
WA ThEP

Fachbereich Physik

Johannes Gutenberg-Universität Mainz

Dissertation

zur Erlangung des Grades

„Doktor der Naturwissenschaften“

Algorithmische Methoden
zur Berechnung von
Vierbeinfunktionen

Richard Kreckel
geboren in Bingen/Rh.

Mainz, 2002

Datum der mündlichen Prüfung: 19. Juli 2002

The practical scientist is trying to solve tomorrow’s problem
with yesterday’s computer; the computer scientist, we think

often has it the other way around.
Press et alii [PTVF 1992, section 1.2]

Inhaltsverzeichnis

Einleitung 1

I. Berechnung von Schleifenintegralen 9

1. Feynmandiagramme 11
1.1. Quantenfeldtheorien und das Standardmodell 11
1.2. Standardmethoden zur Berechnung von Feynmandiagrammen 12
1.3. Kinematische Abhängigkeiten . 17
1.4. Die bisher untersuchten Funktionen („Mainz I und Mainz II“) 18
1.5. Beschränkte Integrationsgebiete nach Residuenintegration? 20

2. Die skalaren Zweischleifen-Vierbeinfunktionen 25
2.1. Die Vierbeinfunktion („Mainz III“) . 25
2.2. Die einschränkenden Bedingungen . 34
2.3. Umformung der einschränkenden Bedingungen 41
2.4. Ausblick: Das weitere Vorgehen . 49

II. Computeralgebra für Schleifenrechnungen 53

3. GiNaC: Motivation und Design 55
3.1. Die Motivation für GiNaC . 55
3.2. Das Design von GiNaC . 64

4. GiNaC: Implementierung 77
4.1. Die wichtigsten Klassen . 77
4.2. Kanonisierung von Produkten: die Klassen ,mul’ und ,ncmul’ 78
4.3. Vereinfachungen in der Klasse ,power’ . 79
4.4. Die Numerik-Klasse . 83
4.5. Pseudofunktionen . 88
4.6. Laurentreihen: die Klasse ,pseries’ . 89
4.7. Die Matrix-Klasse . 98

5. Kritische Analyse des GiNaC-Ansatzes 113
5.1. Effizienz . 113

vi Inhaltsverzeichnis

5.2. Handhabbarkeit . 118
5.3. Erweiterbarkeit . 123
5.4. Schlussfolgerungen und Ausblick . 127

A. Hilfsmittel aus der komplexen Analysis 133
A.1. Der Cauchy’sche Residuensatz in einer Veränderlichen 133
A.2. Hauptwertintegrale . 137
A.3. Schnitte, Umkehrungen elementarer Funktionen und all das 138

B. ,pvegas’: parallele MC-Integration 151
B.1. Vegas . 151
B.2. Parallelisierung . 152
B.3. Nebenintegrale . 155
B.4. Parallele Zufallszahlen . 156
B.5. Praktische Erfahrungen und Perspektiven . 159

Glossar 165

Schlagwortverzeichnis 171

Literaturverzeichnis 177

Abbildungsverzeichnis

0.1. Grace Systemflussdiagramm . 3
0.2. Diana Systemflussdiagramm . 4
0.3. Symbolische Menüstruktur von CompHEP . 5
0.4. Struktur von xloops . 6

1.1. Schematische Gleichung als Beispiel partieller Integration 16
1.2. Die gekreuzte Dreibeinfunktion . 18
1.3. Die Master- und daraus abgeleitete Topologien 19
1.4. Alle Beiträge in den zugeordneten Impulsen werden endlich 22
1.5. Gebiete der zugeordneten Impulse bei gekreuzten Funktionen 23

2.1. Die Topologie II a) . 26
2.2. Mögliche skalare Vierbeintopologien . 27
2.3. Verbleibende Terme nach einer Residuenintegration 35
2.4. Wahlfreiheit bei

∫
dl 1/(P1(l)P2(l)) . 35

2.5. Verbleibende Terme nach zwei Residuenintegrationen 37
2.6. Graphische Darstellung eines faktorisierten Polynoms in θ-Funktionen 46
2.7. Alternative Darstellung eines Polynoms in θ-Funktionen 47
2.8. Terme nach zwei verschiedenen Integrationsmethoden zur planaren Box 49
2.9. Graphische Darstellung der k0-l0-Gebiete bei der planaren Box 50

3.1. Die Klassenhierarchie von GiNaC . 65
3.2. Mögliche unevaluierte Darstellung von 2d3(4a+ 6b− 3− b) 73
3.3. Naive Darstellung von 2d3(4a+ 5b− 3) . 73
3.4. Realistische Darstellungen von 2d3(4a+ 5b− 3) 74
3.5. Baumdurchschreitung: Preorder und Postorder 74
3.6. Laufzeiten für Denny Fliegners Konsistenztest 76

4.1. Die Klassenhierarchie von CLN . 84
4.2. Laufzeiten der Multiplikation in CLN . 85
4.3. Laufzeiten der Multiplikation in verschiedenen Softwarepaketen 86
4.4. Methodenaufruf bei Pseudofunktionen . 89
4.5. Laufzeiten für die Laurententwicklung von Γ(x)|x=0 97
4.6. Schleifenumordnung bei der Matrix-Multiplikation 102
4.7. Überflüssige Minorenberechnung bei Laplace-Entwicklung 104
4.8. Partitionierungen zum Beweis der Sylvester-Identität 108
4.9. Dreiecksmatrix vs. Staffelmatrix . 110

viii Abbildungsverzeichnis

5.1. Zeitliche Entwicklung der Effizienz von GiNaC 114
5.2. Speicherbedarf verschiedener CA-Systeme . 116
5.3. GiNaCs Darstellungsgraph von 2 sinh(x)2/ cosh(x)3 − 1/ cosh(x) 117
5.4. STL Template Speicherallozierung . 118

A.1. Zum Deformationssatz . 133
A.2. Integrationswege bei der Hauptwertintegration 138
A.3. Die Blätter von

√
z und 3

√
z . 139

A.4. Der Imaginärteil von log(z) . 140
A.5. Real- und Imaginärteil des Arcustangens . 142
A.6. Real- und Imaginärteil des Arcussinus . 145
A.7. Real- und Imaginärteil des Arcuscosinushyperbolicus 146
A.9. Real- und Imaginärteil des Dilogarithmus . 147
A.8. Integrationsweg zum Schnitt von Li2(z) . 147

B.1. Sampling-Methoden . 152
B.2. Konvergenzvergleich dreier verschiedener Parallelisierungsansätze 153
B.3. Schieberegister-, Tausworthe und Kirkpatrick-Stoll-Reihe 157
B.4. Effizienz von pvegas . 159
B.5. Laufzeitverhalten von pvegas . 160
B.6. Delaunay-Triangulation des 3-Würfels . 160
B.7. Vergleich der Gitterstruktur von Vegas und ParInt 161
B.8. Unterteilungsbaum eines Gitters . 161

Tabellenverzeichnis

1.1. Anzahl � der externen Parameter der n-Bein-Funktionen in D = 4 Dimensionen 18
1.2. Die zwei möglichen Kombinationen von Bedingungen 22

4.1. Laufzeiten zur Generierung und Ausmultiplikation symbolischer Determinanten 104
4.2. Anzahl der elementaren Rechenoperationen zur Determinantenberechnung . . 107

5.1. Eckpunkte in der zeitlichen Entwicklung der Effizienz von GiNaC 114
5.2. Vergleich symbolischer Pakete nach Robert Lewis und Michael Wester 115

A.1. Auflistung der Schnitte in der komplexen Ebene 149

B.1. pvegas ist auf allen derzeit gängigen Parallelrechnern lauffähig. 158
B.2. Argumente im pvegas Prototyp . 163

Einleitung

There are two ways of constructing a software design: One way is to
make it so simple that there are obviously no deficiencies, and the

other way is to make it so complicated that there are no obvious
deficiencies. The first method is far more difficult.

Charles A.R. Hoare [Hoar 1981]

Die Durchführung von physikalischen Berechnungen sprengt seit einiger Zeit nicht nur in nu-
merischer Hinsicht den Rahmen dessen, was mit Bleistift auf Papier durchführbar ist. Auch
symbolische Umformungen verlangen immer mehr nach einer automatischen Überprüfung oder
können gar vollautomatisiert durchgeführt werden. So ergab es sich, dass die theoretische
Physik beträchtlich zur Entwicklung der Computeralgebra beitragen konnte. Erste Compu-
teralgebrasysteme (CAS) in den 1960er Jahren waren hauptsächlich Lisp-basierte Pakete zur
Manipulation von Polynomen und rationalen Gleichungen und zum heuristischen Integrieren
auf dem Niveau eines Studenten in den ersten Studiensemestern. Rechnungen in Quantenfeld-
theorien stellten damals schon äußerste Ansprüche in Bezug auf Rechengeschwindigkeit und
Skalierbarkeit. Das erste erfolgreiche System, das direkt aus der Hochenergie kam – das 1963
von Martinus Veltman entwickelte Schoonschip – war konsequenterweise direkt in der Ma-
schinensprache des Rechners IBM 7094 geschrieben. Erst nachdem Schoonschip 1983 in der
Maschinensprache der populären Motorola 68000 Prozessorfamilie neu geschrieben worden
war gewann es eine gewisse Verbreitung [VeWi 1993]. 1968 stellte Anthony Hearn mit Redu-
ce ein interaktives Lisp-basiertes System vor, welches speziell für physikalische Rechnungen
entwickelt worden, aber weit universeller einsetzbar war als Schoonschip. Es erlang rasch ei-
ne breite Beliebtheit. Weitere Systeme, die direkt aus der Hochenergiephysik kamen waren
SMP – das von Stephen Wolfram geschriebene Vorläufersystem des seit 1988 kommerziellen
Mathematica – und Form von Jos Vermaseren. Diese beiden Systeme sind in der Sprache
C implementiert,1 was wohl hauptsächlich die wachsende Popularität und Verbreitung dieser
Sprache in den 1970er und 80er Jahren wiederspiegelt.
Die Berechnung von Strahlungskorrekturen in Quantenfeldtheorien insbesondere erfordert um-
fangreiche Berechnungen. In den letzten Jahrzehnten hat sich gezeigt, dass die zugrundelie-
genden Verfahren häufig einer algorithmischen Behandlung zugänglich sind. Die Formulierung
einer Übergangsamplitude anhand ihres Feynmandiagrammes führt zum Beispiel auf Schlei-
fenintegrale, die ausgeführt werden müssen. Aber auch schon auf Baumebene sind rechnerge-
stützte Verfahren unabdingbar, da die Anzahl der Diagramme bestenfalls exponentiell, meist
mit der Fakultät der äußeren Beine anwächst: In einer φ3-Theorie beträgt die Anzahl der

1 Die erste Version von Form war allerdings noch in Fortran geschrieben.

2 Einleitung

Feynmandiagramme, die auf Baumebene zu einem Prozess mit n äußeren Beinen beitragen,
beispielsweise FΓ(n) = (2n− 5)!! = (2n−5) · · ·5 · 3 · 1.
Eine ganze Reihe von Softwarepaketen zur Berechnung von Amplituden sind in den letzten
zehn Jahren vorgestellt worden. Hier soll und kann kein Überblick mit Anspruch auf Vollstän-
digkeit gegeben werden. Einen solchen gewährt beispielsweise [HaSt 1998]. Lediglich anhand
einiger wichtiger Pakete möchte ich hier Betrachtungen aufzeigen, die für das Design meines
Erachtens nach eine prominente Rolle spielen sollten.
Grace [IKKKST 1993] und CompHEP [BDIPS 1994] beschränken sich im Wesentlichen auf
Baumebene und vermögen nur spezielle Einschleifenintegrale zu berechnen. Grace bedient
sich hierfür ausnahmslos der Feynmanparametrisierung, wobei im besten Falle eine Integration
numerisch auszuführen bleibt. Beide Systeme können dort aber viele komplette Prozesse im
Standardmodell inklusive der nötigen Phasenraumintegrationen durchführen.
Das in Mainz entwickelte xloops basiert auf einer Serie von Publikationen [Krei 1991,
Krei 1992a, Krei 1992b, CKK 1994], in denen erstmals die Zerlegung in Parallel- und Othogo-
nalraum für Zweischleifen-Integrale ausgedehnt wurde – zuvor wurde diese Technik schon von
verschiedenen Gruppen erfolgreich auf Ein-Schleifen-Integrale angewendet. Eine Implemen-
tierung dieser Methoden als Sammlung von Maple-Routinen beschränkte sich zunächst auf
Ein-Schleifen-Integrale [BFK 1995] und wurde später erfolgreich auf Zweischleifen-Integrale
bis maximal zwei äußere Beinen ausgedehnt [BFK 1998].
Pakete zur Schleifenrechnung werden üblicherweise an der erfolgreichen Durchführung einer
oder mehrerer Rechnungen bewertet. Im Laufe meiner Arbeit im Umfeld des xloops-Projektes
bin ich zu der Überzeugung gelangt, dass dieser Ansatz jedoch zu bequem ist. Ein Softwa-
resystem kann punktuell noch so erfolgreich sein – es ist von geringem Wert, wenn es nicht
erweiterbar ist, von Fremden nicht benutzt und von neuen Diplomanden und Doktoranden
kaum durchschaut werden kann. Unbrauchbar wird es dann, wenn es so verschachtelt ist,
dass keine Komponente geändert werden kann, ohne dass dies unerwartete Auswirkungen an
anderen Stellen hat. Gefährlich wird es, wenn solche unerwartete Auswirkungen unbemerkt
bleiben, weil versäumt worden ist, bekannte und mit unabhängigen Methoden verifizierte Er-
gebnisse durch automatisierte Regressionstests abzusichern gegen strukturelle Fehler die sich
beim vermeintlichen Reparieren von Programmierfehlern einschleichen.
So ist es bislang nicht gelungen, den allgemeinen Fall der Dreibeinfunktion auf Zweischleifen-
Niveau in xloops zu integrieren. Abgesehen von zahlreichen neuen numerischen Instabilitäten,
die in dieser Methode aufzutreten scheinen [Frin 2000] lag das Hauptproblem an der wenig
durchsichtigen Architektur von xloops. Diese wiederum ist eine Konsequenz der veralteten
symbolischen Sprache von Maple, die zusammen mit Tcl/Tk, welches auch nicht als Vorbild
strukturierter Programmiersprachen herhalten kann, als Vehikel für die gesamten Berechnun-
gen dienen musste. Dies führte zu einem bedauerlichen Stillstand des Projektes.
Leider scheint dies in Softwarepaketen aus der theoretischen Hochenergiephysik ein allgemein
verbreiteter Zustand zu sein (die Experimentalphysiker gehen häufig professioneller vor). Ein
paar Blicke auf Softwareengineering können hier Besserung verschaffen. Ein besonderes Pro-
blem bildet die Tatsache, dass die bekannten Pakete in der Anzahl der benutzten externen Pro-
grammiersprachen und damit auch Programmierparadigmen proliferieren. Dies zwingt zwar
zu Modularität, aber zu einer Ungewollten. Und es erschwert den Einstieg in die Arbeit an
einem solchen System unnötig. Abbildung 0.1 zeigt dies im Falle des Systems Grace. Die

Einleitung 3

Diagram Generator

User Input

(particles, order, etc.)

Theory

Particles and Vertices

Diagram description

Matrix Element Generator

Symbolic Code

REDUCE, FORM

Kinematics

Database

FORTRAN Code

Matrix Element

Generated Code
Kinematics

Code
Library
(CHANEL, Loop)

Cross Section

Distribution

Feynman

Diagrams

Events

Parameter
File

Convergence

Information
BASES

SPRING

Drawer

TreeLoop

Monte Carlo Integral

Event Generator

PS file

(Model File)

make file, etc.

Abbildung 0.1.: Das Systemflussdiagramm von GRACE (aus [Bèla 1999]).

Sprachen Fortran und C dominieren hier, jedoch müssen zur symbolischen Rechnung auch
Reduce und Form herangezogen werden. In xloops hat Maple diese Rolle übernommen.

Die meisten Systeme mit dem Baustein Form als symbolischer Maschine leiden darunter,
dass dieses System wirkliche Programmierung praktisch nicht unterstützt. Die Struktur einer
Form-Datei ist immer die Folgende: Deklarationen (Symbole, z.B. Symbol a;), Spezifizie-
rungen, Definitionen (z.B. Local F;), Anweisungen (atomare Instruktionen wie .sort
aber auch Flusskontrolle wie if() und while()) und Ausgabeanweisung (wie .print).2
Da ein Programmieren ohne echte Programmierumgebung jedoch undenkbar ist, ziehen Soft-
warepakete zur Schleifenberechnung für die fehlenden Konstrukte andere nicht-symbolische
Systeme auf einer höheren Ebene heran. Im klassischen xloops war dies zum Beispiel Tcl/Tk –
obwohl die Unterstützung zur Programmierung im dort verwendeten Symbolikpaket MapleV
weit über diejenige von Form hinausgeht.

Auch das System Diana [FlTe 1999a] bietet eine graphische Benutzeroberfläche3 [FlTe 2000].
Diana ist im Wesentlichen ein Graphengenerator der über die rein topologische Generie-
rung hinausgeht und Form-Programme erzeugt die alle Graphen zu einem gegebenen Prozess

2 Es gibt zwar „Prozeduren“ in Form, diese werden jedoch nicht aufgerufen mit Parameterübergabe auf
einem Stack, sondern sie werden lediglich von einem Präprozessor expandiert. „Makros“ wäre eigentlich
eine treffendere Bezeichung.

3 Diana’s Benutzerschnittstelle ist übrigens derjenigen des alten xloops nicht ganz unähnlich.

4 Einleitung

initial data verification

for evaluation of
final result

processed?

Generating program
for evaluation of
current diagram

program

program

Yes

No

Yes

No

BEGIN

END

Read current diagram

Should
this diagram

be processed?

diagrams are
All

Performing generated

Generating program

Performing generated

Abbildung 0.2.: Das Systemflussdiagramm von DIANA (aus [FlTe 1999a]).

darstellen. Es beansprucht vor allem dort Fähigkeiten, wo xloops bis dato wenig zu bieten
hat: auf der automatischen Summierung von Feynmangraphen für einen gegebenen physi-
kalischen Prozess. Allerdings müssen die einzelnen Graphen dann von anderen Programmen
berechnet werden. Hierzu bedient es sich der eigens für diesen Zweck geschaffenen Sprache
TM [FlTe 1999b]. Es sei dahingestellt ob die Einführung einer weiteren Programmiersprache
wirklich eine Erleichterung darstellt und ob die von ihr ausgeführte Tätigkeit der Makroex-
pansion nicht durch vorhandene, weit verbreitete und getestete Makrosprachen wie etwa dem
allgegenwärtigen m4 bewerkstelligt werden könnte.

Ein zukünftiges xloops-Paket sollte nach Möglichkeit Mehrsprachigkeit soweit wie möglich ver-
meiden. Als algebraisches System kann GiNaC alle notwendigen symbolischen Manipulationen
direkt in C++ erledigen. Ob darauf aufbauend eine graphische Benutzerschnittstelle wirklich
sinnvoll ist kann in mittlerer oder ferner Zukunft entschieden werden. Als ungemein wertvoll
hat sich erwiesen, dass jede nichttriviale Funktionalität von automatischen Regressionstests
stets wieder auf Korrektheit überprüft wird. Ansonsten ist die Software stets der absolut
nicht unrealistischen Gefahr ausgesetzt, dass eine Änderung an einem Modul unbemerkt die
Korrektheit eines anderen Moduls zerbricht. Alle bekannten Pakete zur Schleifenberechnung
weisen meines Erachtens hier große Defizite auf. Auch das bisherige xloops ist hierfür ein trau-
riges Beispiel. Solche Regressionstests sollten möglichst die gesamte Funktionalität abdecken

Einleitung 5

QED
Fermi model
St. model(unit. gauge)
St. model(Feyn. gauge)
MSSM (unit. gauge)
MSSM (Feyn. gauge)
CREATE NEW MODEL

Enter process
Edit model
Delete model

Parameters
Constraints
Particles
Vertices

REDUCE code
MATHEMATICA code
FORM code
C code(for num. calc.)
Fortran Real*8 code
Fortran Real*16 code

View squared diagrams
Write results
Numerical Interpreter
C-compiler
Fortran compiler

View squared diagrams
Symbolic calculation
REDUCE program
Make n_comphep_c
Make n_comphep_f

Enter process: _____
partons: _____
CMS Energy in GeV: _____
Exclude diagrams with: ___

Squaring
View diagrams

Menu 1

Menu 2

Menu 3

Menu 4

Menu 5

Menu 6

Menu 7

Menu 8

Abbildung 0.3.: Symbolische Menüstruktur von CompHEP (aus [Pukh 1999]).

und orthogonal gestaltet sein, um selbst nicht übermäßig umfangreich zu werden.

Benutzer von xloops mussten bislang für einen bestimmten kinematischen Fall einen Knopf mit
der betreffenden Topologie anklicken und darin die Teilchenarten sowie die äußeren Impulse
eingeben. Alsdann wurden die divergenten von den konvergenten Anteilen (in dimensionaler
Regularisierung und unter Berücksichtigung von Abzugstermen) abgetrennt, die divergenten
Anteile symbolisch, also exakt, berechnet und eine Zweifachintegraldarstellung für den konver-
genten Anteil generiert. Auf Wunsch (sprich: Knopfdruck) konnte dieser dann numerisch von
einem Monte-Carlo- (MC-) Integrator approximiert werden. Ein solches menügesteuertes Vor-
gehen erschwert aber die Berechnung von physikalischen Prozessen, in denen im Zweischleifen-
Fall manchmal viele Hundert Diagramme zu berechnen sind. Dann wird die vermeintliche
Vereinfachung für den Benutzer nämlich zu einem unüberwindbaren Hindernis. CompHEP
leidet mit seinen tief verschachtelten Menüs unter demselben Problem. Hier muss ein solider
Graphengenerator zur Verfügung gestellt werden, der abhängig von einem auswechselbaren
physikalischen Modell (spezifiziert als Feynmanregeln) alle Diagramme zu einem gegebenen
Prozess mitsamt Symmetriefaktoren erzeugt.

Für ein zukünftiges xloops wäre also auch eine neue Aufarbeitung des Themas Graphengenerie-
rung empfehlenswert. Das bisherige Vorgehen ist weitgehend heuristischer Natur und funktio-
niert im Wesentlichen durch Anhängen äußerer Beine an die Einschleifen- und Zweischleifen-
Mastertopologien. Die bisherigen Implementierungen sind recht unbefriedigend – und können
auch kaum auf Dreischleifendiagramme fortgesetzt werden. Ein sehr effizienter graphentheore-
tischer Ansatz wurde in [Nogu 1993] vorgestellt. Die begleitende Fortran-Implementierung
QGraf lässt aber insofern sehr zu wünschen übrig, als dass sie keine Schnittstellen zur Wei-

6 Einleitung

Xwindows −Oberfläche

Einschleifen− Zweischleifen−

integrale

(Maple V)

Identifikation der Schleifeninteg.

graphische Eingabe

(Tcl/Tk)

Verwaltung ganzer Prozesse

integrale
analytische Integ.

numerische Integ.

(C++/VEGAS)

numerische und

analytische Berechnung (Maple V)

(Maple V)

Einsetzen der Feynmanregeln

Graphengenerator
(fehlend)

G
raphengenerator

(C
 / C

+
+

)
ginsh / Cint

(evtl. graphische Oberfläche)

(optional)

(C / Assembler)

(C++)
CLN

(C++)

GiNaC

interaktive Eingabe
Verwaltung ganzer Prozesse

(C++)

Einsetzen der Feynmanregeln
Identifikation der Schleifenintegrale

MPN

(C++)

(C++)

(C++)
Einschleifenmodul

Zweischleifenmodul

num
erische Integ.

(C
)

Abbildung 0.4.: Die Struktur des alten xloops (aus [Brue 1997]) und eine Vision des Neuen.

terverarbeitung der generierten Graphen besitzt – lediglich Textausgabe ist implementiert.
Für Grace wurde der dort benutzte Algorithmus auch reimplementiert [Kane 1995] – das
Modul heißt dort GRC. Der Aufwand ist recht überschaubar und setzt nicht einmal sym-
bolische Manipulationen voraus. Die Spezifizierung physikalischer Modelle erfolgt sowohl in
QGraf als auch in GRC jeweils in Form einer Modelldatei, die eingelesen und in eine interne
Darstellung umgewandelt wird. Möglicherweise wird die Zunkunft hier eine Vereinheitlichung
bringen in Form von als XML spezifizierten Feynmanregeln. Entsprechende Bestrebungen
wurden angekündigt, es liegt aber zu diesem Datum noch kein konkreter Vorschlag vor.
xloops könnte auch von einer allgemeinen Verfügbarkeit profitieren so dass es leichter zu testen
ist. Die Abhängigkeit von Maple in einer bestimmten Versionsnummer hat sich hier als sehr
störend herausgestellt. Das war einer der Gründe für die Entwicklung von GiNaC. Heute ist
dies interessanterweise nicht mehr ganz so dringend wie 1998: Nach dem Erscheinen von GiNaC
wurden noch ein paar weitere bedeutende Pakete, die Computeralgebra tangieren, von einer
restriktiven Lizenz beziehungsweise nicht einsehbaren Quellcodes zu einer Lizenz unter dem
GNU-Modell gestellt: NTL (April 2000), Pari (November 2000) und Singular (April 2001).
Zeitgeist, Zufall oder Memreplikation?
Abbildung 0.4 vergleicht das bisherige xloops und wagt eine Zunkunftsvision, wie die struk-
turellen Abhängigkeiten in einer zukünftigen Version aussehen könnten beziehungsweise sich
derzeit abzeichnen. Besonders hervorzuheben ist meines Erachtens, dass symbolische Vehikel
nur dann herangezogen werden sollten, wenn dies unabdingbar ist. Wir haben zwar mit GiNaC
nun ein System, welches leistungsfähig genug ist, die in xloops vorkommenden Rechnungen zu
unterstützen, jedoch sind wir nicht gefeit vor selbstgemachten ausufernden Abhängigkeiten,
die die Wartbarkeit nur unnötig erschweren. Die symbolische Domäne ist ungleich aufwändiger
als die numerische und es lohnt sich ihr so weit wie möglich aus dem Wege zu gehen.
Zum Aufbau dieser Arbeit: Das erste Kapitel steckt die Bühne, auf der sich die hier ent-

Einleitung 7

wickelten Berechnungsmethoden abspielen sollen, ab und gibt einen Überblick über das in
Mainz entwickelte und bisher praktizierte Repertoire. Das zweite erweitert dieses Repertoire
um ein neues Stück – die Zweischleifen-Vierbeinfunktionen. Im dritten Kapitel werden dann
die Sprechübungen nachgeholt, indem die bisher benutzten Computeralgebrasysteme einer
gründlichen Untersuchung unterzogen werden. Dabei wird sich herausstellen, dass die bisher
benutzten Sprachen für die Inszenierung größerer Stücke ungeeignet sind und GiNaC wird
als Ersatz vorgestellt. In Kapitel vier wird der Fundus durchstöbert wobei aus der Vielzahl
der Requisiten nur ein paar bislang nicht oder nur unvollständig beschriebene ausgewählt
werden. Dabei wird die Absicht weniger sein, eine Anleitung für die Benutzung der GiNaC-
Bibliothek zu geben – hierfür ist die offen verfügbare Dokumentation zuständig. Vielmehr
sollen einige Implementationsentscheidungen motiviert werden, für deren Darlegung es sonst
kein geeignetes Forum gibt. Das fünfte Kapitel versucht von einer – soweit es mir möglich
ist – distanzierten Sichtweise, dieses System zwischen vergleichbaren Systemen einzuordnen.
In zwei Anhängen werden ein paar Hilfsmittel skizziert, in einem Glossar einige für Physiker
nicht allzu gebräuchliche Begriffe erläutert.
Wenn es bisweilen den Anschein hat, dass hier mehr Fragen aufgeworfen als beantwortet
werden, dann ist dies weder Zufall, noch beabsichtigt, sondern unvermeidlich.

Teil I.

Berechnung von Schleifenintegralen

1. Feynmandiagramme

Science is what we understand well enough to explain to a computer.
Art is everything else we do.

Donald E. Knuth, Reader’s Digest, Juli 1987

1.1. Quantenfeldtheorien und das Standardmodell

Die Notwendigkeit, quantisierte Felder der Beschreibung relativistischer Teilchen zugrunde
zu legen, erwächst aus zwei Gründen: Erstens zwingt uns die Einstein’sche Masse-Energie-
Beziehung, den Ein-Teilchen-Standpunkt aufzugeben. Zweitens sind die Träger von Über-
gangsamplituden U(t) =

〈
x |e−iHt|y〉 für einzelne freie Teilchen akausal – sie können erst durch

in entgegengesetzte Richtung propagierende Antiteilchen außerhalb des Lichtkegels exakt zum
Verschwinden gebracht werden (siehe zum Beispiel [PeSc 1995, Abschnitt 2.1]).

Renormierbare Quantenfeldtheorien werden durch eine Lagrangedichte L(φ, ∂µφ), abhängig
von verschiedenen Feldern φ(xµ) und ihren Ableitungen, vollständig beschrieben. Massen und
Kopplungskonstanten sind Parameter dieser Lagrangedichte. Die die Dynamik beschreiben-
den Feldgleichungen können aus dem Extremalprinzip δS = δ

∫Ld4x = 0 daraus abgeleitet
werden. Quantisiert werden solche Feldtheorien entweder kanonisch durch Postulierung von
Vertauschungs- beziehungsweise Antivertauschungsrelationen oder durch den Pfadintegralfor-
malismus. In beiden Fällen kann durch Entwicklung in den Kopplungskonstanten des Wechsel-
wirkungsterms eine Störungsreihe konstruiert werden, deren Elemente auf intuitive Weise mit
Feynmangraphen korrespondieren – dies vereinfacht eine systematische Buchhaltung. Wech-
selwirkungen können auch weniger ad hoc durch lokale Eichtransformationen in die Theorie
eingeflochten werden. Der dabei notwendig werdende Zusammenhang Aµ, der die Eichinva-
rianz des ∂µφ-abhängigen Teils in der Lagrangedichte garantiert, wird dann als Träger der
Wechselwirkung interpretiert. Dabei stellt sich in Abwesenheit spontaner Symmetriebrechung
heraus, dass die Masse der zugehörigen Austauschteilchen exakt verschwinden muss – genau
wie dies für Photonen und Gluonen auch der Fall ist.

Das Standardmodell der Elementarteilchenphysik lässt sich als Quantenfeldtheorie mit spon-
taner Symmetriebrechung beschreiben. Die volle Symmetriegruppe lautet SU(3)c × SU(2)L ×
U(1)Y , worin SU(3)c die Symmetriegruppe der QCD-Farbladung, SU(2)L diejenige des schwa-
chen Isospins und U(1)Y die der schwachen Hyperladung ist. Der Grundzustand ist nicht
invariant unter SU(2)L × U(1)Y , sondern nur unter der Untergruppe U(1)e, der Symmetrie-
gruppe der Quantenelektrodynamik – weshalb das Photon im Gegensatz zu den anderen Eich-
bosonen des elektroschwachen Sektors W± und Z0 masselos bleibt. Im einfachsten Fall, dem

12 1. Feynmandiagramme

Weinberg-Salam-Modell, wird hierfür als Higgs-Sektor ein skalares Isospin-Dublett eingeführt
und nebenbei verleiht das Higgs-Teilchen auch den Fermionen über eine einfache Yukawa-
Kopplung ihre Masse.

Das Standardmodell setzte sich durch, als auf theoretischer Seite in einer der Sternstunden
der Computeralgebra seine Renormierbarkeit [t’Ho 1971a, t’Ho 1971b] und seine Anomalie-
freiheit (siehe beispielsweise [ItZu 1993, Abschnitt 6-2-4]) gezeigt werden konnten. Außerdem
vermag es auf experimenteller Seite den gesamten wenig systematischen „Teilchenzoo“ und
die darin unmotiviert vorkommenden Quantenzahlen (strangeness, etc. . .) erfolgreich zu er-
klären und anschauungsmäßig zu ersetzen. Dennoch ist das Standardmodell nicht vollständig
befriedigend. Unschön ist, dass es bisher nicht gelungen ist, die Gravitation mit einzubeziehen
und auch die große Anzahl der 25 freien Parameter1 ist nicht gerade ein Zeichen von Eleganz.
Es erklärt ebenso wenig die Zweiteilung der Materie in einen stark wechselwirkenden und
einen nicht stark wechselwirkenden Sektor wie die augenfällige Hierarchie der Teilchenmas-
sen. Außerdem wird darin die schwache Hyperladungen etwas ad hoc ins Spiel gebracht um sie
an die experimentell beobachtbaren Ladungen anzupassen. Die drittelzahligen Quarkladungen
und die Gleichheit von Proton- und Elektronladung bleibt damit unerklärt.

Aufgrund dieser Unzulänglichkeiten und der schweren Zugänglichkeit höchster Energien wach-
sen die Ansprüche an den Vergleich von Theorie und Experiment stetig an. Ein Paradebeispiel
ist die in den letzten Jahren stattgefundene indirekte Eingrenzung der notorisch unzugäng-
lichen (weil nur logarithmisch in Schleifenrechnungen eingehende) Masse des Higgs-Bosons,
obwohl seine Entdeckung immer noch aussteht. Die Berechnung von höheren Termen in der
Störungsreihe muss automatisiert werden, um sie einerseits überhaupt erst durchführbar und
andererseits vertrauenswürdig zu machen. Die danach möglichen Vergleiche mit experimen-
tellen Messungen bergen ein umfangreiches physikalisches Potenzial. Eine kleine Auswahl aus
den üblichen Werkzeugen für diese Berechnungen wird im Folgenden beschrieben.

1.2. Standardmethoden zur Berechnung von
Feynmandiagrammen

Der Vergleich von Experiment auf der einen und Theorie auf der anderen Seite erfordert seit
langem schon die Berechnung von geschlossenen Schleifen in Feynmandiagrammen – min-
destens seit 1947, als das anomale magnetische Moment des Elektrons erstmalig gemessen
worden ist. Dieser Fall wird seitdem in stets verfeinerter Messung der ebenso verbesserten
Schleifenrechnung gegenübergestellt. Auf diesem Gebiet wurden Vertexkorrekturen bis hin
zur Vierschleifen-Ordnung berechnet, teilweise mit immensem numerischem Aufwand. Auf
anderen Teilgebieten der Teilchenphysik reichen weniger Schleifen aus, um schon an die Gren-
zen des Messbaren/Errechenbaren zu gelangen. So zum Beispiel in der vollen elektroschwachen
Wechselwirkung, wo die Anwesenheit vieler Massenskalen kühne Rechnungen wie in der rei-
nen QED vereitelt – bis vor wenigen Jahren reichte es häufig aus, einfach α = e2/4π bei

1 Es sind ohne die Gravitationskonstante 25, wenn man davon ausgeht, dass die kürzlich entdeckte Evidenz
für Neutrinooszillationen einen kompletten zweiten CKM-Sektor mit drei Massen und vier Mischungswin-
keln mitbringt.

1.2. Standardmethoden zur Berechnung von Feynmandiagrammen 13

Q2 = M2
Z zu fixieren. Drei häufig praktizierte Methoden für solche Rechnungen werden in

diesem Abschnitt kurz skizziert.

Feynmanparametrisierung

Mit diesem Verfahren können inverse Propagatoren, die wir im Folgenden immer mit Pi(p
µ) =

pµp
µ −m2

i + iρ notieren wollen, in Schleifenintegralen durch die derselbe Impuls fließt kom-
biniert werden. Dafür müssen aber zusätzliche Parameter eingeführt werden. Die Ausgangsi-
dentität hierfür ist

1

P1P2 · · ·Pn

=

∫ 1

0

dx1 · · · dxnδ
(∑

xi − 1
) (n− 1)!(
x1P1 + · · ·+ xnPn

) .
Sie kann durch Ableitung auch auf beliebige Potenzen 1/P νi

i erweitert werden. Nach einer
solchen Kombination von Propagatoren unter dem Integral über lµ ist es oft möglich, über
die Lage der kausalen Pole in der komplexen l0-Ebene Aussagen zu machen. Befinden sie sich
beispielsweise im zweiten und vierten Quadranten, so kann durch die Wick-Rotation l0 → il0

die Metrik in eine euklidische überführt und die Winkelintegration ausgeführt werden. Das
verbleibende Integral über den Abstand |l0| =: l hat die Gestalt∫ ∞

0

dl
lβ

(l2 + ∆)α
,

was für positives ∆ leicht berechnet werden kann, siehe [Ryde 1985, PeSc 1995]:∫ ∞

0

dl
lβ

(l2 + ∆)α
=

Γ
(

1+β
2

)
Γ
(
α− 1+β

2

)
2∆α− 1+β

2 Γ
(
α
) = 1

2
∆

1+β
2

−αB
(

1+β
2
, α− 1+β

2

)
(1.1)

Ist jedoch ∆ nicht mehr positiv definit, wie es bei Zweischleifen-Integralen der Fall ist, so ist
Vorsicht an der Polstelle des Integranden geboten. Man kann dann∫ ∞

0

dl
lβ

(l2 + ∆± iε)α
= 1

2
(−)α(±i)β+1|∆| 1+β

2
−αB

(
1+β

2
, α− 1+β

2

)
benutzen.
Im Falle der Zweibeinfunktion bleiben auf Einschleifenebene damit Einfach-Integraldarstel-
lungen übrig, bei Dreibeinfunktionen Zweifach-Integraldarstellungen und so weiter. In vielen
Fällen können Feynmanparameter danach ausintegriert werden, besonders wenn wenige oder
gar keine Massenskalen vorliegen. Auf Zweischleifenebene bleiben für die planare Dreibein-
funktion im allgemeinen Fall zum Beispiel fünf numerische Integrationen übrig, was je nach
Konvergenzverhalten schon zu viel sein kann für eine brauchbare numerische Genauigkeit.
Das obige Integral über l ist aber für negatives 2α − β − 1 divergent. Ein altehrwürdiges
Regularisierungsverfahren besteht denn auch in der Einführung eines Abschneideparameters
Λ für l. Äquivalent dazu können Propagatoren im Integral derart abgewandelt werden, dass
von masselosen Propagatoren ein Propagator mit einer fiktiven großen Masse Λ abgezogen wird
(Pauli-Villars Regularisierung). Die Abhängigkeit der greenschen Funktionen von Λ müssen
durch Renormierung der Lagrangedichte später so ausgeglichen werden, dass die physikalischen
Größen nicht von diesem fiktiven Parameter abhängig sind.

14 1. Feynmandiagramme

Dimensionale Regularisierung und PO-Zerlegung

Die Regularisierung der Divergenzen mit einem Abschneideparameter hat sich als nicht allzu
tragfähig herausgestellt. So verletzt sie insbesondere die Eichinvarianz. Die dimensionale Re-
gularisierung geht davon aus, dass Gleichungen wie (1.1) wörtlich zu nehmen sind – die rechte
Seite ist schließlich bis auf isolierte Pole in der komplexen l-Ebene wohldefiniert. Wenn man
die Dimension D als freien Parameter betrachtet und die Abweichung von der physikalischen
Raumzeit mit D = 4 − 2ε parametrisiert, dann werden alle Schleifenintegrale zu meromor-
phen Funktionen mit Polen bei ε = 0 und können in Laurent-Reihen entwickelt werden. Dieses
Verfahren erhält die Eichinvarianz, weshalb es sich als Standardmethode der Regularisierung
durchgesetzt hat.
DasD-dimensionale Integral gehorcht – wie das gewöhnliche Integral auch – den vier Axiomen:

• Linearität:
Für beliebige komplexe Zahlen α und β gilt∫

dDx
(
αf(x) + βg(x)

)
= α

∫
dDx f(x) + β

∫
dDx g(x).

• Skalierung:
Für beliebiges s ∈ � können Skalenfaktoren mithilfe einer Verallgemeinerung der Jacobi-
Determinante aus dem Integral herausgezogen werden:∫

dDx f(sx) = s−D

∫
dDx f(x).

• Translationsinvarianz:
Da sich das Integrationsintervall über den gesamten homogenen D-dimensionalen Raum
erstreckt, gilt für alle Vektoren y∫

dDx f(x + y) =

∫
dDx f(x). (1.2)

• Rotationsinvarianz:
Der D-dimensionale Raum soll auch isotrop sein. Bei rotationssymmetrischen Integranden
f(x 2) kann man das verallgemeinerte Oberflächenintegral daher ausführen:∫

dDx f(x 2) =
2πD/2

Γ(D/2)

∫ ∞

0

dx xD−1f(x2). (1.3)

Hierin ist 2πD/2

Γ(D/2)
der Flächeninhalt der Einheitssphäre in D Dimensionen.

Falls der Integrand nicht rotationssymmetrisch ist, kann das verallgemeinerte Oberflächen-
integral (1.3) nicht vollständig ausgeführt werden. Eine solche Rotationsvarianz kommt in
Schleifenintegralen durch Abhängigkeit von externen Impulsen zustande. Wenn die lineare
Hülle der äußeren Impulse aber nicht den gesamten Raum aufspannt, dann kann jener aufge-
spalten werden in den D‖-dimensionalen Parallelraum, der gerade als lineare Hülle der äußeren

1.2. Standardmethoden zur Berechnung von Feynmandiagrammen 15

Impulse definiert ist, und sein orthogonales Komplement, den D⊥-dimensionalen Orthogonal-
raum. Dies bezeichnet man als PO-Zerlegung und es gilt natürlich D⊥ + D‖ = D. Der nicht
ganzzahlige Anteil von D steckt dabei ausschließlich in D⊥. Alle Schleifenimpulse lassen sich
dann schreiben als

x = (x0, . . . , xD‖−1, x⊥)

und für den Anteil x⊥ hat Gleichung (1.3) immer noch Gültigkeit, während die verbleibenden
Integrale über den Parallelraum als (Riemann’sche) Integrale ganzzahliger Dimension aufge-
fasst werden dürfen.

Partielle Integration

Die partielle Integration [ChTk 1981] ist ein Verfahren, in dem komplizierte Feynmandia-
gramme auf Einfachere zurückgeführt werden. Ausgangspunkt ist die Translationsinvarianz
des offenen D-dimensionalen Integrales (1.2) in der Form:∫

dDx
∂

∂xµ
f(x) = 0. (1.4)

Durch Ausführen dieser partiellen Ableitung vor der Integration werden mehrere Integrale
in Verbindung gesetzt, wodurch das Aufstellen von Rekursionsformeln möglich wird. Durch
geeignetes Zusammenfügen dieser Rekursionsformeln können komplizierte Integrale als eine
Linearkombination von wenigen sogenannten Masterintegralen dargestellt werden, die nur
einmal berechnet werden müssen.
Als ein Beispiel skizzieren wir wie das im Falle der skalaren Master-Zweischleifenfunktion
(Abbildung 1.1 links), funktioniert. Wenn die Propagatoren 1/Pi, i = {1 . . . 5}mit Exponenten
νi ∈ ν∼ = {ν1 . . . ν5} versehen sind, so lautet das Feynman-Integral

J(ν∼) =

∫
dDk dDl

1

P ν1
1 P ν2

2 P ν3
3 P ν4

4 P ν5
5

oder, mit einer festgelegten Impulswahl,

J(ν∼) =

∫
dDk dDl

1(
(k−p)2 −m2

1 + iρ
)ν1

(
(l+p)2 −m2

2 + iρ
)ν2

× 1(
k2 −m2

3 + iρ
)ν3

(
l2 −m2

4 + iρ
)ν4

(
(l+k)2 −m2

5 + iρ
)ν5

, (1.5)

worin pµ der durchfließende äußere Impuls ist. Durch lineare Transformationen der Scheifenva-
riablen l und k kann immer ein beliebiger Propagator frei von allen anderen Impulsen gemacht
werden; beispielsweise wird durch l → l− k der Propagator P5 nur von l abhängig. Wenn wir
dann den Operator (∂/∂lµ)lµ auf den Integranden alleine anwenden, so haben wir genau eine
Ableitung der Gestalt (1.4) konstruiert, mit

f(l) =
lµ(

(l−k+p)2 −m2
2 + iρ

)ν2
(
(l−k)2 −m2

4 + iρ
)ν4

(
l2 −m2

5 + iρ
)ν5

.

16 1. Feynmandiagramme

3

1

4

2

5 =
1

ε

[
−

]

Abbildung 1.1.: Schematische Gleichung als Beispiel partieller Integration. Die Punkte auf den
Propagatoren deuten an, dass diese zu quadrieren sind. Die linke Seite ist endlich, das heißt, die
Ordnungen ε−2, ε−1 und ε0 der beiden Graphen auf der rechten Seite heben sich gegenseitig weg.

Die Propagatoren 1/P ν1
1 und 1/P ν3

3 sind schon als unabhängig von der Integrationsvariable l
vor das Integral (1.4) gezogen und weggekürzt worden. Die Ableitung kann nun ausgeführt
werden. Der Term ∂/∂lµlµ liefert einen BeitragD, die Ableitungen von 1/P νi

i inkrementieren νi

und bringen Impulse in den Zähler, die wiederum mit lµ kontrahiert werden. Unter Ausnutzung
der Impulserhaltung an den Vertizes und mit geeigneten Erweiterungen kann man auf diese
Art die sogenannte Dreiecksregel für J(ν∼) herleiten:[− ν22

+(5−− 1−+m2
1 −m2

5 −m2
2)− ν44

+(5−− 3−+m2
3 −m2

5 −m2
4)

+D − 2ν5 − ν2 − ν4 + 2ν5m
2
55

+
]
J(ν∼) = 0. (1.6)

Die Operatoren 1±, 2±, . . . darin sind Konvention: Sie inkrementieren oder dekrementieren
den entsprechenden Index von J(ν∼) und sind vor der Ausführung des Integrals anzuwenden.
Ein einfacher Fall ergibt sich, wenn alle Massen mi verschwinden:

J(ν∼) =
1

D − 2ν5 − ν2 − ν4

[
ν22

+(5−− 1−) + ν44
+(5−− 3−)

]
J(ν∼).

Gilt ferner ν1 = ν2 = ν3 = ν4 = ν5 = 1, so erhält man die einfache Beziehung aus Abbil-
dung 1.1, in der das nichttriviale Diagramm der linken Seite als Linearkombination von zwei
trivialen Diagrammen ausgedrückt wird.
Dieses Verfahren ist leicht algorithmisierbar und findet erfolgreiche Anwendungen. Technische
Probleme darin bereitet die gegenseitige Kürzung von Divergenzen, die verlangt, dass man
geschickt Buch führt über die benötigte Ordnung in ε um möglichst keine überflüssigen Terme
zu berechnen. Die auftretenden Rekursionsrelationen beinhalten wie die Dreiecksregel (1.6)
nur Ringoperationen zwischen den einzelnen Integranden J . Das Verfahren neigt insgesamt
jedoch sehr schnell zu einem explosionsartigen Anschwellen in der Zahl der Terme – ein Ar-
beitsspeicherbedarf von mehreren hundert Gigabyte ist derzeit keine Seltenheit [BCK 2001].
Aus diesen beiden Gründen ist und bleibt Form der einzige angemessene Traktor zum Bestel-
len dieses Feldes. Eine fruchtbare Variation über diesem Thema ist auch die Herleitung von
Differenzialgleichungssystemen in den Mandelstam-Variablen, die die verbleibenden Integrale
erfüllen, um diese damit bisweilen sogar numerisch auszurechnen [Remi 1997].

Entwicklung nach äußeren Impulsen

Auch in der Entwicklung nach äußeren Impulsen werden komplizierte Feynmanintegrale auf
Einfachere zurückgeführt, hier jedoch auf solche, die eine leichter zu handhabende äußere
Impulsstruktur besitzen, nämlich im Idealfall auf Vakuumgraphen. Um das Verfahren zu skiz-
zieren gehen wir wieder aus von Gleichung (1.5), und beobachten, dass J insgesamt nicht nur

1.3. Kinematische Abhängigkeiten 17

eine Funktion von ν∼ und m∼ = {m1 . . .m5} sondern auch vom externen Impulsfluss pµ ist. Da
sich aus pµ aber nur ein einziges Lorentzskalar p2 bilden lässt, kann J nur hiervon abhängen.
Die Entwicklung von skalaren Funktionen J(ν∼, m∼ , p

2) nach p2 muss aus Gründen der Lorentz-
kovarianz statt mit der einfachen Impulsableitung ∂/∂pµ mit dem d’Alembert-Operator im
Impulsraum �p = ∂2/∂pµ∂p

µ geschehen. Jedes reguläre J(p2) kann so entwickelt werden:

J(p2) = J(0) +

(
�pJ(p2)

)|p=0

2D
p2 +

(
�2

pJ(p2)
)|p=0

8D(D + 2)
(p2)2 +O((p2)3

)
. (1.7)

Wenn man �p auf das Integral (1.5) anwendet, so erhält man wieder inkrementierte und
dekrementierte Exponenten νi im Nenner. Man kann das Ergebnis wieder mit den Operatoren
1±, 2±, . . . formulieren:

�pJ(ν∼, m∼ , p
2)

= 4
[
(ν1 + ν2 + 1−D/2)(ν11

++ ν22
+) + ν1(ν1 + 1)m2

1(1
+)2 + ν2(ν2 + 1)m2

2(2
+)2

+ ν1ν2

(
(m2

1 +m2
2 −m2

3)1
+2+ − 1+2+3−)]J(ν∼, m∼ , p

2).

Nach Anwendung von �p
n setzt man p = 0 und erhält so eine Linearkombination von Va-

kuumdiagrammen als Entwicklungsparameter in p2. Diese Vakuumdiagramme können aber
häufig ausgerechnet werden. Viele können analytisch mithilfe von Gamma-Funktionen oder
hypergeometrischen Funktionen ausgedrückt werden, einige andere können über partielle Inte-
gration mit ersteren verknüpft werden – auf jeden Fall sind sie auch im massiven Fall leichter
analytisch in den Griff zu bekommen als die Zweibeinfunktionen [DaT 1992].
Auch dieses Verfahren ist einer algorithmischen Behandlung ausgesprochen zugänglich. Es
stößt aber an seine Grenzen, wenn die Reihenentwicklung für kleine Impulsquadrate (1.7)
beim Auftreten von Imaginärteilen, also an der ersten kinematischen Schwelle, zusammen-
bricht. Das Verfahren wurde auch erweitert um die Entwicklung für große k2 oberhalb der
höchsten kinematischen Schwelle [DaST 1993]. Im Bereich der Schwellen selbst hilft häufig
Padé-Approximation über die Konvergenzprobleme hinweg [BFT 1993]. Es ist auch leicht ein-
zusehen, dass die Entwicklung in äußeren Parametern rapide mit der Anzahl der Parameter
an Komplexität gewinnt.

1.3. Kinematische Abhängigkeiten

Alle skalaren Zweischleifen-Funktionen können in der Form

J =

∫
dDk

∫
dDl

1

Pl,m1 Pl+k,m2 Pk,m3 · · ·
, (1.8)

geschrieben werden mit mindestens drei inversen Propagatoren der Form Pl,mi
= (l + p)2 −

m2
i +iρ. Hierin ist l ein Schleifenimpuls, und p eine Linearkombination externer Viererimpulse.

In den nicht ausgeschriebenen Propagatoren können auch allgemeinere Linearkombinationen
wie Pαl+βk,mi

vorkommen. Es wird gleich darauf verzichtet, einen Index i an die einzelnen ρ
anzuhängen, da es möglich ist, sie alle gleichzusetzen.2

2 In [Frin 1996, Abschnitt 6.1] wurde für einen ausgewählten Fall durchexerziert was geschieht wenn ver-
schiedene infinitesimale Imaginärteile mit verschiedenen Relationen ρi < ρj eingesetzt werden – mit dem
wenig verblüffenden Ergebnis, dass beide Verfahren äquivalent sind.

18 1. Feynmandiagramme

Abgesehen von internen Parametern, also Massen, sind die skalaren Zweischleifen-Funktionen
wie alle skalaren greenschen Funktionen wahlweise Funktionen von äußeren Impulskomponen-
ten oder invarianten Skalarprodukten derselben. Deren Anzahl ist durch Impulserhaltung und

Äußere Beine n Parameter �(n)

0,1 0
2 1
3 3
4 6

n ≥ 4 4n− 10

Tabelle 1.1.: Anzahl � der externen
Parameter der n-Bein-Funktionen in
D = 4 Dimensionen

die Dimensionalität des Raumes D gegeben. Allgemein
ist eine n-Beinfunktion wegen Impulserhaltung abhän-
gig von n − 1 ein- bzw. auslaufenden Impulsen. Daraus
errechnet sich leicht die Anzahl der Parameter als die
Anzahl der unabhängigen Lorentzskalare piµpj

µ, die sich
daraus bilden lassen. Man erhält in D = 4 die neben-
stehende Tabelle. Die 0-Bein-Funktionen („Vakuumbla-
sen“) hängen wie die 1-Bein-Funktionen („Tadpoles“) we-
gen Impulserhaltung nicht von äußeren Parametern ab.
Die Zweibein-Funktionen („Selbstenergien“) hängen nur
von einem äußeren Impuls ab, man kann sie im Ruhsys-

tem des Teilchens beispielsweise durch dessen Ruhmasse beschreiben. Die Dreibeinfunktionen
(„Vertexfunktionen“) hängen von zwei äußeren Impulsen ab, also von � = 3 Parametern, z.B.
den drei Invarianten, die man aus zwei Impulsen bilden kann und die Vierbeinfunktionen ent-
sprechend von sechs Parametern. Bei höheren Greensfunktionen als den Fünfbeinfunktionen
erhöht sich die Anzahl der Parameter jeweils um 4, da die hinzukommenden Impulse als Li-
nearkombinationen der schon vorhandenen gebildet werden können, von denen 4 den Raum
aufspannen.

1.4. Die bisher untersuchten Funktionen („Mainz I und
Mainz II“)

Die Mainzer Methoden zur Berechnung von Feymandiagrammen beschränken sich auf Zwei-
schleifenfunktionen. Sie haben eine gewisse Allgemeinheit in dem Sinne, dass sie nicht vom
Vorhandensein einer sehr eingeschränkten Menge von Massenskalen pro Diagramm ausgehen.
Dies macht sie im Prinzip vielseitiger einsetzbar als andere Verfahren – zum Beispiel in der
elektroschwachen Wechselwirkung des Standardmodells oder auch in der SU(3)×SU(3) chira-
len Störungstheorie, wo zumindest die drei Massenskalen aus dem Oktett der pseudoskalaren
Mesonen mπ, mK und mη zur Ordnung p6 in Zweischleifen-Diagrammen mit den effektiven
Kopplungen der L2-Lagrangedichte berechnet werden müssen. Diese drei Massen sind verschie-
den, aber von der gleichen Größenordnung, und dem muss das Verfahren Rechnung tragen.

Vom topologischen Standpunkt aus können wir uns alle Zweischleifenfunktionen mit beliebiger
Anzahl externer Beine konstruieren, indem wir diese an die „Mastertopologie“ anheften. Ab-

Abbildung 1.2.: Die ge-
kreuzte Dreibeinfunktion

bildung 1.3 zeigt rechts ein paar ausgewählte Beispiele. Einige davon
haben einschlägige Namen. So bezeichnet man beispielsweise II a)
als „Sunset-Graphen“, I b) als „planare Dreibeinfunktion“, II b) als
„gekreuzte Dreibeinfunktion“ und III c) als „Acnode-Graphen“. Die
zweidimensionale Darstellung verschleiert bisweilen Symmetrieeigen-
schaften der Topologie. So macht erst die nebenstehende Abbildung
die Symmetrieeigenschaften der gekreuzten Dreibeinfunktion II b)

1.4. Die bisher untersuchten Funktionen („Mainz I und Mainz II“) 19

III

I

a) Zweibein−Topologien c) Vierbein−Topologienb) Dreibein−Topologien

II

Abbildung 1.3.: Die Zweischleifen-Mastertopologie und wie daraus systematisch Mehrbeinfunktio-
nen durch Anheften äußerer Beine konstruiert werden können.

offensichtlich. Ferner ist die Methode des Anheftens äußerer Beine an Mastertopologien un-
handlich bei drei oder mehr Schleifen und erschwert das Auffinden der Symmetriefaktoren. Ein
systematischeres, graphentheoretisches Vorgehen wie etwa dasjenige von QGraf [Nogu 1993]
ist dieser Ad-hoc-Methode offensichtlich überlegen.

In Abbildung 1.3 fehlen ferner faktorisierende Zweischleifen-Topologien, also solche, die sich
als Produkt zweier Einschleifen-Graphen darstellen lassen. Diese lassen sich zwar analytisch
ausdrücken; durch den Beitrag ε−1 des einen Graphen zum endlichen Beitrag des anderen
muss die ε-Entwicklung allerdings um eine Ordnung weiter getrieben werden als dies für
einfache Einschleifen-Topologien nötig ist. Die Behandlung innerhalb des alten xloops skizzie-
ren [Brue 1997, Fran 1997].

Die Zweibeinfunktionen („Mainz I“)

Die Zweibeinfunktionen auf Zweischleifen-Niveau werden von xloops nach einem in [Krei 1991]
skizzierten Verfahren berechnet. Es findet Anwendung sowohl bei skalaren als auch bei Ten-
sorintegralen [Krei 1993]. Darin wird von den Schleifenimpulsen l und k zunächst deren Par-
allelraumkomponente l0 und k0 abgespalten und die Orthogonalraumkomponenten l⊥ und k⊥
in D − 1 Dimensionen sphärisch symmetrisiert. Bis auf einen relativen Winkel ϑ zwischen l⊥
und k⊥ kann man die Winkelintegrationen ausführen. Für die ϑ-Integration geht dies jedoch
nur in ganzzahliger Dimension D. Falls das Integral nicht endlich ist werden hierzu geeignete
Abzugsterme aufgesucht, die das Integral endlich machen – die divergenten Teile lassen sich
analytisch berechnen. Danach kann man D = 4 setzen und stets sowohl die ϑ-, als auch die l⊥-
und k⊥-Integrationen ausführen. Die verbleibenden beiden Integrationen sind mit numerischen
Methoden zugänglich [Fran 1997].

20 1. Feynmandiagramme

Dieses Verfahren ist besonders dann sehr attraktiv, wenn viele verschiedene Massenskalen im
Integral vorkommen. Sind alle Massen gleich oder verschwinden sehr viele Massen exakt, dann
gibt es überlegenere Methoden, die ohne Zweifach-Integraldarstellung auskommen.

Die Dreibeinfunktionen („Mainz II“)

Auf Zweischleifen-Niveau sind hier vor allem die planare und die gekreuzte Vertexfunktion
(und) interessant. Das verwendete Verfahren [Krei 1992b] beruht wieder darauf,
den zweidimensionalen Parallelraum abzutrennen. Die Orthogonalraumvariablen werden darin
üblicherweise als l⊥ =

√
s und k⊥ =

√
t geschrieben. In D = 4 werden sie von zwei Winkeln

begleitet, die beide sofort aufintegriert werden können, einer davon trivial. Hiernach werden die
inversen Propagatoren in den Variablen l1 und k1 linearisiert, indem man die Ersetzungen l0 →
l0+l1 und k0 → k0+k1 vornimmt – wir werden dieser Linearisierung ab Seite 26 noch mehrmals
begegnen. Dies macht den Integranden einer Integration in l1 und k1 mithilfe des Cauchy’schen
Residuensatzes zugänglich. Als ein Nebeneffekt werden dabei die Integrationsgrenzen in l0 und
k0 in Abhängigkeit äußerer Impulsvariablen in endliche Dreiecke transformiert (siehe nächster
Abschnitt). Sowohl die s- als auch die t-Integration können noch analytisch ausgeführt werden.
Die verbleibende Zweifach-Integraldarstellung wird wieder numerisch integriert, wobei das
Integrationsgebiet nun durch äußere Impulskomponenten parametrisierte Dreiecke in der l0-
k0-Ebene sind.

Auch dieses Verfahren wird in Anwesenheit vieler verschiedene Massenskalen am attraktiv-
sten [Kili 1996, Frin 1996, Frin 2000]. Die numerischen Schwierigkeiten selbst im planaren
skalaren Fall sind jedoch immer noch Gegenstand einer Untersuchung.

1.5. Beschränkte Integrationsgebiete nach
Residuenintegration?

Bei dem Mainzer Verfahren für Dreibeinfunktionen wurden zwei Residuenintegrationen durch-
geführt und wir werden in Kapitel 2 sehen, dass bei den Vierbeinfunktionen sogar vier Inte-
grationen mit dem Cauchy’schen Residuensatz erledigt werden können. Beide Male werden
die Integrationsgrenzen in anderen Integrationsvariablen stark eingeschränkt. Es wurde be-
hauptet, dass die Gebiete in denen danach die numerische Integration durchgeführt wird,
immer endlich sein müssen. Wir werden in diesem Abschnitt sehen, dass dies kein Zufall ist,
andererseits aber auch nicht zwingend so sein muss.

Die Residuenintegration wird immer in solchen Variablen durchgeführt, in denen die inversen
Propagatoren Pi linearisiert worden sind. Bei dieser Linearisierung werden die linearisierten
Variablen stets multipliziert mit einer weiteren Impulsvariable, die wir die „zugeordnete“ Va-
riable nennen und mit einer Tilde markieren wollen: Enthält das noch nicht linearisierte P den
Term l̃2− l2, so führt die Ersetzung l̃ → l̃+ l diesen über in l̃2 +2 l̃ l. Bei der Dreibeinfunktion
entsprach l0 der zugeordneten Variable von l1 und k0 derjenigen von k1. Die zugeordneten
Variablen l̃ und k̃ werden zunächst nicht weiter ausintegriert – ihr Vorzeichen zusammen mit

1.5. Beschränkte Integrationsgebiete nach Residuenintegration? 21

dem Vorzeichen des Imaginärteils von P bestimmt, ob das Residuum beiträgt oder nicht. An-
ders herum formuliert verschwindet das Integral, wenn die zugeordnete Variable das falsche
Vorzeichen hat.
Um genauer einzusehen, unter welchen Umständen die Gebiete in den zugeordneten Variablen
endlich werden, brauchen wir zweierlei: Erstens einen Vorschlag für einen Mechanismus, wie
außerhalb endlicher Gebiete die Terme konspirieren, so dass sie sich zu Null addieren, und
zweitens eine Art Parametrisierung dieses Mechanismus. Die folgenden Überlegungen basieren
auf einer in [FKT 1997, Seite 15] skizzierten Idee.
Der Mechanismus besteht darin, dass bei einer Residuenintegration eines Terms der Form
1/(P1P2P3 · · ·) immer wieder doppelt vorkommende Terme auftreten: Der Satz A.4 über die
Residuensumme sagt gerade, dass die Summe über alle Residuen verschwinden muss. Also
sind nicht alle Residuen voneinander unabhängig. Wie dieser Mechanismus nun bei zwei li-
nearisierten Variablen angreift, klärt das folgende Lemma:

Lemma 1.1 Betrachte ein Integral der Form

J(z1, z2, z3) :=

∫ ∞

−∞
dk

∫ ∞

−∞
dl

1

(k − z1)(l − z2)(k + l + z3)
(1.9)

mit komplexen Koeffizienten zi = xi + iyi. J ist nur dann von Null verschieden, wenn alle
Vorzeichen von yi gleich sind.

Wir bemerken zunächst, dass man nach Substitution von k → −k − l das Integral mit der
Vertauschung z1 ↔ z3 zurückerhält. Ebenso kann man beliebige andere Vertauschungen her-
beiführen: Das Integral J ist symmetrisch unter allen zi ↔ zj .
Zum Beweis des Lemmas integriert man J unter Zuhilfenahme von Satz A.4 und erhält:

J = {θ(y2)−θ(−y3)}
∫ ∞

−∞
dk

2πi

(k − z1)(k + z2 + z3)

= {θ(y2)−θ(−y3)}{θ(y1)−θ(−(y2 + y3))} (2πi)2

z1 + z2 + z3
. (1.10)

Man überprüft leicht anhand einer Wahrheitstabelle, dass der Vorfaktor aus θ-Funktionen
genau dann 1 ist, wenn die Vorzeichen der yi alle gleich sind und in den übrigen Fällen
verschwindet. �

Die inversen Propagatoren Pi sind bei unseren Methoden zur Drei- und Vierbeinfunktion –
nach ihrer Linearisierung und Ausklammern von Faktoren linear in den zugeordneten Impulsen
k̃, l̃ und Kombinationen äußerer Impulskomponenten qi – genau von der Form aus (1.9). Die
Imaginärteile der zi lauten dann

y1 = −ρ
/(

k̃ + q1
)

y2 = −ρ
/(

l̃ + q2
)

y3 = +ρ
/(

k̃ + l̃ + q3
)

22 1. Feynmandiagramme

31

2 3

31

2 3

qq −

qq − ~
k

l
~

qq −

qq − ~
k

l
~

Abbildung 1.4.: Nach Residuenintegration verbleiben nur endliche Dreiecke in den zugeordneten
Impulsen.

wobei qi hier abkürzend für beliebige Linearkombinationen externer Impulskomponenten ste-
hen.

yi > 0 yi < 0

k̃ < −q1 k̃ > −q1
l̃ < −q2 l̃ > −q2

k̃ + l̃ > −q3 k̃ + l̃ < −q3
Tabelle 1.2.: Die zwei mögli-
chen Kombinationen von Be-
dingungen

Da laut Lemma 1.1 für einen Beitrag alle Vorzeichen der Ima-
ginärteile yi gleich sein müssen, können nur zwei Kombinatio-
nen vorkommen: entweder alle positiv oder alle negativ. Man
kann dies direkt in Bedingungen an k̃ und l̃ übersetzen und fin-
det so die beiden in der nebenstehenden Tabelle aufgeführten
Möglichkeiten. Diese entsprechen endlichen Dreiecken, wie sie
in Abbildung 1.4 graphisch dargestellt sind. Das Gebiet kann
zwar zu einem Punkt entarten, wenn die Diagonale k̃+ l̃ = −q3
den Kreuzungspunkt der Horizontalen l̃ = −q2 mit der Verti-

kalen k̃ = −q1 schneidet, es kann jedoch nicht ganz verschwinden. Falls im linken Dreieck
die Diagonale über den Kreuzungspunkt hinaus verschoben wird erhält man das rechte Drei-
eck und umgekehrt. Unbeschränkte Gebiete, die z.B. nach mindestens einer Seite hin keine
Beschränkung haben, können also nicht auftreten.

Dies bleibt auch dann noch richtig, wenn eine beliebige Anzahl weiterer linearisierter Propaga-
toren (k− zi)

−1 und (l− zj)
−1 hinzugefügt werden. Nach geeigneten Partialbruchzerlegungen

kann man den Integranden dann immer als Summe von Termen der Art (1.9) schreiben. Die
einzelnen Imaginärteile haben ja auch immer die Gestalt yi = −ρ/(k̃ + qi) beziehungsweise
yj = −ρ/(l̃ + qj) mit (reellwertigen) Kombinationen äußerer Impulskomponenten im Nenner.
Gekreuzte Topologien hingegen sind notorisch schwieriger und es lohnt sich, sie besonders
sorgfältig zu untersuchen. Wenn zwei Propagatoren beide Integrationsvariablen l und k in
linearisierter Form enthalten, so kann man durch eine lineare Verschiebung stets dafür sorgen,
dass ein inverser Propagator linear in l + k ist, ein anderer linear in l − k und alle weiteren
nur entweder l oder k enthalten. Wir interessieren uns also für die θ-Funktionen, die in der
Integration von

Ĵ(z1, z2, z3) :=

∫ ∞

−∞
dk

∫ ∞

−∞
dl

1

(k − z1)(l − k − z2)(k + l + z3)

1.5. Beschränkte Integrationsgebiete nach Residuenintegration? 23

()/2 ()/22 3 2 3

1 2

1 231

31

~
k

l
~

~
k

l
~

qq − qq −

qq −−

qq −−qq −

qq −

Abbildung 1.5.: Nach Residuenintegration von gekreuzten Funktionen können die abgebildeten
endlichen Gebiete zurückbleiben. Dies muss aber nicht immer so sein; siehe Text.

erzeugt werden. Wie zuvor im planaren Fall kann man dieses Integral leicht mithilfe von
Satz A.4 ausführen:

Ĵ = {θ(y2)−θ(−y3)}
∫ ∞

−∞
dk

2πi

(k − z1)(2k + z2 + z3)

= {θ(y2)−θ(−y3)}{θ(y1)−θ(−(y2 + y3))} (2πi)2

2z1 + z2 + z3
.

Die Struktur der θ-Funktionen ist aber im Vergleich mit (1.10) dieselbe geblieben. Daher
müssen auch alle Vorzeichen der Imaginärteile wieder gleich sein, um beitragen zu können.
Übersetzt man dies auf die zugeordneten Impulse l̃ und k̃, so findet man, dass nur die endlichen
Integrationsgebiete aus Abbildung 1.5 übrigbleiben.
Wenn von vornherein alle kausalen ρ gleich gesetzt werden, kann es allerdings dazu kommen,
dass der kausale Faktor ρ vor der zweiten Anwendung des Residuensatzes in einem der inversen
Propagatoren verschwunden ist. Dann ist ein zi rein reell und unser Mechanismus bricht
zusammen. Wenn yi = 0, dann ist die entsprechende θ-Funktion in (1.10) laut Satz A.6
zu ersetzen durch einen Faktor 1/2, so dass keine einschränkende Bedingung mehr vorliegt.
Die Endlichkeit der Integrationsgebiete in den zugeordneten Impulsvariablen wird dadurch
kompromittiert. Bei der gekreuzten Dreibeinfunktion ist dies der Fall, wobei dort aber
durch eine geeignete Koordinatentransformation Terme ausserhalb endlicher Dreiecke wieder
gegeneinander weggekürzt werden können, so dass die Integrationsgebiete doch wieder endlich
werden. Auch bei den Vierbeinfunktionen treten immer wieder solche Fälle auf, die dann durch
nichttriviale Kürzungen – allerdings schon auf dem Niveau der θ-Funktionen – verschwinden.
Eine solche nichttriviale Kürzung sieht sehr häufig wie folgt aus:(

θ(f1(k̃, l̃))− 1
2

)(
θ(f3(k̃, l̃))− 1

2

)− (
θ(f1(k̃, l̃))− 1

2

)(
θ(f4(k̃, l̃))− 1

2

)
− (

θ(f2(k̃, l̃))− 1
2

)(
θ(f3(k̃, l̃))− 1

2

)
+
(
θ(f2(k̃, l̃))− 1

2

)(
θ(f4(k̃, l̃))− 1

2

)
=

(
θ(f1(k̃, l̃))− θ(f2(k̃, l̃))

)(
θ(f3(k̃, l̃))− θ(f4(k̃, l̃))

)
,

was manifest frei ist von allen halbzahligen Gewichten. Bei der gekreuzten Vierbeinfunkti-
on kann es allerdings zu Gebieten kommen, die einen sich ins Unendliche erstreckenden

24 1. Feynmandiagramme

Streifen in der Ebene der zugeordneten Variablen bilden. Ob diese wie bei der Dreibeinfunk-
tion durch geeignete Transformationen zum Verschwinden gebracht werden können, ist noch
unklar. Der oben skizzierte Mechanismus kann hierfür jedenfalls nicht alleine verantwortlich
sein.

2. Die skalaren
Zweischleifen-Vierbeinfunktionen

Beware of bugs in the above code;
I have only proved it correct, not tried it.

Donald E. Knuth, in einer Notiz an Peter van Emde Boas

Über die Vierbeinfunktionen ist auf Zweischleifen-Ebene bisher recht wenig bekannt. Kürzlich
wurde mit einer Feynmanparametrisierung und anschließender Integration der Feynmanpa-
rameter mithilfe einer Mellin-Barnes-Darstellung für Summen ein analytisches Ergebnis für
sowohl die planare als auch die gekreuzte skalare Box gefunden [Smir 1999, Tau 1999]. Diese
Darstellungen gelten aber nur dann, wenn alle internen und externen Teilchen masselos sind,
das Diagramm also nur von zwei Parametern abhängt. Das Verfahren konnte auf Tensorin-
tegrale erweitert werden [AGORT 2000, SmiVe 1999] und sogar auf spezielle massive Fälle,
allerdings nur mit einer einzigen Massenskala [Smir 2000, Smir 2001].
In der chiralen Störungstheorie ist das als Acnode-Graph bekannte Diagramm von besonde-
rem Interesse, sobald zur Ordnung p6 Zweischleifenintegrale bestehend aus L2-Vertizes zu den
effektiven Vertizes aus L6 und den Einschleifenintegralen bestehend aus L4- und L2-Vertizes
beitragen. Er ist von besonderer Bedeutung in den Prozessen γγ → π0π0 und η → π0γγ, da
diese zur Ordnung p2 verschwinden. Wenn aber wie in SU(2)×SU(2) chiraler Störungstheo-
rie alle internen Teilchen gleiche Massen mπ haben, dann wird die Parametermannigfaltigkeit
stark eingeschränkt und die Rechnungen sind weitgehend analytisch durchführbar [Bier 2000].
Das in diesem Kapitel verfolgte Verfahren für skalare Vierbeinfunktionen basiert auf einer
Überlegung von Dirk Kreimer [Krei 1994] und kommt ganz ohne Nebenbedingungen in der
Wahl der bis zu zwölf Parameter aus. Es ist daher viel allgemeiner als die anderen Verfahren,
erfordert aber erhebliche zusätzliche Arbeit, wenn man den numerischen Vergleich anstrebt.
Dies liegt daran, dass die anderen Verfahren nur Eckpunkte im Parameterraum abdecken kön-
nen, bei dem hier beschriebenen genau an diesen Eckpunkten aber numerische Instabilitäten
auftreten, die per Hand behoben werden müssen.

2.1. Die Vierbeinfunktion („Mainz III“)

Das Integral

J =

∫
dDk

∫
dDl

1

Pm1(l)Pm2(l + k)Pm3(k) · · ·
, (1.8)

26 2. Die skalaren Zweischleifen-Vierbeinfunktionen

hängt jetzt von sechs voneinander unabhängigen äußeren kinematischen Variablen ab. Eine
mögliche Wahl sind die Mandelstam-Variablen s, t und u zusammen mit den Massen mi,
i ∈ {1 . . . 4} der äußeren Teilchen und der Bedingung s + t + u =

∑
im

2
i . Für die Integra-

tionen wird jedoch auch hier wieder ein spezielles Bezugssystem gewählt werden müssen, so
dass sechs äußere Impulskomponenten explizit festzulegen sind. Eine mögliche kinematische
Konfiguration des skalaren Acnode-Graphen lautet

J =

∫
d4k

∫
d4l

1

Pm1(l)Pm2(l + p1)Pm3(k + p2 − p3)Pm4(k − p3)Pm5(k + l)

mit




pµ
1 = (q1, qx, 0, 0)
pµ

2 = (q2,−qx, 0, 0)
pµ

3 = (q, px, py, 0) .

Die Struktur der Vierbeintopologien lässt sich wie in Abbildung 2.2 klassifizieren. Hierin sind
in der ersten Zeile die Topologien mit sieben internen Propagatoren aufgelistet, in den dar-
auffolgenden Zeilen II und III jeweils diejenigen, die durch Streichung eines Propagators aus

Abbildung 2.1.: Die
Topologie II a)

der Zeile darüber entstehen. Die planare Box I b) aus Abbildung 2.2
ist identisch mit I c) in Abbildung 1.3. Die gekreuzte Box I a) in Abbil-
dung 2.2 findet sich in 1.3 als II c) wieder. Schließlich ist III b) in Abbil-
dung 2.2 der aus 1.3 als III c) bekannte Acnode-Graph. Auch hier wieder
verschleiert die zweidimensionale Darstellung Symmetrien, wie neben-
stehende dreidimensionale Version des Graphen II a) aus 2.2 deutlich
macht. In der letzten Spalte finden sich übrigens die planare und gekreuz-
te Dreibeinfunktion wieder und auch eine faktorisierende Topologie. Die
ab diesem Abschnitt entwickelten Methoden werden sich prinzipiell auf

all diejenigen Graphen anwenden lassen, bei denen jede geschlossene Schleife mindestens drei
Propagatoren enthält. Das sind gerade die nicht grau hinterlegten in Abbildung 2.2. Über sie
ist in allgemeinen Fällen bisher am wenigsten bekannt. Sie sind natürlich für Streuprozesse
interessant, aber auch für 3-Teilchen-Zerfälle.

Integration der vier „inneren“ Schleifenvariablen

Die in [Krei 1994] vorgeschlagene Methode für Vierbeinfunktionen beruht auf der Idee, vier der
Schleifenintegrationen mithilfe des Residuensatzes (Satz A.3) auszuführen. Die Anwendung
des Residuensatzes wird sehr vereinfacht, wenn die inversen Propagatoren Pi linear sind in
der zu integrierenden Variablen, da dann die Polstellen trivial aufzufinden sind und keine
Quadratwurzeln eingeführt werden, die die weitere Integration verkomplizieren würden.
Diese Linearisierung kann wegen der Signatur der Minkowskimetrik in zwei von vier Variablen
sofort durchgeführt werden. Wählen wir l1 und k1 als die zu linearisierenden Variablen und
wenden die Transformation

l0 −→ l0 + l1, k0 −→ k0 + k1 (2.1)

an, so wird aus einem Propagator Pl

(l + p)2 −m2 + iρ = (l0 + p0)
2 − (l1 + p1)

2 − (l2 + p2)
2 − (l3 + p3)

2 −m2 + iρ

−→ (l0 + p0)
2 + 2 l1 (l0 + p0 − p1)− p2

1 − (l2 + p2)
2 − (l3 + p3)

2 −m2 + iρ. (2.2)

2.1. Die Vierbeinfunktion („Mainz III“) 27

I

II

III

b) planare Topologiena) gekreuzte Topologien

etc.

etc.

c) reduzierte und faktorisierende Topologien

Abbildung 2.2.: Mögliche skalare Vierbeintopologien. Die grau hinterlegten sind nicht mit in dieser
Arbeit behandelten Methoden zugänglich.

Darin bezeichnen pi beliebige äußere Impulskomponenten. Diese Transformation darf sofort
angewendet werden da die nicht grau hinterlegten skalaren Topologien in Abbildung 2.2 ab-
solut konvergieren. Wir nennen wieder l1 und k1 die linearisierten Variablen und l0 und k0 die
zugeordneten Variablen.
Schließt man den Integrationsweg in der oberen komplexen Halbebene und benutzt den Re-
siduensatz um die l1- und k1-Integrationen auszuführen, so erhält man Bedingungen an die
Integrationsgebiete der zugeordneten Schleifenvariablen l0 und k0. Diese Bedingungen stam-
men von den Vorzeichen der Imaginärteile der Pole in den linearisierten Variablen, die von
den zugeordneten Variablen abhängig sind. Das Residuum trägt nur bei, wenn die Polstelle
im Integrationsweg liegt, wenn der Imaginärteil also positiv ist.1 Diese Bedingungen betreffen
lediglich die zugeordneten Variablen l0- und k0, da keine weiteren Schleifenvariablen (z.B. l2,
etc.) im l1-linearen Term in (2.2) auftauchen. Wir werden im nächsten Unterabschnitt auf die
Bedingungen zurückkommen und sie klassifizieren.
Da die Integrationen über die Variablen l2, l3, k2 und k3 immer noch unbeschränkt sind,
liegt es nahe, auch bei zweien davon den Residuensatz anzuwenden. Wie erwähnt wird dies
erheblich erleichtert, wenn die inversen Propagatoren zuvor linearisiert werden können. Die
Linearisierung in (2.1) war möglich wegen der Signatur der Lorentz-Metrik, insbesondere
wegen des relativen Vorzeichens zwischen der 0- und der 1-Komponente im Skalarprodukt. Da
der Orthogonalraum eindimensional ist, kann er wegen Lorentz-Invarianz o.B.d.A. in eine der
Koordinatenachsen gelegt werden, zum Beispiel l⊥ = l3 und k⊥ = k3. Dadurch verschwinden
die p3 in Gleichung (2.2) und es wird möglich im Falle der Vierbeinfunktionen ein weiteres
relatives Vorzeichen einzuführen und dann genau wie oben zu linearisieren. Dies ermöglicht
der folgende

1 Schließt man statt dessen den Integrationsweg in der unteren komplexen Halbebene, so gibt es einen Beitrag
dann und nur dann, wenn der Imaginärteil negativ ist. Dies schlägt sich gemäß (A.4) aber nur in einem
allgemeinen Vorzeichen nieder, welches dem umgekehrten Umlaufsinn entspricht. Dies macht die freie Wahl
des Integrationsweges manifest und wir werden im Folgenden immer in der oberen Halbebene schließen.

28 2. Die skalaren Zweischleifen-Vierbeinfunktionen

Satz 2.1 (Kreimer-Rotation) Seien Pq = qµq
µ − m2 + iρ inverse Propagatoren mit Im-

pulsfluss qµ (äußere und innere Impulse) und j der Lorentzindex einer Orthogonalraumkom-
ponente. Dann gilt:∫ +∞

−∞
dlj

∫ +∞

−∞
dkj

1

Pl

(
l2j
)
Pl+k

(
(lj + kj)2

)
Pk

(
k2

j

) · · ·
= −

∫ +∞

−∞
dlj

∫ +∞

−∞
dkj

1

Pl

(−l2j)Pl+k

(−(lj + kj)2
)
Pk

(−k2
j

) · · · . (2.3)

Beweis: Im Orthogonalraum mischen die Schleifenvariablen nicht mit äußeren Impulsen; die
inversen Propagatoren sind also von der Form

Pl

(
l2j
)

= l2j + (reelle Zahl) + iρ,

Pl+k

(
(lj + kj)

2
)

= (lj + kj)
2 + (reelle Zahl) + iρ,

Pk

(
k2

j

)
= k2

j + (reelle Zahl) + iρ.

Daher liegen die Pole des Integranden in den komplexen lj , kj und (lj + kj)-Ebenen alle im
ersten und dritten Quadranten. Da die Integranden für große lj , kj und lj + kj schnell genug
abfallen, liegt es nahe, eine Rotation um π/2 im Uhrzeigersinn zu unternehmen. Dies läuft
gerade auf die gewünschte Änderung des Vorzeichens in (2.3) heraus. Gemischte inverse Pro-
pagatoren des Typs Pl+k stehen dieser Rotation dabei im Wege, da die Nullstellen in den
komplexen kj- oder lj-Ebenen alleine betrachtet nicht auf den ersten oder dritten Quadranten
beschränkt sind. Um die Rotation ausführen zu können müssen alle Pole in lj , kj und lj + kj

also zunächst in dieselben Quadranten verschoben werden. Wegen der Symmetrie des Inte-
granden kann man sich auf den ersten Quadranten in der reellen kj-lj-Ebene beschränken und
schreiben: ∫ +∞

−∞
dlj

∫ +∞

−∞
dkj

1

Pl

(
l2j
)
Pl+k

(
(lj + kj)2

)
Pk

(
k2

j

) · · ·
= 2

∫ +∞

0

dlj

∫ +∞

0

dkj

(
1

Pl

(
l2j
)
Pl+k

(
(lj + kj)2

)
Pk

(
k2

j

) · · ·
+

1

Pl

(
l2j
)
Pl+k

(
(lj − kj)2

)
Pk

(
k2

j

) · · ·
)

Nun reparametrisieren wir diesen Quadranten mit der Substitution l2j → u v2 und k2
j →

(1− u) v2:

1

2

∫ 1

0

du√
u (1− u)

∫ +∞

0

v dv

(
1

Pl

(
u v2

)
Pl+k

(
(
√
u+
√

1− u)2 v2
)
Pk

(
(1− u) v2

) · · ·
+

1

Pl

(
u v2

)
Pl+k

(
(
√
u−√1− u)2 v2

)
Pk

(
(1− u) v2

) · · ·
)

(2.4)

Die Faktoren u, (1 − u) und (
√
u ± √1− u)2 sind positiv im Integrationsintervall, so dass

die Polstellen in der komplexen v-Ebene alle im ersten und dritten Quadranten liegen. Daher

2.1. Die Vierbeinfunktion („Mainz III“) 29

kann man nun den Integrationsweg der v-Integration um den vierten Quadranten schließen,
wobei die Jacobi-Determinante ihr Vorzeichen wechselt:

1

2

∫ 1

0

du√
u (1− u)

∫ +∞

0

−v dv
(

1

Pl

(−u v2
)
Pl+k

(−(
√
u+
√

1− u)2 v2
)
Pk

(−(1− u) v2
) · · ·

+
1

Pl

(−u v2
)
Pl+k

(−(
√
u−√1− u)2 v2

)
Pk

(−(1− u) v2
) · · ·

)
.

Invertieren der Transformationen, die zu (2.4) geführt haben, liefert die Behauptung des Sat-
zes. �

Bei gekreuzten Funktionen mit zwei gemischten Propagatoren können auch Propagatoren
mit Pl−k auftreten. Es ist jedoch klar, dass alle Schritte in obigem Beweis auch dann noch
Gültigkeit haben. Er lässt sich sogar mit P ′((alj + bkj)

2
)

mit beliebigem festem a und b
genauso herleiten.
Ist o.B.d.A. j = 3, so wirkt dies wie eine Abänderung der üblichen Minkowski-Metrik
(+,−,−,−) in eine (+,−,−,+)-Metrik. Daher der Name „Rotation“ in Analogie zur „Wick-
Rotation“ (siehe z.B. [ItZu 1993]), bei der in ähnlicher Weise die Zeitachse rotiert wird um
von einer Minkowski’schen in eine euklidische Metrik zu transformieren. Die hier vorgestellte
Transformation ist jedoch grundlegend verschieden von der Wick-Rotation, bei der eine analy-
tische Fortsetzung am Ende der Rechnung gefunden werden muss, um die Greensfunktion für
beliebige äußere Impulse zu erhalten. Der Vorzeichenwechsel in (2.3) jedoch ist eine einfache
analytische Identität, die in jeder Orthogonalraumvariablen einzeln Gültigkeit besitzt.2

Nach Ausführen der Residuenintegration war die ursprüngliche Struktur von (1.8) in l2, k2, l3
und k3 unverändert geblieben, so dass man nach der Rotation in eine (+,−,−,+)-Metrik die
Transformationen

l3 −→ l3 + l2, k3 −→ k3 + k2 (2.5)

ausführen kann um analog zu (2.2) eine Linearisierung in den Variablen l2 und k2 zu erhalten.
Nach diesen Operationen kann die Residuenintegration in allen inneren Variablen ausgeführt
werden. Die dazu notwendige Vertauschung der Integrationsreihenfolge ist wegen der absoluten
Konvergenz des Integrals wieder erlaubt.
Wie oben erwähnt bestimmt das Vorzeichen des linearen Koeffizienten (l1 in (2.2)), ob eine
Polstelle innerhalb oder außerhalb des geschlossenen Integrationsweges liegt. Daher erhält man
bei jeder Integration einer inneren Variablen eine Summe von Residuen wo jeder Summand
mit einer Heaviside’schen θ-Funktion in den äußeren Variablen k0, l0, k3 und l3 gewichtet wird.
Bei der Residuenintegration in den linearisierten Impulsvariablen sorgen nun zwei Beziehungen
dafür, dass die Anzahl der Terme nach vier hintereinander geschalteten Integrationen über-
schaubar bleibt. Die erste ist eine Konsequenz des Satzes über die Residuensumme Satz A.4,
der besagt, dass die Summe der Residuen einer holomorphen Funktion verschwindet. Die An-
wendung dieses Satzes auf linearisierte Variablen führt zu Korollar A.5 und ist in Anhang A
beschrieben.

2 Der Unterschied zwischen der Wick-Rotation und Kreimer-Rotation manifestiert sich auch dadurch, dass
die Pole der Propagatoren bei letzterer weiterhin nahe an der reellen Achse bleiben, so dass es nicht erlaubt
ist, sofort ρ = 0 zu setzen.

30 2. Die skalaren Zweischleifen-Vierbeinfunktionen

Die zweite Beziehung zwischen den Termen, die bei der Residuenintegration auftritt, ist eine
Folge der aufeinanderfolgenden Integration der in l1 und l2 linearen inversen Propagatoren
P1, P2,. . . , Pn. Solche Paare von Schleifenimpulsen, die in Propagatoren doppelt vorkommen,
werden in Folge als Zwillingsvariable bezeichnet werden. Die versprochene Beziehung kann
wie folgt ausgedrückt werden:

Lemma 2.2 Betrachte den Term, den man durch zweimalige Anwendung des Residuensatzes
erhält: Zunächst durch die Berechnung des von Pi herrührenden Residuums an der Nullstelle
l
(i)
1 und dann durch Berechnung des von Pj herrührenden Residuums an der Nullstelle l

(j)
2

(wobei l(i)1 schon eingesetzt ist). Dieser Term unterscheidet sich nur durch ein Vorzeichen von
demjenigen Term, den man durch umgekehrte Residuenberechnung erhält: Zunächst durch die
Berechnung des von Pj herrührenden Residuums an l

(j)
1 und dann durch Berechnung des von

Pi herrührenden Residuums an l
(i)
2 .

Zum Beweis schreiben wir die inversen Propagatoren als Pi(l1, l2) = αi + βi1l1 + βi2l2 und
bemerken, dass man die Polstellen l(i)1 , l(j)1 , l(i)2 und l(j)2 erhält durch Auflösen des inhomogenen
linearen Gleichungssystems(

Pi(l1, l2)
Pj(l1, l2)

)
=

(
αi

αj

)
+

(
βi1 βi2

βj1 βj2

)(
l1
l2

)
!
=

(
0
0

)
. (2.6)

unter der Voraussetzung, dass det(β) �= 0. Die beiden Reihenfolgen in der Wahl der Residuen
entsprechen direkt den beiden Reihenfolgen, wie man dieses System lösen kann: Entweder man
löst die erste Zeile um das Ergebnis in die zweite Zeile einzusetzen oder umgekehrt. Die Lö-
sungen, eingesetzt in die verbleibenden P (q), sind natürlich dieselben. Also gilt l(i)1 = l

(j)
1 und

l
(i)
2 = l

(j)
2 . Dies beweist die Proportionalität der beiden Residuen. Die Proportionalitätskon-

stante −1 erhält man, indem man das Residuum nach der (1, i)→ (2, j)-Reihenfolge explizit
ausrechnet. Es lautet:

J[i,j] =
1

(βi1βj2 − βj1βi2)P3 · · ·Pn|l(i)1 ,l
(j)
2

.

Dies ist aber antisymmetrisch unter der Vertauschung von i und j. �

Man beobachte, dass der Term (βi1βj2 − βj1βi2) im Nenner obigen Residuums eine 2 × 2-
Determinante ist. Dieses Phänomen wird auf den nächsten Seiten verständlich gemacht wer-
den.
Die in Vierbeinfunktionen so ausgewerteten Residuen aus Produkten von inversen Propaga-
toren Pk(l1, l2)|l(i)1 ,l

(j)
2

können algebraisch recht umfangreich werden. Selbst bei Benutzung leis-
tungsfähiger symbolischer Manipulationssysteme können Rechenzeiten in der Größenordnung
von Minuten entstehen, nur um polynomiale Vereinfachungen wie das Kürzen von größten ge-
meinsamen Teilern durchzuführen. Es ist daher erstrebenswert, die Ausdrücke von vorneherein
so einfach wie möglich zu konstruieren. Tatsächlich gibt es bei zweifacher Residuenintegration
eine interessante Kürzung im auf Zähler und Nenner normalisierten Residuum. Diese Kürzung
ist systematisch und lässt sich ausnutzen um einen Bruch zu generieren, in dem keine weiteren
Kürzungen vorkommen werden.
Um die versprochene Kürzung zu sehen werden wir etwas auf die in der Beschreibung der
Matrix-Klasse (Kapitel 4) erläuterten Eliminationsverfahren vorgreifen müssen. Wir gehen

2.1. Die Vierbeinfunktion („Mainz III“) 31

wie folgt vor: Fasst man das Aufsuchen der Nullstellen der Pi und Einsetzen in die verblei-
benden Pk als lineares Eliminationsverfahren auf, so findet man, dass es äquivalent zur Gauß-
Elimination ist. Als Entrée wenden wir die Gauß-Elimination auf ein passend konstruiertes
Gleichungssystem an und finden die Kürzung als Rechenergebnis. Anschließend werden wir die
Gauß-Elimination gegen die divisionsfreie Elimination austauschen. Die Sylvester-Identität
(Satz 4.2 auf Seite 107), die von der divisionsfreien- auf die teilerfreie Bareiss-Elimination
führt, wird hier ebenso zur Anwendung kommen. Dies ermöglicht uns sogar, eine Verallgemei-
nerung auf mehr als zwei Variablen einzusehen.

Wir schreiben die in l1 und l2 linearen inversen Propagatoren als lineares Gleichungssystem:3
 P1(l1, l2)

P2(l1, l2)
P3(l1, l2)


 =


 β11 β12 α1

β21 β22 α2

β31 β32 α3




 l1

l2
1


 . (2.7)

Das Residuum an der Nullstelle l(1)1 = −β12l2+α1

β11
von P1(l1) findet man durch Einsetzen

1

P1(l1, l2)P2(l1, l2)P3(l1, l2)
−→ 2πi

β11P
(1)
2 (l2)P

(1)
3 (l2)

und dies entspricht dem ersten Schritt der Gauß-Eliminationsvorschrift (4.9), nach dem das
Gleichungssystem


 P

(1)
2 (l2)

P
(1)
3 (l2)


 ≡


 β ′

22 α′
2

β ′
32 α′

3




 l2

1


 =




β22 − β21β12

β11
α2 − β21α1

β11

β32 − β31β12

β11
α3 − β31α1

β11




 l2

1


 .

übrigbleibt. Im zweiten Eliminationsschritt wird die Nullstelle l
(2)
2 = −α′

2/β
′
22 =

−(α2 − β21α1

β11
)/(β22 − β21β12

β11
) von P

(1)
2 in l2 eingesetzt

2πi

β11P
(1)
2 P

(1)
3

−→ (2πi)2

β11β
′
22P

(2)
3

=
(2πi)2

β11

(
β22 − β21β12

β11

)
P

(2)
3

und das verbleibende (eindimensionale) Gleichungssystem ist

P
(2)
3 = α′

3 −
β ′

32α
′
2

β ′
22

=
(
α3 − β31α1

β11

)
−

(
β32 − β31β12

β11

)(
α2 − β21α1

β11

)
(
β22 − β21β12

β11

) .

3 Weitere Pk können natürlich analog notiert werden. Dies wird sich aber als nicht nötig herausstellen.
Nachdem die Nullstellen l

(1)
1 von P1(l1, l2) und l

(2)
2 von P2(l1, l2)|l(1)1

aufgefunden worden sind, können wir
sie einfach in die verbleibenden Pk einsetzen und anmultiplizieren.

32 2. Die skalaren Zweischleifen-Vierbeinfunktionen

Bringen wir alles auf einen Hauptnenner, multiplizieren aus und kürzen gemeinsame Faktoren
aus Zähler und Nenner, so finden wir wieder eine Determinante im Nenner:

(2πi)2

β11

(
β22 − β21β12

β11

)
P

(2)
3

=
(2πi)2

β11β22α3 + β12α2β31 + α1β21β32 − β31β22α1 − β21β12α3 − β11β32α2

.

Hieraus ergibt sich der folgende nützliche Satz:

Satz 2.3 Betrachte den Term, den man nach zweimaliger Anwendung des Residuensatzes auf
1

P1(l1,l2)···Pn(l1,l2) , n ≥ 3 am von P1 in l1 erzeugten Pol l(1)1 und danach am von P2 in l2 erzeugten
Pol l(2)2 erhält. Mit der Notation aus Gleichung (2.7) lautet dieser Term

Res
l2=l

(2)
2

Res
l1=l

(1)
1

1

P1(l1, l2) · · ·Pn(l1, l2)
=

1
/

∣∣∣∣∣∣
β11 β12 α1

β21 β22 α2

β31 β32 α3

∣∣∣∣∣∣P4(l
(1)
1 , l

(2)
2) · · ·Pn(l

(1)
1 , l

(2)
2)


 .

Bei dem insgesamt wegkürzbaren gemeinsamen Faktor handelt es sich im Übrigen um
β11(β11β22 − β21β12), also einen durchaus nichttrivialen Term von dritter Ordnung in Impuls-
variablen. Der Satz erlaubt daher beträchtliche Vereinfachungen. Man bemerke zudem, dass
aus dem Satz auch das Vorzeichen in Lemma 2.2 folgt, da die Determinante antisymmetrisch
ist unter Vertauschung zweier Zeilen oder Spalten. Insbesondere entspricht die Vertauschung
der ersten und der zweiten Zeilen genau der Vertauschung der Integrationsreihenfolge in Lem-
ma 2.2.
Die Quintessenz der Eliminationsmethode besteht darin, dass nach zweimaliger Gauß-
Elimination in der Koeffizientenmatrix der Propagatoren das Residuum rechts unten stehen
bleibt. Um das Auftreten der Determinante und die Vereinfachungen besser zu verstehen grei-
fen wir nun etwas vor und wenden anstatt des Gauß- das teilerfreie Eliminationsverfahren von
Bareiss (4.11) auf das Gleichungssystem (2.7) an. Analog zu Gleichung (2.1) erhält man nun
die Einsetzung

1

P1(l1, l2)P2(l1, l2)P3(l1, l2)
−→ 2πi

β11P̃
(1)
2 (l2)/β11P̃

(1)
3 (l2)/β11

worin P̃
(1)
1 und P̃ (1)

2 nun durch den ersten Eliminationsschritt bestimmt sind:(
P̃

(1)
2 (l2)

P̃
(1)
3 (l2)

)
≡
(
β̃ ′

22 α̃′
2

β̃ ′
32 α̃′

3

)(
l2
1

)
=

(
β22β11 − β21β12 α2β11 − β21α1

β32β11 − β31β12 α3β11 − β31α1

)(
l2
1

)
.

Das Analogon zu (2.1) lautet nun

2πi

β11P̃
(1)
2 (l2)/β11P̃

(1)
3 (l2)/β11

−→ (2πi)2

β11β̃ ′
22/β11P̃

(2)
3 /(β11β̃ ′

22)
=

(2πi)2

β11(β22β11 − β21β12)/β11P̃
(2)
3 /

(
β11(β22β11 − β21β12)

)

2.1. Die Vierbeinfunktion („Mainz III“) 33

und P̃
(2)
3 folgt aus dem zweiten Eliminationsschritt zu

P̃
(2)
3 = α̃′

3β̃
′
22 − β̃ ′

32α̃
′
2

= (α3β11 − β31α1)(β22β11 − β21β12)− (β32β11 − β31β12)(α2β11 − β21α1).

Die Sylvester-Identität (Satz 4.2) verlangt nun, dass dieses α̃′
3β̃

′
22− β̃ ′

32α̃
′
2 = P̃

(2)
3 von β11 ohne

Rest geteilt wird und das Ergebnis die Determinante

P̃
(2)
3

/
β11 =

∣∣∣∣∣∣
β11 β12 α1

β21 β22 α2

β31 β32 α3

∣∣∣∣∣∣
ist. Dies ist prinzipiell erweiterbar auf größere Systeme derselben Art, wenn der Residuensatz
in mehr als zwei Variablen angewendet werden soll.

Der Satz über die Residuensumme zusammen mit Lemma 2.2 machen das Verfahren erst
übersichtlich, indem sie die Anzahl der auftretenden Terme limitieren. Im Falle der planaren
Boxfunktion beschränkt der Satz über die Residuensumme die Anzahl der Summanden
von 144 auf 36 und Lemma 2.2 identifiziert jeweils vier der 36 miteinander, so dass nur
9 übrigbleiben. Satz 2.3 erlaubt uns, den ggT von Zähler und Nenner der verbleibenden
Summanden zu isolieren, ohne ihn mit einem ggT-Algorithmus berechnen zu müssen, was zwar
nicht unmöglich aber sehr aufwändig wäre (einige Minuten pro Rechnung bei voll expandierten
inversen Propagatoren).

Außerdem sollte an dieser Stelle auf die für eine Implementierung wertvolle Tatsache hinge-
wiesen werden, dass eine solchermaßen vereinfachte Darstellung unanfällig ist gegen unechte
Divisionen durch Null. Ein Ergebnis, dargestellt als Bruch aus Zähler und Nenner, kann nur
dann eine Division durch Null hervorrufen, wenn der Nenner wirklich verschwindet. Verschach-
telte Brüche hingegen können in Zähler und Nenner einzelne Divisionen durch Null enthalten,
die in normalisierter Form überhaupt nicht auftreten würden, die Normalisierung jedoch verei-
teln. Anders ausgedrückt: hebbare Singularitäten werden frühzeitig beseitigt. Das ist dasselbe
Muster wie das des weiter unten (im Kasten auf Seite 106) beschriebenen Implementierungs-
problemes bei der Gauß-Elimination.

Fünfbeinfunktionen?

Nach der Betrachtung von Zwei-, Drei- und Vierbeinfunktionen stellt sich die Frage, ob das
Verfahren prinzipiell auf skalare Funktionen mit noch mehr äußeren Impulsen ausgedehnt
werden kann. Wenn die Anzahl der äußeren Beine n ≥ 5 ist, gibt es keinen Orthogonalraum
und auch die Dreierkomponenten der inneren Schleifenimpulse mischen mit äußeren Parame-
tern. Die Tatsache n ≥ 5 jedoch garantiert, dass die Konvergenz der Integrale nach geeigneter
Partialbruchzerlegung noch ausreicht, so dass lineare Verschiebungen erlaubt sind. Auf diese
Weise können die Dreierkomponenten von den äußeren Parametern befreit und das Verfahren
auf eine Linearkombination von Vierbeinfunktionen zurückgeführt werden.

34 2. Die skalaren Zweischleifen-Vierbeinfunktionen

Das Verfahren in drei Dimensionen?
Man könnte fragen, warum wir bei der Linearisierung stets den quadratischen Anteil des Schleifen-
impules l1 in l0 und denjenigen von l2 in l3 untergebracht haben. Die linearisierende Substitution

l0 → l0 + l1, l3 → l3 + l2 : l20 − l21 − l22 + l23 −m2 + iρ −→ l20 − 2l0l1 − 2l2l3 + l23 −m2 + iρ

könnte ersetzt werden durch

l0 → l0 + l1 + l2 : l20 − l21 − l22 + l23 −m2 + iρ −→ l20 − 2l0l1 − 2l2l2 − 2l1l2 + l23 −m2 + iρ

und entsprechend für den k-Schleifenimpuls. Dabei blieben die 3-Komponenten der Schleifen-
impulse unangetastet mit dem Vorteil, dass man die Kreimer-Rotation nicht benötigt und das
ganze Verfahren so auch in drei Raumzeitdimensionen, also ohne verfügbarem Orthogonalraum,
anwendbar wäre. Das Problem bereitet die dabei auftretende Mischung der Impulskomponenten
l1 und l2. Nehmen wir als Integrationsreihenfolge l1, l2 an. Nach der l1-Integration fällt zwar wie
gewohnt ein inverser Propagator weg, dafür taucht nun aber l2 im Residuum auf. Außerdem hängt
das Integrationsgebiet nun von einer Kombination von l0 und l2 sowie äußeren Impulsen ab. Die
l2-Abhängigkeit des Gebietes verbietet aber gerade die Anwendung des Residuensatzes bei der
nächsten Integration.

2.2. Die einschränkenden Bedingungen

Wir benutzen den Satz über die Residuensumme (Korollar A.5) sowie Lemma 2.2 und Satz 2.3
um eine Masterformel für die vier inneren Integrationen zu gewinnen, die sich für eine program-
matische Implementierung eignet. Dann untersuchen wir die dabei anfallenden symbolischen
Bedingungen an die verbleibenden vier Integrationen und schlagen Methoden vor, diese in
überschaubare Form zu bekommen.

Die einschränkenden Bedingungen können gemäß Korollar A.5 in Form von Heaviside’schen θ-
Funktionen geschrieben werden. Als Fingerübung erläutern wir dies anhand von zwei Propaga-
toren Pi(l) und Pk(l), später werden mehr hinzu kommen. Führt man die Residuenintegration
des Integrals ∫

dl
1

Pi(l)Pk(l)

aus, wobei Pi(l) und Pk(l) gegeben sind durch das lineare Gleichungssystem

(
Pi(l)
Pk(l)

)
=

(
βi αi

βk αk

)(
l
1

)
,

so sind die Nullstellen von Pi(l) und Pk(l), also l(i) = −αi/βi und l(k) = −αk/βk, in der
komplexen Ebene aufzusuchen. Wir können nun ausnutzen, dass die Koeffizienten der internen
Impulse, also die β, keinen Beitrag vom kausalen iρ haben. Wir werden gleich sehen, dass dies
auch nach mehrfacher Residuenintegration noch gültig bleiben wird. Das von Pi(l) herrührende
Residuum liefert also nur dann einen Betrag, wenn Im(−αi/βi) = − Im(αi)/βi positiv ist. Das

2.2. Die einschränkenden Bedingungen 35

1

2

l

(a) 1
P1(l)P2(l)

2

3

l

1

(b) 1
P1(l)P2(l)P3(l)

l
1

2

3

4

(c) 1
P1(l)P2(l)P3(l)P4(l)

Abbildung 2.3.: Verbleibende Terme nach einer Residuenintegration im linearisierten Schleifenim-
puls l für drei verschiedene Integranden.

volle Ergebnis lautet dann∫
dl

1

Pi(l)Pk(l)
= (2πi)

(
Res
Pi=0

1

Pi(l)Pk(l)
+ Res

Pk=0

1

Pi(l)Pk(l)

)
= (2πi)

θ(− Im(αi)/βi)− θ(− Im(αk)/βk)

βiαk − βkαi

. (2.8)

Es ist instruktiv, sich dieses Ergebnis symbolisch als Baum zu verdeutlichen, wie in Abbil-
dung 2.3(a). Ausgehend von einem Produkt inverser Propagatoren (Wurzel) entstehen zwei
Summanden (Äste). Der Strich am Ende des 2-Astes deutet an, dass diese Integration nach
dem Satz A.4 über die Residuensumme nicht ausgeführt wird sondern sich nur in der zweiten
θ-Funktion im Zähler äußert.

Dieses Vorgehen zeichnet ein Pn vor allen anderen aus und es ist
nicht ganz trivial, welchem der Vorzug zu geben ist. Tatsächlich
kann die Integration so auf Wege geleitet werden, die einer weiteren
symbolischen Behandlung entweder mehr oder weniger zugänglich
sind. Natürlich ist das Endergebnis nach dem Satz über die Residu-
ensumme invariant unter der Auswahl des „abgeschnittenen“ Astes.
Für den nebenstehend abgebildeten Fall mag man diese Invarianz

Abbildung 2.4.: Wahlfrei-
heit bei

∫
dl 1/(P1(l)P2(l))

noch sofort einsehen, da das Ergebnis manifest invariant unter der Vertauschung der Indizes
ist. Im ersten Fall lautet es schließlich

∫
dl

1

P1(l)P2(l)
≡
∫
dl

1

(β1l + α1)(β2l + α2)

=
θ(−Im(α1)/β1)− θ(−Im(α2)/β2)

β1P2|l(1)
=

θ(−Im(α1)/β1)− θ(−Im(α2)/β2)

β2α1 − β1α2
.

36 2. Die skalaren Zweischleifen-Vierbeinfunktionen

Aber für mehr als zwei Propagatoren ist die Situation ganz anders. Das Ergebnis, welches
man mit unserem Verfahren bei drei Propagatoren durch Abschneiden des P3-Astes erhält∫

dl
1

P1(l)P2(l)P3(l)
≡
∫
dl

1

(β1l + α1)(β2l + α2)(β3l + α3)

=
θ(−Im(α1)/β1)− θ(−Im(α3)/β3)

β1P2|l(1) P3|l(1)
+
θ(−Im(α2)/β2)− θ(−Im(α3)/β3)

β2P1|l(2) P3|l(2)
=

β1

(
θ(−Im(α1)/β1)− θ(−Im(α3)/β3)

)
(β1α2 − β2α1)(β1α3 − β3α1)

+
β2

(
θ(−Im(α2)/β2)− θ(−Im(α3)/β3)

)
(β2α1 − β1α2)(β2α3 − β3α2)

ist nur durch eine Konspiration der θ-Funktionen im Zähler identisch mit dem Ergebnis,
welches man durch Abschneiden des P2-Astes erhält:∫

dl
1

P1(l)P2(l)P3(l)

=
β1

(
θ(−Im(α1)/β1)− θ(−Im(α2)/β2)

)
(β1α2 − β2α1)(β1α3 − β3α1)

+
β3

(
θ(−Im(α3)/β3)− θ(−Im(α2)/β2)

)
(β3α1 − β1α3)(β3α2 − β2α3)

.

In der Praxis kann man die Wahlfreiheit des „abgeschnittenen“ Integrationsastes ausnutzen,
um das symbolische Ergebnis zu vereinfachen.
Völlig analog zu Gleichung (2.8) kann man nun darangehen, die Residuenintegration in mehr
als zwei inversen linearen Propagatoren zu betrachten. Für drei durch

 Pi(l)
Pj(l)
Pk(l)


 =


 βi αi

βj αj

βk αk


(

l
1

)

bestimmte P (l) kommt gegenüber (2.8) zunächst einmal ein additiver Term vom zusätzlichen
P , ausgewertet an der Nullstelle l(i), hinzu. Außerdem tritt ein additiver Faktor auf, den man
durch die Vertauschung der Indizes i und j erhält:∫

dl
1

Pi(l)Pj(l)Pk(l)

= (2πi)
(
Res
Pi=0

1

Pi(l)Pj(l)Pk(l)
+ Res

Pj=0

1

Pi(l)Pj(l)Pk(l)
+ Res

Pk=0

1

Pi(l)Pj(l)Pk(l)

)
= (2πi)

(θ(−Im(αi)/βi)− θ(−Im(αk)/βk)

(βiαj − βjαi)Pk(l(i))
+
θ(−Im(αj)/βj)− θ(−Im(αk)/βk)

(βjαi − βiαj)Pk(l(j))

)
. (2.9)

Im Prinzip haben wir hier eine Partialbruchzerlegung vorgenommen – man vergleiche die
Gleichungen (2.9) und (A.5). Die zwei Terme entsprechen den zwei Punkten an den Ästen in
Abbildung 2.3(b), die zweite θ-Funktion in den Zählern des Ergebnisses kommen wieder vom
abgeschnittenen Zweig.
Die verbleibenden Integrationsvariablen stecken alle in αi, αj und αk. Diese werden im Nenner
gemischt mit βi und βk, also mit reellen Impulsvariablen – Terme der Form αiαk treten dabei
nicht auf. Folglich sind die βs im nächsten Integrationsschritt wieder reell. Berücksichtigen wir
noch, dass dies auch im ersten Integrationsschritt so war, da die Pn ja gemäß Gleichung (2.2)
gebildet worden sind, so sehen wir das folgende beruhigende Lemma ein:

2.2. Die einschränkenden Bedingungen 37

2

3

1

2

1

3

3

l2l1

(a) 1
P1(l1,l2)P2(l1,l2)P3(l1,l2)

l1

1

2

3

4

2

3

4

1

3

4

1

2

4

l2

(b) 1
P1(l1,l2)P2(l1,l2)P3(l1,l2)P4(l1,l2)

Abbildung 2.5.: Verbleibende Terme nach zwei Residuenintegrationen in linearisierten Zwillingsva-
riablen l1 und l2. Die abgeschnittenen Äste müssen nicht mehr berechnet werden.

Lemma 2.4 Bei unserem Verfahren bleiben die Koeffizienten der Schleifenimpulse stets reell.
Anders ausgedrückt: in Gleichung (2.7) gilt βnm ∈ �, αn ∈ �.

Dieses Lemma rechtfertigt rückwirkend die Schreibweise der Argumente der θ-Funktionen in
Gleichungen (2.8) und (2.9). Außerdem stellt es eine Invariante des Verfahrens dar und eignet
sich damit vorzüglich zur Fehlerdetektion in der Implementierung.
Wir werden nun eine zweite Integration explizit ausführen, da die einschränkenden Bedingun-
gen bei der Integration von Zwillingsvariablen noch explizit konstruiert werden müssen. Dazu
gehen wir wieder von der Darstellung der inversen Propagatoren als linearem Gleichungssys-
tem in den Zwillingsvariablen l1 und l2 wie in (2.7) aus:

 Pi(l1, l2)
Pj(l1, l2)
Pk(l1, l2)


 =


 βi1 βi2 αi

βj1 βj2 αj

βk1 βk2 αk




 l1

l2
1


 .

Berechnet werden soll das Integral∫
dl1dl2

1

Pi(l1, l2)Pj(l1, l2)Pk(l1, l2)
,

wobei wir den Nenner des Ergebnisses schon aus Satz 2.3 kennen. Wir müssen nun an der von
Pi, Pj und Pk produzierten Polstelle das Residuum berechnen. Nachdem die l1-Integration wie
in (2.8) ausgeführt worden ist, wurden die Nullstellen der Pn in l1

l
(i)
1 = −βi2l2 + αi

βi1
, l

(j)
1 = −βj2l2 + αj

βj1

38 2. Die skalaren Zweischleifen-Vierbeinfunktionen

implizit in den verbleibenden Impulsen eingesetzt:

Pj(l2)|
l
(i)
1

=
1

βi1

(
βi1βj2 − βi2βj1

)
l2 +

1

βi1

(
βi1αj − βj1αi

)
Pk(l2)|

l
(i)
1

=
1

βi1

(
βi1βk2 − βi2βk1

)
l2 +

1

βi1

(
βi1αk − βk1αi

)
Pi(l2)|

l
(j)
1

=
1

βj1

(
βj1βi2 − βj2βi1

)
l2 +

1

βj1

(
βj1αi − βi1αj

)
Pk(l2)|

l
(j)
1

=
1

βj1

(
βj1βk2 − βj2βk1

)
l2 +

1

βj1

(
βj1αk − βk1αj

)
(2.10)

Wir suchen wieder die Nullstellen in der komplexen l2-Ebene auf und erhalten als Ergebnis∫
dl1dl2

1

Pi(l1, l2)Pj(l1, l2)Pk(l1, l2)
=({

θ
(Im(αi)

βi1

)
− θ

(Im(αk)

βk1

)}{
θ
(βi1 Im(αj)−βj1 Im(αi)

βi1βj2−βi2βj1

)
− θ

(βi1 Im(αk)−βk1 Im(αi)

βi1βk2−βi2βk1

)}

−
{
θ
(Im(αj)

βj1

)
− θ

(Im(αk)

βk1

)}{
θ
(βj1 Im(αi)−βi1 Im(αj)

βj1βi2−βj2βi1

)
− θ

(βj1 Im(αk)−βk1 Im(αj)

βj1βk2−βj2βk1

)})

× (2πi)2

/ ∣∣∣∣∣∣
βi1 βi2 αi

βj1 βj2 αj

βk1 βk2 αk

∣∣∣∣∣∣. (2.11)

Mit i = 1, j = 2 und k = 3 entsprechen die beiden Summanden genau den Ästen 1-2 und 2-1 in
Abbildung 2.5(a). Falls im ursprünglichen Integral weitere Propagatoren Pl(l1, l2). . .Pn(l1, l2)
vorkamen, so sind diese in (2.11) eingesetzt zu verstehen. Sie müssen lediglich an den Null-
stellen

l
(i,j)
1 ≡ l

(j,i)
1 =

αjβi2 − αiβj2

βj2βi1 − βj1βi2
(2.12)

l
(i,j)
2 ≡ l

(j,i)
2 =

αiβj1 − αjβi1

βj2βi1 − βj1βi2
(2.13)

ausgewertet werden, analog zu Satz 2.3 von Seite 32. Für vier Propagatoren erhält man bei-
spielsweise das System von Abbildung 2.5(b).

Es sollte noch angemerkt werden, dass eine Implementierung dieses Verfahrens in einem sym-
bolischen System eine solche Einsetzung in zum Beispiel Pn(l1, l2) = βn1l1 + βn2l2 + αn nicht
naiv vornehmen sollte. Sonst wird nämlich der ⇒ Integritätsbereich der Polynome über den
α und β verlassen und die entstehenden Rechnungen im Quotientenkörper sind ungleich auf-
wändiger. Stattdessen können Zähler und Nenner der entstehenden Terme getrennt verwaltet
werden. Dabei hilft, dass die Nenner in (2.12) und (2.13) identisch sind. Wenn man diesen
Nenner βj2βi1 − βj1βi2 zum Zähler des Ergebnisses multipliziert, so kann man die Ersetzung

2.2. Die einschränkenden Bedingungen 39

im Nenner des Ergebnisses wieder als Determinante schreiben:

(βj2βi1−βj1βi2) · Pn|l(i,j)1 ,l
(i,j)
2

= βn1(αjβi2−αiβj2) + βn2(αiβj1−αjβi1) + αn(βj2βi1−βj1βi2)

=

∣∣∣∣∣∣
βi1 βi2 αi

βj1 βj2 αj

βn1 βn2 αn

∣∣∣∣∣∣ .
Wir sind nun in der Lage, die versprochene Masterformel geschlossen anzugeben.

Satz 2.5 (Masterformel für Residuenintegration in Zwillingsvariablen) Seien n in-
verse Propagatoren gegeben durch


P1(l1, l2)
P2(l1, l2)

...
Pn(l1, l2)


 =




β11 β12 α1

β21 β22 α2
...

...
...

βn1 βn2 αn




 l1

l2
1




und seien die darin auftretenden βij alle reell. Wir schreiben abkürzend für die benötigten
3× 3-Determinanten

Bijk :=

∣∣∣∣∣∣
βi1 βi2 αi

βj1 βj2 αj

βk1 βk2 αk

∣∣∣∣∣∣ .
Wenn das Integral

∫
dl1dl2

∏n
i=1

1
Pi(l1,l2)

existiert und die Bijk für alle paarweise verschiedenen
i, j, k nicht Null sind, dann gilt:∫

dl1dl2

n∏
i=1

1

Pi(l1, l2)
=

n−2∑
i=1

n−1∑
j=i+1

({
θ
(Im(αi)

βi1

)
− θ

(Im(αn)

βn1

)}

×
{
θ
(βi1 Im(αj)−βj1 Im(αi)

βi1βj2−βi2βj1

)
− θ

(βi1 Im(αn)−βn1 Im(αi)

βi1βn2−βi2βn1

)}

−
{
θ
(Im(αj)

βj1

)
− θ

(Im(αn)

βn1

)}
(2.14)

×
{
θ
(βj1 Im(αi)−βi1 Im(αj)

βj1βi2−βj2βi1

)
− θ

(βj1 Im(αn)−βn1 Im(αj)

βj1βn2−βj2βn1

)})

× (2πi)2 (βj2βi1 − βj1βi2)
n−3

Bijn

∏
l �=i,j,n

Bijl

.

Dieses Zwischenergebnis ist für eine Implementierung eminent geeignet. Es muss nur eine
Darstellung für die θ-Funktionen geschrieben werden, die rationalen Koeffizienten bleiben
übersichtlich und wie auf Seite 33 erläutert in der Anzahl beschränkt. Zweckmäßigerweise

40 2. Die skalaren Zweischleifen-Vierbeinfunktionen

können die Faktoren (2πi)2 sowie ganzzahlige Faktoren in Pi(l
(j)
1 , l

(k)
2) herausdividiert und

getrennt abgespeichert werden,4 wenn man eine passende Datenstruktur wählt, die Zähler
und Nenner in voneinander getrennten Feldern verwaltet.

Mögliche Entartungen

Eine ständig auftretende Entartung in diesem Verfahren beruht darauf, dass wir unseren inver-
sen Propagatoren P immer identische kausale Imaginärteile iρ mitgegeben haben. Wir hätten
diese auch verschieden wählen können, was aber neben der Einführung zusätzlicher symbo-
lischer Variablen eine aufwändige Fallunterscheidung zur Folge hätte. In den θ-Funktionen
würden dann nämlich immer Terme der Form ρi − ρj vorkommen von denen das Vorzeichen
zu bestimmen wäre. Ist aber ρi = ρj , so kommt es bei der Einsetzung der Polstellen während
einer Residuenintegration durch Differenzbildung bisweilen dazu, dass ein Imaginärteil völlig
verschwindet. Dann wird eine darauffolgende Residuenintegration entlang der reellen Achse
durchgeführt mit einem Pol direkt auf dem Integrationsweg. Betrachtet man dieses Integral
als Hauptwertintegral, so kann man die Integration aber mit dem Satz A.6 durchführen. In
allen obigen Gleichungen ist dann einfach θ(0) durch 1/2 zu ersetzen.
Bei dem Auftreten von Determinanten im Nenner stellt sich natürlich immer die Frage, ob
diese nicht vielleicht verschwinden. Zunächst einmal gibt es den Fall, dass in einer Matrix zwei
Zeilen identisch sind: 

 Pi(l1, l2)
Pj(l1, l2)
Pk(l1, l2)


 =


 βi1 βi2 αi

βi1 βi2 αi

βk1 βk2 αk




 l1

l2
1


 .

Dies kann in Feynmandiagrammen passieren, wenn zwischen zwei identischen skalaren Pro-
pagatoren ein äußeres Teilchen anknüpft ohne Viererimpuls zu übertragen. Das bedeutet na-
türlich Pi = Pj oder aber einen quadrierten Propagator Pi in der ursprünglichen Amplitude,
was jedoch nach Gleichung (A.9) noch mit einer Residuenintegration handhabbar ist. (Topo-
logien mit der Schleifeneinsetzung , wie etwa I d) in Abbildung 2.2, sind natürlich auch
betroffen. Diese können aber mit Methoden aus dem Standardrepertoire behandelt werden,
etwa als Dispersionsintegral.)
Problematischer wird es, wenn eine Teilentartung auftritt, wie zum Beispiel

 Pi(l1, l2)
Pj(l1, l2)
Pk(l1, l2)


 =


 βi1 βi2 αi

βi1 βi2 αj

βk1 βk2 αk




 l1

l2
1


 ,

also βj1 = βi1 und βj2 = βi2, aber αi �= αj, um den schon behandelten Fall quadrierter Propa-
gatoren auszuschließen. Man beachte, dass die Determinante dann nicht einmal verschwindet.
Ein Feynmandiagramm mit externen Teilchen ohne Impulsübertrag aber verschiedenen in-
ternen Massen entspricht diesem Fall. Dabei geht zum Beispiel nach der l1-Integration ein

4 In GiNaC bietet es sich an, hierfür integer_content() zu missbrauchen. Es ist aber nur für expandierte
multivariate Polynome über � definiert. Aufgrund der Imaginärteile wird dem Aufruf daher eine Zerlegung
in Real- und Imaginärteil mittels eines Funktors vorangesetzt.

2.3. Umformung der einschränkenden Bedingungen 41

Propagator verloren, da nun P2(l
(1)
1) und P1(l

(2)
1) keine l2-Abhängigkeit mehr enthalten. Ver-

zichten wir auf die doppelte Integration in Zwillingsvariablen und führen die l1-Integration
durch, so erhalten wir:∫

dl1
1

Pi(l1, l2)Pj(l1, l2)Pk(l1, l2)

= (2πi)
(βi1{θ(−Im(αi)/βi1)− θ(−Im(αk)/βk1)}

(αj−αi)((βi1βk2−βk1βi2)l2 + (αkβi1−αiβk1))

+
βi1{θ(−Im(αj)/βi1)− θ(−Im(αk)/βk1)}

(αi−αj)((βi1βk2−βk1βi2)l2 + (αkβi1−αjβk1))

)
.

Die nachfolgende Integration über l2 ist hier nicht mehr ausführbar, es sei denn es waren
ursprünglich noch mehr P (l1, l2) vorhanden, die die Konvergenz wieder herstellen. Die obige
Summe sieht nur auf den ersten Blick integrabel aus, wenn man sie auf den Hauptnenner
bringt. Die Differenz der dort auftretenden P3(l

(1)
1) und P3(l

(2)
1) im Zähler wird dann zwar

auch frei von l2. Die θ-Funktionen im Zähler vereiteln dieses Vorhaben jedoch leider, so dass
dies jeweils nur in Teilgebieten möglich ist.

2.3. Umformung der einschränkenden Bedingungen

Die einschränkenden Bedingungen, also die θ-Funktionen in Gleichung (2.14), können nicht als
algebraische Ausdrücke im allgemeinsten Sinne (beispielsweise in der GiNaC-Klasse ex) ab-
gespeichert werden, da wir sie besonders untersuchen und den anonymen ⇒ Evaluator daher
umgehen müssen. Lediglich ihre Argumente als rationale Funktionen sind allgemeine alge-
braische Ausdrücke. Stattdessen enthält jeder additive Term in der Amplitude nach der Re-
siduenintegration ein eigens dafür vorgesehenes Objekt einer Klasse constraint, welches die
Logik implementiert. Die Klasse constraint stellt semantisch gesehen selbst eine Summe aus
Produkten von Differenzen von θ-Funktionen dar. Da insgesamt vier Residuenintegrationen
ausgeführt werden von denen jede eine Differenz der Form θ(−Im(αi)/βi) − θ(−Im(αn)/βn)
mit sich bringt, haben die Produkte maximal vier Terme. Von diesen Produkten wiederum
gibt es am Ende jeweils vier Stück, da über zwei Paare von Zwillingsvariablen integriert wird,
von denen laut Lemma 2.2 jeweils zwei additive Terme sich nur durch ein Vorzeichen unter-
scheiden.

Diese rigide Form legt eine Implementierung nahe, in der Addition und Multiplikation von
Hand den speziellen Bedürfnissen angepasst werden. Hierfür wurden ein paar Klassen defi-
niert, die in ineinander verschachtelter Form benutzt werden. Von innen nach außen sind dies
constraint_atom, das eine Differenz aus zwei θ-Funktionen darstellt. Ein constraint_atom
kann im uninitialisierten Status sein, in dem sie semantisch als Eins zu lesen ist, da noch keine
einschränkenden Bedingungen aufgetreten sind. Die Methode constraint_atom::empty() ge-
stattet es, diesen Zustand abzufragen. Die Containerklasse constraint_product ist ein Qua-
drupel von constraint_atom. Und die Containerklasse constraint schließlich ein Quadrupel
von constraint_product. Man muss nur die bei deren Konstruktion benötigten Rechenregeln
für Addition und Multiplikation explizit programmieren.

42 2. Die skalaren Zweischleifen-Vierbeinfunktionen

Zunächst einmal können positive Faktoren aus den Argumenten der θ-Funktionen eliminiert
werden:

θ(n · P) −→ θ(P). (2.15)

Für ganzzahlige n > 0 und voll expandierte Polynome über � leistet eine Division durch den
Rückgabewert der GiNaC-Funktion integer_content() den gewünschten Effekt.

Falls die Argumente der θ-Funktionen quadratisch vorkommen, so kann man sie eliminieren,
da sie immer aus Imaginärteilen aufgebaut werden und daher per Konstruktion rein reell sind.
Allgemeiner kann man dies mithilfe der quadratfreien Faktorisierung erreichen, die wir nun
kurz skizzieren. Enthält ein Polynom

P (x) = Pi(x)P
2
ii(x)P

3
iii(x)P

4
iv(x) · · · (2.16)

einen Faktor n-fach, so enthält die Ableitung diesen Faktor n−1-fach:

P ′(x) =
(
P ′

i (x)Pii(x)Piii(x)Piv(x) · · ·
+ 2Pi(x)P

′
ii(x)Piii(x)Piv(x) · · ·

+ 3Pi(x)Pii(x)P
′
iii(x)Piv(x) · · ·

+ 4Pi(x)Pii(x)Piii(x)P
′
iv(x) · · ·

+ · · ·)Pii(x)P
2
iii(x)P

3
iv(x) · · · .

Durch iterative Bestimmung des ggT eines Polynoms und seiner Ableitung kann so leicht ei-
ne Faktorisierung der Art (2.16) erreicht werden, wobei die einzelnen Pn(x) noch nicht voll
faktorisiert sein müssen – das Polynom x2 − 1 kann mit dieser Methode beispielsweise nicht
faktorisiert werden, da der ggT von x2 − 1 und 2x 1 ist. Im multivariaten Fall findet man
zunächst eine beliebige Variable x auf und sucht die Faktoren in der Ableitung nach x. Man
wiederholt das Verfahren dann in jedem der aufgefundenen Faktoren und in einer nächsten
Variablen so lange, bis keine freien Variablen mehr aufgefunden werden. Durch diese rekur-
sive Anwendung wird die quadratfreie Faktorisierung in der Praxis besser, je mehr Variable
vorhanden sind und je niedriger der führende Exponent ist. Diese Beobachtung wird gleich in
Satz 2.6 präzisiert werden.

Diese quadratfreie Faktorisierung erlaubt eine programmatische Vereinfachung der Argumente
der θ-Funktionen:

θ(Pi · P 2
ii · P 3

iii · · ·) −→ θ(Pi · Piii · · ·). (2.17)

Diese Umformung ist offensichtlich richtig, da sign(P 2
ii) = 1 und mithin sign(P 3

iii) = sign(Piii),
etc.

Hat man nun eine θ-Funktion mit einem Produkt als Argument, so kann man diese als Summe
von θ-Funktionen umschreiben. θ(PiPii) ist genau dann 1, wenn Pi und Pii entweder beide
positiv oder beide negativ sind:

θ(PiPii) = θ(Pi)θ(Pii) + θ(−Pi)θ(−Pii).

Zusätzlich gilt
θ(−x) = 1− θ(x), (2.18)

2.3. Umformung der einschränkenden Bedingungen 43

womit man dies weiter umschreiben kann zu:

θ(PiPii) = θ(Pi)θ(Pii) + (1− θ(Pi))(1− θ(Pii))

= 2θ(Pi)θ(Pii)− θ(Pi)− θ(Pii) + 1.

Falls hierin Pii wieder in ein Produkt faktorisieren sollte, kann man das Verfahren wiederholen
und elegant als rekursive Prozedur programmieren. Die ersten paar Ergebnisse lauten:

θ(PiPii) = 2θ(Pi)θ(Pii)− θ(Pi)− θ(Pii) + 1

θ(PiPiiPiii) = 4θ(Pi)θ(Pii)θ(Piii)

− 2θ(Pi)θ(Piii)− 2θ(Pi)θ(Pii)− 2θ(Pii)θ(Piii)

+ θ(Pi) + θ(Pii) + θ(Piii)

θ(PiPiiPiiiPiv) = 8θ(Pi)θ(Pii)θ(Piii)θ(Piv)

− 4θ(Pi)θ(Pii)θ(Piii)− 4θ(Pi)θ(Pii)θ(Piv)

− 4θ(Pi)θ(Piii)θ(Piv)− 4θ(Pii)θ(Piv)θ(Piii)

+ 2θ(Pi)θ(Pii) + 2θ(Pi)θ(Piii) + 2θ(Pi)θ(Piv)

+ 2θ(Pii)θ(Piii) + 2θ(Pii)θ(Piv) + 2θ(Piii)θ(Piv)

− θ(Pi)− θ(Pii)− θ(Piii)− θ(Piv) + 1...




(2.19)

Die mit dieser Prozedur gewonnenen Polynome aus θ-Funktionen können Quadrate enthalten.
Man kann sie jedoch alle eliminieren, da die θ-Funktion idempotent ist. Es gilt die Vereinfa-
chungsregel der Tautologie:

θ(P)n = θ(P). (2.20)

Im Fall P = 0 wäre sie falsch, da θ(0) =1/2. Falls P manifest verschwindet, ist die Vereinfachung
θ(P)→1/2 aber schon ausgeführt worden und die Regel kommt gar nicht erst zur Anwendung.
Falls P nicht manifest verschwindet, sondern nur in Grenzfällen wenn P zu einem späteren
Zeitpunkt an bestimmten kinematischen Punkten symbolisch ausgewertet wird, dann liegt
genau eine Gebietsgrenze vor. Diese stellt aber eine Menge vom Maß 0 dar und ist daher für
die verbleibenden Integrationen irrelevant – was die Anwendung der Idempotenzregel auch
wieder sicher macht.
In den beiden Umformungsregeln (2.18) und (2.20) ist übrigens auch der logische Widerspruch
automatisch beinhaltet:

θ(P)θ(−P)
(2.18)−→ θ(P)(1− θ(P)) = θ(P)− θ(P)2

(2.20)−→ θ(P)− θ(P) = 0.

Falls sich beim Leser bis hierhin der Verdacht eingeschlichen haben sollte, dass es sich bei
all dem um eine boolsche Prädikatenlogik handelt, so muss er an dieser Stelle ausgeräumt
werden. Die Argumente der θ-Funktionen entsprechen zwar Prädikaten in dem Sinne, dass
θ(P) = 1⇔ P > 0, und das Produkt θ(Pi)θ(Pii) kann darin als logisches „Und“ (∧) geschrie-
ben werden, aber die Summe θ(Pi) + θ(Pii) ist kein Äquivalent zum logischen „Oder“ (∨), da
sie für Pi > 0 und Pii > 0 den Wert 2 annehmen kann. Unter anderem folgt daraus, dass wir

44 2. Die skalaren Zweischleifen-Vierbeinfunktionen

auch kein Äquivalent zu den de Morgan’schen Regeln ¬a∧¬b ⇔ ¬(a∨b) und ¬a∨¬b ⇔ ¬(a∧b)
unter unseren Instrumenten zur Termumschreibung vorfinden.

Sollte nach diesen Vereinfachungen das Polynom von θ-Funktionen faktorisieren, so kann
man diese Faktorisierung auf jeden Fall mit dem Algorithmus für quadratfreie Faktorisierung
auffinden:

Satz 2.6 Gegeben sei ein Polynom P (t∼) über dem Ring der ganzen Zahlen in n freien Va-
riablen t∼ = {t1, t2, . . . , tn}. Wenn alle tj ∈ t∼ die Idempotenz tj = t2j erfüllen, dann ist die
quadratfreie Faktorisierung von P (t∼) nach Anwendung der Idempotenz identisch mit der vol-
len Faktorisierung.

Zum Beweis gehen wir von der vollen Faktorisierung Pi(t∼)Pii(t∼)Piii(t∼) · · · von P (t∼) aus und zei-
gen, dass der Algorithmus der quadratfreien Faktorisierung tatsächlich alle Faktoren auffinden
kann. Es ist klar, dass bei Polynomen über den ganzen Zahlen eine beliebige Variable t ∈ t∼ nur
in einem der Faktoren Pi(t∼), Pii(t∼), . . . vorkommen kann, weil sonst in der ausmultiplizierten
Form mindestens t2 auftreten würde (da der Ring der ganzen Zahlen die Charakteristik 0
hat). Wir zerlegen t∼ in t∼ = t ∪ τ∼ und nehmen o.B.d.A. an, dass t in Pi vorkommt. Dann ist

P (t∼) = (p(τ∼)t+ q(τ∼))Pii(τ∼)Piii(τ∼) · · ·

mit zwei noch unbekannten Polynomen p(τ∼) und q(τ∼). Für die Ableitung von P (t∼) nach t gilt

d
dt
P (t∼) = p(τ∼)Pii(τ∼)Piii(τ∼) · · ·

und für den ggT

ggT
(
P (t∼), d

dt
P (t∼)

)
= ggT

(
p(τ∼), q(τ∼)

)
Pii(τ∼)Piii(τ∼) · · ·

Wenn ggT(p(τ∼), q(τ∼)) = 1, dann ist Pi(t∼) gefunden. Die Variable t kommt im Rest nicht mehr
vor und daher kann es keine weiteren Faktoren in t mehr geben. Andererseits hat Pi(t∼) =
(p(τ∼)t + q(τ∼)) dann und nur dann noch weitere Faktoren, wenn ggT(p(τ∼), q(τ∼)) �= 1 ist.
Diese werden dann aber durch Anwendung des Verfahrens in den verbleibenden Variablen
τ∼ gefunden. Durch Iteration über alle t ∈ t∼ werden so alle Faktoren sukzessive gefunden –
unabhängig von der gewählten Reihenfolge der tj . �

Dieser Satz ist zwar sehr hilfreich beim Aufsuchen einer solchen Faktorisierung – er kommt
jedoch mit einem kleinen Wermutstropfen einher: Es wird davon ausgegangen, dass das zu
faktorisierende Polynom in expandierter Form und nach Anwendung der Idempotenz t2i = ti
vorliegt. Die Anwendung der Idempotenz führt zwar zu einer Vereinfachung in dem Sinne,
dass im expandierten Darstellungsbaum des Polynoms keine neuen Äste entstehen sondern
nur welche verschwinden; sie kann eine faktorisierende Struktur jedoch auch zerstören. Aus
(t1 + t2)(t1 + t3) wird zum Beispiel t1 + t1t3 + t2t1 + t2t3 und das faktorisiert überhaupt nicht
mehr. Andererseits ist die faktorisierende Struktur immerhin invariant unter Transformationen
der Form θ(x) → 1 − θ(−x), da θ(−x) beziehungsweise θ(x) in genau einem der Faktoren
vorkommt: Schreiben wir t := θ(x) und t′ := θ(−x), so findet die quadratfreie Faktorisierung
p(τ∼)− p(τ∼)t′ + q(τ∼) genauso als Faktor auf wie das ursprüngliche p(τ∼)t+ q(τ∼).

2.3. Umformung der einschränkenden Bedingungen 45

Nun erzwingt die Anwesenheit von äußeren Impulskomponenten in den θ-Funktionen leider
die Erstellung eines immensen Entscheidungsbaumes. An jedem Zweig würden dann Poly-
nome aus äußeren Impulskomponenten nach ihrem Vorzeichen unterschieden. Selbst wenn
man diesen (exponentiellen) Aufwand nicht scheut, ist es nach dem derzeitigen Stand von
Inferenzmaschinen für Entscheidungen in symbolischen Gleichungssystemen recht zweifelhaft,
ob die richtigen Tautologien und Widersprüche in dem System von θ-Funktionen für eine
Vereinfachung gefunden werden können [WeGo 1991]. Aus diesem Grunde muss ab nun ein
pragmatischer Standpunkt eingenommen werden: die äußeren Impulskomponenten sollen alle
numerisch vorliegen.

Unter dieser Voraussetzung kann eine weitere nützliche Vereinfachung vorgenommen wer-
den. Wir haben bisher die Vorzeichen der Argumente der θ-Funktionen beliebig nach Glei-
chung (2.18) gewählt. Sehr häufig ist aber eine Wahl nützlicher als die andere. Wenn nämlich
Pi−Pii keine unbekannten Symbole mehr enthält, also numerisch als reelle Zahl vorliegt, dann
wird durch θ(Pi)− θ(Pii) ein Streifen im Raum der in Pi vorkommenden zugeordneten Schlei-
fenvariablen definiert. Wenn hingegen Pi + Pii numerisch ist, dann definiert θ(Pi) − θ(−Pii)
einen Streifen im Raum der zugeordneten Variablen. Dann wird aber je nach Vorzeichen von
Pi + Pii beziehungsweise Pi − Pii durch θ(Pi)θ(−Pii) beziehungsweise θ(−Pi)θ(Pii) jeweils
dasselbe Gebiet definiert. Wir können nun testweise (2.18) anwenden um solche einfacheren
Faktoren zu finden. Dies alles ist noch kein strategisches Vorgehen und insbesondere kein
Algorithmus. Ein solcher muss unbedingt noch gefunden werden. Im Folgenden wird die An-
wendung dieser Instrumente zur Termumschreibung zur Veranschaulichung der Problematik
durchgeführt.

Beispiele für Umformungen einschränkender Bedingungen

Wir zeigen nun an einem einfachen aber realistischen Beispiel, wie die bisher beschriebenen
Umformungen in der Lage sind, die einschränkenden Bedingungen nahezu automatisch in eine
geeignete Gestalt zu bringen, so dass die durch sie definierten Gebiete direkt abgelesen werden
können. Allerdings ist es noch nicht gelungen, die oben in diesem Abschnitt aufgezählten
Werkzeuge so zu dirigieren, dass dieser Prozess völlig automatisiert abläuft. Dies ist endgültig
aber notwendig, da die Rechnungen per Hand viel zu zeitraubend und fehleranfällig sind.

Wir beschränken uns der Übersichtlichkeit zuliebe auf zwei zugeordnete Variablen k̃ und l̃,
welche nach der Residuenintegration in k und l durch Bedingungen eingeschränkt werden.
Ein häufiges Muster nach zweimaliger Anwendung von Gleichung (2.8) ist beispielsweise das
folgende Produkt von θ-Funktionen:

Θ :=
{
θ(−l̃)− θ(−k̃− l̃)}{θ(−k̃−p)− θ(k̃ l̃ (k̃+ l̃))

}
(2.21)

mit einer externen Impulskomponente p, für die o.B.d.A. p > 0 gelten mag. In [Krec 1997a]
steckt es in Gleichungen (2.4) und (2.5) und wurde per Hand wie folgt analysiert. Der erste
Term {θ(−l̃) − θ(−k̃− l̃)} schält aus der k̃-l̃-Ebene zwei Dreiecke heraus, eines davon mit
positivem und eines mit negativem Gewicht (Abbildung 2.6 links). Eines davon ist im zweiten,
das andere im vierten Quadranten, also ist das Produkt k̃ l̃ stets negativ. Dies kann nun in den
zweiten Term {θ(−k̃−p)−θ(k̃ l̃ (k̃+l̃))} eingesetzt werden, um ihn als {θ(−k̃−p)−θ(−k̃−l̃)} zu

46 2. Die skalaren Zweischleifen-Vierbeinfunktionen

~
k

l
~

l
~

~
k

l
~

~
k

p p

−p−p

Abbildung 2.6.: Graphische Darstellung des faktorisierten Polynoms in θ-Funktionen (2.21).

schreiben. Dies schält dann die beiden Dreiecke aus Abbildung 2.6 mitte heraus. Das Produkt
ist das endliche Dreieck von Abbildung 2.6 rechts, begrenzt durch l̃ = −k̃, k̃ = −p und l̃ = 0.
Mit den Umformungen aus diesem Abschnitt kann man dieses Ergebnis auch reproduzieren.
Es wird sich herausstellen, dass es dabei eine für das automatische Identifizieren von Gebieten
wesentlich besser geeignete Form annimmt. Ausgehend von Gleichung (2.21) identifizieren wir
die vier vorkommenden Polynome

Pi = k̃

Pii = −k̃ − p
Piii = l̃

Piv = −k̃ − l̃.
Damit hat Θ die Gestalt {θ(−Piii)− θ(Piv)}{θ(Pii)− θ(−PiPiiiPiv)}. Mit der Zerlegung (2.19)
für θ(−PiPiiiPiv) erhält man

Θ =
{
1− θ(Piii)− θ(Piv)

}{−1 + θ(Pi) + θ(Pii) + θ(Piii) + θ(Piv)

− 2θ(Pi)θ(Piii)− 2θ(Pi)θ(Piv)− 2θ(Piii)θ(Piv) + 4θ(Pi)θ(Piii)θ(Piv)
}
.

Durch Ausmultiplikation dieses Produktes entsteht ein etwas unübersichtliches Polynom aus
θ-Funktionen:

Θ = −1 + θ(Pi) + θ(Pii) + 2 θ(Piii) + 2 θ(Piv)

− θ(Piii)
2 − θ(Piv)

2 − θ(Pii)θ(Piii)− θ(Pii)θ(Piv)

− 3 θ(Pi)θ(Piii)− 3 θ(Pi)θ(Piv)− 4 θ(Piii)θ(Piv)

+ 2 θ(Pi)θ(Piii)
2 + 2 θ(Pi)θ(Piv)

2 + 2 θ(Piii)
2θ(Piv) + 2 θ(Piii)θ(Piv)

2

+ 8 θ(Pi)θ(Piii)θ(Piv)− 4 θ(Pi)θ(Piii)
2θ(Piv)− 4 θ(Pi)θ(Piii)θ(Piv)

2,

was nach Ausnutzen der Idempotenz und Zusammenfassen von gleichen Termen zusammen-
schrumpft zu:

Θ = −1 + θ(Pi) + θ(Pii) + θ(Piii) + θ(Piv)

− θ(Pi)θ(Piii)− θ(Pi)θ(Piv)− θ(Pii)θ(Piii)− θ(Pii)θ(Piv). (2.22)

2.3. Umformung der einschränkenden Bedingungen 47

~
k

l
~

l
~

~
k

l
~

~
k

p p

−p−p

Abbildung 2.7.: Alternative, (2.23) entsprechende Darstellung des Polynoms in θ-Funktionen aus
Abbildung 2.6.

Dieses Ergebnis faktorisiert in Θ = {θ(Piii) + θ(Piv)− 1}{1− θ(Pi)− θ(Pii)}, was eigentlich
erstaunlich ist, da es gegenüber (2.21) eine Vertauschung beschreibt: Es ist ausgeschrieben

Θ =
{
θ(l̃) + θ(−k̃− l̃)− 1

}{
1− θ(k̃)− θ(−k̃−p)} (2.23)

und die beiden Anteile lassen sich wie in Abbildung 2.7 veranschaulichen. Der linke Anteil ist
derselbe geblieben, aber der rechte ist in einen durch k̃ = −p und k̃ = 0 beschränkten Streifen
übergegangen. Es ist dies eine Umformung, die nicht möglich und auch nicht richtig gewesen
wäre ohne Wechselwirkung mit dem linken Gebiet. Das Endergebnis ist wieder das Dreieck
aus Abbildung 2.6, genau wie es sein muss. Außerdem ist für das Erkennen des mittleren
Gebietes jetzt keine Information aus dem linken Gebiet mehr notwendig – für Abbildung 2.6
mussten wir noch k̃ l̃ < 0 aus dem linken Gebiet ablesen um das mittlere zu erkennen.

Wir sind aber noch nicht ganz fertig. Die Polynome Pi und Pii unterscheiden sich außer durch
ein Vorzeichen nur durch die numerisch bekannte Konstante p. Unter Ausnutzung von (2.18)
können wir die Vorzeichen von Pi und Pii beliebig manipulieren um wahlweise eines von vier
Produkten zu erzeugen. Weil wir p > 0 angenommen haben, ist ihre geometrische Interpreta-
tion auch bekannt:

θ(k̃ + p) θ(−k̃) =
0 k~−p

= θ(k̃ + p) θ(−k̃)

θ(k̃ + p) θ(k̃) =
k~0−p

= θ(k̃)

θ(−k̃ − p) θ(−k̃) =
k~0−p

= θ(−k̃ − p)

θ(−k̃ − p) θ(k̃) =
~k0−p

= 0.

Die zweite und dritte Möglichkeit beschreiben kein endliches Gebiet und die Letzte beschreibt
gar kein Gebiet. Wenn die resultierenden Gebiete also beschränkt sind, dann birgt eine Trans-
formation in die erste Vorzeichenwahl die Möglichkeit, die Gebiete in faktorisierter Form
aufzufinden. Unsere Vorzeichenwahl ist aber gerade die vierte. Sie wird also testweise durch

48 2. Die skalaren Zweischleifen-Vierbeinfunktionen

die Transformation

θ(k̃) −→ 1− θ(−k̃)
θ(−k̃ − p) −→ 1− θ(k̃ + p)

modifiziert werden müssen. Damit wird aus (2.22)

Θ = θ(k̃ + p)θ(−k̃)θ(l̃) + θ(k̃ + p)θ(−k̃)θ(−k̃ − l̃)− θ(k̃ + p)θ(−k̃).

Man kann dies entweder mit der quadratfreien Faktorisierung oder per Hand mit einer dop-
pelten Ersetzung

θ(k̃) −→ τ + θ(−k̃ − p)
Θ −→ coeff(Θ, τ 0) + coeff(Θ, τ 1)θ(k̃ + p)θ(−k̃)

faktorisieren und erhält so

Θ =
{
θ(l̃) + θ(−k̃− l̃)− 1

}
θ(−k̃)θ(k̃+p).

Eine ähnliche Abbildung auf endlich dargestellte θ-Funktionen im Term {θ(l̃)+ θ(−k̃−l̃)− 1}
erfordert nun kombinatorisches Zusatzwissen, welches von Hand beigesteuert werden muss,
da Piii + Piv nun nicht numerisch ist sondern noch von k̃ abhängt. Damit erhält man das
attraktive Ergebnis

Θ = θ(l̃) θ(−k̃ − l̃) θ(−k̃) θ(k̃+p),

wovon das Dreieck aus Abbildung 2.6 rechts sofort abgelesen werden kann.
Mit einem analogen Vorgehen ist es insbesondere auch möglich, die auftretenden Gebiete der
planaren Box in der Parametrisierung

J =

∫
dDk

∫
dDl

1

P (l,m1)P (l−p1, m2)P (l+p2, m3)P (k+p1−p3, m4)

× 1

P (k+p1, m5)P (k−p2, m6)P (k+l,m7)
(2.24)

mit




pµ
1 = (q1, qx, 0, 0)
pµ

2 = (q2,−qx, 0, 0)
pµ

3 = (q, px, py, 0)

zu finden. Dies funktioniert jedoch noch nicht vollautomatisch. Sie faktorisieren in k3-l3- und
k0-l0-Gebiete, wobei die k3-l3-Gebiete die vertrauten Dreiecke (beschränkt durch py) beschrei-
ben, während die k0-l0-Gebiete wie in Abbildung 2.9 zu liegen kommen. Dies bestätigt eine
früher durchgeführte Bestimmung der Gebiete, die noch ohne die Masterformel (2.14) aus-
kommen musste und in der die Gebiete per Hand abgelesen wurden [KKS 1998].
Ein numerischer Vergleich der planaren Box mit [Smir 1999] steht allerdings noch in weiter
Ferne. Für ihn müssten die Integrationsgebiete der Vierfachdarstellung erst zuverlässig (sprich:
automatisch) in numerisch zugängliche Einheitsgebiete umgewandelt werden. Darauf wird im
nächsten Abschnitt etwas eingegangen.

2.4. Ausblick: Das weitere Vorgehen 49

l2 2k l1 1k

1

2

3

7

4

4

4

5

6

7

7

6

5

7

6

5

1k2kl2 l1

1

2

3

7

2

3

7

1

3

7

1

2

7

Abbildung 2.8.: Verbleibende Terme nach zwei verschiedenen Integrationsmethoden zur planaren
Box in der Darstellung (2.24): links nur unter Ausnutzung des Satzes über die Residuensumme und
rechts unter Ausnutzung der vollen Integrationsregel für Zwillingsvariablen. Die Integrationsreihen-
folge ist nicht die gleiche: links kann sie beliebig gewählt werden, rechts müssen l1 und l2 sowie k1

und k2 hintereinander ausgeführt werden. Dies ist in diesem Fall für das Ergebnis aber nicht von
Relevanz.

2.4. Ausblick: Das weitere Vorgehen

Die so aufgefundenen Gebiete in den zugeordneten Variablen k3, l3, k0 und l0 sind entweder
Dreiecke oder Vierecke, die mit geeigneten linearen Transformationen in den zugeordneten
Variablen in Einheitsgebiete überführt werden können. Beispielsweise kann das Dreieck aus
Abbildung 2.7 rechts durch die Ersetzung k̃/p = λµ − 1 und l̃/p = λ(1− µ) in ein Einheits-
quadrat (0 . . . 1)× (0 . . . 1) in der λ-µ-Ebene überführt werden (mit der Jacobi-Determinanten
p2λ). Für Vierecke gilt dies genauso, es müssen stets die Eckpunkte der Gebiete durch Lösen
zweidimensionaler symbolischer linearer Gleichungssysteme aufgefunden werden, danach kann
durch eine Kombination aus Verschiebung und Scherung die verbleibende Integration in ei-
nem Einheitsgebiet dargestellt werden, wobei der Integrand weiterhin eine rationale Funktion
(in den neuen Integrationsvariablen) bleibt. Hierfür muss aber zunächst die Erkennung der
Gebiete automatisiert werden.

Die Integranden sind im Allgemeinen in den nach dieser Methode anfallenden Gebieten unter-
halb der Schwellen einer numerischen Integration mit Werkzeugen aus Anhang B zugänglich.
Ob dies oberhalb der Schwellen geht, muss aber bezweifelt werden. In den vorliegenden Inte-

50 2. Die skalaren Zweischleifen-Vierbeinfunktionen

l0

k0

l0

k0

l0

k0

l0

k0

l0

k0

l0

k0

Abbildung 2.9.: Graphische Darstellung der verbleibenden k0-l0 Gebiete bei der planaren Box. Die
Parameter der die Gebietsgrenzen beschreibenden Geraden sind außer von äußeren Impulskomponen-
ten noch von k3 und l3 abhängig. Von neun Gebieten sind drei verschwunden, da sie zu Widersprüchen
in den θ-Funktionen führten. Die k3-l3-Gebiete sind einfacher, sie bestehen aus einfachen Dreiecken
wie in Abbildung 2.6 bzw. 2.7 und sind nur von äußeren Impulskomponenten parametrisiert.

gralen wird der Imaginärteil durch die Sokhotsky-Plemelj-Relationen

lim
ρ→0

∫
dx

f(x)

x+ x0 ± iρ = P.V.
∫
dx

f(x)

x+ x0
∓ iπ

∫
dx f(x)δ(x+ x0) (2.25)

erzeugt, wobei die Integrationsgrenzen noch einzusetzen sind. Man erhält sie durch Auftrennen
des Integranden in Real- und Imaginärteil, wobei der Imaginärteil eine Grenzwertdarstellung
der δ-Distribution ist. Das darin vorkommende Hauptwertintegral (siehe auch Anhang A)
ist aber für ein numerisches Programm erfahrungsgemäß wenig zugänglich, da adaptive Me-
thoden zwar bei endlichen Integralen passabel arbeiten, bei solchen, die nicht endlich sind
und erst durch die Hauptwertvorschrift endlich gemacht werden, aber kaum konvergieren
können. In kinematischen Spezialfällen war es möglich bis zu zwei weitere Integrationen ana-
lytisch durchzuführen [KKS 1998]. Dadurch wurde das Integral auch im Realteil oberhalb der
Schnitte regularisiert und dort für numerische Verfahren zugänglich gemacht. Die Ergebnisse
stimmen mit einer anderen Rechnung [PoTa 1996] überein. Dass dies überhaupt möglich war,
lag jedoch an Nebenbedingungen im Parameterraum der Funktion, die die Anzahl der freien
Parameter auf drei begrenzten.

Im Allgemeinen muss für eine weitere Integration ein systematisches Verfahren wie etwa das
von Horowitz [Horo 1971, DST 1988] verwendet werden. Dieser Algorithmus kann im Prinzip

2.4. Ausblick: Das weitere Vorgehen 51

zuverlässig die Stammfunktionen durch Logarithmen und inverse trigonometrische Funktio-
nen ausdrücken. Allerdings setzt die Implementierung dieses Verfahrens (insbesondere das
Einsetzen der Integrationsgrenzen) Kenntnisse über das Vorzeichen von iρ voraus. Es stellt
sich aber heraus, dass der Vorfaktor von iρ ein Polynom nicht nur in äußeren Impulsvariablen
und den inneren Massen, sondern auch in den verbliebenen inneren Schleifenimpulsen ist.
Dies wird Aussagen über die Vorzeichen vermutlich unmöglich machen. Unterhalb der ersten
kinematischen Schwelle treten alle diese Probleme jedoch noch nicht auf.
Der Wert der hier dargestellten Ergebnisse besteht darin, dass der in [Krei 1994] aufgezeigte
Weg zur Berechnung von Vierbeinfunktionen unter Zulassung der gesamten Parameterman-
nigfaltigkeit auf ein berechenbares Maß reduziert wurde. Dies gelingt mit dem Satz über die
Residuensumme und der Sylvester-Identität. Ohne diese beiden Hilfsmittel überschreiten die
symbolischen Anforderungen auf absehbare Zeit die Kapazität von verfügbaren Rechnern. Die
auftretenden Beschränkungen an die verbleibenden vier Integrationen sind zwar noch nicht
vollständig automatisiert, jedoch liegt das Werkzeug hierfür nun bereit. Insbesondere konnte
gezeigt werden, dass die quadratfreie Faktorisierung für alle notwendigen Operationen ausrei-
chend ist.

Teil II.

Computeralgebra für
Schleifenrechnungen

3. GiNaC: Motivation und Design

These problems [of system building] arise from the desire to build a
nearly-autonomous system for mathematical problem representation
and solution: the intent is for the system to make it unnecessary for

the user to provide detailed programming at the level of data
representation of basic mathematical concepts.

Richard J. Fateman [Fate 1990]

Dieses Kapitel ist der Untersuchung der Grundlagen und praktischer Aspekte der Computeral-
gebra gewidmet. Es sollen einige allgemeine Funktions- und Designprinzipien angeschnitten
werden und die Gründe für das Entstehen von GiNaC dargelegt und strukturelle Implementa-
tionsmuster begründet werden. Die Details der Implementierung werden, soweit sie in dieser
Arbeit berührt wurden, im nächsten Kapitel beschrieben.
Wenn Computeralgebra zwar kein neues Forschungsgebiet ist1, so ist es jedenfalls ein immer
noch sehr aktives. Auf kommerzieller Seite wird der Computeralgebrasystem- (CAS-2) Markt
beherrscht von einer kleinen Handvoll Systeme ohne nennenswerte offene Alternativen und
geforscht wird – leider – zu einem nicht unbeachtlichen Teil hinter verschlossenen Firmentüren.
Ich hoffe, dass es gelingt, in diesem Kapitel aufzuzeigen, warum wir die Abkehr von diesen
Systemen im Rahmen des xloops-Projektes für notwendig hielten und warum dies der richtige
Ansatz ist.

3.1. Die Motivation für GiNaC

Die Probleme bei der Anwendung von handelsüblichen Computeralgebrasystemen fallen in
zwei Gruppen: erstens ist für den Benutzer kaum nachvollziehbar, welche Algorithmen und
Umformungen vertrauenswürdig sind und welche nicht. Zweitens erfüllen sie in linguistischer
Hinsicht nicht den gewachsenen Anforderungen moderner Programmierung. Die Vertrauens-
würdigkeit von Algorithmen und Umformungen kann prinzipiell nur einschätzen, wer sie nach-
vollzogen und verstanden hat oder auf einen Beweis vertraut. Programmierfehler in der Imple-
mentation sind hiermit nicht gemeint – selbst bei Einsicht der Quellen sind Implementierungen
nur in seltenen Fällen verifizierbar – vielmehr solche „harmlosen“ Umformungen wie

√
x2 → x,

1 Charles Babbage hatte schon 1836 die Idee, als er in sein Notitzbuch schrieb: „This day I had for the
first time a general but very indistinct conception of the possibility of making an engine work out algebraic
developments—I mean without any reference to the value of the letters.“ (Zitiert nach [Larc 1999])

2 Ein besserer Name ist eigentlich das seltener gebrauchte Akronym SAC für Symbolic and Algebraic
Computation.

56 3. GiNaC: Motivation und Design

die nur bei eingeschränktem Wertebereich gültig sind. Eine Unterscheidung zwischen solchen
Algorithmen, die vertrauenswürdig sind und solchen die es nicht sind, ist daher eine Grat-
wanderung die nur mithilfe der Implementatoren durchführbar ist. C. Bellarin und L. Paul-
son [BePa 1998] geben ein Beispiel, wo eine Auswahl der von Sumit [Bron 1996b] angebotenen
Algorithmen getroffen wird, die vertrauenswürdig genug für das automatisierte Beweisen von
Theoremen aus der Codierungstheorie erscheinen – allerdings ohne diese Auswahl anhand
einer Negativliste mitsamt Gegenbeispielen zu untermauern.
Anfang der 90er Jahre war kaum ein erhältliches System vor solchen Umformungen wie der
obigen gefeit [Stou 1991]. Maple bietet dem Benutzer noch heute die Option symbolic um sie
trotzdem durchzuführen:

1 > simplify(sqrt(x^2));
2 csgn(x) x
3 > simplify(sqrt(x^2),symbolic);
4 x

Nicht alle Benutzer sind sich aber über die Bedeutung des Schlüsselwortes symbolic bewusst
und verwenden es um Ausdrücke so weit wie möglich zu „verkleinern“. Idealerweise enthält
ein System nur völlig unbedenkliche Algorithmen. Dies kollidiert aber zumindest bei kommer-
ziellen Systemen mit Marktanforderungen und so sind diese Systeme eine Ansammlung von
Algorithmen, von denen viele ad hoc und nicht ganz vertrauenswürdig sind.
Die zweite Problemklasse bilden die linguistischen Einschränkungen und Fallen, die den Pro-
grammierer in jedem derzeitigen System verfolgen. Hierfür scheint das Bewusstsein auf Seiten
der Implementatoren weitaus weniger ausgeprägt, so dass kaum auf Besserung gehofft wer-
den kann. Der Rest dieses Abschnittes stellt einige dieser Probleme anhand von Maple vor.
Die Fokussierung auf Maple entspricht lediglich meiner persönlichen Anwendererfahrung und
sollte nicht als Parteiergreifung oder Freibrief für ein anderes System ausgelegt werden.3

Ein besonders heimtückischer Fehler in MapleV ist die Verletzung des ⇒ Scopes, des Gül-
tigkeitsbereichs lokaler Variablen. Eine Reihe solcher Scopeverletzungen wurden systematisch
in [West 1999] (im treffend „Mathematics versus Computer Science“ genannten Abschnitt)
aufgespürt, indem zunächst einer Variablen ein Wert zugewiesen wurde und sie danach als
Laufvariable in Summen, Produkten, Integralen oder Taylor-Reihen benutzt wurde. Alle ge-
testeten CASe mit Ausnahme von Derive hatten darin Schwierigkeiten, globale und lokale
Variablen auseinander zu halten. Hier seien noch zwei Beispiele aufgeführt, die noch etwas
subtiler sind. Das erste betrifft nur MapleVR4. Es handelt sich um den Versuch, die Reihen-
entwicklung des Dilogarithmus um den Ursprung zu berechnen:

1 i:=1:
2 series(polylog(2,x),x):
3 Error, (in sum) summation variable previously assigned,
4 second argument evaluates to, 1 = 1 .. 6

Hierin wird i nicht einmal als Laufvariable vom Benutzer angegeben. Die Funktion
series/polylog ruft tatsächlich sum mit Laufvariable i auf, ohne i zuvor als lokal zu de-
klarieren. Dass die Implementatoren selbst darüber stolpern zeigt uns, dass die von Wester

3 Dies steht in amüsantem Widerspruch zu dem in der Einleitung zu [Stro 1994] genannten Effekt: „Flaws in
the well-known language are deemed minor and simple workarounds are presented, whereas similar flaws
in other languages are simply unknown to the people doing the comparison or deemed unsatisfactory.“

3.1. Die Motivation für GiNaC 57

aufgedeckten Probleme keineswegs rein akademisch sind. Es macht auch eindrücklich klar,
dass Regressionstests in Systemen ohne lexikalischem Scope zusätzlich durch die Abhängig-
keit externer Variablenbindungen erschwert werden.

Noch weitere Probleme dieser Art tauchen auf, wenn Variablennamen mit der cat()-Funktion
bzw. deren Äquivalent, dem .-Operator, zusammengesetzt werden. Das folgende Beispiel zeigt
das Problem:

1 Q1 := k:
2 Q2 := l:
3
4 testfun := proc(x,y)
5 local Q1,Q2;
6 Q.1 := foo; # Modifikation globaler Variable!
7 Q2 := bar; # Ok: lokale Variable
8 lprint(Q1, Q2);
9 RETURN([Q1,Q2]);

10 end:

Der Unterschied der beiden Zuweisungen ist nicht offensichtlich. Obwohl sowohl Q1 als auch
Q2 innerhalb der Prozedur testfun expressis verbis lokal definiert wurden, also die globale
Definition überschrieben werden sollte, wird in der ersten Zuweisung tatsächlich die globale
Variable Q1 modifiziert:

1 > testfun(Q1,Q2);
2 Q1 bar
3 [Q1, bar]

Das Beispiel ist besonders gefährlich aus zwei Gründen. Erstens sind solche Fehler schwer zu
finden. In dieser Arbeit wurde das Problem entdeckt, weil ich versuchte nachzuvollziehen, wie
ein ein halbes Jahr zuvor geschriebenes Programm funktioniert und es stets zerbrach, wenn
man die Zusammensetzung weglässt. Existierender Code ist daher voll von solchen Fehlern.
Zweitens ist der Fehler genau aus diesem Grund in Maple schwer zu beheben. Tut man es, so
ist gewiss, dass viele Programme ihren Dienst verweigern. xloops ist ein solches Beispiel: es sind
Stellen bekannt, in denen von diesem Problem „Gebrauch gemacht“ wird und auch solche, wo
es schon zu Verwirrung und Fehlern führte.

Wohlgemeinte didaktische Sperren sollen vermutlich die Verwendung ungeeigneter Daten-
strukturen in manchen Systemen vermeiden. Als Liste bezeichnet man in der Informatik ge-
meinhin eine Ansammlung von Objekten die miteinander linear (möglicherweise bidirektional)
verkettet sind. Die Zugriffszeit auf das n-te Element in einer Liste wächst also linear mit n
an, weshalb nur dann von Listen Gebrauch gemacht werden sollte, wenn schnelles Hinzufü-
gen/Entfernen von Elementen an zufälliger Position verlangt wird. Kurioserweise ist Maple
nicht davon abzubringen, den Benutzer ab Listen der Länge 100 zu Vorsicht bezüglich der
Zugriffszeit zu erziehen:

1 > L := [seq(i,i=0..100)]:
2 > L[77] := 0;
3 Error, assigning to a long list, please use arrays

58 3. GiNaC: Motivation und Design

Meines Erachtens nach sollte ein System außer der unvermeidlichen Geschwindigkeitsstrafe
dem Programmierer bzw. Anwender keine willkürlichen Überraschungen bieten, die unter
Umständen ein Umstrukturieren ganzer Programme erzwingen (was bisweilen sogar unmöglich
ist, wenn eine interne Routine Listen benutzt).4

Sprachumstellungen von Version zu Version tragen ein übriges dazu bei, die Langlebigkeit eines
Programmes in Grenzen zu halten. Einige ausgewählte Beispiele aus den letzten Versionen von
Maple:

• Von MapleVR4 nach MapleVR5 wurde das Zeichen um den zuletzt evaluierten Ausdruck
abzurufen von " nach % umgestellt. Vermutliche Intention: Das doppelte Anführungs-
zeichen sollte zur Begrenzung von Strings zur Verfügung stehen; andere Systeme (z.B.
Mathematica) benutzen schon immer %.

• Von MapleV nach Maple6 wurde der Operator zum Zusammenfügen von Namen von .
nach || umbenannt (ohne jedoch die von ihm verursachten Verwirrungen im Scope zu
beseitigen).

• Vor Maple6 wurden do-Schleifen mit od abgeschlossen. Seit Maple6 heißt es end do. od
steht noch zur Verfügung, soll aber demnächst abgeschafft werden. Analoges gilt für if
und fi. Vermutliche Intention: Verkleinerung der Schlüsselwortmenge.

Selbst wenn es möglich sein sollte, die Portierung auf die jeweils aktuelle Version sofort vorzu-
nehmen (entwder per Hand oder mithilfe der mitgelieferten Übersetzungswerkzeuge), so stieß
man bisher immer noch auf Überraschungen, die in einem professionellen Umfeld mit einem
angemessenen Maß an Regressionstests nicht auftreten dürften. Die jüngste Version Maple7
fällt beispielsweise dadurch auf, dass sie 2000!/1999! zu 1 vereinfacht, weil Zähler und Nenner
irrtümlicherweise als syntaktisch identisch identifiziert werden – keine frühere Version hatte
damit Probleme. Obwohl Maple zweifelsfrei eines der derzeit leistungsstärksten symbolischen
Systeme ist, wird in Abwesenheit von „Bugfix“-Releases die Herstellerabhängigkeit innerhalb
eines größeren Projektes hierbei leider schnell unverantwortlich.

Systemanforderungen

Es folgt eine Auflistung der Eigenschaften, die ein System aufweisen muss, um für die Soft-
wareimplementierung der Mainzer Methoden (und – mit wenigen Abstrichen – auch anderer
Ansätze) geeignet zu sein.

• Unexpandierte Darstellung multivariater Polynome:
Die anvisierten Berechnungen erfordern häufig das effiziente Hantieren mit in natürli-
cher Weise vorfaktorisierten Polynomen (p2 − m2

1)((p − k)2 − m2
2) · · · wie sie aus in-

versen Propagatoren entstehen. Systeme, die alle äquivalenten multivariaten Polynome
zunächst in eine expandierte kanonische Form überführen indem sie sie ausmultiplizie-
ren und sortieren (wie Fermat [Lewi 1997], unter manchen Bedingungen [Koe 1999]
auch Reduce, Axiom [JeSu 1992] und sogar Form), verschleiern die Propagatorstruk-
tur. In [Koe 1999] wird ein weiterer Vorteil der unexpandierten Darstellung am Beispiel

4 Erfahrene Maple-Anwender empfehlen in obigem Beispiel immer L:=subsop(77=0,L); zu schreiben, da
dies auch bei langen Listen funktioniert. Man beachte jedoch, dass damit die gesamte Liste kopiert wird.

3.1. Die Motivation für GiNaC 59

der Tschebyscheff-Polynome geschildert: Mit einem rekursiven „Divide and Conquer“-
Verfahren lassen sich diese Polynome sehr schnell in unexpandierter Form berechnen,
so ist z.B. T8(x) = 2(2(2x2−1)2−1)2−1. Für viele Anwendungen ist diese Form der
Darstellung schon völlig ausreichend, so z.B. für die numerische Auswertung entweder in
Gleitkomma- oder exakter rationaler Arithmetik – vorausgesetzt es lässt sich zeigen, dass
die Darstellung gut konditioniert ist.

• Keine versteckten Grenzen:
Alle Klassen darstellbarer Objekte sollten nur durch verfügbaren Speicher und Rechenzeit
beschränkt sein. Eine unaufhebbare Beschränkung auf 216 − 1 Summanden in MapleV
ist nicht vertretbar. Manche Systeme bürden dem Benutzer das Einstellen von Puffer-
größen auf, was zwar die Bedienung nicht gerade erleichtert aber noch akzeptabel ist,
wenn alle Pufferfunktionen vollkommen dokumentiert sind. (Leider ist auch dies nicht
selbstverständlich: in Form2 stößt man rasch auf die Beschränkung auf ganze Zahlen mit
einer Integerlänge kleiner als 400 Byte.) Versteckte Grenzen müssen nicht immer die Spei-
cherverwaltung betreffen; sie können sich auch im Laufzeitverhalten äußern. Maple zum
Beispiel wird im Laufe der Benutzung immer langsamer. Dies liegt daran, dass Nachschla-
getabellen für Rechenergebnisse ausufern und die Zugriffszeiten darin nicht von O(log n)
sind sondern eher linear.

• Offenheit und Erweiterbarkeit:
Die in den letzten Jahren in der Arbeitsgruppe ThEP durchgeführten Schleifenrechnun-
gen sind über ein minimales Maß an Interoperabilität und punktuellen – häufig lediglich
numerischen – Vergleichen nicht hinausgekommen. Sie bleiben damit deutlich hinter den
gesteckten und im xloops-Projekt stets beschriebenen Zielen zurück. Da man nicht erwar-
ten kann, das Endstadium der Entwicklung einer symbolischen Maschine zu erreichen,
bedeutet dies übertragen, dass auf ein offenes und von folgenden Studentengenerationen
erweiterbares Design geachtet werden muss. Ein objektorientierter Ansatz und weitgehend
orthogonales Design können hier hilfreich sein.

• Persistenz:
Algebraische Ausdrücke als Ergebnisse einer langen Rechnung sollten auf Festplatte ge-
schrieben und zu einem späteren Zeitpunkt wieder eingelesen werden können. Üblicher-
weise geschieht dies bei symbolischen Systemen durch Ausgabe der Ausdrücke in der Form
wie sie am Bildschirm dargestellt werden und Einlesen in genau dieser Form. Da dies in
C++ so nicht möglich ist, wurde in [Baue 2000] für GiNaC ein Objektpersistenzmodell
entwickelt.

Des weiteren sollte das System unbedingt portabel sein, um nicht in eine erneute Abhängigkeit,
diesmal von einem Compilerhersteller, zurückzufallen.

Eine kursorische Geschichte der Sprache C++

C++ ist, wie die meisten Programmiersprachen, das Ergebnis eines langwierigen und teilweise
wechselhaften Entwicklungsprozesses (bei den Ausnahmen handelt es sich um Experimentier-
und Lernsprachen). Wie der Name impliziert handelt es sich von wenigen – pathologischen
– Ausnahmen abgesehen um eine Übermenge der Sprache C (in der der Operator ++ die

60 3. GiNaC: Motivation und Design

davorstehende Variable inkrementiert). In diesem Abschnitt soll etwas Licht auf die Kette von
Vorläufern geworfen werden. Es werden sich dabei einige Parallelen zur Motivation für GiNaC
aufzeigen.5

Von C erbt C++ die traditionelle prozedurale Denkweise. Nun geht diese jedoch keinesfalls auf
C zurück, sondern die Ursprünge sind selbst jenseits Cs Muttersprache B und Großmutterspra-
che BCPL [Rich 1967] zu suchen, nämlich in Fortran und Algol60. Der Entwicklungsschritt
von BCPL nach B fand 1969 in den Bell Telephone Laboratories statt, als K. Thompson auf
der Suche nach einer Sprache für das neuentwickelte Betriebssystem Unix war. Nach einem
gescheiterten Versuch mit Fortran hatte er sich entschlossen, eine eigene Sprache zu entwi-
ckeln. Die Maschine, auf der er seine Experimente durchführte, war eine DEC PDP-7 mit 8192
Wörtern der Länge 18 Bit. Solche Hardware erklärt, warum weder BCPL noch B typisierte
Sprachen waren. Zwar gab es schon einige der noch heute üblichen Spezifikatoren wie auto und
static, aber die Notwendigkeit einer Typisierung war einfach noch nicht vorhanden – konnte
man in einem 18-Bit Wort doch noch bequem eine brauchbare Gleitkommazahl unterbringen.
Schrieb man beispielsweise in BCPL

1 let a = 15; // Variable initialisieren in BCPL
2 let v = vec 4; // Quadrupel in BCPL

oder in B

1 auto a = 15; /* Variable initialisieren in B */
2 auto v[4]; /* Quadrupel in B */

so wurde jeweils ein Array v aus 4 zusammenhängenden Wörtern für spätere Benutzung
auf dem ⇒ Stack reserviert. Die Array-Semantik von C, in der x[n] äquivalent ist zu einer
Dereferenzierung *(x+n), geht direkt auf BCPL zurück. Die Syntax ist ein Erbe von B.6

Diese Situation änderte sich mit dem Erscheinen neuer Hardware. Die PDP-11, die 1970 bei
Bell installiert wurde, war eine Byte-orientierte Maschine. D. Ritchie erweiterte B 1971 daher
zunächst um die Typen int und char und später um float. Um Variablen zu deklarieren
musste man ab nun den Typ spezifizieren:

1 int a = 15; /* Variable initialisieren in C */
2 int v[4]; /* Integer-Quadrupel in C */

Weitere Neuerungen betrafen Records, in C struct genannt, sowie eine flexiblere Zeigerse-
mantik wie z.B. Deklarationen vom Typ int (*f)(); für Pointer auf Funktionen, die int
zurückliefern sollen. Ein besonderes Verdienst von C ist es, Klarheit bei den booleschen Ope-
ratoren geschaffen zu haben: So war das bitweise Und (and bzw. &) und das bitweise Oder
(or bzw. |) in BCPL und B überladen mit dem logischen Und und dem logischen Oder, falls
es innerhalb von if-Abfragen auftauchte. In diesem Falle handelte es aber nicht um Überla-
dung eines Operators in verschiedenen Kontexten und daher auch nicht um guten Stil. Die
Bedeutungen sind unterschiedlich und können im selben Kontext vorkommen, wie ein in C
gebräuchliches Maskenidiom deutlich macht:

5 Die historischen Daten in diesem Abschnitt stammen aus [Ritc 1993], [Raym 1998] und [Stro 1994].
6 Leider ist die Syntax der Dereferenzierung etwas verunglückt: in verschachtelten Konstruktionen wäre ein

Suffix-Operator natürlicher zu lesen als ein Präfix-Operator. Außerdem führt die Wahl des Multiplikati-
onszeichens * bei Anfängern immer wieder zu unnötigen Verwirrungen.

3.1. Die Motivation für GiNaC 61

1 if (a & 0x0f) {
2 /* Programmblock 1 */
3 } else {
4 /* Programmblock 2 */
5 }

Im Falle a=0xf0 würde die Interpretation als logisches Und den ersten Programmblock aus-
führen, die Interpretation als bitweises Und den zweiten. Zur Unterscheidung wurden daher
für die logischen Operatoren die Symbole && und || eingeführt, und festgesetzt, dass die
Symbole & und | stets für bitweise Operatoren stehen.
In C war von Anfang an die Definition benutzereigener Datenstrukturen (Records) vorgese-
hen. Das Schlüsselwort struct kann ohne weiteres als Keim eines Objektmodelles angesehen
werden. Aufzählungstypen hingegen (enum) kamen erst spät hinzu und führen wegen ihrer
Beschränkung auf maschinendarstellbare ganze Zahlen bis heute eher ein Schattendasein.
Aufgrund seines Ursprungs als Sprache für die Implementierung des Betriebssystems Unix
erlaubt das Speichermodell von C die flexible Platzierung von Daten an drei verschiedenen
Orten: automatisch auf dem Stack, dynamisch auf dem Heap und drittens statisch, also an
einer festen Adresse.
C wurde 1990 von der ISO standardisiert [ISO 1990], wonach die verschiedenen Dialekte lang-
sam zu konvergieren begannen. Eine stark erweiterte zweite Auflage des Standards folgte neun
Jahre später [ISO 1999].
C++ war ursprünglich eine Spracherweiterung von C, die sehr früh (frühe 80er Jahre) die
Sprache um Klassen und Objekte erweiterte wie sie viele Programmierer an Simula zu schätzen
gelernt hatten.7 Eine Klasse ist ein Zusammenschluss von Daten, der – anders als die in C schon
vorhandene struct – auch Funktionsanweisungen („Methoden“) beinhalten kann. Das mit
dieser Spracherweiterung einhergehende häufigere Benennen von Typen machte eine stärkere
Typisierung als die in C übliche notwendig. So ist es in C++ beispielsweise nicht mehr erlaubt
durch void f() eine Funktion mit einer unspezifizierten Argumentenliste zu deklarieren.
Wie in jedem Objektmodell können Klassen um Funktionalität erweitert werden, indem man
eine neue Klasse von ihr ableitet. Die abgeleitete Klasse „erbt“ die Datenfelder und die Funk-
tionalität der Elternklasse und kann insbesondere Methoden auch überschreiben, sofern die
Elternklasse diese schon als virtuell deklariert hatte. Da ein Zeiger auf eine Basisklasse auch
für eine abgeleitete Klasse stehen kann, wird der ⇒ dispatch in C++ so bewerkstelligt, dass
jedem Objekt einer Klasse mit virtuellen Funktionen ein Zeiger auf eine Tabelle mit Zeigern
auf die gültigen Funktionen mitgegeben wird.
Neu in C++ gegenüber C ist auch die Überladung von Funktionen nach ihren Argumen-
ten. Eine Funktion void f(int) wird vom Compiler unterschieden von einer Funktion void
f(double).8 Dies dient hauptsächlich der Lesbarkeit von Programmen, da es immer gebräuch-
licher wurde, die Argumentenliste im Funktionsnamen zu enkodieren (wie die transzenden-
ten C-Funktionen in Anhang A oder im C-Quelltext der Pari-Bibliothek). Die entstandenen
Mehrdeutigkeiten auf Linker-Ebene wurden dadurch gelöst, dass die Argumentenlisten nun

7 Der erste Name war konsequenterweise „C with Classes“.
8 Eine Überladung nach den Rückgabewerten wird in C++ nicht unterstützt da es dem Programmierer frei

steht den Rückgabewert zu ignorieren oder in einen anderen Typ zu „casten“ – dies steht einer Auflösung
der Mehrdeutigkeit durch den Compiler im Wege und ist eine von C geerbte Altlast.

62 3. GiNaC: Motivation und Design

vom Compiler in den Funktionsnamen enkodiert werden (⇒ name mangling), und zwar meist
transparent für den Programmierer. Ursprünglich wurden solchermaßen überladene Funk-
tionen durch das Schlüsselwort overload gekennzeichnet, um unbemerkt eingeführte Mehr-
deutigkeiten zu vermeiden. Diese anfängliche Unsicherheit im Umgang mit Überladung wich
schnell einer breiten Akzeptanz und die nächste logische Folgerung war, die von Algol68 be-
kannten überladenen Operatoren einzuführen. Diese erlauben es, arithmetische Operationen
eigener Klassen intuitiv in Infix-Notation i+j zu schreiben, anstatt plus(i,j). Die Klasse
complex war lange das Paradebeispiel. Referenzen – auch ein Erbe von Algol68 – waren eine
notwendige Folge von überladenen Operatoren: große Objekte übergibt man idealerweise als
Zeiger anstatt als Kopie, in unserem Beispiel würde man also plus(&i,&j) schreiben, was
aber durch keinen überladenen Operator als &i+&j ausgedrückt werden kann, da dies in C
die Bedeutung der Addition auf Adressen hat. Das Problem wurde gelöst, indem man nun
ausschließlich bei der Deklaration einer Funktion spezifiziert, ob eine Variable als Wert oder
als Referenz übergeben wird – anstatt bei der Deklaration und beim Aufruf.9

Untypisierte Sprachen erlauben typunabhängige Programmierung. Dies kann durchaus sinn-
voll sein, wenn zum Beispiel ein Algorithmus zum Sortieren unabhängig ist von dem, was
sortiert werden soll, solange darauf nur eine Ordnungsrelation definiert ist. In C hat es sich
zum Beispiel eingebürgert, solche Aufgaben entweder mit Makros zu erledigen oder nur noch
mit Zeigern auf die zu verwalteten Objekte zu arbeiten. Im Falle des Sortierens wurde letzteres
sogar in Form der Bibliotheksfunktion qsort() in [ATT 1989] standardisiert. Die starke Typi-
sierung zwang zu einer Alternative und zur Einführung des womöglich leistungsstärksten Be-
standteils von C++ , den Templates. Mit ihnen kann eine völlige Trennung von typunabhängigen
Algorithmen und darauf operierenden Datentypen erreicht werden. Mit der Standard Tem-
plate Library (STL) wurde eine Referenzimplementierung mit den am häufigsten gebrauchten
Containerklassen in den Sprachstandard aufgenommen. Sie nimmt dem Programmierer die
mühsame Arbeit der Implementierung von Vektoren, Listen und assoziativen Containern sei-
ner eigenen Datentypen ab und lässt ihn sich auf das Wesentliche konzentrieren.

Nichtlokale Fehlerbehandlungsmechanismen (sogenannte „exceptions“) erlauben uns, das Ver-
sagen einer Routine außerhalb der unmittelbar aufrufenden Funktion korrekt zu handhaben
und eventuell einen anderen Programmpfad einzuschlagen. Sie waren schon lange bekannt und
geschätzt (beispielsweise in Algol68) und wurden Anfang der 1990er Jahre in Form der derzeit
bekannten try {...} catch(...) {...} -Blöcke in C++ integriert.

Ein objektorientierter Ansatz ist der Offenheit und Erweiterbarkeit des Programmes sehr
zuträglich. Er erlaubt es, Programme weitgehend entlang orthogonaler Richtlinien zu organi-
sieren. Die Datenstrukturen können darin in gewissem Grade auf die zugrundeliegenden ma-
thematischen Strukturen abgebildet werden. Vererbung hilft, das Anwachsen der Programm-
komplexität zu zügeln: Hat eine Ansammlung von Software beispielsweise n Datenstrukturen,
die mittelsm Schnittstellen miteinander interoperieren müssen, so wächst die Komplexität tra-
ditionell etwa mit dem Produkt n ·m. Bringt eine Basisklasse aber schon etwas Funktionalität
mit, so dass abgeleitete Klassen diese wiederverwenden können, so wächst die Komplexität in
geringerem Maße, im günstigsten Falle vielleicht wie n log(m).

9 Referenzen sind gewissermaßen zu spät eingeführt worden. Sonst wäre this in jedem Objekt sicherlich
kein Zeiger, sondern eine Referenz.

3.1. Die Motivation für GiNaC 63

Es gibt natürlich auch häufig ins Feld geführte Probleme der Sprache. In dieser Arbeit rele-
vant wurden zum Beispiel die Nichtgenormtheit der Schnitte in der komplexen Ebene und die
Nichtexistenz von ganzzahligen Datentypen mit genau bekannter Größe. Für beide Proble-
me ist mittelfristig jedoch Abhilfe in Sicht: die Revision des C-Standards [ISO 1999] definiert
die Schnitte in kompatibler Art und Weise (siehe Anhang A) und führt in der Header-Datei
<stdint.h> ganzzahlige Datentypen mit 8, 16, 32 und 64 Bit ein. Ein häufiges Problem sind
Binärinkompatibilitäten zwischen verschiedenen Versionen einer benutzten Bibliothek – nicht
nur als Folge der stärkeren Typisierung: Die Größe einer Klasse kann sich unvermittelt än-
dern, wenn eine Basisklasse ihre Größe ändert, oder die Größe der vtable kann sich ändern
durch Einfügung neuer virtueller Methoden, mit unvorhersehbaren Konsequenzen zur Lauf-
zeit. Die üblichen Lösungswege sind das Auffüllen von abgeleiteten Klassen mit Füllbytes, die
später entfernt werden können („Padding“), mehrere Versionen der dynamischen Bibliothek
im System zu verteilen (berüchtigt als „DLL-Hölle“) oder sie statisch gleich in die Applikati-
on zu linken. In einem frei verfügbaren System können diese architekturbedingten Probleme
allerdings vernachlässigt werden, da einer Neuübersetzung der gesamten Bibliothek nichts im
Wege steht. Etwas enttäuschender ist meiner Auffassung nach die Tatsache, dass C++ dem
Programmierer im Vergleich zu C keine neuen Hilfsmittel für Funktionen mit variabler Argu-
mentenzahl an die Hand gibt. In symbolischen Algorithmen wäre dies bisweilen begehrenswert
– die in Abschnitt 4.5 beschriebenen Pseudofunktionen werden mit dem Problem auf ihre Art
umgehen müssen. Im etwas größeren Bild ist die gesamte Abhängigkeit vom C-Linker für
C++ ein unerschöpflicher Quell kleiner Probleme: Das Schlüsselwort export ist aus diesem
Grunde bis heute unimplementiert geblieben und die auf Seite 119 beschriebene Abhängigkeit
von Linker-Charakteristiken wäre trivial zu beheben, wird aber nicht spezifiziert, da man den
Linker nicht als Teil des Sprachumfanges verstehen möchte.

Das Hauptargument für die Benutzung von C++ in Projekten, die länger leben sollen als der
typische Revisionsabstand einer propietären Softwarebasis ist der internationale Standard, in
diesem Falle [ISO 1998]. Er schützt das Projekt vor Willkürlichkeiten, die die Benutzbarkeit
von Code zerbrechen, dessen Autor nicht mehr zum Portieren auf die neue Umgebung zur
Verfügung steht.10

Schlussfolgerung

Eine Einbettung des symbolischen/algebraischen Teils einer Berechnung in C++ bietet sich an
und verspricht folgende Vorteile:

10 Hiervon gibt es menschlich bedingte Ausnahmen. Die in dieser Arbeit aufgetauchte Debatte um einen
GCC-Bugreport, nachzulesen im GNATS Audit Trail gcc/1565 unter http://gcc.gnu.org/ zeigt, dass
bisweilen lediglich die Autoren des Standards in der Lage sind, dessen Wortlaut zu verstehen. Es ging
hierbei um die Frage, ob

1 #define NIL(xxx) xxx
2 #define G_0(arg) NIL(G_1) (arg)
3 #define G_1(arg) NIL(arg)
4 G_0(42)

vom C/C++-Präprozessor zu 42 oder zu NIL(42) expandiert werden soll. Diese Frage konnte nur aus der
Erinnerung eines der Standard-Autoren über die beabsichtigte Semantik geklärt werden.

64 3. GiNaC: Motivation und Design

• Effizienz:
Durch Kompilation zu Maschinencode wird zeitkritischer Overhead vermieden. Dies mag
bei symbolischen Rechnungen wenig Vorteile bringen, macht sich aber insbesondere bei
der Integration mit nicht-symbolischen Rechnungen bemerkbar, wenn beispielsweise kleine
Schleifen mit effizienten Integerargumenten durchlaufen werden können statt mit arith-
metischen Typen beliebiger Genauigkeit.

• Strukturierte Sprachelemente:
Schleifenkonstrukte etc. sind in der Sprache enthalten und müssen nicht erst von Hand
implementiert werden.11

• Portabilität:
Effiziente Compiler sind weit verbreitet, ein gewisses Maß an Herstellerunabhängigkeit ist
daher erzielbar.

• Typsicherheit:
Schon zur Kompilierzeit wird abgesichert vor Operationen mit inkompatiblen Operanden.

• Algebraische Syntax:
Die elementaren Operationen +, -, *, =, ==, etc. können überladen und in Infix-Notation
intuitiv verwendet werden. Dies ermöglicht lesbarere Programme als Sprachen ohne Ope-
ratorüberladung. Wir können beispielsweise x+y schreiben, wo wir in Lisp (+ x y), in C
add(x,y,&z) und in Java x.add(y) schreiben müssten.

• Integrationsfähigkeit:
Einer Schätzung zufolge [PrWe 1999] wird Reduce in 50% der Rechenzeit lediglich ver-
wendet um Fortran- oder C-Code für die numerische Weiterverarbeitung zu erzeugen.
Dieser Prozess kann zwar nur zum Teil eliminiert werden, aber mit den Problemen der
Zweisprachigkeit wird der Benutzer gar nicht erst konfrontiert. (Siehe auch Kasten auf
Seite 69.)

• Langlebigkeit:
C++ ist keine Modesprache, sondern die lingua franca wissenschaftlichen Rechnens in der
Hochenergiephysik. Dies gilt in der Experimentalphysik noch weitaus mehr als in der
Theorie.

3.2. Das Design von GiNaC

GiNaC soll als Bibliothek implementiert sein und mit symbolischen Ausdrücken (Symbolen,
Summen, Produkten, . . .) direkt in dieser Sprache umgehen können. Ähnlich wie die Anwei-
sung l=x+y; für den Typ int eine Zuweisung des Ergebnisses der Summe von x und y an
eine Variable l darstellt, sollen Anweisungen mit symbolischen Objekten geschrieben werden
11 Die Implementierung in Computeralgebrasystemen kann durchaus unbefriedigend sein. MapleV beispiels-

weise kennt zwar while...do aber nicht do...while. Dies kann bei einigen Algorithmen zu sehr unnatür-
lichen und verdrehten Implementierungen führen. Ein gutes Beispiel ist der Vergleich der in [GCL 1992]
abgedruckten Fassung des Yun’schen Algorithmus zur quadratfreien Faktorisierung mit der in GiNaC im-
plementierten Fassung. Letztere kommt dank do...while ohne eine Duplizierung des Schleifenblockes aus
und ist leichter verständlich.

3.2. Das Design von GiNaC 65

e
x
p
a
i
r
s
e
q

p
o
w
e
r

p
s
e
r
i
e
s

r
e
l
a
t
i
o
n
a
l

m
a
t
r
i
x

e
x
p
r
s
e
q

a
d
d

n
c
m
u
l

f
u
n
c
t
i
o
n

i
n
d
e
x
e
d

basicex

l
s
t

t
e
n
s
o
r

c
l
i
f
f
o
r
d

m
u
l

i
d
x

c
o
l
o
r

v
a
r
i
d
x

t
e
n
s
d
e
l
t
a

B

A

ist
abgeleitet
von

basic

ex

abstrakte Klasse

Containerklasse atomare Klasse

Quellcode wird von Perl−Skript erzeugt

s
y
m
b
o
l

c
o
n
s
t
a
n
t

n
u
m
e
r
i
c

... ...
verwaltet

w
i
l
d
c
a
r
d

Abbildung 3.1.: Übersicht über die Klassenhierarchie von GiNaC 1.0 und einige Beziehungen zwi-
schen einzelnen Klassen.

können. Sind x und y beispielsweise aus dem Körper der gebrochenrationalen Zahlen, so ist
das Ergebnis klarerweise wieder in diesem Körper. Sind sie dagegen Symbole ohne Bindung,
so ist das Ergebnis eine unevaluierbare Summe. Hatte y zuvor die Variablenbindung −x, so
ist das Ergebnis aber einfach die Null. Aus diesem einfachen Beispiel folgt, dass es wenig
sinnvoll ist, die Operatoren für Addition und Subtraktion so zu überladen, dass sie immer ein
Summenobjekt zurückliefern.

Diese automatische Umformung wird von einem eingebauten anonymen ⇒ Evaluator vorge-
nommen und sein Rückgabewert ist die Klasse aller darstellbaren Ausdrücke, genannt ex,
kurz für „expression“. Klasse ex ist ein sogenannter „Wrapper“, eine Hüllklasse (in anderen
Zusammenhängen auch „Proxy“ genannt, so z.B. in der Terminologie von [GHJV 1995]). Sie
ist extrem leichtgewichtig, da sie das eigentliche algebraische Objekt indirekt mittels eines
Zeigers darauf auf dem Heap als Referenz verwaltet. Um etwas präziser zu sein: mit „extrem
leichtgewichtig“ ist gemeint, dass ex außer einem Zeiger nichts enthält (auch keinen vptr),
also sizeof(ex)=sizeof(void*). Die Verwaltung als Zeiger dient zweierlei Zwecken: Erstens
haben damit alle Ausdrücke die gleiche Größe, was eine Voraussetzung für das Erzeugen von
STL-Containern ist. Zweitens kann nur per Zeiger oder Referenz die zu einem Objekt passende
virtuelle Methode aufgerufen werden, wenn ex einen Methodenaufruf weiterdelegiert.

Eine Referenzzählung trägt dafür Sorge, dass Objekte genau so lange leben wie sie in Gebrauch
sind. Einerseits ruft die Sprachimplementierung beim Verlassen eines Blockes automatisch die
Destruktoren der im Block deklarierten Objekte auf. Andererseits können nicht alle Objekte
gelöscht werden, wenn wiederum andere Ausdrücke auf sie Bezug nehmen. Dass dies tatsäch-

66 3. GiNaC: Motivation und Design

lich der Fall ist, dafür sorgen der Copy-Konstruktor und der Zuweisungsoperator der Klasse
ex. Ist ein darstellbares Objekt auf dem Stack, so wird zunächst einmal eine Kopie davon dy-
namisch auf dem Heap erzeugt und in allen weiteren Wrapper-Objekten nur noch ein Zeiger
darauf verwaltet:

1 symbol x("x");
2 ex f = 2*x; // legt Kopie von x auf dem Heap an
3 ex g = f; // kopiert Zeiger, erhöht Referenzzähler

Die aus der Sprache Perl [WCS 1996] bekannten Skalare verhalten sich unter Referenzierung
so ähnlich (auf den subtilen Unterschied wird auf Seite 71 eingegangen werden). Python ist
eine weitere populäre Programmiersprache, die völlig auf Referenzzählung beruht.

Mechanismen der Referenzzählung

Der Klasse ex obliegt die alleinige Zuständigkeit für das korrekte Verwalten der von basic
abgeleiteten algebraischen Objekte auf dem Heap. Die zuständigen Methoden und ihre Funk-
tionsweise werden im Folgenden skizziert.

Erzeugen: Erzeuge Basisobjekt auf dem Heap, verwalte einen Zeiger darauf. Nicht nur Sum-
men und Produkte sondern auch einzelne Symbole und Zahlen sind Objekte – die Ob-
jektauflösung in GiNaC ist also extrem feinkörnig. Wenn solche Objekte auch noch
sehr häufig vorkommen, kann dies zu einer gewissen Speicherverschwendung führen.
Diesem Problem versucht man häufig mit dem sogenannten „Flyweight“-Muster bei-
zukommen [GHJV 1995]. So könnte der ex-Konstruktor für kleine ganze Zahlen eine
Flyweight-Fabrik aufrufen, die zum Beispiel Zeiger auf schon erzeugte ganze Zahlen in
einem assoziativen Array speichert und nur noch den Referenzzähler erhöht, falls die
Zahl schon vorhanden ist.

Kopieren: Der Copy-Konstruktor ex::ex(const ex &) kopiert den Zeiger auf das Basis-
objekt und inkrementiert dessen Referenzzähler. Der Copy-Konstruktor ist also nicht-
trivial und die nichtlokale Manipulation des von ex verwalteten Objektes macht sei-
ne Ausführungskomplexität zwar unabhängig von der Größe des verwalteten Objek-
tes, aber dennoch etwas langsam. Aus diesem Grund empfiehlt es sich, Objekte vom
Typ ex in Parametern stets als Referenz zu übergeben – obwohl sie sehr klein sind
(sizeof(ex)=sizeof(void*)) und als Faustregel kleine Objekte in C++ sonst typi-
scherweise als Wert übergeben werden sollten.

Zerstören: Der Destruktor ex::˜ex() dekrementiert zunächst den Referenzzähler des ver-
walteten basic-Objektes, und falls dieser auf Null gesunken ist, ruft er dessen delete-
Operator auf (welcher normalerweise nicht explizit überladen ist, sondern nur implizit
als Destruktoraufruf von virtual basic::˜basic() definiert ist).

Zuweisen: Die Methode ex::operator=(const ex &) implementiert die Zuweisung als suk-
zessives Zerstören (falls der dekrementierte Referenzzähler des verwalteten und von
basic abgeleiteten Objektes this->bp auf Null gesunken ist) und anschließendes Kopie-
ren (durch Zuweisung des basic-Zeigers und Inkrementieren dessen Referenzzählers).

3.2. Das Design von GiNaC 67

Vergleichen: Die Methode .compare() etabliert eine kanonische Äquivalenzrelation auf den
GiNaC-Objekten: Zwei gleiche Objekte sollen unter a.compare(b) 0 zurückliefern (Re-
flexivität), ansonsten ±1, wobei a.compare(b)= −b.compare(a) (Symmetrie) und
a.compare(b)=±1 ∧ b.compare(c)=±1 ⇒ a.compare(c)=±1 (Transitivität) gelten
sollen. Hierbei wird in vier Schritten vorgegangen: Beim Vergleich zweier ex miteinan-
der bietet es sich an, zunächst nur die Pointer auf die eingehüllte Klasse zu vergleichen:
sind diese identisch, so kann sofort 0 zurückgegeben werden. Als Nächstes werden die
jedem Objekt von einer ⇒ Hashfunktion zugeordneten Hashwerte ∈ {0 . . . 232−1} vergli-
chen, wobei die Äquivalenzrelation vermöge des Vergleiches natürlicher Zahlen etabliert
wird. Im Falle einer Hashkollision werden die RTTI-Schlüssel (run-time type informa-
tion) der entsprechenden Klassen verglichen, und falls auch diese identisch sind, wird
auf eine von der entsprechenden Klasse bereitgestellte Methode .compare_same_type()
zurückgegriffen, die die Eigenschaften der Äquivalenzrelation explizit definieren muss.

Das Erzeugen von Ausdrücken kann ein Problem für die Effizienz der Bibliothek sein. Die
meisten Funktionen in GiNaC müssen, da der Rückgabewert während des Kompilierens noch
nicht bekannt ist, ein allgemeines Objekt der Klasse ex zurückgeben. Da die Rückgabe jedoch
nicht auf dem Heap sondern auf dem Stack erfolgt, muss bei der Entgegenahme des Ergebnis-
ses in der aufrufenden Funktion das Objekt erst in den Heap kopiert – also dynamisch alloziert
– werden. Das Objekt wird also zweimal kopiert. Besser wäre es, wenn die aufgerufene Funk-
tion das von basic abgeleitete Objekt selbst schon dynamisch auf dem Heap erzeugt. Damit
der Konstruktor ex::ex(const basic &) aber nicht trotzdem noch einmal kopiert, muss er
die Möglichkeit haben festzustellen, ob das Objekt schon dynamisch alloziert ist. Zu diesem
Zwecke markiert die aufgerufene Funktion das Objekt als auf dem Heap liegend, indem es
selbst das Flag status_flags::dynallocated setzt. Der gewöhnliche Benutzer braucht sich
hierum nicht zu kümmern. Es reicht normalerweise völlig aus, das Objekt einfach per return
mein_objekt; zurückzugeben. Performanzkritische Methoden innerhalb der Bibliothek sollten
jedoch das Idiom return (new mein_objekt)->setflag(status_flags::dynallocated);
benutzen.12 Eine Rückgabe per return (new mein_objekt); darf niemals erfolgen. Sie er-
zeugt ein Speicherleck.

Eine Option: Fusion redundanter Ausdrücke

Im Prinzip ist es möglich, beim Vergleich zweier Hüllobjekte vom Typ ex miteinander eine
Objektabreicherung durch defensive Fusion redundanter Ausdrücke vorzunehmen und somit
Speicher zu sparen.13 Falls die Zeiger verschieden sind, die Objekte sich aber dennoch als
12 Ein verführerischer Gedanke kommt bei diesem Schema unweigerlich immer wieder auf. Das Bit namens

status_flags::dynallocated wird doch immer dann gesetzt, wenn ein Objekt explizit mittels new auf
dem Heap angelegt wird. Das Setzen dieses Bits könnte also automatisch von einem überladenen operator
new erledigt werden. Die Implementierung dieser Idee muss jedoch scheitern. Der operator new kann in
C++ lediglich den Speicher vorbereiten. Danach wird der Konstruktoraufruf ausgeführt und initialisiert den
Speicher. Eventuell von new gesetzte Werte werden dabei zwangsläufig überschrieben. Für eine erschöpfende
Diskussion warum ein automatisches Setzen dieses Bits in C++ auch mit anderen Tricks niemals sowohl
korrekt als auch portabel funktionieren kann siehe [Meye 1996, Kapitel 27].

13 Wir nennen die Fusion defensiv um sie zu unterscheiden von einer aggressiven Möglichkeit wie einer Durch-
musterung aller allozierten Ausdrücke. Dies wäre jedoch mindestens ein O(log N)-Prozess und ist daher

68 3. GiNaC: Motivation und Design

gleich herausstellen, kann eines der Objekte vernichtet werden und in den Hüllobjekten ein
Zeiger umgelenkt und ein Referenzzähler erhöht werden. Die Idee lässt sich an einem kleinen
Programmausschnitt darstellen:

1 symbol x("x");
2 ex e1 = x+x;
3 ex e2 = 3*x-x;
4 if (e1.compare(e2) == 0) {
5 // ...
6 }

Wir markieren die darin konstruierten Objekte vom Typ ex als Kreise und die von basic
abgeleiteten Objekte mit Rauten zusammen mit dem Stand ihrer Referenzzähler:
2 ex e1 = x+x; e1 wird erzeugt und soll x+x verwalten, was auf

dem Heap sofort zu 2*x kanonisiert wird. 2x
1

e1

3 ex e2 = 3*x-x; e2 wird erzeugt und soll 3*x-x verwalten, was
auf dem Heap zu 2*x kanonisiert wird. Noch
ist es aber ein anderes 2*x-Objekt als in Zeile
2 .

2x
1

2x
1

e2

e1

4
5

if (e1.compare(e2)==0) {
//...

e1 wird mit e2 verglichen. Die Gleichheit wird
bestätigt und die von e1 und e2 referenzierten
Objekte werden „fusioniert“. Da einer der Refe-
renzzähler auf Null sinkt, kann sein 2*x-Objekt
vernichtet werden.

2x
2

2x
0

e2

e1

In dem Fall, dass zwei Objekte mit Referenzzähler > 1 verglichen werden, kann nicht prinzipiell
ausgeschlossen werden, dass die Zeiger ungeschickt umgelegt werden. Lediglich die Tendenz,
immer das Objekt mit dem ohnehin schon höheren Referenzzähler zu bevorzugen, ist an dieser
Stelle formulierbar. Zu diesem Zwecke wird in ex::compare() aus der Zeile

1 return bp->compare(*other.bp);

der Anweisungsblock

1 const int cmpval = bp->compare(*other.bp);
2 if (cmpval==0) {
3 if (bp->refcount<=other.bp->refcount) {
4 if (--bp->refcount==0)
5 delete bp;
6 bp = other.bp;
7 } else {
8 if (--other.bp->refcount==0)
9 delete other.bp;

10 other.bp = bp;
11 }
12 ++bp->refcount;
13 }
14 return cmpval;

völlig unpraktikabel. Mathematica unterstützt mit der Funktion Share[] diese aggressive Fusion, verfügt
aber – nach einer privaten Mitteilung von Henry Cejtin – nicht über die defensive Variante. Auch sonst
scheint die defensive Fusion bisher nicht in der Literatur beschrieben worden zu sein.

3.2. Das Design von GiNaC 69

Optimierte Codegenerierung vs. Compileroptimierung
Die meisten Computeralgebrasysteme haben die Fähigkeit, Programmcode für numerische Eva-
luation in Maschinengenauigkeit zu erzeugen. Die freien Symbole müssen bei der Ausführung
natürlich durch Werte aus einer Stützpunktmenge ersetzt werden. Viele Systeme können den ge-
nerierten Code zudem schon optimieren. Da GiNaC keine ausgefeilten Methoden hierfür hat, stellt
sich die Frage ob der erzeugte Code überhaupt konkurrenzfähig ist. Die Optimierung, die Maple
beim Aufruf C(f,optimized) durchführt, besteht im Wesentlichen aus der Elimination aller red-
undanten Subausdrücke in f , geht also insbesondere über die hier vorgestellte defensive Fusion
zur Laufzeit hinaus. Betrachten wir das erste Beispiel aus der Maple-Dokumentation f(x) :=
1 − 2x + 3x2 − 2x3 + x4. Es wird unoptimiert zu 1.0-2.0*x+3.0*x*x-2.0*x*x*x+pow(x,4.0)
transformiert, wobei sich schon der Aufruf von pow(float, float) äußerst negativ auf die Per-
formanz auswirkt. Im optimierten Modus werden zunächst zwei temporäre Variablen t1=x*x und
t3=t1*t1 erzeugt und dann f(x) mittels 1.0-2.0*x+3.0*t1-2.0*t1*x+t3 berechnet. Die Eli-
mination gemeinsamer Unterausdrücke ist unter dem Namen CSE (engl: common subexpression
elimination) aber eine geläufige Compileroptimierung. Das Problem beim ursprünglichen Aus-
druck für f(x) ist, dass der Compiler bei der syntaktischen Suche nach Unterausdrücken keine
Umklammerung vornehmen darf. Die Sprachstandards gebieten aus Gründen der numerischen
Stabilität die strenge Einhaltung der Assoziativitätsreihenfolge, für C in [ISO 1999, Abschnitt
5.1.2.3] und für C++ in [ISO 1998, Abschnitt 1.9]. In [Baue 2000] wurde jedoch ein einfaches
Schema entworfen, in dem durch explizite Klammerung dem Compiler geholfen werden kann: Der
obige Ausdruck wird darin umgeschrieben zu 1.0-2.0*x+3.0*(x*x)-2.0*x*(x*x)+(x*x)*(x*x),
so dass der Compiler den Ausdruck x*x wiederverwerten kann. In diesem Falle wird von jedem
modernen Compiler automatisch derselbe Code generiert wie bei der von Maple optimierten Rou-
tine. Es sei angemerkt, dass die obige Art der Umklammerung mathematisch äquivalent ist zur
auf Seite 112 beschriebenen schnellen Exponentiation. Die Optimierung wie sie beispielsweise von
MapleV durchgeführt wird ist also eigentlich eine Art Pleonasmus. Eine abschließende Beurteilung
bezüglich Effizienz und Stabilität dieser beiden Ansätze und auch externer Werkzeuge wie Cta-
del [Enge 1998] steht noch aus. Die in [PrWe 1999] vorgenommene analysiert jedenfalls nicht das
Endprodukt in Form von Maschinensprache und berücksichtigt nicht das Wechselspiel zwischen
den verschiedenen Optimierungsschritten.

und die Variable ex::bp muss als mutable deklariert werden, da die Methode als const dekla-
riert worden ist und somit verspricht, ex::bp nicht zu verändern. Analog zu ex::compare()
sollte dann eigentlich noch ex::is_equal() abgeändert werden. Letzteres scheint aber in der
Praxis immer zu deutlich langsamerem Code zu führen.

Redundante Ausdrücke entstehen in symbolischen Umformungen tatsächlich recht häufig und
das Fusionieren kann bei gewissen Umformungen ein enormes Einsparungspotenzial haben.
Da ex::compare() aber eine Methode ist, die sich sehr empfindlich auf das Laufzeitverhalten
auswirkt und der obige Code sich in der Praxis bisher nur als minimal beschleunigend und
speichersparend (beides ca. 15% im Rahmen von [BKK 2001]) ausgewirkt hat, wird dieser Ab-
reicherungsmechanismus derzeit nicht benutzt.14 Außerdem bieten die genauen Implikationen

14 Dass dieses Fusionieren Speicher spart ist sofort einsichtig. Eine Messung hat ergeben, dass bei typischen
Anwendungen im cmpval==0-Fall in mehr als 50% aller Fälle Objekte fusioniert werden können. Dass es

70 3. GiNaC: Motivation und Design

dieser Technik für sich genommen wahrscheinlich ein reichhaltiges informatisches Untersu-
chungsfeld. Generell gibt es zwei mögliche Probleme dabei:

• Der Einfluss auf die Semantik von das Objekt modifizierenden Methoden muss genau
untersucht werden. Womöglich sollten alle Objekte vom Typ ex implizit als const ver-
standen werden, um semantische Verwirrungen auszuschließen. Dies kann syntaktisch zum
Beispiel dadurch erzwungen werden dass alle Rückgabewerte und alle Methoden als const
deklariert werden.

• Allgemein ist jeglicher Programmcode, der Zeiger auf von basic abgeleitete Objekte (zum
Beispiel const symbol *dummy = &ex_to<symbol>(e1);) anlegt, um sie später wieder
zu verwenden, anfällig gegen Interferenzen mit dem Fusionieren. Das referenzierte Ob-
jekt könnte nämlich in der Zwischenzeit vom Heap gelöscht worden sein. Um potenzielle
Probleme zu vermeiden dürfen solche Zeiger ohne ein für die Referenzzählung zuständiges
Hüllobjekt der Klasse ex nicht benutzt werden. GiNaC erlaubt aber gerade das Definieren
von diesen Objekten durch den Benutzer – es hat keine vollständig ausgebildete „Bridge“
zwischen ex und den von ex verwalteten Klassen. Streng genommen könnten wir diese
Sicherheit in der Sprache C++ niemals garantieren – der Benutzer kann im Zweifelsfalle
mit reinterpret_cast jeden Schutz umgehen.

Referenzzählung und zirkuläre Verweise

Implementierungen von Referenzzählungsmechanismen sind häufig der Kritik ausgesetzt, dass
sie nicht völlig sicher gegen Speicherlecks sind. Ein Vergleich mit anderen Referenzzählern tut
daher an dieser Stelle gut. Es handelt sich meist um zirkuläre Referenzen, die nicht mehr
entflochten werden können. In Perl [WCS 1996] beispielsweise erzeugt die folgende Prozedur
ein Speicherleck:

1 sub memleak
2 {
3 # Initialisiere zwei Skalare
4 my $e1 = "x";
5 my $e2 = "y";
6 # Referenziere sie gegenseitig
7 $e1 = \$e2;
8 $e2 = \$e1;
9 }

In den Zeilen 4 und 5 werden skalare Variablen (hier: Strings) angelegt, deren beider Refe-
renzzähler auf eins steht. In Zeile 7 wird durch die Anweisung, $e1 als Referenz auf $e2 zu
verstehen, der Referenzzähler von $e2 erhöht (und dabei dessen vorheriger Wert "x" vernich-
tet). Ebenso wird in Zeile 8 der Referenzzähler von $e1 auf zwei erhöht. Beim Verlassen des
Funktionsblockes werden die Referenzzähler von $e1 und $e2 um eins erniedrigt und stehen
somit wieder auf 1. Danach können sie aber nicht mehr angesprochen werden. Es ist eine

sich aber überhaupt beschleunigend auswirkt liegt wiederum an der Methode ex::compare() selbst: Beim
Vergleich zweier gleicher Objekte greift bei geteilten Ausdrücken die Abkürzung über den Zeigervergleich,
bei ungeteilten müssen alle vier Schritte durchlaufen werden.

3.2. Das Design von GiNaC 71

zirkuläre Struktur entstanden, die unmöglich wieder aufgebrochen werden kann, da $e1 und
$e2 nicht mehr im Scope, also nicht mehr verfügbar sind.

Vergleichen wir dies mit einer scheinbar analogen Situation in GiNaC:

1 void no_memleak(void)
2 {
3 // Initialisiere zwei skalare Ausdrücke
4 symbol x("x"), y("y");
5 ex e1 = x;
6 ex e2 = y;
7 // Referenziere sie gegenseitig
8 e1 = e2;
9 e2 = e1;

10 }

Dies führt in GiNaC nicht zu einem Speicherleck. Letztendlich liegt das daran, dass die Refe-
renzzählung anders als bei Perl nicht bei den Schlüsseln (dort: skalare Variablen, hier: Objekten
der Klasse ex), sondern bei den von ihnen referenzierten Werten (dort: Strings, hier: Objekte
der Klasse symbol) stattfindet. Um dies einzusehen ist es notwendig, die Referenzzählung ma-
nuell nachzuvollziehen. Wieder notieren kreisförmige Objekte die Klasse ex und rautenförmige
Objekte eine von basic abgeleitete Klasse mit dem aktuellen Wert ihres Referenzzählers.

4 symbol x("x"),
y("y");

Zwei Objekte der Klasse symbol werden auf
dem Stack erzeugt. x

0

y
0

5 ex e1 = x; e1 wird erzeugt und soll x verwalten, aber x ist
noch nicht dynamisch alloziert. Also wird zu-
nächst eine Kopie davon auf dem Heap angelegt.

x
1

x
0

y
0

e1

6 ex e2 = y; Ebenso wird e2 erzeugt und eine Kopie von y
auf dem Heap angelegt um von e2 verwaltet zu
werden.

e1

e2

x
1

x
0

y
0

y
1

8 e1 = e2; Da e1 nun nicht mehr x verwaltet, sinkt der
Referenzzähler des dynamisch allozierten x auf 0
weshalb es von ex::operator= vernichtet wird.

e1

e2 y
0

x
0

x
0

y
2

9 e2 = e1; ex::operator= erhöht den Referenzzähler des
dynamisch allozierten y und erniedrigt ihn
gleich wieder, da die von e1 und e2 verwalte-
ten Objekte identisch sind. Er fällt nicht auf 0,
daher wird nichts vernichtet. Die Anweisung ist
also eine Null-Operation.

e1

e2 y
2

y
0

x
0

72 3. GiNaC: Motivation und Design

10 } Die Variablen x, y, e1 und e2 fallen aus dem
Scope, ihre Destruktoren werden aufgerufen.
Die Destruktoren von e1 und e2 erniedrigen den
Referenzzähler des dynamisch allozierten y je-
weils um eins und der Letzte knipst das Licht
aus indem er dieses y vernichtet.

e1

e2 y
2

y
0

x
0

Wir können anmerken, dass die Sicherheit vor unbeabsichtigten Speicherlecks auch bei Va-
riationen der obigen Routine erhalten bleibt – immer vorausgesetzt natürlich, dass der Pro-
grammierer nicht explizit ein solches durch unsachgemäßen Umgang mit new konstruiert.
Beispielsweise ist auch die folgende Routine sicher:

1 void no_memleak(void)
2 {
3 // Initialisiere zwei skalare Ausdrücke
4 ex e1(symbol("x"));
5 ex e2(symbol("y"));
6 // Referenziere sie gegenseitig
7 e1 = e2;
8 e2 = e1;
9 }

Strenger formuliert könnte ein Speicherleck durch zirkuläre Referenzen dann auftreten, wenn
von basic abgeleitete Objekte gegenseitig aufeinander verweisen. Das ist aber nicht ohne
weiteres möglich, da diese Klassen keine Referenzen beinhalten. Auch Containerklassen wie
add oder mul enthalten nur Objekte vom Typ ex als Elemente. Die Trennung von algebraischen
Objekten und der sie verwaltenden Klasse ex gewährleistet die Speichersicherheit.
Dieses Prinzip scheint auch in anderen auf Referenzzählung basierten Computeralgebrasyste-
men zur Anwendung zu kommen. Nach einer privaten Mitteilung von Henry Cejtin ist es auch
in Mathematica für den Benutzer prinzipiell unmöglich, zirkuläre Ausdrücke zu erzeugen.

Darstellungsbäume

Da jeder symbolische Ausdruck selbst Unterausdruck in einem übergeordneten Ausdruck sein
kann, muss ihre Darstellung eine Baumstruktur sein. Das unexpandierte multivariate Polynom
2d3(4a + 6b − 3 − b) kann beispielsweise in der in Abbildung 3.2 skizzierten Datenstruktur
repräsentiert werden. Dies ist aber aus Gründen der Effizienz nicht begehrenswert. Alle Com-
puteralgebrasysteme führen daher Termumschreibungsregeln in einem sogenannten anonymen
Evaluator durch. Er fasst Terme zusammen und führt sie in eine effizientere Darstellung über.
In der Abbildung 3.2 wird er in der Klammer 6b und −b zu 5b addieren, auch wenn sie nicht
beieinander stehen. Das Ergebnis ist der Darstellungsbaum aus Abbildung 3.3. Die vorgenom-
mene Vereinfachung entspricht trivialerweise auch einer Abreicherung von Objekten, kommt
die Variable b doch in 5b einmal weniger vor als in 6b− b. Sie betreffen aber jeweils nur einen
Ast in der Verzweigung. In unserem Beispiel war das nur die Summe 4a+ 6b− 3− b.
Die Darstellung in Abbildung 3.3 ist aber immer noch nicht besonders effizient. Die Bestandtei-
le von Polynomen sind immer irgendwelche symbolische Terme und numerische Koeffizienten
und während der anonymen Evaluation werden Koeffizienten, die zu syntaktisch identischen

3.2. Das Design von GiNaC 73

power

d 3

2

mul

4 a

mul

b

−3 mul

b

mul

add

−16

Abbildung 3.2.: Mögliche unevaluierte Darstellung von 2d3(4a + 6b− 3− b).

power

muld 3 mul

2

−3

4 a 5 b

add

mul

Abbildung 3.3.: Naive (und ineffiziente) Darstellung des evaluierten Polynoms 2d3(4a + 5b− 3).

symbolischen Termen bestehen, zusammengefasst. Besser geeignet ist die distributive paar-
weise Darstellung aus Abbildung 3.4(a), bei der immer ein symbolischer Term mit einem
Koeffizienten zusammengefasst wird. Da viele Evaluationsregeln für Summen und Produkte
strukturell identisch sind, werden beide von einer Basisklasse expairseq abgeleitet (verglei-
che Abbildung 3.1). Die Semantik der Koeffizienten ist für Summen diejenige multiplikativer
Faktoren, während sie für Produkte diejenige von Exponenten ist: Der Regel 2a+ a→ 3a bei
Summen entspricht a2a → a3 bei Produkten. Eine beträchtliche Teilmenge der Evaluations-
regeln braucht so nur einmal implementiert zu werden.

Außerdem gehört sowohl zu Summen als auch Produkten im Allgemeinen ein rein numerischer
Koeffizient, wie die 5 in 2a + 3b + 5 oder 5a2b3. Dieser wird gesondert, also nicht paarweise,
schon in expairseq untergebracht. Das Ergebnis, der Darstellungsbaum in Abbildung 3.4(b),
erscheint zwar zunächst etwas unübersichtlicher, die Erfahrung zeigt aber, dass sich die Im-
plementierung aller polynomialen Methoden (expand, etc.) nicht unbeträchtlich vereinfacht
gegenüber den symmetrischeren und weniger effizienten Darstellungen.

Nur solche Vereinfachungen, die in Komplexität < n2 ausgeführt werden können, werden
von GiNaC automatisch im anonymen Evaluator durchgeführt. Bei multivariaten Polynomen
heißt dies zum Beispiel, dass das Distributivgesetz Anwendung findet bei Multiplikation mit
numerischen Faktoren, jedoch nicht bei Multiplikationen mit symbolischen Skalaren. Maple’s
und MuPAD’s Evaluationsmaschinen verhalten sich sehr ähnlich. Diese Wahl ist natürlich
willkürlich und kann bei der praktischen Implementierung zu überraschenden Problemen füh-
ren, die bei einer strengeren kanonischen Darstellung nicht auftreten würden. Die Probleme,

74 3. GiNaC: Motivation und Design

1

2

1

add

b

5

a

4

−3

1

d

3

mul

(a) Die paarweise Darstellung von Produk-
ten und Summen als Vektoren von Paaren
aus Ausdrücken mit numerischen Koeffizi-
enten

d

3 1

b

5

a

4 −3

2

mul

add

(b) Paarweise Darstellung mit Sonderstel-
lung isolierter numerischer Koeffizienten
(realisiert in GiNaC)

Abbildung 3.4.: Realistische Darstellungen von 2d3(4a+5b−3). In der paarweisen Darstellung sind
isolierte numerische Koeffizienten (wie die −3 in 4a+5b−3) stets ganze Ausdrücke mit numerischem
Koeffizienten 1.

die in den Kästen auf Seiten 75, 106 und 109 beschrieben werden, sind letztlich alle darauf
zurückzuführen.

Methodenfortpflanzung

Ganz im Geiste der objektorientierten Programmierung sind die Methoden auf Klassen in
der Regel rekursiv definiert, solange sie in ein Schema passen, das den Baum entweder top-

1

2 3

4 5

1

2 3

4

5

Abbildung 3.5.: Baumdurchschreitung:
Preorder und Postorder

down oder bottom-up durchschreitet. Containerob-
jekte C(x0, . . . , xn−1) geben die entsprechende Me-
thode f zunächst an ihre Kinder weiter, wenden ih-
re eigene Implementierung von f auf die Ergebnisse
f(x0) . . . f(xn−1) an und geben das Gesamtergebnis
dann zurück. Top-down (auch preorder traversal) un-
terscheidet sich natürlich nur dadurch von bottom-up

(postorder traversal), dass in ersterer Strategie f erst auf das Objekt selbst angwendet wird
und dann auf die Kinder, während diese Reihenfolge in der zweiten Strategie umgekehrt ist.
Die Ziffern in Abbildung 3.5 kennzeichnen die so zustande kommenden Reihenfolgen.
Man denke zum Beispiel an die Differentiation. Ein Objekt der Containerklasse add diffe-
renziert erst seine Kinder und gibt dann die Summe der Ergebnisse zurück, ein Objekt der
Containerklasse mul muss zusätzlich noch die Produktregel implementieren. Eine vollständi-
ge Auflistung der implementierten Regeln findet sich in [Baue 2000]. Obwohl das Verfahren
glasklar erscheint, verursachte es dennoch reichlich Kopfzerbrechen, bis eine ausreichende Ef-
fizienz erreicht war. Die Subtilität liegt hier auf einer Wechselwirkung mit GiNaC’s Hashwert-
unterstütztem syntaktischem Vergleichen von Ausdrücken und der internen Darstellungsweise
von Produkten und Summen (siehe Kasten auf Seite 75).

3.2. Das Design von GiNaC 75

Effizientes Differenzieren
Vor Version 0.6.3 waren die Ausdrücke, die GiNaC beim Differenzieren erzeugte, häufig zu um-
ständlich – höhere Ableitungen wurden mitunter hoffnungslos ineffizient. Die Ursache war eine
Wechselwirkung der Ableitungsregeln mit dem hashwertunterstützten syntaktischen Vergleichen
von Ausdrücken. So werden 2x(1+x) und x(2+2x) nicht automatisch als äquivalent erkannt, da
ihnen verschiedene Darstellungen zukommen. Die Ursache sieht man am leichtesten ein, wenn man
rationale Funktionen mehrfach ableitet. Man differenziert beispielsweise P ′/P , P ∈ �[x] zweimal:

(P ′

P

)′
=

P ′′

P
− (P ′)2

P 2(P ′

P

)′′
=

P ′′′

P
− P ′′P ′

P 2
− 2

P ′P ′′

P 2
+ 2

(P ′)3

P 3
=

P ′′′

P
− 3

P ′′P ′

P 2
+ 2

(P ′)3

P 3
.

Der letzte Schritt kann von einer Maschine nur dann ausgeführt werden, wenn sie die Gleichheit der
beiden Terme P ′′P ′

P 2 und P ′P ′′
P 2 erkennt. Die Möglichkeit hierfür kann jedoch bei der Anwendung der

Produktregel schon in der ersten Ableitung verbaut werden. Setzt man zum Beispiel P = x + x3,
so erzeugt die Ableitung von P ′/P nach x

(P ′

P

)′
= 6

x

x + x3
− (1 + 3x2)2

(x + x3)2
.

Leiten wir den zweiten Term nochmals ab, so erzeugt die Ableitung des Zählers 2(1 + 3x2)6x,
wenn sie als ein mul-Objekt innerer Ableitung mal Argument (1+ 3x2) mit um Eins erniedrigtem
Exponenten mit dem Exponenten als Überalles-Koeffizienten dargestellt wird. Stellt man sie statt-
dessen als innere Ableitung mal äußerer Ableitung dar, so erhält man 6(2 + 6x2)x, da die Regel
2(1 + 3x2)→ (2 + 6x2) für mul-Objekte automatisch angewendet wird. Dies ist zwar algebraisch
korrekt, führt jedoch dazu, dass der entstehende Term nicht mehr automatisch zusammengefasst
wird mit dem Term −6x(1+3x2)

(x+x3)2
, der aus der Ableitung des ersten Summanden entsteht. Weite-

res Differenzieren des Ergebnisses verschlimmert die Situation rasch. Man verifiziert auch leicht,
dass selbst eine direkte Implementierung der Leibniz-Regel für höhere Ableitungen von Produkten
dn

dxn (PQ) =
∑n

i=0

(n
i

)
di

dxi P
dn−i

dxn−i Q keine Abhilfe schafft. Betroffene Ausdrücke kommen in Schlei-
fenrechnungen nicht selten vor, das Muster P ′/P ist dort typisch – außerdem ist es natürlich
gleich log(P)′.

Das Ausmultiplizieren mittels Aufruf von .expand() ist ein typisches Beispiel, wie Methoden
sich rekursiv durch einen Baum fortpflanzen. Die Performanz dieser häufig gebrauchten Me-
thode ist empfindlich von der internen Darstellung abhängig. Wir wollen GiNaC mit ein paar
anderen symbolischen Maschinen vergleichen und benutzen hierzu den als Denny-Fliegner-Test
bekannten Benchmark.15 Er besteht aus drei Schritten:

• Sei e die (expandierte) Summe der n Symbole {a0, . . . an−1} quadriert: e ← (
∑n−1

i=0 ai)
2.

Der Ausdruck e besteht also aus n(n+1)/2 Termen.

• In e substituiere a0 ← −
∑n−1

i=2 ai. Es werden also in n Termen der Summe jeweils ein
Symbol ersetzt durch Ausdrücke bestehend aus n−2 Summanden.

15 Er ist benannt nach Denny Fliegner, der ihn während der Parallelisierung von Form zur Konsistenzüber-
prüfung benutzte.

76 3. GiNaC: Motivation und Design

 0.1

 1

 10

 100

 100 1000

La
uf

ze
it

t/s

Größe n

GiNaC 1.0
Mathematica 4

MapleV R5
Reduce 3.6

MuPAD 1.3

Abbildung 3.6.: Laufzeiten verschiedener Symboliksysteme für Denny Fliegners Konsistenztest auf
einer Alpha-Architektur.

• Expandiere e. Das Ergebnis ist dann a 2
1 .

Abbildung 3.6 zeigt, dass die Systeme Mathematica, MuPAD [Fuch 1997] und GiNaC das
natürliche n2-Skalierungungsverhalten aufweisen, wobei GiNaC das schnellste System ist. Die
zwei Systeme Reduce und Maple hingegen sind überraschend schnell bei kleinen Problemen,
werden jedoch zunehmend langsamer, wenn man das Problem vergrößert. Dies ist eine direk-
te Konsequenz der unterschiedlichen Speicherverwaltung: Maple und Reduce benutzen einen
Garbage-Collector während Mathematica, MuPAD und GiNaC eine Referenzzählung imple-
mentieren, was häufige Zeiger-Dereferenzierungen erfordert (ein aufwändiger Prozess, wenn
die gesuchten Daten nicht mehr in einem der Caches der Architektur liegen). Außer dem
Skalierungsverhalten lässt sich an den Endpunkten der Kurven auch noch die Effizienz der
Speicherverwaltung aus der Abbildung ablesen: Jedem System wurden für die Berechnung ma-
ximal 1GB Speicher zur Verfügung gestellt und die Kurve endet bei der damit erreichbaren
Zahl n von Termen in e. Einige Systeme verschwenden diesen deutlich großzügiger als andere.

4. GiNaC: Implementierung

«Je ne sers à rien, dit Bruno avec résignation. Je suis incapable
d’élever des porcs. Je n’ai aucune notion sur la fabrication des

saucisses, des fourchettes ou des téléphones portables. Tout ces objets
qui m’entourent, que j’utilise ou que je dévore, je suis incapable de les
produire; je ne suis même pas capable de comprendre leur processus de

production. [. . .] mes compétences techniques personnelles sont
largement inférieures à celles de l’homme de Néanderthal.»

Michel Houellebecq: «Les particules élémentaires»

In diesem Kapitel werden Aspekte der Implementierung von GiNaC beschrieben. Dabei wird
das Hauptaugenmerk auf solchen Aspekten liegen, die im Rahmen dieser Arbeit behandelt
worden sind sowie auf der Motivation von Designentscheidungen die nicht an anderer Stelle
schon dargestellt worden sind.

4.1. Die wichtigsten Klassen

Alle von basic abgeleiteten Klassen aus Abbildung 3.1 nehmen automatisch an der Spei-
cherverwaltung teil, sobald sie von einem Objekt der Klasse ex verwaltet werden. Wenn es
sich um Containerklassen handelt, enthalten sie weitere Subobjekte vom Typ ex. Die Klassen
implementieren jedoch selbst auch automatische Umformungen in einem ⇒ Evaluator. Hierfür
überschreibt in GiNaC jede Klasse eine Methode namens eval. In den folgenden Abschnitten
werden die einzelnen Klassen beschrieben und diese automatischen Umformungen aufgezählt.

Vereinfachungen und kanonische Form

Die Menge der Vereinfachungen, die in einem CAS automatisch vom Evaluator durchgeführt
werden dürfen, muss sorgfältig auf innere Konsistenz abgeklopft werden. Im Falle von Funk-
tionen und ihren Inversen ist zum Beispiel wohlbekannt, dass die Regel elnx → x unbedenklich
ist, die Regel ln ex → x jedoch nicht für beliebige x anwendbar ist, da die Exponentialfunktion
als Abbildung nicht injektiv ist (dies wird bisweilen Aslaksen-Test genannt, nach [Asla 1996]).
Eine automatische Vereinfachung darf also nicht durchgeführt werden, da dies zu Widersprü-
chen führen würde, wie das Beispiel ln e3πi = ln(−1) = πi verdeutlicht.1 Alternativ dürfte

1 Reduce [Hear 1995] erlaubt sich, dies dennoch zu vereinfachen. Dies führt jedoch an anderer Stelle zu
Überraschungen, wie im folgenden Dialog:

78 4. GiNaC: Implementierung

man die Vereinfachung durchführen, wenn man dafür in Kauf nimmt, die Entwindungszahl
K oder die η-Funktion (siehe Anhang A) in die rechte Seite mit aufzunehmen. Es ist jedoch
noch kein Algorithmus bekannt, der diesen Zusatzterm im weiteren Verlauf der Rechnung im
Allgemeinen wieder zu eliminieren vermag [CDJLW 2001].

Ähnlich wie in Mathematica oder Maple stellen wir uns jedes freie Symbol in einer Rechnung
als unbekanntes Element aus � vor – schließlich kann es zu einem späteren Zeitpunkt durch
eine komplexe Zahl ersetzt werden. Denkbar wäre an dieser Stelle, auch unfreie Symbole zu-
zulassen, indem man sie spezifiziert als Element eines Bereiches, zum Beispiel als reell. Daraus
aufgebaute Ausdrücke würden dann abgefragt werden können, ob sie aus diesem Bereich sind
(Polynome sind Element des größten Bereiches der in ihren Symbolen vorkommt). Dies ist mit
Bereichen noch realisierbar, bricht aber zusammen, wenn Eigenschaften wie Positivität eines
Symbols spezifiziert werden sollen: Sind x, y > 0, so ist die Frage ob x−y > 0 ist, unentscheid-
bar und bedarf daher einer ternären Logik oder zweiten Abfrage mit negiertem Prädikat (also
x − y < 0). Inferenzmaschinen für die Entscheidungsfindung solcher Prädikate sind jedoch
notorisch von exponentieller Komplexität und immer noch ein aktiver Wissenschaftszweig für
sich – genug Gründe warum wir uns nicht damit abgeben wollen und können.

4.2. Kanonisierung von Produkten: die Klassen ,mul’
und ,ncmul’

Produkte von kommutierenden symbolischen Objekten werden in der Klasse mul dargestellt.
Nichtkommutative Produkte werden in der Klasse ncmul gesondert sortiert. Wenden wir uns
zunächst den kommutativen Produkten zu. Wie schon in Abbildung 3.4(b) auf Seite 74 gezeigt,
besteht die Darstellung genau wie bei Summen aus Paaren von symbolischen Ausdrücken und
Zahlen. Wo bei der Klasse add die Zahlen multiplikative Faktoren darstellten, sind es bei der
Klasse mul Exponenten, in jedem Fall haben sie additive Semantik. Zusätzlich gibt es jeweils
noch ein zusätzliches numerisches Argument, in Abbildung 3.4(b) rechts dargestellt.

Der anonyme Evaluator der Klasse mul darf im Gegensatz zum Konstruktor allgemeine symbo-
lische Ausdrücke zurückgeben und zum Beispiel im Produkt x1 ·x−1 die Faktoren mit gleichen
symbolischen Termen zusammenfassen zum nicht-Produkt 1. Er bedient sich der folgenden

1 1: log(exp(x));
2 x
3 2: log(exp(3*Pi*i)); % log(-1.0000)
4 log(-1)
5 3: log(exp(47/5*i)); % log(�-0.9997+0.0248*i)
6 (47*i)/5

Das System Yacas [Pink 2000] erlaubt sich dies sogar konsequent bei allen trigonometrischen Funktionen:

1 In(0) = Ln(Exp(x));
2 Out(0) = x;
3 In(1) = ArcSin(Sin(x));
4 Out(1) = x;

4.3. Vereinfachungen in der Klasse ,power’ 79

Regelmenge, wobei ci für numerische Objekte und xi für nichtnumerische stehen soll:

mul(· c) → c

mul(x1 · 1) → x1

mul(. . . · x cn
n · 0) → 0

mul(. . . · c 1
1 · . . . · c) → mul(. . . · (c1c))

mul(. . . · x c1
1 · 1 · x c2

2 · . . .) → mul(. . . · x c1
1 · x c2

2 · . . .)
mul(add(. . . + c1 ·x1 + c2 ·x2 + . . .) · c) → add(. . . + (c c1)·x1 + (c c2)·x2 + . . .)

Hierin tauchen Zahlen immer in der Form c 1
i , also mit dem Exponenten 1 auf. Dafür sorgt

der anonyme Evaluator der Klasse power (siehe nächster Abschnitt). Man bemerke, dass diese
Regelmenge im letzten Schritt das Distributivgesetz beinhaltet, wenn einer der Koeffizienten
numerisch ist. Die Anzahl der berechneten Terme bleibt dann nämlich konstant, während sie
im symbolischen Fall mit dem Produkt der Anzahl der Ausgangsterme ansteigt – hierfür muss
explizit expand aufgerufen werden.
Nichtkommutative Produkte sind einfache Vektoren von nichtkommutativen Objekten – es
gibt keine Exponenten repräsentierende numerischen Koeffizienten. Da die einzelnen Objekte
darin verschiedenen Algebren angehören können, schreiben wir zur Unterscheidung xi, xj ∈ Ax

und yi, yj ∈ Ay. Die Regelmenge des anonymen Evaluators lautet:

ncmul() → 1

ncmul(x1) → x1

ncmul(. . . · c1 · . . . · c2 · . . .) → mul(ncmul(. . .) · (c1c2))
ncmul(. . . · x1 · y1 · . . . · x2 · y2 · . . .) → mul(ncmul(x1 · x2 · . . .) · ncmul(y1 · y2 · . . .))

ncmul(. . . · x1 · . . . · ncmul(x2 · x3 · . . .)) → ncmul(x1 · x2 · x3 · . . .)
Numerische und andere kommutative Objekte werden also aus dem ncmul-Objekt herausgezo-
gen und in einem übergeordneten mul-Objekt untergebracht. All dies geschieht völlig transpa-
rent für den Programmierer. Im Gegensatz zu den meisten anderen Computeralgebrasystemen
werden nichtkommutative Produkte mit dem überladenen *-Operator aus nichtkommutativen
Objekten aufgebaut.2 Dies entspricht dem mathematischen Bild, dass die Eigenschaft, nicht
zu kommutieren, eine Eigenschaft der Objekte der Algebra ist, während die aus Maple und
Reduce bekannte Schreibweise mit dem &*-Operator dem Bild entspricht, dass die Nichtkom-
mutativität eine Eigenschaft des Produktes in dieser Algebra ist. Beide Ansichten sind freilich
äquivalent, die Benutzung eines einzigen Operators ist jedoch sehr attraktiv, beseitigt sie doch
eine häufige Fehlerquelle.

4.3. Vereinfachungen in der Klasse ,power’

Das Aufstellen von Regeln zur automatischen Vereinfachung von Potenzobjekten stellt sich als
besonders schwierig heraus. Im Gegensatz zu Summen und Produkten von einfachen Symbolen

2 [ISO 1998, Abschnitt 1.9.15] spezifiziert, dass ein Compiler überladene Operatoren niemals als kommutativ
annehmen darf.

80 4. GiNaC: Implementierung

ist es ist nicht möglich, eine kanonische Form anzugeben, die effizient den Gleichheitstest
solcher Objekte ermöglicht. Zudem gibt es Klassen von Potenzobjekten, bei denen, selbst wenn
man auf eine kanonische Form verzichtet, ein Gleichheitstest mit algorithmischen Mitteln gar
nicht möglich ist. Es gibt drei Klassen von algebraischen Zahlen: einfache Wurzeln (

√
2),

verschachtelte Wurzeln (
√

1 +
√

2) und solche, die sich nicht als Wurzeln schreiben lassen,
sondern lediglich als Nullstellen algebraischer Gleichungen – wie die Lösung von x5−x+1 = 0.
Da Letztere nicht mehr von Objekten der Klasse power dargestellt werden können, betrachten
wir kurz die Zweite. Eine kanonische Form zu finden, in die sich alle algebraischen Zahlen dieser
Klasse umformen lassen, ist zwar nicht prinzipiell unmöglich in dem Sinne, dass das Problem
zumindest noch wohldefiniert ist, erfordert aber im allgemeinen Fall bisher nicht bekannte
algorithmische Hilfsmittel [JeRi 1999, Land 2002]. Eine nahe liegende kanonische Form könnte
darin bestehen, dass man verschachtelte Wurzeln stets umschreibt in Summen aus einfachen
Wurzeln – aus

√
9 +
√

32 macht man z.B. 1 +
√

8. Falls der Grad der Verschachtelung zwei
nicht überschreitet und es sich lediglich um Quadratwurzeln handelt, gibt es Algorithmen, die
diese Vereinfachung bewältigen [DST 1988] (welche jedoch in keinem Computeralgebrasystem
für Erzeugung kanonischer Formen verwendet zu werden scheinen). Für Objekte mit höheren
als Quadratwurzeln, wie die linke Seite der auf S. Ramanujan zurückgehenden Identität

3

√
5
√

32/5− 5
√

27/5 = 5
√

1/25 + 5
√

3/25− 5
√

9/25, (4.1)

scheinen jedoch gar keine Algorithmen bekannt zu sein um sie (falls möglich) in Summen ein-
facher Wurzeln wie die rechte Seite umzuwandeln. Es bleibt also die Frage, ob für Objekte der
ersten Klasse von algebraischen Zahlen, also unverschachtelte Wurzeln, eine kanonische Form
gefunden werden kann. Die Antwort lautet ja, aber der Aufwand wächst zu stark, um eine
Implementierung sinnvoll erscheinen zu lassen. Wie man schnell einsieht wären einfache Wur-
zeln zwar zerlegbar in Produkte aus einfachen Wurzeln von Primzahlen 3

√
15→ 3

√
3 3
√

5, welche
dann nach Größe sortiert werden könnten, dies liefe aber offensichtlich auf Primfaktorzerle-
gung eventuell großer ganzer Zahlen hinaus, was unangemessenen Rechenaufwand erfordert.
Wenn wir jetzt noch konstatieren, dass bisher nur auf numerische Argumente der innersten
Wurzeln eingegangen worden ist und die Komplikationen im symbolischen Fall noch gar nicht
erwähnt worden sind, glaubt man vielleicht, dass für Wurzeln überhaupt keine kanonische
Form praktikabel ist.
Für die Darstellung der Termumschreibungsregeln der Klasse power beginnen wir mit der

Definition 4.1 (Potenz) Als Definition setzen wir hier voraus

xa ≡ ea lnx (4.2)

wo der Logarithmus den Schnitt (siehe Anhang A) entlang der negativen reellen Achse habe:

ln x ≡ ln |x|+ i arg x, arg x ∈ (−π, π]

Wir notieren, dass hieraus erst die Regel xaxb → xa+b zum Zusammenfassen in der Klasse mul
folgt: für beliebige komplexe x und y gilt schliesslich exey = ex+y, woraus natürlich wegen 4.2
auch

xaxb ≡ ea ln xeb lnx = e(a+b) ln x ≡ xa+b

4.3. Vereinfachungen in der Klasse ,power’ 81

folgt ∀x, a, b ∈ �. Diese Regel wird schon in mul::eval() für numerische Exponenten ange-
wendet, für symbolische bleibt die linke Seite vom Evaluator ganz unangetastet.
Da algebraische Korrektheit die Generalvoraussetzung bei allen Umformungen ist, aber Ver-
einfachungspotenzial ausgeschöpft werden soll wo immer möglich, werden die Regeln für den
anonymen Evaluator (implementiert in der Methode power::eval()) überraschend komplex.
Wir zählen im Folgenden diese Vereinfachungen mit ihrem jeweiligen Gültigkeitsbereich auf
und beweisen sie.

power(x^1) → x

power(x^0) → 1

power(1^x) → 1

power(c1^c2) → c1
c2

Diese trivialen Vereinfachungsregeln folgen sofort aus der Definition. Die letzte Regel ist so
zu lesen, dass die Exponentiation numerisch ausgeführt wird, sofern dies exakt möglich ist,
etwa in 23 → 8 oder 271/3 → 3 – auf die Ausnahme 0a für numerisches a werden wir weiter
unten auf Seite 83 noch einmal zurückkommen. Diese Regel wird in der Praxis so modifiziert,
dass power::eval() dafür sorgt, dass der Wert des gebrochenrationalen Anteils des Expo-
nenten zwischen 0 und 1 zu liegen kommt, falls die Exponentiation nicht exakt ausgeführt
werden kann, also z.B. 7−3/2 → 7−2 7

1/2. Es sei angemerkt, dass Identitäten mit verschachtel-
ten Wurzeln wie Gleichung (4.1) oben mit diesem Mittel zwar nicht herleitbar sind, aber durch
Exponentiation zumindest schon in den Bereich der exakten automatischen Verifizierbarkeit
rücken.3

Für c ∈ � : power(mul(· · ·x1 · x2 · · ·)^c) → mul(· · ·power(x1^c) · power(x2^c) · · ·)
Um diese Regel einzusehen führen wir eine Fallunterscheidung durch. Für c = 0 ist es trivial.
Sei daher zunächst c > 0:

(x1x2)
c = (x1x2) · · · (x1x2)︸ ︷︷ ︸

c×

= x1 · · ·x1︸ ︷︷ ︸
c×

x2 · · ·x2︸ ︷︷ ︸
c×

= x1
cx2

c.

Ist hingegen c < 0, so führt man auf den Fall c > 0 zurück:

(x1x2)
c =

1

(x1x2)|c|
=

1

x
|c|
1 x

|c|
2

= x
−|c|
1 x

−|c|
2 = xc

1x
c
2.

Falls der Exponent nicht ganzzahlig ist, so kann unter Umständen eine ähnliche Regel ange-
wendet werden:

Für c1 > 0 : power(mul(x · c1)^c2) → mul(power(x^c2) · c1c2))
Für c1 < 0 : power(mul(x · c1)^c2) → mul(power(− x^c2) · c1c2))

3 Tatsächlich gehört eine Variation dieser Gleichung zur Suite der Regressionstests von GiNaC.

82 4. GiNaC: Implementierung

Ist c1 ∈ � positiv und x, c2 ∈ � beliebig (x symbolisch, da sonst mul::eval() schon multipli-
ziert hätte), so darf diese Regel auch angewendet werden, da

(c1x)
c2 = ec2 ln(c1x) = ec2(ln |c1x|+i arg(c1x)),

worin wegen

ln |c1x| = ln |c1|+ ln |x| = ln c1 + ln |x| und arg(c1x) = arg x

vereinfacht werden darf zu

(c1x)
c2 = ec2(ln c1+ln |x|+i arg x) = ec2(ln c1+lnx) = ec2 ln c1ec2 ln x = c1

c2xc2 .

Für negative c1 ist dies nicht richtig, da zum Beispiel im Falle c1 = −1, c2 = 1
2

und x = eiπ/4

(c1x)
c2 = (e−i3π/4)

1
2 = e−i3π/8, aber c1c2xc2 = eiπ/2eiπ/8 = ei5π/8.

Für c2 ∈ � oder − 1 < c1 ≤ 1 : power(power(x^c1)^c2) → power(x^(c1 c2))

Wieder seien x, c1 ∈ � beliebig und wir führen eine Fallunterscheidung durch: Sei c2 > 0, dann
ist

(xc1)c2 = (xc1) · · · (xc1)︸ ︷︷ ︸
c2×

= ec1 ln x · · · ec1 ln x︸ ︷︷ ︸
c2×

= e
c1 lnx+···+c1 lnx︸ ︷︷ ︸

c2× = ec1 c2 ln x = xc1 c2 .

Im Falle c2 < 0 führt man es durch Setzen von c2 = −|c2| wieder auf den ersten Fall zurück:

(xc1)c2 =
1

(xc1)|c2|
=

1

xc1 |c2| = x−c1 |c2| = xc1 c2.

Im Falle −1 < c1 ≤ 1 und x, c2 ∈ � beliebig ist die Regel ebenfalls anwendbar. Beweis:

xc1 = ec1 ln |x|+ic1 arg(x)

Falls c1 ∈ �, ist |xc1 | = ec1 ln |x| und arg(xc1)− c1 arg(x) = 2kπ. Wenn nun −1 < c1 ≤ 1, dann
ist −π < c1 arg(x) ≤ π, und folglich k = 0, also

arg(xc1) = c1 arg(x)

Man beachte, dass dies für c1 = −1 im Allgemeinen nicht mehr richtig ist, da die rechte Seite
− arg(x) dann auch −π sein kann. Also ist

ln(xc1) = ln |xc1|+ i arg(xc1)

= ln(ec1 ln |x|) + ic1 arg(x)

= c1 ln |x|+ ic1 arg(x) (weil c1 ln |x| ∈ �)
= c1 ln x.

Daher gilt
(xc1)c2 = ec2 lnxc1 = ec2 c1 lnx = xc1 c2.

4.4. Die Numerik-Klasse 83

Ausnahmen

Die Ausnahme 0a für numerisches a ist nicht ganz unumstritten. Klar ist der Fall noch für
reelle a �= 0, wo für a > 0 das Ergebnis 0 sein soll, für a < 0 ein Überlauffehler auftritt.
Für a = 0 wird häufig 00 ≡ 1 gesetzt (z.B. in [Stee 1990], Abschnitt 12.5.3, die Spezifikation
der Lisp-Funktion expt, mit der schlichten Bemerkung „By definition, 00 = 1.“). Tatsächlich
ist die Kontroverse um 00 jahrhundertealt, wurde jedoch zunächst aus dem Blickwinkel der
Analysis geführt. So ist beispielsweise 00 := limε→0 ε

ε ≡ limε→0 e
ε ln ε → e0 = 1. Dies ist aber

ebenso willkürlich wie 00 := limε→0 0ε = 0 oder eine andere Definition. Aufschlussreicher ist es,
algebraisch oder kombinatorisch an das Problem heranzugehen. So wird in [GKP 1989] darauf
hingewiesen, dass die binomische Formel (x+ y)n =

∑n
k=0

(
n
k

)
xkyn−k für x �= 0 und y = 0 ihre

Gültigkeit verliert, wenn man 00 �= 1 setzt. Diese Argumentation zielt aber an den meisten
CAS-Implementierungen vorbei, da dort die Regeln x+0→ x und x0 → 1 ausgeführt werden,
bevor in der binomischen Formel 00 auftauchen kann. Es wäre doch sehr naiv anzunehmen,
dass die Eingabe (x + 0)2 ein CAS an den Abgrund der Inkonsistenz treibt. Kombinatoriker
wiederum argumentieren, dass man die Anzahl der Abbildungen der leeren Menge auf die
leere Menge gerne als 00 schreiben würde und dies daher 1 sein muss.

Da wir aber in einem symbolischen Programm normalerweise beim Einsetzen der Regel nicht
wissen, ob gerade Exponent oder Basis als Erstes gegen 0 gegangen ist, betrachtet GiNaC das
Auftreten von 00 vorsichtshalber generell als Fehler. Für alle anderen komplexen Exponenten
a ist der Fall jedoch wieder klar. Ist a = ci rein imaginär, so formt man um 0ci = eci ln 0, und
sieht, dass das Ergebnis zwar auf dem Einheitskreis liegt, die Phase jedoch nicht definiert ist.
Für andere komplexe Exponenten kann man sich dann auf den Fall a = i± 1 beschränken

0i±1 = 0i 0±1 =

{
0i 01 = 0
0i 0−1 = eiϕ∞

womit klar ist, dass 0a nur in der rechten komplexen Halbebene des Exponenten definiert ist.
Dies stimmt immerhin mit [Stee 1990] und Mathematica überein, nicht jedoch mit MuPAD,
Maple und Reduce. Die letzteren beiden scheinen die Regel 0a → 0 vor den numerischen
Sonderfall vorzuziehen. (Form hingegen kennt keine komplexen Zahlen und wendet die Regel
sogar für reelle, negative a an; Version 1 und 2 kommen für reine Symbole vollends durchein-
ander und vereinfachen 0a → a3.)

4.4. Die Numerik-Klasse

Das bei symbolischen Algorithmen häufige Phänomen des Anwachsens von Zwischenergebnis-
sen (engl: intermediate expression swell) macht eine solide Handhabung von exakten Zahlen,
also ganzen Zahlen aus dem Integritätsbereich � oder dem darüber gebildeten Quotientenkör-
per der rationalen Zahlen � unabdingbar. Eine Beschränkung auf ints von Maschinengröße
(wie etwa in der Bibliothek Magnum [Roth 1995]) oder auf Gleitkommazahlen mit fest einge-
stellter Mantisse (wie etwa 29 Dezimalstellen in Schoonschip [VeWi 1993]) ist nicht akzeptabel.
Die meisten Computeralgebrasysteme verfügen daher über flexible Datentypen für ganze und
rationale Zahlen, die lediglich durch den vorhandenen Hauptspeicher beschränkt sind. Eine

84 4. GiNaC: Implementierung

cl_number

cl_N

cl_R

cl_F

cl_I

cl_RA

cl_LFcl_DFcl_FFcl_SF

Abbildung 4.1.: Übersicht über die Klassenhierarchie von CLN. Nur die Basisklasse cl_number wird
von der GiNaC-Adapterklasse numeric verwaltet. Intern kommen die folgenden davon abgeleiteten
Klassen vor: cl_N (komplexe Zahlen), cl_R (reelle Zahlen), cl_RA (gebrochenrationale Zahlen), cl_I
(ganze Zahlen), cl_LF (Gleitkommazahlen beliebiger Genauigkeit).

Ausnahme bildet Form [Verm 1991] 2, welches in weitgehender Abwesenheit eines Speicher-
managements einen (undokumentierten) Puffer von genau 400 Byte für jeweils eine ganze Zahl
zur Verfügung zu stellen scheint.

GiNaC benutzt die Bibliothek CLN [HaKr 2000] für die Manipulation aller numerischen Ob-
jekte. Da die Benutzerschnittstelle von CLN ganz anders als diejenige von GiNaC gestaltet
ist, bildet eine „Adapter“-Klasse namens numeric die Schnittstelle von CLN auf diejenige von
GiNaC ab. Das Design von CLN selbst entspricht dem Muster der sogenannten „Bridge“:
die Abstraktion (Abbildung 4.1) ist vollständig getrennt von der Implementation, von der
der Benutzer nichts wissen muss und die sich sogar ändern kann ohne die Kompatibilität
zu gefährden. Die nach außen sichtbare Seite ist die in Abbildung 4.1 dargestellte Klassen-
hierarchie. Man beachte, dass sie vom Gesichtspunkt der objektorientierten Programmierung
Kopf zu stehen scheint: So ist die Klasse der ganzen Zahlen cl_I von der Klasse der rationa-
len Zahlen cl_RA abgeleitet, obwohl die Darstellung einer rationalen Zahl zwei ganze Zahlen
beinhaltet. Die nach außen sichtbaren Klassen sind aber nur Schnittstellen und enthalten nur
Zeiger auf die eigentliche Implementierung, ganz analog zur Klasse ex in GiNaC. Diese Klas-
senabstraktion in C++ kann daher völlig konsistent mit den Einbettungen der mathematischen
Ringstrukturen sein, in der eine ganze Zahl beispielsweise auch eine rationale Zahl ist.

CLN war ursprünglich (in den frühen 1990er Jahren) eine reine C-Bibliothek und wurde später
in einen konsistenten C++-Rahmen eingebettet. Sie kann als Referenzimplementierung für die
Handhabung großer Zahlen gelten. Während Addition zweier ganzer Zahlen eine Routine mit
linearer Ordnung in der Länge N der Argumente ist, ist die Multiplikation wesentlich aufwän-
diger. Die übliche Schulbuch-Multiplikation ist von der OrdnungO(N2), aber es existieren Ver-
besserungen, wie etwa ein überraschend einfaches Verfahren von Karatsuba [KaOf 1962] mit
der OrdnungO(N log2 3) � O(N1,58) oder das wesentlich kompliziertere Verfahren von Schönha-
ge und Strassen [SchSt 1971], welches die asymptotisch ideale Ordnung O(N logN log logN)
aufweist. Diese fortgeschrittenen Verfahren haben zwar eine attraktive asymptotische Ord-

4.4. Die Numerik-Klasse 85

10−4

10−3

10−2

10−1

100

101

102

103 104 105 106 107

B
er

ec
hn

un
gs

ze
it t/s

Länge n in Bit

CLN (Schulbuch)
CLN (Karatsuba)

CLN (FFT mod m)
Mathematica 4

Abbildung 4.2.: Gemessene Laufzeiten der Multiplikation zweier gleich großer ganzer Zahlen in
CLN für verschiedene dort implementierte Algorithmen. Der Vergleich mit Mathematica zeigt, dass
auch dieses System asymptotisch ideale Multiplikationsalgorithmen implementiert.

nung, die Konstante davor macht sie aber für kleine Zahlen unbrauchbar. In der Praxis müssen
also die Punkte, an denen der eine Algorithmus den anderen ablöst, bestimmt, und automa-
tisch die passende Methode gewählt werden. Abbildung 4.2 zeigt die Laufzeiten in CLN für
drei verschiedene Verfahren im Vergleich zu Mathematica. Man erkennt deutlich, dass auch
bei Mathematica beträchtlicher Aufwand in eine schnelle Multiplikation investiert worden ist.
Das asymptotische Verhalten und die Stufen in der Laufzeit als Funktion der Größe der Ope-
randen am oberen Ende sind ein Indiz für eine FFT-basierte Methode, die ja meistens mit
2n-Blöcken arbeitet.4

Eine schnelle Multiplikationsroutine kann für unsere symbolischen Rechnungen von direkter
Relevanz sein. So greifen Divisionsroutinen und Algorithmen zur ggT-Bestimmung in � darauf
zurück. Die in GiNaC implementierte heuristische ggT-Bestimmung multivariater Polynome
aus �[X] macht Probedivisionen in � [Baue 2000].

Die Fähigkeiten verschiedener Bibliotheken, bei der Multiplikation an die optimale asymptoti-
sche Geschwindigkeit heranzukommen, wurden eingehend in [Bern 2002] untersucht (graphisch
aufbereitet in Abbildung 4.3). Die dort gemessenen Laufzeiten sind für CLN noch suboptimal,
da die Bibliothek ohne Unterstützung der Assemblerroutinen aus der MPN-Schicht der GNU
Multi Precision Bibliothek GMP übersetzt wurde. Es muss auch beachtet werden, dass einige
Systeme vom Benutzer eine explizite Speicherallozierung für das Rechenergebnis verlangen,
was CLN (für den Benutzer) in transparenter Weise erledigt. Der Overhead hierfür wird so

4 Bei Operandengrößen � 5000 Bit wurde im Falle von Mathematica die Zeit für eine leere Messschleife
berücksichtigt. Für die Langsamkeit dort habe ich keine plausible Erklärung.

86 4. GiNaC: Implementierung

102

103

104

105

106

107

108

109

1010

101 102 103 104 105 106 107

B
er

ec
hn

un
gs

ze
it

t/c

yc
.

Länge n in Bit

CLN (1.1.4)
GMP (4.0.1)

BN (OpenSSL 0.9.6)
NTL (5.2)

Apfloat (2.33)

Abbildung 4.3.: Gemessene Laufzeiten in Taktzyklen der Multiplikation zweier gleich großer ganzer
Zahlen in CLN und verschiedenen anderen Softwarepaketen, nach Daten gemessen in [Bern 2002]. Als
Testsystem diente ein mit 900MHz getakteter AMD Athlon unter FreeBSD.

aber zur Multiplikation hinzugeschlagen. Insgesamt stellt sich CLN im Vergleich als durchaus
geeignet heraus um als Basis für ein symbolisches System zu dienen.
CLN eignet sich auch für numerische Berechnungen in Gleitkommazahlen mit beliebiger Ge-
nauigkeit, falls die übliche Maschinendarstellung mit 53-Bit-Mantisse (C-Typ double, entspre-
chend Fortran-Typ real*8) partout nicht mehr ausreichend ist. Die Genauigkeit kann dy-
namisch festgesetzt werden – eine Neukompilierung des Programmes wie bei manchen anderen
Paketen ist nicht erforderlich. Sämtliche einfach transzendenten Funktionen sind schon vorhan-
den, während doppelt transzendente wie der Dilogarithmus5 noch fehlen. Die implementierten
Funktionen sind bemerkenswert schnell. Dies liegt an einem „binary splitting“ [HaPa 1998] ge-
nannten Verfahren, in dem die Aufsummierung einer Reihenentwicklung so umgeordnet wird,
dass ein Teil der Komplexität in die Multiplikation großer Zahlen aus � verlagert wird. Diese
kann aber schneller als O(N2) bewerkstelligt werden und kürzt so die Reihensummierung ab.
Erst im letzten Schritt wird dann wieder in die Fließkommadarstellung zurückumgewandelt.
Nun gibt es außer CLN noch weitere Bibliotheken für beliebige Genauigkeit, die als „foun-
dation class“ für GiNaCs Zahlen in Frage kämen. Victor Shoups NTL (Number Theo-
ry Library) [Shou 2000], David Baileys MPFun, Arjen Lenstras LIP, Mikko Tommilas
Apfloat [Tomm 2001] und nicht zuletzt die GMP-Bibliothek selbst. Es gibt eine Reihe von
wichtigen Eigenschaften, die außer CLN jedoch keines dieser Pakete bietet und die CLN für
Computeralgebra prädestinieren:

Kleine ganze Zahlen sind unmittelbar:
Zwar kommen Koeffizienten � 232 bei der Manipulation von Polynomen über � nicht

5 Dieser ist für beliebige Genauigkeit derzeit provisorisch in GiNaC implementiert.

4.4. Die Numerik-Klasse 87

selten vor, die meisten Koeffizienten bleiben jedoch klein. Es ist nun aber Verschwen-
dung, auf dem Heap Objekte anzulegen, die lediglich eine maschinendarstellbare ganze
Zahl repräsentieren, wenn man bedenkt, dass eine solche Zeigerdereferenzierung auf al-
len modernen Architekturen 5-10 Taktzyklen dauern kann und die Speicherallozierung als
solche über den Systemaufruf malloc() selbst noch einmal zwischen 40 und 200 Zyklen,
je nach Betriebssystem. In CLN ist die Darstellung der Basisklasse cl_number daher eine
C-union, die entweder einen Zeiger auf den Anfang des eigentlichen Objekts darstellt oder
eine unmittelbare ganze Zahl. Die für diese Unterscheidung notwendige Logik kann ohne
zusätzliche Funktionsaufrufe implementiert werden (dies geschieht in der Header-Datei
cln/object.h), wenn man ausnutzt, dass die Anfangsadressen vom System allozierter
Speicherbereiche (das „alignment“) nicht beliebig sind, sondern je nach System Vielfache
von zwei, vier oder acht sind. In diesen Adressen sind die am wenigsten signifikanten Bits
immer Null und damit redundant. Sie werden daher zur Markierung unmittelbarer Zahlen
herangezogen. Der Sprung bei n = 16 in Abbildung 4.3 erklärt sich aus dem dadurch ein-
geführten Overhead, da die Bitlänge des Ergebnisses der Multiplikation etwa die Summe
der Bitlängen der Operanden ist.

Algebraische Körpereinbettungen werden honoriert:
Die Einbettung der natürlichen Zahlen in die rationalen Zahlen und der reellen Zahlen in
die komplexe Zahlenebene wird berücksichtigt. Konstruiert man zum Beispiel eine rationa-
le Zahl aus ganzzahligem Zähler und Nenner, so wird automatisch der größte gemeinsame
Teiler gekürzt. Ist hiernach der Nenner 1, so wird das Ergebnis nicht als rationale Zahl
dargestellt, sondern sofort in eine ganze Zahl verwandelt. Analog werden komplexe Zahlen,
wenn der Imaginärteil exakt (also nicht als Gleitkommazahl) verschwindet, in reelle Zah-
len umgewandelt. Es werden also genau diejenigen von CASen gewohnten Umformungen
auf Zahlentypen durchgeführt, die gemeinhin als Typen-Retraktion bekannt sind.

Transparente Speicherverwaltung:
Die Speicherverwaltung von CLN basiert, wie diejenige von GiNaC, auf Referenzzählung.
Sie ist daher auch nicht unterbrechbar und für den Programmierer völlig transparent. Be-
liebig viele korrekt implementierte Speicherverwaltungen auf Basis von Referenzzählung
können in einem einzigen Programm koexistieren ohne miteinander zu interferieren. Dies
mag zwar trivial klingen, ist aber für manche andere Systeme tatsächlich ein Problem.
MuPAD zum Beispiel benutzt die Numerik von Pari [Coh 2000], einer in reinem C ge-
schriebenen Bibliothek, bei der man sorgfältig Stackgrößen definieren muss. Es kommt vor,
dass der Benutzer mit unabgefangenen Pari-Fehlermeldungen konfrontiert wird – worauf
das Weiterarbeiten hoffnungslos wird. Im Falle von Magma [BCP 1997] gibt es Interferen-
zen in der Speicherverwaltung, diesmal mit dem System Kant V4 [Pohs 1996], die bis
zu Systemabstürzen führen können.

GiNaC ist ferner bemüht, die Anzahl individueller Objekte, die dieselbe Zahl repräsentieren,
gering zu halten. Der Grund ist weniger Speicherersparnis als ein Geschwindigkeitsvorteil:
Die Methode ex::compare() kann anhand der Zeiger sofort Gleichheit feststellen und 0 zu-
rückliefern (siehe auch Fußnote auf Seite 69). Idealerweise lässt man hierzu die Objekte vom
Typ numeric von einer Flyweight-Fabrik erzeugen, zumindest für die häufig gebrauchten gan-
zen Zahlen mit Betrag kleiner als ein vorgegebener Schwellenwert. Dies stößt jedoch auf ein
Hindernis bei der Implementierung: Eine solche Fabrik soll anstelle immer neuer Objekte Zei-

88 4. GiNaC: Implementierung

ger auf bereits erzeugte Objekte zurückliefern. Sie kann nur in Konstruktoren der Klasse ex
eingebaut werden. Dem Benutzer steht aber immer die Möglichkeit offen, selbst ein Objekt
vom Typ numeric auf dem Stack oder dem Heap zu erzeugen und dieses dann von einem ex
referenzieren zu lassen, wodurch die Flyweight-Fabrik umgangen wird. Letztendlich sind die
Probleme dieselben wie die auf Seite 70 bei der Fusion genannten: die „Bridge“ abstrahiert
die Klasse ex nicht vollständig von den von basic abgeleiteten Klassen weg.

4.5. Pseudofunktionen

Die Klasse function implementiert Pseudofunktionen. Pseudofunktionen unterscheiden sich
von gewöhnlichen Funktionen dadurch, dass sie keine Abbildungen, etwa f : � → � imple-
mentieren, sondern als symbolische Ausdrücke unevaluiert stehen bleiben dürfen, wenn keine
Vereinfachungen bekannt sind. So wird für ein Symbol x aus sin(x) wieder sin(x), ande-
rerseits aus sin(0) 0. Die Pseudofunktionen müssen also selbst Objekte einer von basic
abgeleiteten Klasse sein, die von ex verwaltet werden können. In dem Fall, dass eine Evaluie-
rung nicht möglich ist, muss von der entsprechenden eval()-Funktion das in der Basisklasse
basic dafür vorgesehene Bit evaluated gesetzt werden, um nicht eine Endlosrekursion zu
erzeugen.
Von den verschiedenen Möglichkeiten der Implementierung wurde eine flache Struktur aus-
gewählt, in der alle Pseudofunktionen Objekte der Klasse function sind. Es erschien als zu
aufwändig für jede mathematische Funktion eine von einer Basisklasse abgeleitete Klasse ein-
zuführen. Der Implementator der Funktion müsste dann intime Kenntnisse von GiNaC haben
um die Methoden .destroy(), .copy(), .compare_same_type() für das Speichermanage-
ment sowie drei weitere Hilfsmethoden zum Archivieren zu schreiben. Zudem „erben“ mathe-
matische Funktionen nur selten Eigenschaften voneinander im Sinne der objektorientierten
Programmierung, so dass man davon wenig Gebrauch machen könnte.
Pseudofunktionen werden zwecks ⇒ Kanonisierung unterschieden durch ihre Argumentenlis-
te sowie eine Seriennummer, die die Art der Funktion spezifiziert: Die Objekte sin(x) und
cos(x) unterscheiden sich lediglich durch diese Seriennummer. Niedergeschrieben in C++-
Programmen werden sie als handele es sich um gewöhnliche Funktionen: die Hilfsfunktion
function sin(const ex&); konstruiert das entsprechende function-Objekt in für den Pro-
grammierer transparenter Weise.6

Den Objekten mit einer bestimmten Seriennummer werden Hilfsfunktionen zugeordnet wie
Ausgabeformate, Evaluationsalgorithmen, Differentiationsregeln und Reihenentwicklungsre-
geln. Das geschieht wie in Abbildung 4.4 skizziert mithilfe eines Registers, in denen Print-
Namen für die Ausgabe sowie Zeiger auf die kompilierten Hilfsfunktionen gespeichert werden.
Man kann sich diese Hilfsfunktionen als event handler vorstellen. Beim Aufruf von Methoden
wie .eval() oder .evalf() wird die entsprechende Funktion anhand der Seriennummer nach-
geschlagen und ausgeführt. Dieses Schema ist nicht gerade elegant, entspricht es doch in etwa
einer selbstgemachten vtable. Es ist ein Kompromiss, der einen ausreichend flexiblen Umgang

6 Die Option, Pseudofunktionen durch Funktoren erzeugen zu lassen, wurde auch untersucht. Als Objekte
kollidieren solcherlei Funktoren aber sehr leicht mit anderweitig deklarierten Funktionen: Es ist nicht
möglich innerhalb desselben Namespaces eine Funktion und ein Objekt namens sin zu haben.

4.6. Laurentreihen: die Klasse ,pseries’ 89

0

6

7

8

3

4

5

2

1 reg_func[3]

Pi

3

function

−1

unsigned nparams

ex (*evalf_f)(ex)
ex (*derivative_f)(ex)
...

ex (*eval_f)(ex)

s
t
d
:
:
v
e
c
t
o
r
<
f
u
n
c
t
i
o
n
_
o
p
t
i
o
n
s
>

r
e
g
_
f
u
n
c

std::string name
std::string TeX_name

1

"cos"
"\cos"

{
 // ...
 return reg_func[3].eval_f(x);
}

ex function::eval(int level)

{

 return 1;
 if ((x/(2*Pi)).is_integer())

 if ((x/Pi).is_integer())
 return −1;
 // ...
 return cos(x).hold();
}

ex cos_eval(const ex &x)

Abbildung 4.4.: Methodenaufruf bei Pseudofunktionen (leicht vereinfacht) im Falle der automati-
schen Evaluation von cos(π) → −1. Die Methode function::eval() schlägt das zur Seriennummer
3 gehörende function_options Objekt in einer statischen Tabelle nach. Darin findet es den Zeiger
auf die zum Cosinus gehörende Evaluierungsfunktion.

mit symbolischen mathematischen Funktionen erlaubt und die Anzahl der pro Funktion zu
schreibenden Zeilen auf einem Minimum hält.

4.6. Laurentreihen: die Klasse ,pseries’

Nichtabbrechende Taylor- und – allgemeiner – Laurent-Reihen werden in einer eigenen Klasse
namens pseries („power series“) repräsentiert. Es gibt zwei grundsätzliche Ansätze, solche
Reihen im Computer darzustellen. Der naheliegendste ist, die Koeffizienten bis zu einer vor-
gegebenen Ordnung zu entwickeln und abzuspeichern. Wenn die Folge durch Ableitung des
Ausgangsausdrucks7 entstanden ist, so schreiben wir für die n-te Ableitung ausgewertet an
der Stelle a anstatt f (n)(x)|x=a kurz f (n)(a). Die Taylor-Reihe hat dann die Darstellung

f(x)|x=a = f(a) + f (1)(a) + 1
2!
f (2)(a) +O(x3)

7 Wir werden noch sehen, dass nicht alle auftretenden Taylor-Reihen durch Ableitung erzeugt werden können.

90 4. GiNaC: Implementierung

wobei für den Abbruch O(x3) eine geeignete Darstellung gefunden werden muss (in GiNaC ist
es eine dafür vorgesehene Pseudofunktion). Ein alternativer Ansatz der Darstellung besteht
darin, die Reihe nur formal als „zu Taylor-Entwickeln“ zu markieren und die Berechnung
der Koeffizienten erst dann durchzuführen, wenn sie von einem anderen Teil des Programmes
gebraucht werden. Diese Technik bezeichnet man als lazy evaluation. Sie ist besonders geeignet,
wenn nicht von vornherein feststeht, bis zu welcher Ordnung eine Reihe entwickelt werden
soll, und sie hat Geschwindigkeitsvorteile, weil niemals mehr berechnet wird als unbedingt
nötig ist. Allerdings verkompliziert sie Operationen zwischen mehreren solchen Reihen, wenn
man nicht eine Verschwendung von Speicherplatz in Kauf nehmen will. Um dies einzusehen
betrachten wir die Multiplikation zweier Reihen f(x)|x=a und g(x)|x=a. Nehmen wir an, beide
Reihen sind bis zur Ordnung n = 2 vorentwickelt, die Koeffizienten f(a), g(a), f (1)(a), g(1)(a),
f (2)(a) sowie g(2)(a) also berechnet. Ferner müssen jeweils ein uneingesetztes f (2)(x) und g(2)(x)
aufgehoben werden, um die Reihen später bei Bedarf weiterentwickeln zu können. Das Produkt
(f · g)(x)|x=a ist leicht berechnet

(f · g)(x)|x=a = f(a)g(a) +(
f (1)(a)g(a) + f(a)g(1)(a)

)
+

1
2!

(
f (2)(a)g(a) + 2f (1)(a)g(1)(a) + f(a)g(2)(a)

)
+O(x3) (4.3)

und in einem neuen Reihenobjekt gespeichert. Allerdings sollte jetzt auch wieder der Term
(f ·g)(2)(x) mit der Reihe gespeichert werden, um später neue Terme nachgenerieren zu können.
Dies ist aber nicht mehr möglich, da er 1

2!
(f (2)(x)g(x) + 2f (1)(x)g(1)(x) + f(x)g(2)(x)) lautet,

aber die Terme f(x), g(x), f (1)(x) und g(1)(x) gar nicht mehr vorliegen. Lediglich f (2)(x) und
g(2)(x) wurden aufgehoben. Terme der Produktreihe können also nicht mehr nachgeneriert
werden. Als Ausweg könnte man statt des letzten abgeleiteten Terms den unabgeleiteten Aus-
gangsausdruck aufheben. Die Nachgenerierung von Termen ist dann aber ebenso aufwändig
wie die gesamte Neuberechnung der Reihe. Alternativ könnte man alle Terme ohne die Ein-
setzung |x=a aufheben. Dies ist jedoch problematisch, da diese Terme sehr häufig groß sind
und erst durch die Einsetzung kollabieren. Eine Vervielfachung des von pseries-Objekten
belegten Speichers erscheint kaum angemessen.

Dass überhaupt eine eigene Klasse benötigt wird anstatt mit Polynomen zu rechnen liegt
daran, dass man dadurch, dass eine Reihe in x bei einer Ordnung n abbrechend dargestellt
wird, effektiv modulo xn rechnet: das Inverse einer Reihe a0 + a1x + a2x

2 +O(x3) ist wieder
eine Reihe c0 + c1x + c2x

2 + O(x3) anstatt ein Element aus einem Quotientenkörper über
Polynomen. Dies ermöglicht eine Anzahl beachtlicher Vereinfachungen. So ist zum Beispiel
die Exponentiation von Reihen weniger aufwändig als das Potenzieren von Polynomen, wenn
man ein von Leonhard Euler gefundenes Verfahren implementiert [Knu 1998, GCL 1992]. Sei
A(x) = a0 + a1x+ a2x

2 . . . eine Taylor-Reihe. Wir wollen C(x) = A(x)p = c0 + c1x+ c2x
2 . . .

berechnen. Wir leiten hierzu C(x) = A(x)p nach x ab, multiplizieren beide Seiten mit A(x)
und erhalten so

C ′(x)A(x) = pA(x)p−1A′(x)A(x)

= pC(x)A′(x).

4.6. Laurentreihen: die Klasse ,pseries’ 91

Durch Ausmultiplizieren und Koeffizientenvergleich gelangt man so zu der Rekursionsformel
für die ci

ci =
(
i p ai c0 + ((i− 1)p− 1) ai−1 c1 + · · ·+ (p− (i− 1)) a1 ci−1

)/
(a0 i), (4.4)

die sich lösen lässt mit dem Startwert c0 = a0
p. Sie lässt sich auch erweitern auf den Fall,

dass der führende Koeffizient von A(x) nicht konstant ist. Hierzu multipliziert man A(x) mit
xm und wiederholt die Ableitung der Rekursionsformel. Der führende Koeffizient von C(x) ist
dann a0

pxm p und man findet, dass (4.4) immer noch gültig ist.
Dies ist nicht nur effizient, sondern auch verallgemeinerbar. Lediglich dass p unabhängig von
x ist, wurde ausgenutzt: diese Rekursionsformel bewahrt genauso für gebrochenrationale Ex-
ponenten p ihre Gültigkeit oder für transzendente Exponenten wie π und sie lässt sich sogar
auf Puiseux-Reihen mit gebrochenrationalen Exponenten des Entwicklungsparameters verall-
gemeinern (siehe Kasten auf Seite 92). Prinzipiell ist sie sogar für symbolische Exponenten
p anwendbar. Man vergleiche dies mit den beschränkten Möglichkeiten bei der Potenzierung
von univariaten Polynomen P (x)p.
Betrachten wir Reihenentwicklung als Beispiel der auf Seite 74 diskutierten Methodenfort-
pflanzung. Reihenentwicklung kann sehr elegant programmiert werden als Methode, die
bottom-up durch den Darstellungsbaum läuft.8 GiNaC implementiert Reihenentwicklung für
alle eingebauten Funktionen.9 Die zugrundeliegende Datenstruktur (Klasse pseries) wurde
schon in [Baue 2000] beschrieben, ebenso die Rechenoperationen wie Addition, Multiplikation
etc. darauf. Hier sollen ein paar häufige Probleme mit Spezialfällen genannt und Lösungen
diskutiert werden.
Für Ableitungen reicht es wie gesagt aus, den Darstellungsbaum von der Wurzel beginnend zu
durchschreiten. Ist das auch für Reihenentwicklung der Fall, die ja in der Regel auf Ableitungen
zurückgreift? Abgesehen von verallgemeinerten Reihen wie Puiseux-Reihen, die im Rahmen
von GiNaC nicht benötigt werden, findet man drei Arten von Ausnahmen, in denen dies nicht
geht:

1) Die Ableitungen können aus irgendeinem Grunde am Entwicklungspunkt nicht ausgewer-
tet werden (z.B. beim Dilogarithmus Li2

′(0))
2) Es muss die Entwicklung an einem Verzweigungspunkt oder auf einem Schnitt berechnet

werden (z.B. Logarithmus log(0))
3) Es liegt ein Pol vor (z.B. Gamma-Funktion Γ(−n), n ∈ {0, 1, 2, . . .})
Außerhalb dieser Fälle wird einfach auf Taylor-Reihenentwicklung zurückgegriffen (was na-
türlich die Kenntnis der Ableitungen voraussetzt). Dies geschieht, indem eine Exception an
die aufrufende Routine zurückgeworfen wird, welche die Implementierung der Taylor-Reihe via
Ableitung in basic::series() aufruft. Die eingeschlagenen Lösungswege für die drei Klassen

8 Dennoch hatten bis auf Maple alle der in [West 1995] getesteten CAS erhebliche Schwierigkeiten mit der
Taylorentwicklung e−x sin(x) � x − x2 + 1

3x3 − 1
30x5 + O(x6) an der Stelle x = 0, was für GiNaC nie

ein Problem darstellte. Da wir keinen Einblick in die Sourcen jener Systeme haben, kann man nur soviel
vermuten, dass dort entweder völlig andere Ansätze verwendet wurden, oder dass Produkte von Folgen
unimplementiert waren.

9 Einzige Ausnahme sind verallgemeinerte Reihen, in denen die Koeffizienten von x abhängen, aber subpo-
lynomial anwachsen, die bisher noch nicht implementiert worden sind.

92 4. GiNaC: Implementierung

Eine Option: Puiseux-Reihen
Die derzeit von GiNaC darstellbaren Reihen haben alle ganzzahlige Exponenten, es können stets
nur Taylor- oder Laurent-Reihen dargestellt werden. Die Exponenten sind zwar in ihrer Imple-
mentierung vom allgemeinem Typ ex, aber nur ganze Zahlen kommen vor. Es handelt sich hierbei
um eine Invariante der Klasse pseries. Puiseux-Reihen wie

log(1 +
√

x)
∣∣
x=0

= x
1
2 − 1

2x + 1
3x

3
2 − 1

4x2 + 1
5x

5
2 +O(x3)

wurden bisher nicht implementiert in der Annahme, dass sie in Schleifenrechnungen nicht vor-
kommen, sind doch die in dimensionaler Regularisierung auftretenden Reihen in ε stets Laurent-
Reihen. Diese Hoffnung war wohl etwas zu optimistisch. Dennoch konnten bisher auftretende Fälle
transformiert werden auf Laurentreihen – durch x→ x2 um in unserem Beispiel zu bleiben. Falls
dies einmal nicht mehr ausreichen sollte, muss pseries neu gestaltet werden. Insbesondere der
Datentyp, der mit der Methode .degree() den Grad und mit .ldegree() den Grad des füh-
renden Koeffizienten zurückgibt, muss von int zu einem Typ geändert werden, welcher rationale
Zahlen darstellen kann. Addition und Multiplikation von Puiseux-Reihen sind weitgehend analog
zu derjenigen für Laurent-Reihen. Wir skizzieren nun, wie sich auch skalare Exponentiation ver-
allgemeinern lässt.
Sei A(x) = a0 +a1x

q1 +a2x
q2 + · · ·+O(xn) und C(x) = A(x)p = c0 + c1x

r1 + c2x
r2 + · · ·+O(xn p)

mit qi, ri ∈ �. Wir berechnen zunächst das kleinste gemeinsame Vielfache der Nenner aller qi,
Q = kgV(q1, q2, . . .). Dann ersetzen wir x→ x′ = xQ:

C(xQ) ≡ A(xQ)p

Damit haben wir das Problem auf die gewöhnliche skalare Exponentiation zurückgeführt, denn die
Exponenten von x′ in A(x′) sind alle ganzzahlig. Durch Anwendung des Algorithmus für skalare
Exponentiation findet man die gesuchten Koeffizienten ci von C(x′) und kann die Rückersetzung
x′ → x = x1/Q vornehmen um die gesuchte Reihe C(x) zu erzeugen. Auch dieses Verfahren
verallgemeinert in offensichtlicher Weise auf den Fall, dass der führende Koeffizient von A(x)
nicht konstant ist.

von Ausnahmen werden im Folgenden anhand der genannten Beispiele vorgestellt. In Zukunft
notwendig werdende Implementierungen dieser Art sollten damit keine grundsätzlichen Pro-
bleme mehr bereiten.
Fall 1) Ableitungen können nicht ausgewertet werden:
Die Reihenentwicklung des Dilogarithmus um den Nullpunkt ist bekanntlich

Li2(x)|x=0 = x+
1

4
x2 +

1

9
x3 +

1

16
x4 +

1

25
x5 +O(x6),

woraus man abliest, dass die n-te Ableitung am Ursprung durch

Li2
(n)(x)|x=0 =

n!

n2

gegeben sein muss. Rechnet man es jedoch stur aus, so findet man

Li2
′(x)|x=0 = − log(1− x)

x

∣∣∣
x=0

,

4.6. Laurentreihen: die Klasse ,pseries’ 93

was eine Division durch Null nach sich zieht, wenn man x ≡ 0 einsetzt. Zukünftige Versionen
von GiNaC könnten das Problem eventuell lösen, indem sie Grenzwerte benutzen – der vor-
liegende Fall ist schon mit der Regel von l’Hôpital lösbar. Die derzeitige Notlösung besteht in
Abwesenheit von Grenzwerten aus einem vielleicht etwas grob anmutenden Trick. Wir wissen
ja, was die Reihenentwicklung ist, also konstruieren wir einfach ,per Hand’ eine solche Folge
und geben sie zurück. Da aber nicht immer im Argument direkt entwickelt wird, sondern im
Allgemeinen eine Entwicklung der Form Li2(f(x))|x=p mit f(p) = 0 verlangt wird, kaskadieren
wir die Reihenentwicklung. Zunächst wird Li2(s)|s=0 = s+ 1

4
s2 + 1

9
s3 + . . . in einem Hilfssym-

bol s erzeugt, dann die Taylor-Reihe des Arguments der Funktion f(x)|x=p für s substituiert.
Fasst man Terme gleicher Ordnung zusammen, so ergibt dies die gewünschte Taylorreihe.

1 static ex Li2_series(const ex & x, // argument of Li2
2 const relational & rel, // expansion variable and point
3 int ord) // order of expansion
4 {
5 const ex x_at_pt = x.subs(rel);
6 if (!x_pt.is_zero())
7 throw do_taylor(); // caught by function::series()
8 if (x_pt.is_zero()) {
9 const symbol s;

10 ex ser;
11 // construct manually the primitive expansion
12 for (int i=1; i<order; ++i)
13 ser += pow(s,i)/pow(i,2);
14 // substitute the argument’s series expansion
15 ser = ser.subs(s==x.series(rel,order));
16 // maybe that series is terminating, so add a proper order term
17 epvector nseq;
18 nseq.push_back(expair(Order(1), order));
19 ser += pseries(rel, nseq);
20 // reexpansion will collapse the series again
21 return ser.series(rel.order);
22 }
23 // missing: treat other pathological cases...
24 }

Die Methode hat einen Haken: Zwar lassen sich damit korrekt vorgeschaltete Funktionen
taylorentwickeln, wie z.B. Li2(sin(x))x=0 = x+ 1

4
x2− 1

18
x3+O(x4), nicht jedoch nachgeschaltete,

wie sin(Li2(x))x=0. Dann nämlich tritt das Problem, welches wir gerade gelöst haben, wieder
auf: Die Ableitung von sin(Li2(x)) kann nicht an der Stelle x = 0 ausgewertet werden, da
der Sinus nichts vom Dilogarithmus weiß. Sollte dies einmal ein echtes Problem darstellen,
so müssen entweder Grenzwerte implementiert oder das Design der Klasse pseries erheblich
verändert werden.

Fall 2) Ein Verzweigungspunkt/Schnitt liegt vor:
Auf diesen wichtigen Fall muss wieder durch Einsetzen des Auswertepunktes in das Argument
getestet werden. Meist kann man die Verzweigungspunkte auf solche anderer Funktionen zu-
rückführen (siehe Kasten), etwa auf denjenigen des Logarithmus, der dann nicht weiter in
Form von Laurentreihen ausgewertet wird. Dies geht bei allen transzendenten und hyperbo-
lischen Funktionen, auch bei doppelt transzendenten wie zum Beispiel beim Dilogarithmus

94 4. GiNaC: Implementierung

Verzweigungspunkte = Problempunkte?
Viele Computeralgebrasysteme erlauben die Laurententwicklung von Funktionen an Verzwei-
gungspunkten. Hierbei ist jedoch wichtig, dass die Lage des Schnittes korrekt wiedergegeben
wird, wobei Korrektheit anhand der Konsistenz mit der numerischen Evaluation zu verstehen ist.
Über die kanonische Lage der Schnitte einiger häufiger Funktionen informiert Tabelle A.1 auf
Seite 149. Im Falle der trigonometrischen Funktionen kann die Entwicklung – wie in jener Ta-
belle angegeben – zurückgeführt werden auf die inerte Entwicklung des natürlichen Logarithmus
am Verzweigungspunkt: log(x)|x=0 = log(x). Eigenartigerweise werden einige Systeme hier aber
inkonsistent. Als Beispiel kann man atanh(x) um x = 1 entwickeln:

atanh(x)x=1 = 1
2

(
log(2)− log(1−x)

)
+ 1

4

(
x−1

)
+O((x−1)2

)
Hierin wird der Schnitt bestimmt von log(1−x), verläuft also entlang der positiven reellen Achse
beginnend bei x = 1 in Übereinstimmung mit Tabelle A.1. Man kann leicht verifizieren, dass sich
dies mit den in diesem Abschnitt vorgestellten Methoden von selbst ergibt, wenn man log(ax)|x=0

nicht automatisch zu log(a)+ log(x) entwickelt. Das ist ja auch in der Tat falsch für nichtpositive
Werte von a. Diese leichtfertige Entwicklung von log(ax)|x=0 wird aber beispielsweise von MapleV
und Mathematica durchgeführt. Bei allen transzendenten Funktionen führt das zu Problemen:
Im Falle von Mathematica sind die Schnitte entweder um π/2 in der komplexen Ebene gedreht
oder es treten zusätzliche Konstanten wie iπ = log(−1) im Ergebnis auf. Bei MapleV passiert
dies nicht, jedoch nur aufgrund expliziter Korrektur in allen einzelnen Funktionen, die für die
Reihenentwicklung zuständig sind. Dies ist der Grund dafür, dass in GiNaC seit Version 0.7.1 die
Entwicklung von log(ax)|x=0 völlig inert ist.

(siehe Anhang A). Dessen Verzweigungspunkt bei x = 1 hat beispielsweise die Entwicklung

Li2(x)|x=1 = 1
6
π2 +

(
1− iπ − log(x−1)

)
(x−1) +O((x−1)2

)
,

die speziell in Li2_series() kodiert werden muss. Auf Schnitten abseits von Verzweigungs-
punkten kann entweder die stetige analytische Fortsetzung gewählt oder aber der Schnitt
durch eine θ-Funktion ausgedrückt werden. Der Benutzer entscheidet hierüber mit einem zu-
sätzlichen Parameter beim Aufruf der Reihenentwicklung. Die stetige Fortsetzung kann wie im
gewöhnlichen Fall mittels Ableitung berechnet werden. Die Darstellung des Schnittes (siehe
Tabelle A.1) muss wieder separat kodiert werden, um beispielsweise die Darstellung

log(x)x=−1 = iπ(1− 2θ(ix))− (x+ 1)− 1
2
(x+ 1)2 +O((x+ 1)3

)
zu erzeugen. Anstelle der θ-Funktion wird in GiNaC allerdings stets deren komplexe Fortset-
zung csgn() mit Unstetigkeit auf der imaginären Achse herangezogen. Diese Sonderbehand-
lung an Schnitten muss für jede Pseudofunktion separat geschehen.
Fall 3) Eine Polstelle liegt vor:
An Polstellen werden üblicherweise Rekursionsformeln, Reflexionsformeln und so weiter an-
gewendet. Das Problem wird somit in eine Form gebracht, in der eine rationale Funktion in
eine Laurent-Reihe entwickelt wird. Die Gamma-Funktion beispielsweise gehorcht der Rekur-
sionsformel

Γ(x) =
1

x
Γ(x+1). (4.5)

4.6. Laurentreihen: die Klasse ,pseries’ 95

Wird die Entwicklung am Nullpunkt verlangt, so kann man statt Γ(ε)|ε=0 natürlich 1
ε
Γ(1+ε)|ε=0

entwickeln. Allgemein lässt sich so jeder Pol bei −m zunächst „wegschieben“:

Γ(x)|x=−m =
Γ(x+m+1)

x(x+1) · · · (x+m)

∣∣∣
x=−m

. (4.6)

Eine Routine, die in GiNaC die Laurententwicklung einer bestimmten mathematischen Funk-
tion übernimmt, muss nur dann implementiert werden, wenn gewöhnliche Taylorentwicklung
versagt. Dies kann freilich zwei verschiedene Gründe haben: 1) die Ableitungen sind nicht
bekannt und 2) es existieren Polstellen irgendwo in der komplexen Ebene. Gehen wir von
dem Fall aus, dass die Ableitungen alle bekannt sind (oder auch nur formal definiert), so ist
also für die Gamma-Funktion10 eine Rekursionsformel zu implementieren, die wie in (4.6) auf
den Taylorfall zurückgreift. Dieser braucht dann nicht mehr programmiert zu werden, denn
einfache Taylorentwicklung ist schon in basic::series() vorhanden. Man verwirklicht das
in C++ am elegantesten, indem man eine Exception zurückwirft an die aufrufende Routine:

1 static ex tgamma_series(const ex & x, // argument of tgamma
2 const relational & rel, // expansion variable and point
3 int ord) // order of expansion
4 {
5 const ex x_at_pt = x.subs(r);
6 if (!x_at_pt.info(info_flags::integer) || x_at_pt.info(info_flags::positive))
7 throw do_taylor(); // caught by function::series()
8 // if we got here we have to care for a simple pole at -m:
9 numeric m = -ex_to_numeric(x_at_pt);

10 ex ser_denom = 1;
11 for (numeric p; p<=m; ++p)
12 ser_denom *= x+p;
13 return (tgamma(x+m+1)/ser_denom).series(s, pt, ord+1);
14 }

Das Programmbeispiel zeigt noch eine kleine Subtilität, die leicht zu Verwirrung führt. Was
man wirklich berechnen will ist normalerweise nicht die Entwicklung von Γ(x)|x=z sondern
Γ(f(x))|x=z. Daher muss die Variable x_at_pt eingeführt werden (Zeile 5) und diese darauf
getestet werden, ob sie in {0,−1,−2, . . .} liegt. Danach wird der Nenner aus (4.6) konstruiert
(Zeilen 11 -12), dann die Reihe gebildet und zurückgegeben (Zeile 13). Man beachte, dass
dieses Vorgehen auch einige triviale Fälle mitbehandelt, ohne dass dies explizit ausgedrückt
werden muss: Ist beispielsweise x unabhängig von der Entwicklungsvariablen, so wird die
Exception do_taylor() ebenfalls geworfen und nur der nullte Term in der Taylorentwicklung,
also tgamma(x) ohne Ordnungsterm, zurückgegeben.

Gerade die Entwicklung der Gamma-Funktion in eine Laurentreihe, wie sie in der dimensio-
nalen Regularisierung benötigt wird, macht die Implementierung einer ganzen Sammlung von
Zusatzfunktionen erforderlich. Da dies in gewissem Maße ein abgeschlossenes Modul in GiNaC

10 Die Gamma-Funktion Γ(x) heißt in GiNaC tgamma(x) in Übereinstimmung mit [ISO 1999]. Der etwas
umständliche Name wurde gewählt, um sie von lgamma(x), dem natürlichen Logarithmus der Gamma-
Funktion, zu unterscheiden. Die in anderen Standards wie [ATT 1986] definierte Funktion gamma(x) be-
rechnete ebenfalls ln(Γ(x)), was wohl der Grund dafür ist, dass sich diese Syntax nicht durchgesetzt hat
und wir sie in GiNaC nicht verwenden.

96 4. GiNaC: Implementierung

darstellt, wird die Abhängigkeitskaskade im Folgenden skizziert. Die Polentwicklung wurde ja
gerade auf die Taylorentwicklung am Punkt x = 1 zurückgeführt, was bedeutet, dass sämtliche
Ableitungen an diesem Punkt bekannt sein müssen. Man definiert die Digamma-Funktion ψ
als Ableitung des Logarithmus der Gamma-Funktion

ψ(x) =
d

dx
log(Γ(x)) =

Γ′(x)
Γ(x)

und die n-te Polygamma-Funktion ψn als n-te Ableitung der Digamma-Funktion für x ∈ �:

ψn(x) =
dn

dxn
ψ(x).

(Es ist also ψ0(x) ≡ ψ(x).) Am Punkt x = 1 werden die Funktionswerte

ψ(1) = −γ
ψn(1) = (−)n+1n!ζ(n+ 1)

angenommen [AbS 1972, GrRy 1994] wo ζ(x) die Riemann’sche ζ-Funktion ist, die also zumin-
dest an den Punkten {1, 2, 3, . . .} ausgewertet werden sollte. Für ungeradzahlige Argumente
ist dies nicht möglich, für geradzahlige kann man jedoch [IyKa 1980]

ζ(m) =
|Bm|
(m)!

πm2m−1 ∀ m ∈ {2, 4, 6, . . .} (4.7)

berechnen. Den letzten Schritt in dieser Kette stellt die Implementierung der Bernoulli-Zahlen
Bm dar, die zum Beispiel rekursiv berechnet werden können:

B0 = 1, Bm =
−1

m+1

m−1∑
k=0

(m+1

k

)
Bk. (4.8)

Die n-te Bernoulli-Zahl hängt also von allen vorherigen Bernoulli-Zahlen ab, was ihre Berech-
nung sehr aufwändig macht.11

11 Bernoulli-Zahlen treten in den Entwicklungen aller inversen trigonometrischen Funktionen auf. Dort genügt
jedoch eine Gleitkomma-Berechnung, wofür stabile Algorithmen bekannt sind. Hat man zum Beispiel –
wie im Falle von CLN – effiziente Riemann’sche Zeta-Funktionen numerisch implementiert, so reicht es
offensichtlich, den Spieß umzudrehen und Gleichung (4.7) zu invertieren.
Zur exakten Auswertung sei angemerkt, dass die Summe (4.8) einer „Divide and Conquer“-Strategie zu-
gänglich ist, womit in der Praxis noch B50000 berechenbar ist. Da jedoch zusätzlich zu Bn häufig auch
Bm, m < n benötigt werden, ist ein Verfahren, welches eine vollständige Remember-Tabelle implemen-
tiert, vorzuziehen. Tatsächlich weisen alle gängigen CASe das Laufzeitverhalten von Remember-Tabellen
auf. Am effizientesten ist z.B. der Umweg über Tangens-Polynome, welche durch die Rekursionsformel
Tn(x) = (1 + x2)Tn−1(x)′ mit T0(x) = x definiert sind. Die n − 1-te Tangens-Zahl Tn−1 ≡ Tn−1(0) ist
mit der Bernoulli-Zahl durch Tn−1 = (−)

n
2 −1 22n−2n

n Bn verknüpft [GKP 1989]. Das n-te Tangens-Polynom
ist von der Ordnung n + 1 und besitzt lediglich ganzzahlige Koeffizienten, was einer effizienten iterativen
Berechnung sehr entgegenkommt. GiNaC implementiert noch einen dritten Zugang, der zwar um die Hälfte
langsamer ist, jedoch ohne das Abspeichern der Tangens-Polynome für nachfolgende Berechnungen aus-
kommt. Es ist eine Variation des „Divide and Conquer“-Verfahrens, äquivalent zur Implementierung der
Pari-Funktion bernvec().

4.6. Laurentreihen: die Klasse ,pseries’ 97

 0.1

 1

 10

 100

 1000

 10000

 10 15 20 25 30 35 40 45

La
uf

ze
it

t/s

Ordnung n

GiNaC 1.0
Mathematica 4

MapleV R5
MuPAD 1.4.2

Abbildung 4.5.: Laufzeiten für die symbolische Laurententwicklung von Γ(x)|x=0 auf einer IA32-
Architektur.

Nun reicht die Auswertung von ψn(1) zwar aus für die Laurententwicklung an den Polstellen
der Gamma-Funktion, hinterlässt jedoch ein etwas unabgeschlossenes Bild: Zum einen ergibt
die Taylorentwicklung von Γ(2 + ε)|ε=0 lediglich 1 + ψ(2)ε+ 1

2
(ψ1(2) + ψ(2)2)ε2 +O(ε3) und

so weiter, da zwar Γ(n) = (n−1)! evaluiert werden kann, jedoch über die Evaluation der
Polygamma-Funktionen noch nichts gesagt ist. Zum anderen wird auch die Laurententwick-
lung der ψ-Funktionen an ihren Polstellen bisweilen benötigt und bedarf einer Implementie-
rung. Beide Lücken können geschlossen werden, indem mithilfe der Rekursionsformeln

ψ(x+1) = ψ(x) + x−1

ψn(x+1) = ψn(x) + (−1)nn!x−n−1

die Funktionswerte für x ∈ �+ und die Pole der Ordnung 1 bzw. n+ 1 bei den übrigen x ∈ �
zurückgeführt werden auf Evaluationen am Punkt x = 1 – ganz analog zum Vorgehen in (4.6).
Es ist bemerkenswert, dass diese jegliches Optimierungspotenzial ignorierende Vorgehensweise
tatsächlich schon zu einem Modul führt, dass sich durchaus mit Konkurrenzprodukten messen
kann (Abbildung 4.5). Hier wurden auf einem mit 450MHz getakteten Intel P-III unter Linux
die Laufzeiten für Laurententwicklung der Gammafunktion bis zu hohen Ordnungen gemessen.
Maples supereffizienter Kernel bricht bei der Ordnung 35 mit der Fehlermeldung object too
large ab, da dann offenbar Zwischenergebnisse mit Summen aus 216−1 Termen entstehen. Für
den Vergleichslauf musste die angeforderte Ordnung im Falle von Mathematica und MuPAD
um eins inkrementiert werden, um dieselben höchsten Koeffizienten zu erhalten wie Maple
und GiNaC. Ferner wurden alle Systeme gezwungen, ihr Ergebnis bis zu Koeffizienten zu
vereinfachen, die nur von ζ(m), π und der Euler-Konstanten γ abhängen. Im Fall Mathematica
musste dafür noch ein zusätzliches FunctionExpand[] eingeschaltet werden um tatsächlich

98 4. GiNaC: Implementierung

ein Ergebnis der Form

Γ(x) =
1

x
− γ +

(π2

12
+
γ2

2

)
x−

(π2γ

12
+
γ3

6
+
ζ(3)

3

)
x2 +O(x3)

zu erhalten (ansonsten liefert Mathematica unausgewertete Polygamma-Funktionen ψm(1)
zurück). Gerade dieses FunctionExpand[] aber ist für den Großteil der Rechenzeit verant-
wortlich (obere Mathematica-Kurve in Abbildung 4.5). Lässt man es weg so ist Mathematica
nur noch geringfügig langsamer als GiNaC (untere Kurve). Das Knie in dieser Kurve begin-
nend bei n = 38 wird uns weiter unten auf Seite 116 noch einmal begegnen.
Die in dimensionaler Regularisierung ebenfalls manchmal benötigte analytische Evaluation der
hier betrachteten Funktionen für alle halbzahligen Argumente wird idealerweise zurückgeführt
auf ganzzahlige Argumente. Hierzu werden nur die Verdopplungsformeln

Γ(2x) = (2π)−1/222x−1/2Γ(x)Γ(x+ 1
2
)

ψ(2x) = log(2) +
(
ψ(x) + ψ(x+ 1

2
)
)/

2
ψn(2x) =

(
ψn(x) + ψn(x+ 1

2
)
)/

2n+1

aufgelöst nach den Funktionen mit Argument x+ 1
2
; alle anderen darin vorkommenden Funk-

tionen sind nun bekannt.
Zusammenfassend lässt sich feststellen, dass die Fortpflanzung einer auf einem Container-
objekt aufgerufenen Methode auf seine Kinder in vielen Fällen ein übersichtliches Verfah-
ren darstellt um mathematische Operationen auf komplexen Ausdrücken zu implementieren.
Im Beispiel der Laurententwicklung der Gamma-Funktion läuft die eleganteste Programmie-
rung zwar darauf hinaus, dass auch die Digamma-, die Polygamma-, die ζ-Funktion und die
Bernoulli-Zahlen effizient programmiert werden. Das Ergebnis ist jedoch ein natürlicher, leicht
zu wartender und modularer Code, der abgeschlossen ist in dem Sinne, dass er alles zu leisten
vermag, was für dimensionale Regularisierung erforderlich ist.

4.7. Die Matrix-Klasse

Die Fähigkeit, mit zweidimensionalen Arrays beliebiger Elemente umzugehen, ist in jedem der
gängigen CAS implementiert. Bei der Darstellung von Matrizen in Computern unterscheidet
man vier verschiedene Ansätze, aus denen eine Auswahl zu treffen ist:

1. Explizite dichte Darstellung:
Eine n×m-Matrix wird spezifiziert durch vollständige Angabe aller ihrer Einträge. Die
Darstellung ist üblicherweise ein Vektor (manchmal auch eine Liste).

a) Numerische Matrizen: Die Einträge sind üblicherweise alle vom gleichen eingebau-
ten Typ wie float oder double. Darauf optimierte Algorithmen werden von einigen
rein numerischen Paketen wie beispielsweise Matlab angeboten.

b) Symbolische Matrizen: Die Einträge sind nicht von einem eingebauten numerischen
Typ sondern entweder symbolisch oder aus einem Ring oder einer rationalen Er-
weiterung eines Ringes, etwa �.

4.7. Die Matrix-Klasse 99

Die aus dem numerischen Fall wohlbekannten Algorithmen lassen sich nur sehr einge-
schränkt auf den symbolischen Fall übertragen. Dieser Abschnitt wird darlegen, warum
das so ist und wie in GiNaC der Versuch unternommen wird, mit vertretbarem Aufwand
dennoch möglichst effizient zu sein.

2. Explizite dünn besetzte Darstellung:
Eine n×m-Matrix wird spezifiziert durch Angabe aller interessanter Elemente, die an-
deren werden typischerweise als verschwindend angenommen. Dies ist besonders in der
Numerik von Interesse, wenn Matrizenoperationen aufwändig werden und eine Multi-
plikation schneller als etwa O(n3) verlangt wird. Als Darstellung bietet sich in C++ der
STL-Container map an, dessen Zugriffszeit von logarithmischer Ordnung ist – allerdings
bedingt durch die Implementierung als RB-Baum mit einem Overhead von drei Zeigern
und einer booleschen Variablen, also bis zu 28 Bytes plus Füllbytes, nur für sehr große
dünn besetzte Matrizen in Erwägung zu ziehen.

3. Implizite atomare Darstellung:
Jede Matrix wird dargestellt durch genau ein Symbol. Das CAS implementiert im We-
sentlichen die Arithmetik über einem nichtkommutativen Ring. Es war eine der Haupt-
triebfedern hinter GiNaC, Objekte wie Farb-, Dirac,- oder Isospinmatrizen gerade nicht
explizit als zusammengesetzte Objekte sondern implizit darzustellen über die Eigenschaf-
ten der von ihnen erzeugten Algebren. Dies geschieht jedoch nicht in der Matrix-Klasse
sondern ist Aufgabe der Klassen ncmul und indexed.

4. Implizite elementbasierte Darstellung:
Bei diesem recht neuen Ansatz, der erstmals in [Fate 2001] vorgeschlagen wurde, können
Matrizen ohne Wissen über ihre Dimension dargestellt und manipuliert werden. Zum
Beispiel kann die n×n Hilbert-Matrix dargestellt werden durch Spezifizierung ihrer Ele-
mente: hij = 1/(i+j+1), i, j ∈ [0 . . . n−1]. Unter bestimmten Voraussetzungen können
solche Matrizen addiert, multipliziert und sogar ihre Determinanten berechnet werden.
Diese lazy evaluation-Technik ist jedoch hauptsächlich zum automatisierten Beweisen
von Theoremen interessant und am besten in Sprachen mit echter Unterstützung von
Lambda-Kalkül (wie Scheme oder Lisp) zugänglich.

In xloops müssen häufig lineare Transformationen ausgeführt werden wie zum Beispiel beim
Lorentztransformieren von Impulsen, oder es müssen kleine lineare Gleichungssysteme gelöst
werden wie etwa beim Zusammenfassen von Integrationsgebieten oder beim Integrieren ra-
tionaler Funktionen mit der Horowitzschen Methode [Horo 1971]. Da die auftretenden Matri-
zen üblicherweise klein sind, wurde die dichte explizite Darstellung gewählt. Weiter unten
werden wir beschreiben wie durch sorgfältige Implementierung der darauf agierenden Al-
gorithmen auch diese Darstellung bisweilen verbessert werden kann, um zum Beispiel das
O(n3)-Verhalten der Matrixmultiplikation für dünn besetzte aber dicht dargestellte Matrizen
abzukürzen.
Das effiziente Implementieren von Paketen für Lineare Algebra ist mittlerweile ein eigener
kleiner Industriezweig – angefangen bei den Numerical Recipes reicht das Spektrum über
LINPACK, LAPACK und BLAS, bis zu kommerziellen Paketen wie IMSL und NAG. Diese
Pakete sind jedoch für sehr große numerische lineare Systeme entworfen worden und versuchen

100 4. GiNaC: Implementierung

daher, nicht nur die Zahl der Rechenoperationen sondern auch den verwendeten Speicherplatz
zu minimieren, sowie durch Rundungsfehler hervorgerufene Entartungen zu entdecken und
soweit möglich zu verhindern. Im Falle symbolischer Matrizenoperationen kommen die meisten
der dort verwendeten Tricks nicht in Frage, erstens aufgrund des enormen Anwachsens der
Zwischenausdrücke, und zweitens weil zwischen Symbolen keine Ordnungsrelation besteht. Das
Anwachsen der Zwischenausdrücke ist darauf zurückzuführen, dass arithmetische Operationen
wie Addition, Multiplikation etc. eben nicht ausgeführt, sondern nur niedergeschrieben werden
können. So ist die Determinante der generischen 3× 3-Matrix M̃3×3

det M̃3×3 ≡ det


 a b c

d e f
g h i


 = aei− afh− bdi+ bfg + cdh− ceg

bereits ein Additionsobjekt mit 6 Multiplikationsobjekten als Einträgen. Schon die Determi-
nante einer generischen 5 × 5-Matrix würde mit ihren 120 Elementen hier eine halbe Seite
füllen. Die Determinante der generischen symbolischen Matrix ist also ebenso rechenintensiv
wie die Permanente p =

∑
σ∈Sn

∏n−1
i=0 ai σi

, die schon für numerische Matrizen NP-vollständig
ist. Aufgrund der fehlenden Ordnungsrelation zwischen Symbolen kann man ferner auch nur
insofern von einem Pivotelement sprechen, als dass das Element nicht verschwindet. Diese
häufig übersehene Tatsache könnte man als „Symbolikfalle“ bezeichnen. Sie besagt, dass der
Komplexitätsgrad ein und desselben Algorithmus angewandt auf symbolische Objekte ein hö-
herer sein kann als angewandt auf numerische Objekte. Dies alles schließt jedoch nicht aus,
dass gewisse Algorithmen, die in der numerischen Linearen Algebra zur Anwendung kommen,
auf symbolischen Systemen nicht auch anwendbar sind. So ist zum Beispiel die gewöhnliche
Matrizenmultiplikation augenscheinlich ein Prozess der Komplexität O(n3), jedoch gibt es
tatsächlich Algorithmen mit einer besseren asymptotischen Komplexität (wie derjenige von
Strassen [Stra 1969] mit O(nlog2 7 � n2,81) oder von Coppersmith und Winograd [CoWi 1990]
mit O(n2.376)), die im Prinzip auch auf symbolische Pakete übertragbar wären. Da diese jedoch
die asymptotische Komplexität ist und aufgrund der resultierenden großen Zwischenergebnisse
ohnehin zu überlegen ist, warum man dicht besetzte symbolische Matrizen der Größe n � 100
multiplizieren muss, ist die Anwendung solch fortgeschrittener Algorithmen in symbolischen
Paketen zweifelhaft. Tatsächlich scheint kein symbolisches Paket zu existieren, welches von ih-
nen Gebrauch macht [DST 1988]. Daraus kann man nur lernen, dass es sich durchaus lohnt, die
bekannten primitiven Algorithmen vor einer Implementierung einmal genau auf ihre Effizienz
hin zu untersuchen. Dieser Abschnitt wird mit ein paar zwar nicht neuen, aber dennoch nicht
selbstverständlichen Ergebnissen dieser Analyse enden. Die Erfahrung hat gezeigt, dass dieses
Gebiet ein ungeheures Optimierungspotenzial enthält, welches zumindest teilweise ausgenutzt
werden muss, um nicht später mit astronomischen Laufzeiten konfrontiert zu werden.

Darstellung der Matrix-Klasse

Zunächst einmal erläutern wir die Darstellung von Matrizen in GiNaC. Für die dichte Dar-
stellung bieten sich Vektoren an. Manche Lisp-basierte Systeme (wie Maxima und Macsy-
ma) benutzen die in Lisp nahe liegenden Listen, was oberflächlich betrachtet äquivalent zur
Benutzung von Vektoren ist. Dies ist jedoch ungeschickt: da die Zugriffszeit in einer Liste

4.7. Die Matrix-Klasse 101

nicht konstant ist, führt es zu Überraschungen bei der Implementierung von Matrixmultipli-
kation, die selbst im numerischen Fall dann wesentlich schlechter als O(n3) sein kann. Zwar
können zweidimensionale Container in der STL durch Iteration generiert werden (z.B durch
die Template-Instanzierung vector<vector<ex> > m;), jedoch täuscht dies eine zweidimen-
sionale Struktur nur vor, und verschachtelte Templates bereiteten bei manchen Compilern
Schwierigkeiten. Da die Repräsentation in einem objektorientierten Programmierparadigma
ohnehin vom Anwender weggekapselt wird, wurde eine Darstellung gewählt, in der die Zeilen
einer Matrix hintereinander in einem Vektor abgespeichert werden und zwei Hilfsvariablen
über die Dimension der Matrix informieren. Die zweidimensionale Indizierung muss dann von
jeder einzelnen Methode konsistent auf die eindimensionale abgebildet werden. Eine Methode
zur Transponierung des Matrixobjektes schreibt sich dann in GiNaC wie folgt:

1 const class matrix
2 matrix::transpose(void) const
3 {
4 std::vector<ex> trans(col*row);
5
6 for (unsigned r=0; r<col; ++r) {
7 for (unsigned c=0; c<row; ++c) {
8 trans[r*row+c] = m[c*col+r];
9 }

10 }
11 return matrix(col,row,trans);
12 }

Hierbei bezeichnen row und col die Dimensionen (Zeilen und Spalten) und m ist die Dar-
stellung der Matrix im Objekt – also ein Vektor aus ex-Elementen der Länge row*col. Man
beachte, dass die Indizierung des STL-Vektors über eckige Klammern geschieht statt über die
.at()-Methode, das heißt, dass range-checking aus Gründen der Effizienz und der Hybris des
Programmierers innerhalb der Methoden nicht verwendet werden.

Die Frage ist erlaubt, warum eine dichte Darstellung gewählt worden ist statt einer dün-
nen (sparse) oder beiden Darstellungen mit einer Wahlmöglichkeit für den Anwender. Eine
dünne Matrix ließe sich beispielsweise ideal durch einen assoziativen Array wie zum Beispiel
den STL-Container map<int,ex> beziehungsweise map<pair<int,int>,ex> darstellen. Die
Zugriffskomplexität in diesem Container ist zwar nicht explizit im Sprachstandard spezifi-
ziert, jedoch wird üblicherweise implizit verstanden, dass eine map als sortierter RB-Baum
implementiert wird. Daher können Suchoperationen binär in O(log(n)) durchgeführt werden,
Einfügungen sind jedoch von O(n).

Zunächst einmal ist das Mischen dieser beiden Darstellungen notorisch schwierig. Addiert
man eine dicht besetzte Matrix D mit einer dünn besetzten S, so erwartet man als Ergebnis
natürlich eine dichte Matrix und das System sollte auch eine solche Darstellung für D + S
wählen. Multipliziert man eine dicht besetzte Matrix D mit einer dünn besetzten S, so ist
der Fall schon weniger klar und das Ergebnis DS kann sowohl dicht besetzt sein (z.B. D
beliebig, S = �) als auch dünn (z.B. j = 0 ⇔ Dij = 0, i > 0 ⇔ Sij = 0, also DS = �).
Ferner haben Eliminationsverfahren die Eigenschaft, dünn besetzte Matrizen in dicht besetzte
Dreiecksmatrizen zu überführen. Mischen dieser beiden Darstellungen erfordert also ständige
Entscheidungen, entweder des Programmierers oder auf Konstruktorebene.

102 4. GiNaC: Implementierung

0 1 2 3 4 0
1
2
3
4

0 1 2 3 4 0 1 2 3 4?

Abbildung 4.6.: Schleifenumordnung bei der Matrix-Multiplikation. Links die naive Implementie-
rung. Rechts eine Anordnung, die eine Abkürzung der innersten Schleife zulässt, wenn das mit „?“
markierte Element exakt verschwindet.

Glücklicherweise lassen sich selbst in der hier gewählten dichten Darstellung bei einigen Stan-
dardalgorithmen Verbesserungen anbringen, die einen Teil der Vorteile der dünnen Darstellung
mitbringen. Man betrachte beispielsweise die Matrixmultiplikation, wie gesagt ein Prozess von
O(n3), zumindest bei dichten Matrizen. Die Komplexität12 der folgenden Implementierung
geht für dünne Matrizen asymptotisch gegen O(n2):

1 const matrix
2 matrix::mul(const matrix & other) const
3 {
4 std::vector<ex> prod(row*other.col);
5
6 for (unsigned r1=0; r1<row; ++r1) {
7 for (unsigned c=0; c<col; ++c) {
8 if (m[r1*col+c]==0)
9 continue; // Überspringe nächste Schleife

10 for (unsigned r2=0; r2<other.col; ++r2)
11 prod[r1*other.col+r2] += m[r1*col+c] * other.m[c*other.col+r2];
12 }
13 }
14 return matrix(row, other.col, prod); // Ctor aus Darstellung
15 }

Hierin wurden die beiden inneren Schleifen gegenüber der Schulbuch-Methode umgeordnet, so
dass die Einträge in der Ergebnismatrix sukzessive aufakkumuliert anstatt Eintrag für Eintrag
vollständig berechnet werden. Dies ermöglicht die Abkürzung in Zeile 9, falls ein Element der
*this-Matrix (der linken Matrix) verschwindet.13

12 Wir definieren den Begriff Komplexität hier etwas unorthodox: Normalerweise bezeichnet man damit die
Anzahl der Körperoperationen, also die Summe der Additionen, Subtraktionen, Multiplikationen und Di-
visionen. Hier verstehen wir darunter die Anzahl der aus dem Speicher zu holenden Objekte. Das ist
bei symbolischen Rechnungen realistischer, da der Aufwand der Körperoperationen hier im Gegensatz zu
Gleitkommarechnungen nicht nach oben beschränkt ist.

13 Ohne die Abfrage, ob das Element aus der linken Matrix verschwindet, wird dieselbe Umordnung der beiden
inneren Schleifen übrigens auch bei der Multiplikation großer Matrizen aus Gleitkommazahlen angewendet.
Sie vermeidet nämlich ein n-maliges vollständiges Auslesen der rechten Matrix. Stattdessen wird jede Zeile
erst n mal ausgelesen, bevor zur Nächsten übergegangen wird. Dadurch verbleiben die Daten eher in
einem schnellen CPU-nahen Speicher, anstatt aus einem langsamen CPU-fernen Speicher geholt werden zu
müssen („Cache-Affinität“). Bei der Programmierung von Vektorrechnern gehört diese Unterscheidung zum
kleinen Einmaleins: das normale Verfahren wird dort als ijk-Methode bezeichnet, das oben vorgestellte
als ikj-Methode (Siehe zum Beispiel [CoTr 1995]).

4.7. Die Matrix-Klasse 103

Implementierte Eliminationsverfahren

Betrachten wir nun die Effizienz, mit der dicht besetzte symbolische Matrizen invertiert werden
können, bzw. deren Determinante berechnet wird. Es wird sich dabei herausstellen, dass dies
weniger trivial ist als es zunächst den Anschein hat. Die naheliegendste Methode ist, die
Definition der Determinante über die Permutationsgruppe Sn

det M̃n×n =
∑
σ∈Sn

sign(σ)m1,σ1 . . .mn,σn

auch zu ihrer Bestimmung heranzuziehen. Für die generische 3× 3-Matrix erhält man

det M̃3×3 = aei− afh− bdi+ bfg + cdh− ceg,
aber da dieser Fall exotisch ist und selten n2 freie Symbole auftreten, können normalerweise
in diesem Ergebnis Terme zusammengefasst werden.
Bei der als Laplace-Entwicklung bekannten Entwicklung nach einer ausgewählten Zeile oder
Spalte können solche Zusammenfassungen häufig frühzeitig ausgenutzt werden. Untersuchen
wir aber die Komplexität zunächst ganz allgemein, so stellen wir noch ein weiteres Verbes-
serungspotenzial fest, falls die Dimension größer als drei ist. Die Laplace-Entwicklung der
generischen 3× 3-Matrix nach der ersten Spalte liefert:

det M̃3×3 ≡
∣∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣∣ = a

∣∣∣∣ e f
h i

∣∣∣∣− d
∣∣∣∣ b c
h i

∣∣∣∣ + g

∣∣∣∣ b c
e f

∣∣∣∣ .
Bei 4 × 4-Matrizen führt sie aber dazu, dass alle 2 × 2-Minoren doppelt berechnet werden:
Diejenige unten rechts bestehend aus den Elementen (2, 2), (3, 3), (2, 3) und (3, 2) kommt
beispielsweise jeweils in der Minore für die Elemente (0, 0) und (1, 0) vor (Abbildung 4.7).
Allgemein wird jede k×k-Minore in einer n×n-Matrix (n−k)! mal berechnet werden müssen,
wobei 1 < k < n−1. Die Anzahl der auszuführenden Multiplikationen beträgt jeweils k,
diejenige der Additionen k − 1. Nun gibt es

(
n
k

)
solcher Minoren, die Anzahl der Operationen

beträgt also

KLaplace = (2 + 1)(n− 2)!

(
n

2

)
+ (3 + 2)(n− 3)!

(
n

3

)
+ · · ·+ (n+ n−1),

was schon für moderate n schnell gegenKLaplace � e n! konvergiert. Die nahe liegende Verbesse-
rung besteht im Abspeichern der Zwischenergebnisse, damit jede Minore nur einmal berechnet
wird. Die Anzahl der Operationen beträgt dann nur noch

K ′
Laplace = (2 + 1)

(
n

2

)
+ (3 + 2)

(
n

3

)
+ · · ·+ (n+ n−1) = (n− 1)(2n − 1)

und der Speicheraufwand maximal � 2
(

n
n/2

)
Ausdrücke. (Im Schritt �n/2� müssen aus

(
n

�n/2	
)

abgespeicherten Minoren
(

n
�n/2	+1

)
neue gebildet werden.) Dieses Verfahren ist in der Methode

matrix::determinant_minor() implementiert. Obwohl es vom Komplexitätsgesichtspunkt
nicht polynomial sondern exponentiell ist (siehe Tabelle 4.2), handelt es sich häufig um das

104 4. GiNaC: Implementierung

Abbildung 4.7.: Überflüssige Berechnung von 2× 2-Minoren bei Laplace-Entwicklung einer 4× 4-
Matrix ohne Zwischenspeichern. Die grauen Felder markieren die Minoren.

schnellste Verfahren – beispielsweise bei dichten Matrizen mit multivariaten Polynomen als
Einträgen [GeJo 1976].
Der in [ShSt 1998] für symbolische Matrizen explizit empfohlene Algorithmus von Leverrier
(bisweilen auch als Algorithmus von Fadeev beschrieben) geht wie folgt vor. Sei M die n× n
Ausgangsmatrix. Man setzt B1 = M und c1 = Sp(M). Dann berechnet man

Bi = M(Bi−1 − ci−1�), ci = Sp (Bi)/i, i = 2, . . . , n.

Die ci sind genau die Koeffizienten des charakteristischen Polynoms von M und (−)n+1cn
mithin die Determinante.
Naiv in GiNaC implementiert liefert das Verfahren jedoch für die generische symbolische 3×3-
Matrix den unförmigen Ausdruck

det M̃3×3 = 1
3

(
hc+ba+b(−a−i))d+ 1

3

(
g(−e−i)+gi+hd)c+ 1

3
f
(
hi+h(−a−i)+gb)

+ 1
3
i
(

1
2
(−a−e)i− 1

2
e(−a−i)−bd− 1

2
a(−e−i))+ 1

3
h
(
fe+dc+(−a−e)f)

+ 1
3

(
gf+d(−e−i)+ed)b+ 1

3

(− 1
2
(−a−e)i− 1

2
e(−a−i)+ 1

2
a(−e−i)−hf)a

+ 1
3

(− 1
2
(−a−e)i−gc+ 1

2
e(−a−i)− 1

2
a(−e−i))e+ 1

3
g
(
fb+(−a−e)c+ac),

der auf jeden Fall expandiert werden muss, wie man schon an den artifiziellen Brüchen erkennt
– das Ergebnis muss ja ein Polynom über den ganzen Zahlen sein.

Tatsächlich ist das Ergebnis in Leverrier’s Verfahren selbst nicht ganz so unhandlich, wie es
aussieht, da häufig auftretende Unterausdrücke in einem System wie GiNaC nur Referenzen

n tgen texpand

4 <0.01s 0.2s
5 0.01s 0.94s
6 0.02s 30.4s
7 0.04s 1202s

Tabelle 4.1.: Laufzei-
ten zur Generierung
und Ausmultiplikation
von symbolischen De-
terminanten mit dem
Leverrier-Verfahren.

auf einmal abgelegte Ausdrücke darstellen. Erst beim Ausmultiplizie-
ren mit expand() verursacht es erheblichen Aufwand. Der eigentliche
Rechenaufwand beim Bilden von symbolischen Determinanten besteht
also in der Notwendigkeit der Kanonisierung der auftretenden Aus-
drücke. Die nebenstehende Tabelle gibt einen Eindruck vom explo-
sionsartigen Anschwellen der Komplexität. In ihr sind exemplarische
Laufzeiten jeweils für die Generierung und die Kanonisierung von De-
terminanten dicht besetzter symbolischer n × n-Matrizen in GiNaC
aufgetragen. Daraus geht eindeutig hervor, dass der Algorithmus für
symbolische Matrizen nicht geeignet ist. Er kann zwar deutlich verbes-
sert werden, indem man bei jedem Schritt bei der Spurbildung und
der Multiplikation ausmultipliziert, bleibt aber dennoch weit hinter

4.7. Die Matrix-Klasse 105

z.B. der Laplace-Entwicklung zurück. Im numerischen Fall ist die Gauß- bzw. die Bareiss-
Entwicklung geeigneter. Der Algorithmus von Leverrier ist in GiNaC daher lediglich für die
Berechnung von charakteristischen Polynomen implementiert und auch dann nur, wenn alle
Einträge der Matrix Zahlen sind. Da insgesamt n Matrix-Multiplikationen auszuführen sind,
ist seine Komplexität dann von der Ordnung O(n3) bis O(n4), je nachdem ob die Matrix dünn
oder dicht besetzt ist.
Im folgenden wenden wir uns drei klassischen Eliminationsverfahren zu, die die Ausgangs-
matrix in eine (obere) Dreiecksmatrix überführen. Der Algorithmus der Gauß-Elimination
lautet:

m
(0)
i,j = mi,j

m
(k+1)
i,j = m

(k)
i,j −

m
(k)
i,km

(k)
k,j

m
(k)
k,k

. (4.9)

Hierin, wie auch bei allen folgenden Eliminationsschemata, laufen die Indizes 0 ≤ k < n−1,
k ≤ i < n, k < j < n. Den Divisor m(k)

k,k bezeichnet man als Pivotelement.
Im numerischen Falle kann die Komplexität leicht berechnet werden. Wir beschränken uns
hier auf den Fall m = n: In jedem Eliminationsschritt werden 3 elementare Operationen
in der n′ × n′ Submatrix rechts unten ausgeführt, wobei n′ = n − 1 . . . 1. Die Anzahl der
Rechenschritte beträgt also

3
(
(n− 1)2 + (n− 2)2 + · · ·+ 22 + 12

)
= n3 − 3

2
n2 +

1

2
n.

Die Determinante ist danach das Produkt der n Diagonalelemente. Damit ist die Gauß-Spalte
in Tabelle 4.2 erklärt.
Anhand eines Beispiels wird deutlich, welche Transformationen die Elemente der Matrix bei
den Eliminationsschritten durchlaufen:


6 −3 −4 9
−7 −5 6 −9
−8 −2 2 −1
4 −7 1 8


 −→




6 −3 −4 9
0 −17/2 4/3 3/2
0 0 −218/51 169/17
0 0 0 1705/218


 .

Obwohl alle Elemente ursprünglich aus einem Integritätsbereich waren (in diesem Falle aus
�), wird dieser schon im ersten der drei Schritte verlassen. Ist das Ziel des Eliminationsver-
fahrens die Invertierung von Matrizen, so ist dies zu erwarten. Ist es aber die Berechnung der
Determinanten, die ja selbst als Polynom Element desselben Integritätsbereiches ist, so wäre
es wünschenswert, alle Zwischenschritte in demselben Integritätsbereich durchzuführen. Dies
gilt besonders für Polynome, wo der Aufwand für das Berechnen des ggT sehr groß sein kann.
Dient die Elimination der Lösung eines Gleichungssystemes, so liegen die Lösungen zwar im
Quotientenkörper, aber die Notwendigkeit zu Dividieren kann bis zum schrittweisen Auflösen
verschoben werden. Die divisionsfreie Elimination (engl. division free elimination) umgeht
dieses Problem. Die Eliminationsvorschrift lautet bei diesem Algorithmus:

m
(0)
i,j = mi,j

m
(k+1)
i,j = m

(k)
i,j m

(k)
k,k −m(k)

i,km
(k)
k,j . (4.10)

106 4. GiNaC: Implementierung

Ein Implementationsproblem bei Gauß-Elimination

m(0) ≡ m =


 x− 1 x2 − x 1

1 x 1
0 x 0




Wenden wir den ersten Gauß-Eliminationsschritt an (k=0 in (4.9)) und konstruieren alle auftre-
tenden Terme gemäß unseren Regeln:

m(1) =


 x− 1 x2 − x 1

1 x− x2−x
x−1 1− 1

x−1

0 x 0




Im nächsten und letzten Schritt wird durch das Pivotelement m
(1)
1,1 geteilt. Es ist aber m

(1)
1,1 = x−

x2−x
x−1 , was verschwindet. Die defensive Vereinfachung hat das Pivotelement nicht zu 0 vereinfacht,

der naive Test auf 0 versagt und das Endergebnis enthält das Element m
(2)
2,2 = x(1− 1

x−1)
/
(x−x2−x

x−1)
mit einer versteckten Division durch Null. Die Gauß-Elimination verlässt den Integritätsbereich
�[x] und daher hilft auch kein Ausmultiplizieren in (4.9). Hier muss in jedem Schritt diejenige
Vereinfachung explizit aufgerufen werden, die im entsprechenden Quotientenkörper, hier also �[x],
auf Null testen kann, also normal().

Anhand unseres Beispieles sieht man, dass hier zwar keine Quotienten gebildet, die Zwischen-
ausdrücke jedoch sehr groß werden. Man sieht leicht ein, dass im Falle von Polynomen des
Grades m das Element (n,n) rechts unten nach der letzten Elimination den Grad 2nm hat:




6 −3 −4 9
−7 −5 6 −9
−8 −2 2 −1
4 −7 1 8


 −→




6 −3 −4 9
0 −51 8 9
0 0 1308 −3042
0 0 0 −3130380


 .

Teilerfreie Elimination (engl: fraction free elimination) behebt dieses Problem der divisions-
freien Elimination durch die Beobachtung, dass das Pivotelement des letzten Eliminations-
schrittes alle Elemente der eliminierten Matrix teilt. In obigem Beispiel gilt in der dritten Zeile
6|1308 und 6|3042 und in der vierten 51|86955, wo 86955 das rechte untere Element nach dem
vorletzten Eliminationsschritt ist (62 · 86955 = 3130380). Die Eliminationsvorschrift lautet
dann:

m
(0)
i,j = mi,j

m
(−1)
−1,−1 = 1

m
(k+1)
i,j =

m
(k)
i,j m

(k)
k,k −m(k)

i,km
(k)
k,j

m
(k−1)
k−1,k−1

(4.11)

4.7. Die Matrix-Klasse 107

Laplace-Entwickung Algorithmus
Permutations- ohne Zwischen- mit Zwischen- von Eliminationsverfahren

n gruppe speichern speichern Leverrier Gauß Bareiss

1 0 0 0 0 0 0
2 3 3 3 16 4 3
3 17 14 14 108 17 16
4 95 63 45 384 45 47
5 599 324 124 1000 94 104
6 4319 1955 315 2160 170 195
7 35279 13698 762 4116 279 328
8 322559 109599 1785 7168 427 511
9 3265919 986408 4088 11664 620 752
10 36287999 9864099 9207 18000 864 1059
...

...
...

...
...

...
...

�1 ∼ n n! ∼ e n! ∼ 2n n ∼ 2n4 ∼ n3 ∼ 4
3n3

Tabelle 4.2.: Anzahl der elementaren Rechenoperationen (Additionen, Multiplikationen und Di-
visionen) zur Berechung der Determinanten einer Matrix in verschiedenen Algorithmen unter der
Annahme, dass die Rechenoperationen ausgeführt werden können.

Angewendet auf unser bekanntes Beispiel ergibt sich nach drei Eliminationsschritten


6 −3 −4 9
−7 −5 6 −9
−8 −2 2 −1
4 −7 1 8


 −→




6 −3 −4 9
0 −51 8 9
0 0 218 −507
0 0 0 1705


 .

Durch die in jedem Schritt durchgeführte Division sind die Elemente der Matrix in erträglicher
Größe geblieben: Für Polynome des Grades m in der Ausgangsmatrix hat das Element (n,n)
nach der letzten Elimination nun den Grad nm. Es ist anzumerken, dass keine weiteren Kür-
zungen möglich sind, da nach dem letzten Schritt im Element (n,n) bereits die Determinante
der ursprünglichen Matrix steht.

Der Beweis, dass diese Division immer exakt aufgeht, erfolgt mithilfe der Sylvester-Identität.
Hierzu definieren wir die Matrix M (k) ≡ (m

(k)
ij) aus Subdeterminanten von M (0):

(
m

(0)
ij

)
:= m(0)

m
(k)
ij :=

∣∣∣∣∣∣∣∣∣
m0,0 · · · m0,k−1 m0,j

...
...

mk−1,0 · · · mk−1,k−1 mk−1,j

mi,0 · · · mi,k−1 mi,j

∣∣∣∣∣∣∣∣∣
. (4.12)

Die so definierte Matrix aus Subdeterminanten hat die Dimension (n−k)×(n−k) (vergleiche
Abbildung 4.8 links). Für die Indizes gilt k ≤ i, j < n.

108 4. GiNaC: Implementierung

M (k) ≡ (
m

(k)
ij

)
= det


 ︸ ︷︷ ︸

n

k︷ ︸︸ ︷ 


n

k

{ 
i→

j→

M =




M00 M01

M10 M11

︸ ︷︷ ︸
n

k︷ ︸︸ ︷ 


n

k

{ 


Abbildung 4.8.: Die beim Beweis der Sylvester-Identität vorkommenden Matrixpartitionierungen.

Satz 4.2 (Sylvester-Identität) Für alle in Gleichung (4.12) definierten m
(k)
ij gilt

|M |(a(k−1)
k,k)n−k−1 =

∣∣∣∣∣∣∣
m

(k)
k,k · · · m

(k)
k,n−1

...
m

(k)
n−1,k · · · m

(k)
n−1,n−1

∣∣∣∣∣∣∣ .
Zum Beweis partitionieren wir die Matrix M wie in Abbildung 4.8 rechts angedeutet in vier
Submatrizen und splitten sie in zwei Anteile:

M =

(
M00 M01

M10 M11

)
=

(
M00 �

M10 �

)
·
(
� M−1

00 M01

� M11 −M10M
−1
00 M01

)
,

wobei wir M00 als nichtsingulär annehmen. Dann ist die Determinante

|M | = |M00||M11 −M10M
−1
00 M01|.

Da die zweite Determinante auf der rechten Seite von der Ordnung n−k ist, können wir |M00|
durch Multiplikation mit |M00|n−k−1 hineinziehen und erhalten

|M ||M00|n−k−1 =
∣∣|M00|(M11 −M10M

−1
00 M01)

∣∣.
Hierin erkennt man |M00|M−1

00 = Madj
00 , so dass sich die rechte Seite nach der Cramer’schen

Regel auflösen lässt:

∣∣|M00|(M11 −M10M
−1
00 M01)

∣∣ =
∣∣|M00|(mi,j −

k−1∑
r,s=0

mi,r(M
−1
00)r,sms,j)

∣∣
=

∣∣|M00|mi,j −
k−1∑
r,s=0

mi,r(M
adj
00)s,rms,j

∣∣
=

∣∣m(k)
i,j

∣∣, k ≤ i, j < n.

Die letzte Gleichung folgt durch Laplace-Entwicklung der untersten Zeile von (4.12) von rechts
nach links. Also haben wir |M ||M00|n−k−1 = |m(k)

i,j |. Das ist aber genau die Behauptung des
Satzes. �

4.7. Die Matrix-Klasse 109

Ein Implementationsproblem teilerfreier Elimination
Bei der Implementierung der teilerfreien Elimination (Gleichung (4.11)) kommt es zu einem sub-
tilen Problem mit automatisch durchgeführten Vereinfachungsregeln der Klasse mul. Man kann es
am besten an einem Beispiel einsehen. Sei

m(0) ≡ m =




(a+b)c 0 0 0
0 1 0 0
0 0 1 0
0 0 0 f/c2


 .

Anwenden des ersten Eliminationsschrittes liefert:

m(1) =




(a+b)c 0 0 0
0 (a+b)c 0 0
0 0 (a+b)c 0
0 0 0 (a+b)f/c


 .

Im Element unten rechts bahnt sich bereits das Verhängnis an, denn dort wurde aus (a+b)cf/c2

ein c weggekürzt. Diese sehr frühe Kürzung von Ausdrücken, deren Gleichheit durch syntaktischen
Vergleich festgestellt werden kann, findet schon im Konstruktor der Klasse mul statt und ist daher
auch nicht durch ein .hold() zu verhindern. Der nächste Eliminationsschritt würde zu m(2) = m(1)

führen, da das Pivotelement m
(1)
1,1 gleich dem Divisor m

(0)
0,0 ist. Trennt man alle Matrixelemente

nach Zähler Z und Nenner N auf, so ist der Zähler des Divisors nun Z(m(0)
0,0) = (a+b)c, der Nenner

N(m(0)
0,0) = 1. Die Division von Z(m(1)

3,3) = (a+b)f durch Z(m(0)
0,0) geht nun jedoch nicht mehr auf.

Der Divisor ist nun also kein Teiler mehr und der Algorithmus bricht zusammen.

Angewendet auf das divisionsfreie Eliminiationsschema liefert die Sylvester-Identität

m
(k)
i,j =

∣∣∣∣∣ m
(k−1)
k,k m

(k−1)
k,j

m
(k−1)
i,k m

(k−1)
i,j

∣∣∣∣∣
/
m

(k−2)
k−1,k−1,

was die Teilerfreiheit zeigt, da m(k)
i,j per Definition kein Bruch ist.

Die Division in Gleichung (4.11) geht zwar für k > 2 immer auf, dies funktioniert jedoch
in der Praxis nicht mehr, sobald vorher eine Kürzung durchgeführt worden ist (siehe Kas-
ten auf Seite 109). Daher wird in Quotientenkörpern eine explizite Variante des teilerfreien
Eliminationsschemas benötigt, welches Zähler und Nenner getrennt verwaltet:

m
(0)
i,j = mi,j

Z(m
(−1)
−1,−1) = 1

N(m
(−1)
−1,−1) = 1

Z(m
(k+1)
i,j) =

Z(m
(k)
i,j)Z(m

(k)
k,k)N(m

(k)
i,k)N(m

(k)
k,j)− Z(m

(k)
i,k)Z(m

(k)
k,j)N(m

(k)
i,j)N(m

(k)
k,k)

Z(m
(k−1)
k−1,k−1)

(4.13)

N(m
(k+1)
i,j) =

N(m
(k)
i,j)N(m

(k)
k,k)N(m

(k)
i,k)N(m

(k)
k,j)

N(m
(k−1)
k−1,k−1)

.

110 4. GiNaC: Implementierung

Abbildung 4.9.: Obere Dreiecksmatrix vs. obere Staffelmatrix.

Es ist völlig äquivalent zur teilerfreien Elimination und stellt nur eine Umformulierung dersel-
ben dar. Der Verwaltungsaufwand ist vernachlässigbar, jedenfalls gegenüber der Alternative,
in jedem Schritt den ggT zu berechnen und Polynomdivision durchzuführen.
Diese drei Eliminationsverfahren sind in GiNaC (derzeit als private Methoden der Klasse
matrix) implementiert. Die Schleifen sind in allen Fällen dabei um Logik erweitert, die die
Handhabung unterdeterminierter Gleichungssysteme erlaubt. Hierzu wird nicht in eine Drei-
ecksmatrix sondern in eine Staffelmatrix (engl: echelon matrix) transformiert, in der jede Zeile
mehr führende Nullen hat als die vorherige, nicht unbedingt aber genau eine führende Null
mehr (Vergleiche Abbildung 4.9). Die Notwendigkeit dafür entsteht bei dem Versuch unterde-
terminierte lineare Gleichungssysteme aufzulösen. Dies soll noch möglich sein, wobei sich die
Routine dann für die Formulierung der Lösung vom Benutzer mitgelieferter freier Variablen
bedienen muss (siehe nächste Seite).
Bei der Implementierung muss man sich auch Gedanken darüber machen, inwieweit das Er-
gebnis „vereinfacht“ werden sollte. Mathematica lässt das Ergebnis einfach stehen:

1 In[1]:= Det[a/(a-b),1,b/(a-b),1]
2
3 a b
4 Out[1]= ----- - -----
5 a - b a - b
6
7 In[2]:= Together[%]
8
9 Out[2]= 1

MapleV ruft dagegen explizit normal() auf, was äquivalent ist zu Mathematicas Together[]:14

1 > with(linalg):
2 Warning, new definition for norm
3 Warning, new definition for trace
4 > det(matrix(2,2,[[a/(a-b),1],[b/(a-b),1]]));
5 1

Ersteres ist zweifellos unbefriedigend, da es nicht der Tatsache Rechnung trägt, dass wir uns
von vornherein nicht in einem Integritätsbereich befinden, sondern in einem Quotientenkör-
per. Zweiteres ist besser, könnte aber verschwenderisch sein, falls Maple’s normal() im Falle
14 Streng genommen macht Together[] mehr als normal(), denn es berücksichtigt algebraische Körperer-

weiterungen. Es entspricht eher Maples radnormal(), welches auch korrekt x2+2ix−1
x+i → x + i vereinfacht.

Dies ist aber für die Betrachtungen hier ohne Belang.

4.7. Die Matrix-Klasse 111

nichtrationaler Funktionen tatsächlich etwas Nichttriviales macht. Wir rufen in GiNaC explizit
normal() auf, falls mindestens eines der Elemente der Ausgangsmatrix aus einem Quotien-
tenkörper war.

Die drei beschriebenen Eliminationsverfahren und ihre möglichen Aufrufer sind so orthogonal
zueinander implementiert wie nur möglich. Die aufrufenden Funktionen müssen heuristisch die
Entscheidung über das zu verwendende Verfahren treffen, falls der Benutzer keine Hinweise
gegeben hat. Als Aufrufer kommen in Frage:

matrix::solve() Löst ein lineares Gleichungssystem AB = C, wobei A eine beliebige m×n-
Matrix ist, C eine beliebige m× p-Matrix und B eine n× p-Matrix mit Symbolen. Der
Aufruf erfolgt nach dem Schema A.solve(B,C) und liefert die Lösung als Rückgabe-
wert. Anders als bei Computeralgebrasystemen üblich zwingt GiNaC den Benutzer zur
Eingabe einer Symbolmatrix B. Dies hat den Vorteil, dass auch bei unterbestimmten
Gleichungssystemen keine Symbole mit (für den Benutzer) unvorhersagbaren Namen
erzeugt werden müssen. Ein triviales Beispiel hierfür ist das Gleichungssystem

(
1 −1

) (x
y

)
=
(
c
)

mit der Lösung (c+ y
y

)
.

In MapleV kann man dagegen direkt linsolve(A,C) lösen lassen, bekommt dann aber
ein Ergebnis in c und dem neuen Symbol _t[1][1], was für eine automatische Weiter-
verarbeitung selten brauchbar ist.

matrix::inverse() Hier wird zwecks Reduzierung von überflüssigem Programmcode über
den Umweg matrix::solve() auf die Eliminationsverfahren zugegriffen: man löst ein-
fach das Gleichungssystem AB = � nach B auf. Man beachte, dass dies nicht weniger
optimal ist als andere Invertierungsroutinen, da das Eliminationsverfahren nur einmal
auf die augmentierte Matrix (A|�) angewendet wird. Heuristiken für die Auswahl des
geeigneten Eliminationsverfahrens brauchen daher auch nur einmal in matrix::solve()
implementiert zu werden. Dadurch ist matrix::inverse() inklusive Fehlerbehandlung
nur ca. 20 Zeilen lang.

matrix::determinant() Wie wir gesehen haben, liefert die teilerfreie Eliminationsvor-
schrift (4.11) im rechten unteren Element der eliminierten Matrix die Determinante.
Bei der Gauß- und der divisionsfreien Elimination kann die Determinante leicht aus den
Diagonalelementen der entstandenen Dreiecksmatrix berechnet werden. Das ist jedoch
meist insgesamt aufwändiger. Lediglich im rein numerischen Fall wird die Gauß-Routine
bevorzugt, da sie dann äquivalent zur Jordan-Elimination ist. Die Heuristik wird je-
doch in den meisten Fällen kein Eliminationsverfahren wählen sondern die auf Seite 103
beschriebene, verbesserte Laplace-Entwicklung.

112 4. GiNaC: Implementierung

Weitere Besonderheiten der Matrix-Klasse

Ganzzahlige Potenzen nichtkommutativer Objekte in GiNaC werden normalerweise sofort
von power::eval() ausmultipliziert, wie zum Beispiel in der Regel γ2

0 → γ0γ0 für Dirac-
Matrizen. (Erst in zwei darauffolgenden Schritten wird der Ausdruck zu η00� und schließlich
� evaluiert.) Dies scheint für alle nichtkommutativen Objekte sinnvoll zu sein, sofern sie in
atomarer Darstellung vorliegen und Regeln für die Evaluation von Produkten bekannt sind.
Dieses Umschreiben in lineare Produkte macht die Objekte direkt einer größeren Anzahl von
Vereinfachungen zugänglich als dies mit Evaluationsregeln in power::eval() möglich wäre.
Man kann dies leicht am Beispiel (γ0γ1γ0)

2 nachvollziehen.
Für Potenzen von Matrizen machen wir hier jedoch eine Ausnahme: Sie nicht in ncmul-Objekte
umzuwandeln macht sie einer schnellen Exponentiationsroutine (siehe [Knu 1998], Abschnitt
4.6.3) zugänglich. Dabei werden einmal berechnete Zwischenergebnisse aufgehoben, wie in
A4 = A2 ·A2, wozu die Binärdarstellung des Exponenten herangezogen wird. Für die Berech-
nung von Ap müssen dann genau �log2 p�+ ν(p) < 2 log2 p Matrixmultiplikationen ausgeführt
werden, wobei ν(p) die Anzahl der Einsen in der Binärdarstellung von p zählt. Der Algorith-
mus in Pseudocode ausgedrückt lautet dann:15

1 C ← �;
2 while (p �= 1)
3 if (p odd)
4 C ← C · A;
5 p ← �p/2�;
6 A ← A · A;
7 return A · C;

Wenn aber power::eval() nicht für die Exponentiation zuständig sein soll, stellt sich die Fra-
ge, wann diese ausgeführt wird. Da alle typischen Matrixoperationen die Komplexität O(nβ)
mit β ≥ 2 haben, macht sich GiNaC den pragmatischen aber nicht ganz orthogonalen Ansatz
zu eigen, einen separaten benannten Evaluator evalm() einzuführen. Dieser erst addiert und
multipliziert Matrizen und führt die Exponentiation zu einer ganzen (nicht notwendigerweise
positiven) Zahl aus.
Dieser Weg ist wenig originell, ist er doch identisch mit dem von MapleV eingeschlagenen.16 Er
hat sich aber in der Praxis bewährt, sofern der Benutzer weiß, dass Matrizen vom anonymen
Evaluator unangerührt bleiben.

15 Ersetzt man in den Zeilen 4 , 6 und 7 die Multiplikation durch Addition, so erhält man übrigens den als
„Russische Bauernmultiplikation“ bekannten Algorithmus zur Berechnung des Produktes einer beliebigen
Zahl a mit einer natürlichen Zahl p.

16 Man kann sogar leicht herausfinden, dass Maple seit MapleVR4 die schnelle Exponentiation für Matrizen
benutzt, indem man die Probematrix

A4 ≡
(

a 1
0 1

)
4

einmal mit dem unexpandierten Ergebnis von ((A·A)·A)·A und dann mit dem Ergebnis von (A·A)·(A·A)
vergleicht. Ersteres liefert (A4)0,1 = a3 + a2 + a + 1, letzteres (A4)0,1 = a2(a + 1) + a + 1.

5. Kritische Analyse des
GiNaC-Ansatzes

However, the existence of the guild of mathematicians disburdens us
from a vain trial in building a complete, universal, computing system.

Trudy Weibel, Gaston Gonnet [WeGo 1991]

5.1. Effizienz

Eine allgemeine vergleichende Effizienzanalyse von Computeralgebrasystemen ist ein aus-
sichtsloses Unterfangen – lediglich punktuelle Untersuchungen bestimmter Fähigkeiten sind
sinnvoll und Ergebnisse sind stets mit Vorsicht zu genießen. Dies gilt für den Vergleich der
vielfältigen symbolischen Fähigkeiten noch mehr als für das Aufstellen von Benchmarks.1

Einerseits steht natürlich immer die Möglichkeit offen, durch eine vollständige Umstruktu-
rierung der Darstellung aller Klassen etwas völlig Neuartiges und vielleicht Performanteres
zu schaffen. Andererseits kann man auch durch sorgfältige Feinabstimmung der inneren Ab-
läufe allen Operationen schon auf die Sprünge helfen. Abbildung 5.1 zeigt die Laufzeiten in
einer Variation von Fliegners Konsistenztest, in der in der expandierten Summe (

∑49
i=0 ai)

3 die
Ersetzung a0 ← −

∑49
i=2 ai vorgenommen und das Ergebnis ausmultipliziert wird. Der Test

wurde gewählt, weil sich die verwendeten Algorithmen in der entsprechenden Zeitspanne nicht
und auch die Implementierung nur unwesentlich geändert haben. Die groben Optimierungs-
arbeiten wie das Übergeben von Referenzen statt Objekten wurden alle schon vor Version
0.4 vorgenommen. Tabelle 5.1 listet die Eckpunkte, die zu den Verbesserungen von insgesamt
etwa 50% beigetragen haben dürften. Es hat den Anschein, dass solcherlei Feinabstimmungen
weitgehend ausgereizt sind.

Es gibt einige bekanntere Kollektionen, in denen die Fähigkeiten von Computeralgebrasys-
temen verglichen werden. In [West 1995, West 1999] werden jedoch hauptsächlich sehr fort-
geschrittene Fähigkeiten wie zum Beispiel die symbolische Integration getestet – lediglich in
der Sparte Laurentreihenentwicklung und ggTs könnten wir hier Vergleiche anstellen. Ein
auch für uns interessanter Test wurde in [LeWe 1999] vorgestellt. Dort wurden einige extrem
große Ausdrücke erzeugt und Umformungen vorgenommen, die zum größten Teil in GiNaC
implementierte Algorithmen voraussetzen. Diese Algorithmen gehen weit über die von reinen

1 Die zwei recht sorgfältigen Vergleiche mathematischer Fähigkeiten einiger ausgewählter CAS [West 1995]
und [West 1999] sind weithin anerkannt und die Systemhersteller trimmen ihre Produkte regelrecht auf
das Bestehen dieser Tests.

114 5. Kritische Analyse des GiNaC-Ansatzes

 0

 1

 0 100 200 300 400 500 600 700

La
uf

ze
it

t/t
1.

0.
0

0.
4.

0

0.
5.

0

0.
6.

0

0.
7.

0

0.
8.

0

0.
9.

0

1.
0.

0

Neue Version

Abbildung 5.1.: Entwicklung der Effizienz von GiNaC als Funktion der Tage nach Version 0.4.0.

Version Datum Änderung

0.6.4 10.8.2000 Die Konstruktoren von numeric markieren das Objekt nun gleich als expanded
in den status_flags, wodurch ex::expand() bei jeder Zahl einen virtuellen
Funktionsaufruf einsparen kann.

0.7.0 15.12.2000 Die Klasse numeric enthält direkt ein CLN-Objekt anstatt eines Zeigers darauf.
Dies spart eine Indirektion.

0.7.3 28.2.2001 Die Koeffizienten in einer expairseq fließen in die Berechnung der Hashwer-
te mit ein. Dadurch verringert sich zwar die Anzahl der Hashkollisionen, es
entsteht aber zusätzlicher Aufwand bei der Berechnung.

0.8.0 24.3.2001 Da der Operator * nun auch für nichtkommutative Produkte stehen soll, wur-
den alle Operatoren intern überarbeitet. Dies führte zu optimalerem Inlining.

1.0.0 6.11.2001 Flyweights wurden statisch, also ohne zusätzlichen Funktionsaufruf.

Tabelle 5.1.: Einige Eckpunkte in der zeitlichen Entwicklung der Effizienz aus Abbildung 5.1.

Sortierern wie Form zur Verfügung gestellten hinaus, sind aber nicht so anspruchsvoll wie die-
jenigen, die man beispielsweise in Maple findet. Somit ist diese Kollektion ein idealer Prüfstein
für GiNaC. Die Ergebnisse sind in Tabelle 5.2 gelistet. Es stellte sich heraus, dass der Test
offensichtlich maßgeschneidert ist um das System Fermat [Lewi 1997] in ein möglichst gutes
Licht zu rücken, dessen Autor Robert Lewis auch die Tests mitentworfen hat. Dies erklärt
die Dominanz von manifesten Matrixeliminationstests – 6 von 34 – sowie von Matrixmani-
pulationen wie die Smith-Normalform, die intern auf eine Elimination herauslaufen – 21 von
34. Es erklärt vor allem die völlige Abwesenheit von Differentiation, Reihenentwicklung und
numerischer Funktionsevaluation, da Fermat diese nicht beherrscht. Zudem stellte sich bei der
Wiederholung der Tests heraus, dass die meisten Systeme (nicht nur in den hier verwendeten
neueren Versionen) besser abschneiden als in [LeWe 1999] angegeben. Dies gilt insbesondere
für Singular [GPS 2000].

Speichereffizienz ist ein Thema, welches von Computer-Algebra-Benchmarks selten bis gar
nicht angesprochen wird.2 Bei der Handhabung großer symbolischer Ausdrücke erfährt man

2 „We think that the user of a computer algebra system is mostly interested in good timings. The memory

5.1. Effizienz 115

System:
Version:

Erscheinungsdatum:

GiNaC MapleV MuPAD Pari-GP Singular
1.0.0 R5 2.0.0 2.0.19β 2.0.1

Benchmark 11/2001 9/1997 5/2001 3/2000 6/2001

A: Teile Fakultäten (1000+i)!
(900+i)!

∣∣∣100
i=1

0.20 6.66 1.13 0.37 0.21
B:

∑1000
i=1 1/i 0.019 0.08 0.10 0.041 0.51

C: ggT(große Zahlen) 0.25 10.2 3.01 1.65 0.31
D:

∑10
i=1 iyti/(y + it)i 0.68 0.13 2.20 0.20 0.11

E:
∑10

i=1 iyti/(y + |5− i|t)i 0.56 0.05 2.20 0.11 2.30
F: ggT(bivariate Polynome) 0.07 0.08 1.36 0.057 0.09
G: ggT(trivariate Polynome) 2.01 2.89 5.43 99.5 0.27
H: det(Rang 80 Hilbert-Matrix) 9.12 33.5 19.5 3.97 15.9
I: Invertiere Rang 40 Hilbert-Matrix 2.73 6.41 5.10 0.62 0.35
J: Verifiziere I 1.52 2.28 1.90 0.22 0.02
K: Invertiere Rang 70 Hilbert-Matrix 17.8 92.0 32.2 5.90 1.84
L: Verifiziere K 8.69 21.6 10.6 1.57 0.058

M1: det(symbolische 26×26 Matrix) 0.36 0.40 0.51 0.016 0.003
M2: det(symbolische 101×101 Matrix) 1517.3 GU CR CR 28.2
N:

∑
rationaler Funktionen vereinfachen 704.4 GU CR CR CR

O1: Drei Rang 15 Determinanten (Mittel) 39.5 GU CR CR 53.8
O2: ggT der Ergebnisse aus O1 CR UN UN UN CR
P: det(Rang 101, dünn besetzte Matrix) 1.10 12.6 4.3 0.09 0.023
P’: det(Rang 101, weniger dünn besetzt) 5.61 13.3 11.3 0.38 2.85
Q: charpoly(P) 103.1 1429.7 2751.2 0.15 0.14
Q’: charpoly(P’) 209.8 1497.3 2796.1 CR 3.82

Tabelle 5.2.: Vergleich symbolischer Pakete nach [LeWe 1999]. Alle Laufzeiten sind in Sekunden
angegeben, als Testsystem diente ein Intel P-III 450MHz mit 384MB RAM unter Linux. Abkürzungen:
GU („gave up“, wie bei Maple’s object too large), CR („crashed“, meist nicht genug Speicher), UN
(„unable“, ein Voraussetzungstest konnte nicht durchgeführt werden).

jedoch, dass hier gewaltige Unterschiede zwischen den Systemen bestehen, die für ein gegebe-
nes Problem das eine oder andere System bisweilen unbrauchbar machen können. So bricht
zum Beispiel der Test von Denny Fliegner aus Abbildung 3.6 für MuPAD deutlich früher ein
als für die anderen Systeme und kann mit Form auf der Testmaschine sogar noch bis n � 1700
getrieben werden statt bis n � 1200.

Dank der konsequenten Referenzzählung kann GiNaC beim Speicherverbrauch unter Umstän-
den um Größenordnungen besser abschneiden als andere Systeme. Anhand von Ableitungen
kann man dies schön verdeutlichen. Als Beispiel berechnen wir die Euler-Zahlen mithilfe ihrer
Definitionsformel und messen den Speicherbedarf. Als Euler-Zahlen En bezeichnet man die
Entwicklungskoeffizienten des inversen Cosinus Hyperbolicus

1

cosh(x)
≡

∞∑
n=0

En
tn

n!
.

management is not of such a large interest to him besides the fact that large memory usage might influence
the timings or may even crash the system.“ Wolfram Koepf in [Koe 1999].

116 5. Kritische Analyse des GiNaC-Ansatzes

 0.1

 1

 10

 100

 1000

 100 1000 10000

S
pe

ic
he

rb
ed

ar
f i

n
M

eg
ab

yt
e

n−te Eulerzahl

GiNaC 1.0
Mathematica 4

MapleV R5
MuPAD 1.4

Abbildung 5.2.: Speicherbedarf verschiedener CA-Systeme für die Berechnung von Eulerzahlen.
Alle Messungen wurden auf der Architektur Intel-x86 durchgeführt.

Das Ergebnis zeigt Abbildung 5.2. (Reduce konnte leider nicht zum Test antreten. Das Pro-
blem ist in Reduce zwar trivial formulierbar, jedoch versagt dieses System früh und mel-
det CopyFromStack error, Binding stack overflow und schließlich Segmentation Fault.)
Der abgebildete Speicherbedarf in Megabytes ist derjenige vom System für die Lösung des Pro-
blems allozierte – also der Gesamtbedarf abzüglich des Speicherbedarfs um das System leer
zu starten. Der Knick im von Mathematica allozierten Speicherbedarf steht möglicherweise in
Zusammenhang mit dem Knie in Abbildung 4.5. Er geht mit einer dramatischen Verlangsa-
mung der Rechengeschwindigkeit einher und könnte eine Änderung der (undokumentierten)
internen Darstellung von Ausdrücken andeuten.3 Es wäre interessant zu wissen, ob sich die
Kurven von Mathematica und GiNaC jenseits von 10GB tatsächlich schneiden. (Dies kann na-
türlich aufgrund des auf 32 Bit beschränkten Adressraumes der x86-Architektur grundsätzlich
nicht beantwortet werden.)

Abbildung 5.3 stellt dar, wie aus dem Darstellungsbaum ein gerichteter azyklischer Graph
wird, indem mehrfach auftretende Ausdrücke bei der Berechnung von E2 wiederverwertet
werden und nur deren Referenzzähler erhöht wird. Ein Paket zur automatischen Berechnung
von Antipoden als Renormierungs-Counterterme profitiert nicht unerheblich von solchen Ein-
sparungen [BKK 2001].

An Programmbibliotheken werden verständlicherweise recht hohe Ansprüche an Speichersi-
cherheit gestellt in dem Sinne, dass jeder allozierte Speicherbereich auch wieder freigegeben

3 Angedeutet im Abschnitt „New in Version 4“ der begleitenden Dokumentation [Wolf 1999]: „Internal packed
array technology to make repetitive operations on large numerical datasets radically more efficient in speed
and memory.“ Dass eine solche Umorganisation auch Geschwindigkeitsvorteile bringen soll, ist jedoch
größtenteils Wunschdenken.

5.1. Effizienz 117

mul power

−1

0

cosh−3 12 sinh

x

add

Abbildung 5.3.: GiNaCs Darstellung von d2

dx2 (1/ cosh(x)) = 2 sinh(x)2/ cosh(x)3−1/ cosh(x) wie er
bei der Berechnung der Euler-Zahl E2 in Abbildung 5.2 auftritt.

werden soll. Ein objektorientiertes Design, in dem free / delete systematisch von den De-
struktoren aufgerufen wird, erleichtert es, die Übersicht zu wahren. Außerdem können Werk-
zeuge zum Aufspüren von Speicherlecks wertvolle Dienste leisten und sollten regelmäßig zur
Anwendung kommen. Andererseits hat es sich aber auch als sehr schwierig herausgestellt,
selbst große Speicherlecks überhaupt rechtzeitig zu bemerken. Die Beobachtung der Größe ei-
nes Programmes im Speicher ist kein verlässliches Maß. Die Abbildung 5.4 zeigt, wie der Spei-
cherverbrauch eines Programmes, welches die quadratfreie Faktorisierung bivariater Zufalls-
polynome �[x, y] berechnet, immer größer werden kann, obwohl eigentlich alle Destruktoren
aufgerufen worden sein sollten. Die auf Seite 42 erläuterte quadratfreie Faktorisierung wurde
gewählt, weil in ihr ein großer Querschnitt von Funktionen zur Anwendung kommt – wie die
Berechnung von multivariaten ggTs und zum Vergleich die Ausmultiplikation großer Polyno-
me. Die Grafik zeigt eindringlich, wie das Muster der Speicherentwicklung des mit GCC-2.95.2
kompilierten Programms alle Merkmale eines Speicherlecks aufzuweisen scheint, während der-
selbe Programmlauf in einem mit einer GCC-3.0 Vorabversion kompilierten Programm sich
konstant einpegelt und nur noch die Merkmale leichter Heapfragmentierung aufweist. Der
Grund hierfür ist außerhalb von GiNaC zu suchen. Die Implementierung der Container in
der Standard Template Library zwischen diesen beiden Compilern unterscheidet sich erheb-
lich: im älteren Compiler geben die Container ihren Speicher niemals frei, um ihn zu einem
späteren Aufruf wiederverwerten zu können ohne ihn aufwändig mit malloc / new erst an-
fordern zu müssen. Dieses Verhalten wird seit 1995 immer wieder umworben [SGI 1995] und
wird in weiten Kreisen immer noch für erstrebenswert gehalten. Kurz vor Veröffentlichung
des GCC-3.0 wurde es wiederbelebt [FSF 2001, Chapter 17: Library Introduction]. Um mit
solchen Compilern Speicherlecks aufzuspüren muss der Standardallokator der STL explizit
umgestellt werden.4

4 Dies kann theoretisch beim Kompilieren der Bibliothek mit der Präprozessordirektive __USE_MALLOC ge-
schehen. Es hat sich aber als zuverlässiger erwiesen, dies vor dem gesamten Bootstrap-Prozess des Compi-
lers schon in der Quelldatei libstdc++-v3/include/bits/c++config per #define vorzunehmen, da man
sonst leicht unbeabsichtigt gegen die C++Regel der „einmaligen Definition“ verstößt.

118 5. Kritische Analyse des GiNaC-Ansatzes

 128

 256

 512

 1024

 2048

 4096

 8192

 16384

 32768

 65536

 0 100 200 300 400 500 600 700 800 900 1000 1100 1200

A
llo

zi
er

te
 k

B

Iteration n

GCC 2.95.2
GCC 3.0 (pre)

Abbildung 5.4.: STL Template Speicherallozierung: Abhängig von der Implementierung wird ein
Teil des gebrauchten Speichers auch nach dem Aufruf der Destruktoren der STL Templates nicht
wieder freigegeben, sondern für spätere Verwendung aufbewahrt. Gemessen wurde der auf dem Heap
belegte Speicher nach 1200 Aufrufen von sqrfree() in GiNaC 0.8.2.

5.2. Handhabbarkeit

Das Schreiben symbolischer Programme in C++ verlangt dem Programmierer zweifelsfrei mehr
Denkarbeit und Kenntnisse der zugrundeliegenden Datenstrukturen ab als in einer eigens dafür
geschaffenen Sprache wie Maple. Ob dies nun als negativ oder positiv empfunden wird, ist
subjektiv und muss dahingestellt bleiben. Stattdessen erörtern wir in diesem und dem nächsten
Abschnitt exemplarisch ein paar besser taxierbare Gesichtspunkte.

Portabilität

Die Frage nach der Abhängigkeit von GiNaC von einem spezifischen Compiler ist berechtigt.
Sobald die Entscheidung für CLN als Klassenbibliothek gefallen war, hatten wir uns zwar nicht
auf Unix-Plattformen, jedoch auf den C++-Compiler aus der GNU Compiler Collection (GCC)
festgelegt. Dies liegt an der Tatsache, dass ein C++Programm – oder eine Bibliothek – norma-
lerweise in verschiedene Kompilationseinheiten zerlegt wird.5 Wenn in diesen Einheiten nun
statische Objekte zu initialisieren sind, so werden deren Konstruktoren beim Aufruf des Pro-
grammes in einer kaum kontrollierbaren Reihenfolge aufgerufen. Die Sprache garantiert nur,
dass statische Objekte innerhalb eines Moduls in der Reihenfolge ihres Auftretens initialisiert
werden, die Reihenfolge der Module hängt aber von Linker-Charakteristiken ab. Wenn ein
Konstruktor nun aber ein anderes statisches Objekt benutzt und dieses noch nicht initialisiert

5 CLN besteht aus ca. 850 kleinen Programmeinheiten, GiNaC aus ca. 40 mittelgroßen.

5.2. Handhabbarkeit 119

worden ist, so kommt es zu undefiniertem Verhalten. Ein idealer Linker würde einen gerichteten
Abhängigkeitsgraphen erstellen und die Objekte in der korrekten Reihenfolge initialisieren.6
In CLN Version 1.1 gibt es 39 solcher globalen Objekte. Ihre Initialisierungsreihenfolge wird
mit einem halbautomatischen Trick garantiert, der Eigenschaften der GNU Binärschnittstelle
ausnutzt um während der Initialisierung zwischen den einzelnen Modulen umherzuspringen
und daher nicht portabel ist. Um CLN – und damit auch GiNaC und xloops – auf einen anderen
Compiler zu portieren, muss CLN als statische Bibliothek übersetzt werden um sie unabhän-
gig von der Initialisierung durch den dynamischen Linker zu machen. Zusätzlich müssen die
Inline-Assemblerroutinen mit dem Präprozessorsymbol NO_ASM ausgeschaltet werden, sofern
der Zielcompiler die GNU-Syntax nicht unterstützt.

Im August 2000 konnte die Portabilität von GiNaC erstmals bewiesen werden. Als Testsystem
diente der C++-Compiler des Herstellers ,Portland Group’ in der Version 3.1-3. Es gelang mit
minimalem Aufwand, CLN damit als statische Bibliothek zu übersetzen. Das Ergebnis war
unbefriedigend langsam und algebraisch bisweilen inkorrekt, was vermutlich auf Compilerfeh-
ler zurückzuführen ist. Damit eignet sich dieses Gerät leider nur als penibler Syntaxprüfer. Als
solcher konnte er jedoch GiNaC in der Version 0.6.4 problemlos übersetzen und sogar die in
Tabelle 5.2 aufgelisteten Benchmarks durchführen modulo einiger Rechenfehler, die wohl auf
die Kompilierfehler bei der Übersetzung von CLN zurückzuführen sind. Die Laufzeiten waren
um das zweifache bis achtfache langsamer als diejenigen des GCC-Kompilates, womit sich die-
ser kommerzielle Compiler für die Weiterentwicklung in mittlerer Zukunft als uninteressant
erwiesen haben dürfte.7

Im Juli 2001 wurde die Portabilität abermals getestet, diesmal anhand des KAI C++-Compilers
von Intel, Version 4.0f3. Dieser Compiler ist eigentlich nur ein Code-Generator, der C++-
Programme intern in optimierte C-Programme umwandelt und diese dann vom nativen Sys-
temcompiler in Binärdateien übersetzen lässt. Die erfolgreiche Übersetzung von CLN und
GiNaC setzte einige manuelle Eingriffe in die Quellcodes voraus, um ein paar leicht zu iden-
tifizierenden Compilerfehlern aus dem Wege zu gehen. Die Laufzeit war nur unwesentlich
geringer als diejenige des GCC-Kompilates. Rechenfehler wurden nicht beobachtet.

Kurz darauf konnte die Portabilität auf die Version 5.0beta des Referenzcompilers für x86-
Plattformen vom Hersteller Intel bestätigt werden. Die Benchmarks aus Tabelle 5.2 liefen
damit wider Erwarten langsamer als mit dem GCC-Kompilat – im Durchschnitt um etwa
50%.

Zusammenfassend lässt sich sagen, dass eine Portierung des Systems CLN/GiNaC auf einen
neuen Compiler durchaus durchführbar ist, was angesichts der insgesamt 140 000 Programm-
zeilen schon als bemerkenswert gelten dürfte. Da der Arbeitsaufwand hierfür jedoch nicht
unerheblich ist und andere Compiler bislang keinerlei Vorteile gegenüber dem freien GCC
erkennen ließen, sollte eine solche Portierung wohlüberlegt werden.

6 Der GNU Linker arbeitet sie in der Reihenfolge ab, in der sie beim Zusammenlinken des Programmes auf
der Kommandozeile spezifiziert wurden. Es ist fraglich, ob diese Konvention geschickt ist: Nur die Tatsache,
dass es eine solche Konvention gibt, wird die spätere Umstellung auf eine automatisch nach Abhängigkeiten
sortierte Reihenfolge enorm erschweren.

7 Falls es noch einmal versucht werden sollte: der Compiler von Portland Group konvertiert nicht korrekt von
signed char nach unsigned char, wenn der Schalter -Msignextend nicht gesetzt ist. Diese Konversion
ist Voraussetzung für CLN.

120 5. Kritische Analyse des GiNaC-Ansatzes

Rapid Prototyping

Der für compilierte Sprachen typische Zyklus Editieren–Kompilieren–Linken–Ausführen kann
während aktiver Programmentwicklung rasch zu langwierig werden. Aufgrund der aufwändi-
gen und teils tief verschachtelten Standard-Headers und fehlenden Unterstützung für vorkom-
pilierte Header in einigen weit verbreiteten Compilern betrifft dies C++ noch mehr als andere
kompilierte Sprachen wie etwa C.
Als Lösungsversuch wurde eine Schnittstelle zum C/C++-Interpreter Cint implementiert. Cint
ist unter anderem das Herzstück des am Cern entwickelten objektorientierten Datenana-
lysepaketes Root, welches sich unter Experimentalphysikern großer Beliebtheit erfreut. Es
kommt in der Auswertung von LHC-Daten zum Einsatz und wird daher noch mindestens 10
Jahre weiter gepflegt und erweitert werden müssen.
Hier sei eine Beispielsitzung mit GiNaC-cint demonstriert. Beginnen wir mit ein paar Einzei-
lern zu Berechnung einer bekannten Taylor-Reihe:

1 $ ginaccint
2 Welcome to ginaccint V1.0.2 (GiNaC V1.0.3, Cint V5.15.24)
3 __, _______ GiNaC: (C) 1999-2001 Johannes Gutenberg University Mainz,
4 (__) * | Germany. Cint C/C++ interpreter: (C) 1995-2001 Masaharu
5 ._) i N a C | Goto and Agilent Technologies, Japan. This is free software
6 <-------------’ with ABSOLUTELY NO WARRANTY. For details, type ‘.warranty’
7 Type ‘.help’ for help.
8
9 >> symbol v("v"), c("c");

10 >> ex gamma = 1/sqrt(1 - pow(v/c,2));
11 >> ex gamma_nr = gamma.series(v==0,8);
12 >> cout << pow(gamma_nr,-2) << endl;
13 (1+(1/2*c^(-2))*v^2+(3/8*c^(-4))*v^4+(5/16*c^(-6))*v^6+Order(v^8))^(-2)
14 >> cout << pow(gamma_nr,-2).series(v==0,8) << endl;
15 1+(-c^(-2))*v^2+Order(v^8)

Programmschleifen können in der Regel genau wie in einem normalen C++-Programm notiert
werden

16 >> for (int i=0; i<20; i+=2) {
17 > cout << bernoulli(i) << ", ";
18 > }
19 1, 1/6, -1/30, 1/42, -1/30, 5/66, -691/2730, 7/6, -3617/510, 43867/798,

während aufgrund einer Cint-Einschränkung Funktionen ein wenig zusätzlichen Aufwand in
Form eines aktiven Kommentares erfordern:

20 >> //ginaccint.function
21 next expression can be a function definition
22 >> const ex EulerNumber(const unsigned n)
23 > {
24 > const symbol xi;
25 > const ex generator = pow(cosh(xi),-1);
26 > return generator.diff(xi,n).subs(xi==0);
27 > }
28 creating file /tmp/ginac26197caa
29 >> EulerNumber(42);
30 Out1 = -10364622733519612119397957304745185976310201

5.2. Handhabbarkeit 121

Eine von interaktiven Computeralgebrasystemen inspirierte Erweiterung ist die Möglichkeit,
auf die zuletzt evaluierten Ausdrücke (vom Typ ex) mittels der Outn Variablen zurückzugrei-
fen:

31 >> Out1/762131;
32 Out2 = -13599529127564174819549339030619651971

Selbst semantisch anspruchsvolle C++-Konstrukte wie folgende Implementierung des Denny
Fliegner’schen Konsistenztests sind möglich:

33 >> #include <sstream>
34 >> vector<symbol> a;
35 >> ex bigsum = 0;
36 >> for (int i=0; i<6; ++i) {
37 > ostringstream buf;
38 > buf << "a" << i << ends;
39 > a.push_back(symbol(buf.str()));
40 > bigsum += a[i];
41 > }
42 >> ex sbtrct = -bigsum + a[0] + a[1];
43 >> cout << pow(bigsum,2).expand().subs(a[0]==sbtrct).expand() << endl;
44 a1^2
45 >> quit;

Da Cint zwar dank Unterstützung durch die GNU-Readline-Bibliothek komfortabel zu be-
dienen, aber dennoch recht anfällig gegen Fehleingaben ist, kann die skizzierte interaktive
Bedienungsart etwas umständlich sein. Elegant lassen sich aber auch kleine Skripte schreiben,
die direkt aufgerufen werden können. Ein Skript, welches Test E aus Tabelle 5.2 implementiert,
kann wie folgt aussehen:

1 #! /usr/bin/ginaccint --silent
2 symbol y("y"), t("t");
3 ex s;
4 for (int i=1; i<=10; ++i) {
5 s += i*y*pow(t,i)/pow(y + abs(5-i)*t,i);
6 }
7 cout << s.normal() << endl;
8 quit;

Der --silent Schalter unterdrückt hierbei das Eingabeecho.
Doch Cint ist kein Ersatz für einen Compiler. Er besitzt eine ganze Reihe von Einschränkun-
gen, die ihn in der Summe nur für kleinere Aufgaben brauchbar machen. Einige davon sind
durch die Natur der Interpretation bedingt, andere stellen Implementierungslücken dar, auf
deren Schließung man hoffen kann und wiederum andere erscheinen auch nach längerer Be-
trachtung recht willkürlich. Ein paar Beispiele: Cint braucht manchmal etwas „Nachhilfe“ bei
Blockbegrenzungen mit geschweiften Klammern. C++ (ebenso wie C) erlaubt es, bei Blöcken,
die nur aus einer einzigen Anweisung bestehen, diese in manchen Fällen wegzulassen, wie in
folgendem Beispiel:

1 if (condition)
2 printf("yes");
3 else
4 printf("no");

122 5. Kritische Analyse des GiNaC-Ansatzes

Dies ist jedoch prinzipiell ungeeignet für einen interaktiven Interpreter, da der Benut-
zer normalerweise wünscht, dass die Eingabe nach dem abgeschlossenen if (condition)
printf("yes"); sofort abgearbeitet wird. Eine nachfolgende else-Anweisung kann somit
nicht mehr als solche rechtzeitig erkannt und bearbeitet werden. Das ist nur eine der vielen
Spracheinschränkungen, die ein C++-Interpreter notgedrungen haben muss. Cint bringt leider
noch eine ganze Reihe weiterer Einschränkungen mit sich. So entspricht die Variablenbin-
dung zum Beispiel nicht dem Block-Scope, wie es von C++ gefordert wird, sondern einem
Funktions-Scope. Insbesondere ist das i in for (int i=0; ;) auch nach dem Ende des
for-Blocks noch gültig. Schlimmer noch ist, dass Cint teilweise den Regeln des dynamischen
Scopes folgt. Zwar werden Variablenbindungen von aufrufenden Funktionen nicht in aufge-
rufenen Funktionen exponiert. Da jedoch alle interaktiven Variablendeklarationen globalen
Charakter haben, können Funktionen bei ihrer Definition durchaus auf erst später vor ihrem
Aufruf deklarierte Variablen zugreifen. Eine Reihe weiterer Konventionen können zu Abwei-
chungen zwischen Cint und echten Compilern führen und den Neuling verwirren – hier sei nur
noch auf die etwas bizarre Tatsache hingewiesen, dass Cint ** als Exponentiationsoperator in
Fortran-Syntax überlädt.

Modularität

GiNaC erbt von C++ alle Infrastruktur um die Aufteilung von Programmen in übersichtliche
Module zu ermöglichen – mit offensichtlichen und nützlichen Vorteilen. Ein häufiges Missver-
ständnis betrifft jedoch Symbole, die in mehreren Modulen gemeinsam verwendet werden. Die
Klasse symbol identifiziert Symbole nicht anhand ihres Strings. Dieser dient nur zu Ausga-
bezwecken. Stattdessen führt jedes Symbol eine Seriennummer mit sich, und eine statische
Variable in der Klasse führt Buch über die als Nächstes von einem Konstruktor zuzuweisende
Seriennummer. Wenn nun in einer Header-Datei a.h ein symbol x("x"); deklariert wird und
sowohl a.cc als auch b.cc die Deklaration aus diesem Header benutzen, so führt dies im
ausführbaren Programm zu zwei verschiedenen Symbol-Objekten mit dem gleichen Namen
x, da sie ja zweimal initialisiert worden sind. Falls irgendwann Ausdrücke von einem Modul
in das andere Modul übergeben werden, kann es im schlimmsten Fall zu nicht vereinfachten
Objekten der Form x-x kommen oder zu der etwas überraschenden Ersetzung x.subs(x==0)
→ x. Man kann dieses Problem umgehen, indem man x in a.h als extern deklariert und in
genau einer Übersetzungseinheit, z.B. in a.cc als static definiert.
Ein eleganterer Weg, sich vor dem Problem zu schützen besteht darin, die Symbole nicht
statisch zu initialisieren sondern von einer Fabrik erzeugen zu lassen. Der Header a.h enthält
dann anstelle der Definition

1 const symbol x("x");

das Idiom zum Aufruf der Fabrik

1 const symbol x = symbol_factory("x");

Die Fabrik selbst entspricht dem Muster der „Flyweight-Factory“ aus [GHJV 1995] und kann
mit dem assoziativen Array std::map<T1,T2> aus der STL in wenigen Zeilen implementiert
werden:

5.3. Erweiterbarkeit 123

1 const symbol symbol_factory(const string &s)
2 {
3 static std::map<string, symbol> directory;
4 std::map<string, symbol>::iterator i = directory.find(s);
5 if (i!=directory.end())
6 return i->second;
7 return directory.insert(map<string, symbol>::value_type(s, symbol(s)))
8 .first->second;
9 }

Die Routine speichert Strings und Symbole in directory und liefert das vorhandene Symbol
zurück, wenn der zugehörige String schon abgespeichert ist. Ansonsten erzeugt es ein neues
Symbol zu dem String, speichert beide und liefert das Symbol zurück. Die Zugriffszeit ist ver-
möge der Implementierung von map als balanciertem RB-Baum von der Ordnung O(log(N)).

5.3. Erweiterbarkeit

Eine interessante Frage ist, wie man ein System wie GiNaC um Formen regelbasierten Wissens
erweitert. Im Sinne von Systemen die – wie Mathematica – völlig auf regelbasiertem Wissen
und Mustererkennung (Pattern Matching) beruhen ist dies nicht denkbar. Aber: ist es über-
haupt notwendig und erstrebenswert? Mustererkennung sollte eigentlich nur dann eingesetzt
werden, wenn algorithmische Methoden nicht vorhanden sind.

Baumrekursion

Üblicherweise stellt man sich eine Baumrekursion als etwas vor, was an der Wurzel begin-
nend jeden Knoten (je nach seiner Art) über die Kinder iteriert und das Ergebnis nach einer
vorgegebenen Regel verarbeitet. Die Art des zurückgegebenen Knotens muss nicht unbedingt
die ursprüngliche sein – man denke beispielsweise an die Differentiation, bei der Summen
zwar auf Summen abgebildet werden ((f + g)′ = f ′ + g′), Produkte aber nicht auf Produk-
te ((fg)′ = f ′g + fg′). Dieses Bild ist jedoch nicht immer ausreichend um einen Term zu
bearbeiten; bisweilen sind ausgefeiltere Strategien erforderlich.
Versuchen wir uns etwas heranzutasten, indem wir untersuchen, wie man einige häufig ge-
brauchte „Vereinfachungen“ zwischen trigonometrischen Funktionen einbauen könnte. Wir be-
schränken uns hier exemplarisch auf den Sinus und Cosinus. Beinhaltet ein Ausdruck sowohl
Pseudofunktionen vom Typ sin als auch solche vom Typ cos, so kann man mithilfe der Re-
lation cos(x) =

√
1− sin(x)2 alle Pseudofunktionen vom Typ cos eliminieren. Da dies für

alle möglichen Argumente des Cosinus passieren kann, muss dies mit der Klasse wildcard
geschehen wie in folgendem Beispiel:

1 ex e = pow(sin(x),2)+pow(cos(x),2);
2 e = e.subs(cos(wild())==sqrt(1-pow(sin(wild()),2)));

Darin wird e zu 1 vereinfacht. Es ist anzumerken, dass die Methode .subs() darin rein
syntaktisch arbeitet.

124 5. Kritische Analyse des GiNaC-Ansatzes

Allgemein muss man sich also eine Transformationsstrategie zurechtlegen. In obigem Beispiel
passt die Strategie der Subsitution cos(x) → √

1− sin(x)2 noch in das einfache Top-Down
Modell der Evaluation. Dies muss nicht immer so sein – siehe [Fate 1999] für eine Sammlung
von Beispielen, in denen das Top-Down Modell versagt.
Enthält ein Ausdruck zum Beispiel cos(x), cos(2x), cos(3x) etc. und möchte man diese alle
durch cos(x) ausdrücken, so kann man aus sin(x + y) = sin(x) cos(y) + sin(y) cos(x) und
cos(x+ y) = cos(x) cos(y)− sin(x) sin(y) die Regeln

sin(nx) −→ sin((n−1)x) cos(x) + sin(x) cos((n−1)x)

cos(nx) −→ cos((n−1)x) cos(x)− sin(x) sin((n−1)x)

sin(2x) −→ 2 cos(x) sin(x)

cos(2x) −→ 2 cos(x)2 − 1

ableiten und rekursiv anwenden.8 Beim Durchschreiten des Baumes sollen dann alle Vielfache
des Cosinus- oder Sinus-Argumentes x nach diesen Regeln reduziert werden. Da der Algo-
rithmus nach dem minimalen Argument x parametrisiert ist, bietet sich die Implementierung
mithilfe eines Funktors (auch bekannt als funktionsartigs Objekt oder function object) an, der
in seiner Darstellung x enthält. Die GiNaC-Klassen sind mit der .map()-Methode ausgestattet
um die Baumrekursion zu erleichtern. Hierfür muss der Funktor von map_function abgeleitet
worden sein.9 Die Deklaration kann also wie folgt aussehen:

1 class sin_cos_multiple_angle_reducer : public map_function {
2 ex arg;
3 public:
4 sin_cos_multiple_angle_reducer(const ex& x) : arg(x) {}
5 ex operator()(const ex&);
6 };

Die Definition des Funktor-Operators operator() wird dann die Regeln zum Reduzieren der
Argumente der in einem Ausdruck auftretenden sin- und cos-Pseudofunktionen implemen-
tieren:

7 ex sin_cos_multiple_angle_reducer::operator()(const ex& expr)
8 {
9 if (is_ex_the_function(expr, cos)) {

10 const ex trialdiv = normal(expr.op(0)/arg);
11 if (is_a<numeric>(trialdiv)) {
12 // Regeln: cos(n*x)==cos((n-1)*x)*cos(x)-sin((n-1)*x)*sin(x)
13 // cos(2*n*x)==2*cos(n*x)^2-1
14 // sin(-n*x)==-sin(n*x), cos(-n*x)==cos(n*x)
15 const numeric n = ex_to<numeric>(trialdiv);
16 if (n.is_integer()) {
17 if (n.is_even())
18 return (2*pow(cos(n/2*arg),2)-1).map(*this);

8 Eigentlich würden die ersten beiden Regeln ausreichen. Sie setzen aber n Rekursionsschritte voraus mit
einer Verdoppelung des Ausdrucksbaumes bei jedem Schritt und werden daher rasch ineffizient. Die beiden
Gleichungen des doppelten Winkels kürzen die Rekursion ab und reduzieren die Komplexität von O(n2)
auf O(n).

9 Diese Konstruktion entspricht exakt dem „Visitor“-Muster aus [GHJV 1995].

5.3. Erweiterbarkeit 125

19 else
20 return (-csgn(n-1)*sin(abs(n-1)*arg)*sin(arg)
21 +cos(abs(n-1)*arg)*cos(arg)).map(*this);
22 }
23 }
24 return expr;
25 }
26 if (is_ex_the_function(expr, sin)) {
27 const ex trialdiv = normal(expr.op(0)/arg);
28 if (is_a<numeric>(trialdiv)) {
29 // Regeln: sin(n*x)==cos((n-1)*x)*sin(x)+sin((n-1)*x)*cos(x)
30 // sin(2*n*x)==2*cos(n*x)*sin(n*x)
31 // sin(-n*x)==-sin(n*x), cos(-n*x)==cos(n*x)
32 const numeric n = ex_to<numeric>(trialdiv);
33 if (n.is_integer()) {
34 if (n.is_even())
35 return (2*cos(n/2*arg)*sin(n/2*arg)).map(*this);
36 else
37 return (+csgn(n-1)*sin(abs(n-1)*arg)*cos(arg)
38 +cos(abs(n-1)*arg)*sin(arg)).map(*this);
39 }
40 }
41 return expr;
42 }
43 return expr.map(*this);
44 }

Gegeben sei nun der Ausdruck A := cos(3x) + 3 cos(x). Der obige Funktor kann nun wie folgt
benutzt werden:

1 ex A = cos(3*x)+3*cos(x);
2 sin_cos_multiple_angle_reducer f(x);
3 A = f(A);

wonach A zu 2 cos(x)3 − 2 sin(x)2 cos(x) + 2 cos(x) vereinfacht worden ist. Anwenden der
syntaktischen Substitution sin(x)2 −→ 1−cos(x)2 und Ausmultiplizieren vereinfacht A weiter
zu 4 cos(x)3.
Der Funktor sin_cos_multiple_angle_reducer hat einen Nachteil: Das minimale gemein-
same Argument – in unserem Falle x – muss von Hand im Konstruktor spezifiziert werden.
Im Idealfall würde es den Kandidaten für eine solche Reduktion selbst herausfinden. Die
Lösung besteht darin, einen zweiten Funktor zu schreiben, dessen operator() aus einem
Ausdruck die Liste der Kandidaten extrahiert, die dann elementweise abgearbeitet werden
kann. Wir beginnen mit der Definition des Funktors sin_cos_multiple_argument_finder.
Sie enthält eine Liste lst reduced für alle aufgefundenen Kandidaten, eine Helfermethode
.choose_candidate(const ex&, const ex&), die die Vielfachheit feststellt und gegeben nx
und x, n ∈ � sich für x entscheidet sowie eine Helfermethode .reduce(), welche Redundanzen
aus der Liste der Kandidaten entfernt:

1 class sin_cos_multiple_argument_finder {
2 lst reduced;
3 static const ex choose_candidate(const ex&, const ex&);
4 void reduce(void);

126 5. Kritische Analyse des GiNaC-Ansatzes

5 public:
6 ex operator()(const ex&);
7 };

Beginnen wir mit der Implementierung des operator(). Er soll sein Argument rekursiv durch-
schreiten und dabei die Argumente von cos- und sin-Pseudofunktionen in der Liste reduced
aufsammeln. Für diese Durchschreitung können wir nicht .map(*this) verwenden wie in
sin_cos_multiple_angle_reducer::operator(), da diese strukurerhaltend ist und Sum-
men auf Summen sowie Produkte auf Produkte abbildet. Stattdessen können wir aber den
operator() explizit aufrufen:

8 ex sin_cos_multiple_argument_finder::operator()(const ex& expr)
9 {

10 if (is_ex_the_function(expr, cos) || is_ex_the_function(expr, sin)) {
11 return lst(expr.op(0));
12 } else {
13 ex retval;
14 for (unsigned i=0; i<expr.nops(); ++i) {
15 retval = this->operator()(expr.op(i));
16 for (unsigned i=0; i<retval.nops(); ++i)
17 reduced.append(retval.op(i));
18 }
19 }
20 reduce();
21 return reduced;
22 }

Vor der Rückgabe der Liste reduced werden mit einem Aufruf von .reduce() die redundanten
Elemente daraus entfernt. Eigentlich soll reduced keine Liste sondern eher eine Menge sein, in
der kein Element doppelt vorkommt. Wir können die Mengeneigenschaft des STL-Containers
std::set für diese Reduktion zuhilfe nehmen:

23 void sin_cos_multiple_argument_finder::reduce(void)
24 {
25 set<ex, ex_is_less> uniq;
26 for (unsigned i=0; i<reduced.nops(); ++i)
27 uniq.insert(reduced.op(i));
28 reduced = lst(); // Lösche diese Liste, um Platz zu schaffen.
29 for (set<ex,ex_is_less>::iterator i=uniq.begin(); i!=uniq.end(); ++i) {
30 ex candidate = *i;
31 for (set<ex,ex_is_less>::iterator j=uniq.begin(); j!=uniq.end(); ++j) {
32 ex ratio = normal((*j)/candidate);
33 if (is_a<numeric>(ratio) && ratio.info(info_flags::real))
34 candidate = choose_candidate(*j, candidate);
35 }
36 reduced.append(candidate);
37 }
38 }

Der letzte fehlende Baustein ist die darin aufgerufene statische Methode zur Auswahl des Kan-
didaten, .choose_candidate(const ex&, const ex&). Da sie nur aufgerufen wird, wenn
festgestellt worden ist, dass ihre Argumente Vielfache voneinander sind, kann sie als Vorausset-
zung annehmen, dass für ihre Argumente A und B die Brüche A/ ggT(A,B) und B/ ggT(A,B)

5.4. Schlussfolgerungen und Ausblick 127

nicht symbolisch sind. Die nachfolgende Implementierung vermag auch festzustellen, dass x
und 3

2
x Vielfache von 1

2
x sind:

39 const ex sin_cos_multiple_argument_finder::choose_candidate(const ex& A, const ex& B)
40 {
41 const ex gcd_AB = gcd(A, B);
42 const numeric a = ex_to<numeric>(normal(A/gcd_AB));
43 const numeric b = ex_to<numeric>(normal(B/gcd_AB));
44 const numeric denoms_lcm = lcm(a.denom(),b.denom());
45 return gcd_AB * gcd(a*denoms_lcm, b*denoms_lcm) / denoms_lcm;
46 }

Gegeben sei nun A := 2 sin(1)2+sin(5x) cos(2x)−sin(2x) cos(5x)+sin(x)−4 sin(x) cos(x)2+
cos(2)−1. Wir können nun zunächst eine Liste der Reduktionskandidaten anlegen und danach
den alten sin_cos_multiple_angle_reducer darauf wirken lassen:

1 sin_cos_multiple_argument_finder f1;
2 ex arglst = f1(A);
3 for (int i=0; i<arglst.nops(); ++i) {
4 sin_cos_multiple_angle_reducer f2(arglst.op(i));
5 A = f2(A);
6 }

Nach syntaktischer Substitution von cos(z) −→ √
1− sin(z)2 und Ausmultiplizierung des

Ergebnisses vereinfacht A zu 0.
Diese beiden Beispiele sollen gezeigt haben, wie Funktoren als parametrisierte Funktionen
benutzt werden können um aus einem beliebigen algebraischen Ausdruck einen Zustand zu
extrahieren und Termumformungen vornehmen zu können. Hierzu ist kein Eingriff in die
Klassenhierarchie notwendig und die Funktoren können so arrangiert werden, dass sie einen
Darstellungsbaum in beliebiger Weise durchschreiten – nicht unbedingt top-down wie dies
die Methodendelegation in einer Klassenhierarchie erzwingt. Sind die Funktoren einmal kom-
piliert, so ist all dies auch zur Laufzeit denkbar und so kann eine Sammlung davon einen
raffinierten Ersatz für benannte ⇒ Simplifier liefern.

5.4. Schlussfolgerungen und Ausblick

Bei der Implementierung symbolischer Algorithmen zwingt GiNaC den Benutzer zum Nach-
denken über die verwendeten Datenstrukturen und anzuwendenden Algorithmen. In dieser
Hinsicht ist es mit Form vergleichbar, dem Lastesel der theoretischen Hochenergiephysik.10
Im Gegensatz zu Form wurden jedoch keine Anstrengungen unternommen, den verfügba-
ren Arbeitsspeicher mittels Swap-Dateien über den physikalisch Vorhandenen auszudehnen
– GiNaC ist hier dem VM-Subsystem des zugrundeliegenden Betriebssystems ausgeliefert.
Dafür stellt es dort einige algebraische Fähigkeiten zur Verfügung wo Form sich auf die
Ringoperationen +, - und * beschränkt.
10 J. A. M. Vermaseren pflegt das Motto „The user should do the thinking, the computer the computing“

und auf G. J. v. Oldenborgh scheint das Gleichnis zurückzugehen Macsyma, Maple und Mathematica als
„swiss army knife“ zu bezeichnen, während Form ein „chef knife“ sei [Olde 1995].

128 5. Kritische Analyse des GiNaC-Ansatzes

Übersicht GiNaC-basierter Projekte
Eine kleine Anzahl weiterer Projekte sind von GiNaC inspiriert worden. Hier folgt ein kurzer
aktueller Schnappschuss der „Spin-Offs“ soweit sie mir bekannt sind:

giac von Bernard Parisse. Bei diesem ambitionierten Projekt handelt es sich um eine Sammlung
kleiner ausführbarer Programme, jedes einzelne zuständig für eine symbolische Operati-
on: factor, series, etc. Ursprünglich waren sie Frontends zur GiNaC-Bibliothek, neue-
re Versionen scheinen jedoch nur noch auf GMP zu basieren. Ziel ist eine innerhalb der
Unix-Shell mit Pipes verknüpfte Benutzung. Siehe ftp://fourier.ujf-grenoble.fr/
pub/hp48/giac.tgz . Seit kurzem gibt es dort sogar ein Frontend für das X-Window Sys-
tem.

gTybalt von Stefan Weinzierl ist eine Art Meta-Framework, welches innerhalb einer von Cint
gesteuerten Umgebung die graphischen Fähigkeiten von ROOT, die TEX-Ausgabe von TeX-
macs und die symbolischen Fähigkeiten von GiNaC vereinigt. Siehe http://www.fis.
unipr.it/~stefanw/gtybalt.html . Es ist analog zu der Schnittstelle von TeXmacs zu
Maxima, MuPAD und Reduce [Groz 2001]. In diesem Rahmen wurde auch ein Programm
zur symbolischen Reihenentwicklung einiger spezieller höherertranszendenten Funktionen,
wie sie in Schleifenrechnungen benötigt werden, entwickelt [Wei 2002].

Octave-Modul von Ben Sapp. Octave ist eine (an MATLAB angelehnte) interaktive Sprache zum
Lösen von numerischen linearen und nichtlinearen Problemen. Ein Octave-Modul zur sym-
bolischen Erweiterung basiert auf GiNaC. Siehe http://bsoctave.sourceforge.net/ .

pyginac von Pearu Peterson reicht in Python (eine interpretierte, interaktive und objektori-
entierte Sprache, in etwa vergleichbar mit Perl, Scheme oder Java) formulierte symboli-
sche Ausdrücke an die kompilierte GiNaC-Bibliothek weiter. Siehe http://cens.ioc.ee/
projects/pyginac/ .

Purrs ist eine an der Universität Parma von Roberto Bagnara und Mitarbeitern entwickelte Soft-
ware zur automatisierten Analyse der Komplexität von Programmen. Der Teil der Aufgabe,
für den GiNaC herangezogen wird, betrifft das automatisierte Lösen von symbolischen Re-
kursionsrelationen. Siehe http://www.cs.unipr.it/purrs/ .

Ob das Programmieren in C++ , das häufig als „schwer“ empfunden wird, letztlich einer Ak-
zeptanz von Seiten der Physiker im Wege steht, muss dahingestellt bleiben. Im Gegensatz
zu herkömmlichen Computeralgebrasystemen trennt GiNaC zwischen Variablen (Klasse ex)
und Symbolen (Klasse symbol). Zuweisungen von Ausdrücken an Symbole finden nicht statt,
stattdessen können Variable mit der Methode .subs() ersetzt werden.11 Diese Trennung hat
sich in der Praxis bisher nie als hinderlich herausgestellt – im Gegenteil, sie eliminert das
Fehlerpotenzial, das sich aus vergessenen Variablenbindungen ergibt.

Einige Projekte basieren schon jetzt auf GiNaC (siehe Kasten). Persönlich hoffe ich, dass
der Stil der Programmierung sich vom rein Prozeduralen loslösen wird und xloops in Zukunft
immer mehr aus mehreren kleinen Modulen mit wohldefinierten Funktionalitäten besteht,

11 Benutzern von Form ist diese Denkweise vertraut: Die id-Anweisung ist auch weniger Zuweisung als
Ersetzung und die Unterscheidung zwischen Local und symbol entspricht exakt unserer zwischen ex und
symbol.

5.4. Schlussfolgerungen und Ausblick 129

unter Ausnutzung eleganter sprachlicher Konstrukte wie Funktor-Klassen sowie der Standard
Template Library. Ich bin überzeugt davon, dass die Wartbarkeit von xloops zunimmt, je
weniger monolithisch es wird.

Algebraischer Ansatz?

Personen mit rigoroser mathematischer Ausbildung fordern von Computeralgebrasystemen
immer wieder eine präzise Abbildung algebraischer Strukturen auf darstellende Datenstruktu-
ren. Das System Axiom [JeSu 1992] versucht diesem Ziel nahe zu kommen. Vorsicht ist jedoch
angebracht, wenn verschiedene Strukturen zu irgendeinem Zeitpunkt aufeinandertreffen. Wie
unklar das Ergebnis dann schnell wird zeigt ein einfaches Beispiel. Sei P = x+2 ∈ �[x] ein Po-
lynom mit ganzzahligen Koeffizienten in x. P/3 kann dann als x+2

3
aufgefasst werden, also als

Quotient zweier ganzzahliger Polynome in x. Oder – kaum weniger plausibel – als P/3 = 1
3
x+ 2

3
,

als Element des Ringes �[x] der Polynome in x mit gebrochenrationalen Koeffizienten. Für die
automatische Weiterverarbeitung kann dieser Unterschied von erheblicher Bedeutung sein. Ein
anderes Beispiel, in dem ein rigoroser algebraischer Ansatz schnell unpragmatisch wird, ist die
vermeintliche Vereinfachung von (x101−1)/(x−1) zu x100 +x99 + · · ·+x+1. Siehe [Dave 2000]
für einen Übersichtsartikel zu den Vor- und Nachteilen eines solchen Ansatzes.
Etwas ferner von den derzeit absehbaren Bedürfnissen, aber dennoch vorstellbar, sind: Für die
Weiterentwicklung und Implementierung gewisser Algorithmen (Faktorisierung, symbolische
Integration) in GiNaC kann eventuell eine Klasse zur Darstellung von algebraischen Zahlen, die
sich nicht in einfachen Wurzeln ausdrücken lassen (siehe Seite 80) unabdingbar werden. Eine
solche Klasse root könnte analog zu power direkt von basic abgeleitet sein und ein Polynom
in einer Standardvariablen ρ enthalten. Der Versuch, x5− x+ 1 = 0 nach x aufzulösen, könn-
te dann ein Objekt root(ρˆ5-ρ+1) erzeugen, welches bei einer Weiterverarbeitung eventuell
entsprechend vereinfacht werden kann, z.B. root(ρˆ5-ρ+1)ˆ5 → root(ρˆ5-ρ+1)-1. Für eine
eventuelle Implementierung symbolischer Integration (Risch-Algorithmus) müssen zunächst
geeignete Darstellungen des Integranden in einem Differenzialkörper gefunden werden. Hier-
zu müssten transzendente Erweiterungen des rationalen Funktionenkörpers erlaubt werden
um so etwa den Tangens t durch seine Ableitung Dt = t2 + 1 darzustellen. Eine Einfüh-
rung bietet [Bron 1996a]. Ob dies ohne grundlegende Änderungen vonstatten gehen kann, sei
dahingestellt. Jedenfalls scheint dies für die derzeitige Praxis der Schleifenrechnungen nicht
erforderlich zu sein.

Anhänge

A. Hilfsmittel aus der komplexen
Analysis

A few weeks of developing and testing
can save a whole afternoon in the library

anonymous

Im Folgenden notieren wir für komplexe Variablen häufig z = x+ iy und ζ = ξ+ iη. Bisweilen
werden wir für komplexe Funktionen f(ζ) auch Real- und Imaginärteil ausschreiben als f =
u+ iv und Ableitungen abkürzend mit fζ ≡ ∂f

∂ζ
notieren.

A.1. Der Cauchy’sche Residuensatz in einer
Veränderlichen

Satz A.1 (Cauchy’scher Integralsatz) Sei f : Ω→ � analytisch in einem einfach zusam-
menhängenden Gebiet Ω ⊆ �. Sei � eine einfach geschlossene, positiv orientierte Jordan-
Kurve in Ω. Dann gilt: ∮

�

f(ζ)dζ = 0.

Dieser Satz lässt sich leicht ganz „zu Fuß“ beweisen, indem man die Bahnkurve � parame-
trisiert (

∮
�
f(ζ)dζ =

∫ 1

0
f(ζ(τ)) ∂ζ

∂τ
dτ) und bemerkt, dass die Vektorfelder (u,−v) und (v, u)

wegen den Cauchy-Riemann’schen Differenzialgleichungen die Integrabilitätsbedingung erfül-
len. �

Triviale Folgerungen aus diesem fundamentalen Satz sind die Wegunabhängigkeit von Kurven-
integralen analytischer Funktionen sowie der Deformationssatz, demzufolge ein Integral ent-
lang einer geschlossene Kurve � über einen Integranden, der analytisch ist bis auf einen Punkt
z in � , ersetzt werden kann durch ein Integral entlang eines Krei-
ses um z innerhalb von � . Es sei an dieser Stelle noch angemerkt,
dass im Spezialfall kreisförmiger Bahnkurven der Satz A.1 in den
Mittelwertsatz von Gauß für harmonische Funktionen übergeht, da
Real- und Imaginärteil von f(ζ) vermöge der Cauchy-Riemann’schen
Differenzialgleichungen harmonische Funktionen sind

�
�
�
�

���
�
�
�

Abbildung A.1.: Zum
Deformationssatz

134 A. Hilfsmittel aus der komplexen Analysis

uξξ = −vηξ = −vξη = −uηη

vξξ = −uξη = −uηξ = −vηη

und als durch ζ parametrisierte Fläche betrachtet daher Minimalflächen mit verschwindender
Krümmung darstellen.
Satz A.1 ist auch Ausgangspunkt für das

Lemma A.2 (Cauchy’sche Integralformel) Sei f(ζ) analytisch in einem einfach zusam-
menhängenden Gebiet Ω und � eine einfach geschlossene, positiv orientierte Jordan-Kurve,
z ein Punkt in � . Dann gilt: ∮

�

f(ζ)

ζ − z dζ = 2πif(z).

Deformation der Kurve � in einen Kreis Sε(z) mit Radius ε um z liefert∮
�

f(ζ)

ζ − z dζ =

∮
Sε(z)

f(z)

ζ − zdζ +

∮
Sε(z)

f(ζ)− f(z)

ζ − z dζ,

wobei der erste Term wegen der Parametrisierung
∮

Sε(z)
1

ζ−z
dζ =

∫ 2π

0
εieiτ

εeiτ dτ identisch mit
2πif(z) ist und der zweite Term aufgrund der Stetigkeit von f verschwindet. �

Satz A.3 (Cauchy’scher Residuensatz) Sei f(ζ) analytisch bis auf isolierte Singularitä-
ten in einem einfach zusammenhängenden Gebiet Ω, � eine einfach geschlossene, positiv
orientierte Jordan-Kurve, die nicht durch eine der Singularitäten führt und in deren Innerem
n <∞ Singularitäten bei ζ = zi, i ∈ I liegen. Dann gilt:∮

�

f(ζ)dζ = 2πi
∑
i∈I

Res
ζ=zi

f(ζ).

Zum Beweis entwickle man die Funktion f um die Singularitäten in eine Laurentreihe f(ζ) =∑∞
n=−∞ a

(i)
n (ζ − zi)

n und bezeichne mit p(i)(ζ) =
∑−∞

n=−1 a
(i)
n (ζ − zi)

n den Hauptteil bei zi.
Dann ist g(ζ) := f(ζ)−∑

i p
(i)(ζ) analytisch in Ω; also gilt

∮
�
g(ζ)dζ = 0 und es genügt, die

Summe der Hauptteile p(i) zu integrieren:∮
�

f(ζ)dζ =

∮
�

∑
i∈I

p(i)(ζ)dζ =
∑
i∈I

∮
�

p(i)(ζ)dζ.

Die Vertauschung von Integration und Summation ist möglich wegen der Endlichkeit der In-
dexmenge I. Nun kann man jeden Hauptteil p(i) getrennt integrieren, wobei in

∮
�

∑−∞
n=−1 a

(i)
n

lediglich die Terme mit n = −1 entsprechend Lemma A.2 beitragen und die übrigen verschwin-
den, was man wieder anhand einer Parametrisierung einsieht:

∮
Sε(z)

1
(ζ−z)ndζ =

∫ 2π

0
εieiτ

εeinτ dτ = 0

falls n �= 1. �

A.1. Der Cauchy’sche Residuensatz in einer Veränderlichen 135

Satz A.4 (über die Residuensumme) Ist f(ζ) in der geschlossenen Ebene bis auf isolierte
Stellen eindeutig und holomorph, so verschwindet die Summe der Residuen von f(ζ).

Der Beweis folgt [BeSo 1965]: Sei � irgendein einfach geschlossener endlicher Weg, auf dem
keine Singularitäten liegen. Man kann 1

2πi

∮
�
f(ζ) dζ auf zwei Weisen ausrechnen: indem man

f(ζ) im Inneren oder im Äußeren betrachtet. Wählt man nun � so, dass im Inneren keine
Singularitäten von f(ζ) liegen (was nach Vssg. möglich ist), und durchläuft man � derart,
dass das Äußere zur Linken liegt, so folgt die Behauptung des Satzes:1

0 =
1

2πi

∮
�

f(ζ) dζ =
∑

i

Res
ζ=zi

f(ζ).

�

Man kann also in der Summe ein (beliebiges) der resultierenden Residuen ausdrücken durch
die negative Summe aller übrigen. Angewendet auf Integrale vom Typ

∫ +∞
−∞ dζ

∏n
i=1

1
Pi(ζ)

mit
Pi(ζ) = ζ − zi, zi ∈ � bleiben also nur noch die θ-Funktionen übrig. Dies ist die Aussage des
folgenden Satzes.

Korollar A.5 (zum Satz über die Residuensumme) Sei Pj(ζ) = ζ − zj mit zj = xj +
i yj, xj, yj ∈ � und yj �= 0 ∀j, wobei j ∈ {1 . . . n}, n ≥ 2. Außerdem seien alle zj paarweise
verschieden. Dann ist

1

2πi

∫ +∞

−∞
dζ

1

P1(ζ)P2(ζ)
=

θ(y1)− θ(y2)

P2(z1)
(A.1)

1

2πi

∫ +∞

−∞
dζ

1

P1(ζ)P2(ζ)P3(ζ)
=

θ(y1)− θ(y3)

P2(z1)P3(z1)
+
θ(y2)− θ(y3)

P1(z2)P3(z2)
(A.2)

...
1

2πi

∫ +∞

−∞
dζ

n∏
j=1

1

Pj(ζ)
=

n−1∑
j=1

θ(yj)− θ(yn)∏
i�=j Pi(zj)

. (A.3)

Anmerkung: Die obigen Formeln entsprechen einem in der oberen Halbebene geschlossenen
Integrationsweg. Ersetzt man in (A.3) θ(yj) = 1− θ(−yj), so erhält man

n−1∑
j=1

θ(yj)− θ(yn)∏
i�=j Pi(zj)

= −
n−1∑
j=1

θ(−yj)− θ(−yn)∏
i�=j Pi(zj)

. (A.4)

Die rechte Seite kann als die entsprechende Gleichung für einen in der unteren Halbebe-
ne geschlossenen Integrationsweg interpretiert werden: Die Vorzeichen der Argumente der
θ-Funktionen spiegeln die Teilmenge der Polstellen in dieser Halbebene und das allgemeine
Vorzeichen den Integrationsweg mit negativem Umlaufsinn wieder. Der Satz über die Residu-
ensumme (bzw. die daraus abgeleitete Gleichung (A.3)) macht also die Freiheit in der Wahl
des Integrationsweges manifest.

1 Mögliche Residuen im Unendlichen müssen mitberücksichtigt werden, da der Satz sich auf die geschlossene
Ebene bezieht.

136 A. Hilfsmittel aus der komplexen Analysis

Anhand von Korollar A.5 lässt sich auch einsehen, auf welche Weise Residuensatz und Parti-
albruchzerlegung bei rationalen Funktionen miteinander zusammenhängen.2 Nach dem Fun-
damentalsatz der Algebra lässt sich der Nenner einer rationalen Funktion immer in der Form
1/

∏n
j=1 Pj(ζ) schreiben. Klammert man 1/Pn(ζ) aus und zerlegt die übrigen sukzessive als

Partialbruch, so bleiben n − 1 Summanden, deren Nennerpolynom quadratisch in ζ ist, und
daher noch schnell genug abfällt, um integrierbar zu sein:

1

P1(ζ)P2(ζ)P3(ζ)
=

(
1

P1(ζ) (z1−z2) +
1

P2(ζ) (z2−z1)
)

1

P3(ζ)
(A.5)

1

P1(ζ)P2(ζ)P3(ζ)P4(ζ)
=

(
1

P1(ζ) (z1−z2) (z1−z3) +
1

P2(ζ) (z2−z1) (z2−z3)
+

1

P3(ζ) (z3−z1) (z3−z2)
)

1

P4(ζ)
(A.6)

...
n∏

j=1

1

Pj(ζ)
=

(
n−1∑
j=1

1

Pj(ζ)

∏
i�=j

1

(zj−zi)

)
1

Pn(ζ)
. (A.7)

Nun kann man in der Summe gliedweise die Integration über die reelle Achse ausführen und
dabei unter Benutzung von (A.1) die Gleichung (A.3) erzeugen, da Pi(zj) = zj−zi ist.

Falls zi = zj für mindestens ein Paar i �= j gilt dieser Zusammenhang übrigens noch genauso.
Dann liegt bei ζ = zj ein k-facher Pol vor und für die Berechnung des Residuums kann man
die Gleichung Resζ=zj

1
P1(ζ) ···Pn(ζ)

= 1
(k−1)!

(
(d

dζ
)k−1(ζ − zj)

k 1
P1(ζ) ···Pn(ζ)

)|ζ=zj
heranziehen. Ist

beispielsweise ein doppelter Pol bei zn, so findet man in Analogie zu Gleichungen (A.1)-(A.3)

1

2πi

∫ +∞

−∞
dζ

1

P1(ζ)P2(ζ)2
=

θ(y1)− θ(y2)

P2(z1)2
(A.8)

...
1

2πi

∫ +∞

−∞
dζ

1

Pn(ζ)

n∏
j=1

1

Pj(ζ)
=

n−1∑
j=1

θ(yj)− θ(yn)

Pn(zj)
∏

i�=j Pi(zj)
, (A.9)

wobei schon der Satz A.4 über die Residuensumme ausgenutzt worden ist. Andererseits bricht
natürlich die naive Partialbruchzerlegung nach dem Muster 1

P1P1
= 1

P1(P1−P1)
+ 1

P1(P1−P1)
zu-

sammen, Pn(ζ)2 darf also nur als ganzes behandelt werden.3 Jedenfalls ermöglicht die folgende

2 Eine anregende historische Zusammenfassung dieser im 19ten Jahrhundert von Sylvester untersuchten
Parallelen geben Bhatnagar in [Bhat 1996] und Knuth [Knu 1997, Abschnitt 1.2.3, Übung 33].

3 Die notwendige und hinreichende Bedingung dafür, dass eine Partialbruchzerlegung von 1/PQ durchgeführt
werden kann, ist, dass P und Q koprim sind. Man sieht das sofort ein, wenn man Partialbruchzerlegung
als Umkehrung der Addition von Brüchen auffasst, da 1/PQ ja zerlegt wird in a/P + b/Q. Sind P und
Q nicht koprim, so ist der Nenner von a/P + b/Q, der ja das kgV(P, Q) ist, ungleich PQ und umge-
kehrt. Der programmatische Weg zur Berechnung von a und b besteht daher darin, sie als Kofaktoren der
Bézout-Identität aQ + bP = 1 zu verstehen und mit dem beispielsweise in [Baue 2000] beschriebenen und
implementierten erweiterten euklidischen Algorithmus zu bestimmen.

A.2. Hauptwertintegrale 137

Partialbruchzerlegung

1

P1(ζ)P2(ζ)P3(ζ)2
=

(
1

P1(ζ) (z1−z2) +
1

P2(ζ) (z2−z1)
)

1

P3(ζ)2

...
1

Pn(ζ)

n∏
j=1

1

Pj(ζ)
=

(
n−1∑
j=1

1

Pj(ζ)Pn(ζ)

∏
i�=j

1

(zj−zi)

)
1

Pn(ζ)
,

die Gleichung (A.9) aus (A.8) direkt zu gewinnen.

A.2. Hauptwertintegrale

Wenn das Integral
∫
�
f(ζ)dζ über eine Polstelle von f(ζ) führt, so ist das Riemann’sche Inte-

gral nicht definiert. Existiert aber der Grenzwert limε→0

∫
� \� (ε) f(ζ)dζ für eine symmetrische

ε-Umgebung � (ε) um zi auf dem Integrationsweg � , so kann man das Integral darüber defi-
nieren. Man nennt dies das Hauptwertintegral und wir schreiben es wie folgt (P.V. für engl.
principal value):

P.V.
∫
f(ζ)dζ.

Mithilfe dieses Integrals kann man den Cauchy’schen Residuensatz retten. Hierzu untersucht
man einen Pol bei zi auf dem geschlossenen Integrationsweg � . Zerlegt man � wie in Abbil-
dung A.2 skizziert in zwei Anteile �ε,zi

und γε,zi
, so kann man das Hauptwertintegral schreiben

als Grenzübergang:

P.V.
∮
�

f(ζ)dζ = lim
ε→0

(∮
�ε,zi

f(ζ)dζ −
∫

γε,zi

f(ζ)dζ

)
.

Das erste Integral ist unabhängig von ε und lässt sich mit dem gewöhnlichen Residuensatz
berechnen. Das zweite Integral wird für ε→ 0 durch den Hauptteil p(i)(ζ) von f(ζ) an ζ = zi

bestimmt:

lim
ε→0

∫
γε,zi

f(ζ)dζ = lim
ε→0

∫
γε,zi

p(i)(ζ)dζ ≡ lim
ε→0

−∞∑
n=−1

∫
γε,zi

a(i)
n (ζ − zi)

ndζ.

Man kann es berechnen, indem man γε,zi
als γε,zi

: ζ = zi + εe−i(τ−τ0), τ = [0, π] parametrisiert
mit einem geeignet gewählten τ0. Dann ist∫

γε,zi

a(i)
n (ζ − zi)

ndζ = a(i)
n

∫ π

0

(
εe−i(τ−τ0)

)n(−iεe−i(τ−τ0)
)
dτ

wofür drei Fälle zu unterscheiden sind:

a) Der Beitrag n = −1 liefert gerade das Residuum, aber nur mit einem halben Gewicht
gegenüber dem gewöhnlichen Residuensatz:∫

γε,zi

a
(i)
−1(ζ − zi)

−1dζ = a
(i)
−1

∫ π

0

−idτ = −iπa(i)
−1 = −πiRes

ζ=zi

f(ζ).

138 A. Hilfsmittel aus der komplexen Analysis

� = � \� (ε) = �ε,zi
= γε,zi

=

Abbildung A.2.: Aufteilung der Integrationswege bei der Hauptwertintegration zum Beweis von
Satz A.6.

b) Die geraden Beiträge n = 2m liefern einen Beitrag, falls die Koeffizienten a
(i)
2m nicht

ohnehin verschwinden:∫
γε,zi

a
(i)
2m(ζ − zi)

2mdζ = −ia(i)
2m

∫ π

0

ε2m+1e−i(2m+1)(τ−τ0)dτ = −2ε2m+1e−i(2m+1)τ0

2m+ 1
a

(i)
2m.

Da n = 2m negativ war, ist dieser Anteil nicht wohldefiniert.

c) Die ungeraden Beiträge n = 2m+ 1 mit m < −2 verschwinden:∫
γε,zi

a
(i)
2m+1(ζ − zi)

2m+1dζ = −ia(i)
2m+1

∫ π

0

ε2m+2e−i(2m+2)(τ−τ0)dτ = 0.

Falls also die Laurententwicklung von f(ζ) an ζ = zi nur ungerade negative Potenzen enthält,
ist das Hauptwertintegral definiert. Hätten wir den Pol in der Zerlegung des Integrationswe-
ges mit in das geschlossene Gebiet �ε,zi

aufgenommen, statt ihn auszuschließen, hätten wir
dasselbe Ergebnis bekommen, da das Teilstück γε,zi

dann im mathematisch positiven Sinne
zu parametrisieren gewesen wäre. Wir können nun den folgenden Satz formulieren:

Satz A.6 (Residuensatz mit Polen auf dem Integrationsweg) Sei f(ζ) analytisch bis
auf isolierte Singularitäten in einem einfach zusammenhängenden Gebiet Ω, � eine einfach
geschlossene, positiv orientierte Jordan-Kurve, die bei ζ = zi, i ∈ I durch endlich viele Sin-
gularitäten von f(ζ) führt. Wenn die Hauptteile p(i)(ζ) von f(ζ) an den Polen auf den Inte-
grationswegen nur ungerade Anteile haben und im Inneren von � nur n < ∞ Singularitäten
bei ζ = zj, j ∈ J liegen, dann gilt:

P.V.
∮
�

f(ζ)dζ = 2πi
∑
j∈J

Res
ζ=zj

f(ζ) + πi
∑
i∈I

Res
ζ=zi

f(ζ).

A.3. Schnitte, Umkehrungen elementarer Funktionen
und all das

Viele irrationale und transzendente Funktionen sind in der komplexen Ebene nicht eindeu-
tig definierbar. Der Wertebereich, den die Wurzelfunktion annehmen kann, ist beispielsweise
„zweiblättrig“. In solchen Fällen muss eine Festlegung getroffen werden, welche Werte die im-
plementierte Funktion zurückliefern soll. Da es im Allgemeinen nicht möglich ist, dabei die

A.3. Schnitte, Umkehrungen elementarer Funktionen und all das 139

Analytizität (oder auch nur die Stetigkeit) des Bildes der Funktion zu erhalten, müssen sog.
„Schnitte“ in der komplexen Ebene festgelegt werden, die die Unstetigkeit im Bild definieren.

Dieser Abschnitt ist den Schnitten wichtiger Funktionen gewidmet. Es sollen die Topologien
der Riemannflächen anschaulich dargestellt sowie Konventionen von Schnitten, die diese Topo-
logien scheinbar stören, miteinander verglichen werden. Dies ist von Bedeutung für ein CAS, da
Änderungen solcher Konventionen zu subtilen Fehlern führen können. Unter Berücksichtigung
bestehender Standards wird hier die Konvention in GiNaC zementiert. Auf unproblematische
Funktionen wie die trigonometrischen und hyperbolischen braucht hier nicht eingegangen zu
werden, da sie einblättrig sind, also keinen Schnitt haben. Bei den problematischen Funk-
tionen mit Schnitt werden wir feststellen, dass der Versuch diesen zu standardisieren in C++

nur ansatzweise unternommen wurde. Wir werden sehen, dass die aktuelle Revision von C
diese Lücken schließt und einen Vergleich anstellen mit dem Quasi-Standard [Stee 1990] von
Common Lisp, da dieser traditionell als CAS-Leitfaden herangezogen wird. Dabei wird sich
glücklicherweise herausstellen, dass diese drei Regelwerke nicht in einem Widerspruch zuein-
ander ausgelegt werden müssen.

Betrachten wir zunächst die Wurzelfunk-
tion

√
z als Umkehrung von z2. Setzt

man den „Keim“ (
√
, z0 = 1) von der

Stelle z0 = 1 über die obere Halbebe-
ne analytisch fort zu z = −1, so erhält
man

√−1 = i. Eine analytische Fortset-
zung entlang eines Pfades in der unteren
Halbebene führt dagegen zu

√−1 = −i. Abbildung A.3.: Die Blätter von
√

z und 3
√

z

Schließt man den Kreis zum Ausgangspunkt z0, so findet man
√

1 = −1. Schließt man ihn
noch einmal, so kommt man zum Keim (

√
, z0 = 1) zurück. Diese Mehrdeutigkeit lässt sich

in der Riemannfläche veranschaulichen (Abbildung A.3, links). Hierbei ist zu beachten, dass
die beiden „Blätter“ an der scheinbaren Durchdringungslinie nicht aufeinanderfallen. Das Ge-
dankenbild Riemann’scher Flächen ist vielmehr Folgendes: die Funktionen werden zwar als
eindeutig betrachtet, aber dafür werden ihre Argumente als auf einer mehrblättrigen Mannig-
faltigkeit liegend angesehen. Für die k-te Wurzel gilt dann analog zur Quadratwurzel, dass
man k-mal schließen muss (Abbildung A.3, rechts). Die in diesem Abschnitt abgebildeten Rie-
mannflächen sind genau genommen gar keine, sondern die Plots der Blätter der Funktionen.
Mit der Topologie der Riemannflächen stimmen sie jedoch überein. Während dort die Mehr-
deutigkeit im Argument der Funktion f(zk) liegt, ist sie hier in der Funktion fk(z) selbst. Dies
ist von einem algebraischen Gesichtspunkt praktikabler, da wir leichter die Funktionswerte als
die Argumente indizieren können [Jeff 2001].

Der C++-Standard [ISO 1998] definiert den Schnitt der komplexen Wurzelfunktion in Ab-
schnitt 26.2.8:

template<class T> complex<T> sqrt (const complex<T>& x);
Notes: the branch cuts are along the negative real axis.
Returns: the complex square root of x, in the range of the right half-plane. If
the argument is a negative real number, the value returned lies on the positive
imaginary axis.

140 A. Hilfsmittel aus der komplexen Analysis

Dies ist in voller Übereinstimmung mit [Stee 1990], Abschnitt 12.5.3:

sqrt: The branch cut for square root lies along the negative real axis, continuous
with quadrant II. The range consists of the right half-plane, including the non-
negative imaginary axis and excluding the negative imaginary axis.

Transzendente Funktionen

Der natürliche Logarithmus als Umkehrung der Exponentialfunktion ist offensichtlich un-
endlichdeutig. Wenn z′ mit z durch z′ = ze2nπi verknüpft ist, so ist klarerweise log(z′) =
log(z) + 2nπi, da der Imaginärteil des Logarithmus gerade die Phase des Argumentes ist:
log(z) = log(reiϕ) = log(elog r+iϕ)) = log r+ iϕ. Die Unendlichdeutigkeit lässt sich jedoch auch
über die Integraldarstellung log(z) =

∫ z

1
1
ζ
dζ einsehen in einer Weise, wie sie leicht verallge-

meinerbar ist auf Funktionen, die wie z.B. der Dilogarithmus über eine Integraldarstellung
definiert sind. Hierzu trennt man den Integrationsweg von 1 bis z′ auf in einen Teil von 1 bis
z und einen weiteren von z bis z′. Beim zweiten Teil ist darauf zu achten, dass die Null n mal
umlaufen wird:

log(z′) =

∫ z

1

1

ζ
dζ +

∫ z′

z

1

ζ
dζ = log(z) + n

∮
Sr(0)

1

ζ
dζ.

Abbildung A.4.: Der Imagi-
närteil von log(z)

Der Zusatzterm ist wegen der Cauchy’schen Integralformel ge-
rade wieder 2nπi. Da also für ein beliebiges z ∈ � die Logarith-
musfunktion nur modulo 2nπi eindeutig ist, ergeben sich für den
Imaginärteil die unendlich vielen Blätter der einfachen Helix, so
wie es in nebenstehender Zeichnung qualitativ angedeutet ist.
Der Realteil der Logarithmusfunktion log(z) ist dabei stets ein-
deutig und gegeben durch den Logarithmus des Betrages des
Argumentes: Re(log z) = log |z|.

Der C++-Standard setzt den Schnitt des natürlichen Logarithmus unmissverständlich fest:

template<class T> complex<T> log (const complex<T>& x);
Notes: the branch cuts are along the negative real axis.
Returns: the complex natural (base e) logarithm of x, in the range of a strip ma-
thematically unbounded along the real axis and in the interval [-i times pi, i times
pi] along the imaginary axis. When x is a negative real number, imag(log(x)) is
pi.

Bis auf den unbedeutenden Fehler bezüglich der linken Intervallgrenze des Wertebereiches für
den Imaginärteil finden wir hier auch wieder eine Übereinstimmung mit dem Lisp-Standard:

log: The branch cut for the logarithm function of one argument (natural logarithm)
lies along the negative real axis, continuous with quadrant II. The domain excludes
the origin. For a complex number z, log z is defined to be

log z = (log |z|) + i(phase z)

A.3. Schnitte, Umkehrungen elementarer Funktionen und all das 141

Therefore the range of the one-argument logarithm function is that strip of the
complex plane containing numbers with imaginary parts between −pi (exclusive)
and pi (inclusive).

Der Schnitt gebietet Vorsicht bei Umformungen von Summen von Logarithmen. Über die dabei
auftretenden Imaginärteile lässt sich mithilfe der in [t’HoVe 1979] eingeführten η-Funktion
buchführen:

log(z1z2) = ln(z1) + log(z2) + η(z1, z2).

Dies kann als definierende Gleichung für η(z1, z2) verstanden werden. Man findet die η-
Funktion in modernerer Literatur auch häufig unter dem Namen „Entwindungszahl“ K
wieder, die mit der η-Funktion durch 2πiK(log(z1) + log(z2)) = −η(z1, z2) verknüpft
ist [CDJLW 2001]. Solange z1, z2 und z1z2 alle nicht auf dem Schnitt des Logarithmus liegen,
sie also nicht reell und negativ sind, lässt sich die η-Funktion durch Heaviside’sche Sprung-
funktionen wie folgt ausdrücken:

η(z1, z2) = 2iπ
[
θ(−Im z1) θ(−Im z2) θ(Im(z1z2))

− θ(Im z1) θ(Im z2) θ(−Im(z1z2))
]
,

wobei die θ-Funktionen hier wieder mit θ(0) = 1
2

definiert sind. Vorsicht: Diese Gleichung ist
nur im unkonventionellen Fall eines log-Schnittes entlang der negativen reellen Achse stetig
zum dritten Quadranten richtig. Sie ist aber dennoch für eine Implementierung geeignet: in
der hier getroffenen Vereinbarung müssen lediglich noch zusätzliche Faktoren von iπ korrigiert
werden, falls z1, z2, z1z2 oder Kombinationen davon reell und negativ sind. Für die vollständige
Gleichung sei auf die Implementierung in GiNaC (eta_eval()) verwiesen.
Eine weitere wichtige transzendente Funktion ist der Arcustangens. Er tritt wie der natürliche
Logarithmus bei der Integration rationaler Funktionen auf. Er lässt sich allerdings auf den
natürlichen Logarithmus zurückführen. Durch Invertierung der Definitionsgleichung

z ≡ tan(atan(z)) ≡ sin(atan(z))

cos(atan(z))
= −i e

2i atan(z) − 1

e2i atan(z) + 1

findet man die Beziehung

e2i atan(z) =
1 + iz

1− iz .
Nimmt man von beiden Seiten den Logarithmus und beachtet, dass log(ez) ≡ z mod 2πi, so
sieht man, dass der Realteil nur modulo π eindeutig ist:

atan(z) =
1

2i
log

(1 + iz

1− iz
)

mod π. (A.10)

Mit dieser Definition ist auch eine natürliche Wahl des Schnittes vorgeschlagen, indem man
einfach das mod π streicht: Man könnte ihn dorthin legen, wo das Argument des Logarithmus
reell und negativ ist, also beginnend bei den Verzweigungspunkten ±i entlang z = ±ir, r =
(1 . . .∞). Setzt man den Arcustangens ober- und unterhalb des Schnittes fort, so findet man
für den Realteil eine unendlichblättrige Topologie, wie sie in Abbildung A.5 links angedeutet
ist. Wir werden diesem Vorschlag nur bis auf die Funktionswerte auf dem Schnitt selbst folgen.

142 A. Hilfsmittel aus der komplexen Analysis

-3
-2

-1
0

1
2

3

Re

-3

-2

-1

0

1

2

3

Im

-5

-4

-3

-2

-1

0

1

2

3

-3
-2

-1
0

1
2

3

Re

-3

-2

-1

0

1

2

3

Im

-1

-0.5

0

0.5

1

Abbildung A.5.: Real- und Imaginärteil der Arcustangensfunktion (Reelle Achse nach rechts hin-
ten). Der Hauptzweig ist massiv dargestellt.

Unglückseligerweise hat das ISO/IEC JTC1 SC22 4 versäumt, inverse trigonometrische und
inverse hyperbolische Funktionen im C++-Standard [ISO 1998] zu spezifizieren – lediglich tri-
gonometrische und hyperbolische Funktionen werden aufgeführt. Mit der Revision des C-
Standards [ISO 1999] hielten jedoch komplexe Funktionen in C Einzug und man kann er-
warten, dass kommende Revisionen von [ISO 1998] zumindest semantisch nicht dagegen ver-
stoßen werden. In C bekommen sie dort das Präfix c vorangestellt und gelten für den Typ
double als Argument und Rückgabewert, beziehungsweise mit dem Suffix f für den Typ
float und dem Suffix l für den Typ long double. Man hat also beispielsweise die Pro-
totypen double complex catan(double complex z); und float complex catanf(float
complex z);. Abschnitt 7.3.5.3 schreibt vor:

Description
The catan functions compute the complex arc tangent of z, with branch cuts out-
side the interval [-i, +i] along the imaginary axis.
Returns
The catan functions return the complex arc tangent value, in the range of a
strip mathematically unbounded along the imaginary axis and in the interval
[−π/2,+π/2] along the real axis.

Diese Spezifizierung wird vervollständigt durch die Erläuterung in 7.3.3.2, wie Schnitte zu
lesen sind:

[. . .] implementations shall map a cut so the function is continuous as the cut
is approached coming around the finite endpoint of the cut in a counter clock-

4 Abkürzung für: International Organization for Standardization / International Electrotechnical Commis-
sion Joint Technical Committee 1, (Information technology) SubCommitee 22 (Programming languages,
their environments and system software interfaces).

A.3. Schnitte, Umkehrungen elementarer Funktionen und all das 143

wise direction. (Branch cuts for the functions specified here have just one finite
endpoint.)

Für den Arcustangens bedeutet dies insbesondere, dass der Schnitt auf der positiven imagi-
nären Achse stetig mit dem ersten Quadranten ist, während der Schnitt auf der negativen
imaginären Achse stetig an den dritten Quadranten anschließt. Man kann davon ausgehen,
dass künftige Revisionen des C++-Standards sich an die im C-Standard spezifizierte Semantik
halten werden. Zum Vergleich sei noch der relevante Absatz in [Stee 1990] zitiert:

atan: X3J13 voted in January 1989 (COMPLEX-ATAN-BRANCH-CUT) to re-
place the formula atan(z) = −i log((1 + iz)

√
1/(1 + z2)) with the formula

atan z =
log(1 + iz)− log(1− iz)

2i

This is equivalent to the formula

atan z =
atanh iz

i

recommended by Kahan [Kah 1987]. It causes the upper branch cut to be conti-
nuous with quadrant I rather than quadrant II, and the lower branch cut to be
continuous with quadrant III. [. . .]
The branch cut for the arc tangent function is in two pieces: one along the positi-
ve imaginary axis above i (exclusive), continuous with quadrant I, and one along
the negative imaginary axis below −i (exclusive), continuous with quadrant III.
The points i and −i are excluded from the domain. The range is that strip of the
complex plane containing numbers whose real part is between −π/2 and π/2. A
number with real part equal to −π/2 is in the range if and only if its imaginary
part is strictly negative; a number with real part equal to π/2 is in the range if and
only if its imaginary part is strictly positive. Thus the range of the arc tangent
function is not identical to that of the arc sine function.

Dies ist gekürzt um diejenigen Besonderheiten, die durch die Unterscheidung zwischen +0
und −0 entstehen. Systeme, die eine solche Unterscheidung zulassen, werden in [Kah 1987]
favorisiert und in [Stee 1990] optional berücksichtigt. Sie lassen die Formulierung von√−4 + 0i = 2i und

√−4− 0i = −2i zu und können Verwechslungen bei Schnitten ver-
meiden. Obwohl diese Unterscheidung attraktiv ist, löst sie nicht die Probleme, mit denen
ein Implementator eines CAS konfrontiert ist: „Was ist gemeint, wenn ein Benutzer

√−4 ein-
gibt?“. Daher, und weil CLN dies nicht unterstützt, sehen wir hier und im Folgenden von der
Unterscheidung zwischen +0 und −0 ab.
Die vorgeschlagene Gleichung sieht unserer Gleichung (A.10) schon sehr ähnlich, welche jedoch
nur modulo π eindeutig ist und daher noch alle Freiheiten zur Wahl des Schnittes zulässt.
Tatsächlich ist für Argumente z = −ir, r > 1

1

2i
log

(1 + iz

1− iz
)

=
1

2i
log

(1 + r

1− r︸ ︷︷ ︸
<0

)
=

1

2i

(
log

(1 + r

r − 1︸ ︷︷ ︸
>0

)
+ log(−1)

)

=
1

2i

((
log(1 + r)− log(r − 1)

)
+ log(−1)

)
,

144 A. Hilfsmittel aus der komplexen Analysis

aber

1

2i

(
log(1 + iz)− log(1− iz)) =

1

2i

(
log(1 + r︸ ︷︷ ︸

>0

)− log(1− r︸ ︷︷ ︸
<0

)
)

=
1

2i

((
log(1 + r)− log(r − 1)

)− log(−1)
)
.

Die beiden Definitionen unterscheiden sich also auf dem Schnitt in der unteren Halbebene um
1
2i

2 log(−1) = π. Dort wollen wir der lispschen Definition folgen, die sich wieder als kompatibel
mit der C-Definition herausstellt.
Analog zum Arcustangens sollen nun noch die übrigen inversen trigonometrischen Funktionen
und die Lage ihrer Schnitte untersucht werden.
Für den Arcussinus können wir wieder wie beim Arcustangens vorgehen. Durch Invertierung
der Definitionsgleichung

z ≡ sin(asin(z)) ≡ 1

2i

(
ei asin(z) − ei asin(z)

)
findet man die quadratische Gleichung

0 = e2i asin(z) − 2izei asin(z) − 1.

Löst man sie und nimmt von beiden Seiten den Logarithmus, wobei wieder log(ez) ≡ z
mod 2πi beachtet werden muss, so wird manifest, dass der Imaginärteil nun zweideutig ist,
ebenso wie der Realteil der allerdings zusätzlich noch um modulo 2π uneindeutig ist:

asin(z) = −i log
(
iz ±

√
1− z2

)
mod 2π. (A.11)

Das Ergebnis ist die Topologie in Abbildung A.6. Nur das positive Vorzeichen entspricht einer
im Ursprung stetigen Funktion und ist daher zu bevorzugen.
Auch diese Funktion wird in C++ nicht spezifiziert. Der C-Standard hingegen sagt lediglich:

Description
The casin functions compute the complex arc sine of z, with branch cuts outside
the interval [-1, +1] along the real axis.
Returns
The casin functions return the complex arc sine value, in the range of a strip ma-
thematically unbounded along the imaginary axis and in the interval [−π/2,+π/2]
along the real axis.

Mit der Konvention über die Stetigkeit auf dem Schnitt stimmt dies mit der lispschen Defini-
tion ([Stee 1990], 12.5.3) überein:

asin: The following definition for arc sine determines the range and branch cuts:

asin(z) = −i log
(
iz +

√
1− z2

)

A.3. Schnitte, Umkehrungen elementarer Funktionen und all das 145

-3
-2

-1
0

1
2

3

Re

-3

-2

-1

0

1

2

3

Im

-6

-4

-2

0

2

-3
-2

-1
0

1
2

3

Re

-3

-2

-1

0

1

2

3

Im

-3

-2

-1

0

1

2

3

Abbildung A.6.: Real- und Imaginärteil der Arcussinusfunktion (Reelle Achse nach rechts hinten).
Der Hauptzweig ist massiv dargestellt.

This is equivalent to the formula

asin(z) =
asinh(iz)

i

recommended by Kahan [Kah 1987].
The branch cut for the arc sine function is in two pieces: one along the negative
real axis to the left of -1 (inclusive), continuous with quadrant II, and one along
the positive real axis to the right of 1 (inclusive), continuous with quadrant IV.
The range is that strip of the complex plane containing numbers whose real part
is between −π/2 and π/2. A number with real part equal to −π/2 is in the range
if and only if its imaginary part is non-negative; a number with real part equal to
π/2 is in the range if and only if its imaginary part is non-positive.

Der Arcuscosinus kann wieder genauso behandelt werden. Andererseits ist natürlich acos(z) =
π
2
− asin(z) und diese Definition kann auch für den Schnitt herangezogen werden. Die Wer-

temenge ist also im Realteil beschränkt auf das Intervall [0, π]. Wie aus dem Vergleich der
Abbildungen A.7 und A.6 hervorgeht, ist die Topologie natürlich dieselbe wie diejenige des
Arcussinus, lediglich der gewählte Schnitt ist aufgrund seiner Symmetrie etwas gewöhnungs-
bedürftig.

Ebenso wie die hyperbolischen Funktionen aus den trigonometrischen Funktionen durch Mul-
tiplikation des Argumentes mit i hervorgehen, gehen auch die inversen hyperbolischen Funk-
tionen aus den inversen trigonometrischen Funktionen hervor. Sie werden daher hier nicht

146 A. Hilfsmittel aus der komplexen Analysis

-3
-2

-1
0

1
2

3

Re

-3

-2

-1

0

1

2

3

Im

-3

-2

-1

0

1

2

3

-3
-2

-1
0

1
2

3

Re

-3

-2

-1

0

1

2

3

Im

-4

-2

0

2

4

Abbildung A.7.: Real- und Imaginärteil des Arcuscosinushyperbolicus (Reelle Achse nach rechts
hinten). Der Hauptzweig ist massiv dargestellt.

weiter behandelt. Die folgenden Identitäten sind exakt, auch auf eventuellen Schnitten:

sinh(z) = −i sin(iz) sin(z) = −i sinh(iz)
cosh(z) = cos(iz) cos(z) = cosh(iz)

tanh(z) = −i tan(iz) tan(z) = −i tanh(iz)
asinh(z) = −i asin(iz) asin(z) = −i asinh(iz)
atanh(z) = −i atan(iz) atan(z) = −i atanh(iz).

Zusammenfassend lässt sich sagen, dass zwischen den einzelnen Regelwerken keine Widersprü-
che auftreten, so dass wir uns nicht fragen müssen, welcher Konvention wir uns verpflichtet
fühlen sollten. Traditionell folgen CAS-Hersteller gerne dem Lisp-Standard und so nimmt es
nicht Wunder, dass sowohl Mathematica als auch Maple die Schnitte genau so implementieren
wie hier beschrieben. Vorsicht ist jedoch geboten beim Vergleich mit Reduce und MuPAD –
diese Systeme bieten in der Implementierung ihrer Schnitte eine Reihe Überraschungen.

Doppelt transzendente Funktionen
Doppelt transzendente Funktionen treten bei der Integration von transzendenten Funktionen
auf, oder allgemeiner bei der Integration von Produkten aus einer rationalen Funktion und
einer transzendenten Funktion.
Prominentestes Beispiel ist der Dilogarithmus Li2.5 Er ist definiert durch

Li2(z) := −
∫ z

0

log(1− ζ)
ζ

dζ.

Der Verzweigungspunkt ist mit dieser Definition bei z = 1. Dort beginnt der Schnitt und
spiegelt denjenigen der Logarithmusfunktion wieder: Da wir jenen entlang der negativen reellen

5 Auch Spence- oder Jonquière-Funktion genannt.

A.3. Schnitte, Umkehrungen elementarer Funktionen und all das 147

-2
-1

0
1

2

Re
-2

-1

0

1

2

Im

-4

-2

0

2

4

6

-2
-1

0
1

2

Re
-2

-1

0

1

2

Im

-4

-2

0

2

4

6

Abbildung A.9.: Real- und Imaginärteil der Dilogarithmusfunktion (Reelle Achse nach rechts hin-
ten). Außerhalb des Einheitskreises „erbt“ der Dilogarithmus die Unendlichdeutigkeit vom Logarith-
mus.

Achse vereinbart haben, liegt der Schnitt des Dilogarithmus da, wo log(1−z) seinen Schnitt hat,
also beginnend bei 1 entlang der positiven reellen Achse und stetig zum vierten Quadranten.
Um etwas über die Mehrdeutigkeit von Real- bzw. Imaginärteil der Dilogarithmusfunktion zu
lernen, gehen wir vor wie bei der Logarithmusfunktion. Sei wieder z′ mit z durch z′ = ze2nπi

verknüpft. Dann ist

Li2(z
′) = Li2(z)− n

∮
Sr(0)

log(1− ζ)
ζ

dζ.

Das Wegintegral verschwindet im Falle r < 1 aufgrund des
Cauchy’schen Integralsatzes, da der Integrand analytisch innerhalb
Sr(0) ist. Falls r ≥ 1, wird jedoch über den Schnitt von log(1 − ζ)
integriert und man muss die auftretende Phase berücksichtigen.
Da das Integral über den neben skizzierten Integrationsweg aber
verschwindet und die Divergenz bei ζ = 1 schwächer als ζ−1 ist,
kann man das Integral über den Kreisbogen Sr(0) ersetzen durch
ein Integral oberhalb des Schnittes von ζ = r bis 1 und unterhalb
des Schnittes von ζ = 1 bis r. Setzt man dann noch die Differenz
der Logarithmusfunktion ober- und unterhalb ihres Schnittes (2πi)
ein, so erhält man für das gesuchte Wegintegral

Im

Re

Abbildung A.8.: Inte-
grationsweg zum Schnitt
von Li2(z)

∮
Sr(0)

log(1− ζ)
ζ

dζ =

∫ 1

r

log(1− (ζ + iε))

ζ
dζ +

∫ r

1

log(1− (ζ − iε))
ζ

dζ

=

∫ 1

r

log(1− (ζ + iε))

ζ
dζ +

∫ r

1

log(1− (ζ + iε)) + 2πi

ζ
dζ

=

∫ r

1

2πi

ζ
dζ = 2πi log(r).

148 A. Hilfsmittel aus der komplexen Analysis

Dies ist zunächst rein imaginär. Der Imaginärteil des Dilogarithmus „erbt“ die Unendlich-
deutigkeit außerhalb des Einheitskreises |z| = 1 vom Logarithmus. Wenn wir nun noch die
Uneindeutigkeit des Imaginärteils des Logarithmus in obigem Resultat selbst berücksichti-
gen, erhalten wir auch eine Unendlichdeutigkeit des Realteils des Dilogarithmus außerhalb
des Einheitskreises, die die Analytizität am Scheitel entlang des Schnittes wieder herstellt.
Abbildung A.9 skizziert das Ergebnis.
Höhere Polylogarithmen fallen an bei der mehrfachen Integration des Dilogarithmus (sie-
he [Lew 1981]). Allgemein ist

Lim(z) :=

∫ z

0

Lim−1(ζ)

ζ
dζ,

womit der Schnitt dort zu liegen kommt, wo Lim−1(ζ) den Schnitt aufweist, also stets entlang
der postiven reellen Achse, beginnend bei 1 und stetig mit der oberen komplexen Halbebene.
Die Unstetigkeit auf dem Schnitt kann in völliger Analogie zum Dilogarithmus berechnet
werden. Man findet für z′ = ze2nπi

Lim(z′) = Lim(z) +
2nπi

(m− 1)!
(log z)m−1.

A.3. Schnitte, Umkehrungen elementarer Funktionen und all das 149

f(z)
Definition

Definitionsbereich
Wertebereich

Schnitt Unstetigkeit am Schnitt

log(z)
� \ 0
{ζ ∈ � : −π < Im(ζ) ≤ π} 2πi

√
z
elog(z)/2

�

�

2i
√|z|

asin(z)
−i log(iz +

√
1−z2)

�

{ζ ∈ � : −π
2 ≤ Re(ζ) ≤ π

2 }
i log

(
z−√

z2−1
z+

√
z2−1

)

acos(z)
−i log(z + i

√
1−z2)

�

{ζ ∈ � : 0 ≤ Re(ζ) ≤ π}
i log

(
z−√

z2−1
z+

√
z2−1

)

atan(z)
log(1+iz)−log(1−iz)

2i

� \ {i,−i}
{ζ ∈ � : −π

2 ≤ Re(ζ) ≤ π
2 }

π

asinh(z)
log(z +

√
1 + z2)

�

{ζ ∈ � : −π
2 ≤ Im(ζ) ≤ π

2 }
log

(|z|−
√

|z|2−1

|z|+
√

|z|2−1

)

acosh(z)
2 log(

�
(z+1)/2 +

�
(z−1)/2)

�

{ζ ∈ � : −π < Im(ζ) ≤ π,
Re(ζ) ≥ 0}

2πi für z ≤ −1
2i log

(√
(z+1)/2+

√
(z−1)/2

)
für z ∈ [−1 . . . 1]

atanh(z)
log(1+z)−log(1−z)

2

� \ {−1, 1}
{ζ ∈ � : −π

2 ≤ Im(ζ) ≤ π
2 }

πi

Li2(z)
− ∫ z

0
log(1−ζ)

ζ dζ

�

�

2πi log z

Lin(z)
− ∫ z

0
Lin−1(1−ζ)

ζ dζ

�

�

2πi
(n−1)! (log z)n−1

Tabelle A.1.: Auflistung der Schnitte in der komplexen Ebene

B. ,pvegas’: parallele MC-Integration

Real supercomputing consists of converting
CPU-bound problems to IO-bound ones

anonymous

In diesem Anhang soll kurz auf den in dieser Arbeit verwendeten Monte-Carlo- (MC-) Inte-
grationsalgorithmus eingegangen werden, sowie auf die parallelisierte Version desselben. Zum
einen gibt es deutliche algorithmische Veränderungen gegenüber der in [Krec 1997a] vorge-
stellten Version, die teilweise schon in [Krec 1997b] beschrieben wurden, zum anderen wurden
nach dem Erfahrungsrückfluss zahlreicher Anwender noch weitere Veränderungen vorgenom-
men und eine verlässliche Bewertung der Skalierungseigenschaften erst ermöglicht.

B.1. Vegas

Als MC-Integrationsalgorithmus approximiert vegas [Lepa 1978] ein Integral durch Auswer-
tung des Integranden an einer Stützpunktmenge im D-dimensionalen Integrationsgebiet Ω:

S(1) :=
|Ω|
n

n∑
i=1

f(xi)→
∫
Ω

f(x) dx, (B.1)

welches wie 1/
√
n konvergiert, unabhängig von der Dimensionalität des Integrationsvolumens.1

Zwei wohlbekannte Verbesserungen an dem Konvergenzverhalten sind das sogenannte „stra-
tified sampling“ und das „importance sampling“. Bei ersterem wird die zufällige Stützpunkt-
menge ersetzt durch eine sorgfältig präparierte, die das Integrationsvolumen gleichmäßiger
ausfüllt – im Idealfall nähert sich die Konvergenz dabei 1/n.2 Beim importance sampling wird
die Stützpunktmenge dort verfeinert, wo der Integrand ein interessantes Verhalten aufweist,
also entweder f(x), |∇f(x)| oder beide groß sind – man spricht daher auch von einem „adap-
tiven“ Verfahren.

1 Dies steht im Gegensatz zu iterierten eindimensionalen Integrationsverfahren (iterierte Gauß-Quadratur,
etc.): Ist dort die Konvergenz im eindimensionalen Fall n−h, so verschlechtert sie sich durch das Iterieren
über die D Dimensionen zu n−h/D – eine einfache Konsequenz Gauß’scher Fehlerfortpflanzung. Da h � 1,
sind MC-Integrationen solchen Verfahren im Falle D > 2 vorzuziehen.

2 Ein Vergleich mit der belebten Natur drängt sich geradezu auf: die natürliche Verteilung einzelner Bäume
in einem Nadelwald folgt erfahrungsgemäß keiner naiven zweidimensionalen Zufallsfolge. Da freistehende
nachwachsende Bäume bessere Überlebenschancen haben als überschattete Sprösslinge, streut die Gesamt-
verteilung besser – was auf winterlichen Luftaufnahmen sofort ins Auge springt.

152 B. ,pvegas’: parallele MC-Integration

In Zufallsfolgen: Im Gitter:

stratified sampling:
Verteilt die Stützpunkte
gleichmäßiger als echte
Zufallsfolgen.

→ →

importance sampling:
Passt die Stützpunktmenge
dem Verlauf der jeweiligen
Funktion an.

→ →

Abbildung B.1.: Sampling-Methoden: „stratified sampling“ und „ importance sampling“. Die Zu-
fallsverteilungen der mittleren Spalte wurden erzeugt mit: einem linearen Kongruenzgenerator (links
oben), einer Sobol’-Reihe [PTVF 1992] (rechts oben und links unten), mit der

√
-Funktion transfor-

mierte Sobol’-Reihe (rechts unten).

Da die Dimensionalität des Integrals für vegas ein Parameter sein soll, werden beide Me-
thoden verwirklicht, indem ein orthogonales Gitter über dem Integrationsgebiet eingeführt
wird (siehe Abbildung B.1). Die gleiche Anzahl von Zufallsstützpunkten in jedem Subvolu-
men garantiert, dass sie im Gesamtvolumen gleichmäßiger gestreut sind – und implementiert
so stratified sampling. Iterativ werden die Gitterlinien dann dem Integranden angepasst, was
importance sampling entspricht. Die Einschränkung bei dieser Methode ist die Orthogonalität
des Gitters: es lässt importance sampling nur für Funktionen zu, die sich gewissermaßen an
die vorgegebenen Koordinaten halten, im Idealfall faktorisieren. Tatsächlich ist importance
sampling äquivalent zu einer Transformation des Integrals∫

Ω

f(x) dx =

∫
P−1(Ω)

f(P (y))

∣∣∣∣∂P∂y
∣∣∣∣ dy

mit der Randbedingung, dass die Ränder des Integrationsgebietes ∂Ω unverändert bleiben.
Dann entspricht dem orthogonalen Gitter eine faktorisierende Transformation P (y), die jede
Koordinate von y einzeln transformiert. Ein solches Gitter wird naturgemäß nicht in der Lage
sein, sich iterativ an eine Funktion anzupassen, die ihr Maximum z.B. entlang der Diagonalen
von Ω hat.

B.2. Parallelisierung

Eine Parallelisierung von vegas profitiert sicherlich davon, dass der Aufruf des Integranden an
verschiedenen Stützpunkten unabhängig voneinander ist.3 Man könnte also vegas mehrfach
parallel aufrufen und jedem der p Prozessoren einen Anteil n/p aus den n Punkten der Stütz-
punktmenge zuteilen. Nennen wir dies Ansatz I und notieren es in einem Stück Pseudo-Code,
worin die Programmstruktur durch Einrückung dargestellt wird:

3 Dies muss in der Praxis sicher gestellt werden: unvorsichtig geschriebene Makros, Schreibzugriffe auf sta-
tische Variablen und common-Blöcke können die thread-Sicherheit zerstören.

B.2. Parallelisierung 153

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Iteration i

Ansatz I

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Iteration i

Ansatz II

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Iteration i

Ansatz III

 0.96

 0.97

 0.98

 0.99

 1

 1.01

 1.02

 1.03

 1.04

 10 11 12 13 14 15

 0.96

 0.97

 0.98

 0.99

 1

 1.01

 1.02

 1.03

 1.04

 10 11 12 13 14 15

Abbildung B.2.: Konvergenzvergleich dreier verschiedener Parallelisierungsansätze für p = 16 Pro-
zessoren. Die exakte Lösung des Integrals ist auf 1 normiert. Die Fehlerbalken sind zur Visualisierung
in allen Diagrammen um einen Faktor 50 vergrößert.

1 for i←1 to p do in parallel
2 for all iterations
3 call vegas(n/p)
4 average results

Der Schritt „average results“ kann beispielsweise Durchschnittsbildung der Endergebnisse
sowie der Fehler beinhalten. Da die Fehler im allgemeinen verschieden groß sein werden, sollten
die Ergebnisse mit den Inversen der Fehler relativ zueinander gewichtet werden. Ansatz I
krankt jedoch an der stochastischen Natur von MC-Integration: Die einzelnen Prozessoren
werden sich unterschiedlich gut an den Integranden anpassen, manche unter Umständen nicht
einmal dessen „interessante“ Stellen finden, somit falsche Ergebnisse liefern und die Fehler
unterschätzen.

Eine naheliegende Verbesserung ist, nach jeder Iteration die einzelnen Prozessoren sich über
das Ergebnis ihres Adaptationsprozesses austauschen zu lassen. Dies würde im Falle von vegas
über eine Synchronisation der Gitterdaten erfolgen, nennen wir es Ansatz II:

1 for all iterations
2 for i←1 to p do in parallel
3 call vegas(n/p)
4 synchronize grids
5 average results

Man bemerke jedoch, dass hierzu die beiden Schleifen vertauscht werden mussten, was zu
einem etwas unbalancierten Laufzeitverhalten führen kann, wenn z.B. einer der Prozessoren
zwischenzeitlich mit einer anderen Aufgabe beschäftigt ist und am Ende der inneren Schleife

154 B. ,pvegas’: parallele MC-Integration

alle anderen auf ihn warten müssen. Beide Verfahren (man kann sie als makroparallel bezeich-
nen) kranken jedoch noch immer an einem Problem, was mit dem von vegas aufgebauten
Gitter zusammenhängt: Ruft man ein unparallelisiertes vegas mit der Anzahl von Punkten
auf, die vorher auf p Prozessoren verteilt wurden (also „call vegas(n)“), so kann der Algorith-
mus sich besser dem Verlauf des Integranden anpassen – denn es herrscht ja die Zwangsbedin-
gung, dass in jedes Subvolumen die gleiche Anzahl von Stützpunkten fallen muss. Es ist also
erstrebenswert, eine Parallelisierung zu finden, die die numerische Struktur des sequentiellen
Algorithmus nicht zerstört. In vegas bietet sich hierzu eine zentrale Schleife an, die über die
einzelnen Subvolumina des Gitters iteriert. Der Ansatz III ist in pvegas implementiert und
ein Aufruf lautet, da die Parallelisierung nun intern erledigt werden muss, lediglich:

1 call pvegas(n)

Abbildung B.2 verdeutlicht die Überlegenheit eines solchen mikroparallelen Verfahrens gegen-
über den ersten beiden Ansätzen anhand einer scharfen Gaußfunktion in einem fünfdimensio-
nalen Gebiet Ω. Im ersten Graphen liefert ein Testlauf in den ersten fünf Iterationen völlig
falsche Ergebnisse, da einige der 16 Prozessoren ihr Gitter noch nicht an den Integranden
angepasst hatten und ihre Fehlerabschätzung so gering war (≈ 10−32), dass die Ergebnisse
der anderen unterdrückt wurden. Der zweite und dritte Graph zeigen, wie Ansatz II dieses
Problem wie erwartet löst, die Konvergenz bei den späteren Iterationen jedoch deutlich hinter
derjenigen vom mikroparallelen Ansatz III zurückbleibt.

Die Anzahl der Subvolumina ist in der Regel allerdings sehr groß4 und eine völlige Parallelisie-
rung dieser Schleife würde demnach zu einer zu feinkörnigen Problemaufspaltung führen um
von einer realistischen Kommunikationshardware bewältigt werden zu können. pvegas spaltet
die Schleife daher auf in zwei. Hierzu wird zunächst das D-dimensionale Volumen zerlegt in
einen „Parallelraum“ und einen „Orthogonalraum“ mit den jeweiligen Dimensionen D‖ und
D⊥ ≡ D−D‖. Die Iteration über die Parallelraum-Subvolumina wird aufgeteilt auf die p Pro-
zessoren, während jeder von ihnen die Iteration über die dazu gehörenden Orthogonalraum-
Subvolumina sequentiell durchführt. Die Aufteilung in D‖ und D⊥ kann vom Benutzer den
jeweiligen Verhältnissen (Integrand, Genauigkeitsziel, Maschine) angepasst werden, jedoch ist
D‖ = �D/2� und D⊥ = �D/2� ein guter Startwert und daher Standardeinstellung. Ein Blick
in die Schleifen von pvegas zeigt stark vereinfacht Folgendes:

1 for all iterations
2 for par←1 to D‖ do in parallel
3 for per←D‖+1 to D do
4 for all x in samplepoints_within_hypercube
5 accumulate results of call f(x)
6 compute result

Für die parallele Implementierung kommt so in natürlicher Weise ein Master-Slave-Modell in
Frage, in dem ein Master-Prozess über den Parallelraum iteriert und die Worker über den
Orthogonalraum.

4 Sie ist höchstens gleich n/2 da man mindestens 2 Stützpunkte pro Subvolumen braucht, um Varianz
definieren zu können. In der Praxis ist sie jedoch selten kleiner.

B.3. Nebenintegrale 155

B.3. Nebenintegrale

Das Aufsummieren von sogenannten Nebenintegralen zusätzlich zum Hauptintegral ist eine
häufig an Vegas gestellte Aufgabe. Traditionell werden dafür innerhalb des Integranden f
zusätzliche Akkumulatoren aufsummiert, gewichtet mit einer von Vegas bereitgestellten Va-
riablen w, die natürlich auch eine Funktion des Stützpunktes ist:

I [j] =
N∑

i=1

wif
[j](xi).

Damit dieses Vorgehen überhaupt sinnvoll ist, müssen natürlich zwei Voraussetzungen erfüllt
sein:

• Erstens sollten die Nebenintegranden eine gewisse Ähnlichkeit mit dem Hauptintegranden
aufweisen, da das Gitter nur für einen Integranden optimiert werden kann.

• Zweitens sollten sie leicht zu berechnen sein (zumindest sobald der Hauptintegrand vor-
liegt), da sonst der Rechenaufwand identisch ist mit dem wiederholten Aufruf der Inte-
grationsroutine.

Das traditionelle Verfahren lässt jedoch zu wünschen übrig: die in der Integrandenfunktion auf-
summierten Akkumulatoren müssen „per Hand“ nach dem Aufruf der Integrationsroutine aus-
gelesen werden und vor einem nächsten Aufruf auf Null zurückgesetzt werden. In einer thread-
basierten Parallelisierung bricht es völlig zusammen, solange der Benutzer die Akkumulatoren
nicht durch einen Mutex (bzw. Semaphore, Critical Section, etc.) absichert, was ihm nicht zu-
gemutet werden kann und obendrein das Laufzeitverhalten empfindlich stören kann. Es musste
daher aufgegeben werden. Stattdessen soll die Funktion einen Vektor von Ergebnissen zurück-
liefern: aus double f(double x[], double wgt) wird void f(double x[], double f[]),
die Akkumulation wird von pvegas bewerkstelligt. Hierbei ist x[] der Stützpunkt und f[]
der Ergebnisvektor. Mit diesem Schritt muss endgültig das gesamte Interface von pvegas ge-
ändert werden. So werden statt dem einen Integral double *tgral nun mehrere Integrale
double tgral[] zurückgeliefert, das gleiche gilt für den Fehler und die Varianz zwischen ein-
zelnen Iterationen.5 Da C keine Form von Range-checking kennt und pvegas nun einen Vektor
von Akkumulatoren verwaltet, muss die Anzahl der Nebenfunktionen mit übergeben werden.6
Damit lautet der vollständige C-Prototyp nun (vergleiche Tabelle B.2):

1 void vegas(double regn[], int ndim, void (*fxn)(double x[], double f[]),
2 int init, unsigned long ncall, int itmx, int nprn,
3 int fcns, int pdim, int wrks,
4 double tgral[], double sd[], double chi2a[]);

5 Tatsächlich berührt diese Änderung den Benutzer noch nicht, da in C ja *v ≡ v[0].
6 Man beachte, dass bei init < 2 die Ergebnisse der Rechnung ohnehin weggeworfen werden. Dies ermöglicht

es, etwas Verwaltungsaufwand zu sparen, indem man erst im letzten Aufruf init = 1 die Anzahl der
Nebenfunktionen einsetzt und sie vorher auf 1 stehen lässt.

156 B. ,pvegas’: parallele MC-Integration

B.4. Parallele Zufallszahlen

Die Stützpunktmenge, an der der Integrand berechnet wird, soll möglichst „zufällig“ sein. Da
deterministische Maschinen aber keine echten Zufallszahlen im informationstheoretischen Sinn
erzeugen kann, greift man auf Pseudozufallszahlenfolgen zurück. Für einen Stützpunkt können
dann D aufeinanderfolgende Zahlen als Komponenten in einem D-Vektor benutzt werden.
In einer parallelen Umgebung gibt es zwei verschiedene praktikable Ansätze:

• Ein einzelner Zufallszahlengenerator berechnet eine Folge die dann ohne Überlapp an
die einzelnen Prozessoren verteilt wird.

• Jeder Prozessor hat seinen eigenen Zufallszahlengenerator und irgendein Konstruktions-
prinzip trägt dafür Sorge, dass keine Korrelationen das Ergebnis verfälschen.

Korrelationen können nicht nur im zweiten Fall auftreten. Schlechte Zufallszahlengeneratoren
können auch im ersten oder im nichtparallelen Fall zu Artefakten führen. Knuth [Knu 1998]
listet eine Reihe von Tests um die Qualität eines Zufallszahlengenerators zu überprüfen, doch
leider bestehen in der Praxis selbst einige der schlechtesten Generatoren noch alle vorgefer-
tigten Tests. Man kann aber vermuten, dass vegas (und MC-Integratoren ganz allgemein)
recht unanfällig gegen Artefakte in den Folgen sind im Vergleich zu anderen MC-Routinen.
Das liegt nicht zuletzt an der Randbedingung, dass in unserem Falle die Stützpunkte nur
innerhalb eines der Hyperwürfel im vegas-Gitter fallen dürfen.
Ein Blick auf Amdahls Gesetz zeigt uns, dass der zweite Ansatz mit p unabhängigen Gene-
ratoren der Attraktivere ist. Als Amdahls Gesetz bezeichnet man die Beziehung zwischen der
Beschleunigung S (für engl: speedup), der Anzahl der CPUs p und dem Anteil des Programmes
α, der parallel ausgeführt wird:

S =
(
(1− α) + p/α

)−1
.

Voneinander unabhängige Zufallszahlengeneratoren erhöhen α, was wiederum der Beschleu-
nigung S zugute kommt.
Die einfachsten auf jedem System installierten Zufallszahlengeneratoren sind lineare Kon-
gruenzgeneratoren. Auf einen Startwert wird eine lineare Transformation angewendet, das
Ergebnis in einem Restklassenring modulo einer geeigneten Zahl betrachtet und als nächster
Startwert verwendet:

Xi+1 := (aXi + b) mod m. (B.2)

Xj muss dann vom Benutzer in ein geeignetes Intervall aus � abgebildet werden. Hierin ist
m üblicherweise die größte maschinendarstellbare ganze Zahl, etwa 232, und a und b müssen
daran angepasst werden um möglichst die volle Periodizität m zu bekommen. Eine solche
Periodizität reicht jedoch häufig nicht aus, insbesondere bei Einsatz paralleler Maschinen
kommt es rasch zur Zahlenknappheit. Für pvegas bevorzugen wir daher eine Variation über
dem Thema Schieberegistergeneratoren.7 Ein Schieberegistergenerator ist zunächst einmal nur
bitweise definiert. Er generiert binäre Pseudozufallsfolgen, indem er paarweise Bits aus einer
gegebenen binären Liste mit dem exklusiven Oder verknüpft:

xk := xk−P ⊕ xk−P+Q (k ≥ P).

B.4. Parallele Zufallszahlen 157

a)

b)

c)

Abbildung B.3.: (a) die 127 Bit der vollständigen Schieberegister-Reihe zum primitiven Polynom
x7 + x3 + 1 mod 2 und zwei verschiedene Wege, daraus Zufallszahlenfolgen aus Wörtern à vier
Bit zu bilden: (b) Tausworthe-Reihe aus vier um O = 9 versetzten Schieberegister-Reihen und (c)
Kirkpatrick-Stoll-Reihe initialisiert mit {4, 11, 11, 4, 1, 7, 14}={ , , , , , , }.

Die festen Zahlen P und Q sind dabei so gewählt, dass das Trinom 1+xP +xQ primitiv modulo
zwei ist.8 Da immer nur die letzten P Elemente der Liste in die weitere Erzeugung von Bits
einfließen, also auch nur die letzten P Elemente gespeichert werden müssen, lässt sich dies sehr
leicht effizient implementieren. Man kann zeigen, dass die so konstruierte Reihe eine Periodizi-
tät von 2P−1 hat. Alle Kombinationen von P aufeinanderfolgenden Bits kommen darin genau
einmal vor – mit den P aufeinanderfolgenden Nullen als einziger Ausnahme. Bisher haben wir
nur eine Folge von Bits wie in Abbildung B.3a grafisch angedeutet. Tausworthes Idee bestand
nun darin, auf einer Maschine mit Worten zu b-Bit eine Zufallszahlenfolge zu erstellen, indem
man sich b solche Bitfolgen untereinandergeschrieben denkt und die Zufallswörter spaltenwei-
se daraus abliest. Die Generierung kann nun sehr effizient wortweise geschehen, indem man
das in jeder Maschine vorhandene bitweise exklusive Oder für ganze Wörter anwendet. Die
Anweisungen sind dann sehr maschinenfreundlich formulierbar. Sei w der Array, in dem die
letzten P b-Bit-Werte des Generators gespeichert werden, und k ein Index, der zu Beginn des
Algorithmus auf dem Anfangselement steht. In Pseudocode ausgedrückt lautet die Vorschrift
dann:

1 ++k mod P
2 j = (k + Q) mod P
3 w[k] = w[k] ⊕ w[j]
4 ergebnis ← w[k]

Damit nicht alle Wörter nur aus entweder 1 oder 0 bestehen, werden die Reihen gegeneinan-
der verschoben. Alte Generatoren dieser Art verschieben die Reihen immer um einen festen
Betrag O zueinander wie in Abbildung B.3b angedeutet, indem die Anfangssequenz für je-
des Bit um O gegenüber dem vorherigen Bit weitergespult wird. Die entstehende Reihe heißt
Tausworthe-Reihe. Es sei darauf hingewiesen, dass für jeden Wert von O eine neue Reihe aus
Wörtern zu b-Bit entsteht mit Periode 2P , obwohl die einzelne Schieberegister-Reihe immer
die gleiche bleibt. Üblich für P sind Werte zwischen 100 und 1 000, also Reihenlängen zwi-
schen 1030 und 10300. Das Vorspulen geschieht aus Gründen der Praktikabilität aber nur um
etwa 1 000 bis 10 000 Werte. Dies galt bald als ungenügend, um Korrelationen sicher auszu-
schließen. In [Déak 1990] wurde daher ein Verfahren entwickelt um dieses Vorspulen anstatt
in linearer in logarithmischer Zeit bewerkstelligen zu können; für eine Implementierung in C
siehe [Krec 1997a].

7 Der in der Festkörperphysik häufig verwendete R250 ist zum Beispiel auch ein Schieberegistergenerator.
8 Eine umfassende Liste als geeignet bekannter Paare P und Q ist im Quellcode von pvegas dokumentiert.

158 B. ,pvegas’: parallele MC-Integration

Hersteller: Architektur: CPU: MHz: Betriebssystem: pmax: Modell:

Convex SPP-1200 PA-7200 120 SPP-UX 4.2 46 CPS

HP X-class PA-8000 180 SPP-UX 5.2 46 CPS/
Posix

Cray T3D EV4 150 Unicos Max 256 MPI
1.3.0.3

Siemens- Solaris-NoW Pentium-II 300 SunOS 5.6 31 MPI
Scali-Dolphin

DEC AlphaServer 8400 EV5 300 Digital Unix 4.0 8 Posix
(„Turbo-Laser“)

SGI Origin 200 R10000 180 IRIX 6.4 4 Posix

Sun E3000 UltraSparc 250 SunOS 5.5.1 4 Posix

Intel IA-64 733 GNU/Linux 2.4 4 Posix

(Eigenbau) Linux-NoW AMD K6 233 GNU/Linux 2.0 5 MPI

Tabelle B.1.: pvegas ist auf allen derzeit gängigen Parallelrechnern lauffähig. pmax bezieht sich auf
die maximale Prozessoranzahl, die für Laufzeittests zur Verfügung standen.

Doch selbst dieses Initialisieren in sub-linearer Zeit stellte sich in der Praxis rasch als unbe-
friedigend heraus, kann es doch noch viele Sekunden in Anspruch nehmen. Erstrebenswert
wäre zudem eine Initialisierung nicht mit konstant verschobenen Bitfeldern sondern mit völlig
zufällig gegeneinander verschobenen wie in Abbildung B.3c angedeutet. Dies kann aber sehr
leicht in konstanter Zeit implementiert werden, wenn man bereit ist auf das Wissen um den
Betrag dieser Verschiebung gegeneinander zu verzichten. Da die Schieberegister-Reihe alle
Kombinationen von P aufeinanderfolgenden Bits bis auf eine genau einmal durchläuft, ist die
Initialisierung der Reihe mit Zufallszahlen äquivalent zum Einspringen in die Reihe an einem
nicht bekannten Punkt.9 In der Praxis wird man die P benötigten Startworte aus den ersten
P Iterationen eines linearen Kongruenzgenerators (B.2) entnehmen. Das Verfahren ist hervor-
ragend für eine Parallelisierung geeignet, da man nur p Startfelder der Länge P nacheinander
initialisieren muss und diese dann unabhängig voneinander arbeiten lassen kann. Genau wie
bei der Tausworthe-Reihe, bei der für jedes O eine neue Reihe gebildet wurde, erhält man so
in der Regel tatsächlich p verschiedene Reihen, jede einzelne mit der Periode 2P .

Dieses Vorgehen ist übrigens dank der Länge der Schieberegister-Reihe auch ohne zusätzliche
Überprüfung der Initialisierung hinreichend sicher. Für das in pvegas voreingestellte Paar
P = 1279, Q = 418 beträgt die Periodenlänge 21279. Die Wahrscheinlichkeit dafür, dass pro
Lauf in einem Wort à 32-Bit eines der Bits versehentlich überall mit 0 initialisiert wird, ist
< 10−375. Die Wahrscheinlichkeit, dass in einer Maschine wie ASCI Option White innerhalb
eines Jahrhunderts irgendwo zwei Bitfolgen überlappen werden, wenn die ganze Maschine
ausschließlich mit dem Erzeugen der Zufallsfolge beschäftigt wird, ist immer noch < 10−350.

9 Dieses Verfahren wurde unabhängig voneinander mehrfach entdeckt und erstmals in [KiSt 1981]
beschrieben.

B.5. Praktische Erfahrungen und Perspektiven 159

 0

 1

 2

 3

 4

 5

 6

 7

 8 16 24 32 40 48 56 64

E
ffi

zi
en

z

Anzahl der Prozessoren p

Convex SPP-1200
HP X-Class
DEC 8400

SGI Origin 200
Sun E3000

SCI-basiertes PC-Cluster
Linux-NoW

IA-64
Cray T3D

Abbildung B.4.: Effizienz von pvegas tSPP
0 /ntn. Das Optimum ist erreicht bei konstanter Effizienz.

Alle Werte sind normiert auf die Convex SPP-1200 um den Graphen zu entzerren und einen Vergleich
zwischen den verschiedenen Prozessortypen zu ermöglichen.

B.5. Praktische Erfahrungen und Perspektiven

Die ursprüngliche Implementierung von pvegas für eine SMP-Umgebung mit geteiltem Spei-
cher benutzt die standardisierten Posix-Threads und die dazugehörigen Mechanismen zum
Verriegeln globaler Variablen. Alternativ dazu kann es auch in einer Umgebung mit CPS-
Threads benutzt werden; die dafür notwendigen Änderungen beschränken sich auf syntaktische
Feinheiten und können leicht vom C-Präprozessor erledigt werden. Maschinen mit verteiltem
Speicher erforderten eine vollständige Neuimplementierung des Algorithmus. Diese ist aber
nicht nur auf Supercomputern lauffähig, sondern auch auf sehr preisgünstigen Parallelrech-
nern aus vernetzten Workstations (NoW: Network of Workstations).

Dank des leichtgewichtigen Zufallszahlengenerators und der Möglichkeit, einige Parameter
wie D‖ oder die Anzahl der Funktionsaufrufe zu adjustieren, konnte pvegas bisher stets na-
he an die optimale parallele Skalierung heranreichen. Abbildungen B.4 und B.5 zeigen die
Skalierungseigenschaft sowie die Laufzeit für ein Testproblem in D = 5 und D‖ = 2.

Das wesentliche Handicap am Vegas-Algorithmus selbst stellt die Beschränkung auf rechtwink-
lige Gitter und damit einhergehend auf Hyperwürfel als Integrationsgebiete dar. An dieser Stel-
le kann jedoch verhaltener Optimismus auf bessere Verfahren geäußert werden. Zwar existieren
fertige adaptive Programmpakete für numerische Quadratur, die im zweidimensionalen Fall

160 B. ,pvegas’: parallele MC-Integration

 10

 100

 1000

 1 2 4 8 16 32 64 128 256

La
uf

ze
it

t/s

Anzahl der Prozessoren p

Convex SPP-1200
HP X-Class
DEC 8400

SGI Origin 200
Sun E3000

SCI-basiertes PC-Cluster
Linux-NoW

IA-64
Cray T3D

Abbildung B.5.: Laufzeiten von pvegas.

eine auf Dreiecken beruhende Stützpunktmenge benutzen (z.B. [DoRo 1984]), in mehr als zwei
Dimensionen ist jedoch kaum Software vorhanden. Die Ursache liegt darin begründet, dass die
Verallgemeinerung einer zweidimensionalen Triangulation nichttrivial ist. Für das Aufteilen

Abbildung B.6.: Delaunay-
Triangulation des 3-Würfels

eines n-dimensionalen Hyperwürfels in n-dimensionale Simplizes
gibt es kein Verfahren, welches die attraktiven Eigenschaften einer
rechtwinkligen Aufteilung besitzt, nämlich erstens überschaubare
Subvolumina liefert und zweitens leicht berechenbar ist. Konkret
bedeutet das: Es entstehen bei n-dimensionaler Triangulation mit
zunehmendem n immer längere Simplizes, die dann nicht mehr das
Verhalten des Integranden wiederspiegeln können, also ungeeignet
für Adaptation sind. Der mittlere Tetraeder in Abb B.6 ist schon
nicht mehr kongruent zu den vier Pyramiden am Rand. Selbst bei
moderaten Dimensionen ist wenig bekannt über optimale Triangu-
lationen. Bei n = 3 ist die aus der Methode der Finiten Elemente
bekannte Delaunay-Triangulation mit 5 Simplizes noch beweisbar

diejenige, bei der die Simplizes am „rundesten“ ausfallen. Verlangt man die Triangulation eines
höheren n-Würfels in eine minimale Anzahl von n-Simplizes, so hört unser Wissen derzeit bei
n = 7 mit 1493 Simplizes auf [Smit 1998], darüber existieren nur sehr grobe obere und untere
Grenzen. All dies ist freilich kein Argument gegen die Existenz eines Algorithmus zur Erzeu-
gung hinreichend guter adaptiver Stützpunktmengen auf Basis von Triangulation – sie sollten
jedoch die damit verbundenen Schwierigkeiten in ein realistisches Licht stellen. Integratoren

B.5. Praktische Erfahrungen und Perspektiven 161

(a) Divergenz in der Ecke unten links (b) Rücken entlang der Diagonalen

Abbildung B.7.: Vergleich der erzeugten Gitterstruktur von Vegas (jeweils links) und ParInt (jeweils
rechts) für zwei mit Monte-Carlo-Methoden schwer zugängliche Integranden.

wie Foam [Jada 1999] basieren dennoch auf einem durch Triangulation unterteilten Volumen,
verzichten aber aus den genannten Gründen auf Optimierungen der Simplexform und Sim-
plexanzahl. Dies führt schon in zwei Dimensionen zu einigen sehr prolongierten Dreiecken,
eine Tendenz die sich bei höherdimensionalen Simplizes verstärkt. Skepsis ist angebracht, ob
diese splitterförmigen Simplizes prinzipiell eine gute Adaptation an den Integranden erlauben
können.

Vielversprechender als Triangulationen sind Unterteilungen des Integrationsgebietes in
Hyperwürfel genau wie in Vegas, wobei die Struktur der Unterteilungen jedoch nicht in einem
faktorisierenden D-dimensionalen Array von Trennlinien sondern in einer etwas komple-
xeren Unterteilungsbaumstruktur wie in
nebenstehender Abbildung B.8 gespeichert
wird. Ein solcher Algorithmus wurde
in [DGBEG 1996] beschrieben – die Imple-
mentierung ParInt wird intensiv gepflegt
und weiterentwickelt. Abbildung B.7(a)
zeigt, wie in dem häufigen Fall eines Poles
am Rand eines Integrationsgebietes beide
Unterteilungen vernünftige Ergebnisse
liefern. In Abbildung B.7(b) hingegen ist
der Extremfall für vegas skizziert: der
Integrand weist einen Rücken entlang
der Diagonalen auf. Da das vegas-Gitter

Abbildung B.8.: Der zu dem Gitter aus Abbil-
dung B.7(a) rechts gehörende Unterteilungsbaum.

sich nur an den faktorisierenden Beitrag des Integranden adaptieren kann, bleibt jegliches
importance sampling aus. Das von ParInt verwendete Gitter hat keine Probleme damit, sich
an diesen Integranden anzupassen. ParInt hat einige Ähnlichkeiten mit pvegas und könnte
sich daher als Ersatz eigenen. So ist das Integrationsgebiet prinzipiell ein Hyperwürfel in D
Dimensionen. Es kann Nebenintegrale aufakkumulieren (hier vector functions genannt), was
aber auch nur dann sinnvoll ist, wenn die zusätzlichen Funktionen eine Ähnlichkeit mit der
Hauptfunktion haben. Außerdem existiert eine parallele Version, die an der Western Michigan
University auf einem eigens dafür eingerichteten NoW aus 32 Linux-Rechnern eingesetzt
wird – ein Punkt, der nicht ganz nebensächlich ist, denn er garantiert die unproblematische
Verfügbarkeit für xloops, ohne dass der Portieraufwand überhand nimmt. Diese Parallelisierung

162 B. ,pvegas’: parallele MC-Integration

folgt wie pvegas dem Master-Slave-Modell, in dem ein Master-Prozessor die Arbeit zwischen
mehreren Slave-Prozessoren balanciert. Dieses Ausbalancieren ist notwendigerweise ungemein
komplexer als in unserer eleganten Aufteilung in Parallel- und Orthogonalraum. Dies erkennt
man schon daran, dass der Master-Prozessor nicht nur Arbeit verteilen, sondern sie sogar
einem überfrachteten Slave-Prozessor wieder abnehmen und auf einen nicht ausgelasteten
Slave geben kann.
Es ist durchaus vorstellbar, dass angesichts solcher fortgeschrittenen flexiblen Integratoren für
vegas bald nur noch ein Platz im Museum erfolgreicher Algorithmen verbleibt.

B.5. Praktische Erfahrungen und Perspektiven 163

Argument: NRC-Äquivalent: Bedeutung:

double regn[] double regn[] 2ndim-Vektor, die zwei Eckkoordina-
ten des ndim-dimensionalen Hyper-
würfels: Elemente 0 . . . ndim− 1 be-
zeichnen eine Ecke, ndim . . . 2ndim−1
die andere

int ndim int ndim Dimension des Integranden / des
Integrationsgebietes

void (*fxn)(double x[], double (*fxn)(double x[], Zeiger auf Integrandenfunktion
double f[]) double wgt) x[]: Koordinatenvektor des Stütz-

punktes
f[]: zurückgegebene Funktionswerte,
entspricht Rückgabewert in NRC
wgt: obsolet, gibt es nur in NRC

int init int init Initialisierung: 0 bedeutet „Kalt-
start“, 1 Aufbauen auf bisherigem
Gitter, 2 Aufbauen auf bisherigem
Gitter und Ergebnissen

unsigned long ncall unsigned long ncall Anzahl der Stützpunkte pro Iteration

int itmx int itmx Anzahl der Iterationen in diesem Lauf

int nprn int nprn Details in der Ausgabe, in pvegas als
Bitmaske vereinbart

int fcns – Anzahl der Nebenfunktionsakku-
mulatoren, siehe Argument f[] von
(*fxn)()

int pdim – Parallelraumdimension D‖ (0 verein-
bart Automatik, also D‖ = �D/2�)

int wrks – Parallelisierungsgrad, also Anzahl der
threads oder zu benutzenden CPUs

double tgral[] double *tgral Zeiger auf Ergebnis, bzw. Vektor auf
die Ergebnisse, falls fcns > 1

double sd[] double *sd Zeiger auf Fehler, bzw. Vektor auf die
Fehler, falls fcns > 1

double chi2a[] double *chi2a Zeiger auf Varianz, bzw. Vektor auf
die Varianzen, falls fcns > 1

Tabelle B.2.: Argumente im pvegas Prototyp, ihre Entsprechung in der Numerical-Recipes Funktion
vegas und ihre Bedeutung.

Glossar

Dispatch: In der objektorientierten Programmierung wird ein Methodenaufruf meist durch
zwei Kriterien spezifiziert: Erstens statisch durch den Namen der aufgerufenen Me-
thode (meist augmentiert um deren Parameterliste, ⇒ Name Mangling) und zweitens
dynamisch durch den Typ des Empfängerobjektes. Ob basic::method(void) oder
numeric::method(void) aufgerufen wird, kann zur Laufzeit entschieden werden, je
nachdem von welchem Typ das Objekt ist, auf dem .method() aufgerufen wird. Dies
wird auch als späte Bindung (late binding) bezeichnet. Da C++ eine kompilierte Sprache
ist, müssen aus technischen Gründen zwei Voraussetzungen erfüllt sein: .method() muss
in der Basisklasse als virtual definiert sein um in der Tabelle der virtuellen Funktionen
(der vtable der Klasse) aufgenommen zu werden und das aufgerufene Objekt darf na-
türlich nicht direkt sein, sondern muss als Zeiger * oder Referenz & vorliegen, da sonst
eine Basisklasse nicht für eine abgeleitete Klasse einstehen kann. Jedes Objekt einer
Klasse mit virtuellen Funktionen enthält zusätzlich zu seinen nichtstatischen Variablen
einen vptr genannten Zeiger auf die klassenspezifische vtable.

Da nur der Typ des Empfängerobjektes dynamisch den Methodenaufruf bestimmt, wird
das Objektmodell von C++ als single-dispatch-Modell bezeichnet. Die wenigsten Spra-
chen implementieren ein multiple-dispatch-Modell, in dem die Typen mehrerer Emp-
fängerobjekte dynamisch die aufgerufene Funktion bestimmen. Das einzige halbwegs
gebräuchliche solche System ist CLOS, das Common Lisp Object Model.

Evaluator: Ein Subsystem innerhalb eines CAS, das für lokale Transformationen von Termen
zuständig ist. Lokalität bezieht sich hierbei auf Nachbarschaft im Darstellungsbaumes
und bedeutet beispielsweise dass (n+1)!/n! nicht zu n+1 evaluiert wird, da dies aus Sicht
des Bruches eine nichtlokale Untersuchung von Zähler und Nenner voraussetzt, ein Bruch
selbst aber keine Kenntnisse der Eigenschaften der Fakultät hat. Dies steht im Gegensatz
zu ab/a → b, was lediglich Vergleiche auf Identität erfordert, also lokale Operationen
bezüglich des Bruches. Ein Evaluator kann einen Darstellungsbaum von unten nach
oben (also von den Blättern zur Wurzel) oder umgekehrt arbeiten oder sogar mehrfach
abarbeiten. Fixpunktevaluatoren beispielsweise arbeiten den Darstellungsbaum ab, bis
Idempotenz erreicht ist („bis er sich nicht mehr ändert“), was sie den ⇒ Simplifiern
ähnlich macht. Die Lokalität ist es, die den Evaluator vom Simplifier unterscheidet. Es
muss darauf hingewiesen werden, dass die Definition von Lokalität nicht ganz eindeutig
ist: Ist x2 in dem Ausdruck x2 + 1 ein Term in einer Summe oder eher ein Monom in
einem Polynom in x? Im ersten Fall wäre x als nichtlokal anzusehen, im zweiten als
lokal. Die meisten Systeme scheinen den zweiten Standpunkt einzunehmen.

166 Glossar

Eine genaue Definition eines Evaluators wird auch dadurch erschwert, dass man in der
Literatur bisweilen unter Evaluation nur diejenigen Transformationen versteht, die das
System selbsttätig ausführt. Wir unterscheiden in dieser Arbeit stattdessen zwischen zwei
verschiedenen Arten von Evaluatoren:

Anonymer Evaluator:
Man versteht ihn konstruktiv als dasjenige Subsystem innerhalb eines CAS, welches
eine Eingabe auf eine der internen Weiterverarbeitung besonders zugängliche (manch-
mal von Schaltern abhängige) Form abbildet. ⇒ Kanonisierung von Ausdrücken zwecks
syntaktischem Vergleich ist traditionell die Hauptaufgabe des anonymen Evaluators.
Ein geeignetes Beispiel dafür, wie selbsttätig dies ausgeführt wird, lässt sich am besten
anhand eines gängigen Missverständnisses verdeutlichen: In Mathematica führt der Ver-
such x/x unter der Nebenbedingung x ≡ 0 mit dem Befehl Simplify[x/x, x==0] zu
vereinfachen zu dem Ergebnis 1, obwohl das System eigentlich in der Lage wäre das Er-
gebnis darzustellen: es lautet in Mathematica Indeterminate. Die Funktion Simplify
hat jedoch gar keine Chance, dies zu finden, da der anonyme Evaluator x/x zu 1 ver-
einfacht, bevor Simplify aufgerufen wird. Ein anonymer Evaluator hat also die heikle
Aufgabe, erste Vereinfachungen vorzunehmen, ohne jedoch die algebraische Korrektheit
zu gefährden. In GiNaC ist – wie in den meisten anderen CAS – stillschweigend die
Vereinbarung getroffen, dass Verstöße gegen die algebraische Korrektheit erlaubt sind,
solange sie nur auf Mengen vom Maß 0 vorkommen: x/x = 1 gilt in � \ 0 und gilt daher
als erlaubt.

Benannter Evaluator:
Subsysteme, die lokal eine Umformungsregel anwenden, sofern diese vom Benutzer an-
gefordert wird. In Maple und in GiNaC ersetzt evalf („f“ steht für float) beispielsweise
alle Konstanten durch ihre numerischen Werte, in beiden Fällen abhängig von einem
globalen Schalter: der Genauigkeit in Dezimalstellen.

Hashfunktion: Eine Hashfunktion H ist eine Abbildung, die aus einem beliebigen Eingabe-
wert m (auch einem beliebig langem) eine Ausgabe festen Formats (also vorgegebener
Bit-Länge), den Hashwert h, erzeugt: H : m → h = H(m). Hashfunktionen sind al-
so niemals injektiv. Sie dienen dem effizienten Vergleich großer Datenstrukturen (hier:
Darstellungsbäume). Man kann sie sich als „Fingerabdruck“ vorstellen: Stimmen die
Hashwerte h0 und h1 zweier Eingabewerte m0 und m1 nicht überein, so sind die vergli-
chenen Datenstrukturen unterschiedlich. Stimmen die Hashfunktionen überein, so sind
die Datenstrukturen möglicherweise gleich und es lohnt sich, sie näher auf Gleichheit zu
untersuchen. Beim Erzeugen von Hashwerten geht aufgrund des vorgegebenen Ausgabe-
formates immer Information verloren, daher kann es vorkommen, dass zu unterschied-
lichen Eingabewerten gleiche Hashwerte berechnet werden (die sogenannte „Hashkolli-
sion“). Praktische Anforderungen an die Hashfunktionen von Darstellungsbäumen sind:
H(m) muss effizient zu berechnen sein und Kollisionen müssen selten vorkommen. In
GiNaC wird die Hashfunktion nicht nur zum effizienten Vergleichen, sondern auch zum
Erstellen einer Ordnungsrelation auf Ausdrücken benutzt. Zum Berechnen der Hash-
werte werden Darstellungsbäume von oben nach unten durchlaufen und der Hashwert
eines Ausdrucks als eine Funktion aus den gespeicherten Hashwerten der ihn aufbau-

Glossar 167

enden Unterausdrücke sowie des Typs des Ausdruckes (des tinfo_keys) ermittelt. Dies
begrenzt die Berechnungstiefe für einen Hashwert in der Regel auf eine einzige Ebene.

Heap: Speicherbereich zur dynamischen Allozierung zur Laufzeit. Im Gegensatz zum⇒ Stack
ist der Heap nicht prinzipiell in der Größe beschränkt. Die Verantwortung über die
Verwaltung des Heaps obliegt dem Programm. Es muss dafür sorgen, dass auf dem
Heap allozierter aber nicht mehr benötigter Speicher freigegeben wird.

Integritätsbereich: (auf engl: integral domain) Ein kommutativer, nullteilerfreier Ring. Eine
Menge also, auf der Summe und Produkt definiert sind, für die Assoziativ-, Kommutativ-
und Distributivgesetz gelten. Nullteilerfrei bedeutet, dass aus a · b = 0 stets folgt, dass
mindestens a oder b verschwindet. Existiert auch noch das neutrale Element der Multi-
plikation, so spricht man von einem Integritätsbereich mit Eins, was im Kontext dieser
Arbeit immer der Fall ist – weshalb mit Integritätsbereich immer ein solcher mit Eins
gemeint ist. Die Menge � der ganzen Zahlen bildet einen Integritätsbereich, ebenso die
Polynome darüber Z[x]. Integritätsbereiche sind wichtig, weil sich auf ihnen der Begriff
Teilbarkeit definieren lässt.

Kanonisierung: Die Umwandlung der eingegebenen Form in eine der internen Weiterverarbei-
tung durch ein CAS besonders zugänglichen Form. Dies dient in erster Linie dem effizi-
enten syntaktischen Vergleichen symbolischer Ausdrücke. Symbolische Summen werden
beispielsweise nach einer deterministischen (aber nicht unbedingt vom Benutzer nach-
vollziehbaren) Weise sortiert und können so in maximal linearer Zeit verglichen werden.
In den meisten Systemen (auch in GiNaC) ist dies die vom⇒ Evaluator ausgeführte Tä-
tigkeit. Die Kanonisierung ist auch Voraussetzung für den Vergleich unterstützt durch
eine ⇒ Hashfunktion.

Name Mangling: Anders als C, welches keine überladenen Funktionen kennt, unterscheidet
C++ zwischen verschiedenen Signaturen von Funktionen, also zwischen verschiedenen
Parameterlisten: den Prototypen int f(int, class a) und int f(int, double) kön-
nen zwei verschiedenen Implementierungen angehören. Hierzu muss der Linker zwischen
den Signaturen unterscheiden können ohne die Semantik von C++ interpretieren zu müs-
sen. Dies kann durch eine injektive Abbildung von den Signaturen auf nach bestimmten
Regeln formatierte Funktionsnamen beliebiger Länge (sog. „mangled names“) gesche-
hen. Beispielsweise bildet der C++-Compiler aus GCC-3.0 den Prototyp int f(int,
double) ab auf _Z1fid und int f(int, class a) auf _Z1fi1a. Das Name Mang-
ling unterscheidet sich von Compiler zu Compiler, um Laufzeitfehlern mit Linkerfehlern
zuvor zu kommen. Leider unterscheidet es sich auch zwischen verschiedenen Compiler-
versionen und stellt somit die häufigste Ursache für Kompatibilitätsprobleme unter C++

dar. In obigem Beispiel bildete der C++-Compiler aus GCC-2.95.2 int f(int, class
a) noch auf f__FiG1a ab.

NP-Vollständigkeit: In der Komplexitätstheorie unterscheidet man zwei wesentliche Klassen
deterministischer Probleme: P und NP. Probleme aus der Klasse P können in polynomia-
ler Zeit und mit polynomialem Speicherplatzbedarf gelöst werden, während solche aus
NP nicht in polynomialer Zeit oder mit polynomialem Speicherplatzbedarf lösbar sind.
Stattdessen ist die benötigte Zeit superpolynomial, also O(et) oder auch O(e

√
t log(t)).

168 Glossar

Man vermutet, dass dies zwei prinzipiell verschiedene Problemklassen sind, also dass
NP�=P, was aber bislang unbewiesen ist. NP steht für „nichtdeterministisch polyno-
mial“, die genaue Definition davon ist hier aber irrelevant. NP-vollständige Probleme
sind solche, die in polynomialer Zeit in andere Probleme aus NP transformiert wer-
den können. Zum Beispiel ist die Berechnung der Determinante einer n × n Matrix
d ≡∑

σ∈Sn
sign(σ)

∏n−1
i=0 ai σi

offensichtlich aus P (da sie mit Eliminationsverfahren be-
rechnet werden kann), während die Berechnung der Permanente p ≡ ∑

σ∈Sn

∏n−1
i=0 ai σi

NP-vollständig ist, also derselben Komplexitätsklasse wie das Problem des Handlungs-
reisenden oder der Hamiltonschen Pfade angehört. Bei symbolischen Rechnungen kann
diese Unterscheidung leicht irreführend sein, da die Darstellung der Operanden eines
Algorithmus nicht konstant ist, im Gegensatz zum Beispiel zu Gleitkommazahlen mit
fester Mantissengröße.

Persistenz: Das Schreiben von Objektstrukturen auf Festplatte zum Zweck des späteren Wie-
dereinlesens. Handelt es sich wie bei GiNaCs algebraischen Ausdrücken um per Zeiger
verknüpfte Bäume oder gar gerichtete azyklische Graphen, so müssen diese zunächst se-
rialisiert werden. Da Persistenz von Objekten sich in verschiedensten Zusammenhängen
immer wieder als notwendig erweist, gibt es Forderungen nach einer Standardisierung.
Da derzeit jedoch noch keine konkreten Vorschläge existieren, muss sie in jeder Klassen-
hierarchie neu programmiert werden.

Scope: (engl. für: Weite, Rahmen, vergleiche auch die englische Kurzform für periscope, im
übertragenen Sinne „soweit man sehen kann“) Programmbereich, in dem eine Variablen-
bindung Gültigkeit hat – also ein Modul, eine Funktion, eine Klasse oder ein sonstiger
Block. Man unterscheidet zwischen den zwei gegensätzlichen Ansätzen:

Dynamisches Scope:
Auf eine Variable kann nicht nur in dem Block zugegriffen werden, in dem sie deklariert
wurde, sondern auch in darin aufgerufenen Funktionen. Dies wird im ⇒ Stack imple-
mentiert, indem er von oben nach unten nach der letzten gültigen Bindung durchsucht
wird.

Lexikalisches Scope:
Eine Variable ist tatsächlich nur in dem Block erreichbar, in dem sie deklariert wurde.
Soll sie in aufgerufenen Funktionen sichtbar sein (auch wenn es sich um rekursive Aufrufe
derselben Funktion handelt), so muss sie als Parameter übergeben werden.

Traditionell findet dynamisches Scope in den meisten interpretierten Sprachen Verwen-
dung, also insbesondere in alten Lisp-Implementierungen sowie in fast allen Computeral-
gebrasystemen. Compilierte Sprachen wie C++ zwingen den Programmierer üblicherwei-
se zu lexikalischem Scope. Manche Sprachen unterstützen beide Bindungen (Perl zum
Beispiel bietet den Modifikator my für lexikalisches Scope und local für dynamisches.).
Dynamisches Scope wird heute allgemein als verwirrend angesehen, weshalb zum Bei-
spiel MuPAD im Frühjahr 2001 für die zweite Version ihres CAS von dynamischem auf
lexikalisches Scope umgestellt hat – trotz der mit der Umstrukturierung der gesamten
Bibliothek verbundenen Probleme.

Glossar 169

Stack: Speicherbereich zum automatischen Erzeugen von Variablen innerhalb von Funktio-
nen, zum Übergeben von Parametern an diese sowie zum Übergeben des Rückgabewertes
an die aufrufende Funktion. Verwaltet wird er als FILO („first in last out“), weshalb ein
Stack beliebige Objekte mit dem minimalen Speicherbedarf verwaltet – allerdings mit
linearer Zugriffskomplexität. Die Größe des Stacks wird von den meisten Betriebssyste-
men sehr beschränkt, größere Objekte müssen auf dem ⇒ Heap alloziert werden.

Simplifier: Der Simplifier, also der Vereinfacher, führt in einem CAS in der Regel nichtloka-
le Transformationen aus, was ihn vom ⇒ Evaluator unterscheidet. Ein Simplifier kann
also (n + 1)!/n! → n + 1 vereinfachen. Dies erscheint zwar noch als intuitiv, nach wel-
chem Maß aber ein Ergebnis einfacher ist als ein anderes, lässt sich überhaupt nicht
definieren. Ebenso wie von einem Fixpunktevaluator erwartet man von einem Simpli-
fier in der Regel Idempotenz: simp(simp(Ausdruck))=simp(Ausdruck). Ein Simplifier
kann eventuell auch unter Nebenbedingungen arbeiten, wie zum Beispiel der Annahme
eines bestimmten Bereiches. Wie im Falle des Evaluators lässt sich zwischen anonymen
und benannten Varianten unterscheiden. Der anonyme Simplifier wird traditionell mit
simplify(Ausdruck) aufgerufen, während benannte Simplifier wohldefinierte Termum-
formungen innerhalb eines Bereiches vornehmen – das Herauskürzen von ggT von Zähler
und Nenner in einem Quotientenkörper mittels normal(Ausdruck) ist solch ein Beispiel.
Anonyme Simplifier dagegen führen selten wohldefinierte Transformationen durch und
in Abwesenheit eines Maßes für die Komplexität eines Ausdrucks können die auf einem
Ausdruck durchgeführten Transformationen und damit auch die Ergebnisse variieren –
beispielsweise als Funktion der Versionsnummer eines CAS. Wenn mit den Ergebnissen
weitergearbeitet werden soll, macht dies den Aufruf eines anonymen Simplifiers inner-
halb eines komplexen Programmes zu einem im besten Falle fragwürdigen Unterfangen.

Schlagwortverzeichnis

A
Ableitungsregeln 74, 75
Abreicherung 67, 72
Acnode 18, 25, 26
Adapter 84
adaptives Verfahren 151
add Klasse 74
Algol 60, 62
AMD 158
Amdahls Gesetz 156
Apfloat 86
Arcuscosinus 145
Arcussinus 144
Arcustangens 141
Array 60

assoziativer 66, 101, 122
ASCI 158
Aslaksen-Test 77
Axiom 58, 129

B
B 60
Bézout-Identität 136
Baumebene 1
Baumrekursion 74, 123–129
BCPL 60
Benchmark 75, 115
Bernoulli-Zahlen 96
binary splitting 86
Blatt 139
bottom-up 74, 91
Bridge 70, 84, 88

C
C 1, 3, 59, 64, 86
C++ 59–63

Cache 76
Cache-Affinität 102
Cauchy’sche Integralformel 134
Cauchy’scher Integralsatz 133
Cauchy’scher Residuensatz . . . 20, 134
Cauchy-Riemann’sche DGL 133
Cern 120
Charakteristik 44
charakteristisches Polynom . . . 104, 115
chirale Störungstheorie 18, 25
Cint 120–122
CLN 83–88, 119
Codegenerierung 64, 69
CompHEP 4
Containerklasse 41, 72, 74, 77
Convex 158
Cramer’sche Regel 108
Cray 158
CSE 69
Ctadel 69

D
d’Alembert-Operator 17
Darstellung

distributive 73
Darstellungsbaum . . 72–74, 91, 127, 166
DEC 158
Deformationssatz 133
degree() 92
Delaunay-Triangulation 160
Delegation 65, 127
de Morgan’sche Regeln 44
Derive 56
Design Muster

Adapter 84
Bridge 70, 84, 88

172 Schlagwortverzeichnis

Delegation 65
Flyweight 66, 87, 122
Proxy 65
Visitor 124

Determinante 32, 100f, 111
Diana 3
Differentiation 74

Effizienz und 75
Digamma-Funktion 96
Dilogarithmus 92ff, 146
Dispatch 165
Distributivgesetz 79
Dreibeinfunktion

gekreuzte 18, 23
planare 13, 18

Dreiecksmatrix 105, 110
Dreiecksregel 16
dynamisches Scope 168

E
Elimination

Bareiss . siehe Elimination, teilerfreie
divisionsfreie 31, 105
Gauß 31, 105, 106
teilerfreie 31, 106, 109

Entwindungszahl 78, 141
η-Funktion 78, 141
euklidischer Algorithmus 136
Euler-Algorithmus 90
Euler-Zahlen 115, 121
eval() 81, 82, 88, 112
evalf() 88, 166
evalm() 112
Evaluator 165

anonymer . . 41, 65, 72, 78, 112, 166
benannter 112, 166

event handler 88
ex Klasse 41, 65, 128
Exception 62, 91, 95
expairseq Klasse 73
expand() 75, 104
Exponentiation

schnelle 69, 112
von Reihen 90

extern 122

F
Fünfbeinfunktion 18, 33
Fabrik 87, 122
Fadeev-Algorithmus . siehe Leverrier-Algo.
Faktorisierung

quadratfreie 42, 64, 117
Fermat 58, 114
Feynmanparametrisierung 13f, 25
Fixpunktevaluator 165, 169
Fliegners Test 75, 113, 115, 121
Flyweight 66, 87, 122
Foam 161
Form . . 1, 3, 16, 75, 83, 114, 115, 127
Fortran 3, 60, 86
Fortsetzung

analytische 94, 139
foundation class 86
function Klasse 88–89
funktionsartiges Objekt . . siehe Funktor
Funktor 40, 88, 124
Fusion (von Referenzen) 67

G
Gamma-Funktion 17, 94
Garbage-Collector 76
GCC 118
ggT 30, 42, 85, 110, 115
giac 128
GiNaC 55–112
GMP 85, 86, 128
größter gemeinsamer Teiler . . siehe ggT
Grace 2, 6
Graphengenerator 5
GRC 6
gTybalt 128

H
Hashfunktion 67, 166
Hashwert 67, 75, 166
Hauptteil 134, 137
Hauptwertintegral 137–138
Heap 61, 65, 167

Fragmentierung 117
Heaviside-Funktion . . . siehe θ-Funktion

Schlagwortverzeichnis 173

Heuristik 111
Hilbert-Matrix 99, 115
HP 158
Hyperwürfel 156ff

I
IBM 7094 1
Idempotenz 43ff, 165, 169
Impulsentwicklung 16
indexed Klasse 99
Inferenzmaschine 45, 78
integer_content() 40, 42
Integrabilitätsbedingung 133
Integritätsbereich 38, 83, 110, 167
Intel 119
Invariante 92
Invertierung

von Matrizen 105, 111
von Reihen 90

J
Jacobi-Determinante 14, 29
Java 64, 128
Jonquière-Funktion 146

K
K-Funktion . . . siehe Entwindungszahl
KAI 119
kanonische Form 77
Kanonisierung 88, 104, 167
Kant 87
Kausalität 11
Keim 139
kgV 92, 136
Klassenhierarchie 65, 84
kleinstes gmeinsames Vielfaches siehe kgV
Komplexität 102, 124
Kongruenzgenerator 156
Körpereinbettung 87
Körperoperation 102
Kovarianz 17
Kreimer-Rotation 28

L
Lagrangedichte 11, 13, 18
Lambda-Kalkül 99
Laplace-Entwicklung 103
Laurent-Reihe 14, 89ff
lazy evaluation 90, 99
ldegree() 92
Leibniz-Regel 75
Leverrier-Algorithmus 104, 107
lexikalisches Scope 168
lgamma() 95
l’Hôpital 93
Linker 118
LIP 86
Lisp 1, 64, 99
Liste 57
Logarithmus 80, 94, 140
Lokalität

von Umformungen 165, 169
lst Klasse 125

M
m4 4
Macsyma 100, 127
Magma 87
Makro 3, 62
Mandelstam-Variablen 16, 26
Mantisse 86
map() 124
Maple 69, 79, 91, 94, 110, 127
Masse-Energie-Beziehung 11
Master-Slave 154, 162
Mastertopologie 18
Mathematica1, 68, 72, 76, 85, 94, 110, 123,

127
Matlab 98, 128
matrix Klasse 98–112
Maxima 100, 128
Methode 61
Methodenfortpflanzung 74–76, 91
Modularität 122
Monte Carlo 5, 151ff
Motorola 68000 1
MPFun 86

174 Schlagwortverzeichnis

MPI 158
MPN 85
mul Klasse 74, 78–79
Multiplikation

Karatsuba 84
Schönhage-Strassen 84

MuPAD 76, 128, 168
Mustererkennung 123
mutable 69
Mutex 155

N
name mangling 62, 167
ncmul Klasse 78–79, 99
Nebenintegral 155
NoW 159, 161
NP-vollständig 100, 167
NTL 6, 86
numeric Klasse 83–88

O
Objektorientierung 62
Octave 128
Operatorüberladung 64
Optimierung 69
Orthogonalität 5, 59, 62, 111
Orthogonalraum 15, 154
Overhead 64, 85, 87, 99

P
Padding 63
Padé-Approximation 17
Parallelraum 14, 154
Pari 6, 61, 96
ParInt 161
Partialbruchzerlegung 22, 136
partielle Integration 15–16
pattern matching 123
Perl 65f, 70, 128, 168
Permanente 100, 168
Permutationsgruppe 103
Persistenz 59, 168
Pivotelement 105
PO-Zerlegung 15

Polygamma-Funktion 96
Polylogarithmus 148
Portabilität 64, 118
Portland Group 119
power Klasse 79–83
Prädikatenlogik 43
Präprozessor 159
Primfaktorzerlegung 80
Proxy 65
pseries Klasse 89–98
Pseudofunktion 63, 88–89, 123
psi() 96
ψ-Funktion . siehe Polygamma-Funktion
Puffer 59, 84
Puiseux-Reihe 92
Purrs 128
pyginac 128
Python 66, 128

Q
QED 11
QGraf 5, 19
quadratfreie Faktorisierung . 42, 64, 117
Qual der Wahl 35
Quotientenkörper . . 38, 83, 90, 110, 169

R
range-checking 101
rapid prototyping 120
RB-Baum 99, 101, 123
Record 61
Reduce 1, 3, 58, 77, 79, 128
Referenz 65

zirkuläre 70
Referenzzählung . . . 66–72, 76, 87, 115
Regressionstest 2f, 57f, 81
Regularisierung

dimensionale 5, 14, 92, 95, 98
Reihe

Kirkpatrick-Stoll 157
Schieberegister 157
Sobol’ 152
Tausworthe 157

Rekursion 59, 96, 124

Schlagwortverzeichnis 175

unendliche 88
Residuensatz 20, 134
Residuensumme

Satz über 21, 29, 33, 35, 134
Restklassenring 156
Retraktion 87
Riemannfläche 139
Ringoperation 16, 127
Root 120, 128
RTTI 67
Russische Bauernmultiplikation . . . 112

S
sampling

importance 151ff
stratified 151ff

Scheme 99, 128
Schieberegister 156
Schleifenumordnung 102
Schnitt 138–148
Schoonschip 1, 83
Schwelle 17
Scope 56, 71, 122, 168

dynamisches 168
lexikalisches 57, 168

Semaphore 155
SGI 158
Simplex 160
Simplifier 127, 169
Simula 61
Singular 6, 115
Smith-Normalform 114
SMP (CAS) 1
SMP (symmetric multiprocessing) . . 159
Sokhotsky-Plemelj-Relationen 50
späte Bindung 165
sparse matrix 101
Speicherleck 67f, 117f
Spence-Funktion 146
Spur 104
Stack 60, 61, 168
Staffelmatrix 110
Standardmodell 2, 11
static 60, 122
status_flags

dynallocated 67
expanded 114

STL 62, 101, 117, 122, 126, 129
Stützpunktmenge 151ff
.subs() 123, 128
Substitution

syntaktische 125
Sumit 56
Sun 158
Sylvester-Identität 31ff, 107
symbol Klasse 128
Symmetriefaktor 19

T
Taylor-Reihe 56, 89ff
Tcl/Tk 2f
Template 62, 101, 118
ternäre Logik 78
TeXmacs 128
tgamma() 95
θ-Funktion 41ff, 94, 135, 141
this 62
Threads 159
TM 4
top-down 74, 124, 127
Träger 11
transzendente Funktion . 86, 94, 138–148
Triangulation 160
Typsicherheit 64

U
Überladung 60, 61, 64, 122
Unix 60, 61
Unterausdruck 69
Unterteilungsbaum 161

V
Variable

linearisierte 20, 27
zugeordnete 20, 27, 45

Verdopplungsformel 98
Vergleich

syntaktischer 75, 109, 166, 167
Verzweigungspunkt 94, 141, 146

176 Schlagwortverzeichnis

vptr 65, 165
vtable 88, 165

W
Wegintegral 147
Wick-Rotation 13, 29
wildcard Klasse 123
Wrapper 65

X
xloops 2ff, 128
XML 6

Y
Yacas 78
Yun’scher Algorithmus 64

Z
ζ-Funktion 96
Zufallszahlen 156–158
Zwillingsvariablen 30, 39

Literaturverzeichnis

Zum Aufbau dieses Literaturverzeichnisses sei entschuldigend angemerkt, dass es mit dem spürbaren
Niedergang der Bedeutung gedruckter (und referierter!) Zeitschriften immer schwieriger wird, eine
„kanonische“ Form einzuhalten. Mehr und mehr Autoren gehen dazu über, auch anspruchsvolle Arbei-
ten höchstens noch in elektronischen Preprint-Foren (sog. „Newsletters“) zu publizieren. Häufig sogar
nicht einmal das, stattdessen weisen sie nur auf ausdruckbare Papers hin, die auf ihren Webseiten
stehen. Man steht nun vor der Wahl, entweder gar nicht zu zitieren – was auf Vorenthaltung einiger
wichtiger Quellen hinausliefe – oder zu improvisieren. Ich habe mich bewusst für letztere Alternative
entschieden, stets in der Hoffnung, dass die Informationen mit der Zeit nicht unauffindbar werden.

[AbS 1972] Milton Abramowitz, Irene A. Stegun (Hrg.): Handbook of Mathematical
Functions With Formulas, Graphs and Mathematical Tables; Dover, New
York

[AGORT 2000] Charalampos Anastasiou, Thomas Gehrmann, Carlo Oleari, Ettore Remid-
di, Jan B. Tausk: The Tensor Reduction and Master Integrals of the Two-
Loop Massless Crossed Box With Light-Like Legs; Nucl. Phys. B580, 577-
601; arXiv:hep-ph/0003261

[Asla 1996] Helmer Aslaksen: Multiple-valued Complex Functions and Computer Alge-
bra; SIGSAM Bulletin, 30/2, 1996, 12-20

[ATT 1986] AT&T Bell Laboratories: System V Interface Definition, Issue 2 ;

[ATT 1989] AT&T Bell Laboratories: System V Interface Definition, Issue 3 ;

[Bar 1968] Erwin H. Bareiss: Sylvester’s Identity and Multistep Integer-preserving
Gaussian Elimination; Math. Comput. 22/103, 565-578

[Bern 2002] Daniel J. Bernstein: Integer multiplication benchmarks; http://cr.yp.to/
speed/mult.html

[Baue 2000] Christian Bauer: Der xloops-Algorithmus zur Berechnung von Feynman-
Graphen in C++; Diplomarbeit, Mainz

[BCK 2001] Pavel Baikov, Konstantin G. Chetyrkin, Johann H. Kühn: The Cross Section
of e+e− Annihilation Into Hadrons of Order α4

sn
2
f in Perturbative QCD ;

Phys. Rev. Lett. 88/1, 012001; arXiv:hep-ph/0108197

178 Literaturverzeichnis

[BDIPS 1994] Edward E. Boos, Mikhail N. Dubinin, Viacheslav A. Ilyin, Alexander
E. Pukhov, Victor I. Savrin: CompHEP - Specialized Package for Automatic
Calculations of Elementary Particle Decays and Collisions ; SNUTP 94-116;
INP MSU-94-36/358; arXiv:hep-ph/9503280

[Bèla 1999] Geneviève Bélanger, Fawzi Boudjema, Jumpei Fujimoto, Tadashi Ishikawa,
Toshiaki Kaneko, Kiyoshi Kato, Vincent Lafage, N. Nakazawa, Yoshimi-
su Shimizu: Implementation of the Non-Linear Gauge Into GRACE ; Proc.
AIHENP-99, Heraklion, Griechenland

[BePa 1998] Clemens Bellarin, Lawrence C. Paulson: Reasoning about Coding Theory:
The Benefits We Get From Computer Algebra; Proc. AISC-98, 55-66

[BeSo 1965] Heinrich Behnke, Friedrich Sommer: Theorie der analytischen Funktionen
einer komplexen Veränderlichen (dritte Auflage: 1965); Springer, Berlin

[BFK 1995] Lars Brücher, Johannes Franzkowski, Dirk Kreimer: A New Method
for Computing One-Loop Integrals; Comp. Phys. Comm. 85, 153-165;
arXiv:hep-ph/9401252

[BFK 1998] Lars Brücher, Johannes Franzkowski, Dirk Kreimer: XLoops: Automated
Feynman Diagram Calculation; Comp. Phys. Comm. 115, 140-160

[BFK 2001a] Christian Bauer, Alexander Frink, Richard Kreckel: The GiNaC Framework
for Symbolic Computation Within the C++ Programming Language; Proc.
Calculemus-2000 Symposium, St. Andrews, Schottland

[BFK 2002a] Christian Bauer, Alexander Frink, Richard Kreckel: Introduction to the
GiNaC Framework for Symbolic Computation Within the C++ Program-
ming Language; Journal of Symbolic Computation, 33, 1-12; arXiv:cs-
sc/0004015

[BFK 2002b] Christian Bauer, Alexander Frink, Richard Kreckel: GiNaC ; in: Johannes
Grabmeier, Erich Kaltofen, Volker Weispfenning (Hrsg.): Computer Algebra
Handbook ; Springer, Heidelberg

[BFT 1993] David J. Broadhurst, Jochem Fleischer, Olev V. Tarasov: Two-Loop Two-
Point Functions With Masses: Asymptotic Expansions and Taylor Series,
in Any Dimension; Z. Phys., C60 287-302; arXiv:hep-ph/9304303

[Bhat 1996] Gaurav Bhatnagar: A Short Proof of an Identity of Sylvester ; Internat. J.
Math. & Math. Sci. 22/2, 431-435

[Bier 2000] Kay Bieri: NNLO Calculations in γγ → ππ ; Diplomarbeit, Bern; siehe
URL: http://www-itp.unibe.ch/thesis/bieri/diplom.ps

[BKK 2001] Isabella Bierenbaum, Richard Kreckel, Dirk Kreimer: On the Invariance of
Residues of Feynman Graphs; arXiv:hep-th/0111192

Literaturverzeichnis 179

[BCP 1997] Wieb Bosma, John Cannon, Catherine Playoust: The Magma Algebra Sys-
tem I: The User Language; Journal of Symbolic Computation, 24, 235-265

[Bron 1996a] Manuel Bronstein: Symbolic Integration I ; Springer, Heidelberg

[Bron 1996b] Manuel Bronstein: ΣIT – A Strongly-Typed Embeddable Computer Algebra
Library ; Proc. DISCO-96, Karlsruhe, 1128, Springer

[Brue 1997] Lars Brücher: Automatische Berechnung von Strahlungskorrektu-
ren in perturbativen Quantenfeldtheorien; Dissertation, Mainz; siehe
URL: http://wwwthep.physik.uni-mainz.de/Publications/theses/
dis-bruecher.ps.gz

[Cart 1963] Henri Cartan: Théorie Élémentaire des Fonctions Analytiques d’une ou plu-
sieurs Variables Complexes; Hermann, Paris

[CDJLW 2001] Robert M. Corless, James H. Davenport, David J. Jeffrey, Gurjeet Litt,
Stephen M. Watt: Reasoning About the Elementary Functions of Complex
Analysis; in: Lecture Notes in Computer Science 1930, 115-126, Springer,
Berlin

[ChTk 1981] Konstantin G. Chetyrkin, Fyodor V. Tkachov: Integration by Parts: The
Algorithm to Calculate β-Functions in 4 Loops; Nucl. Phys. B192, 159-204

[CKK 1994] Andrzej Czarnecki, Ulrich Kilian, Dirk Kreimer: New Representation of
Two-Loop Propagator and Vertex Functions; Nucl. Phys. B433, 259-275;
arXiv:hep-ph/9405423

[Coh 2000] Christian Batut, Karim Belabas, Dominique Bernardi, Henri Cohen, Mi-
chel Olivier: User’s Guide to Pari-GP ; (Version 2.0.19), siehe URL: ftp:
//megrez.math.u-bordeaux.fr/pub/pari/

[CoTr 1995] Michel Cosnard, Denis Trystram: Parallel Algorithms and Architectures;
Thomson, London

[CoWi 1990] Donald Coppersmith, Shmuel Winograd: Matrix Multiplication via Arith-
metic Progressions; Journal of Symbolic Computation, 9/1, 251-280

[DaST 1993] Andrey I. Davydychev, Vladimir A. Smirnov, Jan B. Tausk: Large Momen-
tum Expansion of Two-Loop Self-Energy Diagrams With Arbitrary Masses;
arXiv:hep-ph/9307371

[DaT 1992] Andrey I. Davydychev, Jan B. Tausk: Two-Loop Self-Energy Diagrams With
Different Masses and the Momentum Expansion; Nucl. Phys. B397, 123-142

[Dave 2000] James H. Davenport: Abstract Data Types in Computer Algebra; in: Lecture
Notes in Computer Science 1893, 21-35, Springer, Berlin

[Déak 1990] Istvan Deák: Uniform Random Number Generators for Parallel Computers ;
Parallel Computing, 15, 155-164

180 Literaturverzeichnis

[DGBEG 1996] Elise de Doncker, Ajay Gupta, Jay Ball, Patricia Ealy, Alan Genz: ParInt:
A Software Package for Parallel Integration; Proc. of the 10th ACM Inter-
national Conference on Supercomputing, 149-156

[DoRo 1984] Elise de Doncker, Ian Robinson: TRIEX: Integration Over a TRIangle Using
Nonlinear EXtrapolation; ACM Transactions on Mathematical Software,
10/1, 17-22

[DST 1988] James H. Davenport, Yvon Siret, Evelyne Tournier: Computer Algebra—
Systems and Algorithms for Algebraic Computation; Academic Press Ltd.,
London

[Enge 1998] Robert A. van Engelen: Ctadel: A Generator of Efficient Numerical Co-
des; Dissertation, Leiden; siehe URL: http://www.cs.fsu.edu/~engelen/
thesis.ps.gz

[FaHa 1996] Richard J. Fateman, Mark Hayden: Speeding up Lisp-Based Symbolic Ma-
thematics; SIGSAM Bulletin, 30/1, 1996, 25-30

[Fate 1990] Richard J. Fateman: Advances and Trends in the Design and Construction
of Algebraic Manipulation Systems; Proc. ISSAC-90, Tokyo

[Fate 1999] Richard J. Fateman: Symbolic Mathematics System Evaluators; in: Micha-
el J. Wester (Hrsg.): Computer Algebra Systems – A Practical Guide; Wiley,
Chichester

[Fate 2001] Richard J. Fateman: Manipulation of Matrices Symbolically; Unveröffent-
licht, http://www.cs.berkeley.edu/~fateman/temp/symmat.pdf

[FKT 1997] Alexander Frink, Jürgen G. Körner, Jan B. Tausk: Massive Two-Loop In-
tegrals and Higgs Physics; arXiv:hep-ph/9709490

[FlTe 1999a] Mikhail Tentyukov, Jochem Fleischer: A Feynman Diagram Analyser
DIANA; Comp. Phys. Comm. 132, 124-141; arXiv:hep-ph/9904258

[FlTe 1999b] Mikhail Tentyukov, Jochem Fleischer: DIANA, A Program for Feynman
Diagram Evaluation; arXiv:hep-ph/9905560

[FlTe 2000] Jochem Fleischer, Mikhail Tentyukov: A Feynman Diagram Analyser
DIANA – Graphic Facilities; arXiv:hep-ph/0012189

[Fran 1997] Johannes Franzkowski: Virtuelle Strahlungskorrekturen im Stan-
dardmodell der Elementarteilchenphysik ; Dissertation, Mainz; siehe
URL: http://wwwthep.physik.uni-mainz.de/Publications/theses/
dis-franzkowski.ps.gz

[Frin 1996] Alexander Frink: Massive Zwei-Loop Vertexfunktionen; Diplomar-
beit, Mainz; siehe URL: http://wwwthep.physik.uni-mainz.de/
Publications/theses/dip-frink.ps.gz

Literaturverzeichnis 181

[Frin 2000] Alexander Frink: Computer-algebraische und analytische Methoden
zur Berechnung von Vertexfunktionen im Standardmodell ; Disser-
tation, Mainz; siehe URL: http://wwwthep.physik.uni-mainz.de/
Publications/theses/dis-frink.ps.gz

[FSF 2001] Free Software Foundation: libstdc++-v3 Documentation; siehe URL: http:
//gcc.gnu.org/onlinedocs/libstdc++/documentation.html

[Fuch 1997] Benno Fuchssteiner et alii (MuPAD group): MuPAD User’s Manual, Mu-
PAD ; (Version 1.4) Wiley, Chichester, siehe URL: http://www.mupad.de/

[GCL 1992] Keith O. Geddes, Stephen R. Czapor, George Labahn: Algorithms for Com-
puter Algebra; Kluwer, Norwell, Massachusetts

[GeJo 1976] W. Morven Gentleman, Stephen C. Johnson: Analysis of Algorithms, A Ca-
se Study: Determinants of Matrices With Polynomial Entries; ACM Tran-
sactions on Mathematical Software, 2/3, 232-241

[GHJV 1995] Erich Gamma, Richard Helms, Ralph Johnson, John Vlissides: Design Pat-
terns – Elements of Reusable Object-Oriented Software; Addison-Wesley,
Reading, Massachusetts

[GKP 1989] Ronald L. Graham, Donald E. Knuth, Oren Patashnik: Concrete Mathema-
tics; Addison-Wesley, Reading, Massachusetts

[GPS 2000] Gert-Martin Greuel, Gerhard Pfister, Hans Schönemann: Singular 1.3.7.
A Computer Algebra System for Polynomial Computations; Zentrum für
Computer Algebra an der Universität Kaiserslautern, URL: http://www.
singular.uni-kl.de/

[Groz 2001] Andrey Grozin: TeXmacs Interfaces to Maxima, MuPAD and REDUCE ;
arXiv:cs.SC/0107036

[GrRy 1994] Izrail’ Solomonovich Gradshte�in, Iosif Moiseevich Ryzhik; Table of Integrals,
Series, and Products; (fifth edition); Academic Press, London

[HaKr 2000] Bruno Haible, Richard Kreckel: CLN, a Class Library for Numbers; (Version
1.1), siehe URL: http://www.ginac.de/CLN/

[HaPa 1998] Bruno Haible, Thomas Papanikolaou: Fast Multiprecision Evaluation of Se-
ries of Rational Numbers; in: Joe P. Buhler (Hrsg.): Lecture Notes in Com-
puter Science; 1423, Springer, Heidelberg

[HaSt 1998] Robert Harlander, Matthias Steinhauser: Automatic Computation of Feyn-
man Diagrams; TTP98-41; arXiv:hep-ph/9812357

[Hear 1995] Anthony C. Hearn: REDUCE User’s Manual Version 3.6 ; RAND, Santa
Monica, siehe URL: http://www.zib.de/Symbolik/reduce/

182 Literaturverzeichnis

[Hoar 1981] Charles A. R. Hoare: Turing Lecture “The Emperor’s Old Clothes”; Comm.
ACM 24(2) 75-83

[Horo 1971] Ellis Horowitz: Algorithms for Partial Fraction Decomposition and Rational
Function Integration; Proc. Second Symposium on Symbolic and Algebraic
Manipulation, ACM Inc., 1971, 441-457

[ItZu 1993] Claude Itzykson, Jean-Bernard Zuber: Quantum Field Theory ; World Scien-
tific Lecture Notes in Physics

[ISO 1990] ISO/IEC 9899:1990: Programming Languages—C ; American National Stan-
dards Institute, 1990

[ISO 1998] ISO/IEC 14882:1998(E): Programming Languages—C++; American Natio-
nal Standards Institute, 1998

[ISO 1999] ISO/IEC 9899:1999: Programming Languages—C ; American National Stan-
dards Institute, 1999

[IyKa 1980] Shôkichi Iyanaga, Yukiyosi Kawada (Hrg.): Encyclopedic Dictionary of Ma-
thematics; MIT Press, Boston, Massachusetts, 1980

[IKKKST 1993] Tadashi Ishikawa, Toshiaki Kaneko, Kiyoshi Kato, Setsuya Kawabata, Yo-
shimisu Shimizu, H. Tanaka: GRACE Manual ; KEK Report 92-19; Comp.
Phys. Comm. 92, 127-152.

[Jada 1999] Stanislaw Jadach, FOAM: Multi-Dimensional General Purpose Monte Car-
lo Generator With Self-Adapting Simplical Grid ; Comp. Phys. Comm. 130,
244-259; physics/9910004

[Jeff 2001] David J. Jeffrey: The Multi-Valued Nature of Inverse Functions; Pre-
print, erhältlich unter URL: http://www.apmaths.uwo.ca/~djeffrey/
Offprints/inverses.ps

[JeRi 1999] David J. Jeffrey, Albert D. Rich: Simplifying Square Roots of Square Roots
by Denesting ; in: Michael J. Wester (Hrsg.): Computer Algebra Systems –
A Practical Guide; Wiley, Chichester

[JeSu 1992] Richard D. Jenks, Robert S. Sutor: AXIOM: The Scientific Computation
System; The Numerical Algorithms Group / Springer, New York

[Kah 1987] William Kahan: Branch Cuts for Complex Elementary Functions; or, Much
Ado About Nothing’s Sign Bit ; In Iserles, A., and Powell, M. (Hrsg.), The
State of the Art in Numerical Analysis; Clarendon Press, 165-211

[Kane 1995] Toshiaki Kaneko: A Feynman-Graph Generator for Any Order of Coupling
Constants; Comp. Phys. Comm. 92, 127-152.

Literaturverzeichnis 183

[KaOf 1962] Anatolij A. Karatsuba, Y. Ofman: Multiplication of Multidigit Numbers by
Automatic Computers; Doklady Akad. Nauk SSSR 145, 293-294. Überset-
zung in: Soviet Physics Doklady 7, 595-596, 1963

[KeRi 1988] Brian W. Kernighan, Dennis M. Ritchie: The C Programming Language
(second edition); Prentice Hall, Englewood Cliffs, New Jersey

[Kili 1996] Ulrich Kilian: Massive Zweischleifen-Integrale im Standardmodell ; Disser-
tation, Mainz

[KiSt 1981] Scott Kirkpatrick, Erich P. Stoll: A Very Fast Shift-Register Sequence Ran-
dom Number Generator ; J. Comput. Phys. 40, 517-526

[KKS 1998] Richard Kreckel, Dirk Kreimer, Karl Schilcher: First Results With a New
Method for Calculating 2-Loop Box-Functions; Eur. Phys. J. C, 693-699,
1998; arXiv:hep-ph/9804333

[Knu 1997] Donald E. Knuth: The Art of Computer Programming, Vol. 1: Fundamental
Algorithms; (third edition) Addison-Wesley, Reading, Massachusetts

[Knu 1998] Donald E. Knuth: The Art of Computer Programming, Vol. 2: Seminume-
rical Algorithms; (third edition) Addison-Wesley, Reading, Massachusetts

[Koe 1999] Wolfram Koepf: Efficient Computation of Chebyschev Polynomials in Com-
puter Algebra; in: Michael J. Wester (Hrsg.): Computer Algebra Systems –
A Practical Guide; Wiley, Chichester

[Krec 1997a] Richard Kreckel: Irreduzible Zwei-Loop-Beiträge zu den Prozessen γγ → ππ
und η → πγγ; Diplomarbeit, Mainz; siehe URL: http://wwwthep.physik.
uni-mainz.de/Publications/theses/dip-kreckel.ps.gz

[Krec 1997b] Richard Kreckel: Parallelization of Adaptive MC Integrators; Comp. Phys.
Comm. 106, 258-266; arXiv:physics/9710028

[Krec 2000] Richard Kreckel: Large Scale Symbolic Programming With GiNaC ; Proc.
ACAT-2000, Fermilab, Illinois

[Krec 1998] Richard Kreckel: Parallelization of Adaptive MC Integrators—Recent pvegas
Developments; arXiv:physics/9812011

[Krei 1991] Dirk Kreimer: The Master Two Loop Two Point Function: The General
Case; Phys. Lett. B273, 277-281

[Krei 1992a] Dirk Kreimer: 2-Loop Integrals in the Standard Model ; Phys. Atom. Nucl.
56 (1993) 1546-1552; arXiv:hep-ph/9212254

[Krei 1992b] Dirk Kreimer: The Two-Loop Three-Point Functions: General Massive Ca-
ses; Phys. Lett. B292 341-347

184 Literaturverzeichnis

[Krei 1993] Dirk Kreimer: Tensor Integrals for Two Loop Standard Model Calculations;
Mod. Phys. Lett. A9, 1105-1120; arXiv:hep-ph/9312223

[Krei 1994] Dirk Kreimer: A Short Note on Two-Loop Box Functions; Phys. Lett. B347,
1995, 107; arXiv:hep-ph/9407234

[Land 2002] Susan Landau: Computation With Algebraic Numbers ; in: Johannes Grab-
meier, Erich Kaltofen, Volker Weispfenning (Hrsg.): Computer Algebra
Handbook ; Springer, Heidelberg

[Larc 1999] Peter J. Larcombe: On Lovelace, Babbage and the Origins of Computer Al-
gebra; in: Michael J. Wester (Hrsg.): Computer Algebra Systems – A Prac-
tical Guide; Wiley, Chichester

[Lepa 1978] G. Peter Lepage: A New Algorithm for Adaptive Multidimensional Integra-
tion; J. Comput. Phys. 27, 192-203

[Lew 1981] Leonard Lewin: Polylogarithms and Associated Functions; North Holland,
Amsterdam

[LeWe 1999] Robert H. Lewis, Michael Wester: Comparison of Polynomial-Oriented
Computer Algebra Systems; SIGSAM Bulletin 33/4, 5-13; erhältlich un-
ter URL: http://www.fordham.edu/~lewis/cacomp.html

[Lewi 1997] Robert H. Lewis: Fermat: A Computer Algebra System for Polynomial and
Matrix Computation; siehe URL: http://ww.bway.net/~lewis/

[MacK 1996] David MacKenzie: Autoconf—Creating Automatic Configuration Scripts ,
(edition 2.12); Free Software Foundation, Boston, Massachusetts, 1996

[MaT 1998] David MacKenzie, Tom Tromey: GNU Automake, (version 1.3); Free Soft-
ware Foundation, Boston, Massachusetts

[Meye 1996] Scott Meyers: More Effective C++; Addison-Wesley, Reading, Massachu-
setts

[MOTV 1999] Gordon Matzigkeit, Alexandre Oliva, Thomas Tanner, Gary V. Vaughan:
GNU Libtool , (version 1.3.3); Free Software Foundation, Boston, Massachu-
setts, 1999

[Nogu 1993] Paulo Nogueira: Automatic Feynman Graph Generation; J. Comput. Phys.
105, 279-289.

[Olde 1995] Geert Jan van Oldenborgh: An Introduction to FORM ; INLO-PUB-5/95,
erhältlich unter URL: http://www.lorentz.leidenuniv.nl/form/form/
formcourse.ps.gz

[Pink 2000] Ayal Z. Pinkus: Yacas—Yet Another Computer Algebra System; siehe URL:
http://www.xs4all.nl/~apinkus/yacas.html

Literaturverzeichnis 185

[PeSc 1995] Michael E. Peskin, Daniel V. Schroeder: Introduction to Quantum Field
Theory ; Addison-Wesley, Reading, Massachusetts

[Pohs 1996] Mario Daberkow, Claus Fieker, Jürgen Klüners, Michael Pohst, Katherine
Roegner, Martin Schörnig, Klaus Wildanger: Kant V4 ; Journal of Symbolic
Computation, 24, 267-283

[PoTa 1996] Peter Post, Jan B. Tausk: The Sunset Diagram in SU(3) Chiral Perturbation
Theory ; Mod. Phys. Lett. A11, 2115-2128; arXiv:hep-ph/9604270

[PTVF 1992] William H. Press, Saul A. Teukolsky, William T. Vetterling, Brian P. Flan-
nery: Numerical Recipes in C ; Cambridge University Press, Cambridge,
1988; (zweite Auflage: 1992)

[PrWe 1999] John K. Prentice, Michael Wester: Code Generation Using Computer Alge-
bra Systems; in: Michael J. Wester (Hrsg.): Computer Algebra Systems – A
Practical Guide; Wiley, Chichester

[Pukh 1999] Alexander E. Pukhov, Edward E. Boos, Mikhail N. Dubinin, Victor P. Ed-
neral, Viacheslav A. Ilyin, Dmitri N. Kovalenko, Alexander Kryukov, Vic-
tor I. Savrin CompHEP – A Package for Evaluation of Feynman Diagrams
and Integration Over Multi-Patricle Phase Space; arXiv:hep-ph/9908288

[Raym 1998] Eric S. Raymond: A Brief History of Hackerdom; published in Open Sources,
O’Reilly, Sebastopol, California, 1998; siehe URL: http://www.tuxedo.
org/~esr/writings/hacker-history/

[Remi 1997] Ettore Remiddi: Differential Equations for Feynman Graph Amplitudes;
Nuovo Cim. A110, 1435-1452; arXiv:hep-th/9711188

[Rich 1967] Martin Richards: The BCPL Reference Manual ; MIT Project MAC Memo-
randum M-352, 1967; siehe URL: http://www.cs.bell-labs.com/~dmr/

[Ritc 1993] Dennis M. Ritchie: The Development of the C Language; Vortrag gehal-
ten auf der zweiten Konferenz „History of Programming Languages“, Cam-
bridge, Massachusetts, 1993; siehe URL: http://www.cs.bell-labs.com/
~dmr/

[Roth 1995] Wolfgang Roth: Faktorisierung von Polynomen über endlichen Körpern und
ganzen Zahlen; Diplomarbeit an der Fakultät für Mathematik und Informa-
tik, Mannheim, 1995

[Ryde 1985] Lewis H. Ryder: Quantum Field Theory ; Cambridge University Press, Cam-
bridge

[SaMu 1982] Teteaki Sasaki, Hirokazu Murao: Efficient Gaussian Elimination Method for
Symbolic Determinants and Linear Systems; ACM Transactions on Mathe-
matical Software, 8, 1982, 277-289

186 Literaturverzeichnis

[SchSt 1971] Arnold Schönhage, Volker Strassen: Schnelle Multiplikation grosser Zahlen;
Computing 7, 281-292

[SGI 1995] SGI STL Allocator Design; siehe URL: http://www.sgi.com/tech/stl/
alloc.html

[Shou 2000] Victor Shoup: NTL - Number Theory Library - Version 5.0 ; siehe URL:
http://shoup.net/ntl/

[ShSt 1998] Tan Kiat Shi, Willi-Hans Steeb: Symbolic C++—An Introduction to Com-
puter Algebra Using Object-Oriented Programming ; Springer, Singapore,
1998

[Smir 1999] Vladimir A. Smirnov: Analytical Result for Dimensionally Regularized
Massless On-Shell Double Box ; Phys. Lett. B460, 397-404; arXiv:hep-
ph/9905323

[Smir 2000] Vladimir A. Smirnov: Analytical Result for Dimensionally Regularized
Massless Master Non-Planar Double Box With One Leg Off Shell ; Phys.
Lett. B500, 330-337; arXiv:hep-ph/0011056

[Smir 2001] Vladimir A. Smirnov: Analytical Result for Dimensionally Regularized Mas-
sive On-Shell Planar Double Box ; Phys. Lett. B524, 129-136; arXiv:hep-
ph/0111160

[Smit 1998] Warren D. Smith: A Lower Bound for the Simplexity of the N-Cube via
Hyperbolic Volumes; Preprint, siehe URL: http://www.neci.nj.nec.com/
homepage/wds/journalpubs.html

[SmiVe 1999] Vladimir A. Smirnov, Oleg L. Veretin: Analytical Result for Dimensionally
Regularized Massless On-Shell Double Boxes With Arbitrary Indices and
Numerators; arXiv:hep-ph/9907385

[Stee 1990] Guy L. Steele: Common Lisp the Language; Digital Press, Woburn, Massa-
chusetts, 1990

[Stou 1991] David R. Stoutemyer: Crimes and Misdemeanors in the Computer Algebra
Trade; Notices AMS, 38-7, 778-785

[Stra 1969] Volker Strassen: Gaussian Elimination is not Optimal ; Numer. Math. 13,
1969, 354-356

[Stro 1997] Bjarne Stroustrup: The C++ Programming Language; Addison-Wesley,
Reading, Massachusetts, 1986; (zweite Auflage: 1991, dritte Auflage: 1997)

[Stro 1994] Bjarne Stroustrup: The Design and Evolution of C++; Addison Wesley,
Reading, Massachusetts

[Taus 1965] Robert C. Tausworthe: Random Numbers Generated by Linear Recurrence
Modulo Two; Math. Comput. 19, 201-209

Literaturverzeichnis 187

[Tau 1999] Jan B. Tausk: Non-Planar Massless Two-Loop Feynman Diagrams With
Four On-Shell Legs; Phys. Lett. B469, 225-234; arXiv:hep-ph/9909506

[t’Ho 1971a] Gerardus ’t Hooft: Renormalization of massless Yang-Mills fields; Nucl.
Phys. B33, 173

[t’Ho 1971b] Gerardus ’t Hooft: Renormalizable Lagrangians for massive Yang-Mills
fields; Nucl. Phys. B35, 167-188

[t’HoVe 1979] Gerardus ’t Hooft, Martinus J. G. Veltman: Scalar One-Loop Integrals;
Nucl. Phys. B153, 365-401

[Tomm 2001] Mikko Tommila: Apfloat: A C++ High Performance Arbitrary Precision
Arithmetic Package; siehe URL: http://www.jjj.de/mtommila/apfloat/

[Verm 1991] Jos A. M. Vermaseren: Symbolic Manipulation With FORM, Version 2—
Tutorial and Reference Manual ; Computer Algebra Nederland, Amsterdam,
1991

[Verm 2000] Jos A. M. Vermaseren: New Features of FORM ; arXiv:math-ph/0010025

[VeWi 1993] Martinus J. G. Veltman, David N. Williams: Schoonschip 91 ; University of
Michigan preprint UM-TH-93-18; siehe URL: http://feynman.physics.
lsa.umich.edu/~williams/preprints/schip91.pdf

[WCS 1996] Larry Wall, Tom Christiansen, Randal Schwartz: Programming Perl ;
O’Reilly, Sebastopol

[WeGo 1991] Trudy Weibel, Gaston H. Gonnet: An Algebra of Properties ; Gelbe Berichte
157, Departement Informatik, ETH Zürich

[Wei 2002] Stefan Weinzierl: Symbolic Expansion of Transcendental Functions;
arXiv:math-ph/0201011

[West 1995] Michael Wester: A Review of CAS Mathematical Capabilities; (mehre-
re aktualisierte aufeinanderfolgende Veröffentlichungen, u.a. in „Compu-
ter Algebra Nederland Nieuwsbrief“ 13 41-48, 1994) siehe URL: http:
//math.unm.edu/~wester/cas/

[West 1999] Michael Wester: A Critique of the Mathematical Abilities of CA Systems; in:
Michael J. Wester (Hrsg.): Computer Algebra Systems – A Practical Guide;
Wiley, Chichester

[Wolf 1999] Stephen Wolfram: Mathematica; (fourth edition); Addison-Wesley, Reading,
Massachusetts

Lebenslauf

Persönliche Daten

Name: Richard B. Kreckel
geboren: am 10. Februar 1969 in Bingen
Staatsangehörigkeit: Deutsch
Anschrift: Eisgrubweg 11B

55116 Mainz

Ausbildung

1975-1979 Grundschule Bad Soden am Taunus
1979-1981 Stefan George Gymnasium, Bingen
1981-1985 Goethe-Schule, Buenos Aires, Argentinien
1985-1989 Stefan George Gymnasium, Bingen
1989 Abitur
1989-1990 Grundwehrdienst
WS 1990/1991 Aufnahme des Physikstudiums an der Universität Mainz
Mai 1992 Vordiplom in Physik
SS 1992 – WS 1995/1996 Hauptstudium
August 1993 – Juli 1994 Studienaufenthalt in Seattle, USA (DAAD-Austauschprogramm)
1996 Diplomand bei Prof. Dr. K. Schilcher im Institut für Physik
Mai 1997 Diplom in Physik

Forschungsaufenthalte / Tagungen

Februar-April 1998 TRACS, Edinburgh Parallel Computing Centre
23. September 1999 „TRACS Users Meeting“ (TUG99), Barcelona
12.-16. April 1999 „VI Advanced Computing Conference in Physics Research“

(AIHENP99), Heraklion
25.-28. Juni 2000 „6th IMACS Conference on Applications of Computer Algebra“

(ACA2000), St. Petersburg
16.-20. Oktober 2000 „VII Workshop on Advanced Computing and Analysis Techniques

in Physics Research“ (ACAT 2000), Fermilab
27.-30. November 2001 „Workshop on Computer Particle Physics“ (CPP2001), Tokyo

