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Abstract

We study Yang-Baxter equations with orthosymplectic supersymmetry. We extend a new approach of
the construction of the spinor and metaplectic ’IAQ—operators with orthogonal and symplectic symmetries to
the supersymmetric case of orthosymplectic symmetry. In this approach the orthosymplectic ﬁ—operator is
given by the ratio of two operator valued Euler Gamma-functions. We illustrate this approach by calculating
such R operators in explicit form for special cases of the osp(n|2m) algebra, in particular for a few low-rank
cases. We also propose a novel, simpler and more elegant, derivation of the Shankar-Witten type formula
for the osp invariant 7A2-operator and demonstrate the equivalence of the previous approach to the new one
in the general case of the ﬁ—operator invariant under the action of the osp(n|2m) algebra.
© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The similarities between the orthosymplectic supergroups OSp(N|M) (here M = 2m is an
even number) and their orthogonal SO (N) and symplectic Sp(M) bosonic subgroups can be
traced back to the existence of invariant metrics in the (super)spaces V(y|m), VN and V) of their
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defining representations. These similarities lead to the consideration of the supergroup O Sp and
its superalgebra osp in full analogy with the unified treatment (see e.g. [1]) of the groups SO,
Sp and their Lie algebras. Moreover these similarities are inherited in the study of solutions of
the Yang-Baxter equations that possess such symmetries.

In the present paper, we continue our study [2] of the solutions of the Yang-Baxter equations
symmetric with respect to ortho-symplectic groups. We start with the graded RLL-relations with
the R-matrix in the defining representation R € End(V(y|y) ® V(v m)) and find the L-operator,
L(u) € End(V(vm)) @ A, where A is a super-oscillator algebra invariant under the action of
the OSp(N|M) group. Then this L operator allows one (via another type of RLL relations) to
define a richer and more complicated family of solutions of the Yang-Baxter equations, namely
the 7A2-operat0rs, which take values in the tensor product .4 ® A and are expressed as an expan-
sion over the invariants in A ® .A. The orthogonal and symplectic groups are embedded in the
ortho-symplectic super-group O Sp, and the 7A2-0perat0rs invariant under the so(N) and sp(M)
algebras can be obtained from the O Sp-invariant ﬁ—operator as special cases. In the orthogo-
nal case the algebra A is the N-dimensional Clifford algebra and the operator R is called the
spinor R-matrix. In the symplectic case the algebra A is the oscillator algebra and R is called
the metaplectic R-operator.

The standard approach to the problem of finding the spinor (so-invariant) ﬁ—operator was de-
veloped in [3], [4] and is based on the expansion of the ﬁ—operator over the invariants [; realized
in the spaces A ® A. Here the factors A are the Clifford algebras with the generators (c“)‘é,
where «, B and a are respectively spinor and vector indices. Then the invariants I are given by
the contraction of the antisymmetrized products of cia‘ e c‘f") e A®I and cébl s clz’k) cel®A

with the invariant metrics €4, . In that approach we obtain the spinor ﬁ-operator as a sum over
invariants I; with the coefficients ry which obey recurrence relations. Analogous formulae of the
Shankar-Witten (SW) type for the ﬁ-operators were deduced for the symplectic case in [1] and
then were generalized for the ortho-symplectic case in [2]. Note that we cannot consider these
expressions for the ﬁ-operators as quite satisfactory, since they do not provide closed formulas
for the considered ﬁ-operators. For example, in the symplectic and ortho-symplectic cases, the
sum over I} is infinite.

On the other hand, it is known that an analogous ﬁ-operator invariant under the s€(2) algebra
can be represented (see [5], [6]) in a compact form of the ratio of two operator-valued Euler
Gamma-functions. Surprisingly, as it was shown in a recent paper [7], the so and sp invariant
7A€—operators (for special Clifford and oscillator representations of so and sp) are also represented
in the Faddeev-Tarasov-Takhtajan (FTT) form of the ratio of two operator-valued Euler Gamma-
functions.

In the present paper, we generalize the results of [7] to the supersymmetric case and show that
the osp invariant ﬁ—operator can also be represented in the FTT form. This is the main result of
our paper. The natural conjecture is that the osp-invariant SW type ﬁ-operator given as a sum
over invariants [ is equal to the osp-invariant FTT type ﬁ—operator given by the ratio of two
Gamma-functions. This conjecture is based on the fact that both 7A2—0perat0rs are solutions of the
same system of finite-difference equations which arise from the RLL relations.

A complete proof of this conjecture is still missing. In the present paper we propose another
simpler and more elegant derivation of the SW type formula for the osp invariant ﬁ—operator.
This new derivation supports the conjecture of the equivalence of the SW and FTT expressions
for the ﬁ—operators. Indeed, in the previous derivation, the role of invariant, “colorless”, elements
in A ® A is played by the operators Ii. In the new derivation, we prove that the invariants [ are
polynomials of one invariant /; ~ z only and rewrite the RLL relation itself into a “colorless”
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form from the very beginning in terms of a system of finite-difference equations in the variable
z.

We relate this new system of equations to both the SW and the FTT expressions for the R-
operator. On one hand, the FTT type R-operator is its solution. On the other hand we show
that the expansion of the SW type R-operator over I; satisfies this system of finite-difference
equations as well.

The paper is organized as follows. In Section 2, we recall some basic facts of the linear algebra
on the superspace V(y|y) with N bosonic and M fermionic coordinates and briefly formulate
the theory of supergroups O Sp(N|M) and their Lie superalgebras osp(N|M). In this section
we fix our notation and conventions. In Section 3, we define the osp-invariant solution of the
Yang-Baxter equation as an image of a special element of the Brauer algebra in the tensor rep-
resentation in super-spaces V(Q?\/r| M) Section 4 is devoted to the formulation of the graded RLL
relations. In this Section, we find a special L-operator that solves the RL L relations in the case
of the osp algebra and introduce (see also [2]) the notion of the linear evaluation of the Yangian
Y(osp). In Section 5 we define the super-oscillator algebra A and describe the super-oscillator
representation for the linear evaluation of the Yangian ) (osp). In particular, we define the set of
Osp invariant operators I in A ® A and their generating function. A

In terms of these invariant operators we construct in Section 6 the osp invariant R-operators in
the super-oscillator representation. We find two forms for such 7A2-operat0r. One of these forms
represents the R-operator as a ratio of Euler Gamma-functions. For the s£(2) case this type
solution was first obtained in [5] (see also [6]) and we call these solutions the FTT type R-
operators. Another form of the osp invariant R-operator in the super-oscillator representation
generalizes the SW solution [3] of the spinor-spinor so-invariant ﬁ-operator. This solution (see
eqs. (6.6) and (6.8)) for the osp-invariant R-matrix in the super-oscillator representation was
first obtained in our paper [2] by using the methods developed in [4], [8] and [1]. In [2] we have
generalized formulas for the so-type R-matrices (in the Clifford algebra representation) obtained
in [3], [8] (see also [9], [10], [11], [12], [1]). In [2] we have also generalized the formulae for
sp-type R-matrices (in the oscillator, or metaplectic, representation of the Lie algebra sp), which
were deduced in [1]. It has been shown in [2] that all these so- and sp-invariant R-matrices are
obtained from (6.6), (6.8) by restriction to the corresponding bosonic Lie subalgebras of osp.

In Section 7 the result for the FTT type R operator is studied in detail in particular cases
of osp(N|M). The arguments of the Gamma-functions involve the invariant operator z ~ I
which decomposes into a bosonic and a fermionic part. The finite spectral decomposition of the
fermionic part is considered and used to decompose the R operator with respect to the corre-
sponding projection operators.

In Section 8 we present the new and more direct derivation of the solutions (6.6) and (6.8).
Two Appendices are devoted to the proofs of the statements made in the main body of the paper.

2. The ortho-symplectic supergroup and its Lie superalgebra

Consider (see, e.g., [13], [2]) a superspace V(y |y with graded coordinates z% (a =1,..., N+
M). The grading grad(z?) of the coordinate z* will be denoted as [a] = 0, 1 (mod2). If the co-
ordinate z% is even then [a] = 0 (mod2), and if the coordinate z¢ is odd then [a] = 1 (mod2). It
means that the coordinates z* and w? of two supervectors z, w € Vv u) commute as follows

At = (_1)[a][h] w? 7% . 2.1

Let the superspace V(v |u) be endowed with a bilinear form

3
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(z-w) = eapz®w? = 7%, = pwad®, (z-w)=ew-2), (2.2)

which is symmetric for € = +1 and skewsymmetric for ¢ = —1. In eq. (2.2) we define w, =

capw?”, where, in accordance with the last relation in (2.2), the super-metric &,; and inverse

super-metric £ have the properties
eaps?d =8y, =89, gy =e(—D)g,, o Fb = e(—1)lllblgba (2.3)
We stress that the super-metric €, is an even matrix in the sense that 45 # 0 iff [a] + [b] =

0 (mod2):

gap = (—D)IIHPlg, ) (2.4)

In other words the supermatrix &, is block-diagonal and its non-diagonal blocks vanish. Using
(2.4), the properties (2.3) can be written as

eap = €(—DWep, = e(=1)Plgy, , 8 = e(—1)[ghe = ¢(—1)lPIgba (2.5)

Further, we use the following agreement on raising and lowering indices for super-tensor
components

Z...C ad... — 8ab Z...de... , Zél d. — éab Z..,de.‘. i (26)

According to this rule, we have £% = g%gbdg ; = 8 “ and the metric tensor with the upper

indices £ does not coincide with the inverse matrix £*4. Further, we use only the inverse matrix
b and never the metric tensor 2.
Consider a linear transformation in V(v )

=7 =U%7", 2.7

which preserves the grading of the coordinates grad(z’'*) = grad(z?). For the elements U ‘;7 of the
supermatrix U from (2.7) we have grad(U ) = [a] + [b]. The ortho-symplectic group O Sp is
defined as the set of supermatrices U wh1ch preserve the bilinear form (2.2) under the transfor-
mations (2.7)

(_1)[01([b]+[d])8abUaCUbd =t = (_1)[0]([b]+[d])UacU121§Cd —gab (2.8)
Now we write the relations (2.8) in the coordinate-free form as

Ui () 2 =eny & Ui(0)PUi (0?8 =" (2.9)
where the concise matrix notation is used

eV ® Vi, Ui=URI, U,=1QU,
(2.10)
((—)]2)‘“;;:21,2 (—1)larllaz] 5“‘ 3a2 . ()12 € EndVvim) ® Vv i) -

Here ® denotes the graded tensor product:
IeBAh) =D UeB), ANI®B=(A®B),

and [A] := grad(A), [B] := grad(B).

Consider the elements U € OSp which are close to unity /: U =1 4+ tA + .... Here the
parameter ¢ is small and dots denote terms of order 12,13, etc. In this case, the defining relations
(2.8) give conditions for the supermatrices A:
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(_1)[6]([b]+[d])5ab(5acAbd + AaCSS) = ((—1)[C]+[C][d]8chbd + €44 Aac) =0

(2.11)
Apg = —e(—1)lelldlHlel+dl 4, -
The coordinate free form of relations (2.11) is directly deduced from equalities (2.9):
e(A1+ ()P4 =0 & (A1 + () ?A—)PE =0. (2.12)

The vector space of super-matrices A, which satisfy (2.11), (2.12), forms the Lie superalgebra
osp of the supergroup O Sp.
Any such matrix A can be represented as

A = E° — (—1)leItlelidlg  pb gda (2.13)
where ||E“ || is an arbitrary matrix. Let {egf } be the matrix units, i.e., matrices with the compo-
nents (egf)” = 5‘{52. If we substitute £ = e{g = Efg/egf/eg,f in (2.13), then we obtain the basis
elements {5f ¢} in the space osp of matrices (2.12):

(Gl = (e — (—D)leIHelldlg (o] )b zda —gfag, e(—l)"‘”“'&cfag . (2.14)
Now any super-matrix A € osp which satisfies (2.11), (2.12) can be expanded over the basis
(2.14)

A% = aff.(éfg)“c , (2.15)

where agf are the components of the super-matrix. Since the elements (éfg)“c are even, i.e.,

(éfg)ac # 0 iff [ /14 [g] + [a] + [c] = 0 (mod2), then from the condition grad(A%,) = [a] + [c]
we obtain that grad(agf) = [g] + [f]. It means that the usual commutator appears as a super-

commutator for the basis elements G ! g
[A, B, =[a®(G'y). " (GE I = a¥ " (1G,. GF1e)",

where in the component form the super-commutator is

(IG%,, G 1e)%, = (G ), (GG )%, — (=Dt (G G (G4 )%,
(2.16)

We notice that the elements of the matrices G“h are numbers. However, the super-commutator
(2.16) is written for 5”b as for the graded elements with deg(éah) = [a] + [b].

Now we substitute the explicit representation (2.14) in the right-hand side of (2.16) and deduce
the defining relations for the basis elements of the superalgebra osp:

(~DPliel (G G e = —(—Dlaliel g9 Gy, 452 G, + @.17)
= Dlallel gy ) Gaar e pylalibital g0 Ga '

where we have omitted the matrix indices. Below we use the standard component-free form of
notation, where we substitute (Gal’;,)alkjk — G (here i and k are numbers 1,2, 3 of two super-

spaces V(y|um) in V?N3I M)). In this notation, taking into account (2.16), the relation (2.17) is written
as

[(—)'2G13(—)"2, Gl =[€P1a — K12, Gl (2.18)

5



A.P. Isaev, D. Karakhanyan and R. Kirschner Nuclear Physics B 965 (2021) 115355

where we introduce two matrices I, P € End(VEX’NZ| M)):
Kyl =812y, , Pyl2=(—Dlallelsgise, (2.19)

The matrix P is called superpermutation since it permutes super-spaces, €.g., using this matrix
one can write (2.1) as PC“Z; wz9 = z%w?. Note that the generators (2.14) of the Lie super-algebra
osp can be expressed in terms of P and /C as

G=K—¢€P, (2.20)
and after substituting (2.20) into (2.18) can be written (2.18) in the form
[(—)2G13(—)"?, Ga31+ (G2, G31=0. 22D

One can explicitly check the relation (2.21) by making use of the identities for the operators P
and K presented in Appendix A.

Note that conditions (2.12) for the osp generators A%, = (5f ¢)“%, given in (2.14) and (2.20),
can be written as

K12(G31 + () 2G3()'H =0, (G314 (—)'2Gn(=)'?)K12=0. (2.22)
One can verify that these conditions are equivalent to
Ki((—)2G13(—)12 4+ G2) =0, (5)'2G13(=)"? +G23)K12=0. (2.23)

Using (2.23) and the commutation relations of super-permutation P and generators G (see ap-
pendix A)

Pia(—)2G13()"2 = Gi3Pra, ()26 13(—)?Pia=P12Gos (2.24)
we write (2.18) as
[(—)'2G13(—)"?, Gul=[eP12 — K12, (—5)'2G13(—)". (2.25)

It means that the defining relations (2.17) can be written in many equivalent forms. At the end of
this section we note that the matrix (2.20) is the split Casimir operator for the Lie superalgebra
osp in the defining representation.

3. The OSp-invariant R-matrix and the graded Yang-Baxter equation

Consider the three OSp invariant operators in Vﬁvz My the identity operator 1, the super-
permutation operator P and metric operator . According to definition (2.19), the super-
permutation Pp7 is a product of the usual permutation Pj; and the sign factor (—)12,

Pro=(—)"2Pp, or in components P!> = (—1)[“1][“2]85218212, 3.1
while the operator /5 is defined as
Kia=8%eqn, or in components ICZ:Z; =&"%¢gpp,. (3.2)
Their O Sp invariance means that (see (2.9))
U1(—) 202 ()2 K12 = Ki2Ui (-) 2 U2 (—) "2, 53
U1 (=) 2U2(=) 12 P1y = PpalUy (—)'2Ua(—) 2. '

6
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In particular, it follows from these relations that the comultiplication for the supermatrices
U € Osp(N|M) has the graded form A(U)1, = U (—)"2U»(—)"'2. In fact this comultiplication
follows from the transformation (2.7) applied to the second rank tensor z%! - 792.

Using the operators P, C one can construct a set of operators {s;,e;li=1,...,n—1} in

®n .
V(N|M)'
5;i = 6Pi,i+1 = 6]®(i71) QP ® I®(n7i71) . ei= K:i,i—i-l = I®(i71) RK® I®(n7i71) ,
(3.4

which define the matrix representation 7 of the Brauer algebra B, (w) [16], [17] with the param-
eter

w=2e,48%=€e(N—M). (3.5)

Recall that here N and M are the numbers of even and odd coordinates, respectively. Indeed, one
can check directly (see Appendix A) that the operators (3.4) satisfy the defining relations for the
generators of the Brauer algebra B, (w)

si2=1, eizza)ei, sieg=esi=e¢, i=1,...n—1,

S (3.6)
5iSj=s5;8;, eej=eje;, siej=ejs;i, |i—j|>1,

SiSitl1Si =Sit18iSi+l, €iei+1€ =€ , €y1€ €1l =~¢t], 3.7
Sieiy1€ =Siy1€, e€i+1€Si+1=ei+18, i=1,.,n—2.

(here 1 is the unit element in B, (w)). Note that this presentation of the Brauer algebra is
obtained in the special limit ¢ — 1 from the BMW algebra presentation [15] and it is used in
many investigations (see, e.g., [18], [19], [20], [21]).

We stress that the matrix representation 7' (3.4) of the generators s;, ¢; € B,(w) acts in the

®n
space V( NIM)-
For what follows, we need the following statement (see, e.g., [19] and [2]).

Proposition 1. The element
piw)=u(+p)si— u+p) l+ue € By(w), (3.8)
where u is a spectral parameter and B =1 — 3, satisfies the Yang-Baxter equation
0i () P41 (U + ) pi (v) = Pit1(V) i (U + V) Pit1(u) (3.9
and the unitarity condition p; (u)p; (—u) = (u® — 1)(u? — BH)1.
The matrix representation T (3.4) of the element (3.8) is

ﬁ(u)EeT(ﬁ(u))=u(u+,3)7?—e(u+,3)1+eulC. (3.10)

Here we suppress index i for simplicity. It follows from (3.9) that R(u) satisfies the braid version
of the Yang—Baxter equation

Ria(u — v) Roz(u) R12(v) = Ras (v) Ri2 () Roz (1 — v). (3.11)

Thus, in the supersymmetric case the braid version (3.11) of the Yang—Baxter equation is the
same as in the non supersymmetric case. Further we use the following R-matrix

7
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R(u)=PRw) = (u — % + 1)l — €P) +uk
=uu+PB)l—cu+pBP+uk, (3.12)

which is the image of the elements [19]:
piu)=u+p)l1—(u+pB)situe; € By(w).

Proposition 2. The standard R-matrix R(u) = PR (u), which was defined in (3.12), satisfies the
graded version of the Yang—Baxter equation [22]

Rio(u — v)(—) 2 Ri3(u) (=) Ro3(v) = Raz () (—) " R13() (—) 2 R1a(u — v). (3.13)

Proof. The matrix R € End(V(%M)) is an even matrix since we have Ri.llz?z £ 0iff [i1] + [i2] +
[j1] 4 [j2] = 0 (mod2). This follows from the explicit form (3.12) of the operator R(u). There-
fore, for arbitrary k we have the identity

Rij(-)* ()F = (" () Ry; (3.14)
where 7, j and k are numbers of super-spaces V(v in the product V?j\,"l M) and the operator
(—)'* is defined in (2.10). Substituting R;;(u) = Pi; Ri;(u) = (=) P;jR;;(u) into (3.11) and

moving all usual permutations P;; to the left we write (3.11) with the help of (3.14) in the form
(3.13). O

Remark 1. We stress that the sign operators (—)'? in (3.13) can be substituted by the operators
(—)23 by means of manipulations similar to (3: 14). Moreoy;:r, if R;;j(u) solves the Yang-Baxter
equation (3.13), then the twisted R-matrix (—)" R;;(u)(—)" is also a solution of (3.13).

Remark 2. Egs. (3.10), (3.12) give unified forms for solutions of the Yang-Baxter equations
(3.11), (3.13) which are invariant under the action of all Lie (super)groups SO, Sp and O Sp.
Recall that for the SO case the R-matrix (3.12) was found in [24] and for the Sp case it was
indicated in [25]. For the O Sp case such R-matrices were considered in many papers (see, e.g.,
[23], [14], [26D).

4. Graded RLL-relation and the linear evaluation of Yangian Y (osp)

We start with the following graded form of the RLL-relation (see, e.g., [26] and references
therein)

Rio(u — v)L1 () (=) 2 Ly(v)(—)"? = (=) 2 La() (=) L1 () Ri2 (u — v) .1

where the R-matrix is given in (3.12). This graded form of the RLL relations is also motivated
by the invariance conditions (3.3). It is known (see, e.g., [2], [14] and references therein) that
eqs. (4.1) with the R-matrix (3.12) are defining relations for the super-Yangian ) (osp). In [2]
we proved the following statement.

Proposition 3. The L-operator

LY (u) = (u+ o) 18 + G, 4.2)
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where a is an arbitrary constant, solves the RLL-relation (4.1) iff G, is a traceless matrix of
generators of the Lie superalgebra osp, i.e., it satisfies equations (cf. (2.22))

Ki2{Gi 426292} =0= {61+ ()262-) Kz, (43)
defining relations for osp-algebra (cf. (2.18))

G1(—)?G2()"? = () ?62()?G1 = K12 — €Ppa. Gil, (4.4)
and in addition obeys the quadratic characteristic identity

G2+ﬂG—§fUOﬁ)1=O, (4.5)

where as usual B =1—w/2.

The L-operator (4.2), where the elements G, satisfy the conditions (4.3), (4.6) and (4.5), is
called the linear evaluation of the Yangian ) (osp).

Remark 3. The relations (4.4) are written after the exchange 1 <> 2 in the form

(9)2G1(—)"2Gy — G2(—)2G (=) 2 = [eP12 — K12, Gal, (4.6)

where K12 = Ko = (—)12K12(—)'2, or /E“,;fgz = g%29%¢, ;. Now we are able to compare the
defining relations (4.4), (4.6) with (2.18), (2.25), where the elements G are represented as
matrices G, acting in the super-space V(nr A1), namely, the commutation relations (4.6) turn
into the commutation relations (2.18) after the change of the definition of the supermetric &, —
epa = €(—De,y, (see also the discussion in Remark 5 below).

Remark 4. The conditions (4.3) for the generators of osp read in component form (cf. (2.11)):
Gap +e(=DIAHIPIG,, =0, Gap = £ac G, 4.7)
In particular, it follows from (4.3), (4.7) that the matrix G is traceless

0=LK12(G1 + (1)262(=)2) K12 = 2(ear G5 Kiz =2¢5tr(G) Kz

Remark 5. The characteristic identity (4.5) is equivalent to the equation
Ki(BG1+61()262(0)"?) = (861 + ()62 261 Kz

provided that the relations (4.3) and (4.6) are satisfied.
5. Super-oscillator representation for linear evaluation of Y (osp)

In this section we intend to construct an explicit representation of ) (osp) in which the gener-
ators of osp C Y(osp) satisfy the quadratic characteristic equation (4.5). We follow the approach
of [2] and introduce a generalized algebra A of super-oscillators that consists of both bosonic
and fermionic oscillators simultaneously.

Consider the super-oscillators ¢ (a =1,2,..., N + M) as generators of an associative alge-
bra .4 with the defining relation

[c?, c"le = + e(—1)lPl b a — gab, (5.1)
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where the matrix £%? is defined in (2.3) and (2.5). In view of (2.1), for ¢ = —1, the super-
oscillators ¢* with [a] = 0 (mod2) are bosonic and with [a] = 1 (mod2) are fermionic. For € =
+1 the statistics of the super-oscillators ¢ is unusual and we will discuss this in more detail
in Remark 8 at the end of this section. Nevertheless, we assume the grading to be standard
grad(c?) = [a] in both cases € = £1 and therefore the defining relations (5.1) are invariant under
the action ¢ — ¢’* = U%c¢ of the super-group O Sp with the elements U € Osp (see [2]).

With the help of convention (2.6) for lowering indices one can write relations (5.1) in the
equivalent forms

[cas chle = cach + e (=Dl e e =6y & cac® +e(=D)APIbe, = 82 . (5.2)
The super-oscillators ¢ satisfy the following contraction identities:

g =% epacpc? = (=) ec?, cpc® =8P g = e(— 1), .

So, we have
“cq = 58 (cocq + (=D eacp) = 58P = %
cqct = %é“b(cacb +e(=Dlleyey) = %E“bsba = % , D=N+M. e
Further we need the super-symmetrized product of two super-oscillators:
b = %(cacb — 6(—1)[“][b]cbc“) = —e(=DlbI Ll o g, (5.4)
and define the operators
F =e(—n)Plc@ch - g — g Foc, (5.5)

In [2] we have proved the following statement.

Proposition 4. The operators F°* € A defined in (5.5) are traceless and possess the symmetry
property (4.3), (4.7):

str(F) = (=DWF? =0, F% = —¢(—1)ldllbIHlaltbl pha (5.6)
In addition they satisfy the supercommutation relations (4.6) for the generators of osp

(PR PR - B() PR =[P - K, B, (5.7)
and obey the quadratic characteristic identity (4.5):

FoFb 4 BF® — 2 str(F2)8% = 0, (5.8)
where B =1—w/2.

Thus, the elements F ‘;7 =€epg(— 1)[b]c(“ DeA given in (5.5) form a set of traceless genera-
tors of osp which satisfy all conditions of Proposition 3 and it means that the following statement
holds.

Proposition 5. The L-operator (4.2) in the super-oscillator representation (5.1):

1 1
L% ) = (u+a— z)ag +e(=DPet = (u+a — 5)5;,1 + B¢, (5.9)

10
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where we introduce for convenience B} = Fj + %81‘; = e(—=)®Iccy, obey the RLL equation
(4.1) which in the component form is given by

(_1)[01]([b2]+[02])RZIIZ§ (u — U)Lfll (M)LZ ()

— (_1)[01]([612]+[b2])LZ§ (U)LZi (u)Rblbz u—v), (5.10)

cie2

and the R-matrix (3.12) is

Ry 2 (u) = u(u + B)8,' 8,2 — e(u + B)(— Dl l2lgiigfe 4 yg@ivg, 4,

Remark 6. The Quadratic Casimir operator C; of the superalgebra osp (N |M) in the differential
representation (5.5) is equal to the fixed number

C2=(—1)[“]FabFl;=§a)(a)—l). (5.11)

It means that this realization (5.5) corresponds to a limited class of representations of the super-
algebra osp(N|M). This fact reflects the general statement of [27] that not all representations of
simple Lie algebras g of B, C and D types are the representations of the corresponding Yangians

Y(g).

Remark 7. For € = —1 and even M = 2m the super-oscillator algebra (5.1) is represented in

terms of m copies of the bosonic Heisenberg algebras ¢/ =x/, ¢"t/ =93/, j=1,...,m,and N

fermionic oscillators ¢2"+% = p* o = 1,2, ..., N, with the (anti)commutation relations

xf, 9/1=—=8Y, [b* bPly:=bbP +bPb* =28%F | [x', b¥1=0=1[03', b"],
(5.12)

which are equivalent to (5.1) with the choice of the metric £ as (M + N) x (M + N) matrix

0 Iy 0 0 Im 0
éab =\|In 0 0 = Euh = —Ipy 0 0 . (513)
0 0 2Iy 0 0 Iy

The fermionic variables b with the commutation relations (5.12) generate the N-dimensional
Clifford algebra. Let N be an even number N = 2n. In this case, one can introduce the longest
element HNtD = ()" b'b% ... HN which anticommutes with all generators b* and possesses
(b(N +l))2 = 1. Then, for € = 41 and even numbers M =2m, N = 2n, one can realize the super-
oscillator algebra (5.1) (with the metric (5.13)) in terms of the generators

ol =xl bWV ot =l p(NED (=1, m), =0 (@=1,2,...,N),
(5.14)

where the operators x’, 3/ and b* satisfy (5.12). Note that the super-oscillator algebra (5.1) for
€ = +1 has an unusual property that generators ¢ and ¢” with gradings [a] = 0 and [b] = 1
anticommute, which is not usual feature of bosons and fermions in field theories.

The implementation (5.12) of algebra (5.1) suggests the rules of Hermitian conjugation for
the generators ¢

(cHf=cl, (MTHi=—cmti, j=1,....m,

(5.15)
(C2m+a)’r:c2m+0‘ , a=1,2,...,N,

11
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which follow from the commonly used properties of the Heisenberg and Clifford algebras:
HT=x7, @HT=—d7, BT =b*, GNTD)T = p(N+D_ We shall apply the rules (5.15) be-
low.

Remark 8. Consider the graded tensor product .A ® A and denote the generators of the first and
second factors in A ® A respectively as c{ and cf. Since ® is the graded tensor product, we have

(cf. (5.1))
[cf, cg]e = c‘fcg + 6(—1)“bclz’c? =0. (5.16)

Any element of A ® A can be written as a polynomial f(c{, 012’ ) and its condition of invariance
under the action of the group Osp is written as

[ Ana(Fi + 5P, fict.h)] =0,
where (see (5.5))
FiP = e(=1)Pcc? | Fgb = e(—1)Pcl*ch (5.17)

are the generators of the osp algebras and Ay, are the super-parameters (with grad(Ap,) =
[a] + [b]). In the case of an even function f, when grad(f) = 0, this invariance condition is
equivalent to

[(Ff’b + F9hY, F(ct, cg)] —0. (5.18)
Now we introduce the super-symmetrized product ¢ -..c¢%) of any number of super-
oscillators, which generalizes the super-symmetrized product of two super-oscillators (5.4). The

general definition and properties of such super-symmetrized products are given in Appendix B.
In [2] we have proved the following statement.

Proposition 6. The elements
I = €ayy - Sagpy PP B e A AL k=1,2,..., (5.19)

are invariant under the action (2.7) of the supergroup OSp: ¢* — U, cb. It means that the ele-
ments (5.19) are invariant under the action of the Lie superalgebra osp and satisfy the invariance
condition (5.18):

[caitn - eapcf P B0 R 4 ] =0, (5.20)
where F I“b and Fz“b are the generators (5.17) of the Lie super-algebra osp (see Proposition 4).

It turns out that the invariants (5.19) are not functionally independent. Indeed, we have the
following statement.

Proposition 7. The invariants (5.19) satisfy the recurrence relation
k
Lh=li+7((=D=0)lo1.  o=eN—M), (5.21)

where Ip =1 and I} = gqpc] 012’ = c{ c24. In the representations (5.12), (5.14) and (5.13) Hermi-
tian conjugations of invariant elements (5.19) are

lsz =Dy, IszH =—Dyy1. (5.22)

12
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Proof. The derivation of the recurrence relation (5.21) is given in Appendix B. To prove (5.22),
it is useful to define the invariants

~

l,=0"1,, (5.23)
where 02 = —1, i.e. o = &i. Then, the recurrence relation (5.21) for new invariants INk has the
form:

~ ~ k ~

]k+1=ZIk+Z(k_1—w)Ik—1, w=¢(N—-M), (5.24)

where 70 = 1 and we introduce the operator
=L =0l = Usabc‘llcg =o(ci )= —aabacgcﬁ’ =—0o(c-cy), (5.25)

which is Hermitian z" = z in the representations (5.12), (5.14) and (5.13). One can prove the
latter statement by making use of the rules (5.15) and commutation relations (5.16). In view of
the recurrence relation (5.24) and initial conditions Z) =1 and I~1 = z all invariant operators 7;;
are k-th order polynomials (with real coefficients) of the Hermitian operator z. Therefore all Z(
are the Hermitian operators 71‘: = INk, and therefore, taking into account (5.23) and 0* = —o, we
deduce (5.22). O

Now we introduce a generating function of the Hermitian invariant operators E(:
o0 xk
F(x|z) =Zlkﬁ. (5.26)
k=0

Since the invariants I are polynomials in z, the generating function (5.26) depends on x and z
only.

Proposition 8. The generating function (5.26) is equal to

F(xlz) = (1 - %)%_Z(H%)%H. (5.27)

Proof. Using the recurrence relation (5.24) we obtain:
0 k 00 k 00 k 00 k
~ X ~X 1 ~ X w ~ X
Lo1— = Ii— + - ioj———— — — Iio1——. 5.28
,;H]k! Z};"k!Jrzth:;’”(k—z)! 4;“@—1)! (5:28)

Now changing the summation indices and using (5.26) one deduces:

x2 xw
Fx(xlz)=zF(x|z)+ZFx(x|z) — TF(xlz), (5.29)

where Fy(x|z) = 0, F(x|z) = Z,fio I~k+ 1 ),‘(—’: The general solution to this ordinary differential
equation is given in (5.27) up to an arbitrary constant factor c¢. The invariants I are extracted
from the generating function (5.26) using the formula

~ X o X o
L) =0"FOlz)=cob -7 4+2)2H | (5.30)
2 2 x=0

from which we fix the constant c = F(0|z) = INO =1. O

13
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6. The construction of the R-operator in the super-oscillator representation

Let T be the defining representation of the Yangian Y (osp). In the previous section we
have considered the RLL-relation (4.1) and (5.10) that intertwines L-operators ||L% (u)|| €
T (Y (osp)) ® A (given in (5.9)) by means of the R-matrix (3.12) in the defining representa-
tion, i.e., R(u) € T(Y (osp)) ® T (Y (osp)). In other words, the R-matrix in the RL L-relations
(4.1) and (5.10) acts in the space Vég’Nz‘ my» Where Vv m) is the space of the defining representation
T of Y(osp(N|M)).

There is another type of RL L-relations which intertwines the L-operators (5.9) by means of
the R-matrix in the super-oscillator representation, i.e., 7%(14) € A® A, where ® is the graded
tensor product. In components, this type of RL L relations has the form

Riz()L1% u + v)Lab(v) = L1% () Lo (u 4+ v) Rz (u), (6.1)

or after substitution of the L-operator (5.9) we have
Ria () ((u 4 v)8f +e(=1)0cfery) (v8E + e(=1)¢cher,) =
= (08 +e(=DPclery) (u + v)8E + e(=1)¢cher ) Riau).

Here for simplicity we fix o« = 1/2 in the definition of the L-operators and associate the first and
second factors in A ® A, respectively, with the algebras A; and A, generated by the elements
¢ and ¢ such that [c{, c5]c =0 (see (5.16)).

The RLL relation (6.2) is quadratic with respect to the parameter v. The terms proportional
to v? are canceled, the terms proportional to v give

(6.2)

Riz()(ctere + cheae) = (cfere + cher) Ria(u), (6.3)

while the terms independent of v are
Rz () (usf +e(=1)Pcfe1y) (=1 chea, = (=1 cfery (usl +e(=1)cheac)Rinw). (6.4)
6.1. The Shankar-Witten form of the R operator

The relations (6.3) are nothing but the invariance conditions (5.18) with respect to the adjoint
action of osp

[Raw), F? + Fg*] =0. 6.5)
It means that one can search for the ﬁ(u)—operator as a sum of osp-invariants (5.19)

5 ri(u) ri(u) (@1..ar) (be..by)

Ripw)=Y_ I =y o ap e : (6.6)

k k
where we use the concise notation
by...b b b
€35 = Carby - - Eabys c%‘” W) cga‘ --~c?k), cé kebl) cg k ~~-c21).

Inserting this ansatz into the condition (6.4), we obtain (see [2]) the recurrence relation for ry ()

_ 4(u — k)
rea2 () = mrk(u) s (6.7)

which is solved in terms of the I'-functions:

14
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[(m—73)
COn+1+452)

N )
I‘(m+l+“_‘é)+1 )

rom(u) = (=" Au),

(6.8)
rom+1(u) = (—4)" B(u),
where the parameter w = ¢(N — M) was defined in (3.5) and A(u), B(u) are arbitrary func-
tions of u. Substituting (6.8) in (6.6) gives the expression for the osp-invariant R-matrix which
intertwines two L operators in (6.1).

The methods used in [2] (for derivation of (6.6) and (6.8)) require the introduction of ad-
ditional auxiliary variables and are technically quite nontrivial and cumbersome. Below in this
paper, in Section 8, we give a simpler and more elegant derivation of conditions (6.7). This deriva-
tion is based on an application of the generating function (5.27) for the invariants I, where the
explicit form (5.27) is obtained by means of the recurrence relation (5.21).

6.2. The Faddeev-Takhtajan-Tarasov type R operator

There is another form of R operators which intertwines the L operators in the RL L equations
(6.2) and are expressed as a ratio of Euler Gamma-functions. For the s€(2) case this type of
solutions for R operator was first obtained in [5] (see also [6] and [28]). The generalization to
the s€(NN) case (for a wide class of representations of s¢(N)) was given in [29]. For orthogonal
and symplectic algebras (and a very special class of their representations) analogous solutions
of (6.2) were recently obtained in [7]. Below we generalize the results of [7] and find the solu-
tions for the super-oscillator Faddeev-Takhtajan-Tarasov type R-operator in the case of osp Lie
superalgebras.

Proposition 9. The R operator intertwining the super-oscillator L operators in the RLL equa-
tions (6.1), (6.2) obeys the finite-difference equation

Ri@wlz+1) z—u)=Rip@lz—1) (z+u), 6.9)

where 7 =0 ¢ ¢2q and 0% = —1. The solution of this functional equation is given by the ratio of
the Euler Gamma-functions

(3 +1+uw)

Ri2(ulz) =r(u, Z)m,

(6.10)

where r(u, z) is an arbitrary periodic function r(u, 7 + 2) = r(u, z) which normalizes the solu-
tion.

Proof. Taking into account the experience related to the orthogonal and symplectic cases (see
[71), we will look for a solution to the first equation (6.3) as

Ripw) =Ria(ulz),  z=0clcr, =€a(—1)c1ac) = —ocica, (6.11)

where o is a numerical constant to be defined. In the last chain of equalities we have used (5.16).
In other words, the operator R12(#) acting in V| ® V; is given by a function of an invariant z
bilinear in super-oscillators ¢{ and cj. Note that in the orthogonal and symplectic cases [7] the
conventional invariants I; (5.19) are in one-to-one correspondence with polynomials of z of the
order k. In the super-symmetric case of the algebras osp we prove this fact in Appendix B (see

15
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eq. (B.9) and comment after this equation). To justify the ansatz (6.11), we recall that the super-
oscillators belonging to different factors in .4 ® A and acting in different auxiliary spaces V; and
V> commute according to (5.16)

cdeh = —e(—1)"cheq, (6.12)
so we have
zc? —Uclczacl = —e(— 1)”boc?cll’cza = (- l)abHa(eé“b (— 1)”bc1cl)cza
=clz—od3, (6.13)
zcé’ = oc‘fczacé7 = 0‘1’0(82 - 6(—1)“bc12’c§) = acll’ — ae(—l)“bc?clz’cza = acl + c2z
(6.14)
Combining these relations we obtain
z(cfep +c5em) = (cfc +c5em) z, (6.15)

i.e. z commutes with the sum c{cyp + 5 c2p, and hence an arbitrary function 7@12(u |z) depending
on z satisfies the invariance conditions (6.3) and (6.5).
Let us introduce

=(t+odh), (6.16)
and consider a linear combination of (6.13) and (6.14)
cht = z(cll’ + ac}2’) = ciz + az(cll’ F 0'_16‘127) = c}i(z F 1), (6.17)

where the last equation is obtained under the choice

2=—1 = a:d——1={ & 6.18)

—1.
Taking into account (6.17), we have
Ripwlz) = RipwlzF1), ARiwlz) =Ria(ulz + Dk . (6.19)

Then multiplying (6.4) by cisda (or by cleeda) from the left and by ¢4 from the right and
contracting oscillator vector indices, one obtains four independent scalar relations. Two of them
are

cdeaaRin(ulz) (udf + €(—=1)Pcferp) (— 1) cBerecs, = (6.20)
= cisda(—l)b c”,(u8h +e(— l)cczczc)Rlz(ulz)cci .
Applying (6.19), (5.3), the definition (6.11) of z and

cloa=o0(z£9), deu=%Fz (—Dcrci=coz£9),
(=Dfcrect = €(§ £2),

these two relations (6.20) turn to be functional equations on ﬁlz(ulz):
Ria(ulz £ Dedeaq (udf +e(=DPclerp)(—Decherecs =
= cLeqa(—1)cferp (sl + e(—1)°cher )G Rz F 1)

16
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w2

2
Riz(ulz £ Dew F2)(z* - T) =e(-uF)(? - %)Rlz(ulz F).

Canceling the common factor € (12 - “’Tz) in both sides we obtain a pair of equations
Ria(ulz £ 1) F2) = (—uF2) Riz@ulz F 1), (6.21)

which are equivalent for both choices of signs to the one equation (6.9). In a similar fashion the
other pair of relations gives identities

LeaaRiz(ul2) (udf + e(—=1)clerp) (—1)cherecs =
A = (6.22)
= ceqa(—1) ¢ crp(usl + e(—=1)°cheac) Ria(ulz)cs,
Riz(ulz F Deegq (8] + e(=Dbcfer,)(=1)cBezecs =
=
= cLeaa(=1)"clerp(us! +e(=DGeac) i Ria(ulz F 1)),

Ria(ulz F De(u +2)(z % %)2 =e(u=xz)(z£ %)27%12(u|2 F),

which are satisfied automatically. Finally, the solution of the functional equations (6.9), (6.21)
can be found immediately and is given in (6.10) by the ratio of the Euler Gamma-functions. O

We see that the scalar projections (6.20) and (6.22) of the RLL relation are exactly the same as
in the non-supersymmetric case [7], i.e. no signs related to grading appear. Moreover, we stress
that the functional equation (6.9) is independent of the parameter €, which distinguishes the cases
of the algebras osp(N|M) and osp(M|N).

Remark 9. We have two choices (6.18) of the parameter o and therefore we have two versions
of the solution (6.10)

F(%(:I:ic‘fcza + 1+ u))
I(3(Eicieaa+1—uw)
In view of the identity I'(1 — x)I'(x) = 7/ sin(zwx), these two versions are equivalent to each

other up to a special choice of the normalization functions »™) (u, z). So one can consider only
one of the solutions (6.23).

RS (ulz) =r® (u, 2) (6.23)

7. The R operator in special cases of osp(N|2m)
In this section, we work out the explicit form of the solution (6.10) in a few particular cases.
7.1. The case of osp(M|N) = osp(1]2)

In this case, we have N =2 and M = 1, and the superalgebra osp(1|2) is described by the

bosonic oscillator ¢! = a', ¢> = a (in the holomorphic representation we have ¢! = x, ¢ = 9)
and by one fermionic variable ¢3 = b with the commutation relations (5.1):

[-x9 a]:_ls {bvb}:2s [-xv b]zoz[av b]a (71)
where {b,b'} =b - b’ + b’ - b denotes the anticommutator. To obtain (7.1) from (5.1) and (5.2),

we fix there € = —1 and specify the metric matrix as

17
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0 —1 0 0 1 0
=1 0 o] = ep=(-10 o0].
0 0 2 0 0 172

Note that the fermionic variable b can be understood in the matrix representation as a single
Pauli matrix (say 73). To define the operator z in (6.11) we need two copies of super-oscillator
algebras A; and A, with the generators ¢{ = (x1, 1, b1) and ¢§ = (x2, 92, by) which act in two
different spaces V; and V. Then, the invariant operator z in (6.11) looks like

2=0¢ g = 0&qpcy c}2’ =0(x102 —x207) + %blbz =x+Db, (7.2)
X=0(x102 — x201), b=%b1b2, o =i,
where b; satisfy bi2 = 1 in view of (7.1) and anticommute b1b, = —b, b1 in order to ensure (6.12).

The characteristic equation for the fermionic part of z:
2

b2 = 2 bibobiby = 1bbbb—l(b)Z(b)?—1 (7.3)
= 7 1020102 = =7 bibabibr = 7 (D) D=0 .
(here we took into account (7.1)) allows one to introduce the projection operators:
1 o 1
Pi%zzib, Pi'PjZ(SijPh l,]::l:z, P+%+P_%=1. (7.4)
Now any function f of b can be decomposed in these projectors
1
b-Pi% =j:§ Pi% = f(b):f(b)-(PJr% +P_%)=f(1/2) P+% +f(— 1/2) P_%.
(7.5)
Accordingly, the R-operator (6.10) can also be decomposed as:
R R 1 N 1 1 A 1
Ri2(ulz) = Ri2(ulx+b) = (5 +b) - Riz(ulx + 5) + (5 —b) - Riz(ulx — 5) . (7.6
and finally we have
. r(Ax+2 +u r(dx+4+u
R = a0 FEO IR g DGO 2H0) g )
2 2

r(3oc+3—w) L(30+ 3~ w)

where ro (1, x) =r(u,x £ %) are periodic functions in x, i.e., the general osp(1|2)-invariant R-
operators consist of two independent terms acting on two invariant subspaces, corresponding to
eigenvalues :I:% of the fermionic part b = obb, of the invariant operator z. The coefficients in
the expansion (7.7) in projectors P, 1 are the functions of the bosonic part x = o (x19y — x291)

of the invariant operator z. These coefficients are nothing but the R-operators for the bosonic
subalgebra s€(2) >~ sp(2) C osp(1]2).

7.2. The case of osp(2|2)

In this case, we have two bosonic ¢! = x, ¢2 = 9 and two fermionic ¢ = b! s ct = b2, oscilla-

tors which we realize using even and odd variables with the commutation relations (5.1):
[x, 9]=—1, (b, bPY =25%F [x, b*1=0=1[3, b*]. (7.8)

Here again we fix e = —1 and
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0 -1 0 0 01 0 0
v |1 0 00 -1 0 0 o
E7=10 0 20| = %=|0 0 12 o

0 0 0 2 0 0 0 12

We introduce two super-oscillator algebras A and A, with the generators {c{} and {c5}, respec-
tively. The invariant operator (6.11) is

2= 0eapctcd = o (x10) — x20)) + % b bY = x-+b, (7.9)

where o = =+i.

The fermionic oscillators bY € A; with commutation relations (7.8) and (5.16) generate the 4-
dimensional Clifford algebra. It is well known (see, e.g., [30]) that the generators of this Clifford
algebra can be realized in terms the Pauli matrices t:

b{:rl®12, b%=r2®12, bé=r3®r1, b%=r3®r2,

where I is the unit (2 x 2) matrix.
The characteristic equation for the fermionic part b = 3 b{ b5 of the operator (7.9) is

b(b? — 1) =0. (7.10)

The invariant subspaces spanned by the eigenvectors corresponding to eigenvalues 0, £1 of b are
extracted by the projectors:

1 1
Py=1-b* Py = 5“’2 +b), P_j= E(bz —b),  Py+Py+Py=1. (711
The R-operator is decomposed as follows:
Riz(ulz) = Ri2(ulx+b) =

=Ripulx+b)(Po+ Py +P_1)= Y Ria(ulx+£)P.
£=0,+1

(7.12)

Then (6.10) implies that the spinor-spinor R-operator invariant with respect to osp(2|2) super-
symmetry has the form

. F(Ax+ €+ 1+uw)
RIPD (y7) = rulx+ ) —2
9= 3 s 0]

Py, (u|z +2) =rulz).
0=0.+1 (5c+e+1-w) ‘ ne nee
(7.13)

Note that in view of the periodicity condition 7 (u|x — 1) = r(u|x + 1) one can rewrite (7.13) as
follows:

T(3(x+ 1+u))

7"zosp(2|2) _ 1— b2
12 (ulz) r(u|X)F(%(x+ " _u))( )
! rhectw)
Z 1 b b). 7.14
+2r(uIX+ )F(%(x—u)+l)(x + ub) (7.14)

In the pure bosonic case of the orthogonal algebras so(2k), the general solution for the R-
operator splits into two independent solutions corresponding to two nonequivalent chiral left and
right representations (see [8], [1], [7]). This does not happen here in the super-symmetric case,
where the even and odd functions of b are not separated, due to the dependence on the bosonic
operator X in the coefficients r(u#|x 4+ £) which mixes the chiral representations of so(2k).
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7.3. The case of osp(n|2)

This case is a generalization of the examples considered in the previous subsections (forn =1
and n = 2 we respectively reproduce the results for the osp(1]2) and osp(2|2) algebras). Con-
sider the super-oscillator algebra A with two bosonic ¢! = x, ¢ = § and n fermionic generators
2t =p® (@ =1, ..., n) with the commutation relations (5.1):

[x, 9] =—1, (b, bPY =25 [x, b*]1=0=1[d, b*], (7.15)

where the fermionic elements b are the generators of the n-dimensional Clifford algebra. This
corresponds to the choice of the parameter € = —1 and the metric tensor in the block form

0 -1 0 01 0
g —11 o o = egp=|-10 o0 (7.16)
0 0 2I 0 0 II

where [, stands for the n X n unit matrix. The invariant operator z € A ® A is
o
z:oeabc‘fcgzo(xlaz—x281)+5b‘1" S =x+b, (7.17)

where {c{} and {c}} are the generators of the first and second factor in A ® A, and the cross-
commutation relations of {c{} and {cf} are given in (5.16). The characteristic equation for the
fermionic part b = 5 b{b5 of the invariant z has the order n + 1 (cf. (7.3) and (7.10)):

n

H(b—m+%)

m=0

0. (7.18)

One can prove (7.18) by noticing that the operator b is represented as b = 7%z* — n/2, where (see
(6.16)) 7% = %(b‘f —obf) = 2t and 7% = %(b‘l" +0obf) = cff"‘ are respectively the creation
and annihilation fermionic operators in the Fock space F which is created from the vacuum |0):
z%|0) = 0 (V). Then the operator in the left-hand side of (7.18) is equal to zero since it is zero
on all basis vectors z%!-..7%|0) € F (here 1 <y < ... < a,, <n and m < n) which are the
eigenvectors of b with eigenvalues (m — 7).

The projectors P, on invariant subspaces in F spanned by the eigenvectors of b corresponding

to eigenvalues (m — 5) = £, where £ = —5, —5 +1, ..., 5, are immediately obtained from (7.18):
n/2 b—m n/2
Py = _— b-Pr=4¢P, Pr=1. 7.19
=[] —m ( (i > P (7.19)
m#l {=—n/2
m=—n/2

The case of even n = 2k

We see that eigenvalues of b are integer (or half-integer) when the number 7 is even (or odd).
Thus, for the case osp(n|2) = osp(2k|2), when n = 2k is even, the expansion of the solution
(6.10) goes over integer eigenvalues

. . ko
R P i) =R P wix+b) = 3 R wix+ 0P, (7.20)
t=—k
and it implies
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k

. F(Ax+ €+ 1+uw)
RO iy = N r(uix+£) =2 P, r(ulz+2)=rul2).
12 E;k F(3x+€+1—u))

(7.21)
The case of odd n = 2k + 1)
For the case osp(n|2) = osp(2k + 1|2), when n = 2k + 1 is odd, the expansion of the solution

(6.10) goes over. half-integer eigenvalues of b: —%, —ZI‘T_I, e —%, % % 2k+1 , and we
have the expansion
k+3
Rovp(2k+l\2)( 2) = mp(2k+l|2)( X +b) = Z ,}"-\,fl);p(Zk-l—llZ)(M|X_"_E)PZ7 (7.22)
t=—k-1}
which for solution (6.10) implies
. ks (x4 e+ 1+4uw)
ROV () 2) = rulx+€)—2 Py, (7.23)
12 1
—1 F(3x+€4+1—u)
- 2

where the periodic function r (#|z + 2) = r (u|z) normalizes the solution.
7.4. The case of osp(n|2m)

We consider the osp(n|2m) invariant super-oscillator algebra which is realized in terms of m
pairs of the bosonic oscillators ¢/ = x/, ¢"*/ =9/, j =1,...,m and n fermionic oscillators
cmte — p* o = 1,2, ..., n, with the commutation relatlons (5.12) deduced from (5.1) with

the choice of the parameter € = —1 and metric tensor (5.13). In this case, the invariant operator
7€ AQ® A defined in (6.11) is

m n
b Jai _ iaiy @ _
z=0eamctch :aZ(x1 3 —x231)+52b‘f b$ =x+b. (7.24)
j=1 a=1
Here the operator b is the same as in the previous examples of Section 7.3. Thus, the R operator
(6.10) in the case of the algebra osp(n|2m) is expanded over the projection operators P, like

in the case of osp(n|2), and the final expression for 7%(]);[7 (zm‘")(ulz) will be given by (7.21) or
(7.23):

D(3x+ €+ 1+u))

,fzoxp(n\Zm)(u'Z) — r(u|x +0) Py, (7.25)
12 E;Qn F(Sx+e+1—uw)
where
m . . . .
x=0Y (x{0] —x30{), r(ulz)=rlz+2),
j=l1
the projectors Py are defined in (7.19) and
=k, 1=k, k= 1,k},  n=2k,
Q {{—k—%,...,k—i—%}, n— 2k 41 keN. (7.26)
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8. The relation between two approaches

In this section, we give a more direct and elegant derivation of the R matrix solution (6.6),
(6.7), that does not require the introduction of additional auxiliary variables (as it was done in [2])
and is based only on using the generating function' (5.26), (5.27) of the invariant operators Ik
In addition, this derivation partially explains the relationship between the two types of solutions
(6.6), (6.7) and (6.10) for the R operator.

Now we clarify the relation of the Shankar-Witten form of the R operator (6.6), (6.7) and
Faddeev-Takhtajan-Tarasov type R operator given by the ratio of two Euler Gamma-functions in
(6.10). First, we write (6.6) in the form

fz(z)-Z 7, (8.1)

k!
k=0

where 7 (1) = (—a)k rr(u) and I~k = o* I. Recall that E( are the Hermitian invariants introduced
in the proof of Proposition 7.

Proposition 10. The R operator (8.1) obeys (6.4) or equivalently the finite-difference equation
(6.9):

W=@z-wRE+1)—-G+u)Rz—1)=0, (8.2)
(which was used to find the second solution (6.10)) if the coefficients ¥ (u) satisfy

~ _ 4u—k) -
el = e ®

that in terms of ri(u) is written as (6.7).

Proof. One can write (8.2) as

o0 ~

ri ()

W =
k!

k=0

((z—u)1k(z+ D= G+wiiz— 1)) (8.4)

_ Z (1) (( — WK F(xlz+1) — (2 +uw)dlF(x|z — U)

k=0
We use the relation (5.29) in the form:

2
7F(x]z) = [(1 - %)(% + a;—x} F(x|z),

and obtain

W= Zr"(“)ak(<z+1—u—1>F<x|z+1>—(z—1+“+1>F<X'Z—1)>x:o= ®:3)

I However we stress that generating function (5.27) is obtained by using of the recurrence relation (5.24) while the
latter is derived in the Appendix B by means of auxiliary variables.
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> Fe(u) « x2 wx
- ax<[(1— e+ 2 w1 FGxlz+ D)
£ 4 4

wX

2
X
LA =70+

+ut+ FGlz— 1)

xX=
Then we use the equations

X

1+ %
Fx|lz+1) = +2F(x|z), Fixlz—1) =

-3 1+

X
2
= F(x]2),
3

which follow from formula (5.27) for the generating function and write (8.5) in the form

) [ X x| (2F(xl2)
W_g x Bx{(l )i —u = (u a)+2)4}<1_%)x0. (8.6)

Now we apply the identity Bf X = xaf + kaf_l to move derivatives d, in (8.6) to the right and
obtain:

o ) v ktu-—o va | (2F (x|2)
W= [(k — W)y = ————k(k = Dy } ( — )x=o' (8.7)

In the second term in square brackets we shift the summation parameter k — k + 2 and deduce

k+24u—w
4

=0.

x=0 o

2F(X|z))

W=y (k= wFi - Tiva0) (=

x2
0 Iy
The resulting expression vanishes due to (8.3). Thus, we prove that the finite-difference equation
(8.2) is valid if the coefficients 7 (u) satisfy (8.3). O

Remark 10. We prove that both R operators (8.1), (8.3) and (6.10) satisfy the same equation (8.2)
and indeed obey the RLL relations (6.2). It is worth also to note that the differential operator
in the curly brackets in (8.6) coincides (up to change of variable x = oA) with the differential
operator in curly brackets presented in formula (6.43) of our work [2]. This suggests to regard

. . 2 . .
the generating function F(x|z)(1 — %)’1 as a coherent state in the super-oscillator space.
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Appendix A. Properties of operators P, KC and relations for matrix generators of Brauer
algebra

We use here the concise matrix notation introduced in Sections 2, 3 (this convenient notation
was proposed in [31]).
The matrices (2.19) satisfy the identities
Pu=Pn, Kn=E"Ka=)"?, )'Kn==)’Kin, Lo-)'=Kn-)?,
PioPr2=1, KpKp=wKi2, Ki2Pr=PrKin=eKn, (A1)
where w = (N — M), the operator (— 12 is defined in (2.10) and we 1ntroduce the matrix (=)' =

(- 1)[“l]8a’ of super-trace in the i-th factor V(y ) of the product V( NIM)* Then, by making use
definitions (3.1) and (3.2), we have

(D)'"Pr=Pn(=)?, (D)PPi=Pi(=)"?, P> =P, (A2)
P1aPas = (=) 2P13(—) 2 P12 = Paz () B P13(—) 3 = Pp3(—) P13 (—)'2,

Pi2Ki3 = (—) K3 (—)2Pr2, KasPrio = Pra(—)2K13(—)12, (A
eK12P31 = Ki2(=) K32 (0)'?, €P31Ki2 = (5) 2K (—) K12, (A4)
K23Kiz2 = € Ko3 ()2 P13 ()1 = e ()P P13 (—) @K1z, (A.5)
K31K12 =€ (—)2P3(—) 2K 12 = € K31 (=) P2 (). (A.6)

The mirror counterparts of identities (A.3) — (A.6) are also valid. The identities (A.2), (A.3)
follow from the representation (3.1): Pjp = (—)12P12 = Pj2(—)'2, where P, is the usual permu-
tation operator. The identities (A.6) follow from the definitions (2.19), (3.1), (3.2) of the operators
P and K. We prove only the first equality in (A.6) since the other identities in (A.4), (A.5) and
(A.6) can be proved in the same way. We denote the incoming matrix indices by ay, az, a3 and
the outcoming indices by c1, ¢2, c3 while summation indices are b; and d;. Then we have

(31K 12)¢l 2y = BB sy B8 e, = BB 6cic, = 83 8 (—)l P2 gab2g
b
= e(—1>[“2”a31<7>zs>§,‘§3§(—1>[“1””2]<lclz)“5132 =e(Pu(-)? (H)"K 12)“;1“52"; :

and in view of the relation (—)%3 K2 = (—)'3/C1» which follows from (2.4) and obvious identity
P23 ()13 = (—)'2 Py3 we obtain the first equality in (A.6).

By means of the relations (A.3) — (A.6) one can immediately check eqs. (2.23), (2.24) and
also deduce

P12P23P12 = P23 P12Pas. (A7)
K12K23 K12 = K12,  Ka3K12K23 = Ko, (A.8)
P12K23K12 =P3Ki2, K12K23Pi2 = K12P23, (A.9)
PaK12K23 =P12Koz, Ka3zKi2Paz = Ko3Pr2 - (A.10)

The identity (A.7) follows from the relations in the first line of (A.3). We consider a few relations
in (A.8) — (A.10) in detail. We start to prove the first relation in (A.8):

ayara =aa =hra b d: —ajap {43 ob ayay ga
(K12K23K12)¢ cres = E e 1, €7 P Edyey8 ' P ecicy = 881800 6cicy = KOG, 003

The second relation in (A.8) can be proved in the same way. Then we prove the first equation in
(A.9). For the left hand side of (A.9) one has:
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(PaKosKio) sé, = (—DIllelsy 528020 4,0, 801 R o, = (—DIallelgnassite, , =
=038y, (—Dlallalgabze ) = 5536, (—DIRISIg2e ) = (PyKi2) 88, |

and similarly one deduces other relations in (A.9) and (A.10). From the identities (A.7) — (A.10)
we also deduce the following relations:

K12P3Ki2 =€eKi2, KzP12K23 =€Ko3. (A.11)
P12K23 P12 = Pr3K12P23. (A.12)
P12P3K12 = Koz P12P23,  Ki12P23Pi2 = Pz P12Kos. (A.13)

At the end of this appendix, we stress that the identities (A.1), (A.7) — (A.10) are the images of
the defining relations (3.6), (3.7) for the Brauer algebra in the representation (3.4). The R-matrix
(3.10) is the image of the element (3.8) and the Yang-Baxter equation (3.11) is the image of the
identity (3.9). Thus, it follows from Proposition 1 that the R-matrix (3.10) is a solution of the
braided version of the Yang-Baxter equation (3.11).

Appendix B. Supersymmetrized products of super-oscillators

The product of k super-oscillators is transformed under the action (2.7) of the group Osp as
follows:

e — ARG P (B.1)

where U € Osp, and the tensor product of k defining representations of the group Osp is given
by the formula

k—1
(X bjar (Zb )b
Ak= 1)(U)‘11I71“§2 ag Ullbl1 (_l)blaz Uabzz(—l)blbz s (=1) Uak (=1) /= ,
or in the concise notation we have

(k1 3 L] (Z DIk
AW = OO ML (o) =2 o= =

One can check that any element X € By (w) of the Brauer algebra (3.6), (3.7) in the representation
(3.4) commutes with the action of the Osp supergroup

AWk - X=X - AV W2k (B.2)
Define the super-symmetrized product of two super-oscillators ¢%, ¢” as
1 1
C(Llcb) = E (CaCb _ 6(_1)[“][b]cbca) — 5 (Cacb _ EP‘;[Z, Cdce) — (Az)asecdce , (BS)

where P is the super-permutation matrix (3.1) and (Az)“é’e is the antisymmetrizer Ay = %(1 —51)
in the representation (3.4). The direct generalization of (B.3) to the super-symmetrized product
of any number of super-oscillators is the following:

(a1 a2 |, .ak) _ ayay...ax by by . b
cic c —(A)blbz e c’k (B.4)

where Ay is the k-th rank antisymmetrizer in the representation (3.4). The antisymmetrizer Ax
can be defined via the recurrence relations (see, e.g., [30])
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Ar=—(1=sp_1 4 ..+ (=D Ly - csk—1) - (1= s2+s182) (1 = s1) (B.5)

i

where the generators s, are taken in the representation (3.4). We stress that in view of the relation
(B.2) the super-symmetrized product (B.4) is transformed under the action of Osp as a usual
product (B.1).

Note that upon opening the parentheses, the element (B.5) equals the alternating sum of all k!
elements of the permutation group Si. Using this fact one can give a more explicit formula for
super-symmetrized product (B.4) of a higher number of super-oscillators

1
carga a1 Z( PO (=)0 . ¢ “"k—k'afjl-ua,‘(”‘(/c-c)k: (B.6)

! UESk
=0+ 9 exp(ka ) le=0 ,

where p(o) =0, 1 denotes the parity of the permutation o. Here we introduce (see [2]) auxiliary
super-vector k, such that the derivatives 97 = % satisfy

3’?|ca2 — —6(—1)‘””26‘“2331 , a]l() (kg ¢®) = b + (kg ) all(y i 3,?35 — _E(_l)[a][b]a’l:a’? ,

and (B.6) holds due to the Leibniz rule.

Now we explain the notation 6 in (B.6). Let s; = 0 ;11 be an elementary transposition of the
j-thand (j 4 1)-st site. For the transposition s; we define §; = [a][a;+1]. Then for a general
permutation o =s;,5j, ...S5j,_,Sj, € Sk, we have

= lajlaj+1]+las; Gipllas;, Geog+n] + -+ lasy, s Gpllas;, s, G+ ] (B.7)
As an example, according to the definition (B.6), we have the relation useful in practice:

j-1
. ) [at][a/ + Z ([a;] +[a/ )ar] ) .
C(al...Cal...Ca/...cak)z(_e)(_ ) I=i+1 Cal...Ca]...Cal...Cak).

(B.8)

In eq. (5.19) we have defined the supersymmetric invariants [,,, Using this definition, the repre-
sentation (B.6) and the definition (6.11) of z, we obtain the recurrence relation

a am b b 1
=0 Iy 2=y 11 = €aypy - - Eapby Ot - - 0y Bex' - - Ocs €ap (9, + 3€(— 1)) (D2, +
1 b . . 1 A b, b
+3e(=DPiD)e Tt U = Lyt ean, - Eapby Okr - - Ol Dt . Dot €ap(— 1) x

a,.b ki-ci+krcn _ _ € m 1 aj—1|
XKjkye li=0 = Im+1 — 3 D et Carby -+ €a;_1bi_1€ai iy -+ Eamby 8K1 s O X

i1 a d b bi+1 oabi-1 b1 ki-c ¢
X O (2 — ex0e,.a) 0 . OGO B e raTRe g

=lny1 + 7 ((m_])_ )ml
(B.9)
For a proof of (B.9) we refer to the papers [1] (see analogous calculation in eq. (5.6) there) and

[2]. Taking into account the initial conditions Ip = 1 and /1 = —oz, we deduce from (B.9) that
the invariants 7, are polynomials in z of the order m.
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