausgefiihrt werden kénnen.

Angewendet auf unser bekanntes Beispiel ergibt sich nach drei Eliminationsschritten

6 -3 —4 9 6 -3 —4 9
7 -5 6 -9 0 51 8 9
8 =2 2 —1 | 7lo0o 0 218 =507
4 -7 1 8 0 0 0 1705

Durch die in jedem Schritt durchgefiihrte Division sind die Elemente der Matrix in ertréaglicher
Grofse geblieben: Fiir Polynome des Grades m in der Ausgangsmatrix hat das Element (n,n)
nach der letzten Elimination nun den Grad nm. Es ist anzumerken, dass keine weiteren Kiir-
zungen moglich sind, da nach dem letzten Schritt im Element (n,n) bereits die Determinante
der urspriinglichen Matrix steht.

Der Beweis, dass diese Division immer exakt aufgeht, erfolgt mithilfe der Sylvester-Identitat.
Hierzu definieren wir die Matrix M®*) = (mz(f)) aus Subdeterminanten von M(®:

0
(mz(j)) =m®
Mmoo -+ Mok—1 mo,j
i : : :
mgj) = ' ' : : (4.12)
Mmr—10 - Mg—1k—1 Mk-1;
m;o o My k-1 m; 4

Die so definierte Matrix aus Subdeterminanten hat die Dimension (n—k) x (n—k) (vergleiche
Abbildung 4.8 links). Fiir die Indizes gilt £ <i,7 < n.

108 4. GiNaC: Implementierung

k J k
e N ! \ " \
’“{ H k{ My Mo
MW*®) = (mgf)) = det n M = n
‘ My My,
T — o
))

g
n

ER

Abbildung 4.8.: Die beim Beweis der Sylvester-Identitét vorkommenden Matrixpartitionierungen.

Satz 4.2 (Sylvester-Identitit) Fir alle in Gleichung (4.12) definierten mgf)gilt

k) k)
mi e

E—1)\n—k—
|M](af,)t =

(k) (k)
mn—l,k mn—l,n—l

Zum Beweis partitionieren wir die Matrix M wie in Abbildung 4.8 rechts angedeutet in vier
Submatrizen und splitten sie in zwei Anteile:

v Mo Mo\ _(Mo 0 (1 My, My
My My My 1) Mn—MloMoBle ’

wobei wir Myg als nichtsinguldr annehmen. Dann ist die Determinante
| M| = [Moo|| My — Myo Mgy Moy |-

Da die zweite Determinante auf der rechten Seite von der Ordnung n — k ist, kénnen wir | M|
durch Multiplikation mit |Mgy|"*~! hineinziehen und erhalten

| M| Moo |~ = || Moo| (M1 — Mo Mg' Mon) |

Hierin erkennt man | M| My' = Mg, so dass sich die rechte Seite nach der Cramer’schen
Regel auflosen lésst:

k-1
| [Moo| (M1 — MygMyg' Moy)| = || Mool (mi; — Z i (Moo)rsms,j) |

r,s=0

k—1
= || Moolmi; — Y mi e (Mgg”)arms]
r,s=0

(k)

0,

= ’m , E<ijg<n.

Die letzte Gleichung folgt durch Laplace-Entwicklung der untersten Zeile von (4.12) von rechts

nach links. Also haben wir |M||Mgy|" %! = |m£l§)| Das ist aber genau die Behauptung des
Satzes. O

4.7. Die Matrix-Klasse 109

Ein Implementationsproblem teilerfreier Elimination

Bei der Implementierung der teilerfreien Elimination (Gleichung (4.11)) kommt es zu einem sub-
tilen Problem mit automatisch durchgefiihrten Vereinfachungsregeln der Klasse mul. Man kann es
am besten an einem Beispiel einsehen. Sei

(a+be 0 0 0
O _ 0 1 0 0
mee=m 0 0 1 0
0 0 0 f/e

Anwenden des ersten Eliminationsschrittes liefert:

(a+b)c 0 0 0
m(l) _ 0 (a+b)c 0 0
0 0 (a+b)c 0

0 0 0 (a+b)f/c

Im Element unten rechts bahnt sich bereits das Verhéngnis an, denn dort wurde aus (a+b)cf/c?
ein ¢ weggekiirzt. Diese sehr friihe Kiirzung von Ausdriicken, deren Gleichheit durch syntaktischen
Vergleich festgestellt werden kann, findet schon im Konstruktor der Klasse mul statt und ist daher
auch nicht durch ein .hold () zu verhindern. Der néichste Eliminationsschritt wiirde zum® = m®)

fiihren, da das Pivotelement mﬁ gleich dem Divisor m(()og ist. Trennt man alle Matrixelemente

nach Zéhler Z und Nenner N auf, so ist der Zédhler des Divisors nun Z(méog)) (a+b)c, der Nenner

N(m(()og) = 1. Die Division von Z(m(3 :)3) (a+b)f durch Z(m(() 3) geht nun jedoch nicht mehr auf.
Der Divisor ist nun also kein Teiler mehr und der Algorithmus bricht zusammen.

Angewendet auf das divisionsfreie Eliminiationsschema liefert die Sylvester-Identitét

(k—1) (k—1)
m®) — my, g my, mE=2)
i — (k—1) (k—1) k—1,k—1°
my g i,

(k)

was die Teilerfreiheit zeigt, da m,; per Definition kein Bruch ist.

Die Division in Gleichung (4.11) geht zwar fiir £ > 2 immer auf, dies funktioniert jedoch
in der Praxis nicht mehr, sobald vorher eine Kiirzung durchgefiihrt worden ist (sieche Kas-
ten auf Seite 109). Daher wird in Quotientenkdrpern eine explizite Variante des teilerfreien
Eliminationsschemas benotigt, welches Zahler und Nenner getrennt verwaltet:

m.. = mi,j

Z(m(f_ll)fﬁ =1

k k k k k k k k
Z(mN Z(mE)N YN (i) — Z2m) Z(mif)N (m))N (m)

Z(m{) = = o (4.13)
! Z(mi)
(k) (k)
N(m(kgrl)) _ N(mi,j)N(m) () (mk)

17_]
N(m,i e)

110 4. GiNaC: Implementierung

Abbildung 4.9.: Obere Dreiecksmatrix vs. obere Staffelmatrix.

Es ist vollig dquivalent zur teilerfreien Elimination und stellt nur eine Umformulierung dersel-
ben dar. Der Verwaltungsaufwand ist vernachléssigbhar, jedenfalls gegeniiber der Alternative,
in jedem Schritt den ggT zu berechnen und Polynomdivision durchzufiihren.

Diese drei Eliminationsverfahren sind in GiNaC (derzeit als private Methoden der Klasse
matrix) implementiert. Die Schleifen sind in allen Féllen dabei um Logik erweitert, die die
Handhabung unterdeterminierter Gleichungssysteme erlaubt. Hierzu wird nicht in eine Drei-
ecksmatrix sondern in eine Staffelmatrix (engl: echelon matriz) transformiert, in der jede Zeile
mehr fithrende Nullen hat als die vorherige, nicht unbedingt aber genau eine fithrende Null
mehr (Vergleiche Abbildung 4.9). Die Notwendigkeit dafiir entsteht bei dem Versuch unterde-
terminierte lineare Gleichungssysteme aufzulosen. Dies soll noch mdoglich sein, wobei sich die
Routine dann fiir die Formulierung der Losung vom Benutzer mitgelieferter freier Variablen
bedienen muss (siche néchste Seite).

Bei der Implementierung muss man sich auch Gedanken dariiber machen, inwieweit das Fr-
gebnis ,vereinfacht® werden sollte. Mathematica lasst das Ergebnis einfach stehen:

1 In[1]:= Detl[a/(a-b),1,b/(a-b),1]
2

3 a b

4 Outli]l= ————— - ————-

5 a-»> a-»>

6

7 In[2]:= Together[%]

8

9 Outl[2]=1

MapleV ruft dagegen explizit normal () auf, was dquivalent ist zu Mathematicas Together []1:!4

> with(linalg):

Warning, new definition for norm

Warning, new definition for trace

> det(matrix(2,2,[[a/(a-b),1], [b/(a-b),1]11));
1

I O

Ersteres ist zweifellos unbefriedigend, da es nicht der Tatsache Rechnung tragt, dass wir uns
von vornherein nicht in einem Integritdtsbereich befinden, sondern in einem Quotientenkor-
per. Zweiteres ist besser, konnte aber verschwenderisch sein, falls Maple’s normal () im Falle

14 Streng genommen macht Together [] mehr als normal(), denn es beriicksichtigt algebraische Kérperer-

weiterungen. Es entspricht eher Maples radnormal (), welches auch korrekt M

T oot vereinfacht.

Dies ist aber fiir die Betrachtungen hier ohne Belang.

4.7. Die Matrix-Klasse 111

nichtrationaler Funktionen tatséchlich etwas Nichttriviales macht. Wir rufen in GiNaC explizit
normal () auf, falls mindestens eines der Elemente der Ausgangsmatrix aus einem Quotien-
tenkorper war.

Die drei beschriebenen Eliminationsverfahren und ihre méglichen Aufrufer sind so orthogonal
zueinander implementiert wie nur moglich. Die aufrufenden Funktionen miissen heuristisch die
Entscheidung iiber das zu verwendende Verfahren treffen, falls der Benutzer keine Hinweise
gegeben hat. Als Aufrufer kommen in Frage:

matrix::solve() Lost ein lineares Gleichungssystem AB = C, wobei A eine beliebige m x n-
Matrix ist, C' eine beliebige m x p-Matrix und B eine n x p-Matrix mit Symbolen. Der
Aufruf erfolgt nach dem Schema A.solve(B,C) und liefert die Losung als Riickgabe-
wert. Anders als bei Computeralgebrasystemen iiblich zwingt GiNaC den Benutzer zur
Eingabe einer Symbolmatrix B. Dies hat den Vorteil, dass auch bei unterbestimmten
Gleichungssystemen keine Symbole mit (fiir den Benutzer) unvorhersagbaren Namen
erzeugt werden miissen. Ein triviales Beispiel hierfiir ist das Gleichungssystem

(1 -1)(5)=C(e)

Y

mit der Losung
(c+y)
y .
In MapleV kann man dagegen direkt 1insolve (A, (') 16sen lassen, bekommt dann aber

ein Ergebnis in ¢ und dem neuen Symbol _t[1] [1], was fiir eine automatische Weiter-
verarbeitung selten brauchbar ist.

matrix::inverse() Hier wird zwecks Reduzierung von iiberfliilssigem Programmcode iiber
den Umweg matrix::solve() auf die Eliminationsverfahren zugegriffen: man 16st ein-
fach das Gleichungssystem AB = 1 nach B auf. Man beachte, dass dies nicht weniger
optimal ist als andere Invertierungsroutinen, da das Eliminationsverfahren nur einmal
auf die augmentierte Matrix (A|1) angewendet wird. Heuristiken fiir die Auswahl des
geeigneten Eliminationsverfahrens brauchen daher auch nur einmal in matrix: :solve()
implementiert zu werden. Dadurch ist matrix::inverse() inklusive Fehlerbehandlung
nur ca. 20 Zeilen lang.

matrix::determinant() Wie wir gesehen haben, liefert die teilerfreie Eliminationsvor-
schrift (4.11) im rechten unteren Element der eliminierten Matrix die Determinante.
Bei der Gaufs- und der divisionsfreien Elimination kann die Determinante leicht aus den
Diagonalelementen der entstandenen Dreiecksmatrix berechnet werden. Das ist jedoch
meist insgesamt aufwéndiger. Lediglich im rein numerischen Fall wird die Gaufs-Routine
bevorzugt, da sie dann &quivalent zur Jordan-Elimination ist. Die Heuristik wird je-
doch in den meisten Féllen kein Eliminationsverfahren wéhlen sondern die auf Seite 103
beschriebene, verbesserte Laplace-Entwicklung.

112 4. GiNaC: Implementierung

Weitere Besonderheiten der Matrix-Klasse

Ganzzahlige Potenzen nichtkommutativer Objekte in GiNaC werden normalerweise sofort
von power::eval() ausmultipliziert, wie zum Beispiel in der Regel 72 — 7o fiir Dirac-
Matrizen. (Erst in zwei darauffolgenden Schritten wird der Ausdruck zu 791 und schlieflich
1 evaluiert.) Dies scheint fiir alle nichtkommutativen Objekte sinnvoll zu sein, sofern sie in
atomarer Darstellung vorliegen und Regeln fiir die Evaluation von Produkten bekannt sind.
Dieses Umschreiben in lineare Produkte macht die Objekte direkt einer groferen Anzahl von
Vereinfachungen zugénglich als dies mit Evaluationsregeln in power::eval() moglich wére.
Man kann dies leicht am Beispiel (797170)? nachvollziehen.

Fiir Potenzen von Matrizen machen wir hier jedoch eine Ausnahme: Sie nicht in ncmul-Objekte
umzuwandeln macht sie einer schnellen Exponentiationsroutine (siehe [Knu 1998|, Abschnitt
4.6.3) zugénglich. Dabei werden einmal berechnete Zwischenergebnisse aufgehoben, wie in
At = A% . A% wozu die Binirdarstellung des Exponenten herangezogen wird. Fiir die Berech-
nung von AP miissen dann genau [log, p| + v(p) < 2log, p Matrixmultiplikationen ausgefiihrt
werden, wobei v(p) die Anzahl der Einsen in der Binédrdarstellung von p zahlt. Der Algorith-
mus in Pseudocode ausgedriickt lautet dann:!'®

C «—1;
while (p # 1)
if (p odd)
C«— C-A;
p — [p/2];
A — A-A;
return A - C;

FORIE N U N R SN

Wenn aber power: :eval () nicht fiir die Exponentiation zusténdig sein soll, stellt sich die Fra-
ge, wann diese ausgefiihrt wird. Da alle typischen Matrixoperationen die Komplexitit O(n?)
mit 5 > 2 haben, macht sich GiNaC den pragmatischen aber nicht ganz orthogonalen Ansatz
zu eigen, einen separaten benannten Evaluator evalm() einzufiihren. Dieser erst addiert und
multipliziert Matrizen und fithrt die Exponentiation zu einer ganzen (nicht notwendigerweise
positiven) Zahl aus.

Dieser Weg ist wenig originell, ist er doch identisch mit dem von MapleV eingeschlagenen.'® Er
hat sich aber in der Praxis bewéhrt, sofern der Benutzer weifs, dass Matrizen vom anonymen
Evaluator unangeriihrt bleiben.

15 Ersetzt man in den Zeilen 4, 6 und 7 die Multiplikation durch Addition, so erhilt man iibrigens den als
,Russische Bauernmultiplikation* bekannten Algorithmus zur Berechnung des Produktes einer beliebigen
Zahl a mit einer natiirlichen Zahl p.

16 Man kann sogar leicht herausfinden, dass Maple seit MapleVR4 die schnelle Exponentiation fiir Matrizen
benutzt, indem man die Probematrix

4_ (a 1)\4
A= (0 1)

einmal mit dem unexpandierten Ergebnis von ((4-A4)-A)-A und dann mit dem Ergebnis von (A-A)-(A-A)
vergleicht. Ersteres liefert (4%)p1 = a® + a® + a + 1, letzteres (A%)o1 = a?(a+ 1) +a + 1.

5. Kritische Analyse des
GiNaC-Ansatzes

However, the existence of the guild of mathematicians disburdens us
from a vain trial in building a complete, universal, computing system.
Trudy Weibel, Gaston Gonnet [WeGo 1991]

5.1. Effizienz

Eine allgemeine vergleichende Effizienzanalyse von Computeralgebrasystemen ist ein aus-
sichtsloses Unterfangen — lediglich punktuelle Untersuchungen bestimmter Fahigkeiten sind
sinnvoll und Ergebnisse sind stets mit Vorsicht zu geniefsen. Dies gilt fiir den Vergleich der
vielfiltigen symbolischen Fihigkeiten noch mehr als fiir das Aufstellen von Benchmarks.*

Einerseits steht natiirlich immer die Moglichkeit offen, durch eine vollstdndige Umstruktu-
rierung der Darstellung aller Klassen etwas vollig Neuartiges und vielleicht Performanteres
zu schaffen. Andererseits kann man auch durch sorgfiltige Feinabstimmung der inneren Ab-
laufe allen Operationen schon auf die Spriinge helfen. Abbildung 5.1 zeigt die Laufzeiten in
einer Variation von Fliegners Konsistenztest, in der in der expandierten Summe (377 a;)* die
Ersetzung ag «— — 2?22 a; vorgenommen und das Ergebnis ausmultipliziert wird. Der Test
wurde gewahlt, weil sich die verwendeten Algorithmen in der entsprechenden Zeitspanne nicht
und auch die Implementierung nur unwesentlich geindert haben. Die groben Optimierungs-
arbeiten wie das Ubergeben von Referenzen statt Objekten wurden alle schon vor Version
0.4 vorgenommen. Tabelle 5.1 listet die Eckpunkte, die zu den Verbesserungen von insgesamt
etwa 50% beigetragen haben diirften. Es hat den Anschein, dass solcherlei Feinabstimmungen

weitgehend ausgereizt sind.

Es gibt einige bekanntere Kollektionen, in denen die Féahigkeiten von Computeralgebrasys-
temen verglichen werden. In [West 1995, West 1999| werden jedoch hauptsichlich sehr fort-
geschrittene Fahigkeiten wie zum Beispiel die symbolische Integration getestet — lediglich in
der Sparte Laurentreihenentwicklung und ggTs konnten wir hier Vergleiche anstellen. Ein
auch fiir uns interessanter Test wurde in [LeWe 1999] vorgestellt. Dort wurden einige extrem
grofe Ausdriicke erzeugt und Umformungen vorgenommen, die zum grofiten Teil in GiNaC
implementierte Algorithmen voraussetzen. Diese Algorithmen gehen weit iiber die von reinen

! Die zwei recht sorgfiiltigen Vergleiche mathematischer Fiihigkeiten einiger ausgewiihlter CAS [West 1995]
und [West 1999] sind weithin anerkannt und die Systemhersteller trimmen ihre Produkte regelrecht auf
das Bestehen dieser Tests.

114 5. Kritische Analyse des GiNaC-Ansatzes

""""" Frrrr e e e e e e e e e e e et
Neue Version e

o
[o’ ' !
I | G ST

S oL) S (R

g

‘©

N

5

©

-
< [T} © ~ © o o
LO o o o o o —
0 METE B R Era PEEFEETE R R A S R T R | R R M IR T R R I P R M R R S R S R | I I
0 100 200 300 400 500 600 700

Abbildung 5.1.: Entwicklung der Effizienz von GiNaC als Funktion der Tage nach Version 0.4.0.

Version Datum Anderung

0.6.4 10.8.2000 Die Konstruktoren von numeric markieren das Objekt nun gleich als expanded
in den status_flags, wodurch ex::expand() bei jeder Zahl einen virtuellen
Funktionsaufruf einsparen kann.

0.7.0 15.12.2000 Die Klasse numeric enthélt direkt ein CLN-Objekt anstatt eines Zeigers darauf.
Dies spart eine Indirektion.

0.7.3 28.2.2001 Die Koeffizienten in einer expairseq fliefien in die Berechnung der Hashwer-
te mit ein. Dadurch verringert sich zwar die Anzahl der Hashkollisionen, es
entsteht aber zusétzlicher Aufwand bei der Berechnung.

0.8.0 24.3.2001 Da der Operator * nun auch fiir nichtkommutative Produkte stehen soll, wur-
den alle Operatoren intern iiberarbeitet. Dies fiihrte zu optimalerem Inlining.

1.0.0 6.11.2001 Flyweights wurden statisch, also ohne zusétzlichen Funktionsaufruf.

Tabelle 5.1.: Einige Eckpunkte in der zeitlichen Entwicklung der Effizienz aus Abbildung 5.1.

Sortierern wie FORM zur Verfiigung gestellten hinaus, sind aber nicht so anspruchsvoll wie die-
jenigen, die man beispielsweise in Maple findet. Somit ist diese Kollektion ein idealer Priifstein
fiir GiNaC. Die Ergebnisse sind in Tabelle 5.2 gelistet. Es stellte sich heraus, dass der Test
offensichtlich mafsgeschneidert ist um das System Fermat [Lewi 1997| in ein moglichst gutes
Licht zu riicken, dessen Autor Robert Lewis auch die Tests mitentworfen hat. Dies erklart
die Dominanz von manifesten Matrixeliminationstests — 6 von 34 — sowie von Matrixmani-
pulationen wie die Smith-Normalform, die intern auf eine Elimination herauslaufen — 21 von
34. Es erkléart vor allem die vollige Abwesenheit von Differentiation, Reihenentwicklung und
numerischer Funktionsevaluation, da Fermat diese nicht beherrscht. Zudem stellte sich bei der
Wiederholung der Tests heraus, dass die meisten Systeme (nicht nur in den hier verwendeten
neueren Versionen) besser abschneiden als in [LeWe 1999] angegeben. Dies gilt insbesondere
fir Singular |[GPS 2000].

Speichereffizienz ist ein Thema, welches von Computer-Algebra-Benchmarks selten bis gar
nicht angesprochen wird.? Bei der Handhabung grofer symbolischer Ausdriicke erfihrt man

2 We think that the user of a computer algebra system is mostly interested in good timings. The memory

5.1. Effizienz 115

System: GiNaC MapleV MuPAD Pari-GP Singular

Version: 1.0.0 R5 2.0.0 2.0.198 2.0.1
Benchmark Erscheinungsdatum: ~ 11/2001 9/1997 5/2001 3/2000 6/2001
A: Teile Fakultiiten (o0t | ™ 0.20 666 113 037 0.21
B: Y11/ . 0.019 0.08 0.10 0.041 0.51
C: ggT(grofe Zahlen) 0.25 10.2 3.01 1.65 0.31
D: 3.0, iyt (y + it)’ 0.68 0.13 220 0.20 0.11
B S0 iyt (y + |5 — i|t)’ 0.56 0.05 2.20 0.11 2.30
F: ggT(bivariate Polynome) 0.07 0.08 1.36 0.057 0.09
G: ggT(trivariate Polynome) 2.01 2.89 543 99.5 0.27
H: det(Rang 80 Hilbert-Matrix) 9.12 33.5 19.5 3.97 15.9
I: Invertiere Rang 40 Hilbert-Matrix 2473 6.41 5.10 0.62 0.35
J: Verifiziere | 1:52 2.28 1.90 0.22 0.02
K: Invertiere Rang 70 Hilbert-Matrix 17.8 92.0 32.2 5.90 1.84
L: Verifiziere K 8.69 21.6 10.6 1.57 0.058
M;j: det(symbolische 26 x 26 Matrix) 0.36 0.40 0.51 0.016 0.003
Maj: det(symbolische 101 x 101 Matrix) 1517.3 GU CR CR 28.2
N: > rationaler Funktionen vereinfachen 704.4 GU CR CR CR
O;: Drei Rang 15 Determinanten (Mittel) 39.5 GU CR CR 53.8
Og: ggT der Ergebnisse aus O CR UN UN UN CR
P: det(Rang 101, diinn besetzte Matrix) 1.10 12.6 4.3 0.09 0.023
P’: det(Rang 101, weniger diinn besetzt) 5.61 13.3 11.3 0.38 2.85
Q: charpoly(P) 103.1 1429.7 2751.2 0.15 0.14
Q’: charpoly(P’) 209.8 1497.3 2796.1 CR 3.82

Tabelle 5.2.: Vergleich symbolischer Pakete nach [LeWe 1999]. Alle Laufzeiten sind in Sekunden
angegeben, als Testsystem diente ein Intel P-IIT 450MHz mit 384MB RAM unter Linux. Abkiirzungen:
GU (,gave up®, wie bei Maple’s object too large), CR (,crashed, meist nicht genug Speicher), UN
(,unable®, ein Voraussetzungstest konnte nicht durchgefiihrt werden).

jedoch, dass hier gewaltige Unterschiede zwischen den Systemen bestehen, die fiir ein gegebe-
nes Problem das eine oder andere System bisweilen unbrauchbar machen kénnen. So bricht
zum Beispiel der Test von Denny Fliegner aus Abbildung 3.6 fiir MuPAD deutlich friiher ein
als fiir die anderen Systeme und kann mit FORM auf der Testmaschine sogar noch bis n ~ 1700
getrieben werden statt bis n ~ 1200.

Dank der konsequenten Referenzzédhlung kann GiNaC beim Speicherverbrauch unter Umstéan-
den um Groéfenordnungen besser abschneiden als andere Systeme. Anhand von Ableitungen
kann man dies schon verdeutlichen. Als Beispiel berechnen wir die Euler-Zahlen mithilfe ihrer
Definitionsformel und messen den Speicherbedarf. Als Euler-Zahlen F,, bezeichnet man die
Entwicklungskoeffizienten des inversen Cosinus Hyperbolicus

1 N
cosh(x) HZ:O Enﬁ

management is not of such a large interest to him besides the fact that large memory usage might influence
the timings or may even crash the system.“ Wolfram Koepf in [Koe 1999].

116 5. Kritische Analyse des GiNaC-Ansatzes

1000

GiNaC 1.0 ,
Mathematica 4--------- 7
MapleV R5 ------- ST
MUPAD 1.4 ———-

100 |

10 |

Speicherbedarf in Megabyte

0.1}

10000

M| L L L M S R T |
100 1000
n-te Eulerzahl
Abbildung 5.2.: Speicherbedarf verschiedener CA-Systeme fiir die Berechnung von FEulerzahlen.
Alle Messungen wurden auf der Architektur Intel-x86 durchgefiihrt.

Das Ergebnis zeigt Abbildung 5.2. (Reduce konnte leider nicht zum Test antreten. Das Pro-
blem ist in Reduce zwar trivial formulierbar, jedoch versagt dieses System frith und mel-
det CopyFromStack error,Binding stack overflow und schlieflich Segmentation Fault.)
Der abgebildete Speicherbedarf in Megabytes ist derjenige vom System fiir die Losung des Pro-
blems allozierte — also der Gesamtbedarf abziiglich des Speicherbedarfs um das System leer
zu starten. Der Knick im von Mathematica allozierten Speicherbedarf steht moglicherweise in
Zusammenhang mit dem Knie in Abbildung 4.5. Er geht mit einer dramatischen Verlangsa-
mung der Rechengeschwindigkeit einher und kénnte eine Anderung der (undokumentierten)
internen Darstellung von Ausdriicken andeuten.® Es wiire interessant zu wissen, ob sich die
Kurven von Mathematica und GiNaC jenseits von 10GB tatséchlich schneiden. (Dies kann na-
tiirlich aufgrund des auf 32 Bit beschrankten Adressraumes der x86-Architektur grundsétzlich
nicht beantwortet werden.)

Abbildung 5.3 stellt dar, wie aus dem Darstellungsbaum ein gerichteter azyklischer Graph
wird, indem mehrfach auftretende Ausdriicke bei der Berechnung von FE, wiederverwertet
werden und nur deren Referenzzahler erhoht wird. Ein Paket zur automatischen Berechnung
von Antipoden als Renormierungs-Counterterme profitiert nicht unerheblich von solchen Ein-
sparungen [BKK 2001].

An Programmbibliotheken werden verstandlicherweise recht hohe Anspriiche an Speichersi-
cherheit gestellt in dem Sinne, dass jeder allozierte Speicherbereich auch wieder freigegeben

3 Angedeutet im Abschnitt ,New in Version 4“ der begleitenden Dokumentation [Wolf 1999]: ,, Internal packed
array technology to make repetitive operations on large numerical datasets radically more efficient in speed
and memory.” Dass eine solche Umorganisation auch Geschwindigkeitsvorteile bringen soll, ist jedoch
groftenteils Wunschdenken.

5.1. Effizienz 117

Abbildung 5.3.: GiNaCs Darstellung von %(1/ cosh(z)) = 2sinh(z)?/ cosh(x)3—1/ cosh(x) wie er
bei der Berechnung der Euler-Zahl Ey in Abbildung 5.2 auftritt.

werden soll. Ein objektorientiertes Design, in dem free / delete systematisch von den De-
struktoren aufgerufen wird, erleichtert es, die Ubersicht zu wahren. Auferdem koénnen Werk-
zeuge zum Aufspiiren von Speicherlecks wertvolle Dienste leisten und sollten regelméfig zur
Anwendung kommen. Andererseits hat es sich aber auch als sehr schwierig herausgestellt,
selbst grofte Speicherlecks iiberhaupt rechtzeitig zu bemerken. Die Beobachtung der Grofe ei-
nes Programmes im Speicher ist kein verlassliches Maf. Die Abbildung 5.4 zeigt, wie der Spei-
cherverbrauch eines Programmes, welches die quadratfreie Faktorisierung bivariater Zufalls-
polynome Q[z,y] berechnet, immer grofer werden kann, obwohl eigentlich alle Destruktoren
aufgerufen worden sein sollten. Die auf Seite 42 erlauterte quadratfreie Faktorisierung wurde
gewahlt, weil in ihr ein grofer Querschnitt von Funktionen zur Anwendung kommt — wie die
Berechnung von multivariaten ggTs und zum Vergleich die Ausmultiplikation grofter Polyno-
me. Die Grafik zeigt eindringlich, wie das Muster der Speicherentwicklung des mit GCC-2.95.2
kompilierten Programms alle Merkmale eines Speicherlecks aufzuweisen scheint, wahrend der-
selbe Programmlauf in einem mit einer GCC-3.0 Vorabversion kompilierten Programm sich
konstant einpegelt und nur noch die Merkmale leichter Heapfragmentierung aufweist. Der
Grund hierfiir ist auferhalb von GiNaC zu suchen. Die Implementierung der Container in
der Standard Template Library zwischen diesen beiden Compilern unterscheidet sich erheb-
lich: im &dlteren Compiler geben die Container ihren Speicher niemals frei, um ihn zu einem
spateren Aufruf wiederverwerten zu konnen ohne ihn aufwéindig mit malloc / new erst an-
fordern zu miissen. Dieses Verhalten wird seit 1995 immer wieder umworben [SGI 1995] und
wird in weiten Kreisen immer noch fiir erstrebenswert gehalten. Kurz vor Verdffentlichung
des GCC-3.0 wurde es wiederbelebt [FSF 2001, Chapter 17: Library Introduction|. Um mit
solchen Compilern Speicherlecks aufzuspiiren muss der Standardallokator der STL explizit
umgestellt werden.*

4 Dies kann theoretisch beim Kompilieren der Bibliothek mit der Priprozessordirektive __USE_MALLOC ge-
schehen. Es hat sich aber als zuverléssiger erwiesen, dies vor dem gesamten Bootstrap-Prozess des Compi-
lers schon in der Quelldatei 1ibstdc++-v3/include/bits/c++config per #define vorzunehmen, da man
sonst leicht unbeabsichtigt gegen die C++Regel der ,einmaligen Definition* verstofit.

118 5. Kritische Analyse des GiNaC-Ansatzes

r GCC 2.952—]
65536 |- GCC 3.0 (pre) e

32768

16384 | pemmmmsmmmmmmsmmmmnofTTTTSSTTSSSSSsommsssoossosssssssoooooooee -

8192

4096

2048

Allozierte kB

1024 |
512 |

256

128 .ﬂﬂ Livesiniey Livevian, Livesianies Livesianies Lovesiaies Lovesiaies Lovesiane Livesiaes Livesiaies Lovesiaies Liveviae |.1:
0 100 200 300 400 500 600 700 800 900 1000 1100 1200

Iterationn
Abbildung 5.4.: STL Template Speicherallozierung: Abhéngig von der Implementierung wird ein
Teil des gebrauchten Speichers auch nach dem Aufruf der Destruktoren der STL Templates nicht
wieder freigegeben, sondern fiir spétere Verwendung autbewahrt. Gemessen wurde der auf dem Heap
belegte Speicher nach 1200 Aufrufen von sqrfree() in GiNaC 0.8.2.

5.2. Handhabbarkeit

Das Schreiben symbolischer Programme in C++ verlangt dem Programmierer zweifelsfrei mehr
Denkarbeit und Kenntnisse der zugrundeliegenden Datenstrukturen ab als in einer eigens dafiir
geschaffenen Sprache wie Maple. Ob dies nun als negativ oder positiv empfunden wird, ist
subjektiv und muss dahingestellt bleiben. Stattdessen erdértern wir in diesem und dem néchsten
Abschnitt exemplarisch ein paar besser taxierbare Gesichtspunkte.

Portabilitat

Die Frage nach der Abhéngigkeit von GiNaC von einem spezifischen Compiler ist berechtigt.
Sobald die Entscheidung fiir CLN als Klassenbibliothek gefallen war, hatten wir uns zwar nicht
auf Unix-Plattformen, jedoch auf den C++-Compiler aus der GNU Compiler Collection (GCC)
festgelegt. Dies liegt an der Tatsache, dass ein C++Programm — oder eine Bibliothek — norma-
lerweise in verschiedene Kompilationseinheiten zerlegt wird.> Wenn in diesen Einheiten nun
statische Objekte zu initialisieren sind, so werden deren Konstruktoren beim Aufruf des Pro-
grammes in einer kaum kontrollierbaren Reihenfolge aufgerufen. Die Sprache garantiert nur,
dass statische Objekte innerhalb eines Moduls in der Reihenfolge ihres Auftretens initialisiert
werden, die Reihenfolge der Module héngt aber von Linker-Charakteristiken ab. Wenn ein
Konstruktor nun aber ein anderes statisches Objekt benutzt und dieses noch nicht initialisiert

5 CLN besteht aus ca. 850 kleinen Programmeinheiten, GiNaC aus ca. 40 mittelgroen.

5.2. Handhabbarkeit 119

worden ist, so kommt es zu undefiniertem Verhalten. Ein idealer Linker wiirde einen gerichteten
Abhingigkeitsgraphen erstellen und die Objekte in der korrekten Reihenfolge initialisieren.®
In CLN Version 1.1 gibt es 39 solcher globalen Objekte. Thre Initialisierungsreihenfolge wird
mit einem halbautomatischen Trick garantiert, der Eigenschaften der GNU Binérschnittstelle
ausnutzt um wihrend der Initialisierung zwischen den einzelnen Modulen umherzuspringen
und daher nicht portabel ist. Um CLN —und damit auch GiNaC und xloops — auf einen anderen
Compiler zu portieren, muss CLN als statische Bibliothek tibersetzt werden um sie unabhén-
gig von der Initialisierung durch den dynamischen Linker zu machen. Zusatzlich miissen die
Inline-Assemblerroutinen mit dem Préaprozessorsymbol NO_ASM ausgeschaltet werden, sofern
der Zielcompiler die GNU-Syntax nicht unterstiitzt.

Im August 2000 konnte die Portabilitat von GiNaC erstmals bewiesen werden. Als Testsystem
diente der C++-Compiler des Herstellers ,Portland Group’ in der Version 3.1-3. Es gelang mit
minimalem Aufwand, CLN damit als statische Bibliothek zu iibersetzen. Das Ergebnis war
unbefriedigend langsam und algebraisch bisweilen inkorrekt, was vermutlich auf Compilerfeh-
ler zuriickzufiihren ist. Damit eignet sich dieses Gerét leider nur als penibler Syntaxpriifer. Als
solcher konnte er jedoch GiNaC in der Version 0.6.4 problemlos iibersetzen und sogar die in
Tabelle 5.2 aufgelisteten Benchmarks durchfithren modulo einiger Rechenfehler, die wohl auf
die Kompilierfehler bei der Ubersetzung von CLN zuriickzufithren sind. Die Laufzeiten waren
um das zweifache bis achtfache langsamer als diejenigen des GCC-Kompilates, womit sich die-
ser kommerzielle Compiler fiir die Weiterentwicklung in mittlerer Zukunft als uninteressant
erwiesen haben diirfte.”

Im Juli 2001 wurde die Portabilitdt abermals getestet, diesmal anhand des KAT C++-Compilers
von Intel, Version 4.0f3. Dieser Compiler ist eigentlich nur ein Code-Generator, der C++-
Programme intern in optimierte C-Programme umwandelt und diese dann vom nativen Sys-
temcompiler in Bindrdateien iibersetzen lisst. Die erfolgreiche Ubersetzung von CLN und
GiNaC setzte einige manuelle Eingriffe in die Quellcodes voraus, um ein paar leicht zu iden-
tifizierenden Compilerfehlern aus dem Wege zu gehen. Die Laufzeit war nur unwesentlich
geringer als diejenige des GCC-Kompilates. Rechenfehler wurden nicht beobachtet.

Kurz darauf konnte die Portabilitdt auf die Version 5.0beta des Referenzcompilers fiir x86-
Plattformen vom Hersteller Intel bestitigt werden. Die Benchmarks aus Tabelle 5.2 liefen
damit wider Erwarten langsamer als mit dem GCC-Kompilat — im Durchschnitt um etwa
50%.

Zusammenfassend lésst sich sagen, dass eine Portierung des Systems CLN/GiNaC auf einen
neuen Compiler durchaus durchfiihrbar ist, was angesichts der insgesamt 140000 Programm-
zeilen schon als bemerkenswert gelten diirfte. Da der Arbeitsaufwand hierfiir jedoch nicht
unerheblich ist und andere Compiler bislang keinerlei Vorteile gegeniiber dem freien GCC
erkennen liefsen, sollte eine solche Portierung wohliiberlegt werden.

6 Der GNU Linker arbeitet sie in der Reihenfolge ab, in der sie beim Zusammenlinken des Programmes auf
der Kommandozeile spezifiziert wurden. Es ist fraglich, ob diese Konvention geschickt ist: Nur die Tatsache,
dass es eine solche Konvention gibt, wird die spatere Umstellung auf eine automatisch nach Abhéngigkeiten
sortierte Reihenfolge enorm erschweren.

7 Falls es noch einmal versucht werden sollte: der Compiler von Portland Group konvertiert nicht korrekt von
signed char nach unsigned char, wenn der Schalter -Msignextend nicht gesetzt ist. Diese Konversion
ist Voraussetzung fiir CLN.

120 5. Kritische Analyse des GiNaC-Ansatzes

Rapid Prototyping

Der fiir compilierte Sprachen typische Zyklus Editieren—Kompilieren—Linken—Ausfithren kann
wahrend aktiver Programmentwicklung rasch zu langwierig werden. Aufgrund der aufwéndi-
gen und teils tief verschachtelten Standard-Headers und fehlenden Unterstiitzung fiir vorkom-
pilierte Header in einigen weit verbreiteten Compilern betrifft dies C++ noch mehr als andere
kompilierte Sprachen wie etwa C.

Als Losungsversuch wurde eine Schnittstelle zum C/C++-Interpreter Cint implementiert. Cint
ist unter anderem das Herzstiick des am CERN entwickelten objektorientierten Datenana-
lysepaketes ROOT, welches sich unter Experimentalphysikern grofser Beliebtheit erfreut. Es
kommt in der Auswertung von LHC-Daten zum Einsatz und wird daher noch mindestens 10
Jahre weiter gepflegt und erweitert werden miissen.

Hier sei eine Beispielsitzung mit GiNaC-cint demonstriert. Beginnen wir mit ein paar Einzei-
lern zu Berechnung einer bekannten Taylor-Reihe:

1 $ ginaccint

2 Welcome to ginaccint V1.0.2 (GiNaC V1.0.3, Cint V5.15.24)

3 sl GiNaC: (C) 1999-2001 Johannes Gutenberg University Mainz,

4 (L) = | Germany. Cint C/C++ interpreter: (C) 1995-2001 Masaharu

5 ._) i N aC | Goto and Agilent Technologies, Japan. This is free software
6 <emmmommme———- > with ABSOLUTELY NO WARRANTY. For details, type ‘.warranty’
7 Type ‘.help’ for help.

8

9 >> symbol v("v"), c("c");

10 >> ex gamma = 1/sqrt(l - pow(v/c,2));

11 >> ex gamma_nr = gamma.series(v==0,8);

12 >> cout << pow(gamma_nr,-2) << endl;

13 (1+(1/2%c~(-2)) *v~2+(3/8*c~(-4)) *v~4+(5/16%c”~ (-6)) *v~6+0rder (v~8))~ (-2)
14 >> cout << pow(gamma_nr,-2).series(v==0,8) << endl;

15 1+(-c~(-2))*v~2+0rder (v-8)

Programmschleifen kénnen in der Regel genau wie in einem normalen C++-Programm notiert
werden

16 >> for (int i=0; i<20; i+=2) {

17 > cout << bernoulli(i) << ", ";

18 > }

19 1, 1/6, -1/30, 1/42, -1/30, 5/66, -691/2730, 7/6, -3617/510, 43867/798,

wahrend aufgrund einer Cint-Einschrénkung Funktionen ein wenig zusétzlichen Aufwand in
Form eines aktiven Kommentares erfordern:

20 >> //ginaccint.function
21 next expression can be a function definition
22 >> const ex EulerNumber(const unsigned n)

22 > Ao

24 > const symbol xi;

25 > const ex generator = pow(cosh(xi),-1);
26 > return generator.diff (xi,n).subs(xi==0);
27 >}

28 creating file /tmp/ginac26197caa
29 >> EulerNumber(42);
30 QOutl = -10364622733519612119397957304745185976310201

5.2. Handhabbarkeit 121

Eine von interaktiven Computeralgebrasystemen inspirierte Erweiterung ist die Moglichkeit,
auf die zuletzt evaluierten Ausdriicke (vom Typ ex) mittels der Outn Variablen zuriickzugrei-
fen:

31 >> 0utl/762131;
32 0Out2 = -13599529127564174819549339030619651971

Selbst semantisch anspruchsvolle C++-Konstrukte wie folgende Implementierung des Denny
Fliegner’schen Konsistenztests sind moglich:

33 >> #include <sstream>

34 >> vector<symbol> a;

35 >> ex bigsum = O0;

36 >> for (int i=0; i<6; ++i) {

37 > ostringstream buf;

38 > buf << "a" << i << ends;

39 > a.push_back(symbol (buf.str()));
40 > bigsum += alil;

41 >}

42 >> ex sbtrct = -bigsum + a[0] + al[l];

43 >> cout << pow(bigsum,2).expand().subs(a[0]==sbtrct).expand() << endl;
44 al~2
45 >> quit;

Da Cint zwar dank Unterstiitzung durch die GNU-Readline-Bibliothek komfortabel zu be-
dienen, aber dennoch recht anfillig gegen Fehleingaben ist, kann die skizzierte interaktive
Bedienungsart etwas umsténdlich sein. Elegant lassen sich aber auch kleine Skripte schreiben,
die direkt aufgerufen werden kénnen. Ein Skript, welches Test E aus Tabelle 5.2 implementiert,
kann wie folgt aussehen:

1 #! /usr/bin/ginaccint --silent

2 symbol y("y"), t("t");

3 ex s;

4 for (int i=1; i<=10; ++i) {

5 s += ixy*pow(t,i)/pow(y + abs(5-i)*t,i);
6 }

7 cout << s.normal() << endl;

8§ quit;

Der --silent Schalter unterdriickt hierbei das Eingabeecho.

Doch Cint ist kein Ersatz fiir einen Compiler. Er besitzt eine ganze Reihe von Einschrankun-
gen, die ihn in der Summe nur fiir kleinere Aufgaben brauchbar machen. Einige davon sind
durch die Natur der Interpretation bedingt, andere stellen Implementierungsliicken dar, auf
deren Schlieffung man hoffen kann und wiederum andere erscheinen auch nach léngerer Be-
trachtung recht willkiirlich. Ein paar Beispiele: Cint braucht manchmal etwas ,,Nachhilfe* bei
Blockbegrenzungen mit geschweiften Klammern. C++ (ebenso wie C) erlaubt es, bei Blocken,
die nur aus einer einzigen Anweisung bestehen, diese in manchen Fillen wegzulassen, wie in
folgendem Beispiel:

if (condition)
printf ("yes");
else
printf("no");

] W =~

122 5. Kritische Analyse des GiNaC-Ansatzes

Dies ist jedoch prinzipiell ungeeignet fiir einen interaktiven Interpreter, da der Benut-
zer normalerweise wiinscht, dass die Eingabe nach dem abgeschlossenen if (condition)
printf ("yes"); sofort abgearbeitet wird. Eine nachfolgende else-Anweisung kann somit
nicht mehr als solche rechtzeitig erkannt und bearbeitet werden. Das ist nur eine der vielen
Spracheinschrankungen, die ein C++-Interpreter notgedrungen haben muss. Cint bringt leider
noch eine ganze Reihe weiterer Einschrankungen mit sich. So entspricht die Variablenbin-
dung zum Beispiel nicht dem Block-Scope, wie es von Ct++ gefordert wird, sondern einem
Funktions-Scope. Insbesondere ist das i in for (int i=0; ;) auch nach dem Ende des
for-Blocks noch giiltig. Schlimmer noch ist, dass Cint teilweise den Regeln des dynamischen
Scopes folgt. Zwar werden Variablenbindungen von aufrufenden Funktionen nicht in aufge-
rufenen Funktionen exponiert. Da jedoch alle interaktiven Variablendeklarationen globalen
Charakter haben, kénnen Funktionen bei ihrer Definition durchaus auf erst spater vor ihrem
Aufruf deklarierte Variablen zugreifen. Eine Reihe weiterer Konventionen kénnen zu Abwei-
chungen zwischen Cint und echten Compilern fithren und den Neuling verwirren — hier sei nur
noch auf die etwas bizarre Tatsache hingewiesen, dass Cint ** als Exponentiationsoperator in
FORTRAN-Syntax iiberladt.

Modularitat

GiNaC erbt von Ct++ alle Infrastruktur um die Aufteilung von Programmen in iibersichtliche
Module zu erméglichen — mit offensichtlichen und niitzlichen Vorteilen. Ein haufiges Missver-
standnis betrifft jedoch Symbole, die in mehreren Modulen gemeinsam verwendet werden. Die
Klasse symbol identifiziert Symbole nicht anhand ihres Strings. Dieser dient nur zu Ausga-
bezwecken. Stattdessen fiihrt jedes Symbol eine Seriennummer mit sich, und eine statische
Variable in der Klasse fiihrt Buch tiber die als Nachstes von einem Konstruktor zuzuweisende
Seriennummer. Wenn nun in einer Header-Datei a.h ein symbol x("x"); deklariert wird und
sowohl a.cc als auch b.cc die Deklaration aus diesem Header benutzen, so fiihrt dies im
ausfithrbaren Programm zu zwei verschiedenen Symbol-Objekten mit dem gleichen Namen
%, da sie ja zweimal initialisiert worden sind. Falls irgendwann Ausdriicke von einem Modul
in das andere Modul iibergeben werden, kann es im schlimmsten Fall zu nicht vereinfachten
Objekten der Form x-x kommen oder zu der etwas iiberraschenden Ersetzung x.subs (x==0)
— x. Man kann dieses Problem umgehen, indem man x in a.h als extern deklariert und in
genau einer Ubersetzungseinheit, z.B. in a.cc als static definiert.

Ein eleganterer Weg, sich vor dem Problem zu schiitzen besteht darin, die Symbole nicht
statisch zu initialisieren sondern von einer Fabrik erzeugen zu lassen. Der Header a.h enthélt
dann anstelle der Definition

1 const symbol x("x");

das Idiom zum Aufruf der Fabrik

1 const symbol x = symbol_factory("x");

Die Fabrik selbst entspricht dem Muster der ,Flyweight-Factory* aus [GHJV 1995] und kann
mit dem assoziativen Array std::map<T1,T2> aus der STL in wenigen Zeilen implementiert
werden:

5.3. Erweiterbarkeit 123

const symbol symbol_factory(const string &s)

1
2 A1

3 static std::map<string, symbol> directory;

4 std: :map<string, symbol>::iterator i = directory.find(s);

5 if (i!=directory.end())

6 return i->second;

7 return directory.insert(map<string, symbol>::value_type(s, symbol(s)))
8 .first->second;

9

Die Routine speichert Strings und Symbole in directory und liefert das vorhandene Symbol
zurlick, wenn der zugehorige String schon abgespeichert ist. Ansonsten erzeugt es ein neues
Symbol zu dem String, speichert beide und liefert das Symbol zuriick. Die Zugriffszeit ist ver-
moge der Implementierung von map als balanciertem RB-Baum von der Ordnung O(log(N)).

5.3. Erweiterbarkeit

Eine interessante Frage ist, wie man ein System wie GiNaC um Formen regelbasierten Wissens
erweitert. Im Sinne von Systemen die — wie Mathematica — vollig auf regelbasiertem Wissen
und Mustererkennung (Pattern Matching) beruhen ist dies nicht denkbar. Aber: ist es tiber-
haupt notwendig und erstrebenswert? Mustererkennung sollte eigentlich nur dann eingesetzt
werden, wenn algorithmische Methoden nicht vorhanden sind.

Baumrekursion

Ublicherweise stellt man sich eine Baumrekursion als etwas vor, was an der Wurzel begin-
nend jeden Knoten (je nach seiner Art) iiber die Kinder iteriert und das Ergebnis nach einer
vorgegebenen Regel verarbeitet. Die Art des zuriickgegebenen Knotens muss nicht unbedingt
die urspriingliche sein — man denke beispielsweise an die Differentiation, bei der Summen
zwar auf Summen abgebildet werden ((f + g)" = f’ + ¢'), Produkte aber nicht auf Produk-
te ((fg) = f'g+ fg’). Dieses Bild ist jedoch nicht immer ausreichend um einen Term zu
bearbeiten; bisweilen sind ausgefeiltere Strategien erforderlich.

Versuchen wir uns etwas heranzutasten, indem wir untersuchen, wie man einige haufig ge-
brauchte ,Vereinfachungen* zwischen trigonometrischen Funktionen einbauen kénnte. Wir be-
schranken uns hier exemplarisch auf den Sinus und Cosinus. Beinhaltet ein Ausdruck sowohl
Pseudofunktionen vom Typ sin als auch solche vom Typ cos, so kann man mithilfe der Re-
lation cos(z) = /1 —sin(z)? alle Pseudofunktionen vom Typ cos eliminieren. Da dies fiir
alle moglichen Argumente des Cosinus passieren kann, muss dies mit der Klasse wildcard
geschehen wie in folgendem Beispiel:

1 ex e = pow(sin(x),2)+pow(cos(x),2);
2 e = e.subs(cos(wild())==sqrt(1-pow(sin(wild()),2)));

Darin wird e zu 1 vereinfacht. Es ist anzumerken, dass die Methode .subs() darin rein
syntaktisch arbeitet.

124 5. Kritische Analyse des GiNaC-Ansatzes

Allgemein muss man sich also eine Transformationsstrategie zurechtlegen. In obigem Beispiel
passt die Strategie der Subsitution cos(z) — 4/1 — sin(x)? noch in das einfache Top-Down
Modell der Evaluation. Dies muss nicht immer so sein — siche [Fate 1999] fiir eine Sammlung
von Beispielen, in denen das Top-Down Modell versagt.

Enthélt ein Ausdruck zum Beispiel cos(x), cos(2x), cos(3x) etc. und mochte man diese alle
durch cos(x) ausdriicken, so kann man aus sin(x + y) = sin(x) cos(y) + sin(y) cos(x) und
cos(x + y) = cos(z) cos(y) — sin(z) sin(y) die Regeln

sin(nz) — sin((n—1)x) cos(x) + sin(z) cos((n—1)z)
1

sin(2z
(

)
cos(nx) — cos((n—1)x)cos(x) — sin(z) sin((n—1)x)
) — 2cos(z)sin(x

)

cos(2z) — 2cos(z)? —1

ableiten und rekursiv anwenden.® Beim Durchschreiten des Baumes sollen dann alle Vielfache
des Cosinus- oder Sinus-Argumentes x nach diesen Regeln reduziert werden. Da der Algo-
rithmus nach dem minimalen Argument x parametrisiert ist, bietet sich die Implementierung
mithilfe eines Funktors (auch bekannt als funktionsartigs Objekt oder function object) an, der
in seiner Darstellung x enthélt. Die GiNaC-Klassen sind mit der .map ()-Methode ausgestattet
um die Baumrekursion zu erleichtern. Hierfiir muss der Funktor von map_function abgeleitet
worden sein.’ Die Deklaration kann also wie folgt aussehen:

1 class sin_cos_multiple_angle_reducer : public map_function {
2 ex arg;

3 public:

4 sin_cos_multiple_angle_reducer(const ex& x) : arg(x) {}
5 ex operator() (const ex&);

6 };

Die Definition des Funktor-Operators operator () wird dann die Regeln zum Reduzieren der
Argumente der in einem Ausdruck auftretenden sin- und cos-Pseudofunktionen implemen-
tieren:

7 ex sin_cos_multiple_angle_reducer: :operator() (const ex& expr)

s A

9 if (is_ex_the_function(expr, cos)) {

10 const ex trialdiv = normal (expr.op(0)/arg);

11 if (is_a<numeric>(trialdiv)) {

12 // Regeln: cos(n*z)==cos((n-1)*z)*cos(z)-sin((n-1)*z)*sin(z)
13 // cos (2#n*z)==2%cos (n*z) "2-1

14 // sin(-n*z)==-sin(n*z), cos(-n*x)==cos(n*zc)

15 const numeric n = ex_to<numeric>(trialdiv);

16 if (n.is_integer()) {

17 if (n.is_even())

18 return (2*pow(cos(n/2*arg),2)-1) .map(*this);

8 Eigentlich wiirden die ersten beiden Regeln ausreichen. Sie setzen aber n Rekursionsschritte voraus mit
einer Verdoppelung des Ausdrucksbaumes bei jedem Schritt und werden daher rasch ineffizient. Die beiden
Gleichungen des doppelten Winkels kiirzen die Rekursion ab und reduzieren die Komplexitit von O(n?)
auf O(n).

% Diese Konstruktion entspricht exakt dem ,Visitor“-Muster aus [GHJV 1995].

5.3. Erweiterbarkeit 125

19 else

20 return (-csgn(n-1)*sin(abs(n-1)*arg)*sin(arg)

21 +cos(abs(n-1)*arg)*cos(arg)) .map (*this) ;
22 }

23 }

24 return expr;

25 }

26 if (is_ex_the_function(expr, sin)) {

27 const ex trialdiv = normal(expr.op(0)/arg);

28 if (is_a<numeric>(trialdiv)) {

29 // Regeln: sin(n*z)==cos((n-1)*z)*sin(z)+sin((n-1)*x)*cos(z)
30 // sin(2*n*x)==2%cos (n*zc)*sin(n*x)

31 // sin(-n*xz)==-sin(n*z), cos(-n*z)==cos(n*z)

32 const numeric n = ex_to<numeric>(trialdiv);

33 if (n.is_integer()) {

34 if (n.is_even())

35 return (2*cos(n/2*arg)*sin(n/2*arg)) .map (*this);
36 else

37 return (+csgn(n-1)*sin(abs(n-1)*arg)*cos(arg)

38 +cos(abs(n-1)*arg)*sin(arg)) .map (*this) ;
39 }

40 ¥

41 return expr;

42 }

43 return expr.map(*this);

“ ok

Gegeben sei nun der Ausdruck A := cos(3z) + 3 cos(z). Der obige Funktor kann nun wie folgt
benutzt werden:

1 ex A = cos(3*x)+3*cos(x);
2 sin_cos_multiple_angle_reducer f(x);
3 A= f(4);

wonach A zu 2cos(z)? — 2sin(z)? cos(z) + 2cos(x) vereinfacht worden ist. Anwenden der
syntaktischen Substitution sin(x)? — 1— cos(z)? und Ausmultiplizieren vereinfacht A weiter

zu 4 cos(z)3.

Der Funktor sin_cos_multiple_angle_reducer hat einen Nachteil: Das minimale gemein-
same Argument — in unserem Falle x — muss von Hand im Konstruktor spezifiziert werden.
Im Idealfall wiirde es den Kandidaten fiir eine solche Reduktion selbst herausfinden. Die
Losung besteht darin, einen zweiten Funktor zu schreiben, dessen operator() aus einem
Ausdruck die Liste der Kandidaten extrahiert, die dann elementweise abgearbeitet werden
kann. Wir beginnen mit der Definition des Funktors sin_cos_multiple_argument_finder.
Sie enthélt eine Liste 1st reduced fiir alle aufgefundenen Kandidaten, eine Helfermethode
.choose_candidate(const ex&, const ex&), die die Vielfachheit feststellt und gegeben nx
und z, n € N sich fiir x entscheidet sowie eine Helfermethode .reduce (), welche Redundanzen
aus der Liste der Kandidaten entfernt:

1 class sin_cos_multiple_argument_finder {

2 1st reduced;

3 static const ex choose_candidate(const ex&, const ex&);
4 void reduce(void);

126 5. Kritische Analyse des GiNaC-Ansatzes

5 public:
6 ex operator() (const ex&) ;
7}

Beginnen wir mit der Implementierung des operator (). Er soll sein Argument rekursiv durch-
schreiten und dabei die Argumente von cos- und sin-Pseudofunktionen in der Liste reduced
aufsammeln. Fiir diese Durchschreitung konnen wir nicht .map(*this) verwenden wie in
sin_cos_multiple_angle_reducer: :operator(), da diese strukurerhaltend ist und Sum-
men auf Summen sowie Produkte auf Produkte abbildet. Stattdessen konnen wir aber den
operator () explizit aufrufen:

8 ex sin_cos_multiple_argument_finder: :operator() (const ex& expr)

9 A

10 if (is_ex_the_function(expr, cos) || is_ex_the_function(expr, sin)) {
11 return lst(expr.op(0));

12 } else {

13 ex retval;

14 for (unsigned i=0; i<expr.nops(); ++i) {

15 retval = this->operator() (expr.op(i));
16 for (unsigned i=0; i<retval.nops(); ++i)
17 reduced. append(retval.op(i));

18 }

19 }

20 reduce() ;

21 return reduced;

22 %}

Vor der Riickgabe der Liste reduced werden mit einem Aufruf von .reduce() die redundanten
Elemente daraus entfernt. Eigentlich soll reduced keine Liste sondern eher eine Menge sein, in
der kein Element doppelt vorkommt. Wir konnen die Mengeneigenschaft des STL-Containers
std: :set fiir diese Reduktion zuhilfe nehmen:

22 void sin_cos_multiple_argument_finder: :reduce(void)

24 o

25 set<ex, ex_is_less> unigq;

26 for (unsigned i=0; i<reduced.nops(); ++i)

27 uniq.insert (reduced.op(i));

28 reduced = 1st(); // Lésche diese Liste, um Platz zu schaffen.

29 for (set<ex,ex_is_less>::iterator i=uniq.begin(); i!=uniq.end(); ++i) {
30 ex candidate = *i;

31 for (set<ex,ex_is_less>::iterator j=uniq.begin(); j!=uniq.end(); ++j) {
32 ex ratio = normal((*j)/candidate);

33 if (is_a<numeric>(ratio) && ratio.info(info_flags::real))

34 candidate = choose_candidate(*j, candidate);

35 }

36 reduced.append(candidate) ;

37 }

38 }

Der letzte fehlende Baustein ist die darin aufgerufene statische Methode zur Auswahl des Kan-
didaten, .choose_candidate(const ex&, const ex&). Da sie nur aufgerufen wird, wenn
festgestellt worden ist, dass ihre Argumente Vielfache voneinander sind, kann sie als Vorausset-
zung annehmen, dass fiir ihre Argumente A und B die Briiche A/ ggT(A, B) und B/ ggT(A, B)

5.4. Schlussfolgerungen und Ausblick 127

nicht symbolisch sind. Die nachfolgende Implementierung vermag auch festzustellen, dass x
und %x Vielfache von %x sind:

39 const ex sin_cos_multiple_argument_finder::choose_candidate(const ex& A, const ex& B)

40 {

41 const ex gcd_AB = gcd(A, B);

42 const numeric a = ex_to<numeric>(normal (A/gcd_AB));

43 const numeric b = ex_to<numeric>(normal(B/gcd_AB));

i const numeric denoms_lcm = lcm(a.denom(),b.denom());

45 return gcd_AB * gcd(a*denoms_lcm, b*denoms_lcm) / denoms_lcm;
46 F

Gegeben sei nun A := 2sin(1)?+sin(5x) cos(2z) —sin(2x) cos(5z) +sin(z) — 4 sin(x) cos(z)? +
cos(2)—1. Wir konnen nun zunéchst eine Liste der Reduktionskandidaten anlegen und danach
den alten sin_cos_multiple_angle_reducer darauf wirken lassen:

sin_cos_multiple_argument_finder f1;

ex arglst = f1(A);

for (int i=0; i<arglst.nops(); ++i) {
sin_cos_multiple_angle_reducer f2(arglst.op(i));
A = £2(A);

Y N W D~

}

Nach syntaktischer Substitution von cos(z) — /1 —sin(z)? und Ausmultiplizierung des
Ergebnisses vereinfacht A zu 0.

Diese beiden Beispiele sollen gezeigt haben, wie Funktoren als parametrisierte Funktionen
benutzt werden kéonnen um aus einem beliebigen algebraischen Ausdruck einen Zustand zu
extrahieren und Termumformungen vornehmen zu kénnen. Hierzu ist kein Eingriff in die
Klassenhierarchie notwendig und die Funktoren konnen so arrangiert werden, dass sie einen
Darstellungsbaum in beliebiger Weise durchschreiten — nicht unbedingt top-down wie dies
die Methodendelegation in einer Klassenhierarchie erzwingt. Sind die Funktoren einmal kom-
piliert, so ist all dies auch zur Laufzeit denkbar und so kann eine Sammlung davon einen
raffinierten Ersatz fiir benannte = Simplifier liefern.

5.4. Schlussfolgerungen und Ausblick

Bei der Implementierung symbolischer Algorithmen zwingt GiNaC den Benutzer zum Nach-
denken tiber die verwendeten Datenstrukturen und anzuwendenden Algorithmen. In dieser
Hinsicht ist es mit FORM vergleichbar, dem Lastesel der theoretischen Hochenergiephysik.!°
Im Gegensatz zu FORM wurden jedoch keine Anstrengungen unternommen, den verfiigha-
ren Arbeitsspeicher mittels Swap-Dateien iiber den physikalisch Vorhandenen auszudehnen
— GiNaC ist hier dem VM-Subsystem des zugrundeliegenden Betriebssystems ausgeliefert.
Dafiir stellt es dort einige algebraische Féhigkeiten zur Verfiigung wo FORM sich auf die
Ringoperationen +, - und * beschrénkt.

103, A. M. Vermaseren pflegt das Motto ,, The user should do the thinking, the computer the computing”
und auf G. J. v. Oldenborgh scheint das Gleichnis zuriickzugehen MACSYMA, Maple und Mathematica als
swiss army knife’ zu bezeichnen, wihrend FORM ein ,,chef knife sei [Olde 1995].

128 5. Kritische Analyse des GiNaC-Ansatzes

Ubersicht GiNaC-basierter Projekte

Eine kleine Anzahl weiterer Projekte sind von GiNaC' inspiriert worden. Hier folgt ein kurzer
aktueller Schnappschuss der ,,Spin-Offs“ soweit sie mir bekannt sind:

giac von Bernard Parisse. Bei diesem ambitionierten Projekt handelt es sich um eine Sammlung
kleiner ausfiihrbarer Programme, jedes einzelne zustdndig fiir eine symbolische Operati-
on: factor, series, etc. Urspriinglich waren sie Frontends zur GiNaC-Bibliothek, neue-
re Versionen scheinen jedoch nur noch auf GMP zu basieren. Ziel ist eine innerhalb der
Unix-Shell mit Pipes verkniipfte Benutzung. Siehe ftp://fourier. ujf-grenoble. fr/
pub/hp48/giac. tgz. Seit kurzem gibt es dort sogar ein Frontend fiir das X-Window Sys-
tem.

gTybalt von Stefan Weinzierl ist eine Art Meta-Framework, welches innerhalb einer von Cint
gesteuerten Umgebung die graphischen Fahigkeiten von RooT, die TEX-Ausgabe von TeX-
macs und die symbolischen Féahigkeiten von GiNaC' vereinigt. Siehe http: //www. fis.
unipr. it/ “stefanw/gtybalt. html. Es ist analog zu der Schnittstelle von TeXmacs zu
Maxima, MuPAD und Reduce [Groz 2001]. In diesem Rahmen wurde auch ein Programm
zur symbolischen Reihenentwicklung einiger spezieller héherertranszendenten Funktionen,
wie sie in Schleifenrechnungen benétigt werden, entwickelt [Wei 2002].

Octave-Modul von Ben Sapp. Octave ist eine (an MATLAB angelehnte) interaktive Sprache zum
Lésen von numerischen linearen und nichtlinearen Problemen. Ein Octave-Modul zur sym-
bolischen Erweiterung basiert auf GiNaC. Siehe http: //bsoctave. sourceforge. net/.

pyginac von Pearu Peterson reicht in Python (eine interpretierte, interaktive und objektori-
entierte Sprache, in etwa vergleichbar mit Perl, Scheme oder Java) formulierte symboli-
sche Ausdriicke an die kompilierte GiNaC-Bibliothek weiter. Siehe http: //cens. ioc. ee/
projects/pyginac/.

Purrs ist eine an der Universitdt Parma von Roberto Bagnara und Mitarbeitern entwickelte Soft-
ware zur automatisierten Analyse der Komplexitét von Programmen. Der Teil der Aufgabe,
fiir den GiNaC herangezogen wird, betrifft das automatisierte Losen von symbolischen Re-
kursionsrelationen. Siehe http: //www. cs. unipr. it/purrs/.

Ob das Programmieren in Ct++, das héufig als ,schwer empfunden wird, letztlich einer Ak-
zeptanz von Seiten der Physiker im Wege steht, muss dahingestellt bleiben. Im Gegensatz
zu herkdmmlichen Computeralgebrasystemen trennt GiNaC zwischen Variablen (Klasse ex)
und Symbolen (Klasse symbol). Zuweisungen von Ausdriicken an Symbole finden nicht statt,
stattdessen konnen Variable mit der Methode .subs() ersetzt werden.!! Diese Trennung hat
sich in der Praxis bisher nie als hinderlich herausgestellt — im Gegenteil, sie eliminert das
Fehlerpotenzial, das sich aus vergessenen Variablenbindungen ergibt.

Einige Projekte basieren schon jetzt auf GiNaC (siehe Kasten). Personlich hoffe ich, dass
der Stil der Programmierung sich vom rein Prozeduralen loslésen wird und xloops in Zukunft
immer mehr aus mehreren kleinen Modulen mit wohldefinierten Funktionalitdten besteht,

1 Benutzern von FORM ist diese Denkweise vertraut: Die id-Anweisung ist auch weniger Zuweisung als
Ersetzung und die Unterscheidung zwischen Local und symbol entspricht exakt unserer zwischen ex und
symbol.

5.4. Schlussfolgerungen und Ausblick 129

unter Ausnutzung eleganter sprachlicher Konstrukte wie Funktor-Klassen sowie der Standard
Template Library. Ich bin iiberzeugt davon, dass die Wartbarkeit von xloops zunimmt, je
weniger monolithisch es wird.

Algebraischer Ansatz?

Personen mit rigoroser mathematischer Ausbildung fordern von Computeralgebrasystemen
immer wieder eine prazise Abbildung algebraischer Strukturen auf darstellende Datenstruktu-
ren. Das System AXIOM [JeSu 1992| versucht diesem Ziel nahe zu kommen. Vorsicht ist jedoch
angebracht, wenn verschiedene Strukturen zu irgendeinem Zeitpunkt aufeinandertreffen. Wie
unklar das Ergebnis dann schnell wird zeigt ein einfaches Beispiel. Sei P = x+2 € Z[z] ein Po-
lynom mit ganzzahligen Koeffizienten in z. P/3 kann dann als ITJFQ aufgefasst werden, also als
Quotient zweier ganzzahliger Polynome in z. Oder — kaum weniger plausibel — als P/3 = %x+§,
als Element des Ringes Q[x] der Polynome in x mit gebrochenrationalen Koeffizienten. Fiir die
automatische Weiterverarbeitung kann dieser Unterschied von erheblicher Bedeutung sein. Ein
anderes Beispiel, in dem ein rigoroser algebraischer Ansatz schnell unpragmatisch wird, ist die
vermeintliche Vereinfachung von (z'°' —1)/(z—1) zu '+ 2%+ .- +2+1. Siehe [Dave 2000]

fiir einen Ubersichtsartikel zu den Vor- und Nachteilen eines solchen Ansatzes.

Etwas ferner von den derzeit absehbaren Bediirfnissen, aber dennoch vorstellbar, sind: Fiir die
Weiterentwicklung und Implementierung gewisser Algorithmen (Faktorisierung, symbolische
Integration) in GiNaC kann eventuell eine Klasse zur Darstellung von algebraischen Zahlen, die
sich nicht in einfachen Wurzeln ausdriicken lassen (siehe Seite 80) unabdingbar werden. Eine
solche Klasse root konnte analog zu power direkt von basic abgeleitet sein und ein Polynom
in einer Standardvariablen p enthalten. Der Versuch, 2° — x 4+ 1 = 0 nach z aufzuldsen, kénn-
te dann ein Objekt root(p~5-p+1) erzeugen, welches bei einer Weiterverarbeitung eventuell
entsprechend vereinfacht werden kann, z.B. root (p"5-p+1) “5 — root (p~5-p+1)-1. Fiir eine
eventuelle Implementierung symbolischer Integration (Risch-Algorithmus) miissen zunéchst
geeignete Darstellungen des Integranden in einem Differenzialkdrper gefunden werden. Hier-
zu miissten transzendente Erweiterungen des rationalen Funktionenkorpers erlaubt werden
um so etwa den Tangens ¢ durch seine Ableitung Dt = t* + 1 darzustellen. Eine Einfiih-
rung bietet [Bron 1996a]. Ob dies ohne grundlegende Anderungen vonstatten gehen kann, sei
dahingestellt. Jedenfalls scheint dies fiir die derzeitige Praxis der Schleifenrechnungen nicht
erforderlich zu sein.

Anhange

A. Hilfsmittel aus der komplexen
Analysis

A few weeks of developing and testing
can save a whole afternoon in the library
anonymous

Im Folgenden notieren wir fiir komplexe Variablen héufig z = 4+ iy und { = £ 4. Bisweilen
werden wir fiir komplexe Funktionen f(() auch Real- und Imaginérteil ausschreiben als f =

u + v und Ableitungen abkiirzend mit f. = a_g notieren.

A.1. Der Cauchy’'sche Residuensatz in einer
Veranderlichen

Satz A.1 (Cauchy’scher Integralsatz) Sei f:) — C analytisch in einem einfach zusam-
menhdingenden Gebiet Q0 C C. Sei € eine einfach geschlossene, positiv orientierte Jordan-

Kurve in). Dann gilt:
¢ roic=o
4

Dieser Satz lasst sich lelcht ganz ,zu Fulk® beweisen, indem man die Bahnkurve % parame-

trisiert (¢, f(¢)d¢ = fo 8Cd7‘) und bemerkt, dass die Vektorfelder (u, —v) und (v, u)
wegen den Cauchy—Rlemann schen D1fferenz1alglelchungen die Integrabilitdtsbedingung erfiil-
len. O

Triviale Folgerungen aus diesem fundamentalen Satz sind die Wegunabhéngigkeit von Kurven-
integralen analytischer Funktionen sowie der Deformationssatz, demzufolge ein Integral ent-
lang einer geschlossene Kurve % iiber einen Integranden, der analytisch ist bis auf einen Punkt
z in €, ersetzt werden kann durch ein Integral entlang eines Krei-
ses um z innerhalb von % . Es sei an dieser Stelle noch angemerkt,
dass im Spezialfall kreisformiger Bahnkurven der Satz A.1 in den
Mittelwertsatz von Gauf fiir harmonische Funktionen iibergeht, da
Real- und Imaginérteil von f(() vermoge der Cauchy-Riemann’schen

Differenzialgleichungen harmonische Funktionen sind Abbildung A.1.: Zum

Deformationssatz

134 A. Hilfsmittel aus der komplexen Analysis

Uge = —Une = —Ugn = —Upy

Vge = —Uen = —Une = — Uy
und als durch ¢ parametrisierte Flache betrachtet daher Minimalflichen mit verschwindender
Kriimmung darstellen.

Satz A.1 ist auch Ausgangspunkt fiir das

Lemma A.2 (Cauchy’sche Integralformel) Sei f(() analytisch in einem einfach zusam-
menhdngenden Gebiet Q) und € eine einfach geschlossene, positiv orientierte Jordan-Kurve,

z ein Punkt in €. Dann gilt:
Q)
7{% = Zd(’ =2mif(z2).

Deformation der Kurve % in einen Kreis S.(z) mit Radius € um z liefert

f(Q) f(z) f(¢Q) = [(2)
d¢ = —d e d
%gC—zC SE(Z)C—ZC+£E(Z) ¢—=z ¢

2m az‘ev”
0 ee™
2mif(z) ist und der zweite Term aufgrund der Stetigkeit von f verschwindet. O

d7 identisch mit

wobei der erste Term wegen der Parametrisierung fss(z) édg‘ =

Satz A.3 (Cauchy’scher Residuensatz) Sei f(() analytisch bis auf isolierte Singulariti-
ten in einem einfach zusammenhdngenden Gebiet), € eine einfach geschlossene, positiv
orientierte Jordan-Kurve, die nicht durch eine der Singularititen fihrt und in deren Innerem
n < oo Singularitaten bei (= z;, i € I liegen. Dann gilt:

Zum Beweis entwickle man die Funktion f um die Singularitdten in eine Laurentreihe f({) =
S al’(¢ = z)" und bezeichne mit p®(¢) = S al?(¢ — z)" den Hauptteil bei 2.

n=-—00 n=-—1

Dann ist g(¢) := f(¢) — >, p¥(¢) analytisch in ; also gilt $,9(¢)d¢ = 0 und es geniigt, die
Summe der Hauptteile pt zu integrieren:

_ (4) _ (4)
7{5 F(O)dC = f% WAGIEDY 74% P(C)dc.

Die Vertauschung von Integration und Summation ist moglich wegen der Endlichkeit der In-

dexmenge I. Nun kann man jeden Hauptteil p@ getrennt integrieren, wobei in §, > o

lediglich die Terme mit n = —1 entsprechend Lemma A.2 beitragen und die {ibrigen verschwin-

den, was man wieder anhand einer Parametrisierung einsieht: fs) @dg‘ = fo T jéf:w dr =20

falls n # 1. O

A.1. Der Cauchy’sche Residuensatz in einer Veranderlichen 135

Satz A.4 (iiber die Residuensumme) Ist f(C) in der geschlossenen Ebene bis auf isolierte
Stellen eindeutig und holomorph, so verschwindet die Summe der Residuen von f(().

Der Beweis folgt [BeSo 1965]: Sei ¢ irgendein einfach geschlossener endlicher Weg, auf dem
keine Singularitiaten liegen. Man kann 2%” fg f(¢) d¢ auf zwei Weisen ausrechnen: indem man
f(¢) im Inneren oder im Auferen betrachtet. Wihlt man nun % so, dass im Inneren keine
Singularitdten von f(¢) liegen (was nach Vssg. moglich ist), und durchlduft man % derart,
dass das Aukere zur Linken liegt, so folgt die Behauptung des Satzes:!

= 5 1008 = S Res 510

Man kann also in der Summe ein (beliebiges) der resultierenden Residuen ausdriicken durch
die negative Summe aller iibrigen. Angewendet auf Integrale vom Typ fj;odg“ 1T, % mit

O

P;({) = ¢ — z;, z; € C bleiben also nur noch die #-Funktionen tibrig. Dies ist die Aussage des
folgenden Satzes.

Korollar A.5 (zum Satz iiber die Residuensumme) Sei P;(¢) = (— z; mit z; = x; +
iy, T, y; € R und y; # 0 Yy, wobei j € {1...n}, n > 2. Auflerdem seien alle z; paarweise
verschieden. Dann ist

RS i 1 _ 0(y) — O(y2)
210 J oo “ P P(C) Py(21) (A1)
RS +ood§ 1 _ 0(y1) — 0(ys) 4 0(y2) — 0(ys) (A.2)

omi | oo Py(C) Pa(C) Ps(C) Py(z1) P3(z1) Pi(22) Ps3(22)

Rt _ < 0(y;) — 0(ya)
27‘(‘2 oo H] - jzl Hi;éjpi(zj) . (AS)

Anmerkung: Die obigen Formeln entsprechen einem in der oberen Halbebene geschlossenen
Integrationsweg. Ersetzt man in (A.3) 0(y;) = 1 — 0(—y;), so erhélt man

1

— (y;) RS YUG (—Yn)
PO S R Dl i (A4

j=1 J=1

Die rechte Seite kann als die entsprechende Gleichung fiir einen in der unteren Halbebe-
ne geschlossenen Integrationsweg interpretiert werden: Die Vorzeichen der Argumente der
f-Funktionen spiegeln die Teilmenge der Polstellen in dieser Halbebene und das allgemeine
Vorzeichen den Integrationsweg mit negativem Umlaufsinn wieder. Der Satz {iber die Residu-
ensumme (bzw. die daraus abgeleitete Gleichung (A.3)) macht also die Freiheit in der Wahl
des Integrationsweges manifest.

I Mégliche Residuen im Unendlichen miissen mitberiicksichtigt werden, da der Satz sich auf die geschlossene
Ebene bezieht.

136 A. Hilfsmittel aus der komplexen Analysis

Anhand von Korollar A.5 lasst sich auch einsehen, auf welche Weise Residuensatz und Parti-
albruchzerlegung bei rationalen Funktionen miteinander zusammenhingen.? Nach dem Fun-
damentalsatz der Algebra lasst sich der Nenner einer rationalen Funktion immer in der Form
1/ 11—, P;(¢) schreiben. Klammert man 1/P,(¢) aus und zerlegt die iibrigen sukzessive als
Partialbruch, so bleiben n — 1 Summanden, deren Nennerpolynom quadratisch in ¢ ist, und
daher noch schnell genug abfallt, um integrierbar zu sein:

1 1 1 1
Pl(C)Pz(C)PB(C) N (Pl(f) (21—22) - Pz(C) (22—21)) PB(C) (A'5)
1 1 1
Pl(C)P2(C)P3(C>P4(C> N (Pl(f) (21—22) (21—23) * PQ(C) (22—21)(22—23)

1) 1
P3(¢) (z3—21) (23—22) /) Pua(Q)

1 - 1 1 1
Uzg - (Zm)H(zj—z») PO’ A

j= j=1

+ (A.6)

Nun kann man in der Summe gliedweise die Integration iiber die reelle Achse ausfithren und
dabei unter Benutzung von (A.1) die Gleichung (A.3) erzeugen, da Pi(z;) = z;—z; ist.

Falls z; = z; fiir mindestens ein Paar ¢ # j gilt dieser Zusammenhang iibrigens noch genauso.

Dann liegt bei ¢ = z; ein k-facher Pol vor und fiir die Berechnung des Residuums kann man
. . 1 _ 1 d \k— k 1 -

die Gleichung Resc—; -7 = 7o) ((d_c) ¢ = 2) m)k:z‘j heranziehen. Ist

beispielsweise ein doppelter Pol bei z,, so findet man in Analogie zu Gleichungen (A.1)-(A.3)

1L 0 =0

2mi —00 dC Pl(C) PQ(C)2 o P2(21)2 (Ag)
L +o0 1 n 1 _ n—1 Q(yj) B Q(yn)
21 o dCPn(C) Pl Pi(¢) — Pu(z) I, P(z) (A.9)

wobei schon der Satz A .4 {iber die Residuensumme ausgenutzt worden ist. Andererseits bricht

natiirlich die naive Partialbruchzerlegung nach dem Muster 55 = ! 7u-

1
PPy Pi(P1—Pr) + Pi(P1—Pr)
sammen, P,(¢)? darf also nur als ganzes behandelt werden.? Jedenfalls ermoglicht die folgende

2 Eine anregende historische Zusammenfassung dieser im 19ten Jahrhundert von Sylvester untersuchten
Parallelen geben Bhatnagar in [Bhat 1996] und Knuth [Knu 1997, Abschnitt 1.2.3, Ubung 33).

3 Die notwendige und hinreichende Bedingung dafiir, dass eine Partialbruchzerlegung von 1/PQ durchgefiihrt
werden kann, ist, dass P und @ koprim sind. Man sieht das sofort ein, wenn man Partialbruchzerlegung
als Umkehrung der Addition von Briichen auffasst, da 1/PQ ja zerlegt wird in a/P + b/Q. Sind P und
@ nicht koprim, so ist der Nenner von a/P + b/Q, der ja das kgV(P, Q) ist, ungleich PQ und umge-
kehrt. Der programmatische Weg zur Berechnung von a und b besteht daher darin, sie als Kofaktoren der
Bézout-Identitat a@ + bP = 1 zu verstehen und mit dem beispielsweise in [Baue 2000] beschriebenen und
implementierten erweiterten euklidischen Algorithmus zu bestimmen.

A.2. Hauptwertintegrale 137

Partialbruchzerlegung

1 - (1 . 1) 1
POP(O)Ps(C)? \PiC) (z1—2) Pa(C) (za—21) /) Ps(C)?

o s 1 1
HR ::< Bi(¢ <oHuw»RmV

J:1 J=

—_

die Gleichung (A.9) aus (A.8) direkt zu gewinnen.

A.2. Hauptwertintegrale

Wenn das Integral [, f(¢)d(iiber eine Polstelle von f(() fiihrt, so ist das Riemann’sche Inte-
gral nicht definiert. Existiert aber der Grenzwert lim,_, f%\%(s) f(¢)d(¢ fir eine symmetrische

e-Umgebung ¢®) um z; auf dem Integrationsweg %, so kann man das Integral dariiber defi-
nieren. Man nennt dies das Hauptwertintegral und wir schreiben es wie folgt (P.V. fiir engl.

principal value):
e[Qe

Mithilfe dieses Integrals kann man den Cauchy’schen Residuensatz retten. Hierzu untersucht
man einen Pol bei z; auf dem geschlossenen Integrationsweg 4. Zerlegt man %" wie in Abbil-
dung A.2 skizziert in zwei Anteile 4. ., und 7. .,, so kann man das Hauptwertintegral schreiben
als Grenziibergang:

mﬁj@%z@% 1Q)¢ - f@%)

Cgs,zi Ye,z;

Das erste Integral ist unabhangig von € und lésst sich mit dem gewohnlichen Residuensatz
berechnen. Das zweite Integral wird fiir ¢ — 0 durch den Hauptteil p®(¢) von f(¢) an ¢ = z;
bestimmt:

lim [f(¢)d¢ = lim ¢)d¢ = lim Z / — z)"dC.
Ye,z; =0 'Ysz

Man kann es berechnen, indem man . ,, als 7. ., : (= % +56_Z(T_TO), 7 = [0, 7] parametrisiert
mit einem geeignet gewahlten 75. Dann ist

/ al (¢ — z)"d¢ = ag)/ (ee TN (—jge 7)) dr
Ve,z; 0
woflr drei Félle zu unterscheiden sind:

a) Der Beitrag n = —1 liefert gerade das Residuum, aber nur mit einem halben Gewicht
gegeniiber dem gewohnlichen Residuensatz:

/ aﬂ(g z) 7 ld¢ = a") /—ZdT = —ima")1 = - Resf(C)
N 0

—Zz
€,z

138 A. Hilfsmittel aus der komplexen Analysis

%@ %\W@ %@ o

Abbildung A.2.: Aufteilung der Integrationswege bei der Hauptwertintegration zum Beweis von
Satz A.6.

b) Die geraden Beitrdge n = 2m liefern einen Beitrag, falls die Koeffizienten a(;gl nicht
ohnehin verschwinden:

T 282m+1€—i(2m+1)70

(4) N2l — (4) 2m+1 —i(2m+1)(7’—7’0)d _ (4)
[e mymic = it [o 2

€,2;

Da n = 2m negativ war, ist dieser Anteil nicht wohldefiniert.

¢) Die ungeraden Beitrdge n = 2m + 1 mit m < —2 verschwinden:

/ a1 (C — 2)?"1d¢ = —ial), ., / ¥ e iPm ™) g7 — 0,
7 0

€,2;

Falls also die Laurententwicklung von f({) an (= z; nur ungerade negative Potenzen enthélt,
ist das Hauptwertintegral definiert. Hatten wir den Pol in der Zerlegung des Integrationswe-
ges mit in das geschlossene Gebiet 4. ., aufgenommen, statt ihn auszuschliefen, hitten wir
dasselbe Ergebnis bekommen, da das Teilstlick .., dann im mathematisch positiven Sinne
zu parametrisieren gewesen ware. Wir konnen nun den folgenden Satz formulieren:

Satz A.6 (Residuensatz mit Polen auf dem Integrationsweg) Sei f(() analytisch bis
auf isolierte Singularitiaten in einem einfach zusammenhdngenden Gebiet), € eine einfach
geschlossene, positiv orientierte Jordan-Kurve, die ber (= z;, ©+ € I durch endlich viele Sin-
gularititen von f(C) fiihrt. Wenn die Hauptteile p®(¢) von f(¢) an den Polen auf den Inte-
grationswegen nur ungerade Anteile haben und im Inneren von € nur n < oo Singularititen
bei ¢ = zj, j € J liegen, dann gilt:

=zj X =z

P.V.}I{ f(Q)d¢ = 2m'ZResf(§) +m’ZResf(§).
¢ Gl © e ¢

A.3. Schnitte, Umkehrungen elementarer Funktionen
und all das

Viele irrationale und transzendente Funktionen sind in der komplexen Ebene nicht eindeu-
tig definierbar. Der Wertebereich, den die Wurzelfunktion annehmen kann, ist beispielsweise
wzweiblattrig”. In solchen Féllen muss eine Festlegung getroffen werden, welche Werte die im-
plementierte Funktion zuriickliefern soll. Da es im Allgemeinen nicht moglich ist, dabei die

A.3. Schnitte, Umkehrungen elementarer Funktionen und all das 139

Analytizitat (oder auch nur die Stetigkeit) des Bildes der Funktion zu erhalten, miissen sog.
,Schnitte in der komplexen Ebene festgelegt werden, die die Unstetigkeit im Bild definieren.

Dieser Abschnitt ist den Schnitten wichtiger Funktionen gewidmet. Es sollen die Topologien
der Riemannflachen anschaulich dargestellt sowie Konventionen von Schnitten, die diese Topo-
logien scheinbar storen, miteinander verglichen werden. Dies ist von Bedeutung fiir ein CAS, da
Anderungen solcher Konventionen zu subtilen Fehlern fithren kénnen. Unter Beriicksichtigung
bestehender Standards wird hier die Konvention in GiNaC zementiert. Auf unproblematische
Funktionen wie die trigonometrischen und hyperbolischen braucht hier nicht eingegangen zu
werden, da sie einbléttrig sind, also keinen Schnitt haben. Bei den problematischen Funk-
tionen mit Schnitt werden wir feststellen, dass der Versuch diesen zu standardisieren in C++
nur ansatzweise unternommen wurde. Wir werden sehen, dass die aktuelle Revision von C
diese Liicken schlieft und einen Vergleich anstellen mit dem Quasi-Standard [Stee 1990 von
Common Lisp, da dieser traditionell als CAS-Leitfaden herangezogen wird. Dabei wird sich
gliicklicherweise herausstellen, dass diese drei Regelwerke nicht in einem Widerspruch zuein-
ander ausgelegt werden miissen.

Betrachten wir zunéchst die Wurzelfunk-
tion /z als Umkehrung von z%. Setzt
man den ,Keim“ (y/, 2o =1) von der
Stelle zp = 1 iber die obere Halbebe-
ne analytisch fort zu z = —1, so erhalt
man /—1 = i. Eine analytische Fortset-
zung entlang eines Pfades in der unteren
Halbebene fiihrt dagegen zu /—1 = —i.
Schliet man den Kreis zum Ausgangspunkt zy, so findet man v/1 = —1. Schlieft man ihn
noch einmal, so kommt man zum Keim (y/, zo = 1) zuriick. Diese Mehrdeutigkeit lasst sich
in der Riemannfliache veranschaulichen (Abbildung A.3, links). Hierbei ist zu beachten, dass
die beiden ,Blétter” an der scheinbaren Durchdringungslinie nicht aufeinanderfallen. Das Ge-
dankenbild Riemann’scher Fléachen ist vielmehr Folgendes: die Funktionen werden zwar als
eindeutig betrachtet, aber dafiir werden ihre Argumente als auf einer mehrbléttrigen Mannig-
faltigkeit liegend angesehen. Fiir die k-te Wurzel gilt dann analog zur Quadratwurzel, dass
man k-mal schliefen muss (Abbildung A.3, rechts). Die in diesem Abschnitt abgebildeten Rie-
mannflachen sind genau genommen gar keine, sondern die Plots der Blétter der Funktionen.
Mit der Topologie der Riemannflachen stimmen sie jedoch iiberein. Wahrend dort die Mehr-
deutigkeit im Argument der Funktion f(z) liegt, ist sie hier in der Funktion fy(z) selbst. Dies
ist von einem algebraischen Gesichtspunkt praktikabler, da wir leichter die Funktionswerte als
die Argumente indizieren konnen [Jeff 2001].

Der Ct+-Standard [ISO 1998| definiert den Schnitt der komplexen Wurzelfunktion in Ab-
schnitt 26.2.8:

Abbildung A.3.: Die Blitter von \/z und /z

template<class T> complex<T> sqrt (const complex<T>& x);

Notes: the branch cuts are along the negative real axis.

Returns: the complex square root of z, in the range of the right half-plane. If
the argument is a negative real number, the value returned lies on the positive
imaginary axis.

140 A. Hilfsmittel aus der komplexen Analysis

Dies ist in voller Ubereinstimmung mit [Stee 1990], Abschnitt 12.5.3:

sqrt: The branch cut for square root lies along the negative real axis, continuous
with quadrant II. The range consists of the right half-plane, including the non-
negative imaginary axis and excluding the negative imaginary axis.

Transzendente Funktionen

Der natiirliche Logarithmus als Umkehrung der Exponentialfunktion ist offensichtlich un-
endlichdeutig. Wenn 2’ mit z durch 2/ = ze®"™ verkniipft ist, so ist klarerweise log(z’) =
log(z) + 2nmi, da der Imaginérteil des Logarithmus gerade die Phase des Argumentes ist:
log(z) = log(re¥) = log(e'%67+#%)) = log r +iy. Die Unendlichdeutigkeit lisst sich jedoch auch
tiber die Integraldarstellung log(z) = flz %d(einsehen in einer Weise, wie sie leicht verallge-
meinerbar ist auf Funktionen, die wie z.B. der Dilogarithmus iiber eine Integraldarstellung
definiert sind. Hierzu trennt man den Integrationsweg von 1 bis 2z’ auf in einen Teil von 1 bis
z und einen weiteren von z bis 2’. Beim zweiten Teil ist darauf zu achten, dass die Null n mal

umlaufen wird:)
1 71 1
log(z') = / —d¢ —I—/ —d¢ = log(z) + n% —dC.
1 € G 5.(0) G

Der Zusatzterm ist wegen der Cauchy’schen Integralformel ge-
rade wieder 2nmi. Da also fiir ein beliebiges z € C die Logarith-
musfunktion nur modulo 2n7i eindeutig ist, ergeben sich fiir den
Imaginérteil die unendlich vielen Blétter der einfachen Helix, so
wie es in nebenstehender Zeichnung qualitativ angedeutet ist.
‘0:.'.55=““ Der Realteil der Logarithmusfunktion log(z) ist dabei stets ein-
Abbildung A.4.: Der Imagi- deutig und gegeben durch den Logarithmus des Betrages des
néirteil von log(z) Argumentes: Re(log z) = log|z|.
Der C++-Standard setzt den Schnitt des natiirlichen Logarithmus unmissverstandlich fest:

y
!

= —
“‘ oSS .’0’

template<class T> complex<T> log (const complex<T>& x);

Notes: the branch cuts are along the negative real axis.

Returns: the complex natural (base e) logarithm of x, in the range of a strip ma-
thematically unbounded along the real axis and in the interval [-i times pi, i times
pi | along the imaginary axis. When z is a negative real number, imag(log(x)) is

pi.

Bis auf den unbedeutenden Fehler beziiglich der linken Intervallgrenze des Wertebereiches fiir
den Imaginérteil finden wir hier auch wieder eine Ubereinstimmung mit dem Lisp-Standard:

log: The branch cut for the logarithm function of one argument (natural logarithm)
lies along the negative real axis, continuous with quadrant II. The domain excludes
the origin. For a complex number z, log z is defined to be

log z = (log|z|) + i(phase z)

A.3. Schnitte, Umkehrungen elementarer Funktionen und all das 141

Therefore the range of the one-argument logarithm function is that strip of the
complex plane containing numbers with imaginary parts between —pi (exclusive)
and pi (inclusive).

Der Schnitt gebietet Vorsicht bei Umformungen von Summen von Logarithmen. Uber die dabei
auftretenden Imaginérteile ldsst sich mithilfe der in [t’'HoVe 1979] eingefiihrten n-Funktion
buchfiihren:

log(z122) = In(z1) + log(22) + (21, 22).

Dies kann als definierende Gleichung fiir 7(z1, 22) verstanden werden. Man findet die n-
Funktion in modernerer Literatur auch haufig unter dem Namen ,FEntwindungszahl® K
wieder, die mit der n-Funktion durch 27mik(log(z1) + log(22)) = —n(z1,22) verkniipft
ist [CDJLW 2001]. Solange 21, z5 und z;2, alle nicht auf dem Schnitt des Logarithmus liegen,
sie also nicht reell und negativ sind, lasst sich die n-Funktion durch Heaviside’sche Sprung-
funktionen wie folgt ausdriicken:

n(z1,22) = 2im[0(—Imz;) 6(—Im 2) O(Im(z1 22))
— 0(Im z;) O(Im 25) 0(—Im(212’2))],

wobei die f-Funktionen hier wieder mit 0(0) = % definiert sind. Vorsicht: Diese Gleichung ist
nur im unkonventionellen Fall eines log-Schnittes entlang der negativen reellen Achse stetig
zum dritten Quadranten richtig. Sie ist aber dennoch fiir eine Implementierung geeignet: in
der hier getroffenen Vereinbarung miissen lediglich noch zusétzliche Faktoren von im korrigiert
werden, falls zq, 29, 2129 oder Kombinationen davon reell und negativ sind. Fiir die vollstédndige

Gleichung sei auf die Implementierung in GiNaC (eta_eval()) verwiesen.

Eine weitere wichtige transzendente Funktion ist der Arcustangens. Er tritt wie der natiirliche
Logarithmus bei der Integration rationaler Funktionen auf. Er lasst sich allerdings auf den

natiirlichen Logarithmus zuriickfithren. Durch Invertierung der Definitionsgleichung
sin(atan(z)) _eZiatan(z) _

= tan(at - Smatams) ;¢ T

@ = tan(atan(z)) cos(atan(z)) ! eiatan(a) 1 |

findet man die Beziehung
2i atan(z) __ 141z

1=z

Nimmt man von beiden Seiten den Logarithmus und beachtet, dass log(e*) = z mod 27, so
sieht man, dass der Realteil nur modulo 7 eindeutig ist:

14z
1 —1z

atan(z) = L log<) mod 7. (A.10)

2
Mit dieser Definition ist auch eine natiirliche Wahl des Schnittes vorgeschlagen, indem man
einfach das mod 7 streicht: Man konnte ihn dorthin legen, wo das Argument des Logarithmus
reell und negativ ist, also beginnend bei den Verzweigungspunkten +:¢ entlang z = +ir, r =
(1...00). Setzt man den Arcustangens ober- und unterhalb des Schnittes fort, so findet man
fiir den Realteil eine unendlichbléttrige Topologie, wie sie in Abbildung A.5 links angedeutet
ist. Wir werden diesem Vorschlag nur bis auf die Funktionswerte auf dem Schnitt selbst folgen.

142 A. Hilfsmittel aus der komplexen Analysis

373

Abbildung A.5.: Real- und Imaginérteil der Arcustangensfunktion (Reelle Achse nach rechts hin-
ten). Der Hauptzweig ist massiv dargestellt.

Ungliickseligerweise hat das ISO/IEC JTC1 SC22% versiumt, inverse trigonometrische und
inverse hyperbolische Funktionen im C++-Standard [ISO 1998| zu spezifizieren — lediglich tri-
gonometrische und hyperbolische Funktionen werden aufgefiihrt. Mit der Revision des C-
Standards [ISO 1999] hielten jedoch komplexe Funktionen in C Einzug und man kann er-
warten, dass kommende Revisionen von [ISO 1998| zumindest semantisch nicht dagegen ver-
stofsen werden. In C bekommen sie dort das Préafix ¢ vorangestellt und gelten fiir den Typ
double als Argument und Riickgabewert, beziehungsweise mit dem Suffix £ fiir den Typ
float und dem Suffix 1 fiir den Typ long double. Man hat also beispielsweise die Pro-
totypen double complex catan(double complex z); und float complex catanf(float
complex z);. Abschnitt 7.3.5.3 schreibt vor:

Description

The catan functions compute the complex arc tangent of z, with branch cuts out-
side the interval [-4, 41| along the imaginary axis.

Returns

The catan functions return the complex arc tangent value, in the range of a
strip mathematically unbounded along the imaginary axis and in the interval
[—7/2,+7/2| along the real axis.

Diese Spezifizierung wird vervollstandigt durch die Erlauterung in 7.3.3.2, wie Schnitte zu
lesen sind:

[...] implementations shall map a cut so the function is continuous as the cut
is approached coming around the finite endpoint of the cut in a counter clock-

4 Abkiirzung fiir: International Organization for Standardization / International Electrotechnical Commis-
sion Joint Technical Committee 1, (Information technology) SubCommitee 22 (Programming languages,
their environments and system software interfaces).

A.3. Schnitte, Umkehrungen elementarer Funktionen und all das 143

wise direction. (Branch cuts for the functions specified here have just one finite
endpoint.)

Fiir den Arcustangens bedeutet dies insbesondere, dass der Schnitt auf der positiven imagi-
naren Achse stetig mit dem ersten Quadranten ist, wihrend der Schnitt auf der negativen
imagindren Achse stetig an den dritten Quadranten anschliefst. Man kann davon ausgehen,
dass kiinftige Revisionen des C++-Standards sich an die im C-Standard spezifizierte Semantik
halten werden. Zum Vergleich sei noch der relevante Absatz in [Stee 1990] zitiert:

atan: X3J13 voted in January 1989 (COMPLEX-ATAN-BRANCH-CUT) to re-
place the formula atan(z) = —ilog((1 +i2)y/1/(1 + 22)) with the formula
log(1 +iz) — log(1 — iz)

27

atan z =

This is equivalent to the formula

atanh iz

atan z = ———
i

recommended by Kahan [Kah 1987|. Tt causes the upper branch cut to be conti-
nuous with quadrant I rather than quadrant II, and the lower branch cut to be
continuous with quadrant III. [...]
The branch cut for the arc tangent function is in two pieces: one along the positi-
ve imaginary axis above ¢ (exclusive), continuous with quadrant I, and one along
the negative imaginary axis below —i (exclusive), continuous with quadrant III.
The points ¢ and —i are excluded from the domain. The range is that strip of the
complex plane containing numbers whose real part is between —m/2 and 7/2. A
number with real part equal to —m/2 is in the range if and only if its imaginary
part is strictly negative; a number with real part equal to 7/2 is in the range if and
only if its imaginary part is strictly positive. Thus the range of the arc tangent
function is not identical to that of the arc sine function.

Dies ist gekiirzt um diejenigen Besonderheiten, die durch die Unterscheidung zwischen +0
und —0 entstehen. Systeme, die eine solche Unterscheidung zulassen, werden in [Kah 1987]
favorisiert und in [Stee 1990] optional berticksichtigt. Sie lassen die Formulierung von
vV—4+0i = 2 und v—4 —0i = —2¢ zu und konnen Verwechslungen bei Schnitten ver-
meiden. Obwohl diese Unterscheidung attraktiv ist, 16st sie nicht die Probleme, mit denen
ein Implementator eines CAS konfrontiert ist: ,Was ist gemeint, wenn ein Benutzer /—4 ein-
gibt?*. Daher, und weil CLN dies nicht unterstiitzt, sehen wir hier und im Folgenden von der
Unterscheidung zwischen 40 und —0 ab.

Die vorgeschlagene Gleichung sieht unserer Gleichung (A.10) schon sehr dhnlich, welche jedoch
nur modulo 7 eindeutig ist und daher noch alle Freiheiten zur Wahl des Schnittes zulésst.
Tatséchlich ist fiir Argumente z = —ir,r > 1

1 1+122 1 1+7r 1 1+r
9 08 1—z'z> 9 08 1—r> 2; \ 08 r—1>+°g()>
—— ——

<0 >0

= (108 (1 +) ~ Tog(r 1)) +1og(~1)),

144 A. Hilfsmittel aus der komplexen Analysis

aber

%(log(l +iz) —log(l —iz)) = %(log(g;j;) —log(1 1))

- %((log(l +7) —log(r — 1)) — 1og(—1)>.

Die beiden Definitionen unterscheiden sich also auf dem Schnitt in der unteren Halbebene um
2%.2 log(—1) = 7. Dort wollen wir der lispschen Definition folgen, die sich wieder als kompatibel
mit der C-Definition herausstellt.

Analog zum Arcustangens sollen nun noch die {ibrigen inversen trigonometrischen Funktionen
und die Lage ihrer Schnitte untersucht werden.

Fiir den Arcussinus konnen wir wieder wie beim Arcustangens vorgehen. Durch Invertierung
der Definitionsgleichung

1, . . -
z = sin(asin(z)) = 5 (¢! asin(z) _ abln(Z))
i

findet man die quadratische Gleichung

0= 621' asin(z) 22’2€i asin(z) 1

Lost man sie und nimmt von beiden Seiten den Logarithmus, wobei wieder log(e*) = 2
mod 27i beachtet werden muss, so wird manifest, dass der Imaginérteil nun zweideutig ist,
ebenso wie der Realteil der allerdings zusatzlich noch um modulo 27 uneindeutig ist:

asin(z) = —ilog(iz = V1 —2?) mod 2. (A.11)

Das Ergebnis ist die Topologie in Abbildung A.6. Nur das positive Vorzeichen entspricht einer
im Ursprung stetigen Funktion und ist daher zu bevorzugen.

Auch diese Funktion wird in C++ nicht spezifiziert. Der C-Standard hingegen sagt lediglich:

Description

The casin functions compute the complex arc sine of z, with branch cuts outside
the interval |-1, +1] along the real axis.

Returns

The casin functions return the complex arc sine value, in the range of a strip ma-
thematically unbounded along the imaginary axis and in the interval [—7 /2,47 /2]
along the real axis.

Mit der Konvention iiber die Stetigkeit auf dem Schnitt stimmt dies mit der lispschen Defini-
tion ([Stee 1990], 12.5.3) tiberein:

asin: The following definition for arc sine determines the range and branch cuts:

asin(z) = —ilog(iz + V1 — 2?)

A.3. Schnitte, Umkehrungen elementarer Funktionen und all das 145

393

Abbildung A.6.: Real- und Imaginérteil der Arcussinusfunktion (Reelle Achse nach rechts hinten).
Der Hauptzweig ist massiv dargestellt.

This is equivalent to the formula

il
asin(z) = asm'(zz)
i

recommended by Kahan [Kah 1987].

The branch cut for the arc sine function is in two pieces: one along the negative
real axis to the left of -1 (inclusive), continuous with quadrant II, and one along
the positive real axis to the right of 1 (inclusive), continuous with quadrant IV.
The range is that strip of the complex plane containing numbers whose real part
is between —7/2 and 7/2. A number with real part equal to —m/2 is in the range
if and only if its imaginary part is non-negative; a number with real part equal to
7/2 is in the range if and only if its imaginary part is non-positive.

Der Arcuscosinus kann wieder genauso behandelt werden. Andererseits ist natiirlich acos(z) =
5 — asin(z) und diese Definition kann auch fiir den Schnitt herangezogen werden. Die Wer-
temenge ist also im Realteil beschrinkt auf das Intervall [0, 7]. Wie aus dem Vergleich der
Abbildungen A.7 und A.6 hervorgeht, ist die Topologie natiirlich dieselbe wie diejenige des
Arcussinus, lediglich der gewédhlte Schnitt ist aufgrund seiner Symmetrie etwas gewohnungs-

bediirftig.

Ebenso wie die hyperbolischen Funktionen aus den trigonometrischen Funktionen durch Mul-
tiplikation des Argumentes mit ¢ hervorgehen, gehen auch die inversen hyperbolischen Funk-
tionen aus den inversen trigonometrischen Funktionen hervor. Sie werden daher hier nicht

146 A. Hilfsmittel aus der komplexen Analysis

=
l% =
4,"’,

" 17/

S 77 7
e
—

Abbildung A.7.: Real- und Imaginérteil des Arcuscosinushyperbolicus (Reelle Achse nach rechts
hinten). Der Hauptzweig ist massiv dargestellt.

weiter behandelt. Die folgenden Identitdten sind exakt, auch auf eventuellen Schnitten:

sinh(z) = —isin(iz) sin(z) = —isinh(iz)
cosh(z) = cos(iz) cos(z) = cosh(iz)
tanh(z) = —itan(iz) tan(z) = —itanh(iz)
asinh(z) = —iasin(iz) asin(z) = —iasinh(iz)
atanh(z) = —iatan(iz) atan(z) = —iatanh(iz).

Zusammenfassend lasst sich sagen, dass zwischen den einzelnen Regelwerken keine Widersprii-
che auftreten, so dass wir uns nicht fragen miissen, welcher Konvention wir uns verpflichtet
fithlen sollten. Traditionell folgen CAS-Hersteller gerne dem Lisp-Standard und so nimmt es
nicht Wunder, dass sowohl Mathematica als auch Maple die Schnitte genau so implementieren
wie hier beschrieben. Vorsicht ist jedoch geboten beim Vergleich mit Reduce und MuPAD —
diese Systeme bieten in der Implementierung ihrer Schnitte eine Reihe Uberraschungen.

Doppelt transzendente Funktionen

Doppelt transzendente Funktionen treten bei der Integration von transzendenten Funktionen
auf, oder allgemeiner bei der Integration von Produkten aus einer rationalen Funktion und
einer transzendenten Funktion.

Prominentestes Beispiel ist der Dilogarithmus Liy.5 Er ist definiert durch

Lis(z) := — /OZ WCK.

Der Verzweigungspunkt ist mit dieser Definition bei z = 1. Dort beginnt der Schnitt und
spiegelt denjenigen der Logarithmusfunktion wieder: Da wir jenen entlang der negativen reellen

5 Auch Spence- oder Jonquiére-Funktion genannt.

A.3. Schnitte, Umkehrungen elementarer Funktionen und all das 147

-2 - -2
Abbildung A.9.: Real- und Imaginérteil der Dilogarithmusfunktion (Reelle Achse nach rechts hin-

ten). Aufserhalb des Einheitskreises ,erbt* der Dilogarithmus die Unendlichdeutigkeit vom Logarith-
mus.

Achse vereinbart haben, liegt der Schnitt des Dilogarithmus da, wo log(1—=2) seinen Schnitt hat,
also beginnend bei 1 entlang der positiven reellen Achse und stetig zum vierten Quadranten.

Um etwas iiber die Mehrdeutigkeit von Real- bzw. Imaginérteil der Dilogarithmusfunktion zu
lernen, gehen wir vor wie bei der Logarithmusfunktion. Sei wieder 2’ mit 2 durch 2/ = ze?"™
verkniipft. Dann ist

log(1 —
Liy(2") = Liy(2) — n]{ Mdg.
$,(0) ¢
Das Wegintegral verschwindet im Falle r < 1 aufgrund des m

Cauchy’schen Integralsatzes, da der Integrand analytisch innerhalb
S,(0) ist. Falls » > 1, wird jedoch tiber den Schnitt von log(1 — ()
integriert und man muss die auftretende Phase berticksichtigen. e
Da das Integral iiber den neben skizzierten Integrationsweg aber
verschwindet und die Divergenz bei ¢ = 1 schwicher als (7! ist,
kann man das Integral iiber den Kreisbogen S,(0) ersetzen durch
ein Integral oberhalb des Schnittes von ¢ = r bis 1 und unterhalb
des Schnittes von ¢ = 1 bis r. Setzt man dann noch die Differenz Abbildung A.8.: Inte-
der Logarithmusfunktion ober- und unterhalb ihres Schnittes (27i) grationsweg zum Schnitt
ein, so erhilt man fiir das gesuchte Wegintegral von Lip(z)

f log1-=¢) .. /1 log(1 — (¢ + i) / log(1 — (¢ —ig))
-l D dc + dc
$,.(0) ¢ . ¢ 1 ¢
o [Mlog(1 = (¢ +ig)) "log(1 — (¢ +ig)) + 2mi
-/ S ¢ “
"2

= ng = 2milog(r).

148 A. Hilfsmittel aus der komplexen Analysis

Dies ist zunéchst rein imagindr. Der Imaginérteil des Dilogarithmus ,erbt“ die Unendlich-
deutigkeit aufkerhalb des Einheitskreises |z| = 1 vom Logarithmus. Wenn wir nun noch die
Uneindeutigkeit des Imaginérteils des Logarithmus in obigem Resultat selbst beriicksichti-
gen, erhalten wir auch eine Unendlichdeutigkeit des Realteils des Dilogarithmus aufserhalb
des Einheitskreises, die die Analytizitdt am Scheitel entlang des Schnittes wieder herstellt.
Abbildung A.9 skizziert das Ergebnis.

Hohere Polylogarithmen fallen an bei der mehrfachen Integration des Dilogarithmus (sie-

he [Lew 1981]). Allgemein ist
Lin(2) = [B2t
0 ¢

womit der Schnitt dort zu liegen kommt, wo Li,,_1({) den Schnitt aufweist, also stets entlang
der postiven reellen Achse, beginnend bei 1 und stetig mit der oberen komplexen Halbebene.
Die Unstetigkeit auf dem Schnitt kann in volliger Analogie zum Dilogarithmus berechnet
werden. Man findet fiir 2/ = ze?"™

2nmi

Lim(z’) = Lim(z) + m

(log)™t

A.3. Schnitte, Umkehrungen elementarer Funktionen und all das 149

f(2) Definitionsbereich Schnitt Unstetigkeit am Schnitt
Definition Wertebereich
C\O0 .
log(2) {¢eC:—m <Im(¢) < 7} 2mi
—_——
vz C 2iv/| 7]
log(z)/2
elos(z)/ C
asin(z) C ilog(Z i;j)
—ilog(iz + V1—22) {ceC: _% <Re(() < %} =
acos(z) C ilog(Z i;j)
—ilog(z + ivI—22) {CeC:0<Re(¢) <} R
atan(z) C\ {i,—i} ™
log(lJriz);ilog(lfiz) {C cC: _% < Re(C) < %}
asinh(z) C | log<:z::r7\/— V:z:zj)
log(z + V1 + 22) {CECZ_% EIIH(C) < %} -
|
210g(\/GFD 2+ V-1 (¢ E€C:—m<Im(() <, | 2ilog(y/(2+1)/2+/(2—1)/2)
Re(¢) > 0} fiir z € [—1...1]
atanh(z) C\{-1,1} i
log(1+Z);10g(1*Z) {¢eC: -5 <Im(() < 5}
Lis(z) C 2rilog =
z log(1—
_ fO g(< 9) dc¢ C -
Liy (2) C (nQE—i)l (log 2)"~*
z Lin—1(1—-C — !
_fo 1{()dC C

Tabelle A.1.: Auflistung der Schnitte in der komplexen Ebene

B. ,pvegas’: parallele MC-Integration

Real supercomputing consists of converting
CPU-bound problems to 10-bound ones
anonymous

In diesem Anhang soll kurz auf den in dieser Arbeit verwendeten Monte-Carlo- (MC-) Inte-
grationsalgorithmus eingegangen werden, sowie auf die parallelisierte Version desselben. Zum
einen gibt es deutliche algorithmische Verdnderungen gegeniiber der in [Krec 1997a| vorge-
stellten Version, die teilweise schon in [Krec 1997b| beschrieben wurden, zum anderen wurden
nach dem Erfahrungsriickfluss zahlreicher Anwender noch weitere Veranderungen vorgenom-
men und eine verldssliche Bewertung der Skalierungseigenschaften erst ermdglicht.

B.1. Vegas

Als MC-Integrationsalgorithmus approximiert vegas |Lepa 1978] ein Integral durch Auswer-
tung des Integranden an einer Stiitzpunktmenge im D-dimensionalen Integrationsgebiet (2:

SW .= % if(a:i) = /f(:c) i, (B.1)

welches wie 1/\/ﬁ konvergiert, unabhingig von der Dimensionalitit des Integrationsvolumens.!

Zwei wohlbekannte Verbesserungen an dem Konvergenzverhalten sind das sogenannte ,,stra-
tified sampling* und das ,,importance sampling*. Bei ersterem wird die zuféllige Stiitzpunkt-
menge ersetzt durch eine sorgféltig praparierte, die das Integrationsvolumen gleichméfiger
ausfiillt — im Idealfall néhert sich die Konvergenz dabei 1/n.2 Beim importance sampling wird
die Stiitzpunktmenge dort verfeinert, wo der Integrand ein interessantes Verhalten aufweist,
also entweder f(x), |V f(x)| oder beide grofs sind — man spricht daher auch von einem ,adap-
tiven Verfahren.

! Dies steht im Gegensatz zu iterierten eindimensionalen Integrationsverfahren (iterierte GauR-Quadratur,
etc.): Ist dort die Konvergenz im eindimensionalen Fall n~", so verschlechtert sie sich durch das Iterieren
iiber die D Dimensionen zu n~"/P — eine einfache Konsequenz Gauf’scher Fehlerfortpflanzung. Da h ~ 1,
sind MC-Integrationen solchen Verfahren im Falle D > 2 vorzuziehen.

2 Ein Vergleich mit der belebten Natur dringt sich geradezu auf: die natiirliche Verteilung einzelner Biume
in einem Nadelwald folgt erfahrungsgeméf keiner naiven zweidimensionalen Zufallsfolge. Da freistehende
nachwachsende Biaume bessere Uberlebenschancen haben als iiberschattete Sprosslinge, streut die Gesamt-
verteilung besser — was auf winterlichen Luftaufnahmen sofort ins Auge springt.

152 B. ,pvegas’: parallele MC-Integration

In Zufallsfolgen: Im Gitter:
stratified sampling:) ' o
Verteilt die Stiitzpunkte A e e
gleichmifiger als echte AT B e e
Zufallsfolgen. PR Sl

importance sampling:
Passt die Stiitzpunktmenge
dem Verlauf der jeweiligen
Funktion an.

Abbildung B.1.: Sampling-Methoden: ,stratified sampling® und ,,importance sampling®. Die Zu-
fallsverteilungen der mittleren Spalte wurden erzeugt mit: einem linearen Kongruenzgenerator (links
oben), einer Sobol’-Reihe [PTVF 1992 (rechts oben und links unten), mit der ,/-Funktion transfor-

mierte Sobol’-Reihe (rechts unten).

Da die Dimensionalitdt des Integrals fiir vegas ein Parameter sein soll, werden beide Me-
thoden verwirklicht, indem ein orthogonales Gitter iiber dem Integrationsgebiet eingefiihrt
wird (siehe Abbildung B.1). Die gleiche Anzahl von Zufallsstiitzpunkten in jedem Subvolu-
men garantiert, dass sie im Gesamtvolumen gleichméfiger gestreut sind — und implementiert
so stratified sampling. Iterativ werden die Gitterlinien dann dem Integranden angepasst, was
importance sampling entspricht. Die Einschrankung bei dieser Methode ist die Orthogonalitéat
des Gitters: es ldsst tmportance sampling nur fiir Funktionen zu, die sich gewissermafen an
die vorgegebenen Koordinaten halten, im Idealfall faktorisieren. Tatséchlich ist importance
sampling aquivalent zu einer Transformation des Integrals

[= [P \%—’; dy
0 “1(Q)

P

mit der Randbedingung, dass die Rénder des Integrationsgebietes 02 unverédndert bleiben.
Dann entspricht dem orthogonalen Gitter eine faktorisierende Transformation P(y), die jede
Koordinate von y einzeln transformiert. Fin solches Gitter wird naturgemaéfs nicht in der Lage
sein, sich iterativ an eine Funktion anzupassen, die ihr Maximum z.B. entlang der Diagonalen
von () hat.

B.2. Parallelisierung

Eine Parallelisierung von vegas profitiert sicherlich davon, dass der Aufruf des Integranden an
verschiedenen Stiitzpunkten unabhingig voneinander ist.®> Man kénnte also vegas mehrfach
parallel aufrufen und jedem der p Prozessoren einen Anteil n/p aus den n Punkten der Stiitz-
punktmenge zuteilen. Nennen wir dies Ansatz I und notieren es in einem Stiick Pseudo-Code,
worin die Programmstruktur durch Einriickung dargestellt wird:

3 Dies muss in der Praxis sicher gestellt werden: unvorsichtig geschriebene Makros, Schreibzugriffe auf sta-
tische Variablen und common-Blécke kénnen die thread-Sicherheit zerstoren.

B.2. Parallelisierung

153

Ansatz | Ansatz Il Ansatz Il
T L
11f 1 11 1 11} .
1L 1 1 ‘F{%}{—I{{—I—H—I— 1+ r—*—x-}E—I—I—x—‘—:st—o—H
09} 1 09 1 o9f .
08 F 1 08 1.04 + - " 08F 1.04f
1.03} 1 1.03}
0.7 1 07 1.02} 107 1.02}
1.01f 1 1.01f
0.6 4 0.6 0.6
S 1) 1 fF oy = =
05 4 05 0.99 | 105 0.99 ¢
0.98 1 0.98
041 1 04 097 104r¢ 097
03F 1 03 096 | - . . . J03f 0% 0
10 11 12 13 14 15 10 11 12 13 14 15
02 4 0.2 0.2
0.1 4 0.1 0.1
O é é 5 ¥ 1 1 1 1 1 1 1 1 1 1 1 + 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
123456 7 8 9101112131415 123456 7 8 9101112131415 1234567 8 9101112131415

Iterationi

Iterationi

Iterationi

Abbildung B.2.: Konvergenzvergleich dreier verschiedener Parallelisierungsansétze fiir p = 16 Pro-
zessoren. Die exakte Losung des Integrals ist auf 1 normiert. Die Fehlerbalken sind zur Visualisierung
in allen Diagrammen um einen Faktor 50 vergréfert.

for i<-1 to p do in parallel
for all iterations
call vegas(n/p)
average results

] W =~

Der Schritt ,,average results” kann beispielsweise Durchschnittsbildung der Endergebnisse
sowie der Fehler beinhalten. Da die Fehler im allgemeinen verschieden grofs sein werden, sollten
die Ergebnisse mit den Inversen der Fehler relativ zueinander gewichtet werden. Ansatz I
krankt jedoch an der stochastischen Natur von MC-Integration: Die einzelnen Prozessoren
werden sich unterschiedlich gut an den Integranden anpassen, manche unter Umsténden nicht
einmal dessen ,jinteressante” Stellen finden, somit falsche Ergebnisse liefern und die Fehler
unterschitzen.

Eine naheliegende Verbesserung ist, nach jeder Iteration die einzelnen Prozessoren sich iiber
das Ergebnis ihres Adaptationsprozesses austauschen zu lassen. Dies wiirde im Falle von vegas
iiber eine Synchronisation der Gitterdaten erfolgen, nennen wir es Ansatz II:

1 for all iterations

2 for i+-1 to p do in parallel
3 call vegas(n/p)

4 synchronize grids

5 average results

Man bemerke jedoch, dass hierzu die beiden Schleifen vertauscht werden mussten, was zu
einem etwas unbalancierten Laufzeitverhalten fithren kann, wenn z.B. einer der Prozessoren
zwischenzeitlich mit einer anderen Aufgabe beschéftigt ist und am Ende der inneren Schleife

154 B. ,pvegas’: parallele MC-Integration

alle anderen auf ihn warten miissen. Beide Verfahren (man kann sie als makroparallel bezeich-
nen) kranken jedoch noch immer an einem Problem, was mit dem von vegas aufgebauten
Gitter zusammenhéngt: Ruft man ein unparallelisiertes vegas mit der Anzahl von Punkten
auf, die vorher auf p Prozessoren verteilt wurden (also ,,call vegas(n)“), so kann der Algorith-
mus sich besser dem Verlauf des Integranden anpassen — denn es herrscht ja die Zwangsbedin-
gung, dass in jedes Subvolumen die gleiche Anzahl von Stiitzpunkten fallen muss. Es ist also
erstrebenswert, eine Parallelisierung zu finden, die die numerische Struktur des sequentiellen
Algorithmus nicht zerstort. In vegas bietet sich hierzu eine zentrale Schleife an, die iiber die
einzelnen Subvolumina des Gitters iteriert. Der Ansatz III ist in pvegas implementiert und
ein Aufruf lautet, da die Parallelisierung nun intern erledigt werden muss, lediglich:

1 call pvegas(n)

Abbildung B.2 verdeutlicht die Uberlegenheit eines solchen mikroparallelen Verfahrens gegen-
iiber den ersten beiden Ansétzen anhand einer scharfen Gaufsfunktion in einem fiinfdimensio-
nalen Gebiet (2. Im ersten Graphen liefert ein Testlauf in den ersten fiinf Iterationen vollig
falsche Ergebnisse, da einige der 16 Prozessoren ihr Gitter noch nicht an den Integranden
angepasst hatten und ihre Fehlerabschitzung so gering war (=~ 10732), dass die Ergebnisse
der anderen unterdriickt wurden. Der zweite und dritte Graph zeigen, wie Ansatz II dieses
Problem wie erwartet 16st, die Konvergenz bei den spéteren Iterationen jedoch deutlich hinter
derjenigen vom mikroparallelen Ansatz III zuriickbleibt.

Die Anzahl der Subvolumina ist in der Regel allerdings sehr grof* und eine vollige Parallelisie-
rung dieser Schleife wiirde demnach zu einer zu feinkérnigen Problemaufspaltung fiihren um
von einer realistischen Kommunikationshardware bewiltigt werden zu konnen. pvegas spaltet
die Schleife daher auf in zwei. Hierzu wird zunéchst das D-dimensionale Volumen zerlegt in
einen ,Parallelraum® und einen ,Orthogonalraum® mit den jeweiligen Dimensionen D) und
D, = D~ Dy. Die Iteration iiber die Parallelraum-Subvolumina wird aufgeteilt auf die p Pro-
zessoren, wahrend jeder von ihnen die Iteration iiber die dazu gehorenden Orthogonalraum-
Subvolumina sequentiell durchfiihrt. Die Aufteilung in Dy und D, kann vom Benutzer den
jeweiligen Verhéltnissen (Integrand, Genauigkeitsziel, Maschine) angepasst werden, jedoch ist
Dy = |D/2] und D, = [D/2] ein guter Startwert und daher Standardeinstellung. Ein Blick
in die Schleifen von pvegas zeigt stark vereinfacht Folgendes:

for all iterations
for par<1 to DJ| do in parallel
for per—D|+1 to D do
for all x in samplepoints_within_hypercube
accumulate results of call f(x)
compute result

(SN, I SV VIS

Fiir die parallele Implementierung kommt so in natiirlicher Weise ein Master-Slave-Modell in
Frage, in dem ein Master-Prozess {iber den Parallelraum iteriert und die Worker {iber den
Orthogonalraum.

4 Sie ist hochstens gleich n/2 da man mindestens 2 Stiitzpunkte pro Subvolumen braucht, um Varianz
definieren zu kénnen. In der Praxis ist sie jedoch selten kleiner.

B.3. Nebenintegrale 155

B.3. Nebenintegrale

Das Aufsummieren von sogenannten Nebenintegralen zusétzlich zum Hauptintegral ist eine
hidufig an Vegas gestellte Aufgabe. Traditionell werden dafiir innerhalb des Integranden f
zusitzliche Akkumulatoren aufsummiert, gewichtet mit einer von Vegas bereitgestellten Va-
riablen w, die natiirlich auch eine Funktion des Stiitzpunktes ist:

N
bl — Z w; fY (x;).
i=1

Damit dieses Vorgehen iiberhaupt sinnvoll ist, miissen natiirlich zwei Voraussetzungen erfiillt
sein:

e Erstens sollten die Nebenintegranden eine gewisse Ahnlichkeit mit dem Hauptintegranden
aufweisen, da das Gitter nur fiir einen Integranden optimiert werden kann.

e Zweitens sollten sie leicht zu berechnen sein (zumindest sobald der Hauptintegrand vor-
liegt), da sonst der Rechenaufwand identisch ist mit dem wiederholten Aufruf der Inte-
grationsroutine.

Das traditionelle Verfahren lasst jedoch zu wiinschen {ibrig: die in der Integrandenfunktion auf-
summierten Akkumulatoren miissen ,,per Hand* nach dem Aufruf der Integrationsroutine aus-
gelesen werden und vor einem néchsten Aufruf auf Null zuriickgesetzt werden. In einer thread-
basierten Parallelisierung bricht es vollig zusammen, solange der Benutzer die Akkumulatoren
nicht durch einen Mutex (bzw. Semaphore, Critical Section, etc.) absichert, was ihm nicht zu-
gemutet werden kann und obendrein das Laufzeitverhalten empfindlich storen kann. Es musste
daher aufgegeben werden. Stattdessen soll die Funktion einen Vektor von Ergebnissen zuriick-
liefern: aus double f(double x[], double wgt) wird void f(double x[], double f[]),
die Akkumulation wird von pvegas bewerkstelligt. Hierbei ist x[] der Stiitzpunkt und £ []
der Ergebnisvektor. Mit diesem Schritt muss endgiiltig das gesamte Interface von pvegas ge-
andert werden. So werden statt dem einen Integral double *tgral nun mehrere Integrale
double tgrall[] zuriickgeliefert, das gleiche gilt fiir den Fehler und die Varianz zwischen ein-
zelnen Iterationen.’ Da C keine Form von Range-checking kennt und pvegas nun einen Vektor
von Akkumulatoren verwaltet, muss die Anzahl der Nebenfunktionen mit iibergeben werden.®
Damit lautet der vollstdndige C-Prototyp nun (vergleiche Tabelle B.2):

1 void vegas(double regn[], int ndim, void (*fxn)(double x[], double f[]),
2 int init, unsigned long ncall, int itmx, int nprn,

3 int fcns, int pdim, int wrks,

4 double tgrall[], double sd[], double chi2al[]);

5 Tatséchlich beriihrt diese Anderung den Benutzer noch nicht, da in C ja *v = v[0].

6 Man beachte, dass bei init < 2 die Ergebnisse der Rechnung ohnehin weggeworfen werden. Dies ermdglicht
es, etwas Verwaltungsaufwand zu sparen, indem man erst im letzten Aufruf init = 1 die Anzahl der
Nebenfunktionen einsetzt und sie vorher auf 1 stehen lésst.

156 B. ,pvegas’: parallele MC-Integration

B.4. Parallele Zufallszahlen

Die Stiitzpunktmenge, an der der Integrand berechnet wird, soll moglichst ,zufallig”“ sein. Da
deterministische Maschinen aber keine echten Zufallszahlen im informationstheoretischen Sinn
erzeugen kann, greift man auf Pseudozufallszahlenfolgen zuriick. Fiir einen Stiitzpunkt kénnen
dann D aufeinanderfolgende Zahlen als Komponenten in einem D-Vektor benutzt werden.

In einer parallelen Umgebung gibt es zwei verschiedene praktikable Ansétze:

e Ein einzelner Zufallszahlengenerator berechnet eine Folge die dann ohne Uberlapp an
die einzelnen Prozessoren verteilt wird.

e Jeder Prozessor hat seinen eigenen Zufallszahlengenerator und irgendein Konstruktions-
prinzip tragt dafiir Sorge, dass keine Korrelationen das Ergebnis verfalschen.

Korrelationen konnen nicht nur im zweiten Fall auftreten. Schlechte Zufallszahlengeneratoren
kénnen auch im ersten oder im nichtparallelen Fall zu Artefakten fithren. Knuth [Knu 1998]
listet eine Reihe von Tests um die Qualitét eines Zufallszahlengenerators zu iiberpriifen, doch
leider bestehen in der Praxis selbst einige der schlechtesten Generatoren noch alle vorgefer-
tigten Tests. Man kann aber vermuten, dass vegas (und MC-Integratoren ganz allgemein)
recht unanfillig gegen Artefakte in den Folgen sind im Vergleich zu anderen MC-Routinen.
Das liegt nicht zuletzt an der Randbedingung, dass in unserem Falle die Stiitzpunkte nur
innerhalb eines der Hyperwiirfel im vegas-Gitter fallen diirfen.

Ein Blick auf Amdahls Gesetz zeigt uns, dass der zweite Ansatz mit p unabhingigen Gene-
ratoren der Attraktivere ist. Als Amdahls Gesetz bezeichnet man die Beziehung zwischen der
Beschleunigung S (fiir engl: speedup), der Anzahl der CPUs p und dem Anteil des Programmes
«, der parallel ausgefiihrt wird:

S=(1-a +p/oz)71.

Voneinander unabhéngige Zufallszahlengeneratoren erhohen o, was wiederum der Beschleu-
nigung S zugute kommt.

Die einfachsten auf jedem System installierten Zufallszahlengeneratoren sind lineare Kon-
gruenzgeneratoren. Auf einen Startwert wird eine lineare Transformation angewendet, das
Ergebnis in einem Restklassenring modulo einer geeigneten Zahl betrachtet und als néchster
Startwert verwendet:

Xiy1:= (aX; +b) mod m. (B.2)

X; muss dann vom Benutzer in ein geeignetes Intervall aus R abgebildet werden. Hierin ist
m iiblicherweise die grokte maschinendarstellbare ganze Zahl, etwa 232, und a und b miissen
daran angepasst werden um moglichst die volle Periodizitdt m zu bekommen. Eine solche
Periodizitat reicht jedoch héaufig nicht aus, insbesondere bei Einsatz paralleler Maschinen
kommt es rasch zur Zahlenknappheit. Fiir pvegas bevorzugen wir daher eine Variation iiber
dem Thema Schieberegistergeneratoren.” Ein Schieberegistergenerator ist zunichst einmal nur
bitweise definiert. Er generiert bindre Pseudozufallsfolgen, indem er paarweise Bits aus einer
gegebenen binédren Liste mit dem exklusiven Oder verkniipft:

T = ZL‘k_p@Jfk_P+Q (]CZP)

B.4. Parallele Zufallszahlen 157

Abbildung B.3.: (a) die 127 Bit der vollstandigen Schieberegister-Reihe zum primitiven Polynom
27 + 2% + 1 mod 2 und zwei verschiedene Wege, daraus Zufallszahlenfolgen aus Wortern a vier
Bit zu bilden: (b) Tausworthe-Reihe aus vier um O = 9 versetzten Schieberegister-Reihen und (c)
Kirkpatrick-Stoll-Reihe initialisiert mit {4,11,11,4,1,7,14}={&,8, 88,8, 8,8 }.

Die festen Zahlen P und Q sind dabei so gewihlt, dass das Trinom 142"+ 2% primitiv modulo
zwei ist.® Da immer nur die letzten P Elemente der Liste in die weitere Erzeugung von Bits
einflieflen, also auch nur die letzten P Elemente gespeichert werden miissen, lasst sich dies sehr
leicht effizient implementieren. Man kann zeigen, dass die so konstruierte Reihe eine Periodizi-
tit von 2F—1 hat. Alle Kombinationen von P aufeinanderfolgenden Bits kommen darin genau
einmal vor — mit den P aufeinanderfolgenden Nullen als einziger Ausnahme. Bisher haben wir
nur eine Folge von Bits wie in Abbildung B.3a grafisch angedeutet. Tausworthes Idee bestand
nun darin, auf einer Maschine mit Worten zu b-Bit eine Zufallszahlenfolge zu erstellen, indem
man sich b solche Bitfolgen untereinandergeschrieben denkt und die Zufallsworter spaltenwei-
se daraus abliest. Die Generierung kann nun sehr effizient wortweise geschehen, indem man
das in jeder Maschine vorhandene bitweise exklusive Oder fiir ganze Worter anwendet. Die
Anweisungen sind dann sehr maschinenfreundlich formulierbar. Sei w der Array, in dem die
letzten P b-Bit-Werte des Generators gespeichert werden, und k ein Index, der zu Beginn des
Algorithmus auf dem Anfangselement steht. In Pseudocode ausgedriickt lautet die Vorschrift
dann:

++k mod P

j=(k +Q mod P
wlk] = wlk] & wlj]
ergebnis «— wlk]

] WD =

Damit nicht alle Worter nur aus entweder 1 oder 0 bestehen, werden die Reihen gegeneinan-
der verschoben. Alte Generatoren dieser Art verschieben die Reihen immer um einen festen
Betrag O zueinander wie in Abbildung B.3b angedeutet, indem die Anfangssequenz fiir je-
des Bit um O gegeniiber dem vorherigen Bit weitergespult wird. Die entstehende Reihe heifst
Tausworthe-Reihe. Es sei darauf hingewiesen, dass fiir jeden Wert von O eine neue Reihe aus
Wértern zu b-Bit entsteht mit Periode 27, obwohl die einzelne Schieberegister-Reihe immer
die gleiche bleibt. Ublich fiir P sind Werte zwischen 100 und 1000, also Reihenlingen zwi-
schen 10%° und 103%. Das Vorspulen geschieht aus Griinden der Praktikabilitit aber nur um
etwa 1000 bis 10000 Werte. Dies galt bald als ungeniigend, um Korrelationen sicher auszu-
schliefsen. In [Déak 1990] wurde daher ein Verfahren entwickelt um dieses Vorspulen anstatt

in linearer in logarithmischer Zeit bewerkstelligen zu konnen; fiir eine Implementierung in C
siehe [Krec 1997al.

" Der in der Festkorperphysik hiufig verwendete R250 ist zum Beispiel auch ein Schieberegistergenerator.
8 Eine umfassende Liste als geeignet bekannter Paare P und @ ist im Quellcode von pvegas dokumentiert.

158 B. ,pvegas’: parallele MC-Integration

Hersteller: Architektur: CPU: MHz: Betriebssystem: Prmax: Modell:

Convex SPP-1200 PA-7200 120 SPP-UX 4.2 46 CPS

HP X-class PA-8000 180 SPP-UX 5.2 46 CPS/
Posix

Cray T3D EV4 150 UNIcos Max 256 MPI

1.3.0.3

Siemens- Solaris-NoW Pentium-1I 300 SunOS 5.6 31 MPI

Scali-Dolphin

DEC AlphaServer 8400 EV5 300 Digital Unix 4.0 8 Posix

(,Turbo-Laser*)

SGI Origin 200 R10000 180 IRIX 6.4 4 Posix

Sun E3000 UltraSparc 250 SunOS 5.5.1 4 Posix

Intel TA-64 733 GNU/Linux 2.4 4 Posix

(Eigenbau) Linux-NoW AMD K6 233 GNU/Linux 2.0 5 MPI

Tabelle B.1.: pvegas ist auf allen derzeit gédngigen Parallelrechnern lauffdhig. pmax bezieht sich auf
die maximale Prozessoranzahl, die fiir Laufzeittests zur Verfiigung standen.

Doch selbst dieses Initialisieren in sub-linearer Zeit stellte sich in der Praxis rasch als unbe-
friedigend heraus, kann es doch noch viele Sekunden in Anspruch nehmen. Erstrebenswert
wiare zudem eine Initialisierung nicht mit konstant verschobenen Bitfeldern sondern mit vollig
zufillig gegeneinander verschobenen wie in Abbildung B.3c angedeutet. Dies kann aber sehr
leicht in konstanter Zeit implementiert werden, wenn man bereit ist auf das Wissen um den
Betrag dieser Verschiebung gegeneinander zu verzichten. Da die Schieberegister-Reihe alle
Kombinationen von P aufeinanderfolgenden Bits bis auf eine genau einmal durchlauft, ist die
Initialisierung der Reihe mit Zufallszahlen &dquivalent zum Einspringen in die Reihe an einem
nicht bekannten Punkt.? In der Praxis wird man die P bendtigten Startworte aus den ersten
P Tterationen eines linearen Kongruenzgenerators (B.2) entnehmen. Das Verfahren ist hervor-
ragend fiir eine Parallelisierung geeignet, da man nur p Startfelder der Lange P nacheinander
initialisieren muss und diese dann unabhéngig voneinander arbeiten lassen kann. Genau wie
bei der Tausworthe-Reihe, bei der fiir jedes O eine neue Reihe gebildet wurde, erhélt man so
in der Regel tatsiichlich p verschiedene Reihen, jede einzelne mit der Periode 27.

Dieses Vorgehen ist iibrigens dank der Lange der Schieberegister-Reihe auch ohne zusétzliche
Uberpriifung der Initialisierung hinreichend sicher. Fiir das in pvegas voreingestellte Paar
P = 1279, Q = 418 betrigt die Periodenliinge 2'2”. Die Wahrscheinlichkeit dafiir, dass pro
Lauf in einem Wort a 32-Bit eines der Bits versehentlich iiberall mit O initialisiert wird, ist
< 10737, Die Wahrscheinlichkeit, dass in einer Maschine wie ASCI Option White innerhalb
eines Jahrhunderts irgendwo zwei Bitfolgen iiberlappen werden, wenn die ganze Maschine
ausschlieRlich mit dem Erzeugen der Zufallsfolge beschiftigt wird, ist immer noch < 1073,

9 Dieses Verfahren wurde unabhingig voneinander mehrfach entdeckt und erstmals in [KiSt 1981]
beschrieben.

B.5. Praktische Erfahrungen und Perspektiven 159

M i i i i Convex SPP-1206——

[n HP X-Class]
S DEC 8400 -------]
. i | | | SGI Origin 200 -------]
6L 3 3 3 3 Sun E3000-----]
A SCl-basiertes PC-Cluster +
R Linux-Now
[S L IA-64 ————
5L ' : e e Cray T3D X
S Alatii,,]
N I Trres, 3 3
= I | i, | |
- | ey | |
3r 3 Ty | i -
: : Ty, : 3
X | i s
: + :
A 3 3
2f]
be - ——— >e ------------- S S X ________________ ,, i
ol A [L I A [L |

Anzahl der Prozessorgn

Abbildung B.4.: Effizienz von pvegas tgp P /nt,,. Das Optimum ist erreicht bei konstanter Effizienz.
Alle Werte sind normiert auf die Convex SPP-1200 um den Graphen zu entzerren und einen Vergleich
zwischen den verschiedenen Prozessortypen zu ermdoglichen.

B.5. Praktische Erfahrungen und Perspektiven

Die urspriingliche Implementierung von pvegas fiir eine SMP-Umgebung mit geteiltem Spei-
cher benutzt die standardisierten Posix-Threads und die dazugehorigen Mechanismen zum
Verriegeln globaler Variablen. Alternativ dazu kann es auch in einer Umgebung mit CPS-
Threads benutzt werden; die dafiir notwendigen Anderungen beschriinken sich auf syntaktische
Feinheiten und koénnen leicht vom C-Praprozessor erledigt werden. Maschinen mit verteiltem
Speicher erforderten eine vollstdndige Neuimplementierung des Algorithmus. Diese ist aber
nicht nur auf Supercomputern lauffahig, sondern auch auf sehr preisgiinstigen Parallelrech-
nern aus vernetzten Workstations (NoW: Network of Workstations).

Dank des leichtgewichtigen Zufallszahlengenerators und der Moglichkeit, einige Parameter
wie D oder die Anzahl der Funktionsaufrufe zu adjustieren, konnte pvegas bisher stets na-
he an die optimale parallele Skalierung heranreichen. Abbildungen B.4 und B.5 zeigen die
Skalierungseigenschaft sowie die Laufzeit fiir ein Testproblem in D =5 und D) = 2.

Das wesentliche Handicap am Vegas-Algorithmus selbst stellt die Beschrankung auf rechtwink-
lige Gitter und damit einhergehend auf Hyperwiirfel als Integrationsgebiete dar. An dieser Stel-
le kann jedoch verhaltener Optimismus auf bessere Verfahren gedufsert werden. Zwar existieren
fertige adaptive Programmpakete fiir numerische Quadratur, die im zweidimensionalen Fall

160 B. ,pvegas’: parallele MC-Integration
T T T T T T LU
: Convex SPP-1200——
B HP X-Class 1
. DEC 8400-------
N § SGl Origin 200 -------
1000 i ST EON b S S Sun E3000- -
[X o~ | | SCl-basiertes PC-Cluster +
. Linux-Now
[T | IA-64 ————
‘ Cray T3D %
=
‘© ; : :
N 3 % % %
3 3 e N b .
5 e
e
s I
3 +++++W+ ' S
110 N i s B S i i,\,.,_,,\,‘ ,,,,,,, _
| | L | L T PRI R T R PR R PRI R L .\
1 2 4 8 16 32 64 128 256

Anzahl der Prozessorgn
Abbildung B.5.: Laufzeiten von pvegas.

eine auf Dreiecken beruhende Stiitzpunktmenge benutzen (z.B. [DoRo 1984|), in mehr als zwei
Dimensionen ist jedoch kaum Software vorhanden. Die Ursache liegt darin begriindet, dass die
Verallgemeinerung einer zweidimensionalen Triangulation nichttrivial ist. Fiir das Aufteilen

eines n-dimensionalen Hyperwiirfels in n-dimensionale Simplizes
gibt es kein Verfahren, welches die attraktiven Eigenschaften einer
rechtwinkligen Aufteilung besitzt, ndmlich erstens iiberschaubare
Subvolumina liefert und zweitens leicht berechenbar ist. Konkret
bedeutet das: Es entstehen bei n-dimensionaler Triangulation mit
zunehmendem n immer ldngere Simplizes, die dann nicht mehr das
Verhalten des Integranden wiederspiegeln konnen, also ungeeignet
fiir Adaptation sind. Der mittlere Tetraeder in Abb B.6 ist schon
nicht mehr kongruent zu den vier Pyramiden am Rand. Selbst bei
moderaten Dimensionen ist wenig bekannt iiber optimale Triangu-

Abbildung B.6.: Delaunay- lationen. Bei n = 3 ist die aus der Methode der Finiten Elemente
Triangulation des 3-Wiirfels hekannte Delaunay-Triangulation mit 5 Simplizes noch beweisbar
diejenige, bei der die Simplizes am ,rundesten” ausfallen. Verlangt man die Triangulation eines
héheren n-Wiirfels in eine minimale Anzahl von n-Simplizes, so hort unser Wissen derzeit bei
n = 7 mit 1493 Simplizes auf [Smit 1998|, dariiber existieren nur sehr grobe obere und untere
Grenzen. All dies ist freilich kein Argument gegen die Existenz eines Algorithmus zur Erzeu-
gung hinreichend guter adaptiver Stiitzpunktmengen auf Basis von Triangulation — sie sollten
jedoch die damit verbundenen Schwierigkeiten in ein realistisches Licht stellen. Integratoren

B.5. Praktische Erfahrungen und Perspektiven 161

+
[
[HH
FH]
1] [HH
gxil
m=mm [
| HH
(a) Divergenz in der Ecke unten links (b) Riicken entlang der Diagonalen

Abbildung B.7.: Vergleich der erzeugten Gitterstruktur von Vegas (jeweils links) und ParInt (jeweils
rechts) fiir zwei mit Monte-Carlo-Methoden schwer zugéngliche Integranden.

wie FoAM |Jada 1999| basieren dennoch auf einem durch Triangulation unterteilten Volumen,
verzichten aber aus den genannten Griinden auf Optimierungen der Simplexform und Sim-
plexanzahl. Dies fiihrt schon in zwei Dimensionen zu einigen sehr prolongierten Dreiecken,
eine Tendenz die sich bei hoherdimensionalen Simplizes verstiarkt. Skepsis ist angebracht, ob
diese splitterformigen Simplizes prinzipiell eine gute Adaptation an den Integranden erlauben
konnen.

Vielversprechender als Triangulationen sind Unterteilungen des Integrationsgebietes in
Hyperwiirfel genau wie in Vegas, wobei die Struktur der Unterteilungen jedoch nicht in einem
faktorisierenden D-dimensionalen Array von Trennlinien sondern in einer etwas komple-
xeren Unterteilungsbaumstruktur wie in

nebenstehender Abbildung B.8 gespeichert

wird. Ein solcher Algorithmus wurde

in [DGBEG 1996] beschrieben — die Imple-

mentierung ParInt wird intensiv gepflegt

und weiterentwickelt. Abbildung B.7(a)

zeigt, wie in dem héaufigen Fall eines Poles

am Rand eines Integrationsgebietes beide

Unterteilungen verniinftige Ergebnisse

liefern. In Abbildung B.7(b) hingegen ist

der Extremfall fiir vegas skizziert: der

Integrand weist einen Riicken entlang Abbildung B.8.: Der zu dem Gitter aus Abbil-
der Diagonalen auf. Da das vegas-Gitter dung B.7(a) rechts gehérende Unterteilungsbaum.
sich nur an den faktorisierenden Beitrag des Integranden adaptieren kann, bleibt jegliches
importance sampling aus. Das von ParInt verwendete Gitter hat keine Probleme damit, sich
an diesen Integranden anzupassen. ParInt hat einige Ahnlichkeiten mit pvegas und kénnte
sich daher als Ersatz eigenen. So ist das Integrationsgebiet prinzipiell ein Hyperwiirfel in D
Dimensionen. Es kann Nebenintegrale aufakkumulieren (hier vector functions genannt), was
aber auch nur dann sinnvoll ist, wenn die zusétzlichen Funktionen eine Ahnlichkeit mit der
Hauptfunktion haben. Aufferdem existiert eine parallele Version, die an der Western Michigan
University auf einem eigens dafiir eingerichteten NoW aus 32 Linux-Rechnern eingesetzt
wird — ein Punkt, der nicht ganz nebenséchlich ist, denn er garantiert die unproblematische
Verfiigharkeit fiir xloops, ohne dass der Portieraufwand iiberhand nimmt. Diese Parallelisierung

162 B. ,pvegas’: parallele MC-Integration

folgt wie pvegas dem Master-Slave-Modell, in dem ein Master-Prozessor die Arbeit zwischen
mehreren Slave-Prozessoren balanciert. Dieses Ausbalancieren ist notwendigerweise ungemein
komplexer als in unserer eleganten Aufteilung in Parallel- und Orthogonalraum. Dies erkennt
man schon daran, dass der Master-Prozessor nicht nur Arbeit verteilen, sondern sie sogar
einem iiberfrachteten Slave-Prozessor wieder abnehmen und auf einen nicht ausgelasteten
Slave geben kann.

Es ist durchaus vorstellbar, dass angesichts solcher fortgeschrittenen flexiblen Integratoren fiir
vegas bald nur noch ein Platz im Museum erfolgreicher Algorithmen verbleibt.

B.5. Praktische Erfahrungen und Perspektiven 163

Argument: NRC-Aquivalent: Bedeutung;:

double regnl[] double regnl[] 2ndim-Vektor, die zwei Eckkoordina-
ten des ndim-dimensionalen Hyper-
wiirfels: Elemente 0...ndim—1 be-
zeichnen eine Ecke, ndim...2ndim—1
die andere

int ndim int ndim Dimension des Integranden / des
Integrationsgebietes

void (*fxn) (double x[], double (*fxn)(double x[], Zeiger auf Integrandenfunktion
double f[]) double wgt) x[]: Koordinatenvektor des Stiitz-
punktes
f [1: zuriickgegebene Funktionswerte,
entspricht Riickgabewert in NRC
wgt: obsolet, gibt es nur in NRC

int init int init Initialisierung: 0 bedeutet ,Kalt-
start, 1 Aufbauen auf bisherigem
Gitter, 2 Aufbauen auf bisherigem
Gitter und Ergebnissen

unsigned long ncall unsigned long ncall Anzahl der Stiitzpunkte pro Iteration
int itmx int itmx Anzahl der Iterationen in diesem Lauf
int nprn int nprn Details in der Ausgabe, in pvegas als

Bitmaske vereinbart

int fcns - Anzahl der Nebenfunktionsakku-
mulatoren, siehe Argument f[] von
(xfxn) O

int pdim - Parallelraumdimension D) (0 verein-

bart Automatik, also Dj = [D/2])

int wrks - Parallelisierungsgrad, also Anzahl der
threads oder zu benutzenden CPUs

double tgralll double *tgral Zeiger auf Ergebnis, bzw. Vektor auf
die Ergebnisse, falls fcns > 1

double sdl[] double *sd Zeiger auf Fehler, bzw. Vektor auf die
Fehler, falls fcns > 1

double chi2al] double *chi2a Zeiger auf Varianz, bzw. Vektor auf
die Varianzen, falls fcns > 1

Tabelle B.2.: Argumente im pvegas Prototyp, ihre Entsprechung in der Numerical-Recipes Funktion
vegas und ihre Bedeutung.

Glossar

Dispatch: In der objektorientierten Programmierung wird ein Methodenaufruf meist durch
zwei Kriterien spezifiziert: Erstens statisch durch den Namen der aufgerufenen Me-
thode (meist augmentiert um deren Parameterliste, = Name Mangling) und zweitens
dynamisch durch den Typ des Empfiangerobjektes. Ob basic::method(void) oder
numeric: :method(void) aufgerufen wird, kann zur Laufzeit entschieden werden, je
nachdem von welchem Typ das Objekt ist, auf dem .method() aufgerufen wird. Dies
wird auch als spite Bindung (late binding) bezeichnet. Da C++ eine kompilierte Sprache
ist, miissen aus technischen Griinden zwei Voraussetzungen erfiillt sein: .method () muss
in der Basisklasse als virtual definiert sein um in der Tabelle der virtuellen Funktionen
(der vtable der Klasse) aufgenommen zu werden und das aufgerufene Objekt darf na-
tiirlich nicht direkt sein, sondern muss als Zeiger * oder Referenz & vorliegen, da sonst
eine Basisklasse nicht fiir eine abgeleitete Klasse einstehen kann. Jedes Objekt einer
Klasse mit virtuellen Funktionen enthélt zusédtzlich zu seinen nichtstatischen Variablen
einen vptr genannten Zeiger auf die klassenspezifische vtable.

Da nur der Typ des Empfangerobjektes dynamisch den Methodenaufruf bestimmt, wird
das Objektmodell von C++ als single-dispatch-Modell bezeichnet. Die wenigsten Spra-
chen implementieren ein multiple-dispatch-Modell, in dem die Typen mehrerer Emp-
féngerobjekte dynamisch die aufgerufene Funktion bestimmen. Das einzige halbwegs
gebrauchliche solche System ist CLOS, das Common Lisp Object Model.

Evaluator: Ein Subsystem innerhalb eines CAS, das fiir lokale Transformationen von Termen
zustandig ist. Lokalitdt bezieht sich hierbei auf Nachbarschaft im Darstellungsbaumes
und bedeutet beispielsweise dass (n+1)!/n! nicht zu n+1 evaluiert wird, da dies aus Sicht
des Bruches eine nichtlokale Untersuchung von Zahler und Nenner voraussetzt, ein Bruch
selbst aber keine Kenntnisse der Figenschaften der Fakultat hat. Dies steht im Gegensatz
zu ab/a — b, was lediglich Vergleiche auf Identitdt erfordert, also lokale Operationen
beziiglich des Bruches. Ein Evaluator kann einen Darstellungsbaum von unten nach
oben (also von den Bléttern zur Wurzel) oder umgekehrt arbeiten oder sogar mehrfach
abarbeiten. Fixpunktevaluatoren beispielsweise arbeiten den Darstellungsbaum ab, bis
Idempotenz erreicht ist (,bis er sich nicht mehr &ndert”), was sie den = Simplifiern
ahnlich macht. Die Lokalitat ist es, die den Evaluator vom Simplifier unterscheidet. Es
muss darauf hingewiesen werden, dass die Definition von Lokalitat nicht ganz eindeutig
ist: Ist 22 in dem Ausdruck z? + 1 ein Term in einer Summe oder eher ein Monom in
einem Polynom in z7 Im ersten Fall wire z als nichtlokal anzusehen, im zweiten als
lokal. Die meisten Systeme scheinen den zweiten Standpunkt einzunehmen.

166

Glossar

Eine genaue Definition eines Evaluators wird auch dadurch erschwert, dass man in der
Literatur bisweilen unter Evaluation nur diejenigen Transformationen versteht, die das
System selbsttditig ausfithrt. Wir unterscheiden in dieser Arbeit stattdessen zwischen zwei
verschiedenen Arten von Evaluatoren:

Anonymer Evaluator:

Man versteht ihn konstruktiv als dasjenige Subsystem innerhalb eines CAS, welches
eine Eingabe auf eine der internen Weiterverarbeitung besonders zugéngliche (manch-
mal von Schaltern abhéngige) Form abbildet. = Kanonisierung von Ausdriicken zwecks
syntaktischem Vergleich ist traditionell die Hauptaufgabe des anonymen Evaluators.
Ein geeignetes Beispiel dafiir, wie selbsttatig dies ausgefiihrt wird, lasst sich am besten
anhand eines géngigen Missverstandnisses verdeutlichen: In Mathematica fiihrt der Ver-
such z/x unter der Nebenbedingung x = 0 mit dem Befehl Simplify[x/x, x==0] zu
vereinfachen zu dem Ergebnis 1, obwohl das System eigentlich in der Lage wére das Er-
gebnis darzustellen: es lautet in Mathematica Indeterminate. Die Funktion Simplify
hat jedoch gar keine Chance, dies zu finden, da der anonyme Evaluator z/z zu 1 ver-
einfacht, bevor Simplify aufgerufen wird. Ein anonymer Evaluator hat also die heikle
Aufgabe, erste Vereinfachungen vorzunehmen, ohne jedoch die algebraische Korrektheit
zu gefdhrden. In GiNaC ist — wie in den meisten anderen CAS — stillschweigend die
Vereinbarung getroffen, dass Verstoke gegen die algebraische Korrektheit erlaubt sind,
solange sie nur auf Mengen vom Maf 0 vorkommen: z/z = 1 gilt in C\ 0 und gilt daher
als erlaubt.

Benannter Evaluator:

Subsysteme, die lokal eine Umformungsregel anwenden, sofern diese vom Benutzer an-
gefordert wird. In Maple und in GiNaC ersetzt evalf (,,f“ steht fiir float) beispielsweise
alle Konstanten durch ihre numerischen Werte, in beiden Féllen abhéngig von einem
globalen Schalter: der Genauigkeit in Dezimalstellen.

Hashfunktion: Eine Hashfunktion H ist eine Abbildung, die aus einem beliebigen Eingabe-

wert m (auch einem beliebig langem) eine Ausgabe festen Formats (also vorgegebener
Bit-Lénge), den Hashwert h, erzeugt: H : m — h = H(m). Hashfunktionen sind al-
so niemals injektiv. Sie dienen dem effizienten Vergleich grofter Datenstrukturen (hier:
Darstellungsbéume). Man kann sie sich als ,Fingerabdruck® vorstellen: Stimmen die
Hashwerte hg und h; zweier Eingabewerte mg und m; nicht iberein, so sind die vergli-
chenen Datenstrukturen unterschiedlich. Stimmen die Hashfunktionen {iberein, so sind
die Datenstrukturen moglicherweise gleich und es lohnt sich, sie ndher auf Gleichheit zu
untersuchen. Beim Erzeugen von Hashwerten geht aufgrund des vorgegebenen Ausgabe-
formates immer Information verloren, daher kann es vorkommen, dass zu unterschied-
lichen Eingabewerten gleiche Hashwerte berechnet werden (die sogenannte ,Hashkolli-
sion*). Praktische Anforderungen an die Hashfunktionen von Darstellungsbdumen sind:
H(m) muss effizient zu berechnen sein und Kollisionen miissen selten vorkommen. In
GiNaC wird die Hashfunktion nicht nur zum effizienten Vergleichen, sondern auch zum
Erstellen einer Ordnungsrelation auf Ausdriicken benutzt. Zum Berechnen der Hash-
werte werden Darstellungsbdume von oben nach unten durchlaufen und der Hashwert
eines Ausdrucks als eine Funktion aus den gespeicherten Hashwerten der ihn aufbau-

Glossar 167

enden Unterausdriicke sowie des Typs des Ausdruckes (des tinfo_keys) ermittelt. Dies
begrenzt die Berechnungstiefe fiir einen Hashwert in der Regel auf eine einzige Ebene.

Heap: Speicherbereich zur dynamischen Allozierung zur Laufzeit. Im Gegensatz zum = Stack
ist der Heap nicht prinzipiell in der Grofe beschrankt. Die Verantwortung iiber die
Verwaltung des Heaps obliegt dem Programm. Es muss dafiir sorgen, dass auf dem
Heap allozierter aber nicht mehr benétigter Speicher freigegeben wird.

Integritdtsbereich: (auf engl: integral domain) Ein kommutativer, nullteilerfreier Ring. Eine
Menge also, auf der Summe und Produkt definiert sind, fiir die Assoziativ-, Kommutativ-
und Distributivgesetz gelten. Nullteilerfrei bedeutet, dass aus a - b = 0 stets folgt, dass
mindestens a oder b verschwindet. Existiert auch noch das neutrale Element der Multi-
plikation, so spricht man von einem Integrititsbereich mit Eins, was im Kontext dieser
Arbeit immer der Fall ist — weshalb mit Integritdtsbereich immer ein solcher mit Eins
gemeint ist. Die Menge Z der ganzen Zahlen bildet einen Integritéatsbereich, ebenso die
Polynome dariiber Z[z]. Integritdtsbereiche sind wichtig, weil sich auf ihnen der Begriff
Teilbarkeit definieren lasst.

Kanonisierung: Die Umwandlung der eingegebenen Form in eine der internen Weiterverarbei-
tung durch ein CAS besonders zugénglichen Form. Dies dient in erster Linie dem effizi-
enten syntaktischen Vergleichen symbolischer Ausdriicke. Symbolische Summen werden
beispielsweise nach einer deterministischen (aber nicht unbedingt vom Benutzer nach-
vollziehbaren) Weise sortiert und kénnen so in maximal linearer Zeit verglichen werden.
In den meisten Systemen (auch in GiNaC) ist dies die vom = Evaluator ausgefiihrte Té&-
tigkeit. Die Kanonisierung ist auch Voraussetzung fiir den Vergleich unterstiitzt durch
eine = Hashfunktion.

Name Mangling: Anders als C, welches keine iiberladenen Funktionen kennt, unterscheidet
C++ zwischen verschiedenen Signaturen von Funktionen, also zwischen verschiedenen
Parameterlisten: den Prototypen int f(int, class a) und int f(int, double) kon-
nen zwei verschiedenen Implementierungen angehoren. Hierzu muss der Linker zwischen
den Signaturen unterscheiden konnen ohne die Semantik von C++ interpretieren zu miis-
sen. Dies kann durch eine injektive Abbildung von den Signaturen auf nach bestimmten
Regeln formatierte Funktionsnamen beliebiger Lénge (sog. ,mangled names®) gesche-
hen. Beispielsweise bildet der C++-Compiler aus GCC-3.0 den Prototyp int f(int,
double) ab auf _Zi1fid und int f(int, class a) auf _Zifila. Das Name Mang-
ling unterscheidet sich von Compiler zu Compiler, um Laufzeitfehlern mit Linkerfehlern
zuvor zu kommen. Leider unterscheidet es sich auch zwischen verschiedenen Compiler-
versionen und stellt somit die haufigste Ursache fiir Kompatibilitatsprobleme unter C++
dar. In obigem Beispiel bildete der C+*-Compiler aus GCC-2.95.2 int f(int, class
a) noch auf f__FiGla ab.

NP-Vollstindigkeit: In der Komplexitatstheorie unterscheidet man zwei wesentliche Klassen
deterministischer Probleme: P und NP. Probleme aus der Klasse P kénnen in polynomia-
ler Zeit und mit polynomialem Speicherplatzbedarf gelost werden, wihrend solche aus
NP nicht in polynomialer Zeit oder mit polynomialem Speicherplatzbedarf losbar sind.
Stattdessen ist die benétigte Zeit superpolynomial, also O(e!) oder auch O(eVtlos®),

168 Glossar

Man vermutet, dass dies zwei prinzipiell verschiedene Problemklassen sind, also dass
NP+#P, was aber bislang unbewiesen ist. NP steht fiir ,nichtdeterministisch polyno-
mial“, die genaue Definition davon ist hier aber irrelevant. NP-vollstdndige Probleme
sind solche, die in polynomialer Zeit in andere Probleme aus NP transformiert wer-
den konnen. Zum Beispiel ist die Berechnung der Determinante einer n x n Matrix
d=7),cq, sign(o) 1=, ai,, offensichtlich aus P (da sie mit Eliminationsverfahren be-
rechnet werden kann), wihrend die Berechnung der Permanente p = »__ o H?:_OI Ao,
NP-vollstéandig ist, also derselben Komplexititsklasse wie das Problem des Handlungs-
reisenden oder der Hamiltonschen Pfade angehort. Bei symbolischen Rechnungen kann
diese Unterscheidung leicht irrefithrend sein, da die Darstellung der Operanden eines
Algorithmus nicht konstant ist, im Gegensatz zum Beispiel zu Gleitkommazahlen mit
fester Mantissengrofe.

Persistenz: Das Schreiben von Objektstrukturen auf Festplatte zum Zweck des spéteren Wie-
dereinlesens. Handelt es sich wie bei GiNaCs algebraischen Ausdriicken um per Zeiger
verkniipfte Bdume oder gar gerichtete azyklische Graphen, so miissen diese zunéichst se-
rialisiert werden. Da Persistenz von Objekten sich in verschiedensten Zusammenhéngen
immer wieder als notwendig erweist, gibt es Forderungen nach einer Standardisierung.
Da derzeit jedoch noch keine konkreten Vorschlége existieren, muss sie in jeder Klassen-
hierarchie neu programmiert werden.

Scope: (engl. fiir: Weite, Rahmen, vergleiche auch die englische Kurzform fiir periscope, im
ibertragenen Sinne ,soweit man sehen kann*) Programmbereich, in dem eine Variablen-
bindung Giiltigkeit hat — also ein Modul, eine Funktion, eine Klasse oder ein sonstiger
Block. Man unterscheidet zwischen den zwei gegensétzlichen Ansétzen:

Dynamisches Scope:

Auf eine Variable kann nicht nur in dem Block zugegriffen werden, in dem sie deklariert
wurde, sondern auch in darin aufgerufenen Funktionen. Dies wird im = Stack imple-
mentiert, indem er von oben nach unten nach der letzten giiltigen Bindung durchsucht
wird.

Lexikalisches Scope:

Eine Variable ist tatsachlich nur in dem Block erreichbar, in dem sie deklariert wurde.
Soll sie in aufgerufenen Funktionen sichtbar sein (auch wenn es sich um rekursive Aufrufe
derselben Funktion handelt), so muss sie als Parameter iibergeben werden.

Traditionell findet dynamisches Scope in den meisten interpretierten Sprachen Verwen-
dung, also insbesondere in alten Lisp-Implementierungen sowie in fast allen Computeral-
gebrasystemen. Compilierte Sprachen wie C++ zwingen den Programmierer iiblicherwei-
se zu lexikalischem Scope. Manche Sprachen unterstiitzen beide Bindungen (Perl zum
Beispiel bietet den Modifikator my fiir lexikalisches Scope und local fiir dynamisches.).
Dynamisches Scope wird heute allgemein als verwirrend angesehen, weshalb zum Bei-
spiel MuPAD im Friihjahr 2001 fiir die zweite Version ihres CAS von dynamischem auf
lexikalisches Scope umgestellt hat — trotz der mit der Umstrukturierung der gesamten
Bibliothek verbundenen Probleme.

Glossar 169

Stack: Speicherbereich zum automatischen Erzeugen von Variablen innerhalb von Funktio-
nen, zum Ubergeben von Parametern an diese sowie zum Ubergeben des Riickgabewertes
an die aufrufende Funktion. Verwaltet wird er als FILO (,,first in last out‘), weshalb ein
Stack beliebige Objekte mit dem minimalen Speicherbedarf verwaltet — allerdings mit
linearer Zugriffskomplexitat. Die Groke des Stacks wird von den meisten Betriebssyste-
men sehr beschriankt, grofsere Objekte miissen auf dem = Heap alloziert werden.

Simplifier: Der Simplifier, also der Vereinfacher, fithrt in einem CAS in der Regel nichtloka-
le Transformationen aus, was ihn vom = Evaluator unterscheidet. Ein Simplifier kann
also (n + 1)!/n! — n 4 1 vereinfachen. Dies erscheint zwar noch als intuitiv, nach wel-
chem Maf aber ein Ergebnis einfacher ist als ein anderes, ldsst sich iiberhaupt nicht
definieren. Ebenso wie von einem Fixpunktevaluator erwartet man von einem Simpli-
fier in der Regel Idempotenz: simp (simp (Ausdruck))=simp (Ausdruck). Ein Simplifier
kann eventuell auch unter Nebenbedingungen arbeiten, wie zum Beispiel der Annahme
eines bestimmten Bereiches. Wie im Falle des Evaluators lésst sich zwischen anonymen
und benannten Varianten unterscheiden. Der anonyme Simplifier wird traditionell mit
simplify (Ausdruck) aufgerufen, wihrend benannte Simplifier wohldefinierte Termum-
formungen innerhalb eines Bereiches vornehmen — das Herauskiirzen von ggT von Zéhler
und Nenner in einem Quotientenkorper mittels normal (Ausdruck) ist solch ein Beispiel.
Anonyme Simplifier dagegen fithren selten wohldefinierte Transformationen durch und
in Abwesenheit eines Mafses fiir die Komplexitit eines Ausdrucks kénnen die auf einem
Ausdruck durchgefiihrten Transformationen und damit auch die Ergebnisse variieren —
beispielsweise als Funktion der Versionsnummer eines CAS. Wenn mit den Ergebnissen
weitergearbeitet werden soll, macht dies den Aufruf eines anonymen Simplifiers inner-
halb eines komplexen Programmes zu einem im besten Falle fragwiirdigen Unterfangen.

Schlagwortverzeichnis

A Cache 76
Ableitungsregeln 74, 75 Cache-Affinitat 102
Abreicherung 67, 72 Cauchy’sche Integralformel 134
Acnode . . 18, 25, 26 Cauchy’scher Integralsatz 138
Adapter 34 Cauchy’scher Residuensatz . . . 20, 134
adaptives Verfahren 151 Cauchy-Riemann’sche DGL 133
add Klasse 74 CERNo 120
Algol 60, 62 Charakteristik 44
AMD . . . 158 charakteristisches Polynom . . . 104, 115
Amdahls Gesetz 156 chirale Storungstheorie 18, 25
Apfloat 36 Cint 120-122
Arcuscosinus L. 145 CLN 853-88, 119
Arcussinus L. 144 Codegenerierung 64, 69
Arcustangens 141 CompHEP 4
Array 60 Containerklasse 41, 72, 74, 77
assoziativer 66, 101, 122 Convex 158
ASCI 158 Cramer’sche Regel 108
Aslaksen-Test 7 Cray 158
AXIOM . ..o 58, 129 CSE 69
CTADEL 69
B
B .o 60 D
Bézout-Identitat 136 d’Alembert-Operator 17
Baumebene00 L. 1 Darstellung
Baumrekursion 74, 125-129 distributive 73
BCPL . ..o 60 Darstellungsbaum . . 72-74, 91, 127, 166
Benchmark 75, 115 DEC 158
Bernoulli-Zahlen 96 Deformationssatz 133
binary splitting 86 degree() . . .o 92
Blatto 139 Delaunay-Triangulation 160
bo‘Ftom—up """""" 74,91 Delegation 65, 127
Bridge 70, 84, 88 de Morgan’sche Regeln 44
Derive 56
C Design Muster
C., 1, 3, 59, 64, 86 Adapter 84

CH e 59-63 Bridge 70, 84, 88

172 Schlagwortverzeichnis
Delegation 65 F
Flyweight 66, 87, 122 Fiinfbeinfunktion 18, 33
Proxy 65 Fabrik 87, 122
Visitor ... 124 Fadeev-Algorithmus . siehe Leverrier-Algo.
Determinante 32, 100f, 111 Faktorisierung
Diana oo 3 quadratfreie 42, 64, 117
Differentiation 74 Fermat 58. 114
) Effizienz und """""" 75 Feynmanparametrisierung 13f, 25
D}gamn'la—F unktion 96 Fixpunktevaluator 165, 169
Dilogarithmus 921L, 146 Fliegners Test 75, 113, 115, 121
Dispatch 165 Flyweight 66, 87, 122
Distributivgesetz 79 FOAM 161
Dreibeinfunktion FORM . . 1,3, 16, 75, 83, 114, 115, 127
gekreuzte 18, 23 FORTRAN o . . . 3, 60, 86
planare 13, 18 Fortsetzung
Dreiecksmatrix 105, 110 analytische 94. 139
Drelecksregel """"""" 16 foundation class 86
dynamisches Scope 168 function Klasse 88-89
funktionsartiges Objekt . . siehe Funktor
= Funktor 40, 88, 124
Elimination Fusion (von Referenzen) 67
Bareiss . siehe Elimination, teilerfreie
divisionsfreie 31, 105 G
Géuﬁ Lo 31, 105, 106 Gamma-Funktion 17, 94
teilerfreie 31, 106, 109 Garbase-Collector 76
Entwindungszahl 78, 141 elele BETOTBCIOL e 118
n-Funktion 78,141 7 T T
euklidischer Algorithmus 136 ggT """"" 30, 42, 85, 110, 115
. glaco 128
Euler-Algorithmus 90 CHNaC 55112
Euler-Zahlen 115, 121 aMpP .. 8'5 36. 123
eval() o 81, 82, 88, 112 grofter gemeinsamer Teiler . . siehe ggT
evalf() 88, 166 GRACE 2 6
svalm) 12 Graphengenerator 5
Evaluator 165 GRC 6
anonymer . . 41,65, 72, 78, 112, 166 Tvb l;c """""""" 193
benannter 112, 166 BAYDATL - e
event handler 88 H
ex Klasse 41, 65, 128
Exception 62, 91, 95 Hashfunktion 67, 166
expairseq Klasse 73 Hashwert 67, 75, 166
expand() 75, 104 Hauptteil 134, 137
Exponentiation Hauptwertintegral 137-138
schnelle 69, 112 Heap 61, 65, 167
von Reithen 90 Fragmentierung 117

extern 122

Heaviside-Funktion . . . siehe O0-Funktion

Schlagwortverzeichnis 173
Heuristik 111 L
Hilbert-Matrix 99, 115 Lagrangedich‘ce 11’ 13’ 18
HP oo 158 Lambda-Kalkiil 99
Hyperwiirfel 1561 Laplace-Entwicklung 103
Laurent-Reihe 14, 89ff
| lazy evaluation 90, 99
ldegree() 92
IBMT094 ! Leibgniz—Regel 75
Idempotenz. """" 43ff, 165, 169 Leverrier-Algorithmus 104, 107
Impulsentwicklumg 16 lexikalisches Scope 168
indexed Klasse 99 1 O . 95
. gamma
Inferenzmaschine 45, 78 PHépital 93
integer_content() 40, 42 Linker 118
Integrabilitatsbedingung 133 Le . 36
Integritatsbereich 38, 83, 110, 167 Lisp . . o o 1, 64, 99
Intel 119 Liste o7
Invariante L. 92 Logarithmus 80, 94, 140
Invertierung Lokalitiit
von Matrizen 105, 111 von Umformungen 165, 169
von Rethen 90 1st Klasse 125
J M
Jacobi-Determinante 14, 29 md ..o 4
Java . ..o 64, 128 MACSYMA 100, 127
Jonquiére-Funktion 146 MAGMA . . .o 87
Makro 3, 62
K Mandelstam-Variablen 16, 26
Mantisse 86
KC-Funktion . . . siehe Entwindungszahl map() 124
O 119 Maple 69, 79, 91, 94, 110, 127
kanonische Form T Masse-Energie-Beziehung 11
Kanonisierung 88, 104, 167 Master-Slave 154, 162
A 87 Mastertopologie 18
Kausalitdt 11 Mathematical, 68, 72, 76, 85, 94, 110, 123,
Keim 139 127
keVooooooo oo 92, 136 MATLAB 98, 128
Klassenhierarchie 65, 84 matrix Klasse 98112
kleinstes gmeinsames Vielfaches siehe kgV MAXIMA 100, 128
Komplexitat 102, 124 Methode 61
Kongruenzgenerator 156 Methodenfortpflanzung 74/-76, 91
Korpereinbettung 87 Modularitat L. 122
Korperoperation 102 Monte Carlo 5, 1511t
Kovarianz 17 Motorola 68000 1
Kreimer-Rotation 28 MPFun 86

174 Schlagwortverzeichnis
MPL . . .00 158 Polygamma-Funktion 96
MPNo 85 Polylogarithmus 148
mul Klasse 74, 78-79 Portabilitat 64, 118
Multiplikation Portland Group 119
Karatsuba 84 power Klasse 79-83
Schonhage-Strassen 84 Pradikatenlogik 43

MuPAD 76, 128, 168 Préaprozessor 159
Mustererkennung 123 Primfaktorzerlegung 80
mutable 69 Proxy 65
Mutex 155 pseries Klasse 89-98

Pseudofunktion 63, 88-89, 123
N psi(Q) 96
name mangling 62, 167 1-Funktion . siehe Polygamma-Funktion
ncmul Klasse 78-79, 99 Puffer S 59, 84
Nebenintegral 155 Puiseux-Reihe 92
NoW . o oo 159, 161 PURRS 128
NP-vollstindig 100, 167 pygimac 128
NTL . . 6, 86 Python 66, 128
numeric Klasse 83-88

Q
o QED 11
Objektorientierung 62 QGRAF 5, 19
Octave 128 quadratfreie Faktorisierung . 42, 64, 117
Operatoriiberladung 64 Qual der Wahl 35
Optimierung 69 Quotientenkorper . . 38, 83,90, 110, 169
Orthogonalitdat 5,59, 62, 111
Orthogonalraum 15, 154 R
Overhead 64, 85, 87, 99 range-checking 101

rapid prototyping 120
P RB-Baum 99, 101, 123
Padding 63 Record 61
Padé-Approximation 17 REDUCE 1, 3,58, 77,79, 128
Parallelraum 14, 154 Referenz 65
PArRr o000 6, 61, 96 zitkulareo 000 70
ParInt 161 Referenzzahlung . 66-72,76, 87, 115
Partialbruchzerlegung 22,136 Regressionstest 2f, 57f, 81
partielle Integration 15-16 Regularisierung
pattern matching 123 dimensionale . 5, 14,92, 95, 98
Perl 65f, 70, 128, 168 Reihe
Permanente 100, 168 Kirkpatrick-Stoll 157
Permutationsgruppe 103 Schieberegister 157
Persistenz 59, 168 Sobol’ 152
Pivotelement 105 Tausworthe 157
PO-Zerlegung 15 Rekursion 59, 96, 124

Schlagwortverzeichnis 175
unendliche00 0L 88 dynallocated 67
Residuensatz 20, 134 expanded 114
Residuensumme STL 62, 101, 117, 122, 126, 129
Satz iiber 21, 29, 33, 35, 134 Stiitzpunktmenge 1514t
Restklassenring 156 .subs()o 123, 128
Retraktion 87 Substitution
Riemannfliche 139 syntaktische 125
Ringoperation 16, 127 Sumito 56
Roor 120, 128 Sun 158
RTTI 67 Sylvester-Identitat 31, 107
Russische Bauernmultiplikation . . . 112 symbol Klasse 128
Symmetriefaktor 19
S
sampling T
importance 1511t Taylor-Reithe 56, 89ff
stratified L. 1511t Tel/Tk oo 2f
Scheme 99, 128 Template 62, 101, 118
Schieberegister 156 ternare Logik 78
Schleifenumordnung 102 TeXmacs 128
Schnitto 158148 tgamma()o L. 95
Schoonschip 1, 83 f-Funktion 411t 94, 135, 141
Schwelle 17 this 62
Scope 56, 71, 122, 168 Threads 159
dynamisches 168 ™ 4
lexikalisches o7, 168 top-down 74, 124, 127
Semaphore 155 Trager 11
SGIL. 158 transzendente Funktion . 86, 94, 138-1/8
Simplex 160 Triangulation 160
Simplifier 127, 169 Typsicherheit 64
Simulao 61
Singularo L. 6, 115 U
Smith-Normalform 114 .
SMP (CAS) . o v 1 Ubgrladung 60, 61, 64, 122
SMP (symmetric multiprocessing) . . 159 Unix oo 60, 61
Sokhotsky-Plemelj-Relationen 50 Unterau.sdruck """""" 69
spite Bindung 165 Unterteilungsbaum 161
sparse matrix 101
Speicherleck 67f, 117f v
Spence-Funktion 146 Variable
Spur ... 104 linearisierte 20, 27
Stack L. 60, 61, 168 zugeordnete 20, 27, 45
Staffelmatrix 110 Verdopplungsformel 98
Standardmodell 2,11 Vergleich
static 60, 122 syntaktischer .. 75,109, 166, 167
status_flags Verzweigungspunkt 94, 141, 146

Schlagwortverzeichnis

176

vptr ... Lo Lo 65, 165
vtableo 88, 165
w

Wegintegral 147
Wick-Rotation 13, 29
wildcard Klasse 123
Wrappero oL 65
X

xloops 2ff, 128
XML .. oo 6
Y

Yacaso 78
Yun’scher Algorithmus 64
Z

¢(-Funktiono 0L 96
Zufallszahlen 156-158

Zwillingsvariablen 30, 39

|l iteraturverzeichnis

Zum Aufbau dieses Literaturverzeichnisses sei entschuldigend angemerkt, dass es mit dem spiirbaren
Niedergang der Bedeutung gedruckter (und referierter!) Zeitschriften immer schwieriger wird, eine
,kanonische* Form einzuhalten. Mehr und mehr Autoren gehen dazu iiber, auch anspruchsvolle Arbei-
ten hochstens noch in elektronischen Preprint-Foren (sog. ,,Newsletters®) zu publizieren. Haufig sogar
nicht einmal das, stattdessen weisen sie nur auf ausdruckbare Papers hin, die auf ihren Webseiten
stehen. Man steht nun vor der Wahl, entweder gar nicht zu zitieren — was auf Vorenthaltung einiger
wichtiger Quellen hinausliefe — oder zu improvisieren. Ich habe mich bewusst fiir letztere Alternative
entschieden, stets in der Hoffnung, dass die Informationen mit der Zeit nicht unauffindbar werden.

[AbS 1972]

|[AGORT 2000]

[Asla 1996]

[ATT 1936
[ATT 1989

[Bar 1968

[Bern 2002]

[Baue 2000]

[BCK 2001]

Milton Abramowitz, Irene A. Stegun (Hrg.): Handbook of Mathematical

Functions With Formulas, Graphs and Mathematical Tables; Dover, New
York

Charalampos Anastasiou, Thomas Gehrmann, Carlo Oleari, Ettore Remid-
di, Jan B. Tausk: The Tensor Reduction and Master Integrals of the Two-
Loop Massless Crossed Box With Light-Like Legs; Nucl. Phys. B580, 577-
601; arXiv:hep-ph/0003261

Helmer Aslaksen: Multiple-valued Complex Functions and Computer Alge-
bra; SIGSAM Bulletin, 30/2, 1996, 12-20

AT&T Bell Laboratories: System V' Interface Definition, Issue 2;
AT&T Bell Laboratories: System V' Interface Definition, Issue 3;

Erwin H. Bareiss: Sylvester’s Identity and Multistep Integer-preserving
Gaussian Elimination; Math. Comput. 22/103, 565-578

Daniel J. Bernstein: Integer multiplication benchmarks; http://cr.yp.to/
speed/mult.html

Christian Bauer: Der zloops-Algorithmus zur Berechnung von Feynman-
Graphen in C++; Diplomarbeit, Mainz

Pavel Baikov, Konstantin G. Chetyrkin, Johann H. Kiithn: The Cross Section
of ete™ Anmihilation Into Hadrons of Order oz;ln?c i Perturbative QCD;
Phys. Rev. Lett. 88/1, 012001; arXiv:hep-ph/0108197

178

Literaturverzeichnis

[BDIPS 1994

[Bela 1999

[BePa 1998]

[BeSo 1965]

[BFK 1995|

[BFK 1998|

[BFK 2001a]

[BFK 2002a]

[BFK 2002b

[BET 1993]

[Bhat 1996]

[Bier 2000]

[BKK 2001]

Edward E. Boos, Mikhail N. Dubinin, Viacheslav A. Ilyin, Alexander
E. Pukhov, Victor 1. Savrin: CompHEP - Specialized Package for Automatic
Calculations of Elementary Particle Decays and Collisions; SNUTP 94-116;
INP MSU-94-36/358; arXiv:hep-ph /9503280

Genevieve Bélanger, Fawzi Boudjema, Jumpei Fujimoto, Tadashi Ishikawa,
Toshiaki Kaneko, Kiyoshi Kato, Vincent Lafage, N. Nakazawa, Yoshimi-
su Shimizu: Implementation of the Non-Linear Gauge Into GRACE; Proc.
ATHENP-99, Heraklion, Griechenland

Clemens Bellarin, Lawrence C. Paulson: Reasoning about Coding Theory:
The Benefits We Get From Computer Algebra; Proc. AISC-98, 55-66

Heinrich Behnke, Friedrich Sommer: Theorie der analytischen Funktionen
einer komplezen Verdnderlichen (dritte Auflage: 1965); Springer, Berlin

Lars Briicher, Johannes Franzkowski, Dirk Kreimer: A New Method
for Computing One-Loop Integrals; Comp. Phys. Comm. 85, 153-165;
arXiv:hep-ph /9401252

Lars Briicher, Johannes Franzkowski, Dirk Kreimer: XLoops: Automated
Feynman Diagram Calculation; Comp. Phys. Comm. 115, 140-160

Christian Bauer, Alexander Frink, Richard Kreckel: The GiNaC' Framework
for Symbolic Computation Within the C++ Programming Language; Proc.
CALCULEMUS-2000 Symposium, St. Andrews, Schottland

Christian Bauer, Alexander Frink, Richard Kreckel: Introduction to the
GiNaC' Framework for Symbolic Computation Within the C++ Program-
ming Language; Journal of Symbolic Computation, 33, 1-12; arXiv:cs-
sc/0004015

Christian Bauer, Alexander Frink, Richard Kreckel: GiNaC'; in: Johannes
Grabmeier, Erich Kaltofen, Volker Weispfenning (Hrsg.): Computer Algebra
Handbook; Springer, Heidelberg

David J. Broadhurst, Jochem Fleischer, Olev V. Tarasov: Two-Loop Two-
Point Functions With Masses: Asymptotic Expansions and Taylor Series,
in Any Dimension; Z. Phys., C 60 287-302; arXiv:hep-ph/9304303

Gaurav Bhatnagar: A Short Proof of an Identity of Sylvester; Internat. J.
Math. & Math. Sci. 22/2, 431-435

Kay Bieri: NNLO Calculations in vy — wr ; Diplomarbeit, Bern; siehe
URL: http://www-itp.unibe.ch/thesis/bieri/diplom.ps

Isabella Bierenbaum, Richard Kreckel, Dirk Kreimer: On the Invariance of
Residues of Feynman Graphs; arXiv:hep-th/0111192

Literaturverzeichnis 179

[BCP 1997]

[Bron 19964l
[Bron 1996b|

[Brue 1997]

[Cart 1963]

[CDJLW 2001]

|ChTk 1981]

[CKK 1994

[Coh 2000]

[CoTr 1995]

[CoWi 1990]

[DaST 1993]

[DaT 1992]

[Dave 2000]

[Déak 1990

Wieb Bosma, John Cannon, Catherine Playoust: The Magma Algebra Sys-
tem I: The User Language; Journal of Symbolic Computation, 24, 235-265

Manuel Bronstein: Symbolic Integration I; Springer, Heidelberg

Manuel Bronstein: X7 — A Strongly- Typed Embeddable Computer Algebra
Library; Proc. DISCO-96, Karlsruhe, 1128, Springer

Lars Briicher: Automatische Berechnung wvon Strahlungskorrektu-
ren in perturbativen Quantenfeldtheorien; Dissertation, Mainz; siehe
URL: http://wwwthep.physik.uni-mainz.de/Publications/theses/
dis-bruecher.ps.gz

Henri Cartan: Théorie Elémentaire des Fonctions Analytiques d’une ou plu-
steurs Variables Complexes; Hermann, Paris

Robert M. Corless, James H. Davenport, David J. Jeffrey, Gurjeet Litt,
Stephen M. Watt: Reasoning About the Elementary Functions of Complex
Analysis; in: Lecture Notes in Computer Science 1930, 115-126, Springer,
Berlin

Konstantin G. Chetyrkin, Fyodor V. Tkachov: Integration by Parts: The
Algorithm to Calculate 3-Functions in 4 Loops; Nucl. Phys. B192, 159-204

Andrzej Czarnecki, Ulrich Kilian, Dirk Kreimer: New Representation of
Two-Loop Propagator and Vertexr Functions; Nucl. Phys. B433, 259-275;
arXiv:hep-ph /9405423

Christian Batut, Karim Belabas, Dominique Bernardi, Henri Cohen, Mi-
chel Olivier: User’s Guide to Pari-GP; (Version 2.0.19), siche URL: ftp:
//megrez.math.u-bordeaux.fr/pub/pari/

Michel Cosnard, Denis Trystram: Parallel Algorithms and Architectures;
Thomson, London

Donald Coppersmith, Shmuel Winograd: Matriz Multiplication via Arith-
metic Progressions; Journal of Symbolic Computation, 9/1, 251-280

Andrey 1. Davydychev, Vladimir A. Smirnov, Jan B. Tausk: Large Momen-
tum Expansion of Two-Loop Self-Energy Diagrams With Arbitrary Masses;
arXiv:hep-ph /9307371

Andrey I. Davydychev, Jan B. Tausk: Two-Loop Self-Energy Diagrams With
Different Masses and the Momentum FExpansion; Nucl. Phys. B397, 123-142

James H. Davenport: Abstract Data Types in Computer Algebra; in: Lecture
Notes in Computer Science 1893, 21-35, Springer, Berlin

Istvan Deak: Uniform Random Number Generators for Parallel Computers;
Parallel Computing, 15, 155-164

180

Literaturverzeichnis

[DGBEG 1996]

[DoRo 1984]

[DST 1988

[Enge 1998|

[FaHa 1996

[Fate 1990]

[Fate 1999]

[Fate 2001]

[FKT 1997|

[FITe 19994

[FITe 1999b)

[F1Te 2000]

[Fran 1997]

[Frin 1996]

Elise de Doncker, Ajay Gupta, Jay Ball, Patricia Ealy, Alan Genz: ParInt:
A Software Package for Parallel Integration; Proc. of the 10th ACM Inter-
national Conference on Supercomputing, 149-156

Elise de Doncker, Ian Robinson: TRIEX: Integration Over a TRIangle Using
Nonlinear EXtrapolation; ACM Transactions on Mathematical Software,
10/1, 17-22

James H. Davenport, Yvon Siret, Evelyne Tournier: Computer Algebra—
Systems and Algorithms for Algebraic Computation; Academic Press Ltd.,
London

Robert A. van Engelen: Ctadel: A Generator of Efficient Numerical Co-
des; Dissertation, Leiden; sieche URL: http://www.cs.fsu.edu/ engelen/
thesis.ps.gz

Richard J. Fateman, Mark Hayden: Speeding up Lisp-Based Symbolic Ma-
thematics; SIGSAM Bulletin, 30/1, 1996, 25-30

Richard J. Fateman: Advances and Trends in the Design and Construction
of Algebraic Manipulation Systems; Proc. ISSAC-90, Tokyo

Richard J. Fateman: Symbolic Mathematics System FEvaluators; in: Micha-
el J. Wester (Hrsg.): Computer Algebra Systems — A Practical Guide; Wiley,
Chichester

Richard J. Fateman: Manipulation of Matrices Symbolically; Unveroffent-
licht, http://www.cs.berkeley.edu/ fateman/temp/symmat . pdf

Alexander Frink, Jiirgen G. Koérner, Jan B. Tausk: Massive Two-Loop In-
tegrals and Higgs Physics; arXiv:hep-ph /9709490

Mikhail Tentyukov, Jochem Fleischer: A Feynman Diagram Analyser
DIANA; Comp. Phys. Comm. 132, 124-141; arXiv:hep-ph /9904258

Mikhail Tentyukov, Jochem Fleischer: DIANA, A Program for Feynman
Diagram Evaluation; arXiv:hep-ph/9905560

Jochem Fleischer, Mikhail Tentyukov: A Feynman Diagram Analyser
DIANA — Graphic Facilities; arXiv:hep-ph/0012189

Johannes Franzkowski: Virtuelle Strahlungskorrekturen —im Stan-
dardmodell der Elementarteilchenphysik; Dissertation, Mainz; siehe
URL: http://wwwthep.physik.uni-mainz.de/Publications/theses/
dis-franzkowski.ps.gz

Alexander Frink: Massive Zwei-Loop Vertexfunktionen; Diplomar-
beit, Mainz; siehe URL: http://wwwthep.physik.uni-mainz.de/
Publications/theses/dip-frink.ps.gz

Literaturverzeichnis 181

[Frin 2000]

[FSF 2001]

[Fuch 1997]

|GCL 1992]

[GeJo 1976]

[GHJV 1995]

[GKP 1989)]

[GPS 2000]

|Groz 2001]

|GrRy 1994|

[HaKr 2000

[HaPa 1998]

[HaSt 1998]

[Hear 1995

Alexander Frink: Computer-algebraische und analytische Methoden
zur Berechnung wvon Vertexfunktionen im Standardmodell; Disser-
tation, Mainz; siehe URL: http://wwwthep.physik.uni-mainz.de/
Publications/theses/dis-frink.ps.gz

Free Software Foundation: libstdc++-v3 Documentation; sieche URL: http:
//gcc.gnu.org/onlinedocs/libstdc++/documentation.html

Benno Fuchssteiner et alii (MuPAD group): MuPAD User’s Manual, Mu-
PAD; (Version 1.4) Wiley, Chichester, siche URL: http://www.mupad.de/

Keith O. Geddes, Stephen R. Czapor, George Labahn: Algorithms for Com-
puter Algebra; Kluwer, Norwell, Massachusetts

W. Morven Gentleman, Stephen C. Johnson: Analysis of Algorithms, A Ca-
se Study: Determinants of Matrices With Polynomial Entries; ACM Tran-
sactions on Mathematical Software, 2/3, 232-241

Erich Gamma, Richard Helms, Ralph Johnson, John Vlissides: Design Pat-
terns — Elements of Reusable Object-Oriented Software; Addison-Wesley,
Reading, Massachusetts

Ronald L. Graham, Donald E. Knuth, Oren Patashnik: Concrete Mathema-
tics; Addison-Wesley, Reading, Massachusetts

Gert-Martin Greuel, Gerhard Pfister, Hans Schonemann: Singular 1.5.7.
A Computer Algebra System for Polynomial Computations; Zentrum fiir
Computer Algebra an der Universitit Kaiserslautern, URL: http://www.
singular.uni-kl.de/

Andrey Grozin: TeXmacs Interfaces to Mazxima, MuPAD and REDUCE;
arXiv:cs.SC/0107036

Izrail’ Solomonovich Gradshtein, Tosif Moiseevich Ryzhik; Table of Integrals,
Series, and Products; (fifth edition); Academic Press, London

Bruno Haible, Richard Kreckel: CLN, a Class Library for Numbers; (Version
1.1), siche URL: http://www.ginac.de/CLN/

Bruno Haible, Thomas Papanikolaou: Fast Multiprecision Evaluation of Se-
ries of Rational Numbers; in: Joe P. Buhler (Hrsg.): Lecture Notes in Com-
puter Science; 1423, Springer, Heidelberg

Robert Harlander, Matthias Steinhauser: Automatic Computation of Feyn-
man Diagrams; TTP98-41; arXiv:hep-ph /9812357

Anthony C. Hearn: REDUCE User’s Manual Version 3.6; RAND, Santa
Monica, sieche URL: http://www.zib.de/Symbolik/reduce/

182 Literaturverzeichnis

[Hoar 1981] Charles A. R. Hoare: Turing Lecture “The Emperor’s Old Clothes” Comm.
ACM 24(2) 75-83

[Horo 1971| Ellis Horowitz: Algorithms for Partial Fraction Decomposition and Rational
Function Integration; Proc. Second Symposium on Symbolic and Algebraic
Manipulation, ACM Inc., 1971, 441-457

[ItZu 1993] Claude Itzykson, Jean-Bernard Zuber: Quantum Field Theory; World Scien-
tific Lecture Notes in Physics

[ISO 1990] ISO/IEC 9899:1990: Programming Languages— C'; American National Stan-
dards Institute, 1990

[ISO 1998| ISO/IEC 14882:1998(E): Programming Languages—C++; American Natio-
nal Standards Institute, 1998

[ISO 1999] ISO/IEC 9899:1999: Programming Languages—C'; American National Stan-
dards Institute, 1999

[IyKa 1980] Shokichi Tyanaga, Yukiyosi Kawada (Hrg.): Encyclopedic Dictionary of Ma-

[IKKKST 1993]

[Jada 1999

[Jeff 2001]

[JeRi 1999

[JeSu 1992

[Kah 1987

[Kane 1995]

thematics; MIT Press, Boston, Massachusetts, 1980

Tadashi Ishikawa, Toshiaki Kaneko, Kiyoshi Kato, Setsuya Kawabata, Yo-
shimisu Shimizu, H. Tanaka: GRACE Manual; KEK Report 92-19; Comp.
Phys. Comm. 92, 127-152.

Stanislaw Jadach, FOAM: Multi- Dimensional General Purpose Monte Car-
lo Generator With Self-Adapting Simplical Grid; Comp. Phys. Comm. 130,
244-259; physics/9910004

David J. Jeffrey: The Multi-Valued Nature of Inverse Functions; Pre-
print, erhaltlich unter URL: http://www.apmaths.uwo.ca/ djeffrey/
Offprints/inverses.ps

David J. Jeffrey, Albert D. Rich: Simplifying Square Roots of Square Roots
by Denesting; in: Michael J. Wester (Hrsg.): Computer Algebra Systems —
A Practical Guide; Wiley, Chichester

Richard D. Jenks, Robert S. Sutor: AXIOM: The Scientific Computation
System; The Numerical Algorithms Group / Springer, New York

William Kahan: Branch Cuts for Complex Elementary Functions; or, Much
Ado About Nothing’s Sign Bit; In Iserles, A., and Powell, M. (Hrsg.), The
State of the Art in Numerical Analysis; Clarendon Press, 165-211

Toshiaki Kaneko: A Feynman-Graph Generator for Any Order of Coupling
Constants; Comp. Phys. Comm. 92, 127-152.

Literaturverzeichnis 183

[KaOf 1962

[KeRi 1988

Kili 1996]

[KiSt 1981]

[KKS 1998

[Knu 1997]

[Knu 1998]

[Koe 1999]

[Krec 1997a]

[Krec 1997b]

[Krec 2000]

[Krec 1998]

[Krei 1991]

[Krei 1992al

[Krei 1992b)|

Anatolij A. Karatsuba, Y. Ofman: Multiplication of Multidigit Numbers by
Automatic Computers; Doklady Akad. Nauk SSSR 145, 293-294. Uberset-
zung in: Soviet Physics Doklady 7, 595-596, 1963

Brian W. Kernighan, Dennis M. Ritchie: The C' Programming Language
(second edition); Prentice Hall, Englewood Cliffs, New Jersey

Ulrich Kilian: Massive Zweischleifen-Integrale im Standardmodell; Disser-
tation, Mainz

Scott Kirkpatrick, Erich P. Stoll: A Very Fast Shift-Register Sequence Ran-
dom Number Generator; J. Comput. Phys. 40, 517-526

Richard Kreckel, Dirk Kreimer, Karl Schilcher: First Results With a New
Method for Calculating 2-Loop Box-Functions; Eur. Phys. J. C, 693-699,
1998; arXiv:hep-ph/9804333

Donald E. Knuth: The Art of Computer Programming, Vol. 1: Fundamental
Algorithms; (third edition) Addison-Wesley, Reading, Massachusetts

Donald E. Knuth: The Art of Computer Programming, Vol. 2: Seminume-
rical Algorithms; (third edition) Addison-Wesley, Reading, Massachusetts

Wolfram Koepf: Efficient Computation of Chebyschev Polynomials in Com-
puter Algebra; in: Michael J. Wester (Hrsg.): Computer Algebra Systems —
A Practical Guide; Wiley, Chichester

Richard Kreckel: Irreduzible Zwei-Loop-Beitrdge zu den Prozessen vy — 7w
und n — my7; Diplomarbeit, Mainz; siche URL: http://wwwthep.physik.
uni-mainz.de/Publications/theses/dip-kreckel.ps.gz

Richard Kreckel: Parallelization of Adaptive MC' Integrators; Comp. Phys.
Comm. 106, 258-266; arXiv:physics/9710028

Richard Kreckel: Large Scale Symbolic Programming With GiNaC'; Proc.
ACAT-2000, Fermilab, Illinois

Richard Kreckel: Parallelization of Adaptive MC' Integrators—Recent pvegas
Developments; arXiv:physics/9812011

Dirk Kreimer: The Master Two Loop Two Point Function: The General
Case; Phys. Lett. B273, 277-281

Dirk Kreimer: 2-Loop Integrals in the Standard Model; Phys. Atom. Nucl.
56 (1993) 1546-1552; arXiv:hep-ph /9212254

Dirk Kreimer: The Two-Loop Three-Point Functions: General Massive Ca-
ses; Phys. Lett. B292 341-347

184

Literaturverzeichnis

[Krei 1993]

[Krei 1994]

[Land 2002]

[Larc 1999

[Lepa 1978|

[Lew 1981]

[LeWe 1999

[Lewi 1997

[MacK 1996|

[MaT 1998]

[Meye 1996]

[MOTV 1999]

[Nogu 1993]

[Olde 1995

[Pink 2000]

Dirk Kreimer: Tensor Integrals for Two Loop Standard Model Calculations;
Mod. Phys. Lett. A9, 1105-1120; arXiv:hep-ph /9312223

Dirk Kreimer: A Short Note on Two-Loop Box Functions; Phys. Lett. B347,
1995, 107; arXiv:hep-ph /9407234

Susan Landau: Computation With Algebraic Numbers; in: Johannes Grab-
meier, Erich Kaltofen, Volker Weispfenning (Hrsg.): Computer Algebra
Handbook; Springer, Heidelberg

Peter J. Larcombe: On Lovelace, Babbage and the Origins of Computer Al-
gebra; in: Michael J. Wester (Hrsg.): Computer Algebra Systems — A Prac-
tical Guide; Wiley, Chichester

G. Peter Lepage: A New Algorithm for Adaptive Multidimensional Integra-
tion; J. Comput. Phys. 27, 192-203

Leonard Lewin: Polylogarithms and Associated Functions; North Holland,
Amsterdam

Robert H. Lewis, Michael Wester: Comparison of Polynomial-Oriented
Computer Algebra Systems; SIGSAM Bulletin 33/4, 5-13; erhéltlich un-
ter URL: http://www.fordham.edu/"lewis/cacomp.html

Robert H. Lewis: Fermat: A Computer Algebra System for Polynomial and
Matriz Computation; siehe URL: http://ww.bway.net/ lewis/

David MacKenzie: Autoconf—Creating Automatic Configuration Scripts,
(edition 2.12); Free Software Foundation, Boston, Massachusetts, 1996

David MacKenzie, Tom Tromey: GNU Automake, (version 1.3); Free Soft-
ware Foundation, Boston, Massachusetts

Scott Meyers: More Effective C++; Addison-Wesley, Reading, Massachu-
setts

Gordon Matzigkeit, Alexandre Oliva, Thomas Tanner, Gary V. Vaughan:
GNU Libtool, (version 1.3.3); Free Software Foundation, Boston, Massachu-
setts, 1999

Paulo Nogueira: Automatic Feynman Graph Generation; J. Comput. Phys.
105, 279-289.

Geert Jan van Oldenborgh: An Introduction to FORM; INLO-PUB-5/95,
erhaltlich unter URL: http://www.lorentz.leidenuniv.nl/form/form/
formcourse.ps.gz

Ayal Z. Pinkus: Yacas— Yet Another Computer Algebra System; siche URL:
http://www.xs4all.nl/"apinkus/yacas.html

Literaturverzeichnis 185

[PeSc 1995]

[Pohs 1996]

[PoTa 1996]

[PTVF 1992

[Prwe 1999

[Pukh 1999]

|[Raym 1998]

[Remi 1997|

[Rich 1967]

[Ritc 1993

[Roth 1995

[Ryde 1985]

[SaMu 1982]

Michael E. Peskin, Daniel V. Schroeder: Introduction to Quantum Field
Theory; Addison-Wesley, Reading, Massachusetts

Mario Daberkow, Claus Fieker, Jiirgen Kliiners, Michael Pohst, Katherine
Roegner, Martin Schornig, Klaus Wildanger: Kant V/; Journal of Symbolic
Computation, 24, 267-283

Peter Post, Jan B. Tausk: The Sunset Diagram in SU(3) Chiral Perturbation
Theory; Mod. Phys. Lett. A11, 2115-2128; arXiv:hep-ph /9604270

William H. Press, Saul A. Teukolsky, William T. Vetterling, Brian P. Flan-
nery: Numerical Recipes in C'; Cambridge University Press, Cambridge,
1988; (zweite Auflage: 1992)

John K. Prentice, Michael Wester: Code Generation Using Computer Alge-
bra Systems; in: Michael J. Wester (Hrsg.): Computer Algebra Systems — A
Practical Guide; Wiley, Chichester

Alexander E. Pukhov, Edward E. Boos, Mikhail N. Dubinin, Victor P. Ed-
neral, Viacheslav A. Ilyin, Dmitri N. Kovalenko, Alexander Kryukov, Vic-
tor I. Savrin CompHEP — A Package for Evaluation of Feynman Diagrams
and Integration Over Multi-Patricle Phase Space; arXiv:hep-ph /9908288

Eric S. Raymond: A Brief History of Hackerdom; published in Open Sources,
O’Reilly, Sebastopol, California, 1998; siche URL: http://www.tuxedo.
org/~esr/writings/hacker-history/

Ettore Remiddi: Differential Equations for Feynman Graph Amplitudes;
Nuovo Cim. A110, 1435-1452; arXiv:hep-th/9711188

Martin Richards: The BCPL Reference Manual; MIT Project MAC Memo-
randum M-352, 1967; siche URL: http://www.cs.bell-labs.com/ ~dmr/

Dennis M. Ritchie: The Development of the C' Language; Vortrag gehal-
ten auf der zweiten Konferenz ,History of Programming Languages®, Cam-
bridge, Massachusetts, 1993; siche URL: http://www.cs.bell-labs.com/
“dmr/

Wolfgang Roth: Faktorisierung von Polynomen tiber endlichen Korpern und
ganzen Zahlen; Diplomarbeit an der Fakultat fiir Mathematik und Informa-
tik, Mannheim, 1995

Lewis H. Ryder: Quantum Field Theory; Cambridge University Press, Cam-
bridge

Teteaki Sasaki, Hirokazu Murao: Efficient Gaussian Elimination Method for
Symbolic Determinants and Linear Systems; ACM Transactions on Mathe-
matical Software, 8, 1982, 277-289

186

Literaturverzeichnis

[SchSt 1971]

[SGI 1995

[Shou 2000]

[ShSt 1998]

[Smir 1999

[Smir 2000]

[Smir 2001]

[Smit 1998

[SmiVe 1999

[Stee 1990

[Stou 1991|

[Stra 1969

[Stro 1997]

[Stro 1994

[Taus 1965]

Arnold Schonhage, Volker Strassen: Schnelle Multiplikation grosser Zahlen;
Computing 7, 281-292

SGI STL Allocator Design; siche URL: http://www.sgi.com/tech/stl/
alloc.html

Victor Shoup: NTL - Number Theory Library - Version 5.0; siehe URL:
http://shoup.net/ntl/

Tan Kiat Shi, Willi-Hans Steeb: Symbolic C++—An Introduction to Com-
puter Algebra Using Object-Oriented Programming; Springer, Singapore,
1998

Vladimir A. Smirnov: Analytical Result for Dimensionally Regularized
Massless On-Shell Double Box; Phys. Lett. B460, 397-404; arXiv:hep-
ph /9905323

Vladimir A. Smirnov: Analytical Result for Dimensionally Regularized
Massless Master Non-Planar Double Box With One Leg Off Shell; Phys.
Lett. B500, 330-337; arXiv:hep-ph/0011056

Vladimir A. Smirnov: Analytical Result for Dimensionally Regularized Mas-
sive On-Shell Planar Double Box; Phys. Lett. B524, 129-136; arXiv:hep-
ph/0111160

Warren D. Smith: A Lower Bound for the Simplexity of the N-Cube via
Hyperbolic Volumes; Preprint, siehe URL: http://www.neci.nj.nec.com/
homepage/wds/journalpubs.html

Vladimir A. Smirnov, Oleg L. Veretin: Analytical Result for Dimensionally
Regularized Massless On-Shell Double Boxes With Arbitrary Indices and
Numerators; arXiv:hep-ph/9907385

Guy L. Steele: Common Lisp the Language; Digital Press, Woburn, Massa-
chusetts, 1990

David R. Stoutemyer: Crimes and Misdemeanors in the Computer Algebra
Trade; Notices AMS, 38-7, 778-785

Volker Strassen: Gaussian Elimination is not Optimal; Numer. Math. 13,
1969, 354-356

Bjarne Stroustrup: The C++ Programming Language; Addison-Wesley,
Reading, Massachusetts, 1986; (zweite Auflage: 1991, dritte Auflage: 1997)

Bjarne Stroustrup: The Design and FEvolution of C++; Addison Wesley,
Reading, Massachusetts

Robert C. Tausworthe: Random Numbers Generated by Linear Recurrence
Modulo Two; Math. Comput. 19, 201-209

Literaturverzeichnis 187

[Tau 1999]

[t'Ho 1971a|

[t'Ho 1971b]

[t HoVe 1979|

[Tomm 2001]

[Verm 1991]

[Verm 2000]

[VeWi 1993]

[WCS 1996]

[WeGo 1991]

[Wei 2002]

[West 1995]

[West 1999

[Wolf 1999

Jan B. Tausk: Non-Planar Massless Two-Loop Feynman Diagrams With
Four On-Shell Legs; Phys. Lett. B469, 225-234; arXiv:hep-ph/9909506

Gerardus 't Hooft: Renormalization of massless Yang-Mills fields; Nucl.
Phys. B33, 173

Gerardus 't Hooft: Renormalizable Lagrangians for massive Yang-Mills

fields; Nucl. Phys. B35, 167-188

Gerardus 't Hooft, Martinus J. G. Veltman: Scalar One-Loop Integrals;
Nucl. Phys. B153, 365-401

Mikko Tommila: Apfloat: A C++ High Performance Arbitrary Precision
Arithmetic Package; sieche URL: http://www.jjj.de/mtommila/apfloat/

Jos A. M. Vermaseren: Symbolic Manipulation With FORM, Version 2—

Tutorial and Reference Manual; Computer Algebra Nederland, Amsterdam,
1991

Jos A. M. Vermaseren: New Features of FORM; arXiv:math-ph/0010025

Martinus J. G. Veltman, David N. Williams: Schoonschip 91 ; University of
Michigan preprint UM-TH-93-18; sieche URL: http://feynman.physics.
lsa.umich.edu/"williams/preprints/schip91.pdf

Larry Wall, Tom Christiansen, Randal Schwartz: Programming Perl,
O’Reilly, Sebastopol

Trudy Weibel, Gaston H. Gonnet: An Algebra of Properties; Gelbe Berichte
157, Departement Informatik, ETH Ziirich

Stefan Weinzierl: Symbolic Ezrpansion of Transcendental Functions;
arXiv:math-ph/0201011

Michael Wester: A Review of CAS Mathematical Capabilities; (mehre-
re aktualisierte aufeinanderfolgende Verdffentlichungen, u.a. in ,Compu-
ter Algebra Nederland Nieuwsbrief* 13 41-48, 1994) sieche URL: http:
//math.unm.edu/ wester/cas/

Michael Wester: A Critique of the Mathematical Abilities of CA Systems; in:
Michael J. Wester (Hrsg.): Computer Algebra Systems — A Practical Guide;
Wiley, Chichester

Stephen Wolfram: Mathematica; (fourth edition); Addison-Wesley, Reading,
Massachusetts

Lebenslauf

Personliche Daten

Name:

geboren:
Staatsangehorigkeit:
Anschrift:

Ausbildung

1975-1979

1979-1981

1981-1985

1985-1989

1989

1989-1990

WS 1990/1991

Mai 1992

SS 1992 — WS 1995/1996
August 1993 — Juli 1994
1996

Mai 1997

Richard B. Kreckel

am 10. Februar 1969 in Bingen
Deutsch

Eisgrubweg 11B

55116 Mainz

Grundschule Bad Soden am Taunus

Stefan George Gymnasium, Bingen

Goethe-Schule, Buenos Aires, Argentinien

Stefan George Gymnasium, Bingen

Abitur

Grundwehrdienst

Aufnahme des Physikstudiums an der Universitiat Mainz
Vordiplom in Physik

Hauptstudium

Studienaufenthalt in Seattle, USA (DAAD-Austauschprogramm)
Diplomand bei Prof. Dr. K. Schilcher im Institut fiir Physik
Diplom in Physik

Forschungsaufenthalte / Tagungen

Februar-April 1998
23. September 1999
12.-16. April 1999

25.-28. Juni 2000
16.-20. Oktober 2000

27.-30. November 2001

TRACS, Edinburgh Parallel Computing Centre
»~TRACS Users Meeting” (TUG99), Barcelona

VI Advanced Computing Conference in Physics Research®
(ATHENP99), Heraklion

,6th IMACS Conference on Applications of Computer Algebra“
(ACA2000), St. Petersburg

AVII Workshop on Advanced Computing and Analysis Techniques
in Physics Research (ACAT 2000), Fermilab

+Workshop on Computer Particle Physics® (CPP2001), Tokyo

