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Abstract. Radio observations revealed a presence of relativistic supernovae - a class of objects
intermediate between the regular supernovae and gamma-ray bursts. The typical Lorentz-factors
of plasma flows in relativistic radio-bright supernovae were estimated to be about 1.5. Mildly
relativistic shocks in electron-ion plasmas are known to efficiently accelerate radio-emitting
electrons if the shock is subluminous. The inclination angle of the velocity of subluminous
shock to the ambient magnetic field should be below a critical angle which depends on the
Mach number and the plasma magnetization parameter. In this paper we present particle-in-cell
modeling of electron acceleration by mildly-relativistic collisionless shock of different obliquity
in a plasma with ratio of the magnetic energy to the bulk kinetic energy σ ≈ 0.004 which is
of interest for the relativistic supernovae modeling. It was shown earlier that a development of
the ion scale Bell-type instability in electron-ion relativistic shock may have a strong influence
on the electron injection and acceleration. In the time period of about 1500ω−1

pi (ωpi is the
ion plasma frequency) after the shock initialization the magnetic field fluctuations generated
by Bell’s instability may significantly decreases number of accelerated electrons even in a sub-
luminous shock. We study here the evolution of the electron spectra of subluminous shocks of
different obliquity. This is important to for modeling of synchrothron spectra from relativistic
supernovae.

1. Introduction
Relativistic shocks are playing an important role in modeling of luminous high energy objects
in astrophysics. They can be generated in the supernovae [1, 2], the accreting supermassive
black holes [3], the stellar masses black holes [4–6] and pulsar wind nebulae [7–10]. Relativistic
shocks in astrophysical objects are sources of cosmic rays [11–13] and can accelerate particles to
ultra-high energies [14–16].

The presence of high energy non-thermal particles leads to development of various magneto-
hydrodynamic instabilities (see e.g. [17–19]). Bell’s instability [20] can be the most significant
due to it’s large growth rate. Instabilities may modify the flow and has strong influence on
the process of particle acceleration [21–23]. Namely, it was realized that Bell’s instability is
producing the strong ion-scale magnetic fluctuations which provide on the electron scales some
macroscopic size regions of the superluminal shock obliquity which locally suppress the electron
injection. The shock rippling effect is important for the electron spectra formation in the mildly-
relativistic shocks. In the simulations [21] the electron spectra evolution was demonstrated in a
mildly-relativistic shock of an inclination angle 10 degrees. The magnetic fluctuations produced
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by the Weibel instability initially efficiently reflect and energize both ions and electrons. After
the time period of about 1500ω−1

pi the efficiency of electron acceleration by the shock drops down
significantly because of developing of Bell’s instability which increases the transversal magnetic
field. The proton spectrum in this simulations was not strongly affected in the Bell-mediated
shock. Given the significant interest of non-thermal particle acceleration by the subluminal
mildly-relativistic shocks we present below results of particle-in-cell modeling of electron and
proton acceleration by the mildly-relativistic shocks of different inclination angles.

2. Numerical setup
In this work we use particle-in-cell code Smilei [24] for modeling mildly-relativistic collisionless
shocks. We initialize two-dimensional space domain, with electron-proton plasma flowing into
simulation box through the right boundary and reflecting wall on the left boundary. In the
transversal direction boundary conditions are periodic.

The simulation parameters are : the initial flow Lorentz factor Γ = 1.5, the flow magnetization

σ = B2

4πΓ(npmp+neme)c2
= 0.004. The dimensionless thermal energy ∆γ = kT

mpc2
is equal to 10−4

and the electron mass is increased up to me =
mp

100 . The size of the simulation box along the x

axis is Lx = 30000 c
ωp

and in the transverse direction Ly = 200 c
ωp

, where ωp =
√

4πq2n
Γme

is the

plasma frequency. These scales correspond to 150000 and 1000 grid points in x and y directions,
respectively.

Inclination angle of magnetic field due to shock velocity varies in different setups from
θ = 20◦ to θ = 40◦. These values are chosen to contain critical angle, which is defined by
the equation c · cos(θcrit) = vshock, where all values are measured in the upstream rest frame,
and is equal approximately 30 degrees. If inclination angle is larger then critical value, shock
becomes superluminal - particle can not escape from it to upstream, even moving along the field
lines with speed of light [13, 25]. The maximum efficiency of particle acceleration is near the
critical angle, and is less below this angle [26]. Magnetic field is lying in the simulation plane.

3. Results
Profiles of transversal magnetic field, obtained from numerical simulation, show significant field
amplification in precursor of shock wave, see figure 1. It is result of development of instabilities
in plasma, particularly Bell’s instability [20], which growth rate is larger than growth rate of
other instabilities.

Figure 1. Temporal evolution of the transversal magnetic field.
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It is known, that development of Bell’s instability can suppress electron acceleration [21–
23]. We study this phenomena with different inclination angles of magnetic field. Spectrum of
electrons is shown in figure 2. One can see, that electron acceleration has strong dependence on
inclination angle, and when it is more than critical value (at θ = 40◦), non-thermal component
almost disappears. For smaller angles electron distribution function at high energies (Γ > 300)
depends on time, and it maximizes at times about 1400 inverse proton plasma frequencies ωpi
for angles θ = 20◦, θ = 30◦, and 2100 and inverse proton plasma frequencies for θ = 33◦.
After reaching the maximum value the electron distribution magnitude starts decreasing at
high energies. It may by explained as consequence of magnetic field amplification. Instabilities
increase the transverse magnetic field and also the angle between field and shock velocity. As a
result shock becomes quasi-perpendicular and can not effectively accelerate particles [25, 26]. On
the other hand, proton distribution function constantly increases in time for sub-critical angles,
and almost does not have non-thermal component for θ = 40◦, as shown in figure 3. We assume,
that oscillating transverse field has the strongest influence on the smallest scales, and suppresses
the electrons injection into acceleration process, while protons still can be accelerated. Also,
one can see, that temporal evolutions of electron and proton spectrums are correlated. In case
of inclination angle θ = 33◦ proton distribution function grows slower than for smaller angles,
at time less than 2000ωpi

−1 it has very weak non-thermal component. And electron distribution
in this case maximizes at larger time than for smaller angles. This correlation confirms the
assumption, that instability suppressing electron acceleration is caused by accelerated protons.

Figure 2. Temporal evolution of electron spectrum in shocks with different magnetic field
inclination angles. Top row: left θ = 20◦, right θ = 30◦, bottom row: left θ = 33◦, right θ = 40◦
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Figure 3. Temporal evolution of proton spectrum in shocks with different magnetic field
inclination angles. Top row: left θ = 20◦, right θ = 30◦, bottom row: left θ = 33◦, right
θ = 40◦

4. Conclusions
Details of electron acceleration are important for correct interpretations of observations of the
synchrothron radiation from astrophysical sources. Particle-in-cell simulation has been used
to demonstrate magnetic instabilities influence on electron acceleration in mildly-relativistic
electron-ion shock. It is shown, that amplification of magnetic field suppresses formation of
electron spectrum at high energies while proton spectrum can grow monotonously in time
in subluminal shock. Also, we demonstrated that growth of proton spectrum is correlated
with decreasing of electron acceleration, and resulting electron spectrum strongly depends on
magnetic field inclination angle. This effect should be taken into account for deriving parameters
of source of synchrothron radiation via analysis of spectrum. Further particle-in-cell simulations
with a wider spatial and energetical ranges will allow to study the influence of instabilities on
electron spectrum more precisely.
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