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Resumo

A presente tese de Doutorado refere-se a problemas em teoria de campos e mecinica quantica
no espago nao comutativo (NC). Abordamos alguns sistemas fisicos bem estudados em fisica tedrica,
como a teoria de Maxwell na presenca de fontes externas, equacao de Pauli, equacao de Dirac em
campos externos e o espectro do atomo de hidrogénio relativistico. Como um primeiro problema
estudamos a teoria de calibre U(1), e extendemos o mapa de Seiberg-Witten para incluir uma corrente
externa e formulamos equagoes classicas para os campos no espago nao comutativo. Solucoes no vacuo
e em um campo magnético externo para uma carga estatica de tamanho finito a foram determinadas.
Encontramos que uma carga estatica além de ser um monopolo elétrico comporta-se como um dipolo
magnético e um campo magnético externo modifica o campo de Coulomb a longas distancias bem
como alguns fatores de forma eletromagnéticos, comportamentos inerentes a consideragao de uma
geometria NC. Nesta dire¢ao analisamos a ambiguidade no mapa de Seiberg-Witten e mostramos que,
no minimo até a ordem estudada aqui, isto é equivalente a ambiguidade de se adicionar uma solugao
homogénea & condicao de conservacao da corrente. Demandando que o momento magnético NC seja
menor que o erro existente na medida do momento magnético de léptons, obtemos uma estimativa
superior para o parametro 6 e seu comprimento fundamental associado [. Estudamos os niveis de
energia do a&tomo de hidrogénio relativistico no formalismo da equagao de Dirac no espago NC para o
campo de Coulomb. Demonstramos que no caso relativistico a ndo comutatividade quebra totalmente
a degenerescéncia dos niveis 251/, 2P /5 € 2P/, abrindo novos canais de transi¢ao permitidos. Por
fim construimos uma equagao de onda nao relativistica para particulas de spin 1/2 através do limite
nao relativistico da equagao de Dirac no espago NC. Apresentamos um modelo pseudoclassico (a-la
Berezin-Marinov) cuja quantizagao coincide com as equagoes de onda nao relativisticas. Através
da interacao entre um spin nao-relativistico e o campo magnético, através da equacao de Pauli no
espaco NC, construimos uma generalizagao para o modelo de Heisenberg para dois spins acoplados no
espaco NC. Em tal modelo calculamos a amplitude de probabilidade de transicdo entre dois estados
ortogonais do tipo EPR (Einstein-Podolsky-Rosen) submetidos em um campo magnético oscilatério
e mostramos que, algumas de tais transicoes, que sao proibidas no espaco comutativo sao possiveis
devido a nao comutatividade do espaco.



Abstract

The present PhD thesis refers to problems in field theory and quantum mechanics in noncom-
mutative (NC) space. We study some well known physical systems in theoretical physics, such as
the Maxwell theory in the presence of external sources, the Pauli equation, the Dirac equation with
external fields and the relativistic Hydrogen atom. First we study the U(1), gauge theory and extend
the Seiberg-Witten map to include an external current and formulate classical field equations in NC
space. Solutions in the vacuum and in an external magnetic field for a static charge of finite size a is
determined. We find that a static charge in NC space, besides being an electric monopole, behaves
as a magnetic dipole and the external magnetic field modifies the Coulomb law at large distances,
as well as some electromagnetic form factors. In this direction we analyse the arbitrariness in the
Seiberg-Witten map and show that, at least to the order studied here, this is equivalent to adding
a homogeneous solution to the charge conservation condition. Demanding that the NC magnetic
moment be less than the existing error in the measurement of lepton’s magnetic moment we obtain
an upper bound for the NC parameter 6 and its associated fundamental length [. In addition we
consider the energy levels of a hydrogen-like atom in the framework of a #-modified, due to space
noncommutativity, Dirac equation with a Coulomb field. It is shown that the noncommutativity
completely breaks the degeneracy of the 2S5, 2P,/ and 2P5/, levels, allowing for new transition
channels. At last, but not least, we construct a nonrelativistic wave equation for spin 1/2 particles
through the nonrelativistic limit of the NC Dirac equation. We present a pseudoclassical model (a-la
Berezin-Marinov) whose quantization coincides with the nonrelativistic wave equations. By extrac-
ting the interaction between a nonrelativistic spin and the magnetic field, from the obtained Pauli
equation in NC space, we construct a generalization of the Heisenberg model for two coupled spins in
NC space. In such model, it is calculated the transition probability amplitude between two orthogo-
nal EPR (Einstein-Podolsky-Rosen) states submitted in the presence of an oscilatory magnetic field
and we shown that some of such transitions, which are forbidden in NC space are possible due to
space noncommutativity.
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But I can rest only for a moment, for with

freedom comes responsibilities, and

I dare not linger, for my long

walk is not yet ended.”

(Nelson Mandela)
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Capitulo 1

Introducao

A idéia de um espaco de configuragao discreto, cuja estrutura assemelha-se a uma rede, surgiu por
volta de 1930 nas cartas de Heisenberg para Peierls, Pauli, Oppenheimer e Snyder [1]. Em 1933,
Peierls tratou o problema de uma particula quantica em campos magnéticos uniformes [2] e em 1947
Snyder [3]| considerou coordenadas nao comutativas no espago-tempo com o objetivo de descartar
divergéncias ultravioletas em teorias quanticas de campos, sem destruir a covariancia de Lorentz.
Inicialmente, a idéia de Snyder nao recebeu grande atencao devido ao sucesso do procedimento de
renormalizacao da QED.

A idéia de Snyder, ou mais adequadamente, a existéncia de uma geometria nao comutativa (NC)
no espaco de configuracao! adquiriu interesse e um certo avanco apés a formalizacdo mateméatica
de deformacgao de algebras aplicada a teoria de Yang-Mills sobre o toro NC [4]. Posteriormente
foi discutido que para distancias muito pequenas, da ordem da escala de Planck, a medida das
coordenadas nao possui significado fisico devido ao surgimento de campos gravitacionais intensos que
previnem a transmissao de informagao [5]. Em outro contexto, foi demonstrado e discutido que a
nao comutatividade das coordenadas do espaco-tempo segue naturalmente como um limite particular
de baixas energias da teorias de cordas [6, 7, 8, 9], onde o parametro da nao comutatividade 6 é
diretamente relacionado com o campo de fundo tensorial antissimétrico de Neveu-Schwarz B*”, na
presenga de uma D-brana. Destaca-se ainda a contribui¢ao de Seiberg-Witten [6] da qual, dentre os
véarios resultados deste trabalho, citamos o mapa de Seiberg-Witten (SW), o qual relaciona campos
de calibre da teoria de Yang-Mills NC a campos de calibre da teoria de Yang-Mills ordinaria (ou
comutativa). O mapa de SW (ou transformacao de SW) foi obtida exatamente para todas ordens
em 0" na situacao em que os campos de calibre, em ambos casos, sao U (1). No contexto de teorias
de campos, citamos a melhoria de critérios de renormalizabilidade em algumas teorias a pequenas
distancias, diminuindo a divergéncia de amplitudes ou até mesmo tornando-as finitas, devido ao
surgimento de fatores trigonométricos [10]. Embora existam problemas, como a quebra da invariancia
de Lorentz, violacao de causalidade e unitariedade na situagao em que a nao comutatividade envolve
a componente temporal [11, 12], existe um ativo e grande interesse quando a nao comutatividade
envolve somente coordenadas espaciais. Tais problemas nao surgem neste caso e nao hé problemas
conectados com a evolucgao temporal em mecéanica quéantica. No espaco NC, teorias de Chern-Simons
podem servir como uma descricao natural para o efeito Hall quantico fracionério, como discutido em
[13].

Embora o principal interesse desta linha de pesquisa ainda seja a formulagao de uma teoria
quantica de campos consistente no espago-tempo NC (i.e., uma teoria quantica de campos que nao
apresenta problemas com unitariedade, causalidade e que seja covariante por transformacoes de

10 tratamento matematicamente rigoroso sobre geometria NC pode ser encontrado no livro texto [14].
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Poincaré), é interessante buscar por uma descrigao da mecanica quantica no espago NC, por se tratar
de uma teoria alternativa que contempla a possibilidade de se introduzir uma escala de comprimento
minima e adicionalmente fornece resultados bem estabelecidos pela mecénica quantica usual no limite
comutativo 8 — 0.

Em principio é possivel implementar a nao comutatividade das coordenadas em uma teoria quan-
tica por meio da chamada aproximacao de operadores. Esta consiste na realizacao da algebra nao
comutativa

[(ji7 qu]f = Ze” ) [ﬁlap]], = 07 [@i7]§j], = Zh(s; ) (11)
em termos dos operadores ordinarios (ou comutativos), que satisfazem
[2',27] = [pip;]_ =0, [&p;]_ =ihd}. (1.2)

A realizagao da algebra dos operadores NC (1.1) em termos dos operadores ordinérios é ndo univoca,
algumas delas sdo discutidas em [15, 16|. Tais realiza¢oes foram aplicadas para alguns sistemas
fisicos concretos, embora apresentarem alguns problemas. Por exemplo, no sistema de Landau,
ao se introduzir campo magnético via acoplamento minimo, surge o problema da invariancia de
calibre na qual, na situagao de campo magnético uniforme, o espectro do operador Hamiltoniano é
invariante de calibre [17]. Por outro lado, admitindo que o campo magnético seja nao-uniforme, o
operador Hamiltoniano perde a invariancia por transformacoes de calibre. Para o estudo do espectro
do atomo de Hidrogénio, a aproximagao de operadores também foi empregada em [18] e em nosso
trabalho [19]. Foi demonstrado que, em ambos casos, a nao comutatividade do espago introduz
uma quebra de degenerescéncia dos niveis de energia permitindo a transicoes entre niveis que antes
eram degenerados, sob a descri¢do da mecanica quantica ordinéaria. Enfatizamos que tais transicoes
sao proporcionais ao parametro NC 6, sendo que, no limite § — 0, resgatamos resultados bem
estabelecidos. Aqui, em contraste ao sistema de Landau NC, por exemplo [17], o problema da
invariancia de calibre nao ocorre.

Embora a aproximagao seja operacionalmente mais simples, no sentido em nao haver deformagao
na regra do produto (i.e., o produto entre fun¢ées é o produto usual), a mecanica quantica NC (e
também a teoria de campos NC) pode ser construida através da modificagao de Moyal, que significa a
substitui¢do do produto usual pelo produto estrela de Moyal [20]?. Nos trabalhos [21] e [22], o sistema
de Landau foi também discutido por meio da modificacao de Moyal, cujos resultados coincidem com
os resultados obtidos via aproximacao de operadores. No que diz respeito a invaridncia de calibre, as
mesmas conclusoes foram alcancadas, i.e., o operador Hamiltoniano é invariante de calibre somente
ao considerar um campo magnético constante.

E possivel implementar a modificacio de Moyal a transformacio de Seiberg-Witten [6], que possui
uma grande aplicacdo para sistemas submetidos a campos magnéticos. Existem, alguns trabalhos

2A formulacdo da mecénica quintica em termos de funcoes de distribuicio classicas, definidas no espaco de fase,
consiste na correspondéncia entre estas e seus correspondentes operadores na teoria quantica. Tal formulagao foi
desenvolvida inicialmente por Weyl e Wigner [24] e posteriormente por Groenenwold e Moyal [20]. Sob esta formulagao
foi definido o produto estrela de Moyal, que realiza a algebra de Heisenberg dos operadores de posigdo e momento. A
modificagdo na lei do produto no espago de fase é referida como deformagao, sugerindo, por sua vez, a nomenclatura
de quantizagdo por deformagao. Esta é uma area ativa em fisica teérica, por exemplo veja as referéncias [25, 26, 27].

Seguindo a construcdo da quantizagéo por deformacio, define-se analogamente o produto de Moyal que realiza a
algebra NC. A defini¢do do produto estrela apresentada nos proximos capitulos, por exemplo (2.2), ndo corresponde
a definicao original, trata-se meramente de uma denominagéo adotada em muitos artigos em mecanica quantica NC e
teorias de campos NC, por exemplo, [28, 29]. Aqui, ao invés de adotarmos o rigor ao se explicar a diferenga em cada
vez que nos referirmos ao produto de Moyal, mantemos tal abuso de linguagem, seguindo as referéncias supracitadas
e diversas outras.
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neste assunto, como [23], onde foi determinada a agao efetiva para o campo de Schréedinger em 2+1
dimensdes no plano NC, acoplado com o campo de calibre U (1),. Demonstrou-se que, utilizando
a transformacao SW, a nao comutatividade do espago nao interfere na condutividade Hall. Nesta
mesma linha existem trabalhos que tratam, entre outros assuntos, o efeito Aharonov-Bohm no espaco
nao comutativo, como [30, 31, 32| e o efeito Hall como [22, 33, 34, 35]. Como demonstrado em [30],
retendo termos até primeira ordem em 6 provenientes do produto estrela, tanto a condutividade
Hall quanto a fase topologica do efeito Aharonov-Bohm apresentam o mesmo comportamento em
comparagao com o espago comutativo, i.e, a ndo comutatividade do espaco nao interfere nestes efeitos.
Este resultado foi obtido através do acoplamento minimo com campos de calibre U (1), relacionados
com os campos de gauge usual U (1) via transformagao Seiberg-Witten. Ainda neste contexto, em
[36] foi discutido que qualquer teoria de calibre NC deve ser fisicamente equivalente a um subconjunto
de uma extensao do modelo padrao, que viola Lorentz, envolvendo campos de calibre ordinarios.

Todo este cenario serve como motivacao para o estudo de teorias quanticas no espa¢o nao comu-
tativo e apresentamos abaixo progressos alcangados nesta direcao. No capitulo 2 estudamos a teoria
de calibre U(1), e extendemos o mapa de Seiberg-Witten para incluir uma corrente externa (que vi-
ola a invariancia de calibre) e formulamos, em primeira ordem no parametro NC, equagoes cléassicas
para os campos covariantes na presenca de fontes. Encontramos solugoes no vacuo e em um campo
magnético externo, quando a 4-corrente é uma carga estatica de tamanho finito a restrita pelo com-
primento elementar. Impomos condi¢des de contorno extras que sao usadas para regularizar todas
as singularidades 1/r incluidas nas solugbes. A carga estética encontrada ¢, além de um monopolo
elétrico, um dipolo magnético, com seu momento magnético sendo inversamente proporcional ao seu
tamanho a. O campo magnético externo modifica o campo de Coulomb a longas distancias e alguns
fatores de forma eletromagnéticos. Também analisamos a ambiguidade no mapa de Seiberg-Witten
e mostramos que, no minimo até a ordem estudada aqui, isto é equivalente a ambiguidade de se
adicionar uma solug¢ao homogénea a condicao de conservacao da corrente.

No capitulo 3, limites superiores para o comprimento fundamental sdo discutidos, os quais se-
guem do fato que um momento magnético é inerente a uma particula carregada na eletrodinamica
NC. O resultado mais pronunciado para o comprimento fundamental ¢ ainda maior que a estima-
tiva do tamanho do elétron e muon, alcancado pela abordagem de Brodsky-Drell e Dehlmet para a
composi¢ao do lépton. Isto significa que a eletrodindmica NC nao pode sozinha explicar a discre-
pancia completa existente entre valores tedricos e experimentais do momento magnético do mton.
Ao contrério, quando medidas e calculos forem melhorados, a estimativa para o comprimento fun-
damental baseado em dados do elétron pode ainda diminuir para coincidir com seu raio composto.
No capitulo 4 investigamos os efeitos da nao comutatividade das coordenadas no dtomo de hidro-
génio relativistico. Demonstramos que tal consideracao modifica a estrutura dos niveis de energia,
em comparacao com com a estrutura bem conhecida obtida pela mecanica quantica nao relativis-
tica. Os resultados obtidos mostram que os niveis degenerados 25 — 2P se separam em trés niveis.
Explicitamente, a nao comutatividade quebra totalmente a degerescéncia dos niveis 2P )3 e 2P,
resultando em novos canais de transicdo permitidos. Adicionalmente comparando nossos resultados
com valores recentes para o “Lamb-shift” [37], determinamos um limite superior para o parametro
NC 6. No capitulo 5 construimos uma equagao de onda nao relativistica para particulas de spin 1/2
(no sentido de uma f-modificagao® da equagio de Pauli) e, para este fim, determinamos o limite
nao relativistico da equacao de Dirac f-modificada. Apresentamos um modelo pseudocléssico (a-la

3Referimo-nos aqui a uma equacio f-modificada como sendo uma equacio modificada ao se considerar a nio
comutatividade do espago. Como discutido acima, fungoes das coordenadas agora dependerao do parametro NC 6.
Lidamos com uma nova equagdo que € a expansdo em série de poténcias em 6, cujo termo de ordem zero é a equagao
ordinéria (equagdo sob a descrigdo classica/quéntica ordinéria).
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Berezin-Marinov) cuja quantizacao coincide com as equagoes de onda nao relativisticas. Extraimos a
interagao entre um spin nao-relativistico e o campo magnético de tal equagao de Pauli e construimos
uma #-modificacao do modelo de Heisenberg para dois spins acoplados no espago nao comutativo.
Em tal modelo calculamos a amplitude de probabilidade de transicao entre dois estados ortogonais
do tipo EPR submetidos em um campo magnético oscilatério e mostramos que algumas de tais
transicoes, que sao proibidas no espago comutativo, sao possiveis devido a nao comutatividade. No
capitulo 6 apresentamos as conclusoes e comentarios finais.
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Capitulo 2

Eletrodinamica Classica Nao Comutativa
com Fonte Externa

2.1 Introducao

Teorias de campos NC, baseadas em uma profunda revisdo de propriedades mais fundamentais do
espaco-tempo pela introducao de um comprimento elementar, desempenham um papel desafiante na
fisica tedrica moderna. Estas teorias nao necessitam de uma longa introdugao e referimos ao leitor in-
teressado os artigos de revisao |28, 29]. O presente capitulo ¢ devotado & constru¢do de uma extensao
NC da eletrodinamica classica com fontes externas. E notavel que a resultante eletrodinamica é, ja no
nivel cléssico, uma teoria nao linear e rica em propriedades. Por exemplo, ela apresenta caracterisicas
de birefringéncia e “splitting” de fotons em campos externos [38]. Mas, em contraste com outras teo-
rias nao lineares, p.ex., a teoria classica de Yang-Mills, a eletrodindmica de Born-Infeld ou mesmo a
eletrodinamica quantica (QED) apos corregoes radiativas em consideragao, a eletrodinamica classica
NC é, além disso, anisotropica. Demonstraremos abaixo que a eletrodinamica classica NC reproduz
também outras caracteristicas interessantes, conhecidas em QED [39], [40]. Além disso estabelecemos
que a carga eletrostatica com sua densidade homogeneamente distribuida em uma esfera de tamanho
finito carrega consigo um momento magnético dependente de seu raio. Portanto a idéia de um mo-
mento magnético intrinsicamente NC para o préton aparece. Adicionalmente esta mesma esfera em
um campo magnético externo apresenta uma modificagdo da lei de Coulomb a grandes distancias da
carga, uma caracteristica completamente anormal para a QED. Este efeito pode ser referido como
uma manifestagdo macroscopica de um comprimento elementar a grandes distancias. Um estudo
deste e outros fendomenos classicos semelhantes é imprescindivel uma vez que possiveis consequéncias
observacionais oriundas da nao comutatividade podem ser experimentalmente procuradas.

No presente tratamento o campo eletromagnético é ndao quantizado. Os portadores de carga
sao representados através de correntes em vez de campos elementares. Esta ultima tarefa, a saber
a introducdo de correntes, representard um problema um tanto nao trivial. E bem conhecido que
existem severas restri¢oes sobre grupos de calibre e suas representacoes de forma que transformacoes
de calibre possam formar uma algebra fechada no plano NC [18]. Para superar esta dificuldade utiliza-
se o mapa de Seiberg-Witten (SW) [6] ou considera-se transformagoes de calibre “twisted” [41, 42].
Nenhuma destas sdo, estritamente dizendo, necessarias para a eletrodinamica NC, pois, o grupo de
calibre U(1) pode ser facilmente deformado em um grupo U(1),. Consequentemente, muitos artigos
definem a eletrodindAmica NC como uma teoria de calibre U(1),!, veja p.ex., [44, 45, 46, 47]. Nao

IExiste outra terminologia, veja [43], segundo a qual esta deformagdo é denominada modificacio de Moyal.
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obstante, véarios aspectos do mapa de SW foram desenvolvidos para teorias U (1) NC [48, 49]. Uma
vez que o potencial eletromagnético ap6s o mapa de SW tém propriedades de transformacao de calibre
ordinérias, este mapa facilita a analise de predigoes fenomenologicas de teorias NC [50, 51, 52, 53].
Ao mesmo tempo o mapa de SW possui efeitos interessantes sobre a renormalizabilidade de teorias
NC mesmo no caso U (1) [49, 54, 55, 56].

Estudamos a nao comutatividade em sua ordem mais baixa, uma teoria de Maxwell NC na
presencga de fontes em primeira ordem no parametro NC §. Claramente, se a anélise fenomenologica
envolve uma comparagao de solugdes em uma teoria comutativa para corre¢oes NC, é essencial que
ambos campos comutativo e NC tenham as mesmas propriedades de transformacao perante o grupo
de calibre. Por exemplo, os campos elétrico e magnético devem ser invariantes de calibre U (1). Em
outras palavras, para tais aplicacoes introduz-se campos comutativos em uma teoria NC2. Isto é
precisamente o que o mapa faz.

Na secao 2.2, como uma preparagao para a constru¢ao de SW, primeiramente estudamos a teoria
de calibre U(1), com correntes. Observamos que, embora o conjunto de equagoes de movimento
consistindo das equagoes de Maxwell e da condi¢ao de conservagao da corrente seja covariante por
transformagoes de calibre, a acao nao é invariante de calibre. Este fato é analogo & propriedade bem
conhecida em teorias de Yang-Mills nao abelianas (“comutativas”) e nao representa uma inconsisténcia
interna. Entretanto, para o mapa de SW isto implica que o mesmo deve ser efetuado nas equagoes
de movimento ao invés de ser realizado na agao. Procedemos desta forma e derivamos o mapa de SW
para as correntes [57| em primeira ordem no parametro da nao comutatividade. Equagoes de campo
incluem potenciais junto com tensores eletromagnéticos. Sua covariancia de calibre é efetuada via a
afirmagao que potenciais transformados (por uma transformagao de calibre) satisfazem as mesmas
equagoes com a precisao adotada.

Na se¢ao 2.3 consideramos as corregoes NC para os campos de uma carga estatica e esfericamente
simétrica distribuida em uma esfera de tamanho finito, assumindo a nao comutatividade do espago,
somente. E importante notar que o tamanho da carga deve ser maior que o comprimento elementar
caracteristico de uma teoria NC. Em contraste com o nosso trabalho anterior [58], consideramos
adicionalmente a carga estatica em um campo magnético constante e homogéneo. Tal consideragao
resulta em uma correcdo NC para o potencial eletrostético, linear com respeito a carga e ao campo
externo e, em um campo magnético NC produzido pela carga, quadratica com respeito ao seu valor
e independente do campo magnético externo. Na subsecao 2.3.1 impomos condigoes de contorno nas
equagoes de campo que excluem um comportamento singular das solugoes na origem (onde a carga
é centralizada) e encontramos os campos magnético e elétrico produzidos pela carga. Nas subsegoes
2.3.2, 2.3.3 consideramos outras solucoes que apresentam singularidades na origem ou nao decrescem
em regioes remotas e discutimos quais das solugoes podem ser selecionadas como fisicas e associadas
a carga. E notavel que a solugdo para o campo magnético NC fisica (regular na origem) nao apresenta
um limite finito se seu tamanho é considerado infinitamente pequeno. Isto néo é obrigatorio, de fato,
desde que o tamanho de qualquer objeto fisico ndo pode ser menor que o comprimento elementar. Na
secao 2.4 discutimos varias peculiaridades das solugoes: o efeito magneto-elétrico e, especialmente,
o momento magnético NC intrinseco devido & extensao da carga da particula, que é inversamente
proporcional ao seu tamanho e portanto mais importante [58] para particulas que sdo consideradas
puntuais, de acordo com as presentes possibilidades experimentais, como 1éptons carregados e quarks.
Ao mesmo tempo discutimos o “splitting” causado por este momento magnético NC se a particula é
admitida como sendo um nicleo atémico (subsegao 2.4.1). Na subsecao 2.4.2 discutimos a corregao
NC para o potencial eletrostitico que consiste em uma contribui¢ao tipo Coulomb anisotropico de

ZSalientamos que, para algumas aplicagdes, como a recente analise da condi¢io da quantizagio NC de Dirac [59],
isto nao é necessario.
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um momento de quadrupolo. Um “splitting” de Zeeman NC anélogo é apontado. Na subsecao 2.4.3
propomos uma extensido do teorema de Furry em aplicagdo a eletrodinamica NC que explica, em
bases gerais, o carater da dependéncia das solu¢oes magnética e eletrostitica em poténcias da carga,
campo externo e parametro NC.

E conhecido que o mapa de SW néo ¢ tinico. Na secdo 2.5 mostramos que, em primeira ordem, a
ambiguidade no mapa de SW, derivado na subsegao 2.2, para a corrente é precisamente a ambiguidade
de adicionar uma solugao homogénea da equagao de conservacao para a corrente.

2.2 Equacoes de Maxwell no espago-tempo nao comutativo

2.2.1 Teoria de calibre U(1),

Nesta subsegao trabalhamos no plano Moyal, que é (identificado com) um espaco de fungoes sufici-
entemente suaves no R* munidas com o produto estrela de Moyal (2.2) e o parametro NC & assumido
ser constante, i. e., ¥ = const.

Iniciamos com a agao para a teoria de calibre U(1),,

S:SA+SjA, (2.1)
L . - . 1 . .

SA:_167TC/d$FuU*FM s SjA:—cz/dl‘j“*Au,

EF.=0,A,—0,A, +ig [A7A)] [AfA) = A, «A, — A, xA,,

onde a constante de acoplamento é g = e/(hc), com e sendo a carga elementar (para um elétron
e = —|e]) e o produto estrela de Moyal “x” é definido como

f(x)*g(z) = f(x)e

com f (x) e g (x) sendo fungoes arbitrarias, e.g., [29, 44, 46, 47, 89, 90, 97, 98|, e x = (2° = ct, 2%, i=1,2,3).
Em linhas gerais, a acao Sja pode ser obtida de uma teoria NC com campos fundamentais. Por exem-
plo, para o caso de férmions fundamentais, teriamos,

9

“ewa”g (x) , (2.2)

5’1; = i/dxq}*fy“ (8# — ig/vlu*) )= i/dﬂﬂv"@;ﬂﬁ + S'jA. (2.3)
As transformagoes de calibre U(1), sao,
Ay = A =Usx Ay« U +ig7 " (0,U5) « U
Fyy = Fl, = Us % B % UL,
5 . 1. . .

UX:eiA:1+i>\—§)\*)\+O(>\3), (2.4)
com um pardmetro local 5\(1‘) A acdo S, ¢ invariante por estas transformacdes de calibre (veja,
p.ex. [6, 49, 50]). A corrente externa j* (r) transforma-se covariantemente,

J = Us* "« U (2.5)
de forma que as equaces de movimento, 65/ 6121” =0,

Dy (z) = 4%5# (2) , (2.6)
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sdo covariantes sob as transformagoes (2.4), (2.5). A derivada covariante ¢ definida como
D,® = 09,0 +ig [A,1®] . (2.7)

A mesma regra de transformacao (2.5) para a corrente segue de (2.3) assumindo as propriedades de
transformacio padrées ¢ — 1)/ = U 5§ x 1 para férmions.

A condigao de compatibilidade para as equacoes de movimento (2.6) conduz a uma lei de conser-
vagao covariante para a corrente,

D,D,F"" =0= D,j* =0. (2.8)

Retornemos agora para a acao. A soma Sa + SJ, é invariante perante o grupo de transformagoes
U(1),. Entretanto, efetuando uma transformagao de calibre infinitesimal (2.4), (2.5) na agao para as
correntes em (2.1) obtemos,

3 1 .
55 = —gCQ/d:E{(GH] )« A) (2.9)

o que significa que a teoria de Maxwell NC na presenca de correntes tem simetria U (1), se as
correntes j* sdo conservadas, i.e., @J” = 0. Entretanto esta condicao estd em desacordo com o fato
que as correntes sejam covariantemente conservadas, que segue como uma identidade das equagoes
de movimento (2.8). Portanto a agao total S (2.1) ndo ¢ invariante por transformagoes de calibre
U(1),. De fato, esta mesma caracteristica ja é conhecida da teoria de Yang-Mills acoplada com
correntes externas. Nao existe uma maneira consistente de introduzir correntes em teorias de calibre
nao abelianas no nivel classico [61] (veja também [62]) sem violar a invariancia de calibre da agao,
embora uma teoria de calibre covariante possa ser formulada [63| tanto no nivel classico como no
quantico. Consequentemente é esperado encontrar aqui o mesmo problema devido a estreita relagao
entre a teoria de calibre ndo comutativa U (1), e teorias de calibre nao abelianas [28, 29].

2.2.2 O mapa de Seiberg-Witten

Apesar da presenga de todas propriedades de covariancia U(1), das equagoes de Maxwell, nao é o que
realmente se necessita para analisar todas as predi¢oes fenomenoldgicas da teoria NC. Gostariamos
de lidar com tensores eletromagnéticos e correntes invariantes ao invés de covariantes. Em outras
palavras, é necessario introduzir campos de calibre ordinérios U(1) no lugar de campos de calibre
NC U(1),. Isto é alcangado através do mapa de Seiberg-Witten [6], cuja forma é bem conhecida para
/vlu e F;w- Em primeira ordem em 6 temos,

Au = A+ %QQBAQ [aﬁAu + fﬂu] v S =0uAy — 0, A,

F[w = ful/ - geaﬁ [fa/tfﬁu - Aaaﬂfuu] . (210)
A=A— geaﬂaaA  Ajs .

Para determinar o mapa de SW para as correntes j* impomos que, perante o mapa de SW, as
transformagdes de calibre U(1), (2.5) das correntes j* ¢ induzida pelas transformagoes de calibre
U(1) de A, e j* através de uma dependéncia funcional de j* nos mesmos. Para transformagoes
infinitesimais, esta condicao é,

J* (A ) + 050" (A, §) = J* (A+ 8\A,5) | (2.11)
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onde 5; e J, denotam as correspondentes variagdes de calibre. Note que, §,j7 = 0, em concordéncia
com a eletrodinamica ordinaria de Maxwell. Por virtude de (2.5)

053" (A7) = i [M7"] = =0°7 (9aX) (9p5") + O (¢%)

que concide com as transformagoes de calibre de g6*? A,05j* causadas por 6y A, = —g 19, \. Entao,
finalmente, o mapa de SW adicional para as correntes é

J* = g" 4 g0°" A, 055" . (2.12)

Este resultado coincide com o derivado previamente na referéncia [57]. Este mapa nao é tnico, existe
uma ambiguidade em trés parametros nas solugoes das equacgoes de SW que serdo discutidas na
subsecao abaixo 2.5.

Como jé mencionado acima, a acao NC para o campo eletromagnético interagindo com uma
corrente externa ndo é invariante de calibre, ao passo que as equagoes para os campos sdo covariantes.
Consequentemente faz sentido aplicar o mapa de SW as equagoes de movimento (2.6) e as condigoes
de compatibilidade (2.8). Em primeira ordem em 6**, obtém-se,

4
0, f"" — g0 (D, (L7 f4") — FoaDs " — Aud, 05 f") = %w + g0°P 4,955, (2.13)
0,7 + 96°° (fuaOs" + Aadsj") = 0. (2.14)

E possivel verificar a compatibilidade destas duas equacdes com a mesma acuracia em poténcias
de 6, atuando a derivada parcial J,, em (2.13) e utilizando (2.14) para obter uma identidade. Somente
a anti-simetria dos tensores 0% e f* ¢ referida no processo, bem como as identidades de Bianchi
para ultimo tensor.

As equagoes de Maxwell (2.13) sdo nao lineares com respeito ao campo mesmo quando as correntes
externas sao ausentes, j = 0. A néo linearidade é restrita a segunda poténcia do campo, pois nos
restringimos a primeira ordem no pardmetro da nao comutatividade 6 ao deduzi-las: expansdo em
poténcias em 6 gera expansoes em poténcias do campo®.

As equagbes de movimento (2.13), (2.14) sdo covariantes de calibre U(1) por construgao, embora
aparentam nao ser invariantes por conterem potenciais juntamente com tensores eletromagnéticos e
correntes, ambos invariantes de calibre . Por outro lado é importante notar que os potenciais estao
envolvidos com o parametro € que é presumivelmente pequeno. Por esta razao os termos contendo
potenciais podem ser omitidos do conjunto de equagoes se admitidos em suas solugoes, determinados
com a acuracia desejada. Para provar esta afirmacao, note que o primeiro fator 9,5, ¢ da ordem de
0 de acordo com a equagao (2.14). Assim ao ser substituido no termo proporcional aos potenciais
g0°% A,050,j" estes tornam-se de ordem 6% e, portanto, podem ser desprezados na equagao (2.14).
Analogamente, a diferenca dos dois termos proporcionais aos potenciais no lado esquerdo e direito
da equagdo (2.13) A, 6°°95(9, f** — 27 j#) também sao de ordem ~ 62, pois o fator (9, f** — 2 j) &
da ordem de 6 de acordo com a equagao (2.13). Portanto as equagoes acima se reduzem ao conjunto
de equagoes explicitamente invariantes por transformacoes de calibre,

O = g QUL 1) = holaf) = (215)

gt + g0% fLa0sj" = 0. (2.16)

3Como pode ser observado pelo mapa de SW (2.10), termos lineares em @ sio acompanhados por termos quadraticos
nos potenciais.
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Trataremos as equagoes nao lineares (2.15) e (2.16) recursivamente, expandindo A, e j* em série
de poténcias em 0:

A=A + AV (0)+ 0 (07) | (2.17)

j“ — j(O)u +j(1)u(9) +0 (92) 7 (2.18)

onde A, jO) satisfazem as equacoes de Maxwell comutativas e a equacao de conservacio da corrente

4

6yf(0)u,u — %](O)p« 7 aﬂj(o)# =0 , (219)

e AU) e jU) sdo correcdes da j-ésima ordem em #. Usando (2.19), obtemos em primeira ordem em 6,
v, « v v 47T .

0,£0 = g7 (" ") = F0s ) = 50, (2:20)

0, VH + 908 [0 O = 0. (2.21)

Solugdes de (2.20) e (2.21) ndo sdo tunicas. Pode-se adicionar uma corrente j* que satisfaz
ﬁuj“ =0 em jM*. No entanto isto é equivalente & propria solucao da equacio (2.19) para j Or Esta
ambiguidade é, portanto, néo fisica e j* pode ser absorvido em (. Em exemplos considerados na
proxima subsecdo, onde a fonte j(O# ¢ estética e esfericamente simétrica, pode-se admitir jMW* = 0.
Similarmente a ambiguidade para fM# pode ser removida impondo condicdes de que os campos
se anulem no infinito ou fixando um campo externo. Tais condigbes removeriam, por exemplo, um
campo magnético homogéneo e constante, como uma possivel solugao de 9, f M — ),

A titulo de completeza, verifiquemos o que acontece ao efetuarmos o mapa de SW no nivel da
acao (2.1). Facilmente obtém-se para a primeira ordem em 6

Sow =g [ o { (14 50°%an) fu = 208 £ i}

1 . 5 . .
-5 / dz { A, + ge Bt A (054, + fa) + g0™P A, A, (aﬁjﬂ)} 7 (2.22)

cujas respectivas equacoes de Euler-Lagrange sao,

0, [ (1420 1) | = it (14 2070 ) + 98 [0 (£71) + 00 (7 )]

+98 {0, (7 F3) = 109 (£ o)

- 4: [fﬁaja + Aa (955%) — f;ﬁ (&u’“)]} : (2.23)

Na situacao em que as correntes estao ausentes, pode ser verificado diretamente que estas equagoes
coincidem com (2.13) como solugoes das ttimas. Contrariamente, quando j* # 0, as equagoes
(2.23) apresentam problemas. A invaridncia de calibre de (2.23) nao pode ser restauranda mesmo
efetuando as expansoes (2.17) e (2.18). Consequentemente, de agora em diante, desconsideramos as
equagoes derivadas desta forma, i.e. (2.22), e utilizaremos exclusivamente as equagoes de Maxwell
NC e conservagao da corrente (2.13) e (2.14) (junto com suas versoes expandidas (2.20) e (2.21)).
Alguns pontos esclarecedores acerca da nao-equivaléncia do mapa de SW aplicado a agao e as
equacbes de movimento sao discutidos a seguir. Por defini¢io, para uma teoria U(1), temos S(A, j) =
Ssw(A, 7). Consequentemente, as equagoes de movimento (2.23) podem ser reescritas como,

. dSsw / [ 65 5121,,(y) 85 55”@)
5A,(0) 53, () A, (x)  37%(y) A, ()
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O primeiro termo acima se anula sob as equagbes de movimento (2.6), enquanto o segundo nao
(uma vez que nao existe equagoes de movimento oriundas pela variagdo das correntes). Portanto, as
equacoes de movimento provenientes da variagao da agao Ssw nao sao equivalentes em comparagao
as equacdes provenientes da acdo original S. Em contrapartida, se o mapa de SW é aplicado as
equagoes de movimento da teoria de calibre U(1),, tal equivaléncia é preservada (apés truncarmos
em primeira ordem em #). A razao por tras da nao equivaléncia dos dois procedimentos é a natureza
nao dinamica da corrente externa, que nao gera quaisquer equagoes de movimento, mas participa no
mapa de SW. A titulo de elucidagdo, o apéndice B é devotado a uma discussao acerca do mapa de
SW e as equacoes de Maxwell NC na auséncia de fontes externas.

2.3 Solugoes para o potencial produzido por uma carga esta-
tica na presenca de um campo magnético externo

2.3.1 Solucgoes regulares

Nesta subsecao estudaremos as corre¢coes NC lineares em 6 para o 4-vetor potencial de uma carga
estética esfericamente simétrica. As corre¢oes encontradas sdo tanto eletrostaticas quanto magnetos-
taticas (em particular, as ultimas ocorrerdo somente na presenca de um campo magnético externo).

Impomos condi¢Ges estacionarias,
DAV (2) =0, (2.25)

sobre estas corregoes, tendo em mente que as solugdes em ordem zero (i.e., solugoes das equagoes de
Mawxell ordinarias),

4
8, fOvi — %j(o)u7 0,7 =0,
[ = 0,40 - 9,A0) (2.26)

sao também sujeitas a condigoes estacionarias. Precisamente, adimitimos a carga total externa Ze
distribuida com uma densidade constante pela regido esférica de raio a. A densidade de corrente
jO# ¢ definida em duas regides, na parte interior da esfera r < a, representada pela regido I, e em
sua parte exterior r > a, representada por regiao II, como segue,

) 3Ze el
P =0 o= {5 S = (2.27)
Na sequéncia incorporaremos aos potenciais, relacionados com estas regides, os indices I ou II. A
distribuicao de carga homogénea dentro da esfera é admitida por simplicidade. Extensoes a dis-
tribuicoes esféricas arbitrarias, inclusive continuas, podem também ser consideradas quando ne-
cessarias. A densidade de carga (2.27) tende a uma delta de Dirac no limite de carga puntual:
p(x) = Ze 6*(x), quando a — 0. Entretanto, devido a nao comutatividade das coordenadas, ne-
nhum objeto esférico fisico deve possuir raio menor do que o comprimento elementar intrinseco a nao
comutatividade. Por esta razdo, restringiremos nossa consideracio a valores a > V6 (aqui # = |6
e @ ={0"}, 0 = 3e;0%). Por outro lado, apos efetuar o mapa de SW, estamos lidando com
um espaco comutativo, o que significa que devemos ter cautela de modo que a teoria resultante seja
consistentemente definida em todas regides, i.e., em r < a e r > a. Portanto ao considerarmos
valores para as coordenadas na origem r = 0, devemos tratar possiveis singularidades neste ponto e
suas consequéncias. Este fato nos implicara a impor condi¢oes de contorno regulares na origem. Tais

22



condigbes sao obrigatérias enquanto estamos lidando com a expansao em poténcias de 6. O ponto é
que ordens superiores em # sao acompanhadas por ordens superiores dos potenciais eletromagnéticos
e suas derivadas. Logo, se uma singularidade é admitida em ordem mais baixa, ela pode reforcar-se
a cada préoxima ordem subsequente na expansao em 6, sendo portanto nao negligencidvel mas ao
mesmo tempo fisicamente ndo admissivel. Salientamos que na referéncia [64] foi sugerido que uma
distribuicao de cargas substitui o uso de produtos nao comutativos nas equagoes de movimento. Nao
adotamos este ponto de vista no presente capitulo.

E evidente que (2.27) satisfaz a equagdo de conservacao da corrente em (2.26). A equagao (2.26)
¢ satisfeita pelos seguintes potenciais eletromagnéticos A©#,

A0 — (A(O)O’A(O)i) 7

_Zey,2 | 3Ze o
A(O)O (7“) _ { ﬁzasrr ;rIQI w0 T el : A(O)z _ _ifi(O)mka fi(lg) — const, (2.28)
onde incluimos uma solucdo homogénea da equacdo (2.26) A = —% fi(lg)xk, correspondente ao

campo magnético externo B; = %ajk fj(,g). O caso A = 0 foi considerado previamente em nosso
trabalho [58].
A componente zero da equagao (2.28) satisfaz as condi¢oes de contorno,

AP (0) £ 00, AP (r) —0, (2.29)

r—+00

— 0,AY°(r)| . As condicdes de con-
r=a r=a
torno (2.29) determinam completamente a solugao A®° (r) (2.28) da equacio de Laplace. A segunda
condigao em (2.29) exclui a funcao linear E'z’, correspondente a um campo elétrico homogéneo
arbitrario como uma possivel solucao para f(@%

Restringimo-nos a nao comutatividade do espago (§°% = 0). Pela simetria esférica da corrente
§Or (2.27) e da solucdo A (2.28), segue que a equacio (2.21) é satisfeita por j(V* = 0, i.e., ndo ha
correcao para a corrente. Isto implica que a corrente permanece dinamicamente intacta, j# = jO#,
de forma que nos referimos & mesma como uma corrente externa fixa, como ¢é de costume na teoria
U(1). Nesta situagao a equagao de Maxwell (2.20) torna-se,

e continuidade A" (71| = AD ()|, 0,4 ()

r=a r=a

0 f M 4 g6 [(&A(O)O) (9,0 A00) + 2 (akajA@)ﬂ)] =0. (2.30)

Levando em consideracao a condigao (2.25), para a componente zero (u = 0) do potencial, a eq.
(2.30) reduz-se a -
V2ZAWL 4 2gBi97 (5;,; VA0 — 9,0,A0°) =0, (2.31)

onde noés introduzimos o vetor @ com componentes 6 = %Eijkﬁjk . A parte espacial de (2.30) admite
a seguinte forma

B, fV* 1 g0 (9,A00) (9%9;A0°) =0

ou
VZALE _ 9.9, AV 4 g7 (82»14(0)0) (akajA(O)O) =0, (2.32)

visto que a segunda derivada espacial do potencial vetor A% & nula.

Uma vez que as equagoes (2.20), (2.21) contém somente campos eletromagnéticos, e nao po-
tenciais, podemos impor, por exemplo, o calibre de Coulomb 9;A* = 0 tanto em A©* como
em AM¥ E importante ter certeza que as equacdes resultantes sio nao contraditorias e, para
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este fim, atuaremos o operador diferencial J; em (2.32) com o intuito de observar se, de fato,
O AWF = 0 ¢ satisfeita. Imediatamente verificamos que isto implica que 679;,[(9;A©°)(9,0; A0)] =
0[(0,0;A0)(8,0; A0°) + (8;A0°) (V29;A®0)] = 0. O primeiro termo se anula devido a antis-
simetria de #” e o segundo é também nulo gracas a simetria esférica de A0 e sua dependéncia
em |x|. Explicitamente o produto dos dois fatores no colchetes é proporcional ao produto de dife-
rentes componentes deste mesmo vetor z'xz’/. Este tensor se anula quando multiplicado pelo para-
metro antissimétrico #%. Portanto, no calibre de Coulomb, obtemos para as componentes espaciais
(n=k=1,2,3)

V2ZAWE 4 607 (9,400 (9,0,A"°) = 0. (2.33)

Pode-se observar que, ao contrario da equagao (2.31), a equagdo (2.33) nao contém contribuigao
do campo externo. Estes fatos mostram que a introducdo de um campo magnético constante e
homogéneo nao modificara o campo magnético produzido pela carga estéitica, mas, ao invés disso,
acarretard uma corregao para o campo elétrico. Como se pode observar, se (B = 0) nao hé corregao
em primeira ordem em 6 visto que a equagao (2.31) reduz-se a equagao de Laplace com condigdes de
contorno regulares (2.29).

Observamos que as componentes AM° e A s30 desacopladas, logo podemos analiza-las separa-
damente. Iniciamos com a equacdo para A1, Na regido I, a equacio (2.33) torna-se

V2ADE (x) = —g (?)2 gikyi (2.34)
e para a regiao II temos, )
V2ADE (x) = —g (ff) bikyi (2.35)
As solugoes gerais sao,
A%l)k (x) = 1g() (Ze> r2gk it —|—a(1)k (r,9,9), (2.36)
Ag)k (x) = —% (f;) o* 2t + aﬁ)k (r,9,¢) , (2.37)

. . . . . - 1)k
onde ¥ e ¢ sdo os angulos azimutal e polar do raio vetor x, respectivamente. As fungoes af\)

(A =1, 1II) sao solugoes ordinérias da equagao de Laplace Vga(;)k =0,

(r, 9, ) Z Z a(A)lmT +5(A Hl)] Yim (9, 9)

=0 m=—1

e as fungoes Y, (¥, ¢) sdo harmonicos esféricos [65]. As constantes a?)\)l,m e ﬂ&)hm sdo fixadas pelo
mesmo tipo de condi¢oes de contorno e continuidade como antes,

Al )| =al |
NG _ 9,
EAI (X) . = EAII (X)

AV x| #oo, AV (x)

r—0

)
r=a

=0. (2.38)

r—00

24



Os lados direito nas equagoes (2.34) e (2.35) podem ser expressas em termos de harmonicos esféricos
com [ = 1 por meio das relagoes,

1 /3 . 1 /3
Yig = o\ & (z' +ia®) , Yig= -/ El‘?’- (2.39)

r

5 : k k ko _ ok gk _ gk
Entao os coeficientes agy, . € By, resultam a ser (oqyy, ., = & Biinym = Brm)»

k k
Qanm = 5(1)z,m =0,

o
=
t
=
N
SN
~_
(V]
)
NE
H
>
-
+
-~
S
=

L 7 g a 3

1 Ze\? [an
kE _ 3k
o= g ) 30

2 (Ze)* [4x
Bro = 59( a) ?93’2 (2.40)

. k k ~ . . . .
ao passo que todo o resto dos coeficientes ap,, e 3, com [ # 1 sao identicamente iguais a zero.

Finalmente, temos

2 2
Wk, g (Ze 2r ik, i
AI (X)——4<a2> <5a2—1>9$, T<a,
2
k g (Ze 8r ik
Ag) (X)_4(r2) (5a—1>9k$, r>a. (2.41)

Como é possivel constatar, esta solugdo se anula na origem, A%l) (0) = 0, embora tal condigao de
contorno nao foi imposta. Nao existe limite finito de (2.41) se a — 0.
Agora partiremos para as solugoes de (2.31). Para a regiao I obtemos,

Ze
v2AM (x) = 4g <a3) (B-0), (2.42)
e para a regiao II temos
Ze
V2AR (x) =29 <r5> [3(x-B)(x-0)—1*(B-0)] . (2.43)
As solugoes gerais podem ser expressas como
2 (7
A (%) = 59 <a§) 2 (B-0)+a (r,0, ) | (2.44)
x-B)(x-0
AR (x) = —g (20) T BIEO) oy y ) (2.45)

onde a%l)o,aﬁ)o sdo solugoes homogeéneas, que sao fixas através das condigoes de contorno (2.38)

conduzindo-nos ao resultado final

-2 (Z) (2L )@~ Lemxo). r<a

a

Ag)o(x):g<ze>{1<§£—1>(X-B)(X-0)—(;ij%—l)(B-H)} r>a. (2.46)



Utilizando (2.10) e (2.12) junto com as solug¢oes obtidas acima pode-se obter os campos nao
comutativos A* e correntes 7", na mesma ordem em 6. Como esperado, campos nao comutativos
diferem das suas contrapartidas SW ja nesta ordem.

Tem sentido confrontar o resultado (2.46) com o fato [66] de que em certos modelos o regime
de um campo magnético intenso assemelha-se a ndo comutatividade: a acao (efetiva) para alguns
campos compostos ou de calibre inclui seu préprio produto tipo Moyal, entao estes campos podem ser
imaginados definidos como coordenadas, dentre os quais aqueles ortogonais ao campo magnético nao
comutam mutuamente. Para atribuir origem a nao comutatividade tratada no presente contexto,
devemos identificar o comprimento elementar com o raio de Larmour, v = 1 / VeB, admitindo
que o campo magnético seja intenso e cuja direcao coincide com a dire¢ao do parametro 6. Entao,
B = oo é o limite comutativo ao passo que a dimensionalidade do espaco, d = 4, é reduzida para
duas que é exatamente o namero de coordenadas ortogonais a B: o subspaco ortogonal meramente
nao existe. Em contrapartida, enquanto B é grande, porém finito, o subspaco ortogonal é nao
comutativo, enquanto que o espago total é “quase” d — 2 = 2 bidimensional. (Aqui “quase” significa
que, em algum dominio do espago, digamos proximo & carga, onde seu campo é dominante em
comparagao com o campo magnético externo, a dimensionalidade do espago é novamente [67] d = 4).
Infelizmente, o resultado (2.46) nao pode corresponder a este caso, pois, a condi¢ao B = 1 esta além
da aplicabilidade da expansao em poténcias de 0 e B, utilizada na derivagao das equacoes (2.46).

2.3.2 Solugoes magnetostaticas alternativas

As solugbes obtidas acima dependem crucialmente das condigbes de regularidade impostas em r = 0.
Abrindo méao desta condi¢ao pode-se obter outra solugao para o potencial vetor

2 2 3
(1)k g Ze 2r 8a ki
A <X>—‘4<a2) <5a2+5r3_1 o7,

Ak g (Ze ? ik, i
n(x)==51—=) 0"z (2.47)

4\ r?

que nao obedece a condicao de finitude na origem, mas decresce a longas distancias da fonte mais
rapido que (2.41), em outras palavras esta ¢ de curto alcance. Precisamente, a solu¢ao acima (2.47)
foi obtida sob a consideracao das mesmas condigdes de contorno anteriores (2.38), exceto que a

condicao de regularidade na origem, A%l) (x) # o0, nao foi imposta. Por outro lado ressaltamos

r—0

ainda que neste caso a condicao

¢ mais restritiva que no primeiro conjunto de solugdes (2.41), no sentido que, mesmo para valores

suficientemente grandes para |X|, consideramos que todos os coeficientes Bﬁl)lm sao nulos. Como

resultado temos um conjunto de equagoes lineares soluvel para alguns coeficientes o/(“l)lm e ﬁﬁ)lm,

provenientes das duas primeiras condig¢oes de contorno (2.38).

As solugoes fora da esfera, Ag)k(x), que nao depende do tamanho da carga a, coincide com a
solugdo magnetostatica determinada previamente em [68] para o campo produzido por uma carga
estatica no limite de uma carga puntual (o limite de a = 0 em (2.27)); esta é altamente singular na
origem r = 0. Diferentemente da solugao (2.41), (2.47) nao corresponde ao campo produzido por um
dipolo magnético, pois decresce a grandes distancias mais rapido que o mesmo.

26



A solugao (2.41) difere de (2.47) adicionando a funcao,

QQ(Ze)z gk i
56 13

, (2.48)

que é uma solugdo para o potencial vetor da equacao de Laplace com o coeficiente constante 29%

escolhido de tal forma a cancelar a singularidade na origem da (parte interior da) solugao (2.47).
Existem mais trés solugoes homogéneas, um tanto inerentes ao problema:

9’“ Ty
)

. et Oz, (2.49)

A primeira nao satisfaz a condi¢ao do calibre de Coulomb e nao deve, consequentemente, ser levada
em consideracdo. A segunda é um calibre puro e nao contém qualquer campo nesta solugao (f,, €
zero neste caso). Seu aparecimento se deve ao fato de que o campo de Coulomb fixa a liberdade de
calibre somente até uma transformagao de calibre causada pela fungao A(r) que obedece a equagao
de Laplace. Ent@o, com A = 1/r a solugao discutida é —0pA. Portanto, somente a terceira solugao
Okiz,; falta ser considerada. Ela é linear em x. Devido a condigdo de continuidade em (2.38) incluir
a primeira e a segunda derivadas, a solucao linear pode ser combinada consigo mesma somente sob
uma condi¢ao de contorno interna. A terceira solugdo homogénea nao pode ser associada & fonte,
um coeficiente constante multiplicativo a mantém arbitraria. Portanto, concluimos que as duas
solugoes (2.47) e (2.41) esgotam todas as solugdes magnetostaticas produzidas pela carga estatica.
Existem, certamente, muito mais solu¢des homogéneas nao associadas & carga. Por exemplo, uma
delas é precisamente a terceira solucdo 0¥ x;, que corresponde a um campo magnético constante e
homogéneo de magnitude arbitraria mas de direcao fixa: este estd direcionado ao longo do vetor
da ndo comutatividade 6. Este campo pode ser absorvido em um (mais geral) campo externo
B, ja incluso em (2.28) em ordem zero. Note que a energia magnética total da carga estatica
~ [ |V x A|*d3z ¢ finita para (2.41) e infinita para (2.47) quando a ¢ finito.

Quais das duas solugoes (2.47) ou (2.41) devem ser selecionadas? Procuraremos a resposta a
esta pergunta além do contexto intrinseco a teoria NC, levando em consideragao uma possivel futura
aplicacao da solu¢ao. De acordo com a referéncia [68] o campo magnético associado ao potencial
vetor interage com o momento orbital e o spin do elétron em um atomo de hidrogénio NC, elaborado
em [18, 19|, onde o elétron interage com o ntcleo, localizado na origem r = 0, no espago NC. Esta
energia de interacao, computada usando nossa solugao (2.41) é finita na origem. Em contrapartida,
ela comporta-se como r—3 de acordo com a solucao (2.47) (e como r~* se a parte exterior de (2.47)
é continuada para a origem para formar uma solugao de carga puntual [68]). A contribui¢ao desta
energia de interagdo causaria um colapso para o centro, o que tornaria o problema inconsistente.
Além disso, uma situacao similar nao é considerada (embora nao completamente rigorosa) como um
problema real em mecéanica quantica, pois o tamanho finito do ntucleo oferece um “cut-oft” suficiente.
Entéo, pragmaticamente, ndo podemos justificar completamente a exclusiva necessidade de selecio-
nar as solugoes (2.41), mas voltaremos a esta discussdo posteriormente, ao considerarmos também
solugbes alternativas para a solugao eletrostatica (2.46).

2.3.3 Solucoes eletrostaticas alternativas

Uma observagao ausente que auxiliou a resolver as equagoes (2.42), (2.43) e que pode ser utilizada
para verificar sua solugdo (2.46) ¢ que uma combinagao linear a(r)(B - 8)+b(r)(x - B)(x-60) reproduz
as equagoes mencionadas com diferentes coeficientes, apds a atuacao do operador Laplaciano de
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acordo com a formula:

Va(r)(B-0) = (B - 0) <a” + 2“) :

r

") - Be) 4 200 (B -0) (2.50)

r

V2b(r)(x - B)(x-0) = <b” +

onde as linhas denotam derivac¢ao com relagao a r. Usando (2.50) e a solugao geral [69]

5)7 ( /z . .%'/ ol ,
w0 = (£) (o [[ater (£) ).
para a equacao diferencial linear de primeira ordem
g
Y+ -y =yg(),
x

onde £ e 7 sao constantes arbitrarias, e v ¢ 2 ou 6 no nosso caso, pode-se encontrar todas solugdes para
as equagoes (2.42), (2.43) da forma a(r)(B - 0) + b(r)(x - B)(x:60), estendendo, quando necessario,
além da distribuigdo de carga homogénea (2.27). (A razao para nos restringirmos a esta classe de
solugoes é que, como a ndo-homogeneidade em (2.42), (2.43) ¢é linear tanto em B como em 6, somente
solugbes com a mesma propriedade podem ser produzidas pela fonte em consideragao). As solugoes
homogéneas das equagoes (2.42), (2.43) sao

(B-0) (B-0) 3(x-B)(x-0)

a) (B-60), b) — c) e 5 , d) r*(B-0)—3(x-B)(x-0). (2.51)

Novamente, como antes, a condi¢ao de que os campos devem diminuir a grandes distancias r da carga
nao é suficiente para fixar a solu¢ao de modo que mais condigoes de contorno sao necessarias. Podemos
descartar a solu¢ao d) por representar um campo elétrico anisotropico e crescente (linearmente) em
regides remotas, mas deve ser notado que tal solugao significa uma interessante opgao de um campo
externo admitido por uma equagao de movimento na auséncia de fontes. A solugao constante a) deve
ser desconsiderada, por ser um calibre puro, nao é fixada pelas as condicoes de calibre empregadas
acima. (Lembramos que em uma teoria de calibre U(1) o calibre de Lorentz imposto para reduzir
as equacoes de Maxwell a equacoes de Laplace para os potenciais em um problema estacionario,
onde os campos nao dependem do tempo ¢, torna-se no calibre de Coulomb para o potencial vetor).
Entretanto, ainda permanece uma liberdade de calibre residual, determinada pelo parametro de
calibre A = \it + Ay(x) com \; sendo uma constante e V*\y(x) = 0. Consequentemente o potencial
escalar A mantém-se determinado até esta constante e a funcao Ao sujeita a equacao de Laplace.
Combinando linearmente as duas solugoes b) e ¢) (2.51) com a solugdo (2.46) pode-se formar todas
solugbes, satisfazendo as condigbes de contorno, diferentes de (2.38), mas ainda, talvez, fisicamente
razoaveis. Discutiremos agora tais possibilidades.

Primeiro, a solugao b) multiplicada pelo fator constante gZe pode ser adicionada a solugao (2.46)
para exclui-la no termo de Coulomb (termo mais a direita em (2.46)). Note, entretanto, que a corre¢ao
de longo alcange para o potencial de Coulomb gZe(x - B)(x-0)/r? ainda nao pode ser excluida. A
segunda solugdo c) multiplicada pelo fator gZea?/5, quando adicionada a (2.46), conduz a uma
solugao de (2.42), (2.43) livre de termos tipo quadrupolo (veja eq. (2.55) na proxima subsecdo).
Ambas novas solugoes, bem como qualquer outra solu¢ao formada combinando b) e ¢) com (2.46),
sao singulares na origem, embora b) nao proporcione um decaimento ao centro da distribui¢ao de
carga. Por outro lado, combinando b) com (2.46) pode conduzir a uma solu¢ao com comportamento
1/r que ¢é considerada como admissivel na teoria padrao.
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Temos agora que responder a questao mencionada na subsegao 2.3.2, tendo em mente que uma
aplicabilidade das mesmas nao pode oferecer critérios suficientes para selecionar solucoes fisicas das
equacoes para os campos e correntes na teoria NC. Para finalmente fundamentar por que estamos
mantendo a escolha de (2.46) e (2.41) como tnicas solugoes apropriadas procedemos da seguinte
forma. Lembremos que a principal motivagao fisica para admitir uma teoria NC foi a completa regu-
larizacgao ultravioleta introduzindo um comprimento elementar, incluindo o potencial de Coulomb,
pois, muitos problemas ultravioletas sdo encontrados devido a esta singularidade “fraca”, de modo
que singularidades “fortes” na origem nao podem aparecer na teoria. As solugdes (2.46) e (2.41)
sao as Unicas, entre todas possiveis discutidas na presente secao, que sao completamente livres de
quaisquer singularidades na origem. Em outras palavras, estas sao as tnicas solugoes reqularizdveis
pelo tamanho da carga. Naturalmente, estas nao devem necessariamente sobreviver no limite da
transi¢ao para uma carga puntual, pois esta nog¢ao esta além de uma teoria NC. De fato, a equagao
(2.41) nao sobrevive.

Outra razao, mais técnica, para selecionarmos estas solugoes consiste na validade da aproximacao
considerada. Os parametros efetivos usados na expansao aqui sao 20 e fj. Ambos permanecem
pequenos sobre solugdes nao singulares escolhidas, (2.41) e (2.46), mesmo quando o tamanho a é
admitido ser minimo a = 0. A saber, f0 = g(Ze)? para (2.41) e f0 = gZeBO para (2.46).
Entao, somente os valores da carga Ze e o campo magnético externo B sao restritos. O uso de
qualquer solucao pode nos conduzir a uma aplicabilidade fora do dominio perturbativo para valores
suficientemente pequenos de r.

2.4 Propriedades das solugoes regulares

Solugoes (2.41) e (2.46) oferecem corregoes de longo alcance para o potencial de ordem zero (2.28)
induzido pela carga esférica. Estas corre¢oes podem ser entendidas como fatores de forma de ordem
superior de uma carga esférica de tamanho finito induzida pela nao comutatividade, pois estes podem
ser interpretados como provenientes de uma densidade de carga efetiva em torno da carga, bem como
de um dipolo magnético ou quadrupolo elétrico.

Irrespectivo aa presenga ou auséncia de um campo magnético externo B, um campo magnético
proveniente de A(l)k(x), proporcional a 6 e independente do campo magnético externo é gerado. Em
contrapartida, o campo elétrico permanece inalterado em primeira ordem em 6 se B = 0, mas recebe
correcoes de primeira ordem se o campo magnético externo esté presente. Ao mesmo tempo a fonte
esfericamente simétrica nao recebe correcoes devido a nao comutatividade.

2.4.1 Dipolo Magnético

A contribuigao dominante do potencial vetor (2.41) comporta-se como um dipolo magnético, a carga
estatica (2.27) sendo portanto um momento de dipolo magnético equivalente M

M xx

3 Y

29

A M=06 (Ze)Qa : (2.52)

r
Embora o momento magnético cresga infinitamente no limite de uma carga puntual, a — 0, este fato
nao deve ser interpretado como um problema, pois o tamanho da carga é limitado inferiormente,
a > [, pelo comprimento elementar [ = v/6.

Levando em consideragao a expressao (2.52) para o momento magnético, na ref. [58| estudamos
uma forma eficiente de obter valores méaximos para o parametro da ndo comutatividade tendo por base
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o fato de que em todos processos de espalhamento de leptons néo estdo presentes quaisquer tamanhos
dos mesmos. Somente célculos tedricos para o momento magnético anémalo dos léptons, baseados em
modelos comutativos ordinarios, nao contradizem seus valores observados com a existente acuracia
experimental e tedrica, logo admitimos que, no minimo, todos os erros experimentais em seus valores
podem ser atribuidos a efeitos provenientes da nao comutatividade. Assim, por meio dos valores
experimentais existentes para o tamanho do lépton, obtemos que o parametro da nao comutatividade
¢é limitado por valores além das atuais estimativas. Porém, admitindo a natureza puntual do elétron
obtemos, até agora, o maior valor para o parametro da nao-comutatividade de 10* TeV, juntamente
com aqueles baseados em experimentos de fisica de particulas.

O momento magnético do préton deve contribuir para o “splitting” de estrutura hyperfina dos
estados 15}/, no atomo de hidrogénio. Quando calculado com a ajuda da segunda solucao de (2.41), o
“splitting” é proporcional a (1/ a)ﬁ, onde o sinal de barra significa uma média para r > a em estados
S fora do préton, com a agora representando seu raio. Por outro lado, com a solugao definida fora da
carga (2.47), a correspondente contribuicio [68] torna-a r—4. As duas expressdes sio de mesma ordem
de magnitude, pois a média efetivamente resulta na substituicdo r = a, devido o caréter singular da
média e o fato de que o tamanho do préton a é muito menor que o raio de Bohr ag = h?/mec, onde
me ¢ a massa do elétron e o = 1/137 é a constante de estrutura fina. Entao, levando em conta o
momento magnético comutativo do préton, isto nao muda o limite existente do pardmetro da nao
comutatividade 6.

Existe um contexto diferente [70], onde a ndo comutatividade das coordenadas é introduzida
em associacao com o spin da carga. Portanto, naturalmente a carga também possui um momento
magnético.

A producao de um campo magnético por uma carga estatica - o efeito magneto-elétrico - foi
reportado na eletrodinamica quéntica com um campo (elétrico e magnético) externo constante e
homogéneo de forma mais geral [40]. O campo magnético inhomogéneo produzido por uma carga
estatica naquele problema existe em uma aproximacao linear na carga, quando a mesma é pequena.
Contrariamente a esta situagao, no presente problema encontramos uma solugao nao linear das
equagoes de Maxwell (2.13), (2.14) em primeira ordem em 6, e esta solugdo é, para a sua componente
magnética, quadratica na carga eZ, como é visto de (2.41). (A mesma afirmacao é valida para a
solugao (2.47).) A auséncia de uma parte linear na carga do campo magnético esta de acordo com a
afirmagao [38| que na eletrodinAmica NC sem um campo magnético de fundo o tensor de polarizagao

do foton, responsavel pela resposta linear, é zero apesar da presenca do tensor da nao comutatividade
6.

2.4.2 Aprimoramento da lei de Coulomb e momento de quadrupolo elé-
trico

Vamos agora retornar a efeitos combinados da nao comutatividade e o campo magnético externo,
que é a correcao (2.46) para o potencial eletrostatico. E importante notar que esta correcdo é linear
na carga eZ. Isto corresponde ao fato que agora existe um campo magnético externo homogéneo de
modo que a resposta linear do tensor de polarizagao nao ¢ mais trivial [38|, embora ainda nao apta
a prover o efeito magneto-elétrico, de modo a correcao magnética permanecer quadratica na carga
eZ. Para o comportamento dominante de (2.46) em regides remotas r > a, segue a lei de Coulomb
~ 1/r. Quando somada a (2.28), ela fornece o potencial de Coulomb anisotropico, corrigido pela NC,

om0 = () (1-o{Z B0+ @0 ) 730 2
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A corregao pode ser atribuida ao comportamento 1/r% do lado direito de (2.43) - a distribuigao de
“densidade de carga escura”. (Utilizaremos este termo em analogia com a nog¢ao de matéria escura,
introduzida para resumir a responsabilidade pelo observado desvio gravitacional da lei de Newton).
No caso especial onde o campo externo esté orientado paralelamente (ou anti-paralelamente) ao vetor
da néo comutatividade, B || £, o fator multiplicativo padrao do potencial de Coulomb eZ/r na
equagao (2.53) torna-se 1 F g|B||0|(cos® ¥ + 1), onde ¥ & o angulo entre x e B. Para a configuracio
anti-paralela (sinal inferior) com carga positiva ¢ > 0 (bem como para a configuragao paralela com
carga negativa) a corre¢ao para a unidade nesta formula é positiva para cada diregdo do raio vetor.
Este ultimo resultado nos permite estimar um valor méximo para a corre¢ao nao comutativa de longo
alcance para o potencial de Coulomb, que é em cada um dos casos acima,

Adp (r) = ? [1+ gBY)| ~ ? (1+9) . (2.54)

Assumindo um campo magnético de magnitude de 10 Tesla (que é muito intenso para condigoes de
laboratério) e um parametro NC de magnitude (100TeV) ™2 (que, em particular, ainda nao representa
um dos valores mais altos para o parametro, veja p. ex., o nosso trabalho [58]), obtemos § = 6-1072¢
que esta além das possibilidades de qualquer verificagdo experimental. Mesmo para um campo
magnético sobre a superficie do “Soft Gamma Repeater” que atinge 10T [71] e o mesmo valor para
6 acima, obtemos uma correcao da ordem § = 6 - 10716 que, de fato, é muito pequena.

Por outro lado, para os mesmos casos especiais onde o campo magnético B e o vetor 8 sio
paralelos ou anti-paralelos, a dependéncia angular da solugao (2.46) conduz a um “splitting” entre
os niveis de energia em um atomo com diferentes projecoes de momento angular sobre uma direcao
comum e estes vetores competem com o “splitting” de Zeeman (em um nivel muito inferior, é claro).

Dizemos que o campo de Coulomb produzido por uma carga em um campo magnético externo
longe da mesma é aprimorado em comparacao com a eletrodinamica de Maxwell. Esta propriedade
sem precedentes é ausente da QED, onde a corre¢ao linear na carga para o potencial de Coulomb
(a parte de longo alcange) torna-a somente anisotrépica sem, entretanto, aprimoré-la [67, 72]: o
potencial decresce como 1/r ao longo do campo magnético seguindo a mesma lei de Coulomb como
em um espago vazio, e decresce ao longo de qualquer outra diregdo ¥ # 0 também seguindo a lei

de Coulomb, mas avaliada com o coeficiente (cos?®) + Ssin®9)~"/2 menor que a unidade. Aqui
B=(1+g)">1

Note que a parte dominante (Coulomb) (2.53) sobrevive no limite para uma carga puntual a — 0.
Também, quando nao ha campo magnético externo, a correcao (cubica na carga) [39] para o potencial
eletrostatico em QED nao afeta a parte de longo alcange de Coulomb.

O segundo termo dominante em Ag )0 corresponde a um momento de quadrupolo elétrico D;;,

_ Dyziz;

A° : Dy; = 29Zea*(3B;0; — 6;;(B - 9)), (2.55)

ro
que pode ser atribuido ao tamanho finito da carga (2.27), embora seja esfericamente simétrico. O
momento de quadrupolo elétrico NC se anula no limite a — 0.

Nao existe parte do tipo dipolo em A%Il). Neste sentido a situacao é similar a QED, onde a
extremidade pds-Coulomb no potencial produzido por uma carga esfericamente simétrica em um
campo magnético externo também nao contém termos tipo dipolo 1/r% mas decai, de acordo com
[72], com 1/73, 0 mesmo que (2.46).
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2.4.3 Poténcias da carga e teorema de Furry generalizado

Apresentamos uma observagdo que oferece uma ferramenta, referida como o teorema de Furry ge-
neralizado para justificar, os calculos prévios a respeito das poténcias na carga eZ em bases gerais,
além da aproximacao dominante em primeira ordem em 6. Enquanto a teoria NC do espago conserva
paridade, o vetor 8 é um pseudo vetor, o mesmo que um campo magnético. Referindo-se a linguagem
de QFT, podemos dizer que isto implica que o nimero total de pernas em um diagrama de muitos
fétons, caracteristico de uma teoria nao linear, conectado com o campo magnético e com o “campo”
6 deve ser par. Devido ao teorema de Furry, que indica que o numero total de linhas de fotons deve
ser par, concluimos que o niamero de linhas de fétons conectadas com o campo eletrostatico deve
ser par, separadamente. Entao, o campo magnético produzido pela carga estitica na aproximacao
linear em 6, estando o campo externo presente ou nao, deve depender de poténcias pares na carga:
o respectivo diagrama contém uma linha-0, um ntmero par ou nenhuma linha ligando-as ao campo
magnético externo (linhas-B), uma linha correspondente ao campo magnético produzido (linha-b) e
um namero par de linhas ligando-se a carga externa (linhas-Z). Isto esta de acordo com o resultado
(2.41), onde o ntimero da tltima é dois. Por outro lado o campo elétrico ndo pode apresentar uma
correcao linear em 6 se o campo magnético externo é ausente. Neste caso uma configuracao impos-
sivel com uma linha-0 poderia ser exigida. Tal correcao pode ser somente de ordem par em 6, que
vai além de nossa consideracao. A situacdo muda quando o campo externo é ligado. Agora existe
uma configuracao admissivel de uma linha-0 e um nimero impar de linhas-B, entao a correcao em
primeira ordem para o campo elétrico deve incluir uma linha indo para o campo elétrico produzido
(linha-€) e um ntmero impar de linhas-Z (portanto, poténcias impares da carga Z) para manter o
nimero total de linhas conectando com o campo eletrostatico par. Sem estas poténcias impares da
carga temos somente uma, pois ao nos restringirmos em primeira ordem em 6 nas equagoes de campo
(2.13), (2.14) reduzimos essencialmente a nao linearidade do campo.

Quando aplicado & QED ordinéria sem o parametro NC, o teorema de Furry generalizado explica
porque o campo elétrico produzido por uma carga estatica, além de ser proporcional ao valor da
mesma, tem contribui¢oes impares na carga (a contribuigao cubica [39] foi mencionada acima). Isto
também prediz a existéncia em QED de um campo magnético, quadratico na carga estatica, produ-
zido por tal carga, quando colocado em um campo magnético externo forte - outra manifestacao do
efeito magneto-elétrico.

2.5 Ambiguidades no mapa de SW

E bem conhecido que o mapa de SW nao é unicamente definido. Existem termos adicionais que podem
ser interpretados como redefini¢oes dos campo de calibre [48|. Tais termos tem sido discutidos no
contexto da renormalizagdo da teoria de Maxwell ndo comutativa [60, 55|, campos de Dirac nao
comutativos acoplados com campos de Yang-Mills [54] e na eletrodinamica quiral ndo comutativa
[56]. No caso de teorias de calibre NC U (1), foi demonstrado que (p. ex., [60]) o mapa de SW para
os potenciais admite, em primeira ordem em 6, a seguinte extensao

~ g o

Ay (x) = Ay (@) + 507 Ao (2) [95A () + fou (2)] + Ay (2)

A, (2) = gk10,005 1 () K1 = const, (2.56)
as quais nao modificam as equagoes de Euler-Lagrange na teoria NC U (1) na auséncia de fontes

externas, definida pela agio Sy (2.1). Para ver isso é suficiente construir f** por meio de A, (z) e
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ter certeza que ele fornece uma contribuigdo nula para o primeiro membro da eq. (2.13). Conse-
quentemente k1 nao aparece nas equagoes de movimento com a acuracia admida em 6. Uma vez que
A, ( z) satisfaz a parte homogénea das equacoes de movimento, a transformacao (2.56) reduz-se a
adicionar tais solugdes de equagoes livre de fontes a qualquer outra solugdo da equagao (2.13).

Uma ambiguidade similar nas equagoes de SW para as correntes (2.11) foi observada em [57].
Pode-se adicionar dois termos extras J* (z) a solucao (2.12):

7" () = j* () + 90°° Aq (2) Dpj* () + I* (x) |
JH(x)=g¢g (@Qaﬁfagj“ + ﬁg@”afaﬁjﬁ) , Ka, K3 = const . (2.57)

E facil verificar que a corrente (2.57) satisfaz (2.11) para valores arbitrarios de xy e ks, pois, J* (z)
nao sofre transformacoes de calibre.

Vamos verificar como as ambiguidades acima influenciam as solugoes das equagoes de Maxwell
NC. Em ordem zero em 0, as equagdes permanecem as mesmas, veja (2.19). Em primeira ordem,

4 .
ALY = 810,005 O = == g1, O

. 1 . . .~ L. . ~
Obviamente, AL) se anula para uma distribuicao de carga estética ao se considerar somente a nao
.. . . . 1 ~ . N .
comutatividade do espago. Assim no nosso caso a ambiguidade AL) nao apresenta influéncias. As

equacoes de Maxwell e as condi¢oes de compatibilidade em primeira ordem em 6 sao,

A
0,f0 — g0 (,(1" 5 = F205 ) = =2 (O 4 30, (2.:58)
8, (GVF 4 JOmy 4 ggaﬁfﬁ(bg)aﬁj(o)ﬂ =0, (2.59)

onde J ¢ uma dada funcdo de ordem zero no potencial eletromagnético e corrente,
IO = g (1™ £ + g £19507) (2.60)

As equagoes (2.58) e (2.59) nao dependem de k1, enquanto ks e k3 entram em ambas equagoes
somente através da combinacao jW#+JMe - Além disso, esta combinacao é definida exatamente como
a mesma equagao para o caso ke = k3 = 0, veja p.ex. (2.21). Consequentemente, a ambiguidade
total em correcoes de primeira ordem para os potenciais eletromagnéticos e para a corrente “atuante”
G 1 JME pao é mais que uma arbitrariedade natural de adicionar uma solucdo homogénea das
equagoes (2.21) e (2.59). (Esta ambiguidade ja foi discutida acima, veja paragrafo abaixo da eq.
(2.21).) Por outro lado, as partes separadas na combinacdo jV* + J(M# permanecem ambiguas, os
resultados fisicos sendo independentes de qualquer separacdo da corrente em partes. As mesmas
conclusoes podem ser tiradas lidando diretamente com as equagoes (2.13), (2.14) sem recorrer ao
caso especial da nao comutatividade do espaco e condigoes de estacionaridade.

2.6 Sumaéario

Neste capitulo estudamos como introduzir correntes externas (fontes) em uma teoria de Maxwell
NC sem violar a covariancia de calibre. Iniciamos com uma teoria de calibre U(1), e encontramos
que a mesma é autoconsistente no nivel das equagoes de movimento. Note que, neste caso, as
correntes se transformam covariantemente perante transformagoes de calibre, com a mesma lei de
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transformagao do tensor eletromagnético U(1),. Posteriormente, argumentamos que, para facilitar
a comparacao com as predi¢gdes da eletrodinAmica NC, é necessario que os campos possuam as
mesmas transformacoes de calibre que as do caso comutativo. Uma transicao para tais campos é
feita pelo mapa de SW e extendemos esta mapa para incluir correntes. Novamente, um resultado
consistente é obtido se trabalharmos no nivel das equacoes de Maxwell e ndo no nivel da acao.
Escrevemos equacoes de movimento nao lineares e anisotrépicas, onde os campos e correntes estao
envolvidos, que sdo vélidas até a primeira ordem do pardmetro NC . Embora estas equagoes
contenham potenciais juntamente com tensores eletromagnéticos , estas sao covariantes de calibre
no sentido que os potenciais modificados por uma transformacao de calibre satisfazem as mesmas
equacoes; além disso, os termos proporcionais aos potenciais podem ser eliminados “on-shell” das
equacoes, i.e., as equagoes sem os potenciais possuem solugdes em comum com as equacoes primarias.
Para o caso da nao comutatividade do espago consideramos um exemplo, onde a fonte externa é uma
esfera com carga homogeneamente distribuida de raio finito e resolvemos as equagodes de movimento
na presenca de um campo magnético externo constante e homogéneo. Nao surgem corregoes em
primeira ordem em 6 para as fontes no problema de simetria esférica em consideragao. Para selecionar
solugbes impomos condigoes de contorno que exigem que as mesmas sejam finitas no ponto onde a
fonte esta centralizada. A solucdo magnética fixada desta forma nao admite o limite de transicao
para uma fonte puntual, que é uma propriedade admissivel, desde que em uma teoria NC tamanhos
de objetos fisicos nao sejam menores que o comprimento elementar.

Estudamos o contetido das solugoes obtidas. FEncontramos corregoes angulares para o campo
elétrico produzido por uma carga estatica que implica em um aprimoramento da lei de Coulomb em
regioes remotas do espaco na presenga de um campo magnético constante — uma notavel consequéncia
macroscopica do comprimento elementar inerente & eletrodindmica NC em consideragao. Encontra-
mos também que o comportamento segundo-dominante do campo elétrico longe da carga na presenca
de um campo magnético é também um quadrupolo elétrico. Notamos uma possibilidade incomum,
contida no item d) das equagdes (2.51), que um campo elétrico linearmente crescente com a distancia
da carga e nao singular na origem satisfaz as equagoes de campo e pode ser consequentemente con-
siderada como admissivel, no sentido de um campo externo adicional ao campo magnético externo
constante ou um campo elétrico externo constante. Independente do fato do campo magnético estar
presente ou nao, de acordo com a solucao escolhida, a carga estéatica, além de implicar na existéncia
de um campo eletrostatico (como usual), também comporta-se como um dipolo magnético, com o
momento de dipolo magnético dependendo de seu tamanho e proporcional & segunda poténcia da
carga.

Finalmente, estudamos as ambiguidades na definicdo do mapa de SW na presencga de correntes,
e encontramos que, em primeira ordem em 6, esta é precisamente a ambiguidade de adicionar uma
solucao homogénea & equacgao de conservacao da corrente.
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Capitulo 3

Momento magnético Nao Comutativo,
comprimento fundamental e tamanho dos
léptons

3.1 Introducao

3.1.1 O problema. Resultados e conclusoes

Um indicativo para se verificar a validade da eletrodinamica quantica (QED) é a medida do momento
magnético do elétron, com a subsequente comparagao de seu valor medido com o momento magnético
anomalo calculado via Modelo Padrao, advindo principalmente a QED, neste caso. Até agora, com a
precisao experimental e teérica alcangada, estes dois valores coincidem. As discrepancias permitidas,
dentro dos erros, entre os valores experimentais e teéricos para o momento magnético do elétron
diminuem, com o aumento da precisao, e felizmente a coincidéncia entre ambos valores deveré ser
mantida com uma precisao cada vez maior. Por outro lado, na medida em que se procura por
possiveis alternativas ao modelo padrao, compativeis com a situacao acima, deve-se restringir seus
impactos sobre o momento magnético do elétron & presente indeterminacao tanto tedrica quanto
experimental. Um tal candidato que se vai além da QED padrao é proposto pela eletrodindmica
NC. Foi encontrado recentemente em [58| no formalismo desta teoria que uma carga classica estéatica
em repouso carrega consigo um momento magnético, chamado por momento magnético NC, cuja
magnitude é determinada pelo parametro #, suprindo a teoria com um comprimento fundamental
1] = V0. Demandando que, para o elétron, o momento magnético NC seja menos que o erro
existente na medida do momento magnético, obtemos uma estimativa superior para o parametro ¢
e seu comprimento fundamental associado [. Certas restrigdes sobre o comprimento fundamental
inerente a teoria NC também segue da existéncia do momento magnético NC de particulas pesadas
carregadas. Entretanto a consideragao do momento magnético NC do préton e sua contribui¢ao
para o splitting de estrutura hyperfina do nivel 15;/, no atomo de hidrogénio nao conduziu [58| a
qualquer nova estimativa para o valor maximo do comprimento fundamental. Em contrapartida, a
consideracao de léptons, sim.

LA ndo comutatividade néo é o tinico método de se introduzir um comprimento fundamental em uma teoria. Neste
capitulo, entretanto, queremos dizer comprimento fundamental NC ao se fazer uso desta nogdo. Por outro lado,
nao sabemos se o comprimento fundamental, como é proposto pelo mecanismo da nao comutatividade, ¢ universal
para todas particulas e campos. Por esta razao discutiremos seus valores independentemente de quando lidamos com
diferentes particulas.
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Uma vez que o momento magnético NC é inversamente proporcional ao tamanho da carga elétrica,
um importante papel em se obter esta estimativa é desempenhado pelo tamanho atribuido ao elétron,
quanto menor o tamanho, maior serd o momento magnético NC, menor seré o valor maximo para o
parametro NC e o comprimento fundamental. Examinamos diferentes suposigoes acerca do “tamanho
do elétron”, este ultimo sendo limitado, inferiormente somente pelo comprimento fundamental [, uma
vez que nenhum objeto deve ser menor que o mesmo. Desta forma o valor maximo até o momento
encontrado para o comprimento fundamental, como aparece em teorias de campos NC, foi alcangado
em [58]. Por outro lado, apo6s atualizar a famosa estimativa para o tamanho do elétron devido
a Brodsky-Drell-Dehlmet [73], [74] (as quais ndo foram baseadas em nenhum mecanismo oriundo
da nao-comutatividade, somente pela consideracao de um possivel estrutura, ou divisibilidade do
elétron) por levar em consideragdo as medidas mais recentes do momento magnético do elétron,
encontramos que os resultados para o tamanho sdo duas ordens de grandeza menor que a mais
ousada estimativa para o comprimento fundamental proveniente de especulagoes sobre o momento
magnético NC. A medida que, em uma teoria de campos NC, o tamanho de objetos fisicos nao
admitem um comprimento menor que o comprimento fundamental, isto significa ndo mais que uma
parte em 100 da incerteza existente no momento magnético conhecida pode ser melhor, na melhor
das hipdteses, atribuida a contribui¢ao do momento magnético NC. Entao restam duas opgoes. Ou
se pode admitir uma extensao além da QED ordinaria, além da eletrodinamica NC, que pode tomar
a responsabilidade pela parte principal do desvio admitido, se houver algum, do momento magnético
resultante da QED ou, mais provavelmente, este desvio admitido sera essencialmente reduzido por
medidas adicionais mais precisas.

A mesma anélise é repetida para o lépton u neste capitulo. A diferenca crucial, em comparacao
com o caso do elétron, é que a diferenca entre os valores tedricos e experimentais do momento
magnético do muon excede os limites admitidos pelos erros. Entdo, nenhum avanco técnico é capaz
de remover esta contradicdo, e nossos resultados serdao mais definitivos ao revindicar que a nao
comutatividade nao pode oferecer, para a parte ausente do momento magnético do mton, de modo
que uma maneira diferente para extender o Modelo Padrao mantém-se ainda necessaria.

3.1.2 Momento magnético NC

Em [58], teorias classicas de campo da teoria U(1), (eletrodinamica NC) foram formuladas as quais
— no minimo em primeira ordem no parametro NC 6 — contém a invaridncia de calibre, apesar
da presenga da corrente externa, conhecida por viold-la (no minimo “off-shell”). Resolvendo estas
equacgoes, o campo eletromagnético gerado pela carga estatica de tamanho finito foi encontrado e o
fato que esta carga possui um momento magnético dependente do seu tamanho foi estabelecido.

Seja a corrente externa nas equagoes de campo da eletrodinAmica NC uma carga estatica, distri-
buida uniformemente dentro de uma esfera de raio a dada por

3z
4w a3’

p(r) r<a, r=]|r|.

Fora da esfera nao existe carga: p(r) =0, se r > a. A distribuigao estética acima da carga total Ze,
onde e é a carga fundamental, produz nao somente o campo eletrostéatico, mas também comporta-se
como um dipolo magnético, com o campo magnético, em regioes remotas r > a, dado pelo seguinte
potencial vetor,

M xra] B 2 2¢
A= 5 M =0(Ze) £ (3.1)
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onde M foi denominado momento magnético NC da particula carregada. Aqui, as trés componentes
espaciais do vetor @ sdo definidas como ¢ = (1/2)e¥%0% i j k = 1,2,3 em termos do tensor
antisimétrico NC 6% que fixa as relacoes de comutacao entre os operadores coordenadas espaciais.

A extensdo (tamanho) a da carga em (3.1) deve ser mantida nao nula no espirito de uma teoria
NC, que néo admite que objetos com tamanho menor que o comprimento fundamental [ = v/6, onde
6 = |0|. Para uma carga puntual, uma solu¢ao magnetostatica também existe [68], embora este caso
nao represente um dipolo magnético. O que é mais importante é que esta solugdo é muito singular
na origem r = 0, onde a carga esta localizada e, portanto, nao pode oferecer sentido matemético em
termos de teoria de distribui¢bes convencional.

Se entendermos o raio a em (3.1) como sendo o tamanho de uma particula fundamental eletrica-
mente carregada (Z = 1), podemos especular sobre a contribuigdo da ndo comutatividade para seu
momento magnético M. Certamente, isto é esperado ser muito pequeno, devido a magnitude do pa-
rametro NC 6. E suposto [5] que o comprimento correspondente [ = V0 deve ser da ordem da escala
de comprimento de Planck [ ~ 1073 cm (ou Ap; ~ 4 - 10! Gev em unidades de energia). A razao ¢
que a pequenas distancias a unificacao da gravidade com a mecanica quéntica exige quantizagao do
espaco-tempo. Embora a escala de Planck esteja além de qualquer alcance experimental, o problema
atual consiste em estimar limites limites para # baseando-se na precisao experimental atual. Em [58]
foi discutido que novas restrigoes sobre o alcance da nao comutatividade pode seguir do resultado
recém estabelecido que uma particula carregada fundamental é portadora de um momento magnético
(3.1) em uma teoria NC, independente de seu momento orbital ou spin.

No presente capitulo elaboraremos este assunto abordando os léptons carregados e e p como as
“menores” particulas fornecendo, portanto a contribui¢do méaxima em (3.1), e ndo abordaremos os
quarks (embora sejam também pequenos), cujos momentos magnéticos estao além de possibilidade
de mensuré-los.

3.2 Limites superiores para o comprimento fundamental do
momento magnético NC

3.2.1 Limitagoes baseadas em estimativas dos tamanhos dos léptons pro-
venientes de espalhamentos de altas energias

Em colisoes elétron-positron em experimentos de altas energias, 1éptons se manifestam como particu-
las sem estrutura (veja por exemplo [73| para uma recente discussao deste ponto), descritas por um
campo fundamental ndo composto (local). Nenhuma variante desta regra tem sido, até o momento,
reportada. Considerando a escala LEP de 200 GeV como um limite superior, a qual é admitida
como confirmada, devemos aceitar que uma possivel nao-estrutura destes léptons esta abaixo do
comprimento (denominamos comprimento de divisibilidade) 7o = 1073Fm. Em nossas consideragoes
subsequentes identificamos a extensao da carga a como o comprimento de divisibilidade, pois, é di-
ficil imaginar uma regiao ocupada por uma carga que se extende acima deste comprimento, mas
que nao pode ser dividida em partes (se fosse possivel, ou a carga resultante poderia adquirir um
valor continuo, menor que e, que contradiz suposigdes basicas, ou a carga resultante poderia ocupar
um volume menor e poderfamos permanecer novamente com um comprimento menor a, abaixo do
comprimento de divisibilidade).
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3.2.1.1 Elétron

Tendo em mente que, para o elétron, a teoria local existente explica perfeitamente o valor de seu
momento magnético M, (aqui M, = |M,]|), esperamos que a nao comutatividade pode somente
contribuir dentro da incerteza experimental e teorica d M., existente na medida e no célculo desta
quantidade. Uma medida direta recente do momento magnético anémalo do elétron, usando espec-
troscopia ressonante de um elétron individual na armadilha “Penning” 74|, oferece o resultado |75,

[76] v
< 5 1)

onde i = e/2m ¢é o magneton de Bohr. Por outro lado, um novo trabalho [77] surgiu de uma determi-
nacgao experimental independente do mesmo momento magnético com uma precisao correspondente,
obtida com o uso de uma medida da razao entre a constante de Planck e a massa do atomo 8"Rb,

h/mgy,. O resultado é,
(Me 1)
i

Os autores de [77] ajustam o valor da constante de estrutura fina o de tal forma a fazer (3.3)
coincidir com a predigao teodrica para o momento magnético anémalo, calculado (veja [78] para
uma revisao) com acuricia, incluindo calculos de QED até a ordem (a/m)?*, também contribuicoes
eletrofracas e hadronicas (este ajuste conduz, até o presente momento, ao valor mais preciso o' =
137.035999037(91)). Por esta razao o valor (3.3) é referido como “tedrico” (certamente, os papéis
de (3.3) e (3.2) podem ser revertidos). Os valores tedrico, (3.3) e experimental, (3.2), do momento
magnético do elétron nao se contradizem, demonstrando até o momento a melhor confirmacao da

validade da QED. A discrepéancia entre estes,

5Me
M

=0.00115965218073 £ 28 - 104, (3.2)

MRS

= 0.00115965218113 £ 84 - 10~ (3.3)
Rb

~ 10712, (3.4)

reside dentro da acurédcia de medidas e cédlculos. Demandamos que uma possivel contribuicdo do
momento magnético ndo comutativo em (3.1) ndo deve excedé-la:

oM,
I

4
> a@% ,a=¢. (3.5)

Com a restrigdo de altas energias sobre o raio a < ry aceita acima, a equacao (3.5) implica 6 <
%(57"0 /4ma). Como 1y ~ 1073Fm, obtemos da expressao (3.4) a restricio sobre o comprimento

fundamental | = v6 < 7-107Fm = (28 Tev)~".

3.2.1.2 Mron

A presente questao é diferente com o lépton u. Na literatura, seu momento magnético andémalo é
calculado via Modelo Padrao com a inclusao do vértice pu-v da QED em ordem mais baixa com linhas
do béson Z, neutrino e de hadrons. O desvio do momento magnético medido M, com relagao ao
resultado proveniente de calculos admite o seguinte valor (veja a atualizagao de A. Hocker’s e W.J.
Marciano em 2009 em |76], também |78] para um céalculo detalhado posteriormente),

SM,,
u

~25.1071°. (3.6)
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Este resultado excede em torno de 3.2 vezes o erro estimado de 1o error |76]. Acredita-se que esta
discrepancia pode ser superada pela inclusao de supersimetria para incrementar o resultado teorico.
Se, ao contrario, tentarmos explicar esta discrepancia pelo efeito do momento magnético NC do
miion, obtemos de uma forma similar ao que foi escrito acima, usando (3.6) e o mesmo comprimento
de indivisibilidade 79 ~ 1073Fm, que [ ¢ menor que 2.8 - 107°Fm = (7 Tev)™' como uma estimativa
baseada em altas energias.

3.2.2 Estimativas finais

Uma vez que nao existe estimativa para qualquer extensao do elétron, vale a pena admitir que tal
extensdo pode ser restrita somente pelo comprimento fundamental. Entdo usando a = [ = /0 em
(3.5) e a incerteza (3.4), obtemos um limite final de | < 6.6 - 107*Fm = (3 - 10 Tev)~!. Lidando
com o muon da mesma forma, mas referindo a (3.6) ao invés de (3.4), obtemos a estimativa final de
8107 "Fm = (240 Tev)~!.

3.3 Limites superiores sobre o comprimento fundamental ver-
sus composicao dos léptons

Existem |73] restri¢oes muito fortes sobre a extensao de léptons em comparagao com aquelas proveni-
entes de experimentos de colisoes de altas energias. Estas se extendem a uma escala de energia além
dos aceleradores. O ponto é que se imaginarmos um lépton como um estado ligado de particulas
muito pesadas cuja energia de ligacdo compensa a maior parte de suas massas de modo que o estado
resultante seja leve, o raio de Bohr R para o estado composto, a ser tratado como seu proprio raio,
poderia ser muito menor do que o comprimento Compton do lépton Ag. De acordo com a regra de
soma de Drell-Hearn-Gerasimov (veja [73] para referéncias) o desvio do momento magnético ano-
malo (M/u — 1) de seu valor proveniente da QED é proporcional a razao R/A¢, que é a medida do
composto. Baseado em dados experimentais sobre momentos magnéticos de particulas compostas
conhecidas, (proton e tritio), representados graficamente contra seus valores medidos, uma conjectura
foi formulada por Dehmelt [74] que o coeficiente de proporcionalidade deve ser de ordem da unidade.
Entao, R = A\cOM/p.

3.3.1 Elétron

Referindo as equagoes (3.2), (3.3) e usando (3.4) podemos atualizar o resultado de 1988 de Dehmelt
para o elétron de R < 4-107%Fm para R < 4-1071°Fm. Isto é duas ordens de magnitude menor que
a nossa estimativa de 6.6 x 10~%Fm para o comprimento fundamental obtido na subsecao 3.2.2. (O
uso da asser¢ao R = AcdM/p junto com (3.5) poderia resultar na condi¢ao | < 1/5/8a(0M/u) ¢ =
9.25 R, mais fraca que a condigdo ja aceita para o comprimento fundamental o qual deveria ser menor
do que qualquer comprimento, incluindo o raio composto do elétron R, que satisfaz [ < R). Entao,
a conjectura de Dehmelt oferece um limite maior sobre o comprimento fundamental que o momento
magnético NC. Portanto nao mais que uma parte em 1072 da diferenca medida (3.5) pode ser, no
maéaximo, atribuida & contribuigao NC.

39



3.3.2 Miuon

O raio do muon estimado analogamente, baseado em argumentos sobre a estrutura de composigéao
e sobre a discrepancia teoria-experimento (3.6), d4 o resultado R, ~ 0.5 - 107®Fm. Este ¢ menor
que a estimativa final da subsecao 3.2.2, baseada em dados do miion. Novamente, uma vez que o
tamanho do muon nao pode ser menor que o comprimento fundamental, este resultado indica que o
momento magnético NC sozinho, definitivamente, ndo pode ser responsével pela discrepancia (3.6)
entre teoria e experimento e, portanto, desvios do modelo padrao além da eletrodindmica NC sao
necesséarios. Diferente do caso do elétron, nao se pode esperar um futuro crescimento da precisao de
medidas para abandonar esta conclusao.
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Capitulo 4

Equacao de Dirac no Espaco NC para o
Atomo de Hidrogénio

Recentemente, possiveis consequéncias fisicamente observéaveis da nao comutatividade das coorde-
nadas atrairam muita atencao, todas elas justificadas pelo intensivo estudo da teoria quéntica de
campos e mecanica quantica ndo comutativas. De acordo com Chaichian et. al. [18] a ndo comu-
tatividade das coordenadas conduz a modificagdes dos niveis de energia do d4tomo de hidrogénio,
em comparacao com a estrutura bem conhecida obtida pela mecénica quantica nao relativistica. Os
resultados obtidos mostram que os niveis degenerados 25 —2 P se separam em trés niveis. Entretanto,
os célculos de [18| foram feitos no formalismo da equagao de Schroedinger nao relativistica (com o po-
tencial de Coulomb) modificada (f-modificada) pela presenca da ndo comutatividade. E interessante
refinar estes resultados considerando a modificacao dos niveis de energia do d4tomo de hidrogénio no
formalismo da equagao de Dirac #-modificada com o campo de Coulomb, que é a equacao de Schroe-
dinger para o caso em consideragao. Tal problema é resolvido na presente se¢ao. Demonstramos [19]
que no caso relativistico a nao comutatividade quebra totalmente a degerescéncia dos niveis 2P
e 2P3/9, resultando em novos canais de transi¢ao permitidos. Comparando nossos resultados com
valores recentes para o “Lamb-shift” [37], determinamos que o valor maximo do pardmetro da nao
comutatividade 6 ¢ aproximadamente 6| . =~ 6.5 x 1072° [m?], ou equivalentemente, a escala de

energia minima da nao comutatividade é Ay, ~ (7.8 x 107 [GeV])fQ.

4.1 Equacao de Dirac #-modificada com o campo de Coulomb

O comportamento de um elétron com carga —e (e > 0) e massa m no campo de Coulomb de um
niicleo Ze no espaco nao comutativo é determinada pela equacao de Dirac §-modificada, dada por?

[(wﬁu - m) N xp} () = [WBM - m] U(z) =0, (4.1)

onde ¥ (x) é um espinor de quatro componentes, P, = p,, — €A, (q) , A" =(®,A) e ¥" sdo matrizes
de Dirac, cuja representacao escolhida é

I 0 ; 0 ot
0 __ 1 __

INesta secdo empregaremos o sistema natural de unidades h = ¢ = 1.
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e o' sdo matrizes de Pauli. A equagao (4.1) é a teoria quantica relativistica do elétron em espagos nao
comutativos, ou seja, espacos cujos operadores de coordenadas nao comutativos §* satisfaz a seguinte
algebra

¢, @] =07, [pi,p;]_ =0, [¢',p;]_=1id;, 67 = const. (4.3)
Salientamos que a algebra dos operadores nao comutativos (4.3) é refletida somente no quadrivetor
potencial eletromagnético A, (2°,¢") como

Ay (moaql) = Ay (xoafz - %9”13]) : (4.4)

Na forma hamiltoniana, a equagao de Dirac (4.1) é reescrita como

iy (z) = HOU (z), H? = (- D) +m° —eAy(q),

ot
a =%, a= (), D=(n), (4.5)
onde o potencial de Coulomb Ay (¢q) ¢é,
R Z
Ao (g) = Ay <x = 29%]) - < . ijk = (1,2,3). (4.6)

V(@ = 309;) (o — S0y

Em toda secdo, referimo-nos a H? como sendo a Hamiltoniana de Dirac 6-modificada com o campo
de Coulomb no espago nao comutativo.

Colocando §° = 5ijk0jk (¢iji € o tensor de Levi-Civita com a usual defini¢do) e denotando r =
Vaizt, o potencial (4.6) pode ser reescrito como

P Ze 1 Ze . .
AO(:C_QGJPJ) = Tt o (Rx D) 0 (6)
Ze 1Ze /- i
= — +ZF<L-9)+O(92)7 0=(0),

onde L =[x x p] é o operador de momento angular orbital. Portanto a Hamiltoniana de Dirac
f-modificada admite a seguinte forma

H'=H+V"+0 (%), (4.7)
~ Zer . 1Zé? /-

B 0o_ %€ o_ _L24¢ (o
H=(a-p)+my t % 10 (L 0) ) (4.8)

Usando as autofungoes exatas de H e tratando V? como uma perturbacao da Hamiltoniana H,
pode-se calcular a modificagao dos niveis de energia do a&tomo de Hidrogénio no formalismo da equacao
de Dirac #-modificada. O espectro de H e as correspondentes autofungoes sao bem conhecidas, como
por exemplo em [79], [80], [81] e [82], cujas expressoes para Z < 137 listamos abaixo:

HUNjme=EnN;Unjme, (==x1, En;=

1,2, (=1 S e .1
N‘{0,1,2..., C Y= () _C(‘H ’

32‘1’1\[,]‘,1\/1,4 =7+ 1) YN, j3‘I’N,j,M,< = MYy;nmc,
. A 1 1 3
J:L+§Ea E:dlag(aaa)7 ]25757 ) _]Snga



nesta expressao o = (0;) sao as matrizes de Pauli e os espinores de Dirac Uy ; pr¢ s@o dados por

L Qe (9,9) Fiy e (1)
\IJN,jM,C (7‘7 '197 90) - ; ( in,M,—( (197 1,0) Fi,j,( (7’) )

¢ _\/(j + g) — (M + %Y;-i-%,M—% (9, ¢)

Qj»M7C (197 (ID) = 3 ) (4.9)
2+ 0+ 1 \/(j+%)+CM+%YHg,M+% (0, ¢)
onde Yy g (¥, ) sao harmonicos esféricos [83], [81] e
Fi o (r) = £ANE2 e [(ny — 5) @ (=N, B;2) F NO (N +1,8:2)]
@\ | T@E+N) . En, _
A= , Ay =4/1E£ =2 Ay =mI[\y,
2T (8) \/ nw (v — ) N17 7N m N NN
B=2v+1, ngn=2Z*m/An, z=2Ayr, 2=C((j+1/2), (4.10)

onde @ (a, b; z) sao fungdes hipergeométricas confluentes, (veja [84| para defini¢ao).

4.2 f#-modificacao dos niveis de energia

Como foi demonstrado em [18|, para atomos hidrogendides sem a interagao spin-orbita, os niveis de
energia da Hamiltoniana 6-modificada H™,

) 2

[ L (4.11)

2m r
sao caracterizados por uma quebra de degenerescéncia no niimero quéantico [ = j+ (/2 (autovalor do
operador L2 ), que implica em certos “splittings” dos niveis de energia. Portanto surge a possibilidade
de novos canais de transicao com distintas proje¢oes de momento angular total M, i.e., na notagao
espectroscopica, transicoes como nlj-w — nl]M ' (para [ # 0), onde n = N + |5| é o nimero quéantico
principal ndo relativistico, autovalor do operador diferencial radial de (4.11). A perturbagao devido a
nao comutatividade é dada pelo mesmo operador Ve (4.8), mas é calculado com fungoes de onda nao
relativisticas, cuja correcao sobre niveis degenerados, em primeira ordem de perturbacao, é obtida
calculando os autovalores da matriz secular AE™, seus elementos sendo definidos como

7 2 ) 47 ]’:‘J .
AEY, = —46/ dr 7“2/ dQ) {Q/JIW (r,9, ) [ 0] Uy ar (r,197<p)} , (4.12)
0 0

3
onde o indice a = (I, j, M) é a cole¢ao de trés indices e

wn,a (’I", 197 90) = wn,hj,M (7"7 197 QO) - Rn,l (T) X4,M (197 90) )
. 2
T (0, 0) = (L + 0/2> Xiar (0,0) =3 (5 + 1) g (0, ) -

sao autofuncgoes de (4.11), flnrwn,a = Epna
Com o intuito de obter a #-modificagao dos niveis 251 /2, 2P /2, 2P3/9, enfatizamos que V% é um
operador vetorial e de acordo com as regras de selecao de momento angular, existem elementos de

43



transigao entre niveis onde AM = |M —M'| = 0,1 e Al = |l —1'| = 0 [85, 86]. A matriz secular
AE™ possui dimensao 6 e calculada conforme (4.12) é

A 2
AEnr — _Tegnr@nr’
oo R r 2 47 .
o= [0l e - [Taa{we) (B0)wwe). @)
0 r 0

ondea = (j, M) significa um par de indices (I =) e O™ representa a matriz cujos elementos sao
- Definindo 04 = 6; £ 64, esta matrix é escrita explicitamente como

aa’*

~20; 20, 0. %0 —350, 0
o= @; g L; ﬁg 29 0 ! (4.14)
303 3%+ BY- 303 3V+
550 6, 0 26 16, 6,
0 %9, 0 0 %9, 03
que possui trés autovalores duplamente degenerados, representados por 5" e £1" dados por
(), &M =+|0], 0] = V0. (4.15)

Portanto, as correcoes para os niveis de energia sao exatamente os autovalores da matriz secular
AE™, que representados como AE]" e AEY sao

- - m [ Z2a2\* [ 1
AEy" =0, AEY ——4( 3 ) (24> (+10]) , (4.16)

onde « é a constante de estrutura fina (que no sistema de unidades em que estamos trabalhando
vale a = €%), A, = \./2m e A, é o comprimento de onda de Compton do elétron. Estes resultados
podem ser igualmente obtidos se escolhermos 6, = 0y = 0 e 63 # 0 (0 que pode ser feito por uma
rotagao ou redefinigao das coordenadas). Com esta escolha |@| = 03, os elementos diagonais podem
ser obtidos através da expressao geral calculada em [18], que é exatamente (4.12) no caso particular
em que j = j'. Nesta escolha de coordenadas AE™ ¢ simplificada podendo ser escrita como uma
matriz de dimensao 3, ou seja

Ze?
AE™ — _Z° jorow
1 27
) oM, (27 0 ) 5
or — 593 (2)71/2 ]\41 0 , MI = ii’ M2 = :l:i, (417)

0 0 M,

cujos autovalores sdo, exceto por || — 03, exatamente iguais a (4.16). Uma vez que o objetivo
do artigo citado foi o estudo da transicao® 2P, /2 — 28512, a mesma nao conteve elementos nao
diagonais, mas que estao representados acima (4.17).

2Rigorosamente falando, esta transicdio ndo existe, pois, o nivel perturbado é uma superposicao de niveis degenerados
) b )
2Py 5 e 2P3/5, e somente os niimeros quanticos M sdo bem definidos. Entretanto, esta consideragao nao modifica o
valor numérico da transigdo e, consequentemente, pode ser ignorada em [18].

44



Nesta defini¢ao de coordenadas, |:j3,‘76:| = 0, logo os autoestados de Hone — for 4 p0 possuem

numero quantico magnético M bem definidos. Este resultado nos permite concluir que, no caso
nao relativistico, os niveis degenerados 25 — 2P separam-se em outros trés, todos estes duplamente
degenerados, como ilustrado na Figura 1.

Na teoria relativistica, a #-modificacdo dos niveis de energia relativisticos é obtida calculando
os autovalores da matriz secular AE™, caracterizada por valores médios do operador Ve (4.8), mas
agora com respeito aos espinores de Dirac Uy ; ¢ (4.9), e as mesmas regras de selegdo de momento
angular podem ser aplicadas, i.e., AM = |[M —M'| = 0,1 e Al = |l -1I'| = 0. O operador de
perturbacao V? nio mistura os espinores do positron F ;¢ (1) com espinores do elétron Fy ;- (r) de
forma que AE™ é composta por dois termos, cujos elementos sao,

Zer [ dr am -
rel __ + T
b === | T IR FNJC,]/O a2 {0l ¢ (L-6) Qare |
Zer [ dr ar A
- t
-7 Tl o) FNJC,]/O dQ{Qj,MﬁC (L.G) Qj,M,7,<,} ,
onde o indice p = (M,() ¢ um conjunto de dois indices. Porém Fy ;. (r) ¢ aproximadamente

~ 1/c¢ menor que F ;? ic (r), de forma que negligenciaremos termos proporcionais a Fy ic (r), retendo
somente o primeiro termo acima.

Estamos interessados em calcular a #-modificacao sobre os niveis de energia relativisticos 25, 2P.
A degenerescéncia nao relativistica no nimero quantico j é naturalmente removida na teoria de Dirac,
de tal forma que o nivel 2P;/5 separa-se dos niveis ainda degenerados 2.5/, 2P, ;3. Consequentemente
a nao comutatividade do espaco implica em “splittings” adicionais e uma anélise saparada para os
niveis de relativisticos com j = 1/2 and j = 3/2 é, portanto, necesséria. Isto significa que elementos
da matriz secular AE™ (5), em primeira ordem em 6, sdo

e 7 e? L-6
ABghe ()= | " a2 | [ / dQ{QﬁMC[ =

QxM,’C} : (4.18)

cujos resultados, para cada nivel, seguem abaixo.

4.3 Corregao relativistica para o nivel 2P

A 0-correcao para o nivel 2P,/ (N =1, j=1/2, (=1, M = +1) segue de (4.18):

Ze?
AEy (1/2) = == 01205, (4.19)
OO d?" 2 rel i r
0172 = ; - ’Fl,;l ("")‘ . Oviwr = . ds2 [ Lma (L ’ 0) Q%vM’J} :

45



Expressando as fungoes hipergeométricas confluentes em termos de exponenciais e polinonios (4.10),
obtemos

i () .
4771(7]1—1)(61—1)(51_2)(51_3>] {(771 2)

- [He=2mon@-9], (0 1)2(51_2) " _3)} | (4.20)

m
771:(Z€2))\*17 M= 1—(262)2; pr =27 +1.

01/2 = (2)\1)3 [

com A, \; dados em (4.10). A matrix ©™! cujos elementos sio ©,,,, é

2/ _
ol = 3 < 9?3 99; ) , 0s =0, £i0,, (4.21)

e seus autovalores, denotados por Aj[, Sa0

2 —
A, = +2 6], 0] = Voo, (4.22)

Portanto, a #-modificagio AE™ (j) do nivel de energia relativistico 2P, /2 ¢ dada por,

Ze?
AEE (1/2) = —791/2AI‘L/2

(22 () (2 )
() oo (=2 0

+ (" 1)2 (61~ 2) (B - 3)] } - (423)

Consequentemente existe uma separacao, ou “splitting” neste nivel de modo que o nivel 25} ,5, 2P /o
se separa em trés. Similarmente ao caso nao relativistico, estes mesmos resultados podem ser obtidos
no referencial #; = 0y = 0 e 03 # 0, com a substitui¢ao |@] — #3. A vantagem deste referencial é

que |:j3, Ve] = 0 e portanto, os estados possuem ntmero quantico magnético M bem definido e o

nivel 251/, , 2P/, se divide nos subniveis 2P1+/§/ 2, 2512, 2P17§/ 2, como ilustrado na Figura 1.

4.4 Corregao relativistica para o nivel 2P,

De acordo com (4.18), a f-corregao paraonivel 2P/, (N =0, j=3/2, ( = -1, M = £1/2, £3/2),
é
Ze?

AERZIM/ (3/2> = —793/295\6/}11\4/ ) (4~24)
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onde a integral radial é

°° dr
03/2:/0 7‘F0+3

15

2 g (A)°
! (T)‘ =4() [(52 —1) (B2 —2)(B2 — 3)] 7 (4.25)

Yo = 4_(262)27 fo=2v+1.

com \J, \g dados em (4.10). Agora a matriz ©™! cujos elementos sao

47
@R‘;}M/ - /O dQ |: %,M,—l (L . 0) Q%J\/[/)_li| 5 (426)
¢é dada por
1
VA
e B T A P (4.27)
50— 15 3 Y+
0 0 ﬁ& 03
Seus autovalores nao degenerados, A}t e A;t' , 880
Ay,
Ay, = %101, A§2:4§—,|0p=VW&. (4.28)
Consequentemente, as corregoes para o nivel 2P;/, possuem a seguinte forma
Ze? AE™ (3/2)F
AE (312 = -2 0o, A 32y = SETIE
222\ ()’
AE“32iz—m<> +10 0 : 4.29
O ==\ ) B2y -G -9 429
Os mesmos resultados podem ser obtidos no referencial §; = 05 = 0 e 03 # 0, com a substitui¢ao
|| — 65. Novamente [jg,ffe] = 0 e portanto, o nivel 2P3/5 se divide em quatro subniveis
QP;;;/z , 2]33_/;/27 2P372/2 e 2P3_/g/2, como ilustrado na Figura 4.1.

Os niveis de energia e suas modificacoes devido a presenga da nao comutatividade, para os casos
relativistico e nao relativistico estdo mostrados® na figura abaixo.

Concluimos que do ponto de vista da teoria de Dirac #-modificada existe adicionalmente, em
contraste com o caso nao relativistico, “splittings” de alguns niveis degenerados e aparece novos
canais de transicao. Em particular, na presenca da nao comutatividade do espaco, os niveis degene-
rados 2512, 2P, /2 separam-se em dois subniveis nao degenerados, o nivel 2P/ separa-se em quatro

P ~ .~ +1/2 4 P . .
subniveis nao degenerados e a transi¢ao 2P, /2/ — 285y9 & possivel. Exceto para o nivel esferica-

mente simétrico QS#Q/ 2, estes resultados mostram que, na teoria relativistica, toda degenerescéncia
é removida.

Os resultados aqui apresentados permitem determinar um valor méximo para o parametro da
nao comutatividade 6. Demandamos que o “splitting” proveniente da nao comutatividade seja menor
do que o menor erro experimental 0 Ej,;, em uma medida direta do desvio Lamb. De acordo com

3Nesta figura, linhas traco-ponto indicam a diferenca de energia que ndo depende de 6 e, consequentemente, nio
pode ser comparada com os outros niveis.
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Nonrelativistic Relativistic

|8|#0 |6|=0 |6|=0 |6]#0
=-172,-3/2
: 1.01x102018| eV/m? 6.75x10°|6] eV/m?
-01x eV/m \1
m=-1/2,+1/2 2512 2P12, 2P 2P'33,/22
d A op - 172
3/2
m=+1/2,+3/2 T =2 ¢6_75x1019|e| eV/m? f‘ "
H 2P3/2
i 2P32
1
. 19 2 J
P 453x10° eV 6.75x10716] eVim
i
! -1/2
! L o0 > Pl
i 25,.2P, - Y6.75x10° 6] evim 28,
h 12
2':,1/2

Figura 4.1: “Splittings”para niveis de energia relativisticos e nao relativisticos devido a ndo comuta-
tividade do espago.

[37], a medida do desvio Lamb que resultou no menor erro foi obtida por Sokolov e Yakovlev [87] e
corrigida por Karshenboim [88], é

8 Epamp =~ 16,5 MHz = 6.83 x 107! V..
Portanto, o limite maximo para o parametro 6 é dado pela desigualdade,

AE™ (1/2) < 6Bjamp — 0] $1.012 x 107" m? = 1 = +/|0] <1 Fm, (4.30)

Logo, a escala de energia da nao comutatividade deve ser

he

V16l

> 0.2 GeV. (4.31)
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Capitulo 5

Descricoes Quanticas e Pseudoclassicas de
Particulas Nao Relativisticas de Spin 1/2 no
Espaco Nao Comutativo

5.1 Introducao

E conhecido que teorias de campos no espaco NC induzem as chamadas equacoes de onda relati-
visticas #-modificadas que, no presente momento, sao interpretadas como equacoes de Schréedinger
da mecénica quantica em espagos NC, p.ex. [17, 23, 30, 89, 90, 91, 92, 93]. Célculos no forma-
lismo de tais teorias estabelecem valores maximos para o pardmetro da nao comutatividade, veja
[18, 19, 44, 94|. No presente capitulo construimos uma equagao de onda nao relativistica (no sentido
de uma #-modificagao da equagao de Pauli). Com a pretensao de resolver o presente problema, con-
sideramos o limite ndo relativistico da equagao de Dirac #-modificada. Mencionamos que a forma
desta depende essencialmente do ponto de vista de como contruir a acao para o campo espinorial
em um campo externo no espago NC. Consideramos duas possiveis a¢oes, uma obtida da simples
modificagdo de Moyal [95] (introduzindo o produtos Moyal na ac¢ao ordinéria para o campo de Dirac
[29, 45, 46, 44, 47, 89, 90, 96, 97, 98]) e outra acao obtida pelo chamado mapa de Seiberg-Witten
(SW), veja [6, 28, 51, 50, 49, 52|.

Deve ser notado que a nao comutatividade pode também ser justificada por uma anélise da
simetria Galileana, no contexto de teoria de grupos, em sistemas de particulas nao relativisticas.
Uma relagao entre spin e nao comutatividade pode ser estudada em exemplos de modelos cléssicos de
particulas espinoriais nao relativisticas, consideradas em [99, 100], [101] e [102]|. As correspondentes
versoes quanticas de tais modelos descrevem &nions relativisticos e nao relativisticos em interacao
com campos externos [103, 104].

Efetuando os limites nao relativisticos em ambas equagbes de Dirac #-modificadas seguimos a
maneira padrao, veja p.ex. [105, 106], separando os espinores “superior” e “inferior” de duas com-
ponentes no espinor de quatro componentes de Dirac. A equagao satisfeita pelo espinor “superior”
corresponde a equagao de onda nao relativistica para particulas de spin 1/2. Para completar a consi-
deragao, apresentamos um modelo pseudoclassico (a la Berezin-Marinov [107, 108|) para a respectiva
particula nao relativisitca no espago NC. Justificamos o presente modelo por meio de sua quantiza-
¢ao, cujo resultado coincide com a equagao de onda nao relativistica -modificada para a particula
de spin 1/2.

Consequentemente, como uma das possiveis aplicagoes do resultado geral, extraimos da equagcao
de Pauli 6-modificada, a interacao entre um spin nao relativistico e o campo magnético externo. Com
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tal interacdo em maos, construimos uma 6-modificagdo do modelo de Heisenberg para dois spins
acoplados submetidos & um campo magnético externo. No formalismo de tal modelo, calculamos a
amplitude de transigdo entre dois estados ortogonais do tipo EPR (Einstein-Podolsky-Rosen) para
um par de spins em um campo magnético oscilatério e mostramos que algumas de tais transicoes,
que sao proibidas no espaco comutativo, sao possiveis devido & nao comutatividade.

5.2 Limite nao relativistico da equacao de Dirac #-modificada

5.2.1 Simples modificacao de Moyal

Nesta subsecao construimos uma acgao para o campo espinorial ¥ em interacdo com um campo
eletromagnético externo A* no espago nao comutativo (NC). Tal agao é construida introduzindo o
produto estrela de Moyal na agao ordinéria para o campo de Dirac (denominamos tal modificagao

como simples modificacao de Moyal, na sequéncia). Desta forma derivamos a seguinte acao *,

S = /d:c/iﬁ/l, LY =T ()% <7“]5M — mc) * W (z)

P, (z) = p, — EA“ (€), Pu=ihd,, AP =(A%A), A= (A, i=1,23), (5.1)
Aqui e no que segue o subindice M deve ser entendido que estamos utilizando a simples modificagao
de Moyal.

Entao a equacao de Dirac #-modificada com um campo eletromagnético externo para uma parti-
cula de carga e (para um elétron e = — |e|) e massa m é identificada com a equagao de Euler-Lagrange
65%,/60 =0,

(’y“pﬁ — mc) V(x)=0,
B, —Sa, (2 + Lowo 5.2
wo pp, - E 12 € + 5 v 9 ( . )

onde v* = (7%, ) sao as matrizes gama de Dirac, e.g. [89, 90].

Como j& mencionado acima, nosso objetivo consiste em derivar uma descrigao quantica de uma
particula de spin 1/2 no espaco NC. Uma vez que no caso nao relativistico, tempo e espaco sao
considerados separadamente, é consistente (e natural) tratar efeitos provenientes somente da nao
comutatividade do espaco, o que implica °* = (. Tal escolha é também suportada pelo fato que na
mecéanica classica e quantica no espago NC existem motivagoes fisicas para considerar somente nao
comutatividade do espaco. Em particular, os parametros 6 admitem muitas analogias proximas
com um campo magnético constante, tanto do ponto de vista algébrico quanto dinamico [17, 92.

Podemos reescrever (5.2) na forma Hamiltoniana (veja, p.ex. [19, 89, 90]),

hO () = By (4.9) ¥ (), 8= o
Hp (,9) = ca- P () +mc*y” + A’ (q) , (5-3)
onde V¥ (z), ¢ um espinor, P (@) =D—%A()),¢=¢"= (2°,¢),
j=ai— %9%7, p = —ihd;
[¢'.¢) =i07, [¢",p'] =ihs", [p',p'] =0. (5.4)
!Letras em negrito representam vetores tridimensionais, por exemplo, a = (a’ = —a;, i =1,2,3).
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Em primeira ordem em 6, a equacao (5.2) reduz-se a

{7“ <pu (x) — %%AM (x) 0“58ﬁ> - mc} U (z)=0, (5.5)
que na forma Hamiltoniana admite a seguinte torna-se,
ihOV (x) = HE, W (z) , HE, = Hp + AHY,
Hp =co-P+edy+mcq°,
AHY = — [V (a- A —Ay) xp|- 0,

S

~

P=p-

ol o

. 1 .
A, 0= <0Z = QEiijJk) ;=" (5.6)

Consideraremos o limite nao relativistico da tultima equagao seguindo o esquema padrao efetuando
transformacoes d la Foldy-Wouthuysen, veja p.ex. [105, 106]. A Hamiltoniana HY, (5.6) ¢ escrita
em termos de um operador impar? Oy = ca - P + (¢/2h) [V (- A) x p] - @ e um operador par
En = mc*® + eAy — (e/2h) [V A x p] - 6. Portanto realizamos primeiramente a transformagao
canonica U = eiSi})\P, com S’ﬁ) = (2imc2) " 42Oy, com o intuito de eliminar operadores fmpares
de ]I:]IK4 (em derivando a aproximacgao nao relativistica negligenciamos termos de ordem O <(m62)73>

independentes 6),
ih0, 0 = Vg, Hﬁ”::aﬂ?(ﬂﬁ—¢ﬁ@)e%ﬁ?. (5.7)
Para Hi/gl) obtemos,

0 (1 1 1 1 1 1
Hy = &ut &y + 0y + 0N, &y = 5510k

1 1 ‘
- 8m204 |:OM) <€ |:OM) (AO - ﬁ [VAO X 13] . 0):| -+ ZhatOI\4>:| s

0
w_ ' £ Y
O = 5 (€10, Ad + 00O — T [Ov. (9:40) ] 0°) |
1
iy _
Ou = _3m2040§/[' .

. . ~ N ~ .. . oy —1 ,

A primeira transformagdo canonica nao elimina operadores impares de ordem (mc®) ", e é por
. . - N a2 . -1 1
isso que realizamos uma segunda transformacao canoénica com o gerador S&) = (2imc?) 70(9&1).
Obtemos portanto a equagao de Shroedinger com a Hamiltoniana

B = 50 (BR — i, ) e = &+ £ + OFF,
9 e 1 1 1 Y ! S
O&L:2m§70<kﬁﬁﬂ%}—QﬁaM[O&%Q%QOW]¢>‘%O&)—hﬂs&x (5.9)

O operador ]I:Hif) ainda contém o operador impar (91(&) de ordefn (m02)72, 0 qulal pode ser eliminado
por uma terceira transformacao canonica, através do gerador 51(5’) = (2imc?)” 70(91(\/2[). Finalmente

2Um operador que possui somente elementos matriciais conectando as componentes superiores e inferiores do espinor
de Dirac é classificado como impar O e um operador que néo possui tais elementos matriciais é classificado como par

£.
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obtemos a equagao de Schrédinger com a Hamiltoniana Hﬁg) e a funcao de onda ¥®). A nova
Hamiltoniana Hif’) é um operador par, e possui a seguinte forma,

vaig) — 5\ (Hip — iﬁ@t) e~ = Ent + 51(&) = diag <m02 + =Y, iz9> , (5.10)
) (@)
PO — 59 59 i g ( i) ) .
X () ~ (me®) 4 (x)

Na aproximacao em consideracao, equacoes para os biepinores® superiores “superiores” 1 e bies-

pinores “inferiores” y s@o independentes. Interpretamos ¢ como a funcao de onda da particula de
spin 1/2 ndo relativistica com a Hamiltoniana Hf;. Retendo somente termos de ordem (ch)f1 em
HY (5.10) nos obtemos a seguinte equagio para 1):

oy (x) = Hy (x)
N 1 e .
¢ 2—054+er— %[VAO xPl-0, (5.11)

mc?

onde A .
OMZC(I-P—Fﬁ{V(a-A)Xf)]-O.

A Hamiltoniana completa HY (com todos os termos até a ordem (mc?)™>) estd apresentada no
apéndice A.

Considerando A como o potencial vetor que corresponde a um campo magnético externo homo-
géneo B = (B’ (t)) (no calibre simétrico)

, 1 .
Al (x) = SR (t) z* (5.12)
com &5, sendo o simbolo de Levi-Civita em trés dimensoes (normaliza¢do €123 = 1), obtemos a

seguinte Hamiltoniana:
e
2h

+ﬁ(p'[]3x[IA’XGH)—I}'B(Hﬁ(B‘@)), (5.13)

~ 1 - R
HlelfNonrcl = %]‘:ﬂ + eAO - ([VAO X p] : 0)

onde o momento magnético 1 da particula é relacionado com o operador de spin § como,

L el _leh A (i
fp=— 8=upo, pup=, —, 8=,0, o'—(a) :

A equagao (5.13) (bem como eq. (5.11)) nao é invariante de por transformagoes de calibre U (1),
visto que a propria equagao de Dirac (5.6) ndo é invariante de calibre. Devido a este fato nés nao
interpretamos o fator em frente do operador & como um campo magnético fisico, justamente pela
propria Hamiltoniana nao ser invariante de calibre.Por exemplo, escolhendo o calibre de Landau
Al = —By, A% =0, este fator é reduzido para B e nao depende de 0.

3Por biespinor referimo-nos a espinores de Pauli.
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5.2.2 Acgao pseudoclassica #-modificada para a particula nao relativistica
de spin 1/2

Considerando o limite nao relativistico da equagao (5.3), obtemos
Zﬁat’(/} ($) - Iffl?/[ Nonrelw (I‘) )
H, ffP2< ) +eA’(q) — B,

B = —53’“ Fji(q) = —’Sg’f {ij () + % [4; (@), A (ci)]} : (5.14)
onde
Fu @ = ¢ [Bo@) R @] =
Fu (@) = 944, (6) = 0,44 (@) + 1[4, (6) . A, (@)]

Se o campo magnético externo é homogéneo, com potenciais (5.12), segue de (5.14) que B? ndo
depende das coordenadas espaciais, é linear em 6 e possui a seguinte forma?:

B'= |1+ (B-0)|B. 5.15
o (B-0) (515)

No caso em consideracio, pode-se contruir uma acao pseudoclassica -modificada S? (¢ la Berezin-
Marinov [107, 108]) para a particula nao relativistica de spin 1/2. Tal a¢do possui a seguinte forma,

. 1 e 2
ng/dtLe, L‘):p-q—2—<p—fA(q,t)> —eA%(q)

+i€ - £+ — (Be (€ x €]) — -p'07p (5.16)

onde as variaveis q e p descrevem o movimento espamal da particula e as varidveis de Grassmann
£= (¢ 1=1,2,3), [, ¢&], =0, descrevem seus graus de liberdade de spin. Um procedimento de
quantizacao apresentado abaixo resulta na mecénica quantica nao relativistica de uma particula de
spin 1/2 com a Hamiltoniana HY ..., definida pela equacio (5.14) e relagoes de comutacao (5.4).
Tratando (5.16) como uma acdo de primeira ordem nas varidveis q, p e &, introduzimos os

momentos candnicos conjugados:
oL’ , oL’ 1 0 i B 0, L°

. = =t . = [ — /L] . = -
Tqi 8q’ P, Tpi 8pZ oh p]7 Tgq 8&1

= i£'. (5.17)

As equagoes (5.17) implicam nos vinculos primérios o = (qui), Cbpi), ) 1)>

o) =7y —p', O =m+ fﬁ”pf L) = mg; — i€, (5.18)

que sdo de segunda classe. Construindo a Hamiltoniana priméria H") = H? + X’(D,(ll), de acordo com
o procedimento candnico [109], obtemos,

“(p-CAlan) +edl@ - o

HG
2m mc

(B?-[¢ x ¢&]) .

4Deve ser notado que em primeira ordem em 6, a Hamiltoniana (5.14) é reduzida a (5.13).
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Neste caso em particular todos os multiplicadores de Lagrange A* podem ser determinados pelas
condigoes de consisténcia [109],

B =0 = A = {dM, M {cp,‘,”, H} .

Realizando uma transformagao canonica para as novas variaveis (representadas por uma linha),

il 7 /% % %

¢"=q, P=p, Ti=mu—p, Tp=Tp—0q, (5.19)

obtemos que os vinculos nestas novas variaveis tém a seguinte forma:

) 1
O = =0, B = ¢+ 6T =0, (5.20)

Estes vinculos possuem a forma especial [109], de modo que as variaveis (qi’ , w;i) podem ser eliminadas

e para o resto das varidveis (p”, W;i), de modo que obtemos a Hamiltoniana total,

W 0 vie@ i @ a1 e )
HO = 1+ 230, x = - {ol",a| }] {of) 1},

1 o
HY = H° [ —n!, — — (0¥9p"7) ,p';€) . 5.21
¢ < T = o7 (0707) 03¢ (5.21)
Apoés uma transformacao canodnica adicional pi = p'*, T = -2, e, ¢ = 2' — %Qikpk , a

Hamiltoniana H? admite a forma H? = H? (¢, p; £).
Eliminando tais variaveis simplificamos os parénteses de Dirac. Os tnicos parénteses de Dirac
nao nulos entre as variaveis remanescentes sao:

i i i i 1 i
{x’pi}p(qa)zéjv {5’53}0@):_55]’
i L i ij
{q’q]}D(Q):%G-j’ {Q7p]}D(¢,):5]

Procedendo para a quantizagdo assinamos operadores as variaveis cléassicas (¢, p,§), tal que os
dnicos comutadores nao nulos sao

[(jia qu:| == ’lﬁ {qi; qj}D(é)‘n:f] == 19“ )

3] =[] = it {40 | = 87,

o a P o

&) =g ey, =50 (5.22)

A algebra (5.22) pode ser realizada em um espacgo de Hilbert H, cujos elementos v (z) sdo espinores
de duas componentes dependentes da varidvel x da seguinte forma,

. . . . . L N h .
i =g, p= il qzzxw%e”aj, gl—\gaﬂ (5.23)

Segue de (5.23) e (5.21) que a correspondente Hamiltoniana quantica coincide com a Hamiltoniana

(5.14), e os operadores de spin nao relativisticos sdo § = —i [é X é] =(h/2)o.
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5.2.3 Consideragao sobre o formalismo do mapa de SW

O intuito da presente subseg@o consiste em obter uma equagao de Dirac 6-modificada por meio do
mapa de SW [6], aplicado na a¢ao (5.1). E conhecido que tal agdo modificada ja é invariante perante
as transformagoes de calibre,

Us () = (eW))* — 14k () — (1/2) M) % A(z) + O (%),

onde A (z) é o parametro de calibre nao comutativo [6]. Primeiramente consideramos a agao,

Séw = /d4x£gw, Loy =T (z) * (v B, — mc) x ¥ (z) ,

1e

Fr () = 0rAY (z) — OV A* (x) + - [AF (2) A% (2)] |
A (2) 1A (2)] = A% ) w A° () — A (&) A (0)
PP =~ (@), (5.24)

onde os campos de calibre NC A, (z) e ¥ (x) sdo expressos via os campos de calibre ordinérios A4, ()
e U (x) (em primeira ordem em ) como:

Ay (@) = Ay (@) + 507 Ao (2) (DA, () + Fi (2)) + 0 (67)

U (2) = O (2) + %eama () 5V (z) + O (67) .

veja® [6, 28, 49, 50, 51, 52]. Entao consideramos o produto estrela em primeira ordem em 6 e
finalmente obtemos a a¢do para o campo espinorial (p.ex. [49, 50]),

_ e . e

Lhy =0 @) {7 [(1+ -0 Fas ) u— 5

2hc

(&

0 Fopl3) = me (1+ o

eaﬁpaﬁ)} U(z). (5.25)

Nos identificamos as equagdes de Euler-Lagrange 6S%y /0¥ (r) = 0 com a equagio de Dirac
f-modificada do mapa de SW. No caso particular de interesse, onde consideramos somente a nao-
comutatividade das coordenadas §°* = 0, obtemos:

iho,U = (HD+AHgW> v,
AHgW:%{QEXf’] -0)+([0><[a><B]]-15)},
E=(F=F°%, B=VxA. (5.26)

Salientamos que esta equagao ja é invariante por transformacgoes de calibre ordinarias U (1).
Seguindo a mesma maneira como foi feito na subsegao anterior, derivamos o limite nao relativistico
da equagao acima. Como resultado, obtemos a seguinte equacao de Schrodinger para o espinor ¢ (x):

ihop) (v) = Hiw (z)

ﬂgW:ﬁng—Fer—f—%([EXls] -0) :
oswzc{a+2%c[ex [axBH}-f’. (5.27)

5 Aqui os campos de calibre NC sob a consideracio de SW sio rotulados por um sinal de circunflexo invertido acima.
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Os operadores completos O2y, e Hfy, (com todos os termos até a ordem (mc?)” %) sdo apresentados
no apéndice.

Se nos restringimos por um campo magnético externo homogéneo B = (B’ (t)), a Hamiltoniana
HYy, € reduzida a:

R 1 . )
HgW—Pauli = %fﬂ +eAy + % ([E X P} . 0>
e

+ 2mhc

(P-[Bx{f’xO])—ﬂ-ng, (5.28)

onde .
Bl = [1 +- (B 0)} B. (5.29)

Em contraste com a equac¢ao nao relativistica com a Hamiltoniana (5.13), a equagao (5.27),
do nosso ponto de vista, é uma boa candidata para ser considerada como a equacao de Pauli 6-
modificada, visto que Hdy _p,.; ¢ invariante de calibre. Pela mesma razao, identificamos a quantidade
B como o campo magnético (f-modificado).

Deve ser mencionado que existe uma maneira original em se obter uma equacdo de onda nao
relativistica para a particula de spin 1/2 por meio de consideragoes tedricas no contexto de teorias de
grupos, apresentada em [110]. Seria interessante verificar se consideragoes similares (talvez adequa-
damente modificadas devido aos problemas bem conhecidos com simetrias classicas espago-temporais
1no espago nao comutativo, p.ex. com a invariancia de Lorentz no caso relativistico, veja p.ex. [111])
se aplicam no caso nao comutativo.

5.3 Dois spins no espago nao comutativo

E conhecido que uma reducio da equacio de Pauli para o caso (0 4 1)-dimensional permite obter a
equagao de spin (na auséncia do potencial escalar, Ay = 0), que descreve o movimento de um spin
espacialmente “congelado” em um campo magnético, veja [112]. A mesma redugao da equagao (5.28)
conduz a equacao de spin no espaco NC, ou a equagao de spin #-modificada:

oW = —ju- B (1 + % (B- 0)) Y. (5.30)

No espago comutativo, a equagao de spin para dois spins interagentes em um campo magnético
homogéneo pode ser escrita como [113],

A~ A~

J
IO,V (t) = H (B, By, J) ¥ (1) . H(B1,B,J)=p-Bi+ 2 -By+ 3% p,
3

YX=I®o,p=0®I, (E-p):a®0':zgi®oi, (5.31)

i=1

onde I é a matrix identidade de dimensao 2 x 2. O primeiro (segundo) termo em H representa a
interacao de Pauli do primeiro (segundo) spin com o campo magnético By (t) (By(¢)) e o ultimo
termo uma interagao esféricamente simétrica J = J (t) entre os dois spins (intera¢ao de Heisenberg).
Na expressao acima estamos absorvendo o momento magnético da particula no campo magnético
(—upB = B). Desta forma um campo efetivo diferente em cada spin pode ser obtido utilizando
particulas com momentos magnéticos distintos.
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Devido ao resultado (5.28), a intera¢ao de Pauli para um spin no espago ndo comutativo em um
campo magnético homogéneo pode ser obtida pela substituigao B, () — BZ (t), a =1,2, veja eq.
(5.29). Portanto, se os campos B, s@o paralelos (na diregao z) segue que no caso nao comutativo a
Hamiltoniana (5.31) torna-se,

. 1

H® =2 [(3s+ ps) BY = (35— ps) BY = J'] + AT,
1

BL(t) =Bl () £B; (1), A=S[1+(-p),

onde estamos supondo que a nova interacao no espaco nao comutativo J? permaneca esfericamente
simétrica. Utilizando técnicas descritas em [114] é possivel mostrar que o operador evolugao para a
equagao de Schréedinger com a Hamiltoniana acima possui a seguinte forma,

. f+8(t) agt) f_g(t)  fi(t) =exp [—z’ /0 t <°;eiB+> d7]7

onde a matriz 4, de dimensao 2 x 2, é o operador evolugao para o seguinte problema de dois niveis
[112],
i) = [(o - K) = J"/2] v, K(t)=(J"(t),0,B. (1)) .

Através da forma explicita deste operador, podemos calcular a probabilidade de transigao P (t)
entre quaisquer estados. Um caso especial interessante é a transi¢ao entre dois estados ortogonais do
tipo EPR |U.),

1
W) = 7 HH £, D) =B+,

=) 2=(7)

uma vez que, neste caso, esta probabilidade nao depende de @ nem da funcdo desconhecida J?,

t
sin [2/ Bi dT]
0

Em particular, para dois campos magnéticos defasados

P(t) = (| U () [0_)* =

By = Bceos(wt), By=Becos(wt+¢), ¢=n(l+2n), neN,

onde B e w sao constantes, nés temos uma transicao estritamente dependente do parametro 6, que

é zero a menos que 6 seja nao nulo®,
[ 2eppB? sin 2wt \ 1|7
sin |6 2 t+ 5 . (5.32)

Este resultado pode ser utilizado para estabelecer um valor maximo para o pardmetro . Para
tal estimativa, supomos que o campo magnético é suficientemente forte em condigoes realisticas no

P(t) =

6 Aqui noés restauramos o momento magnético nB-

o7



laboratorio, digamos B = 10T, o tempo de transi¢ao seja t = 1s, e a resolugao do experimento nos
permite medir a probabilidade com uma precisao de 0,05%, i.e., P (t) < 0.005. Sob estas suposigoes,
obtemos o seguinte valor para 6:

P (t) <0.005 — |0] <2.65x 107*m? —» [ = /|0 < 1.6 Fm, (5.33)

e a escala de energia da nao comutatividade é

€ >01GeV,

h
Vi9el™
Este resultado estda bem proximo com outra estimativa (4.30) e (4.31), que pode ser obtida através
do “splitting” de energia do a4tomo de Hidrogénio devido a ndo comutatividade do espago [19].

5.4 Suméario

Através das duas possiveis acOes para o campo espinorial #-modificadas, a primeira obtida pela
simples modificagdo de Moyal e a segunda pelo mapa de SW, derivamos e discutimos duas equagoes
de Dirac #-modificadas. Ambas agbes ja sao conhecidas (veja referéncias acima); entretanto, a
equagao de Dirac #-modificada pelo mapa de SW foi apresentada pela primeira vez.

Considerando o limite nao relativistico de ambas equagoes de Dirac, derivamos duas equagoes de
Schroedinger para particulas nao relativisticas de spin 1/2 no espago nao comutativo. Uma destas
equagbes é invariante sob transformagoes de calibre U (1) do campo eletromagnético externo e é
interpretada por nés como a equacao de Pauli #-modificada. Tal equag@o nos permite extrair uma
interagdo nao relativistica #-modificada do campo magnético com o momento magnético da particula.
Usando este resultado, construimos uma equacao de spin #-modificada que descreve um sistema de
dois niveis -modificados e entao um modelo de Heisenberg #-modificado para dois spins acoplados
em interacao com um campo magnético externo.

Um modelo pseudoclassico para uma particula nao relativistica de spin 1/2 no espago nao comu-
tativo é construido. Sua quantizacao conduz a equagao de onda #-modificada para tal particula.

No contexto do modelo de Heisenberg, calculamos a amplitude de transigao entre dois estados
ortogonais do tipo EPR (Einstein-Podolsky-Rosen) para um par de spins submetidos a um campo
magnético e mostramos que uma de tais transi¢coes, que eram proibidas no espago nao comutativo,
sao possiveis devido a nao comutatividade do espaco. Este resultado permitiu estimar um valor
maximo para o parametro NC 6.
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Capitulo 6

Conclusoes

Nesta tese do doutorado apresentamos resultados atingidos e estudos concluidos sobre efeitos cléssicos
e quanticos em teorias NC. Abordamos alguns sistemas fisicos bem estudados em fisica tedrica,
como a teoria de Maxwell na presenca de fontes externas, equacdao de Pauli e equacao de Dirac
em campos externos e estudamos o espectro relativistico do atomo de hidrogénio. No capitulo 2
estudamos a teoria de calibre U (1), na presenca de fontes externas onde formulamos, em primeira
ordem no parametro da NC 60, equagoes classicas para os campos covariantes na presenca de fontes.
Encontramos solugdes no vacuo e em um campo magnético externo para a situagdo em que a 4-
corrente é uma carga estatica de tamanho finito a restrita pelo comprimento elementar. A carga
estatica é encontrada ser um dipolo magnético, com seu momento magnético sendo inversamente
proporcional ao seu tamanho a. O campo magnético externo modifica o campo de Coulomb & longas
distancias e alguns fatores de forma eletromagnéticos. Também analisamos a ambiguidade no mapa
de Seiberg-Witten e mostramos que, no minimo até a ordem estudada aqui, isto é equivalente a
ambiguidade de se adicionar uma solucao homogénea a condigao de conservacao da corrente.

No capitulo 3 limites superiores para o comprimento fundamental sao discutidos, os quais seguem
do fato que um momento magnético é inerente a uma particula carregada na eletrodindmica NC.
Encontramos que o resultado mais pronunciado para o comprimento fundamental é ainda maior que a
estimativa do tamanho do elétron e muon, alcangado pela abordagem de Brodsky-Drell and Dehlmet
para a composicao do lépton.

No capitulo 4 investigamos os efeitos da nao comutatividade das coordenadas no dtomo de hidro-
génio relativistico. A estrutura dos niveis de energia, em comparacio com a estrutura bem conhecida
obtida pela mecénica quantica nao relativistica, é modificada, de modo que os niveis degenerados
25 — 2P separam-se em trés novos niveis. Explicitamente, a nao comutatividade quebra totalmente
a degerescéncia dos niveis 2P, ;5 e 2P3/9, resultando em novos canais de transicao permitidos. Adicio-
nalmente comparando nossos resultados com valores recentes para o “Lamb-shift” [37], determinamos
que um limite superior para o parametro NC 6.

No capitulo 5 construimos uma equagao de onda nao relativistica para particulas de spin 1,/2
através do limite nao relativistico da equacgdo de Dirac f-modificada. Foi apresentado um modelo
pseudoclassico (&-la Berezin-Marinov) cuja quantizagao coincide com as equagoes de onda nao re-
lativisticas obtidas. Extraiu-se a interacao entre um spin nao-relativistico e o campo magnético de
tal equagdo de Pauli e construiu-se uma 6-modificagdo do modelo de Heisenberg para dois spins
acoplados no espaco nao comutativo. Em tal modelo foi calculado a amplitude de probabilidade de
transicao entre dois estados ortogonais do tipo EPR submetidos em um campo magnético oscilatério
e mostramos que, algumas de tais transi¢oes, que sao proibidas no espago comutativo, sao possiveis
devido a nao comutatividade.
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Apéndice A
Hamiltonianas Nao Relativisticas

A Hamiltoniana néo relativistica completa HY (5.11), com termos da ordem (mc?) > ¢,

1 e R
WOI%/I‘FGA()*ﬁ[VA()Xp}O

[OM, ( [Ow, Ao] + 59,0y —

Fro
HM =
1
8m2 4

2ﬁ€”k (O, 0 Aoi] 9’“)}

onde os operadores acima sao:

O§4:c2P2—eﬁc(B-a)—ehc{([f)xVAi] t9)]Sz

SV X AL 0) B0+ 5 [ (V) x (V4) 1] 0]

(O, [Onr, Ag]] = —Tic? {ﬁV2A0 12 [(VAO) X P} -o’}

ehc

=~ PO [(VA) x (VA)] -6+ [(VA) < 0, (V4)] -0
+ zeuk (0, [(VA) x (VA)] -0) o* + ey ([(VAY) x 0, (VA)] - 6) o*)
- 60{5ijk ([(VA) x (VA)] - 68) PPo" — e ([(0:A) x (VAo)] 'U)ﬁ]ﬁk} 7
(O, B,0y] = elic {i@t (V-A) = [V x (04) -0+ [(@A) X P] }
— SV (V-0A) x |- 6 [V ([V x (3A)]- ) x P] -0

+ poun (00 (VA) x ] -0) Pio* + 215 [V (0.4) x (V.4)] -0}

+ 2 { (9 (00) x (VA)]0)0* = 1 (04) x (0A)] - 0) 70"}
(O, [0, E'P]] = =2 { (V2E) p/ + = (08") (9,4') + =0, (E'0;4') }

Liche {R[(VE) x (0,A)] -0 — K[V x (E9,A)] - o

— 21 [(VE') x (9;A)] - o + 2t ([ (VE') x P| -o) '} .

A Hamiltoniana néo relativistica completa Hfy, (5.27), com termos da ordem (mc?) > &,
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. - 1
Hiy = mc®y° +eA +%[EXP} 9+2 27
1

824

"OSw

Osw, | € [Osw, Ag| + ih0,Osw + —¢€iji Osw, E'P7|) 0%|
ﬁ

onde:

Ot = (+503) (P~ "B.0) - ¥ (BP) (0-P)
—i%{V(O-B)~P (6-VB) P —I—Z[V(B-B)Xf’}-a
~i([(VB) x 6] -0) P},

[Osw, [Osw, Aol = —hic? (1 n %9 - B) {ﬁV2A0 +2 [VAO X ﬂ .a}
—i—ech{(B V) (0 V Ag) — %(VAO .V (0-B))

1 1 .
+5(8-VB) - (VA) -+ (B- VA [Pxe] o

+%([VAO><0} )(B-P)},
[Osw, 9 Osw] = (1 hf(e B)) {mat (V- A)+2i [(@A)xﬁ] -a—h(@tB-a)}
{hB V (0A - 0)+ ([0A x 0]) - o) +2([0A x 0] - o) (B.IS>}

{ V(0-0B)-P+(0-VO,B )Pi+i{V(8tB-0)xf’}-a
~i([vaB x6)-0) P - (@B)-P) [P 6] o}

+€22{i(@tA)-V(G-B)—ZO-V(B-at A)—(0-9B)(B o)
+[V(B-0A)x 0] -0 —[Vx(AB-0)]-0+2(0B-6)(B-o)
+i[(0,B) x 0] B+ﬁ(B atA)[ﬁxa}.a},

[OSW; [OSVW Eiﬁj” = —h*c? {(VQEi) - 2*653le (DE") + EEjlkEialBk

—%([(VEi)xP}- )Pj—i-%Eaj(B-a)

- z‘eEiaf (V-B) - % (B-o)EPI + %Eiaj (B : P)

226 2te
— — (

9,E) (B.o)— 2 (B. VE) o }

Cc
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Apéndice B

Mapa de SW e Equivaléncia de Calibre para
a Teoria de Maxwell Pura

B.1 Teoria de Maxwell U (1), sem correntes externas

Com o intuito de diferenciar e discutir as correspondentes teorias, definidas pelas equagoes de
Maxwell #-expandidas, provenientes do mapa de SW aplicado nas equagoes de movimento ou na
acao denominamo-as por teoria “off-shell” e “on-shell” respectivamente. Trata-se apenas de uma
questao de terminologia, aplicada aqui por mera conveniencia. A secdo B.2 é devotada a explicacao
dessa terminologia.

B.1.1 Mapa de SW no nivel das equacoes de movimento: Teoria “off-shell”

A teoria de Maxwell U (1), é descrita pela acao,

S 1 . .
= - Hy
S [A] oo | deFuwx
F,=0,A-0,A, +ig[AzA)] . [AsA] =A,xA, — A, xA,, (B.1)
cujas equacdes de Euler-Lagrange 65 / 5141“ = ( tém a forma,

95 _ ppm—o,
0A,
D, F"™" = 9,F"" +ig [A P . (B.2)

Sabemos que estas equagoes sao interpretadas como equacoes de Maxwell no espaco-tempo NC na
auséncia de correntes. Uma vez que estamos interessados em discutir possiveis efeitos fisicos devido
a nao comutatividade das coordenadas e isto significa que devemos medi-los de alguma forma, estas
pequenas modificagoes em comparacao com efeitos conhecidos explicados pela teoria de Maxwell
ordindria. Entao deve-se relacionar campos ordinarios A, com campos NC flu, através do mapa de
SW, por exemplo. Restringindo-nos a termos lineares em 6, os mapas de SW para os campos /1# e

F,, sao [6]
A# (JZ‘) = A# (JZ‘) + geaﬁAa (x) [aﬁA# (‘T) + fﬁ,u (1’)] ) f,uV = a,uAl/ - 8VA,LL )
me (I) = fuu (JZ) - geaﬁ {fau (l‘) f@u (l‘) — Ao (l‘) aﬁf/w (‘T)] : (BS)
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e efetuando este mapa no nivel das equagoes de movimento (B.2), obtemos, em primeira ordem em
¢, uma equacao de Maxwell f-expandida expressa em termos dos campos ordinarios A, e f,.,

81/][”“ - ggaﬁ [au(fayfﬁﬂ> - fl/aaﬁfyu - Aaaﬂal’fyu] =0. (B4)

B.1.2 Mapa de SW no nivel da agao: Teoria “on-shell”

Alternativamente, nés podemos decidir aplicar o mapa de SW (B.3) na acao (B.1), conduzindo a
uma teoria diferente a priori. Entao, neste caso, obtemos a seguinte acao,

1

Ssw [A] - 167c

/ﬁx“ﬁ+gm%@)@JW—2wWﬂ%mﬁ@}7 (B.5)

onde negligenciamos termos de segunda ordem em . Consequentemente podemos derivar imediata-
mente as equagoes de Euler-Lagrange 0Ssw/0A, = 0,

O [ (1420 fus) | = 967 [0, (1,7 1) + 0 (£ )]

a0 00 (1) = 105 ()] (B.6)

Apo6s uma primeira investigagao, observamos que as equagoes do movimento (B.4) e (B.6) sdo
definitivamente diferentes e provavelmente conduz a resultados fisicos diferentes se intepretarmos
que quantidades fisicas podem ser construidas com as solugdes de (B.4) e (B.6) (digamos campos
eletromagnéticos, por exemplo). Entretanto acreditamos que estas equagoes devem ser equivalentes,
no sentido que resultados fisicos derivados de (B.4) ou (B.6) sao os mesmos. Esta afirmagao tem
por base o fato que o mapa de SW oferece uma relacao correta! entre os campos comutativos e NC,
tal que quantidades fisicas devem ser independentes em qual “lugar” o mapa é aplicado.

Procedemos agora para a equivaléncia entre ambas teorias. Esta claro que S(A,j) = Ssw(A, 5)
de modo que segue a identidade,

0Ssw §A,(y) 68
§A,(T) /dy{(SAp(x) §A,(y) A_f(A)} ' (B-7)

Como noés temos discutido acima, ambas teorias podem ser consideradas equivalentes se elas
providenciam mesmas quantidades fisicas. Uma maneira possivel de provar tal equivalencia é verificar
que solugoes de (B.4) sdo também solugoes de (B.6), i.e.,

65

0A,(y)

0Ssw

—0= 5Au($)

A=f(A)

=0.

Esta conclusao aparenta ser clara por (B.7), entretanto, do ponto de vista operacional nao é direto
dizer que solugoes de (B.4) também sao solugoes de (B.6). Entao, devido ao fato que 6 é presumi-
velmente pequeno, podemos tratar as equagoes (B.4) e (B.6) perturbativamente, i.e., realizando a

expansao dos campos,
Ay =AD + AN (0)+0 (07 , (B.8)

Veja a secio B.2 para comentérios adicionais.
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tal que as equagoes (B.4) e (B.6) admitem a seguinte forma,

0 f0 = 967 |0, (0" ) = £2 (9:57)| = 0, (B.9)
e
ayf“)”ugeaﬁay (f<0>”“f§2) — g6°° [ay (féo)”féo)“) 05 (f‘o)“”fé?)}
b a0 o (10 10) - Jo O] mao)

onde os campos AO* sdo solucoes das equagoes de Maxwell ordinérias 0, f Ovr =0,
Vamos considerar, formalmente que f(M*# ¢ uma solugdo de (B.9). Entdo substituindo-a em
(B.10) obtemos,

ayf(l)w + ggaﬁf(o)w <3uf(§05)) — ggaﬁ [ (f f(O ) — 4 (f(o)m/fo(fl)/))}
+ geﬁuf(o)ow Dy f(O) 8ﬁfo(é?,)—

g « v (0) _ le% nv
59 B pOwn <3Vfa%) = —gf*f fOm ( f(O))

L
+ gf O aaf<3>—§aﬁf£>

6o fOm [6 18 - a,,fi%)} = O [aafé?—;aﬁfé?y (B.11)

que, aparentemente, aparenta ser um resultado absurdo, pois, nao é possivel identificar o lado es-
querdo com o lado direito. Neste caso o sinal de igualdade nao faz sentido, exceto se ambos os lados
sao iguais a zero! Este é precisamente o caso que temos aqui,

g7 pOm [aﬁf@ - ;ayfé%)] = o7 O [agaaAS” - %ay (0249 + %AE?’)] =0,
devido a antissimetria de €. O mesmo acontece com o lado direito,
1 1
oo O [aaf,é? - 28@9] = % O [285 (02 AL +0,AL) — aaayAg”] =0,  (B12)

devido a f(©*  Entdo podemos afirmar que solucdes de (B.4) sdo também solucdes de (B.6), ofe-
recendo as mesmas quantidades fisicas (construidas por meio destas solugoes). E devido a este fato
que as teorias “off-shell” e “on-shell” podem ser interpretadas como equivalentes.

B.2 Simetria de calibre e expansao dos campos

Com o intuito de se incrementar a presente discussao, é interessante comparar um ponto adicional
entre as teorias “off-shell” e “on-shell”. Iniciando com a agdo dos campos eletromagnéticos no espago-
tempo NC (B.1), que possui simetria U (1), e realizando o mapa de SW (B.3) no nivel da a¢ao obtemos
a teoria “on-shell” (B.5) que possui a simetria ordinaria U (1). Consequentemente as equagoes de
movimento (B.6) também possuem simetria U (1). Por outro lado, se realizarmos o mapa de SW
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no nivel das equagoes de movimento (B.2), que possuem simetria U (1),, obtemos a teoria “off shell”
(B.4) que ndo possui simetria U (1), devido ao ultimo termo A,050, f"*. Isto ¢ consequéncia do
fato que o mapa de SW nao preserva simetria de calibre perante dois grupos de calibre. De fato,
como originalmente discutido [6], o mapa de SW relaciona campos de calibre NC A# com campos
de calibre ordinarios A* de tal modo que a equivaléncia de calibre entre eles é preservada, embora
tal relagdo nao preserve a simetria. Especificamente a simetria da agdo (B.5) deve-se ao fato de
condicoes de contorno, de modo que podemos realizar integrais por partes e aplicar o teorema de
Stokes, eliminando termos que quebram a simetria de calibre U (1).

Na presente situagao, nés podemos dizer que a simetria U (1) da equagao (B.6) é uma consequéncia
de (B.5), ao passo que na teoria “off-shell” (B.4) a simetria é quebrada devido ao fato que nao temos
possibilidades como (B.5), para remover termos dependentes de calibre. Na realidade, para restaurar
a invariancia de calibre U (1) de (B.4) devemos impor condig¢des externas: a condi¢ao “on-shell”,
que ¢é precisamente um resultado do nosso trabalho [58]. Em outras palavras devemos considerar a
expansao dos campos (B.8) e impor? condigoes “on-shell”,

9,f 0" = 0.

E por isso que denominamos (B.4) como teoria “off-shell” e (B.5) como teoria “on-shell”, pois, (B.6)
ja é “on-shell”.

Entao, enquanto a expansao dos campos (B.8) é natural para ambas teorias com o intuito de lidar
com equagoes nao lineares com uma pequena perturbagao (o parametro NC ) na teoria “off-shell”,
esta expansdo ainda salienta condigdes de invariancia de calibre U (1). E interessante notar que no
nosso caso (Teoria de Maxwell na presenga de correntes) nos somente temos a possibilidade “off-shell”,
visto que nao faz sentido aplicar o mapa de SW no nivel da acao devido a problemas de covariancia
perante transformacoes de calibre U (1),.

2A0 mesmo tempo isto é completamente natural, pois, como desejamos extrair modificacdes fisicas em campos
fisicos, i.e., aqueles que sao solugoes das equacoes de Maxwell ordinarias.
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