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Analysis of tritium source term in an integrated small reactor

Chen Zhihong
(China Nuclear Power Engineering Co, Ltd, Shenzhen 518124, China)

Abstract: [Background] Tritium production pathways are well-established for large pressurized water reactors
(PWRs). Integrated small reactors (ISRs), however, operate without soluble boron reactivity control and use no
chemical additives (e.g., lithium hydroxide) for pH adjustment, necessitating dedicated analysis of their tritium
sources. [Purpose] This study aims to identify tritium production pathways in ISRs, establish a computational model
for quantifying tritium source terms, and propose design optimizations to minimize tritium generation. [Methods] A
theoretical model was established by solving differential equations for tritium production and removal based on
identified neutron activation reaction mechanisms. Key parameters included neutron flux and nuclear cross-sections
derived from Monte Carlo simulations of the ISR core. Validation was performed against normalized operational
tritium release data from boiling water reactors (BWRs) with analogous B,4C control rods and Sb-Be neutron sources,
considering thermal power and load factors. [Results] The annual tritium production in ISR primary coolant is 1.81
TBq. The primary contributors are neutron-activated products from Sb-Be and B,C material, accounting for 46% and
51% of the total production, respectively. Analysis of tritium discharge data from operational BWRs validates the
conservatism of the theoretical results. [Conclusions] Optimizing secondary neutron sources (canceling Sb-Be or
using double-encapsulated cladding) and replacing B,C control rods with non-tritium-producing absorbers (e.g., Ag-
In-Cd or hafnium) could reduce ISR tritium production significantly. These measures are technically feasible based on
PWRs operational experience and are recommended for ISR design enhancements. Future work will refine release
fractions of control rods using plant-specific operational data.

Key words: integrated small reactor, trititum source term, control rod absorber, secondary neutron source,

double-encapsulated cladding
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Table 1 Nuclear reactions of tritium production in integrated small reactors

production region nuclear reactions
direct source primary coolant fH + (l)n LN ?H
fuel rod U/Pu+n— FP1+FP2+3H

9804 1y PD arr. 6 6He 2y 67 5 = 67 14 15y ™Y, 4110 1.3
4Be+yn— He+ He= jHe—;Li=3Li+;n —  He+H

(n,T) (n,na)

secondary source rod
9 1 37T — 7T 41 4 1.3
4Be+0n e 1H+3L1 = 3L1+0n — 2He+0n+ 1H

L 2
indirect source éOB +in L2, 23He + ?H

1op 1, ™9 4 T Ty 1 )y 1.3
5B+On————>2H13+3L1:>3L1+0n————>2He+on+1H

control rod 10 | (o) ¢ L4 6 1 (e 3
5B+On———>3L1+0n+2H€::3L1+On———>2H€:+1H

g1y ™D op. 3 L ogay 1y ™Y, 4pr 16 6He 2y 675 — 674 15 ™Y, 41y 13
5 B+on— Be+ H=;Be+in —— ;He+ He = jHe - 3jLi=3Li+;n — jHe+{H

2 — K /hHERIETNTE
21 mMIRTTE&ER
FEFAZ SN HUEE, AR 5 45 S U B4 A 0 7 A RN O, ST SR R o O B, A5 BN A B AR AU AR . R AR R

096003-2



WREZE:  — A /NS IR B 523 A

9 7 A i (LU N RGRR ) il e Rk X0

dN
5 =AO-BON (1)

e N AR 2050 o i S5 S G A s BRLAL IS ] N 7 AR B G T 8G B) 3R s Ui R BR R, A oy b £
xR A B

SEA TR AR IR AR, TR AR IR
211 HESRIE

¥ H5R0 ) AT S (n, ) SO 7 AR B B NN, AT Rl

dN‘-AB}j«ryaDwE»—ANI (2)

A VR ARG o (E)ETE T FRE N E 1Y (n,y) ROV IO AR T 5 @(B)JE 2% 7™ i X 3807 3 rh 7 B 4 oh
E W %5 Np &2 20500 i s 1~ 5k
2.1.2 (AR IR
1) = JCRAE 77,
R = T AR 7 A SR AN BN, I R R
dN,
dr

Arre PR AR T B3 I IR] 0 TR A R B, TT A A S AT R SRR R S S SR fi R
SRR T 30 32 o] 8K v 0500 11 0

2) i 7

PR e AR, OB, 20)T A B(n, )" Litn,na)T 7 7 % 7 S A 4 35 sk . v, s o "B (n, 200 iz 17 7 A= 4 i it
TAHN, A FRH

= Pf, - AN, (3)

d

f—N’@}}qhwwwmaam (4)

Aot o7, (E) 4k TR A E B 200 1 3 GO 4 A5 0 I B B9 0 605 N,y (0
St 5B 4 B 125 0 OB A, BT 70

dNea(t) _

Cdr

Softe BBl P R By £ ) B oL GO

@ﬁ 1°B(n, a)7Li(n, na)Tfiﬁ_\iFﬁi E@ﬁ@?/l\%u\ﬂﬂ%éﬂ?%

dn.
== N ) @ EXpENf = ANy (6)

K ol (B) R F 3 b T A ik B i Lo, ne) T Rl AU 5 fs S AN A5 A o 0380 3 Dl i v 0590 9 03 505 Nowa(0)
Sy i e PR o ) 728 P P 7L i A B, AT TR OR

dN-1i(1)
Cdr

(ZwmwMBHwamwm)ﬂo (5)

—Namikmxmﬂm>§]mm@wmemn (7)

3) IR IERE N

5 1R R R R AR, R IR AR P PR S R TR R RO RO R R R A A e . K
YR K HE Z IR R T Be 5 7 36 AR 7 S e XM 10 OB A S AT T R e R AR AR, R BB TR b IR AT LA
TR 7K HE B SCHE B B AR 2 7.5 TBq/al"™ e FEAZ SRy 485 10 AH ) AR 175 000 T, 3 2ok — AR T /I 5 A 28 e /K 3 30 o
TR . R IR T Sb-Be IR AR i . R IR A A SE SR, AT AT A A AR/ IN R X R B SRR 7 A
22 EEUESHEE
2.2.1 VRN T

SR R 2 ARy S — PR Ak /N HE SIS AR R O T R A2 1T 5, MR N 1 R o HESERES A R g 1 Ak

096003-3



wmoOoW e 5 K TR

WK AR AR m O 2 s FREXK ., 1454
25 L PRI E RO BE A T B -

THEAS 3] SRy HE P 45 DX A e 3 o 30 A s A I
UL 2, Horp: B 2(a) FiR HHELTEE X B E . BT
ST )2 BT B A A A 72 i DX ) v - R 1] 2(b) ~
E2(d) 7R R 3R 1 TN &A% R 1 OWAR T (1 barn=10"* cm?) o
222 B

1) JRBL T rh ST R T 19 25

AT S A S o T 2 e M AR (3 S A HE T S S A B e Y L

B, A NN IR K HE S & &5 i E H ) AE H Fig. 1 Core model
N, TR) B 32 A7 EL T H OB A A 0 R L ARAIK (A B <2x10°° %k G

Y, HORHE FpHEROR A 32 B AN OR T, TR TR B Hh Al LA 220 R rh i i B R AR A 5 )
AR BRI . — A/ NSO TR BB 4, D W b U5 SRR ST IR A by = S0 228 7™ A S 2R A AR ) Ao
TR A FR GO, T R Oy 305 RO 58 A R B IR PR 5 — B

10" 1 10°
—=—"Be(n,T)'Li
108 f —eo—Be(n,a)°He
10 20
¢ L S
D =
.g 10" 2 102
£ ] 1072
£ 100 ;
2 g
5 10°f 5107 ¢
= —=— reactor core 5
3 108 —e— radial reflector -
= —a— lower reflector 210
107 —v— upper reflector
—<— downcomer region
6 L L L L L L L L L ' 107 L L '
10% 107 10° 10° 10* 10° 102 107" 10° 10' 10? 107! 10° 10! 10?
neutron energy/MeV neutron energy/MeV
(a) neutron flux in production region (b) berylllium-9 activation corss-section
1072 104 1 B0 20y H
—a— n,2o
- —=—H(n,y)’'H g 10° —e— 9B(n,na)’Li
< L —4— 1B(n,a)’Li
S - 10? >
£10¢ § —v—SLi(n,0)’H
= g 10" —<Li(n,na)’H
g 10 5
e 10 1+
; /f-ﬂ § 102
g 107 ¢
101
107 L L L L L L L L L ) 10 L L L L \ 0 L L )
10% 107 10° 10° 10* 107 102 107" 10° 10' 10? 10® 107 10¢ 10° 10* 107 102 10" 10° 10' 10?
neutron energy/MeV neutron energy/MeV
(c) deuterium activation corss-section (d) boron-10 and Lithium activation corss-section

Fig.2 Neutron flux and nuclear cross-section
P2 T e AR S A T

2) R AR R R A

—LBORF SR, ST A B 0995 15 AR R 5 AR L A Bl 2, PRt b 1 SR R AR R — i T LR i A
SN AL et A L I AR o BFSE G R P A ) 28 AT LA A S D S B O AT o G i, SRR
R AN 5 A A 72 19 Sb-Be — U 1 5 (14 iR TS s K SEATLZEL I 0 0 1) B R R 2 — 100, 4545 BIE T, el
SERP R A R AE AT A BUKF- R I8 35 L 10%~20%!

3) P i TR I3

5 H A = A7 S g AR ) TR R /N B A R W52 0 B AN [, T P B 2 T K B A A R B ik

096003-4



WREZE:  — A /NS IR B 523 A

By C AR A WA () 57 SR ATE T R AR A BRI T B C Pt M O R K ERZ R T s AT B R B, H R
LI 1) 7 o) B R A B G 32 PR Ry ST BE 5 B 4G A i S AL B, S B A A S A B, AT BH 1k HE
PRGN . R, AT, A B TPORHR] K B A A 458 e MR SO AR P P R A, AN T ) 1 Am i 4
N, 2 R T RE AR A PR L T A, AT P B R R A B R 1% SRR AR R
23 MIRBUTHEER

THEAS 2 B il D AR — PR A /NHESE BOTU™ A B D3 20 |3k 2 AT, — (R4l /N A9 ™ AR i 1.81 TBq/a, Horp
YRR TTROR F T UCIRR BB 89 Be A G FRBORCAAT R B9 B G AL S, o5 FEZr s E T 46% H1 51%:

R2 RAFPRBETEE

Table 2 Annual tritium production in coolant

production source annual tritium production/(TBq-a™) contribution share/%
primary coolant 0.02 1
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