



# Vertex Detector Electronics: ODE Pre-Prototype

## User Manual

Issue: 2

Revision: 1

Reference: IPHE 2000-008, LHCb 2001-057 VELO

Created: 28 February 2000

Last modified: 4 May 2001

**Prepared By:** Yuri Ermoline

## Abstract

This document is a user manual for the ODE pre-prototype module (ODEPP, also frequently referred as Read-out Board number 2, RB2). The module is under development and new features are implemented in every new version.

## Document Status Sheet

**Table 1** Document Status Sheet

| <b>1. Document Title: Vertex Detector Electronics: ODE Pre-Prototype</b> |                    |                |                                                                                                                                                                                                       |
|--------------------------------------------------------------------------|--------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>2. Document Reference Number: IPHE 2000-008, LHCb 2001-057 VELO</b>   |                    |                |                                                                                                                                                                                                       |
| <b>3. Issue</b>                                                          | <b>4. Revision</b> | <b>5. Date</b> | <b>6. Implemented features</b>                                                                                                                                                                        |
| 1                                                                        | 0                  | 2 Mar 2000     | VME slave interface A24/D32, CSR0, CSR1, FIFO, VME trigger, PDU control, FADC data capture mode                                                                                                       |
| 1                                                                        | 1                  | 22 Mar 2000    | VME reset, TTC trigger, added 24-bit trigger counter                                                                                                                                                  |
| 1                                                                        | 2                  | 31 Mar 2000    | Changed CSR1 format, added 12-bit FIFO counter, trigger counter reduced to 12 bits                                                                                                                    |
| 1                                                                        | 3                  | 6 Jun 2000     | Added IPHE reference number<br>CSR1(3..1)="001" (module status)<br>Added Appendix A (Useful TTCvi commands)<br>Added Appendix B (FADC card dimensions)                                                |
| 2                                                                        | 0                  | 10 Aug 2000    | VME reset VRST(0) and VME TTCrx reset VRST(1)<br>Version & Revision, pseudo digital bit limits (CSR0)<br>TTCrx status CSR1(1), FADC card connector update, FADC data processing (event header finder) |
| 2                                                                        | 1                  | 2 May 2001     | VME TTCrx reset modified, new MODE="10" implemented (readout without trigger), OSI card description added                                                                                             |

## Table of Contents

|                                                                            |    |
|----------------------------------------------------------------------------|----|
| <b>1 General description</b>                                               | 1  |
| 1.1 Module clock                                                           | 3  |
| 1.2 Module resets                                                          | 3  |
| 1.3 Module triggering                                                      | 3  |
| 1.4 VME slave interface                                                    | 3  |
| 1.5 TTCrx board and OSI card                                               | 5  |
| 1.6 FADC clock phase adjustment                                            | 6  |
| 1.7 FADC card                                                              | 7  |
| <b>2 Module operation</b>                                                  | 8  |
| 2.1 MODE = "00" - continuous data capture, starting on trigger             | 8  |
| 2.2 MODE = "01" - event data capture, starting on trigger and event header | 9  |
| 2.3 MODE = "10" - event data capture, starting on event header             | 9  |
| <b>3 References</b>                                                        | 10 |
| <b>Appendix A. Useful TTCvi commands (from [7])</b>                        | 11 |
| <b>Appendix B. FADC card dimensions</b>                                    | 12 |

## Glossary

|             |                                   |
|-------------|-----------------------------------|
| <b>FADC</b> | Flash Analog to Digital Converter |
| <b>FIFO</b> | First-In First-Out                |
| <b>FPGA</b> | Field Programmable Gate Array     |
| <b>ODE</b>  | Off-Detector Electronics          |
| <b>TTC</b>  | Timing, Trigger and Control       |

# 1 General description

Vertex detector ODE pre-prototype (ODEPP, also frequently referred as Read-out Board number 2, RB2) module is designed for the read-out of up to 4 analog multiplexed signals from the vertex detector front-end chip(s) at 40 MHz. ODEPP is a 6U VME module, 2-unit wide. It consists of a main VME board and 3 daughter cards as shown on the Figure 1.

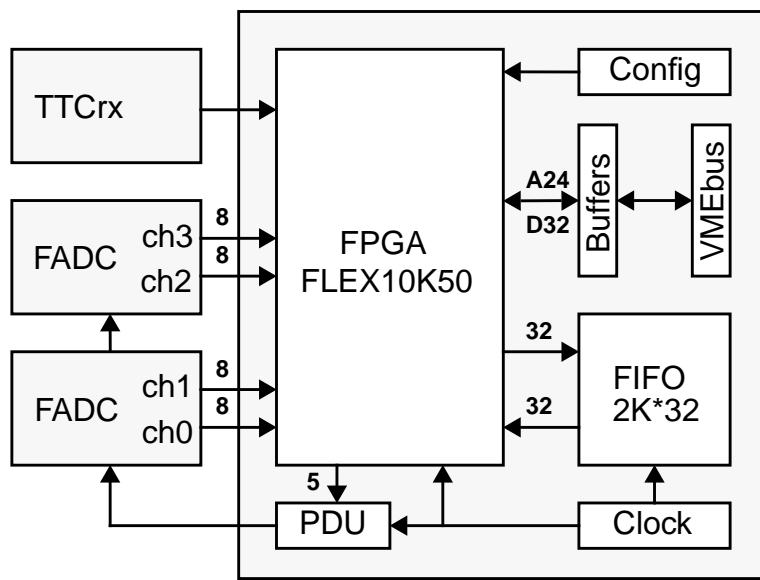



Figure 1

The main VME board provides (see also Figure 2):

- Altera FLEX FPGA EPF10K50RC240-3 (2880 logic elements and 10 embedded array blocks of RAM, 2K bit each [1]), connector for FPGA configuration via down-load cable and socket for the configuration EPROM (EPC1PC8).
- Data buffers, address comparators and Base address rotary switches for the VMEbus slave interface (A24/D32) which is used as a control and monitoring interface to the module.
- 2K\*32 bit of FIFO (4 SyncFIFO chips Cypress CY7C4231, 15 ns access time [2]).
- 40 MHz internal clock oscillator, programmable delay unit for FADC clock phase adjustment (PDU15F-1 from Data Delay Devices [3]), LEMO connector for the BUSY output signal (TTL open collector, active low), the Reset button and the green LED.
- Connectors to a TTCrx board carrying a TTCrx chip [4] - the receiver chip of the Timing, Trigger and Control (TTC) system, CERN microelectronics group design.
- 2 connectors for FADC cards (2-channels, 8-bit, 40 MHz, based on AD9059 from Analog Devices [5]) and voltage regulators for FADC cards analog power.

One of the FADC cards can be replaced by the ECS interface prototype or the trigger pre-processor interface prototype.

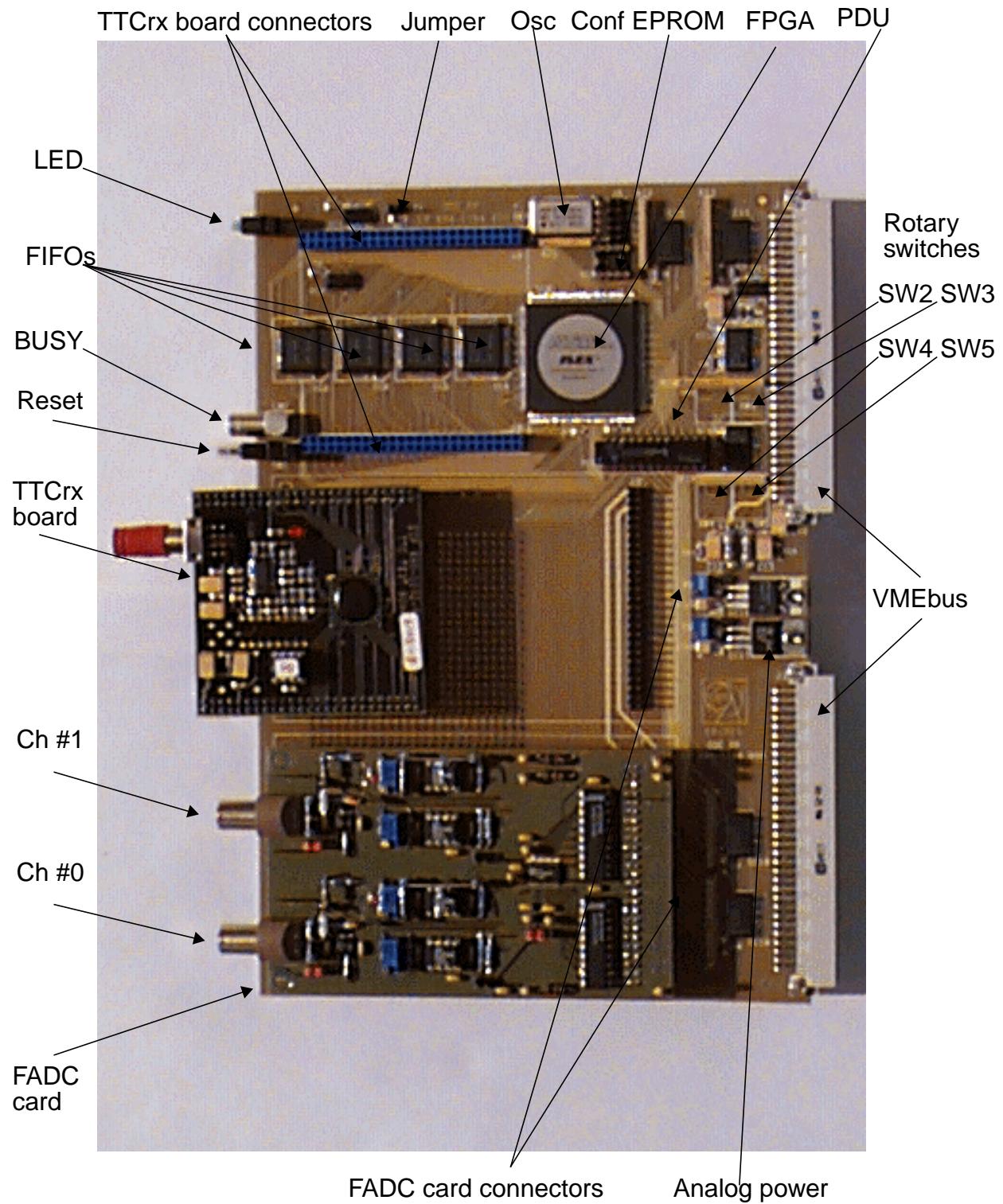



Figure 2

## 1.1 Module clock

The ODEPP main board can be driven by internal clock from the 40 MHz clock oscillator or by the clock, delivered by the TTCrx chip (40 MHz). The clock source can be chosen by the jumper on the ODEPP main board (see Figure 2):

- Jumper inserted - internal 40 MHz clock.
- Jumper removed - external TTCrx 40 MHz clock.

Clock for the FADC card connectors are provided by the programmable delay unit (see 1.6).

## 1.2 Module resets

The ODEPP main board are reset on power-on and can be reset by:

- Pressing push-button “Reset” on the front panel or writing ‘1’ into VMEREST register VRST(0) from the VMEbus (see 1.4) sets to zero the module registers, counters and FIFO read/write pointers.
- Writing ‘1’ and then ‘0’ into VMEREST register VRST(1) from the VMEbus (see 1.4) generates reset signal for the TTCrx receiver chip (see 1.5).

## 1.3 Module triggering

PDE-PP module can be triggered:

- from the VMEbus by writing ‘1’ into CSR1(0).
- from the TTCrx chip (using TTC system) or OSI card, using external trigger (see 1.5).

The triggers are counted by the 12-bit TRIGGER Counter, which can be read from CSR1(15..4).

## 1.4 VME slave interface

The module uses the P1 and P2 VME connectors and works in A24/D32 mode. Block Transfer mode is not implemented. The recognized Address Modifier codes are 3E, 3D, 3A, 39 (standard access).

The module's 16-bit Base Address (VME address bits A24..A08) can be selected by 4 internal rotary switches (see Figure 2) in the range (0000-FFFF) hex:

- SW2: VME address bits A23..A20
- SW3: VME address bits A19..A16
- SW4: VME address bits A15..A12
- SW5: VME address bits A11..A08

The address map of the ODEPP module is shown below:

| VME address bits A07..A00 | Register |
|---------------------------|----------|
| “00” hex                  | CSR0     |
| “04” hex                  | CSR1     |
| “08” hex                  | VRST     |
| “10” hex                  | FIFO     |

#### Control/Status Register 0 (CSR0) - \$00

| Data Bit(s) | Write         | Read         | Comments                      |
|-------------|---------------|--------------|-------------------------------|
| D4..D0      | PDU control   | PDU status   | FADC clock phase adjustment   |
| D7..D5      | No action     | “000”        |                               |
| D9..D8      | MODE control  | MODE status  | Operation modes               |
| D11..D10    | No action     | “00”         |                               |
| D13..D12    | No action     | REVISION     | Design revision               |
| D15..D14    | No action     | VERSION      | Design version                |
| D23..D16    | PDBLL control | PDBLL status | Pseudo-Digital Bit Low Limit  |
| D31..D24    | PDBHL control | PDBHLstatus  | Pseudo-Digital Bit High Limit |

CSR0 provides storage for the static parameters - programmable delay line control value for the FADC clock phase adjustment (see 1.6), the module operation mode (see 2) and the FADC data processing parameters (see 2.1).

#### Control/Status Register 1 (CSR1) - \$04

| Data Bit(s) | Write     | Read       | Comments                           |
|-------------|-----------|------------|------------------------------------|
| D0          | VMETRIG   | MODBUSY    | Start data acquisition from VMEbus |
| D1          | No action | TTCREADY   | TTCrx receiver chip ready          |
| D3..D2      | No action | “00”       |                                    |
| D15..D4     | No action | TRIGCNTR   | 12-bit TRIGGER up counter          |
| D16         | No action | FIFO Full  | if ‘1’ - FIFO is full              |
| D17         | No action | FIFO Empty | if ‘1’ - FIFO is empty             |
| D19..D18    | No action | “00”       |                                    |
| D31..D20    | No action | FIFOCNTR   | 12-bit FIFO up counter             |

CSR1 is used to start data acquisition (see 2) and to read the status of the module, status of the TTCrx receiver chip, FIFO status and content of TRIGGER and FIFO counters (see 2).

### VMEREST Register (VRST) - \$08

| Data Bit(s) | Write     | Read     | Comments                              |
|-------------|-----------|----------|---------------------------------------|
| D0          | VMEREST   | '0'      | Reset from VMEbus                     |
| D1          | TTCRESET  | TTCRESET | Writing '1' and then '0' resets TTCrx |
| D31..D2     | No action | "00..00" |                                       |

Writing to this register generates ODEPP module resets (see 1.2).

### FIFO (VME read/write access) - \$10

FIFO can be accessed from VMEbus for test purposes.

| Data Bit(s) | Write    | Read      | Comments  |
|-------------|----------|-----------|-----------|
| D31..D0     | VME data | FIFO data | FIFO test |

### FIFO (FADC data capture / VME data read)

After data acquisition FADC data can be read from the FIFO via VMEbus.

| Data Bit(s) | Write     | Read      | Comments                         |
|-------------|-----------|-----------|----------------------------------|
| D7..D0      | FADC ch 0 | FIFO data | FADC data after data acquisition |
| D15..D8     | FADC ch 1 | FIFO data | -"-                              |
| D23..D16    | FADC ch 2 | FIFO data | -"-                              |
| D31..D24    | FADC ch 3 | FIFO data | -"-                              |

## 1.5 TTCrx board and OSI card

The TTCrx board contains the TTCrx chip (non radhard ES2 version [4]), the optical connector with an integrated detector/preamplifier and some other components. The input optical signal from the TTC transmitter crate carries 40 MHz clock and trigger (TTCTRIG) signals. TTCrx receiver chip can be reset by writing '1' and then '0' into VMEREST register VRST(1) from the VMEbus. The TTCrx status (TTCREADY) can be read from CSR1(1).

In order to operate the TTCrx board the TTC transmitter (TTCvx [6]) and the TTC control module (TTCvi [7]) are necessary, as shown on the Figure 3. The 40.00 MHz clock signal (ECL levels) and the Trigger signal (NIM or ECL levels) are provided by the external logic (e.g. SEQSI module).

The OSI (ODE to SEQSI Interface) card is a simple electrical replacement of the TTCrx board. Card has two LEMO00C connectors for Clock and Trigger input NIM signals and can be driven directly by the external logic (e.g. SEQSI module) without need for the TTCvi and TTCvx modules. OSI card provides clock and trigger signals to the ODEPP main board and doesn't need a reset.

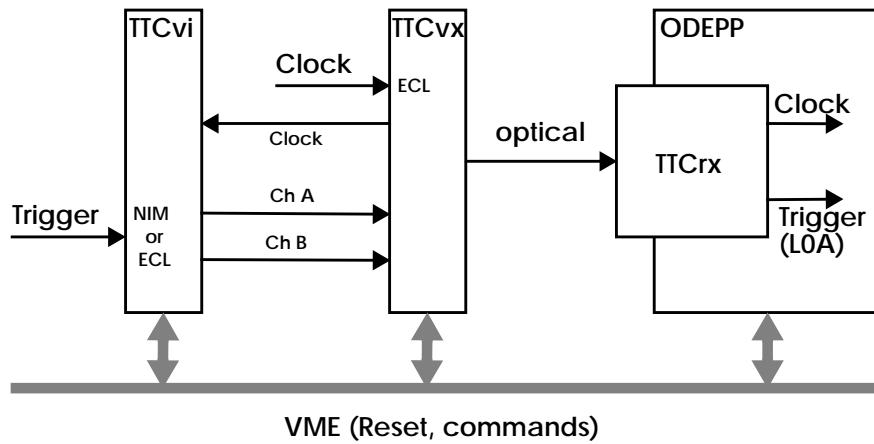



Figure 3

## 1.6 FADC clock phase adjustment

The clock phase for both FADC cards can be adjusted using programmable delay unit (PDU15F-1, 5-bit digitally programmable delay line) on the ODEPP main board. The delay from the input clock to the PDU (clock on the ODEPP main board) to the output clock to the FADC cards depends on the PDU control code - CSR0(4-0):

$$\text{Delay} = \text{Inherent Delay} + \text{Increment Delay} * \text{Control Code}$$

where Inherent Delay = 9 ns, Increment Delay = 1 ns. The codes for different delay values are given in the table below:

| Delay(ns) | Code | Delay(ns) | Code | Delay(ns) | Code |
|-----------|------|-----------|------|-----------|------|
| 0         | 10   | 9         | 00   | 18        | 09   |
| 1         | 11   | 10        | 01   | 19        | 0A   |
| 2         | 12   | 11        | 02   | 20        | 0B   |
| 3         | 13   | 12        | 03   | 21        | 0C   |
| 4         | 14   | 13        | 04   | 22        | 0D   |
| 5         | 15   | 14        | 05   | 23        | 0E   |
| 6         | 16   | 15        | 06   | 24        | 0F   |
| 7         | 17   | 16        | 07   | 25        | 10   |
| 8         | 18   | 17        | 08   |           |      |

The PDU control code is set to zero after power on and reset.

## 1.7 FADC card

The 2 channels FADC card (drawing in Appendix B) contain input link receivers, amplifiers, analog-to-digital converter AD9059 (dual 8-bit, 60 MSPS A/D converter) and output buffers.

The input signals from the LEMO connectors (EPG.0B.302.HLN) are differential in the range from 0 to 1 Volts. The upper LEMO connector on the upper FADC card corresponds to FADC channel #3 and the lower LEMO connector on the lower FADC card - to FADC channel #0.

The 50-pin DIN 41651 connector provides the digital and analog power, PDU clock and data enable signals for the FADC card from the ODEPP main board and the 2\*8-bit output data from the FADC card output buffers to the ODEPP main board. The connector layout is shown below:

| Signal      | Pin # | Pin # | Signal      |
|-------------|-------|-------|-------------|
| -5V_ANALOG  | 1     | 2     | -5V_ANALOG  |
| CND_ANALOG  | 3     | 4     | GND_ANALOG  |
| +5V_ANALOG  | 5     | 6     | +5V_ANALOG  |
| PDU_CLOCK   | 7     | 8     | -           |
| ENABLE_B    | 9     | 10    | FADC_B(7)   |
| FADC_B(6)   | 11    | 12    | FADC_B(5)   |
| FADC_B(4)   | 13    | 14    | FADC_B(3)   |
| FADC_B(2)   | 15    | 16    | FADC_B(1)   |
| FADC1_B0)   | 17    | 18    | -           |
| SDA(I2C_1)* | 19    | 20    | SCL(I2C_1)* |
| SDA(I2S_2)* | 21    | 22    | SCL(I2C_2)* |
| -           | 23    | 24    | -           |
| -           | 25    | 26    | -           |
| POWER_DOWN  | 27    | 28    | TDI*        |
| TCKO*       | 29    | 30    | TMS*        |
| TDO*        | 31    | 32    | TRST*       |
| ENABLE_A    | 33    | 34    | FADC_A(0)   |
| FADC_A(1)   | 35    | 36    | FADC_A(2)   |
| FADC_A(3)   | 37    | 38    | FADC_A(4)   |
| FADC_A(5)   | 39    | 40    | FADC_A(6)   |
| FADC0_A7)   | 41    | 42    | -           |
| -           | 43    | 44    | -           |
| GND_DIGITAL | 45    | 46    | GND_DIGITAL |
| -           | 47    | 48    | -           |
| +5V_DIGITAL | 49    | 50    | +5V_DIGITAL |

(\*) - reserved for the ECS interface prototype card.

## 2 Module operation

Module FIFO can be tested by writing and reading from VME. Number of written words are counted by the FIFO up counter, during read from the FIFO, the counter remains unchanged.

Before starting data acquisition cycle, the module has to be reset and the following parameters have to be set:

- PDU control code - CSR0(4..0) - defines the FADC card connector clock delay relatively to the main board clock.
- ODEPP operation mode - CSR0(9..8). The following modes are valid:
  - MODE = "00" - continuous data capture, starting on trigger,
  - MODE = "01" - event data capture, starting on trigger and event header
  - MODE = "10" - event data capture, starting on event header

The module can be triggered from VME or external logic (see 1.3) while in modes "00" or "01". The triggers are counted by the 12-bit TRIGGER Counter, which can be read from CSR1(15..4). The trigger signal also resets the 12-bit FIFO counter.

During the data acquisition, namely during the data writing into the FIFO:

- The VME write to CSR0, CSR1 and FIFO and VME read from FIFO is disabled (however module responds to these VME cycles). VME read from CSR0 and CSR1 is allowed.
  - CSR0: write - disabled, read - allowed.
  - CSR1: write - disabled, read - allowed.
  - FIFO: write - disabled, read - disabled.
  - VRST: write - allowed.
- MODBUSY is asserted and can be checked by reading CSR1(0).
- BUSY output signal (TTL open collector, active low) on the front panel LEMO connector is asserted.
- 12-bit FIFO counter counts a number of data words, written into FIFO and can be read via CSR1(31..20).

The status of the ODEPP module (MODBUSY) and the FIFO (FIFO full, FIFO empty and FIFO counter) can be checked via CSR1 during and after data acquisition. The FADC data can be read from the FIFO via the VMEbus interface after data acquisition.

### 2.1 MODE = "00" - continuous data capture, starting on trigger

During this mode, after receiving the trigger, the output data from the FADC cards are written into the FIFO every clock cycle until the FIFO is full (after 2K clock cycles or 51.2  $\mu$ s). The FIFO counter is reset by the trigger and then is incremented by every write into the FIFO.

## 2.2 MODE = “01” - event data capture, starting on trigger and event header

During this mode, after receiving the trigger, the synchronization logic in the module starts to search for the event data header - pseudo digital “0101” in the analog signal package from the SCTA128 chip [8].

The upper limit for the pseudo digital bit low level (PDBLL) and the lower limit for the pseudo digital bit high level (PDBHL) are stored in the CSR0 (see 1.4). They are used by the synchronization logic to define the windows for the digitized SCTA128 data during the header search.

Upon detecting the header, the 12-bit TRIGGER Counter value is written into the FIFO followed by the SCTA128 event data (144 8-bit words, see 1.4, FIFO data format). Up to 14 events can be stored in the FIFO until the FIFO is full (last event may not be completely written into the FIFO if there is no enough space left).

The FIFO counter is incremented by every write into the FIFO. It is reset by every new trigger and therefore contains the number of word written into the FIFO for the last event.

## 2.3 MODE = “10” - event data capture, starting on event header

Module operation in this mode is similar to the previous one with the exception that the synchronization logic in the module starts to search for the event data header without waiting for the trigger.

The FIFO counter is incremented by every write into the FIFO and contains the total number of word written into the FIFO for all events.

### 3 References

- [1] FLEX 10K Embedded Programmable Logic Family Data Sheet, ver. 4.01, June 1999.  
<http://www.altera.com/document/ds/dsf10k.pdf>
- [2] CYPRESS, CY7C4231 2Kx9 Sync FIFO.  
<http://www.cypress.com/cypress/prodgate/fifo/cy7c4231.html>
- [3] 5-Bit Programmable Delay Line.  
<http://www.datadelay.com/pdu15f.pdf>
- [4] TTCrx Reference Manual. J.Christiansen, A.Marchioro and P.Moreira, Version 2.2.  
<http://pcvlsi5.cern.ch:80/MicDig/ttc/MANUAL22.PDF>
- [5] Analog Devices. Products & Datasheets. Selection Guides.  
[http://www.analog.com/support/standard\\_linear/selection\\_guides/adc\\_high.html](http://www.analog.com/support/standard_linear/selection_guides/adc_high.html)
- [6] TTCvx. Technical description and users manual. P.Gallno, Draft, May 21, 1999.  
<http://www.cern.ch/TTC/TTCvxManual1a.pdf>
- [7] TTCvi. TTC-VMEbus INTERFACE, Ph.Farthouat, P.Gallno, Rev. 1.5.  
<http://www.cern.ch/TTC/TTCviSpec.pdf>
- [8] SCTA128LC & SCTA128HC version 0.0, 13/02/98

## Appendix A. Useful TTCvi commands (from [7])

The TTCvi module is A24, A16 / D32, D16 and responds to the following Address Modifiers: 39, 3A, 3D, 3E (standard), 29, 2D (short), 0F, 0B, 3B, 3F (block), 09, 0A, 0D, 0E (extended).

Four rotary switches are used to set the base address (A23 to A8).

The TTCvi module is normally driven by a clock from the TTC transmitter (e.g. TTCvx).

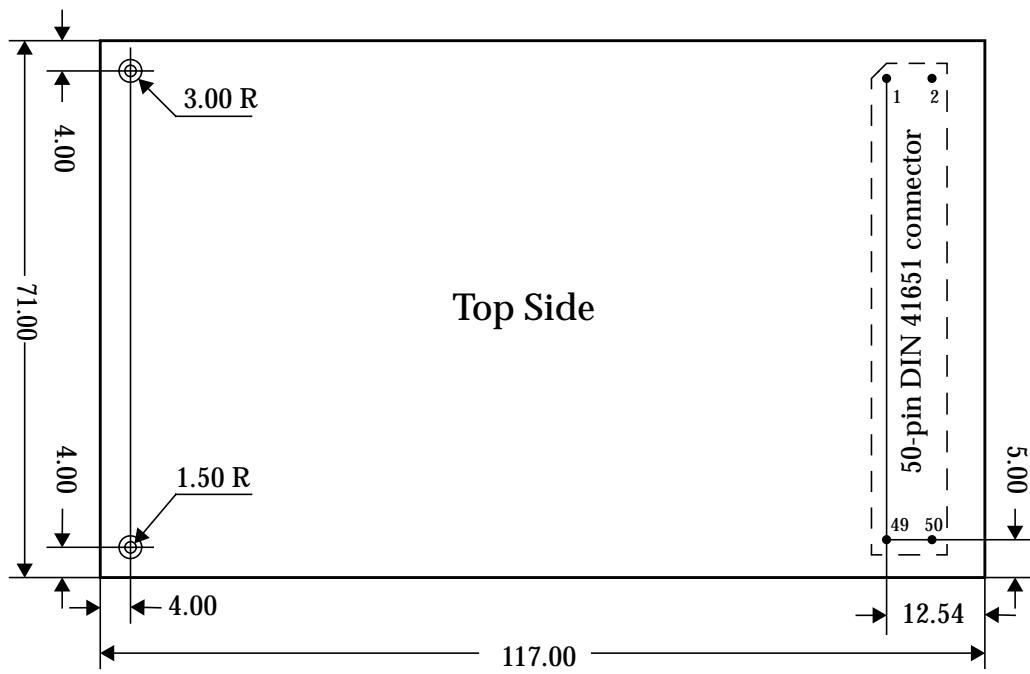
TTCvi provides four trigger inputs on the front panel (0 - ECL, 1,2,3 - NIM), trigger by a VMEbus command and internal random trigger generator. The trigger source is selected by setting CSR1(2..0). The selected trigger is made available as two front panel NIM outputs. An internal 24-bit trigger counter (which can be read and written through VMEbus) counts the number of triggers sent.

### **\$84 - VMEbus module reset generation (Write, A24/D16)**

Write access to this address generates module reset.

### **\$80 - CSR1 - Input selection and timing (Read/Write, A24/D16) - trigger selection**

CSR(2..0) = 0 (ECL front panel), 1, 2, 3 (NIM front panel), 4 (VMEbus command), 5 (random).


### **\$86 - VMEbus trigger generation (Write, A24/D16)**

Write access to this address generates trigger if CSR(2..0) = 4.

### **\$88 / \$8A - Trigger counter (Read/Write, A24/D16)**

\$88(7..0) = Trigger Counter (23..16), \$8A(15..0) = Trigger Counter (15..0)

## Appendix B. FADC card dimensions

