
Available online at www.sciencedirect.com
ScienceDirect

Nuclear Physics B 965 (2021) 115355
www.elsevier.com/locate/nuclphysb

Yang-Baxter R-operators for osp superalgebras

A.P. Isaev a,b,d, D. Karakhanyan a,c, R. Kirschner e,∗

a Bogoliubov Laboratory of Theoretical Physics, JINR, Dubna, Russia
b Physics Faculty, M.V. Lomonosov State University, Moscow, Russia
c Yerevan Physics Institute, 2 Alikhanyan br., 0036 Yerevan, Armenia

d St. Petersburg Department of Steklov Mathematical Institute of RAS, Fontanka 27, 191023 St. Petersburg, Russia
e Institut für Theoretische Physik, Universität Leipzig, PF 100 920, D-04009 Leipzig, Germany

Received 10 December 2020; accepted 21 February 2021
Available online 25 February 2021

Editor: Hubert Saleur

Abstract

We study Yang-Baxter equations with orthosymplectic supersymmetry. We extend a new approach of 
the construction of the spinor and metaplectic R̂-operators with orthogonal and symplectic symmetries to 
the supersymmetric case of orthosymplectic symmetry. In this approach the orthosymplectic R̂-operator is 
given by the ratio of two operator valued Euler Gamma-functions. We illustrate this approach by calculating 
such R̂ operators in explicit form for special cases of the osp(n|2m) algebra, in particular for a few low-rank 
cases. We also propose a novel, simpler and more elegant, derivation of the Shankar-Witten type formula 
for the osp invariant R̂-operator and demonstrate the equivalence of the previous approach to the new one 
in the general case of the R̂-operator invariant under the action of the osp(n|2m) algebra.
© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The similarities between the orthosymplectic supergroups OSp(N |M) (here M = 2m is an 
even number) and their orthogonal SO(N) and symplectic Sp(M) bosonic subgroups can be 
traced back to the existence of invariant metrics in the (super)spaces V(N |M), VN and VM of their 
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defining representations. These similarities lead to the consideration of the supergroup OSp and 
its superalgebra osp in full analogy with the unified treatment (see e.g. [1]) of the groups SO , 
Sp and their Lie algebras. Moreover these similarities are inherited in the study of solutions of 
the Yang-Baxter equations that possess such symmetries.

In the present paper, we continue our study [2] of the solutions of the Yang-Baxter equations 
symmetric with respect to ortho-symplectic groups. We start with the graded RLL-relations with 
the R-matrix in the defining representation R ∈ End(V(N |M) ⊗ V(N |M)) and find the L-operator, 
L(u) ∈ End(V(N |M)) ⊗ A, where A is a super-oscillator algebra invariant under the action of 
the OSp(N |M) group. Then this L operator allows one (via another type of RLL relations) to 
define a richer and more complicated family of solutions of the Yang-Baxter equations, namely 
the R̂-operators, which take values in the tensor product A ⊗A and are expressed as an expan-
sion over the invariants in A ⊗ A. The orthogonal and symplectic groups are embedded in the 
ortho-symplectic super-group OSp, and the R̂-operators invariant under the so(N) and sp(M)

algebras can be obtained from the OSp-invariant R̂-operator as special cases. In the orthogo-
nal case the algebra A is the N -dimensional Clifford algebra and the operator R̂ is called the 
spinor R-matrix. In the symplectic case the algebra A is the oscillator algebra and R̂ is called 
the metaplectic R-operator.

The standard approach to the problem of finding the spinor (so-invariant) R̂-operator was de-
veloped in [3], [4] and is based on the expansion of the R̂-operator over the invariants Ik realized 
in the spaces A ⊗ A. Here the factors A are the Clifford algebras with the generators (ca)αβ , 
where α, β and a are respectively spinor and vector indices. Then the invariants Ik are given by 
the contraction of the antisymmetrized products of c(a1

1 . . . c
ak)
1 ∈A ⊗ I and c(b1

2 . . . c
bk)
2 ∈ I ⊗A

with the invariant metrics εaibi
. In that approach we obtain the spinor R̂-operator as a sum over 

invariants Ik with the coefficients rk which obey recurrence relations. Analogous formulae of the 
Shankar-Witten (SW) type for the R̂-operators were deduced for the symplectic case in [1] and 
then were generalized for the ortho-symplectic case in [2]. Note that we cannot consider these 
expressions for the R̂-operators as quite satisfactory, since they do not provide closed formulas 
for the considered R̂-operators. For example, in the symplectic and ortho-symplectic cases, the 
sum over Ik is infinite.

On the other hand, it is known that an analogous R̂-operator invariant under the s�(2) algebra 
can be represented (see [5], [6]) in a compact form of the ratio of two operator-valued Euler 
Gamma-functions. Surprisingly, as it was shown in a recent paper [7], the so and sp invariant 
R̂-operators (for special Clifford and oscillator representations of so and sp) are also represented 
in the Faddeev-Tarasov-Takhtajan (FTT) form of the ratio of two operator-valued Euler Gamma-
functions.

In the present paper, we generalize the results of [7] to the supersymmetric case and show that 
the osp invariant R̂-operator can also be represented in the FTT form. This is the main result of 
our paper. The natural conjecture is that the osp-invariant SW type R̂-operator given as a sum 
over invariants Ik is equal to the osp-invariant FTT type R̂-operator given by the ratio of two 
Gamma-functions. This conjecture is based on the fact that both R̂-operators are solutions of the 
same system of finite-difference equations which arise from the RLL relations.

A complete proof of this conjecture is still missing. In the present paper we propose another 
simpler and more elegant derivation of the SW type formula for the osp invariant R̂-operator. 
This new derivation supports the conjecture of the equivalence of the SW and FTT expressions 
for the R̂-operators. Indeed, in the previous derivation, the role of invariant, “colorless”, elements 
in A ⊗A is played by the operators Ik . In the new derivation, we prove that the invariants Ik are 
polynomials of one invariant I1 ∼ z only and rewrite the RLL relation itself into a “colorless” 
2
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form from the very beginning in terms of a system of finite-difference equations in the variable 
z.

We relate this new system of equations to both the SW and the FTT expressions for the R̂-
operator. On one hand, the FTT type R̂-operator is its solution. On the other hand we show 
that the expansion of the SW type R̂-operator over Ik satisfies this system of finite-difference 
equations as well.

The paper is organized as follows. In Section 2, we recall some basic facts of the linear algebra 
on the superspace V(N |M) with N bosonic and M fermionic coordinates and briefly formulate 
the theory of supergroups OSp(N |M) and their Lie superalgebras osp(N |M). In this section 
we fix our notation and conventions. In Section 3, we define the osp-invariant solution of the 
Yang-Baxter equation as an image of a special element of the Brauer algebra in the tensor rep-
resentation in super-spaces V⊗r

(N |M). Section 4 is devoted to the formulation of the graded RLL

relations. In this Section, we find a special L-operator that solves the RLL relations in the case 
of the osp algebra and introduce (see also [2]) the notion of the linear evaluation of the Yangian 
Y(osp). In Section 5 we define the super-oscillator algebra A and describe the super-oscillator 
representation for the linear evaluation of the Yangian Y(osp). In particular, we define the set of 
Osp invariant operators Ik in A ⊗A and their generating function.

In terms of these invariant operators we construct in Section 6 the osp invariant R̂-operators in 
the super-oscillator representation. We find two forms for such R̂-operator. One of these forms 
represents the R̂-operator as a ratio of Euler Gamma-functions. For the s�(2) case this type 
solution was first obtained in [5] (see also [6]) and we call these solutions the FTT type R̂-
operators. Another form of the osp invariant R̂-operator in the super-oscillator representation 
generalizes the SW solution [3] of the spinor-spinor so-invariant R̂-operator. This solution (see 
eqs. (6.6) and (6.8)) for the osp-invariant R̂-matrix in the super-oscillator representation was 
first obtained in our paper [2] by using the methods developed in [4], [8] and [1]. In [2] we have 
generalized formulas for the so-type R-matrices (in the Clifford algebra representation) obtained 
in [3], [8] (see also [9], [10], [11], [12], [1]). In [2] we have also generalized the formulae for 
sp-type R-matrices (in the oscillator, or metaplectic, representation of the Lie algebra sp), which 
were deduced in [1]. It has been shown in [2] that all these so- and sp-invariant R-matrices are 
obtained from (6.6), (6.8) by restriction to the corresponding bosonic Lie subalgebras of osp.

In Section 7 the result for the FTT type R operator is studied in detail in particular cases 
of osp(N |M). The arguments of the Gamma-functions involve the invariant operator z ∼ I1
which decomposes into a bosonic and a fermionic part. The finite spectral decomposition of the 
fermionic part is considered and used to decompose the R operator with respect to the corre-
sponding projection operators.

In Section 8 we present the new and more direct derivation of the solutions (6.6) and (6.8). 
Two Appendices are devoted to the proofs of the statements made in the main body of the paper.

2. The ortho-symplectic supergroup and its Lie superalgebra

Consider (see, e.g., [13], [2]) a superspace V(N |M) with graded coordinates za (a = 1, . . . , N +
M). The grading grad(za) of the coordinate za will be denoted as [a] = 0, 1 (mod2). If the co-
ordinate za is even then [a] = 0 (mod2), and if the coordinate za is odd then [a] = 1 (mod2). It 
means that the coordinates za and wb of two supervectors z, w ∈ V(N |M) commute as follows

za wb = (−1)[a][b] wb za . (2.1)

Let the superspace V(N |M) be endowed with a bilinear form
3
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(z · w) ≡ εabz
awb = zawa = zbwaε̄

ab , (z · w) = ε(w · z) , (2.2)

which is symmetric for ε = +1 and skewsymmetric for ε = −1. In eq. (2.2) we define wa ≡
εabw

b, where, in accordance with the last relation in (2.2), the super-metric εab and inverse 
super-metric ε̄ab have the properties

εabε̄
bd = ε̄dbεba = δd

a , εab = ε(−1)[a][b]εba ⇔ ε̄ab = ε(−1)[a][b]ε̄ba . (2.3)

We stress that the super-metric εab is an even matrix in the sense that εab �= 0 iff [a] + [b] =
0 (mod2):

εab = (−1)[a]+[b]εab. (2.4)

In other words the supermatrix εab is block-diagonal and its non-diagonal blocks vanish. Using 
(2.4), the properties (2.3) can be written as

εab = ε(−1)[a]εba = ε(−1)[b]εba , ε̄ab = ε(−1)[a]ε̄ba = ε(−1)[b]ε̄ba . (2.5)

Further, we use the following agreement on raising and lowering indices for super-tensor 
components

z...c d...
a = εab z...c b d... , z a

...c d... = ε̄ab z...cbd... . (2.6)

According to this rule, we have εab = ε̄acε̄bdεcd = ε̄ba and the metric tensor with the upper 
indices εab does not coincide with the inverse matrix ε̄ab. Further, we use only the inverse matrix 
ε̄ab and never the metric tensor εab.

Consider a linear transformation in V(N |M)

za → z′a = Ua
b zb , (2.7)

which preserves the grading of the coordinates grad(z′a) = grad(za). For the elements Ua
b of the 

supermatrix U from (2.7) we have grad(Ua
b) = [a] + [b]. The ortho-symplectic group OSp is 

defined as the set of supermatrices U which preserve the bilinear form (2.2) under the transfor-
mations (2.7)

(−1)[c]([b]+[d])εabU
a
cU

b
d = εcd ⇒ (−1)[c]([b]+[d])Ua

cU
b
d ε̄cd = ε̄ab . (2.8)

Now we write the relations (2.8) in the coordinate-free form as

ε〈12 U1(−)12U2(−)12 = ε〈12 ⇔ U1(−)12U2(−)12 ε̄12〉 = ε̄12〉 , (2.9)

where the concise matrix notation is used

ε̄12〉 ∈ V(N |M) ⊗ V(N |M) , U1 = U ⊗ I , U2 = I ⊗ U ,

((−)12)
a1a2
b1b2

= (−1)[a1][a2]δa1
b1

δ
a2
b2

, (−)12 ∈ End(V(N |M) ⊗ V(N |M)) .
(2.10)

Here ⊗ denotes the graded tensor product:

(I ⊗ B)(A ⊗ I ) = (−1)[A] [B] (A ⊗ B) , (A ⊗ I )(I ⊗ B) = (A ⊗ B) ,

and [A] := grad(A), [B] := grad(B).
Consider the elements U ∈ OSp which are close to unity I : U = I + tA + . . . . Here the 

parameter t is small and dots denote terms of order t2, t3, etc. In this case, the defining relations 
(2.8) give conditions for the supermatrices A:
4



A.P. Isaev, D. Karakhanyan and R. Kirschner Nuclear Physics B 965 (2021) 115355
(−1)[c]([b]+[d])εab(δ
a
cA

b
d + Aa

cδ
b
d) = (

(−1)[c]+[c][d]εcbA
b
d + εad Aa

c

) = 0 ⇒
Acd = −ε(−1)[c][d]+[c]+[d]Adc .

(2.11)

The coordinate free form of relations (2.11) is directly deduced from equalities (2.9):

ε〈12(A1 + (−)12A2(−)12) = 0 ⇔ (A1 + (−)12A2(−)12)ε̄12〉 = 0 . (2.12)

The vector space of super-matrices A, which satisfy (2.11), (2.12), forms the Lie superalgebra 
osp of the supergroup OSp.

Any such matrix A can be represented as

Aa
c = Ea

c − (−1)[c]+[c][d]εcbE
b
d ε̄da (2.13)

where ||Ea
c|| is an arbitrary matrix. Let {e f

g } be the matrix units, i.e., matrices with the compo-

nents (e f
g )bd = δ

f
d δb

g . If we substitute E = e
f
g = ε̄fg′

εgf ′e f ′
g′ in (2.13), then we obtain the basis 

elements {G̃f
g} in the space osp of matrices (2.12):

(G̃
f
g)

a
c ≡ (e

f
g)

a
c − (−1)[c]+[c][d]εcb(e

f
g)

b
d ε̄da = ε̄f aεgc − ε(−1)[c][a]δf

c δa
g . (2.14)

Now any super-matrix A ∈ osp which satisfies (2.11), (2.12) can be expanded over the basis 
(2.14)

Aa
c = a

g
f (G̃

f
g)

a
c , (2.15)

where ag
f are the components of the super-matrix. Since the elements (G̃f

g)
a
c are even, i.e., 

(G̃
f
g)

a
c �= 0 iff [f ] + [g] + [a] + [c] = 0 (mod2), then from the condition grad(Aa

c) = [a] + [c]
we obtain that grad(a

g
f ) = [g] + [f ]. It means that the usual commutator appears as a super-

commutator for the basis elements G̃f
g :

[A,B]ac = [ag
f (G̃

f
g), bn

k(G̃
k
n)]ac = a

g
f bn

k

([G̃f
g, G̃k

n]±
)a

c
,

where in the component form the super-commutator is([G̃a1
b1

, G̃
a2
b2

]±
)a3

c3
≡ (G̃

a1
b1

)
a3
b3

(G̃
a2
b2

)b3
c3

− (−1)([a1]+[b1])([a2]+[b2])(G̃a2
b2

)
a3
b3

(G̃
a1
b1

)b3
c3

.

(2.16)

We notice that the elements of the matrices G̃a
b are numbers. However, the super-commutator 

(2.16) is written for G̃a
b as for the graded elements with deg(G̃a

b) = [a] + [b].
Now we substitute the explicit representation (2.14) in the right-hand side of (2.16) and deduce 

the defining relations for the basis elements of the superalgebra osp:

(−1)[b1][a2] · [G̃a1
b1

, G̃
a2
b2

]± = −(−1)[a1][a2] ε̄a1a2 G̃b1b2 + ε δ
a2
b1

G̃
a1
b2

+
+(−1)[a1][a2] εb1b2 G̃a2a1 − ε(−1)[a1]([b1]+[a2]) δa1

b2
G̃

a2
b1

,
(2.17)

where we have omitted the matrix indices. Below we use the standard component-free form of 
notation, where we substitute (G̃ai

bi
)
ak

bk
→ G̃ik (here i and k are numbers 1, 2, 3 of two super-

spaces V(N |M) in V⊗3
(N |M)). In this notation, taking into account (2.16), the relation (2.17) is written 

as

[(−)12G̃13(−)12 , G̃23] = [εP12 −K12 , G̃23] , (2.18)
5
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where we introduce two matrices K, P ∈ End(V⊗2
(N |M)):

Ka1a2
b1b2

= ε̄a1a2εb1b2 , Pa1a2
b1b2

= (−1)[a1][a2]δa1
b2

δ
a2
b1

. (2.19)

The matrix P is called superpermutation since it permutes super-spaces, e.g., using this matrix 
one can write (2.1) as Pab

cd wczd = zawb. Note that the generators (2.14) of the Lie super-algebra 
osp can be expressed in terms of P and K as

G̃ = K − εP , (2.20)

and after substituting (2.20) into (2.18) can be written (2.18) in the form

[(−)12G̃13(−)12 , G̃23] + [G̃12 , G̃23] = 0 . (2.21)

One can explicitly check the relation (2.21) by making use of the identities for the operators P
and K presented in Appendix A.

Note that conditions (2.12) for the osp generators Aa
c = (G̃

f
g)

a
c, given in (2.14) and (2.20), 

can be written as

K12(G̃31 + (−)12G̃32(−)12) = 0 , (G̃31 + (−)12G̃32(−)12)K12 = 0 . (2.22)

One can verify that these conditions are equivalent to

K12((−)12G̃13(−)12 + G̃23) = 0 , ((−)12G̃13(−)12 + G̃23)K12 = 0 . (2.23)

Using (2.23) and the commutation relations of super-permutation P and generators G̃ (see ap-
pendix A)

P12(−)12G̃13(−)12 = G̃23P12 , (−)12G̃13(−)12P12 = P12G̃23 , (2.24)

we write (2.18) as

[(−)12G̃13(−)12 , G̃23] = [εP12 −K12 , (−)12G̃13(−)12] . (2.25)

It means that the defining relations (2.17) can be written in many equivalent forms. At the end of 
this section we note that the matrix (2.20) is the split Casimir operator for the Lie superalgebra 
osp in the defining representation.

3. The OSp-invariant R-matrix and the graded Yang–Baxter equation

Consider the three OSp invariant operators in V⊗2
(N |M): the identity operator 1, the super-

permutation operator P and metric operator K. According to definition (2.19), the super-
permutation P12 is a product of the usual permutation P12 and the sign factor (−)12,

P12 = (−)12P12 , or in components Pa1a2
b1b2

= (−1)[a1][a2]δa1
b2

δ
a2
b1

, (3.1)

while the operator K12 is defined as

K12 = ε̄12〉ε〈12 , or in components Ka1a2
b1b2

= ε̄a1a2εb1b2 . (3.2)

Their OSp invariance means that (see (2.9))

U1(−)12U2(−)12K12 = K12U1(−)12U2(−)12 ,

U (−)12U (−)12P = P U (−)12U (−)12 .
(3.3)
1 2 12 12 1 2

6
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In particular, it follows from these relations that the comultiplication for the supermatrices 
U ∈ Osp(N |M) has the graded form �(U)12 = U1(−)12U2(−)12. In fact this comultiplication 
follows from the transformation (2.7) applied to the second rank tensor za1 · za2 .

Using the operators P, K one can construct a set of operators {si, ei |i = 1, . . . , n − 1} in 
V⊗n

(N |M):

si = εPi,i+1 ≡ εI⊗(i−1) ⊗P ⊗ I⊗(n−i−1) , ei = Ki,i+1 ≡ I⊗(i−1) ⊗K ⊗ I⊗(n−i−1) ,

(3.4)

which define the matrix representation T of the Brauer algebra Bn(ω) [16], [17] with the param-
eter

ω = εcd ε̄cd = ε(N − M) . (3.5)

Recall that here N and M are the numbers of even and odd coordinates, respectively. Indeed, one 
can check directly (see Appendix A) that the operators (3.4) satisfy the defining relations for the 
generators of the Brauer algebra Bn(ω)

s2
i = 1 , e2

i = ωei , si ei = ei si = ei , i = 1, ..., n − 1,

sisj = sj si , eiej = ej ei , siej = ej si , |i − j | > 1,
(3.6)

si si+1 si = si+1 si si+1 , ei ei+1 ei = ei , ei+1 ei ei+1 = ei+1 ,

si ei+1 ei = si+1 ei , ei+1 ei si+1 = ei+1 si , i = 1, ..., n − 2 .
(3.7)

(here 1̂ is the unit element in Bn(ω)). Note that this presentation of the Brauer algebra is 
obtained in the special limit q → 1 from the BMW algebra presentation [15] and it is used in 
many investigations (see, e.g., [18], [19], [20], [21]).

We stress that the matrix representation T (3.4) of the generators si, ei ∈ Bn(ω) acts in the 
space V⊗n

(N |M)
.

For what follows, we need the following statement (see, e.g., [19] and [2]).

Proposition 1. The element

ρ̂i (u) = u(u + β) si − (u + β) 1̂ + uei ∈ Bn(ω) , (3.8)

where u is a spectral parameter and β = 1 − ω
2 , satisfies the Yang-Baxter equation

ρ̂i (u)ρ̂i+1(u + v)ρ̂i(v) = ρ̂i+1(v)ρ̂i(u + v)ρ̂i+1(u) , (3.9)

and the unitarity condition ρ̂i(u)ρ̂i(−u) = (u2 − 1)(u2 − β2)1̂.

The matrix representation T (3.4) of the element (3.8) is

R̂(u) ≡ ε T (ρ̂(u)) = u(u + β)P − ε(u + β)1 + εuK . (3.10)

Here we suppress index i for simplicity. It follows from (3.9) that R̂(u) satisfies the braid version 
of the Yang–Baxter equation

R̂12(u − v)R̂23(u)R̂12(v) = R̂23(v)R̂12(u)R̂23(u − v). (3.11)

Thus, in the supersymmetric case the braid version (3.11) of the Yang–Baxter equation is the 
same as in the non supersymmetric case. Further we use the following R-matrix
7
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R(u) = PR̂(u) = (u − ω

2
+ 1)(u1 − εP) + uK

= u(u + β)1 − ε(u + β)P + uK , (3.12)

which is the image of the elements [19]:

ρi(u) = u(u + β)1 − (u + β) si + uei ∈ Bn(ω) .

Proposition 2. The standard R-matrix R(u) =PR̂(u), which was defined in (3.12), satisfies the 
graded version of the Yang–Baxter equation [22]

R12(u − v)(−)12R13(u)(−)12R23(v) = R23(v)(−)12R13(u)(−)12R12(u − v). (3.13)

Proof. The matrix R ∈ End(V ⊗2
(N |M)) is an even matrix since we have Ri1i2

j1j2
�= 0 iff [i1] + [i2] +

[j1] + [j2] = 0 (mod2). This follows from the explicit form (3.12) of the operator R(u). There-
fore, for arbitrary k we have the identity

Rij (−)ik(−)jk = (−)ik(−)jkRij , (3.14)

where i, j and k are numbers of super-spaces V(N |M) in the product V⊗n
(N |M) and the operator 

(−)ik is defined in (2.10). Substituting R̂ij (u) = PijRij (u) = (−)ijPijRij (u) into (3.11) and 
moving all usual permutations Pij to the left we write (3.11) with the help of (3.14) in the form 
(3.13). �
Remark 1. We stress that the sign operators (−)12 in (3.13) can be substituted by the operators 
(−)23 by means of manipulations similar to (3.14). Moreover, if Rij (u) solves the Yang-Baxter 
equation (3.13), then the twisted R-matrix (−)ijRij (u)(−)ij is also a solution of (3.13).

Remark 2. Eqs. (3.10), (3.12) give unified forms for solutions of the Yang-Baxter equations 
(3.11), (3.13) which are invariant under the action of all Lie (super)groups SO , Sp and OSp. 
Recall that for the SO case the R-matrix (3.12) was found in [24] and for the Sp case it was 
indicated in [25]. For the OSp case such R-matrices were considered in many papers (see, e.g., 
[23], [14], [26]).

4. Graded RLL-relation and the linear evaluation of Yangian Y(osp)

We start with the following graded form of the RLL-relation (see, e.g., [26] and references 
therein)

R12(u − v)L1(u)(−)12L2(v)(−)12 = (−)12L2(v)(−)12L1(u)R12(u − v) , (4.1)

where the R-matrix is given in (3.12). This graded form of the RLL relations is also motivated 
by the invariance conditions (3.3). It is known (see, e.g., [2], [14] and references therein) that 
eqs. (4.1) with the R-matrix (3.12) are defining relations for the super-Yangian Y(osp). In [2]
we proved the following statement.

Proposition 3. The L-operator

La (u) = (u + α)1δa + Ga , (4.2)
b b b

8
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where α is an arbitrary constant, solves the RLL-relation (4.1) iff Ga
b is a traceless matrix of 

generators of the Lie superalgebra osp, i.e., it satisfies equations (cf. (2.22))

K12

{
G1 + (−)12G2(−)12

}
= 0 =

{
G1 + (−)12G2(−)12

}
K12 , (4.3)

defining relations for osp-algebra (cf. (2.18))

G1(−)12G2(−)12 − (−)12G2(−)12G1 = [K12 − εP12, G1] , (4.4)

and in addition obeys the quadratic characteristic identity

G2 + β G − ε

ω
str

(
G2

)
1 = 0 , (4.5)

where as usual β = 1 − ω/2.

The L-operator (4.2), where the elements Ga
b satisfy the conditions (4.3), (4.6) and (4.5), is 

called the linear evaluation of the Yangian Y(osp).

Remark 3. The relations (4.4) are written after the exchange 1 ↔ 2 in the form

(−)12G1(−)12G2 − G2(−)12G1(−)12 = [εP12 − K̃12, G2] , (4.6)

where K̃12 = K21 = (−)12K12(−)12, or K̃a1a2
b1b2

= ε̄a2a1εb2b1 . Now we are able to compare the 
defining relations (4.4), (4.6) with (2.18), (2.25), where the elements Ga

b are represented as 
matrices G̃a

b acting in the super-space V(N |M), namely, the commutation relations (4.6) turn 
into the commutation relations (2.18) after the change of the definition of the supermetric εab →
εba = ε(−1)[a]εab (see also the discussion in Remark 5 below).

Remark 4. The conditions (4.3) for the generators of osp read in component form (cf. (2.11)):

Gab + ε(−1)[a][b]+[a]+[b]Gba = 0 , Gab ≡ εac Gc
b . (4.7)

In particular, it follows from (4.3), (4.7) that the matrix G is traceless

0 = K12

(
G1 + (−)12G2(−)12

)
K12 = 2(εab Ga

c ε̄cb)K12 = 2 ε str(G)K12 .

Remark 5. The characteristic identity (4.5) is equivalent to the equation

K12

(
βG1 + G1(−)12G2(−)12

)
=

(
βG1 + (−)12G2(−)12G1

)
K12 ,

provided that the relations (4.3) and (4.6) are satisfied.

5. Super-oscillator representation for linear evaluation of Y(osp)

In this section we intend to construct an explicit representation of Y(osp) in which the gener-
ators of osp ⊂ Y(osp) satisfy the quadratic characteristic equation (4.5). We follow the approach 
of [2] and introduce a generalized algebra A of super-oscillators that consists of both bosonic 
and fermionic oscillators simultaneously.

Consider the super-oscillators ca (a = 1, 2, . . . , N + M) as generators of an associative alge-
bra A with the defining relation

[ca, cb]ε ≡ cacb + ε(−1)[a][b]cbca = ε̄ab, (5.1)
9
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where the matrix ε̄ab is defined in (2.3) and (2.5). In view of (2.1), for ε = −1, the super-
oscillators ca with [a] = 0 (mod2) are bosonic and with [a] = 1 (mod2) are fermionic. For ε =
+1 the statistics of the super-oscillators ca is unusual and we will discuss this in more detail 
in Remark 8 at the end of this section. Nevertheless, we assume the grading to be standard 
grad(ca) = [a] in both cases ε = ±1 and therefore the defining relations (5.1) are invariant under 
the action ca → c′a = Ua

cc
c of the super-group OSp with the elements U ∈ Osp (see [2]).

With the help of convention (2.6) for lowering indices one can write relations (5.1) in the 
equivalent forms

[ca, cb]ε ≡ cacb + ε(−1)[a][b]cbca = εba ⇔ cac
b + ε(−1)[a][b]cbca = δb

a . (5.2)

The super-oscillators ca satisfy the following contraction identities:

caca = ε̄abεadcbc
d = ε(−1)[a]cac

a , cac
a = ε̄abεadcdcb = ε(−1)[a]caca .

So, we have

caca = 1
2 ε̄ab(cbca + ε(−1)[a]cacb) = 1

2 ε̄abεab = ω
2 ,

cac
a = 1

2 ε̄ab(cacb + ε(−1)[a]cbca) = 1
2 ε̄abεba = D

2 , D ≡ N + M .
(5.3)

Further we need the super-symmetrized product of two super-oscillators:

c(acb) := 1

2

(
cacb − ε(−1)[a][b]cbca

) = −ε(−1)[a][b]c(bca) ∈ A , (5.4)

and define the operators

Fab ≡ ε(−1)[b]c(acb) , F a
b = εbcF

ac . (5.5)

In [2] we have proved the following statement.

Proposition 4. The operators Fab ∈ A defined in (5.5) are traceless and possess the symmetry 
property (4.3), (4.7):

str(F ) = (−1)[a]Fa
a = 0 , F ab = −ε(−1)[a][b]+[a]+[b]Fba. (5.6)

In addition they satisfy the supercommutation relations (4.6) for the generators of osp

(−)12F1(−)12F2 − F2(−)12F1(−)12 = [εP12 − K̃12, F2] , (5.7)

and obey the quadratic characteristic identity (4.5):

Fa
bF

b
c + βFa

c − ε

ω
str(F 2)δa

c = 0, (5.8)

where β = 1 − ω/2.

Thus, the elements Fa
b = ε εbd(−1)[b]c(acd) ∈ A given in (5.5) form a set of traceless genera-

tors of osp which satisfy all conditions of Proposition 3 and it means that the following statement 
holds.

Proposition 5. The L-operator (4.2) in the super-oscillator representation (5.1):

La
b(u) = (u + α − 1

)δa
b + ε(−1)[b]cacb ≡ (u + α − 1

)δa
b + Ba

b , (5.9)

2 2

10
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where we introduce for convenience Ba
b ≡ Fa

b + 1
2δa

b = ε(−1)[b]cacb, obey the RLL equation 
(4.1) which in the component form is given by

(−1)[c1]([b2]+[c2])Ra1a2
b1b2

(u − v)Lb1
c1

(u)Lb2
c2

(v)

= (−1)[a1]([a2]+[b2])La2
b2

(v)L
a1
b1

(u)Rb1b2
c1c2

(u − v) , (5.10)

and the R-matrix (3.12) is

R
a1a2
b1b2

(u) = u(u + β)δ
a1
b1

δ
a2
b2

− ε(u + β)(−1)[a1][a2]δa1
b2

δ
a2
b1

+ uε̄a1a2εb1b2 .

Remark 6. The Quadratic Casimir operator C2 of the superalgebra osp(N |M) in the differential 
representation (5.5) is equal to the fixed number

C2 = (−1)[a]Fa
bF

b
a = ε

4
ω(ω − 1) . (5.11)

It means that this realization (5.5) corresponds to a limited class of representations of the super-
algebra osp(N |M). This fact reflects the general statement of [27] that not all representations of 
simple Lie algebras g of B, C and D types are the representations of the corresponding Yangians 
Y(g).

Remark 7. For ε = −1 and even M = 2m the super-oscillator algebra (5.1) is represented in 
terms of m copies of the bosonic Heisenberg algebras cj = xj , cm+j = ∂j , j = 1, . . . , m, and N
fermionic oscillators c2m+α = bα , α = 1, 2, . . . , N , with the (anti)commutation relations

[xi, ∂j ] = −δij , [bα, bβ ]+ := bα bβ + bβ bα = 2δαβ , [xi, bα] = 0 = [∂i, bα] ,

(5.12)

which are equivalent to (5.1) with the choice of the metric ε̄ab as (M + N) × (M + N) matrix

ε̄ab =
(

0 −Im 0
Im 0 0
0 0 2 IN

)
⇒ εab =

(
0 Im 0

−Im 0 0
0 0 1

2 IN

)
. (5.13)

The fermionic variables bβ with the commutation relations (5.12) generate the N -dimensional 
Clifford algebra. Let N be an even number N = 2n. In this case, one can introduce the longest 
element b(N+1) = (i)n b1b2 · · ·bN which anticommutes with all generators bα and possesses 
(b(N+1))2 = 1. Then, for ε = +1 and even numbers M = 2m, N = 2n, one can realize the super-
oscillator algebra (5.1) (with the metric (5.13)) in terms of the generators

cj = xj ·b(N+1) , cm+j = ∂j ·b(N+1) (j = 1, . . . ,m) , c2m+α = bα (α = 1,2, . . . ,N) ,

(5.14)

where the operators xi , ∂j and bα satisfy (5.12). Note that the super-oscillator algebra (5.1) for 
ε = +1 has an unusual property that generators ca and cb with gradings [a] = 0 and [b] = 1
anticommute, which is not usual feature of bosons and fermions in field theories.

The implementation (5.12) of algebra (5.1) suggests the rules of Hermitian conjugation for 
the generators ca

(cj )† = cj , (cm+j )† = −cm+j , j = 1, . . . ,m ,

(c2m+α)† = c2m+α , α = 1,2, . . . ,N ,
(5.15)
11
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which follow from the commonly used properties of the Heisenberg and Clifford algebras: 
(xj )† = xj , (∂j )† = −∂j , (bα)† = bα , (b(N+1))† = b(N+1). We shall apply the rules (5.15) be-
low.

Remark 8. Consider the graded tensor product A ⊗A and denote the generators of the first and 
second factors in A ⊗A respectively as ca

1 and ca
2 . Since ⊗ is the graded tensor product, we have 

(cf. (5.1))

[ca
1 , cb

2]ε ≡ ca
1cb

2 + ε(−1)abcb
2ca

1 = 0 . (5.16)

Any element of A ⊗A can be written as a polynomial f (ca
1 , cb

2) and its condition of invariance 
under the action of the group Osp is written as[

Aba(F
ab
1 + Fab

2 ), f (ca
1 , cb

2)
]

= 0,

where (see (5.5))

Fab
1 ≡ ε(−1)bc

(a
1 c

b)
1 , F ab

2 ≡ ε(−1)bc
(a
2 c

b)
2 (5.17)

are the generators of the osp algebras and Aba are the super-parameters (with grad(Aba) =
[a] + [b]). In the case of an even function f , when grad(f ) = 0, this invariance condition is 
equivalent to[

(F ab
1 + Fab

2 ), f (ca
1 , cb

2)
]

= 0 . (5.18)

Now we introduce the super-symmetrized product c(a1 · · · cak) of any number of super-
oscillators, which generalizes the super-symmetrized product of two super-oscillators (5.4). The 
general definition and properties of such super-symmetrized products are given in Appendix B. 
In [2] we have proved the following statement.

Proposition 6. The elements

Ik = εa1b1 . . . εakbk
c
(a1
1 · · · cak)

1 c
(bk

2 · · · cb1)
2 ∈ A⊗A , k = 1,2, . . . , (5.19)

are invariant under the action (2.7) of the supergroup OSp: ca → Ua
b cb. It means that the ele-

ments (5.19) are invariant under the action of the Lie superalgebra osp and satisfy the invariance 
condition (5.18):[

εa1b1 . . . εakbk
c
(a1
1 · · · cak)

1 c
(bk

2 · · · cb1)
2 ,F ab

1 + Fab
2

]
= 0 , (5.20)

where Fab
1 and Fab

2 are the generators (5.17) of the Lie super-algebra osp (see Proposition 4).

It turns out that the invariants (5.19) are not functionally independent. Indeed, we have the 
following statement.

Proposition 7. The invariants (5.19) satisfy the recurrence relation

Ik I1 = Ik+1 + k

4

(
(k − 1) − ω

)
Ik−1 , ω = ε(N − M) , (5.21)

where I0 = 1 and I1 = εabc
a
1 cb

2 = ca
1 c2a . In the representations (5.12), (5.14) and (5.13) Hermi-

tian conjugations of invariant elements (5.19) are

I
† = I2k , I

† = −I2k+1 . (5.22)
2k 2k+1

12
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Proof. The derivation of the recurrence relation (5.21) is given in Appendix B. To prove (5.22), 
it is useful to define the invariants

Ĩm = σm Im , (5.23)

where σ 2 = −1, i.e. σ = ±i. Then, the recurrence relation (5.21) for new invariants Ĩk has the 
form:

Ĩk+1 = zĨk + k

4
(k − 1 − ω)Ĩk−1, ω = ε(N − M) , (5.24)

where Ĩ0 = 1 and we introduce the operator

z := Ĩ1 = σI1 = σεabc
a
1cb

2 = σ(c1 · c2) = −σεbac
b
2ca

1 = −σ(c2 · c1), (5.25)

which is Hermitian z† = z in the representations (5.12), (5.14) and (5.13). One can prove the 
latter statement by making use of the rules (5.15) and commutation relations (5.16). In view of 
the recurrence relation (5.24) and initial conditions Ĩ0 = 1 and Ĩ1 = z all invariant operators Ĩk

are k-th order polynomials (with real coefficients) of the Hermitian operator z. Therefore all Ĩk

are the Hermitian operators Ĩ †
k = Ĩk , and therefore, taking into account (5.23) and σ ∗ = −σ , we 

deduce (5.22). �
Now we introduce a generating function of the Hermitian invariant operators Ĩk:

F(x|z) =
∞∑

k=0

Ĩk

xk

k! . (5.26)

Since the invariants Ĩk are polynomials in z, the generating function (5.26) depends on x and z
only.

Proposition 8. The generating function (5.26) is equal to

F(x|z) =
(

1 − x

2

) ω
2 −z(

1 + x

2

) ω
2 +z

. (5.27)

Proof. Using the recurrence relation (5.24) we obtain:

∞∑
k=0

Ĩk+1
xk

k! = z

∞∑
k=0

Ĩk

xk

k! + 1

4

∞∑
k=2

Ĩk−1
xk

(k − 2)! − ω

4

∞∑
k=1

Ĩk−1
xk

(k − 1)! . (5.28)

Now changing the summation indices and using (5.26) one deduces:

Fx(x|z) = zF (x|z) + x2

4
Fx(x|z) − xω

4
F(x|z) , (5.29)

where Fx(x|z) ≡ ∂xF (x|z) = ∑∞
k=0 Ĩk+1

xk

k! . The general solution to this ordinary differential 
equation is given in (5.27) up to an arbitrary constant factor c. The invariants Ĩk are extracted 
from the generating function (5.26) using the formula

Ĩk(z) = ∂k
xF (0|z) = c ∂k

x (1 − x

2
)

ω
2 −z(1 + x

2
)

ω
2 +z

∣∣∣
x=0

, (5.30)

from which we fix the constant c = F(0|z) = Ĩ0 = 1. �

13
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6. The construction of the R-operator in the super-oscillator representation

Let T be the defining representation of the Yangian Y(osp). In the previous section we 
have considered the RLL-relation (4.1) and (5.10) that intertwines L-operators ||La

b(u)|| ∈
T (Y (osp)) ⊗ A (given in (5.9)) by means of the R-matrix (3.12) in the defining representa-
tion, i.e., R(u) ∈ T (Y (osp)) ⊗ T (Y (osp)). In other words, the R-matrix in the RLL-relations 
(4.1) and (5.10) acts in the space V⊗2

(N |M), where V(N |M) is the space of the defining representation 
T of Y(osp(N |M)).

There is another type of RLL-relations which intertwines the L-operators (5.9) by means of 
the R-matrix in the super-oscillator representation, i.e., R̂(u) ∈ A ⊗ A, where ⊗ is the graded 
tensor product. In components, this type of RLL relations has the form

R̂12(u)L1
a
b(u + v)L2

b
c(v) = L1

a
b(v)L2

b
c(u + v)R̂12(u), (6.1)

or after substitution of the L-operator (5.9) we have

R̂12(u)
(
(u + v)δa

b + ε(−1)bca
1c1b

)(
vδb

c + ε(−1)ccb
2c2c

) =
= (

vδa
b + ε(−1)bca

1c1b

)(
(u + v)δb

c + ε(−1)ccb
2c2c

)
R̂12(u).

(6.2)

Here for simplicity we fix α = 1/2 in the definition of the L-operators and associate the first and 
second factors in A ⊗ A, respectively, with the algebras A1 and A2 generated by the elements 
ca

1 and cb
2 such that [ca

1 , cb
2]ε = 0 (see (5.16)).

The RLL relation (6.2) is quadratic with respect to the parameter v. The terms proportional 
to v2 are canceled, the terms proportional to v give

R̂12(u)(ca
1c1c + ca

2c2c) = (ca
1c1c + ca

2c2c)R̂12(u), (6.3)

while the terms independent of v are

R̂12(u)
(
uδa

b +ε(−1)bca
1c1b

)
(−1)ccb

2c2c = (−1)bca
1c1b

(
uδb

c +ε(−1)ccb
2c2c

)
R̂12(u). (6.4)

6.1. The Shankar-Witten form of the R operator

The relations (6.3) are nothing but the invariance conditions (5.18) with respect to the adjoint 
action of osp[

R̂(u),F ab
1 + Fab

2

]
= 0 . (6.5)

It means that one can search for the R̂(u)-operator as a sum of osp-invariants (5.19)

R̂12(u) =
∑

k

rk(u)

k! Ik =
∑

k

rk(u)

k! ε�a,�b c
(a1...ak)
1 c

(bk...b1)
2 , (6.6)

where we use the concise notation

ε�a,�b = εa1b1 . . . εakbk
, c

(a1...ak)
1 := c

(a1
1 · · · cak)

1 , c
(bk...b1)
2 := c

(bk

2 · · · cb1)
2 .

Inserting this ansatz into the condition (6.4), we obtain (see [2]) the recurrence relation for rk(u)

rk+2(u) = 4(u − k)

k + 2 + u − ω
rk(u) , (6.7)

which is solved in terms of the 
-functions:
14
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r2m(u) = (−4)m

(m− u

2 )


(m+1+ u−ω
2 )

A(u),

r2m+1(u) = (−4)m

(m− u−1

2 )


(m+1+ u−ω+1
2 )

B(u) ,
(6.8)

where the parameter ω = ε(N − M) was defined in (3.5) and A(u), B(u) are arbitrary func-
tions of u. Substituting (6.8) in (6.6) gives the expression for the osp-invariant R-matrix which 
intertwines two L operators in (6.1).

The methods used in [2] (for derivation of (6.6) and (6.8)) require the introduction of ad-
ditional auxiliary variables and are technically quite nontrivial and cumbersome. Below in this 
paper, in Section 8, we give a simpler and more elegant derivation of conditions (6.7). This deriva-
tion is based on an application of the generating function (5.27) for the invariants Ĩk , where the 
explicit form (5.27) is obtained by means of the recurrence relation (5.21).

6.2. The Faddeev-Takhtajan-Tarasov type R operator

There is another form of R operators which intertwines the L operators in the RLL equations 
(6.2) and are expressed as a ratio of Euler Gamma-functions. For the s�(2) case this type of 
solutions for R operator was first obtained in [5] (see also [6] and [28]). The generalization to 
the s�(N) case (for a wide class of representations of s�(N)) was given in [29]. For orthogonal 
and symplectic algebras (and a very special class of their representations) analogous solutions 
of (6.2) were recently obtained in [7]. Below we generalize the results of [7] and find the solu-
tions for the super-oscillator Faddeev-Takhtajan-Tarasov type R-operator in the case of osp Lie 
superalgebras.

Proposition 9. The R operator intertwining the super-oscillator L operators in the RLL equa-
tions (6.1), (6.2) obeys the finite-difference equation

R̂12(u|z + 1) (z − u) = R̂12(u|z − 1) (z + u) , (6.9)

where z = σ ca
1 c2a and σ 2 = −1. The solution of this functional equation is given by the ratio of 

the Euler Gamma-functions

R̂12(u|z) = r(u, z)


( 1

2 (z + 1 + u)
)



( 1

2 (z + 1 − u)
) , (6.10)

where r(u, z) is an arbitrary periodic function r(u, z + 2) = r(u, z) which normalizes the solu-
tion.

Proof. Taking into account the experience related to the orthogonal and symplectic cases (see 
[7]), we will look for a solution to the first equation (6.3) as

R̂12(u) = R̂12(u|z), z = σca
1c2a = εσ (−1)ac1ac

a
2 = −σca

2c1a , (6.11)

where σ is a numerical constant to be defined. In the last chain of equalities we have used (5.16). 
In other words, the operator R̂12(u) acting in V1 ⊗ V2 is given by a function of an invariant z
bilinear in super-oscillators ca

1 and ca
2 . Note that in the orthogonal and symplectic cases [7] the 

conventional invariants Ik (5.19) are in one-to-one correspondence with polynomials of z of the 
order k. In the super-symmetric case of the algebras osp we prove this fact in Appendix B (see 
15
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eq. (B.9) and comment after this equation). To justify the ansatz (6.11), we recall that the super-
oscillators belonging to different factors in A ⊗A and acting in different auxiliary spaces V1 and 
V2 commute according to (5.16)

ca
1cb

2 = −ε(−1)abcb
2ca

1 , (6.12)

so we have

zcb
1 = σca

1c2ac
b
1 = −ε(−1)abσca

1cb
1c2a = (−1)ab+1σ

(
εε̄ab − (−1)abcb

1ca
1

)
c2a

= cb
1z − σcb

2, (6.13)

zcb
2 = σca

1c2ac
b
2 = ca

1σ(δb
a − ε(−1)abcb

2ca
2) = σcb

1 − σε(−1)abca
1cb

2c2a = σcb
1 + cb

2z.

(6.14)

Combining these relations we obtain

z (ca
1c1b + ca

2c2b) = (ca
1c1b + ca

2c2b) z, (6.15)

i.e. z commutes with the sum ca
1c1b + ca

2c2b , and hence an arbitrary function R̂12(u|z) depending 
on z satisfies the invariance conditions (6.3) and (6.5).

Let us introduce

cb± := (cb
1 ± σcb

2) , (6.16)

and consider a linear combination of (6.13) and (6.14)

zcb± ≡ z(cb
1 ± σcb

2) = cb±z ± σ 2(cb
1 ∓ σ−1cb

2) = cb±(z ∓ 1), (6.17)

where the last equation is obtained under the choice

σ 2 = −1 ⇒ σ = √−1 =
{

i ,

−i .
(6.18)

Taking into account (6.17), we have

R̂12(u|z) cb± = cb± R̂12(u|z ∓ 1) , cb±R̂12(u|z) = R̂12(u|z ± 1)cb± . (6.19)

Then multiplying (6.4) by cd±εda (or by cd∓εda) from the left and by cc± from the right and 
contracting oscillator vector indices, one obtains four independent scalar relations. Two of them 
are

cd±εdaR̂12(u|z)(uδa
b + ε(−1)bca

1c1b

)
(−1)ccb

2c2cc
c± = (6.20)

= cd±εda(−1)bca
1c1b

(
uδb

c + ε(−1)ccb
2c2c

)
R̂12(u|z)cc± .

Applying (6.19), (5.3), the definition (6.11) of z and

cd±c2d = σ(−z ± ω
2 ), cd±c1d = ω

2 ∓ z, (−1)cc2cc
c± = εσ (z ± ω

2 ),

(−1)cc1cc
c± = ε(ω

2 ± z),

these two relations (6.20) turn to be functional equations on R̂12(u|z):
R̂12(u|z ± 1)cd±εda

(
uδa

b + ε(−1)bca
1c1b

)
(−1)ccb

2c2cc
c± =

= cd ε (−1)bcac
(
uδb + ε(−1)ccbc

)
cc R̂ (u|z ∓ 1) ,

⇒

± da 1 1b c 2 2c ± 12

16
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R̂12(u|z ± 1)ε(u ∓ z)
(
z2 − ω2

4

) = ε(−u ∓ z)
(
z2 − ω2

4

)
R̂12(u|z ∓ 1) .

Canceling the common factor ε
(
z2 − ω2

4

)
in both sides we obtain a pair of equations

R̂12(u|z ± 1) (u ∓ z) = (−u ∓ z) R̂12(u|z ∓ 1) , (6.21)

which are equivalent for both choices of signs to the one equation (6.9). In a similar fashion the 
other pair of relations gives identities

cd∓εdaR̂12(u|z)(uδa
b + ε(−1)bca

1c1b

)
(−1)ccb

2c2cc
c± =

= cd∓εda(−1)bca
1c1b

(
uδb

c + ε(−1)ccb
2c2c

)
R̂12(u|z)cc±,

⇒ (6.22)

R̂12(u|z ∓ 1)cd∓εda

(
uδa

b + ε(−1)bca
1c1b

)
(−1)ccb

2c2cc
c± =

= cd∓εda(−1)bca
1c1b

(
uδb

c + ε(−1)ccb
2c2c

)
cc±R̂12(u|z ∓ 1)),

⇒

R̂12(u|z ∓ 1)ε(u ± z)
(
z ± ω

2

)2 = ε(u ± z)
(
z ± ω

2

)2R̂12(u|z ∓ 1),

which are satisfied automatically. Finally, the solution of the functional equations (6.9), (6.21)
can be found immediately and is given in (6.10) by the ratio of the Euler Gamma-functions. �

We see that the scalar projections (6.20) and (6.22) of the RLL relation are exactly the same as 
in the non-supersymmetric case [7], i.e. no signs related to grading appear. Moreover, we stress 
that the functional equation (6.9) is independent of the parameter ε, which distinguishes the cases 
of the algebras osp(N |M) and osp(M|N).

Remark 9. We have two choices (6.18) of the parameter σ and therefore we have two versions 
of the solution (6.10)

R̂(±)
12 (u|z) = r(±)(u, z)



( 1

2 (±ica
1c2a + 1 + u)

)


( 1

2 (±ica
1c2a + 1 − u)

) . (6.23)

In view of the identity 
(1 − x)
(x) = π/ sin(πx), these two versions are equivalent to each 
other up to a special choice of the normalization functions r(±)(u, z). So one can consider only 
one of the solutions (6.23).

7. The R̂ operator in special cases of osp(N |2m)

In this section, we work out the explicit form of the solution (6.10) in a few particular cases.

7.1. The case of osp(M|N) = osp(1|2)

In this case, we have N = 2 and M = 1, and the superalgebra osp(1|2) is described by the 
bosonic oscillator c1 ≡ a†, c2 ≡ a (in the holomorphic representation we have c1 ≡ x, c2 ≡ ∂) 
and by one fermionic variable c3 ≡ b with the commutation relations (5.1):

[x, ∂] = −1 , {b, b} = 2 , [x, b] = 0 = [∂, b] , (7.1)

where {b, b′} ≡ b · b′ + b′ · b denotes the anticommutator. To obtain (7.1) from (5.1) and (5.2), 
we fix there ε = −1 and specify the metric matrix as
17
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ε̄ab =
(

0 −1 0
1 0 0
0 0 2

)
⇒ εab =

(
0 1 0

−1 0 0
0 0 1/2

)
.

Note that the fermionic variable b can be understood in the matrix representation as a single 
Pauli matrix (say τ 3). To define the operator z in (6.11) we need two copies of super-oscillator 
algebras A1 and A2 with the generators ca

1 = (x1, ∂1, b1) and ca
2 = (x2, ∂2, b2) which act in two 

different spaces V1 and V2. Then, the invariant operator z in (6.11) looks like

z = σca
1 c2a = σεabc

a
1 cb

2 = σ(x1∂2 − x2∂1) + σ

2
b1b2 ≡ x + b , (7.2)

x = σ(x1∂2 − x2∂1), b = σ

2
b1b2, σ = ±i,

where bi satisfy b2
i = 1 in view of (7.1) and anticommute b1b2 = −b2b1 in order to ensure (6.12). 

The characteristic equation for the fermionic part of z:

b2 = σ 2

4
b1b2b1b2 = −1

4
b1b2b1b2 = 1

4
(b1)

2(b2)
2 = 1

4
, (7.3)

(here we took into account (7.1)) allows one to introduce the projection operators:

P± 1
2

= 1

2
± b, Pi · Pj = δijPi, i, j = ±1

2
, P+ 1

2
+ P− 1

2
= 1 . (7.4)

Now any function f of b can be decomposed in these projectors

b · P± 1
2

= ±1

2
P± 1

2
⇒ f (b) = f (b) · (P+ 1

2
+ P− 1

2
) = f

(
1/2

)
P+ 1

2
+ f

( − 1/2
)
P− 1

2
.

(7.5)

Accordingly, the R-operator (6.10) can also be decomposed as:

R̂12(u|z) = R̂12(u|x + b) = (1

2
+ b

) · R̂12
(
u|x + 1

2

) + (1

2
− b

) · R̂12
(
u|x − 1

2

)
, (7.6)

and finally we have

R̂osp(1|2)
12 (u|z) = r+(u, x)



( 1

2 (x + 3
2 + u)

)


( 1

2 (x + 3
2 − u)

) ·P+ 1
2
+ r−(u, x)



( 1

2 (x + 1
2 + u)

)


( 1

2 (x + 1
2 − u)

) ·P− 1
2
, (7.7)

where r±(u, x) = r(u, x ± 1
2 ) are periodic functions in x, i.e., the general osp(1|2)-invariant R-

operators consist of two independent terms acting on two invariant subspaces, corresponding to 
eigenvalues ± 1

2 of the fermionic part b ≡ σb1b2 of the invariant operator z. The coefficients in 
the expansion (7.7) in projectors P± 1

2
are the functions of the bosonic part x = σ(x1∂2 − x2∂1)

of the invariant operator z. These coefficients are nothing but the R-operators for the bosonic 
subalgebra s�(2) � sp(2) ⊂ osp(1|2).

7.2. The case of osp(2|2)

In this case, we have two bosonic c1 = x, c2 = ∂ and two fermionic c3 = b1, c4 = b2, oscilla-
tors which we realize using even and odd variables with the commutation relations (5.1):

[x, ∂] = −1 , {bα, bβ} = 2δαβ , [x, bα] = 0 = [∂, bα] . (7.8)

Here again we fix ε = −1 and
18
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ε̄ab =
⎛⎜⎝0 −1 0 0

1 0 0 0
0 0 2 0
0 0 0 2

⎞⎟⎠ ⇒ εab =
⎛⎜⎝ 0 1 0 0

−1 0 0 0
0 0 1/2 0
0 0 0 1/2

⎞⎟⎠ .

We introduce two super-oscillator algebras A1 and A2 with the generators {ca
1} and {ca

2}, respec-
tively. The invariant operator (6.11) is

z = σεabc
a
1cb

2 = σ(x1∂2 − x2∂1) + σ

2
bα

1 bα
2 ≡ x+b, (7.9)

where σ = ±i.
The fermionic oscillators bα

i ∈Ai with commutation relations (7.8) and (5.16) generate the 4-
dimensional Clifford algebra. It is well known (see, e.g., [30]) that the generators of this Clifford 
algebra can be realized in terms the Pauli matrices τα:

b1
1 = τ 1 ⊗ I2 , b2

1 = τ 2 ⊗ I2 , b1
2 = τ 3 ⊗ τ 1 , b2

2 = τ 3 ⊗ τ 2 ,

where I2 is the unit (2 × 2) matrix.
The characteristic equation for the fermionic part b = σ

2 bα
1 bα

2 of the operator (7.9) is

b(b2 − 1) = 0. (7.10)

The invariant subspaces spanned by the eigenvectors corresponding to eigenvalues 0, ±1 of b are 
extracted by the projectors:

P0 = 1 − b2, P+1 = 1

2
(b2 + b), P−1 = 1

2
(b2 − b), P0 + P+1 + P−1 = 1 . (7.11)

The R-operator is decomposed as follows:

R̂12(u|z) = R̂12(u|x + b) =
= R̂12(u|x + b)(P0 + P+1 + P−1) = ∑

�=0,±1
R̂12(u|x + �)P�.

(7.12)

Then (6.10) implies that the spinor-spinor R-operator invariant with respect to osp(2|2) super-
symmetry has the form

R̂osp(2|2)
12 (u|z) =

∑
�=0,±1

r(u|x + �)


( 1

2 (x + � + 1 + u)
)



( 1

2 (x + � + 1 − u)
)P�, r(u|z + 2) = r(u|z).

(7.13)

Note that in view of the periodicity condition r(u|x − 1) = r(u|x + 1) one can rewrite (7.13) as 
follows:

R̂osp(2|2)

12 (u|z) = r(u|x)

( 1

2 (x + 1 + u)
)



( 1

2 (x + 1 − u)
) (1 − b2)

+ 1

2
r(u|x + 1)



( 1

2 (x + u)
)



( 1

2 (x − u) + 1
) (xb2 + ub). (7.14)

In the pure bosonic case of the orthogonal algebras so(2k), the general solution for the R̂-
operator splits into two independent solutions corresponding to two nonequivalent chiral left and 
right representations (see [8], [1], [7]). This does not happen here in the super-symmetric case, 
where the even and odd functions of b are not separated, due to the dependence on the bosonic 
operator x in the coefficients r(u|x + �) which mixes the chiral representations of so(2k).
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7.3. The case of osp(n|2)

This case is a generalization of the examples considered in the previous subsections (for n = 1
and n = 2 we respectively reproduce the results for the osp(1|2) and osp(2|2) algebras). Con-
sider the super-oscillator algebra A with two bosonic c1 = x, c2 = ∂ and n fermionic generators 
c2+α = bα (α = 1, ..., n) with the commutation relations (5.1):

[x, ∂] = −1 , {bα, bβ} = 2δαβ , [x, bα] = 0 = [∂, bα] , (7.15)

where the fermionic elements bα are the generators of the n-dimensional Clifford algebra. This 
corresponds to the choice of the parameter ε = −1 and the metric tensor in the block form

ε̄ab =
(

0 −1 0
1 0 0
0 0 2 In

)
⇒ εab =

(
0 1 0

−1 0 0
0 0 1

2 In

)
(7.16)

where In stands for the n × n unit matrix. The invariant operator z ∈ A ⊗A is

z = σεabc
a
1cb

2 = σ(x1∂2 − x2∂1) + σ

2
bα

1 bα
2 ≡ x + b , (7.17)

where {ca
1} and {ca

2} are the generators of the first and second factor in A ⊗ A, and the cross-
commutation relations of {ca

1} and {ca
2} are given in (5.16). The characteristic equation for the 

fermionic part b = σ
2 bα

1 bα
2 of the invariant z has the order n + 1 (cf. (7.3) and (7.10)):

n∏
m=0

(
b − m + n

2

) = 0 . (7.18)

One can prove (7.18) by noticing that the operator b is represented as b = z̄ αzα −n/2, where (see 
(6.16)) z̄ α ≡ 1

2 (bα
1 − σbα

2 ) = c2+α− and zα ≡ 1
2 (bα

1 + σbα
2 ) = c2+α+ are respectively the creation 

and annihilation fermionic operators in the Fock space F which is created from the vacuum |0〉: 
zα|0〉 = 0 (∀α). Then the operator in the left-hand side of (7.18) is equal to zero since it is zero 
on all basis vectors z̄ α1 · · · z̄ αm |0〉 ∈ F (here 1 ≤ α1 < ... < αm ≤ n and m ≤ n) which are the 
eigenvectors of b with eigenvalues (m − n

2 ).
The projectors P� on invariant subspaces in F spanned by the eigenvectors of b corresponding 

to eigenvalues (m − n
2 ) ≡ �, where � = −n

2 , −n
2 +1, ..., n2 , are immediately obtained from (7.18):

P� =
n/2∏
m�=�

m=−n/2

b − m

� − m
, b · P� = �P� ,

n/2∑
�=−n/2

P� = 1 . (7.19)

The case of even n = 2k

We see that eigenvalues of b are integer (or half-integer) when the number n is even (or odd). 
Thus, for the case osp(n|2) = osp(2k|2), when n = 2k is even, the expansion of the solution 
(6.10) goes over integer eigenvalues

R̂osp(2k|2)
12 (u|z) = R̂osp(2k|2)

12 (u|x + b) =
k∑

�=−k

R̂osp(2k|2)
12 (u|x + �)P�, (7.20)

and it implies
20
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R̂osp(2k|2)

12 (u|z) =
k∑

�=−k

r(u|x + �)


( 1

2 (x + � + 1 + u)
)



( 1

2 (x + � + 1 − u)
)P�, r(u|z + 2) = r(u|z).

(7.21)

The case of odd n = (2k + 1)

For the case osp(n|2) = osp(2k + 1|2), when n = 2k + 1 is odd, the expansion of the solution 
(6.10) goes over half-integer eigenvalues of b: − 2k+1

2 , − 2k−1
2 , . . . , − 1

2 , 12 , 32 , . . . , 2k+1
2 , and we 

have the expansion

R̂osp(2k+1|2)

12 (u|z) = R̂osp(2k+1|2)

12 (u|x + b) =
k+ 1

2∑
�=−k− 1

2

R̂osp(2k+1|2)

12 (u|x + �)P�, (7.22)

which for solution (6.10) implies

R̂osp(2k+1|2)

12 (u|z) =
k+ 1

2∑
�=−k− 1

2

r(u|x + �)


( 1

2 (x + � + 1 + u)
)



( 1

2 (x + � + 1 − u)
)P� , (7.23)

where the periodic function r(u|z + 2) = r(u|z) normalizes the solution.

7.4. The case of osp(n|2m)

We consider the osp(n|2m) invariant super-oscillator algebra which is realized in terms of m
pairs of the bosonic oscillators cj = xj , cm+j = ∂j , j = 1, . . . , m and n fermionic oscillators 
c2m+α = bα , α = 1, 2, . . . , n, with the commutation relations (5.12) deduced from (5.1) with 
the choice of the parameter ε = −1 and metric tensor (5.13). In this case, the invariant operator 
z ∈A ⊗A defined in (6.11) is

z = σεabc
a
1cb

2 = σ

m∑
j=1

(x
j

1 ∂
j

2 − x
j

2 ∂
j

1 ) + σ

2

n∑
α=1

bα
1 bα

2 ≡ x + b. (7.24)

Here the operator b is the same as in the previous examples of Section 7.3. Thus, the R operator 
(6.10) in the case of the algebra osp(n|2m) is expanded over the projection operators P� like 
in the case of osp(n|2), and the final expression for R̂osp(2m|n)

12 (u|z) will be given by (7.21) or 
(7.23):

R̂osp(n|2m)
12 (u|z) =

∑
�∈�n

r(u|x + �)


( 1

2 (x + � + 1 + u)
)



( 1

2 (x + � + 1 − u)
)P� , (7.25)

where

x = σ

m∑
j=1

(x
j

1 ∂
j

2 − x
j

2 ∂
j

1 ) , r(u|z) = r(u|z + 2) ,

the projectors P� are defined in (7.19) and

�n =
{ {−k, 1 − k, . . . , k − 1, k}, n = 2k,

{−k − 1 , . . . , k + 1 }, n = 2k + 1
k ∈ N . (7.26)
2 2
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8. The relation between two approaches

In this section, we give a more direct and elegant derivation of the R matrix solution (6.6), 
(6.7), that does not require the introduction of additional auxiliary variables (as it was done in [2]) 
and is based only on using the generating function1 (5.26), (5.27) of the invariant operators Ĩk . 
In addition, this derivation partially explains the relationship between the two types of solutions 
(6.6), (6.7) and (6.10) for the R operator.

Now we clarify the relation of the Shankar-Witten form of the R operator (6.6), (6.7) and 
Faddeev-Takhtajan-Tarasov type R operator given by the ratio of two Euler Gamma-functions in 
(6.10). First, we write (6.6) in the form

R̂(z) =
∞∑

k=0

r̃k(u)

k! Ĩk(z), (8.1)

where ̃rk(u) = (−σ)k rk(u) and ̃Ik = σk Ik . Recall that ̃Ik are the Hermitian invariants introduced 
in the proof of Proposition 7.

Proposition 10. The R operator (8.1) obeys (6.4) or equivalently the finite-difference equation 
(6.9):

W ≡ (z − u) R̂(z + 1) − (z + u) R̂(z − 1) = 0 , (8.2)

(which was used to find the second solution (6.10)) if the coefficients ̃rk(u) satisfy

r̃k+2(u) = − 4(u − k)

k + 2 + u − ω
r̃k(u) , (8.3)

that in terms of rk(u) is written as (6.7).

Proof. One can write (8.2) as

W =
∞∑

k=0

r̃k(u)

k!
(
(z − u)Ĩk(z + 1) − (z + u)Ĩk(z − 1)

)
= (8.4)

=
∞∑

k=0

r̃k(u)

k!
(
(z − u)∂k

xF (x|z + 1) − (z + u)∂k
xF (x|z − 1)

)
x=0

.

We use the relation (5.29) in the form:

zF (x|z) =
[(

1 − x2

4

)
∂x + ωx

4

]
F(x|z),

and obtain

W =
∞∑

k=0

r̃k(u)

k! ∂k
x

(
(z + 1 − u − 1)F (x|z + 1) − (z − 1 + u + 1)F (x|z − 1)

)
x=0

= (8.5)

1 However we stress that generating function (5.27) is obtained by using of the recurrence relation (5.24) while the 
latter is derived in the Appendix B by means of auxiliary variables.
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=
∞∑

k=0

r̃k(u)

k! ∂k
x

(
[(1 − x2

4
)∂x + ωx

4
− u − 1]F(x|z + 1)

− [(1 − x2

4
)∂x + ωx

4
+ u + 1]F(x|z − 1)

)
x=0

.

Then we use the equations

F(x|z + 1) = 1 + x
2

1 − x
2

F(x|z), F (x|z − 1) = 1 − x
2

1 + x
2

F(x|z),

which follow from formula (5.27) for the generating function and write (8.5) in the form

W =
∞∑

k=0

rk(u)

k! ∂k
x

{
(1 − x2

4
)x∂x − u − (u − ω + 2)

x2

4

}(2F(x|z)
1 − x2

4

)
x=0

. (8.6)

Now we apply the identity ∂k
x x = x∂k

x + k∂k−1
x to move derivatives ∂x in (8.6) to the right and 

obtain:

W =
∞∑

k=0

r̃k(u)

k!
[
(k − u)∂k

x − k + u − ω

4
k(k − 1)∂k−2

x

](2F(x|z)
1 − x2

4

)
x=0

. (8.7)

In the second term in square brackets we shift the summation parameter k → k + 2 and deduce

W =
∞∑

k=0

1

k!
(
(k − u)̃rk(u) − k + 2 + u − ω

4
r̃k+2(u)

)
∂k
x

(2F(x|z)
1 − x2

4

)
x=0

= 0.

The resulting expression vanishes due to (8.3). Thus, we prove that the finite-difference equation 
(8.2) is valid if the coefficients ̃rk(u) satisfy (8.3). �
Remark 10. We prove that both R operators (8.1), (8.3) and (6.10) satisfy the same equation (8.2)
and indeed obey the RLL relations (6.2). It is worth also to note that the differential operator 
in the curly brackets in (8.6) coincides (up to change of variable x = σλ) with the differential 
operator in curly brackets presented in formula (6.43) of our work [2]. This suggests to regard 
the generating function F(x|z)(1 − x2

4 )−1 as a coherent state in the super-oscillator space.
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Appendix A. Properties of operators P , K and relations for matrix generators of Brauer 
algebra

We use here the concise matrix notation introduced in Sections 2, 3 (this convenient notation 
was proposed in [31]).

The matrices (2.19) satisfy the identities

P12 = P21 , K12 = (−)12K21(−)12 , (−)1K12 = (−)2K12 , K12(−)1 = K12(−)2 ,

P12P12 = 1 , K12K12 = ωK12 , K12P12 = P12K12 = εK12, (A.1)

where ω = ε(N −M), the operator (−)12 is defined in (2.10) and we introduce the matrix (−)i =
(−1)[ai ]δai

bi
of super-trace in the i-th factor V(N |M) of the product V⊗2

(N |M). Then, by making use 
definitions (3.1) and (3.2), we have

(−)1P12 = P12(−)2 , (−)23P13 = P13(−)12 , P13(−)23 = (−)12P13 , (A.2)

P12P23 = (−)12P13(−)12P12 = P23(−)23P13(−)23 = P23(−)12P13(−)12 ,

P12K13 = (−)12K23(−)12P12 , K23P12 = P12(−)12K13(−)12 ,
(A.3)

εK12P31 = K12(−)12K32(−)12 , εP31K12 = (−)12K32(−)12K12 , (A.4)

K23K12 = εK23(−)12P13(−)12 = ε (−)23P13(−)23K12 , (A.5)

K31K12 = ε (−)12P32(−)12K12 = εK31(−)13P32(−)13 . (A.6)

The mirror counterparts of identities (A.3) – (A.6) are also valid. The identities (A.2), (A.3)
follow from the representation (3.1): P12 = (−)12P12 = P12(−)12, where P12 is the usual permu-
tation operator. The identities (A.6) follow from the definitions (2.19), (3.1), (3.2) of the operators 
P and K. We prove only the first equality in (A.6) since the other identities in (A.4), (A.5) and 
(A.6) can be proved in the same way. We denote the incoming matrix indices by a1, a2, a3 and 
the outcoming indices by c1, c2, c3 while summation indices are bi and di . Then we have

(K31K12)
a1a2a3
c1c2c3 = ε̄a3a1εc3b1 ε̄

b1a2εc1c2 = ε̄a3a1δ
a2
c3 εc1c2 = δ

a2
c3 δ

a3
b2

ε(−)[a1][b2]ε̄a1b2εc1c2 =
= ε(−1)[a2][a3](P23)

a2a3
b2c3

(−1)[a1][b2](K12)
a1b2
c1c2 = ε

(
P23(−)23 (−)12 K12

)a1a2a3
c1c2c3

,

and in view of the relation (−)23K12 = (−)13K12 which follows from (2.4) and obvious identity 
P23 (−)13 = (−)12 P23 we obtain the first equality in (A.6).

By means of the relations (A.3) – (A.6) one can immediately check eqs. (2.23), (2.24) and 
also deduce

P12P23P12 = P23P12P23. (A.7)

K12K23K12 = K12, K23K12K23 = K23, (A.8)

P12K23K12 = P23K12 , K12K23P12 = K12P23, (A.9)

P23K12K23 = P12K23 , K23K12P23 = K23P12 . (A.10)

The identity (A.7) follows from the relations in the first line of (A.3). We consider a few relations 
in (A.8) – (A.10) in detail. We start to prove the first relation in (A.8):

(K12K23K12)
a1a2a3
c1c2c3

= ε̄a1a2εb1b2 ε̄
b2a3εd2c3 ε̄

b1d2εc1c2 = ε̄a1a2δ
a3
b1

δb1
c3

εc1c2 = Ka1a2
c1c2

δa3
c3

.

The second relation in (A.8) can be proved in the same way. Then we prove the first equation in 
(A.9). For the left hand side of (A.9) one has:
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(P12K23K12)
a1a2a3
c1c2c3 = (−1)[a1][a2]δa1

b2
δ
a2
b1

ε̄b2a3εd2c3 ε̄
b1d2εc1c2 = (−1)[a1][a2]ε̄a1a3δ

a2
c3 εc1c2 =

= δ
a2
c3 δ

a3
b2

(−1)[a1][c3]ε̄a1b2εc1c2 = δ
a2
c3 δ

a3
b2

(−1)[b2][c3]ε̄a1b2εc1c2 = (P23K12)
a1a2a3
c1c2c3 ,

and similarly one deduces other relations in (A.9) and (A.10). From the identities (A.7) – (A.10)
we also deduce the following relations:

K12P23K12 = εK12, K23P12K23 = εK23. (A.11)

P12K23P12 = P23K12P23. (A.12)

P12P23K12 = K23P12P23, K12P23P12 = P23P12K23. (A.13)

At the end of this appendix, we stress that the identities (A.1), (A.7) – (A.10) are the images of 
the defining relations (3.6), (3.7) for the Brauer algebra in the representation (3.4). The R-matrix 
(3.10) is the image of the element (3.8) and the Yang-Baxter equation (3.11) is the image of the 
identity (3.9). Thus, it follows from Proposition 1 that the R-matrix (3.10) is a solution of the 
braided version of the Yang-Baxter equation (3.11).

Appendix B. Supersymmetrized products of super-oscillators

The product of k super-oscillators is transformed under the action (2.7) of the group Osp as 
follows:

ca1ca2 · · · cak → �(k−1)(U)
a1a2...ak

b1b2...bk
cb1cb2 · · · cbk , (B.1)

where U ∈ Osp, and the tensor product of k defining representations of the group Osp is given 
by the formula

�(k−1)(U)
a1a2...ak

b1b2...bk
= U

a1
b1

(−1)b1a2U
a2
b2

(−1)b1b2 · · · (−1)
(
k−1∑
j=1

bj )ak

U
ak

bk
(−1)

(
k−1∑
j=1

bj )bk

,

or in the concise notation we have

�(k−1)(U)12...k = U1(−)[1][2]U2(−)[1][2] · · · (−)
[k]

k−1∑
j=1

[j ]
Uk(−)

(
k−1∑
j=1

[j ])[k]
.

One can check that any element X ∈ Bk(ω) of the Brauer algebra (3.6), (3.7) in the representation 
(3.4) commutes with the action of the Osp supergroup

�(k−1)(U)12...k · X = X · �(k−1)(U)12...k . (B.2)

Define the super-symmetrized product of two super-oscillators ca, cb as

c(acb) ≡ 1

2

(
cacb − ε(−1)[a][b]cbca

)
= 1

2

(
cacb − εPab

de cdce
)

= (A2)
ab
dec

dce , (B.3)

where P is the super-permutation matrix (3.1) and (A2)
ab
de is the antisymmetrizer A2 = 1

2 (1 −s1)

in the representation (3.4). The direct generalization of (B.3) to the super-symmetrized product 
of any number of super-oscillators is the following:

c(a1ca2 · · · cak) = (Ak)
a1a2...ak

b1b2...bk
cb1cb2 · · · cbk , (B.4)

where Ak is the k-th rank antisymmetrizer in the representation (3.4). The antisymmetrizer Ak

can be defined via the recurrence relations (see, e.g., [30])
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Ak = 1

k!
(
1 − sk−1 + ... + (−1)k−1s1s2 · · · sk−1

) · · · (1 − s2 + s1s2
)(

1 − s1
)
, (B.5)

where the generators sn are taken in the representation (3.4). We stress that in view of the relation 
(B.2) the super-symmetrized product (B.4) is transformed under the action of Osp as a usual 
product (B.1).

Note that upon opening the parentheses, the element (B.5) equals the alternating sum of all k!
elements of the permutation group Sk . Using this fact one can give a more explicit formula for 
super-symmetrized product (B.4) of a higher number of super-oscillators

c(a1ca2 . . . cak) ≡ 1

k!
∑
σ∈Sk

(−ε)p(σ )(−1)σ̂ caσ1 . . . caσk = 1

k!∂
a1
κ · · · ∂ak

κ (κ · c)k = (B.6)

= ∂a1
κ · · · ∂ak

κ exp(κa ca)|κ=0 ,

where p(σ) = 0, 1 denotes the parity of the permutation σ . Here we introduce (see [2]) auxiliary 
super-vector κa such that the derivatives ∂a

κ = ∂
∂κa

satisfy

∂a1
κ ca2 = −ε(−1)a1a2ca2∂a1

κ , ∂b
κ (κa ca) = cb + (κa ca) ∂b

κ , ∂a
κ ∂b

κ = −ε(−1)[a][b]∂b
κ ∂a

κ ,

and (B.6) holds due to the Leibniz rule.
Now we explain the notation σ̂ in (B.6). Let sj ≡ σj,j+1 be an elementary transposition of the 

j -th and (j + 1)-st site. For the transposition sj we define ŝj = [aj ][aj+1]. Then for a general 
permutation σ = sj1sj2 . . . sjk−1sjk

∈ Sk , we have

σ̂ = [ajk
][ajk+1] + [asjk (jk−1)][asjk (jk−1+1)] + · · · + [asj2 ···sjk (j1)][asj2 ···sjk (j1+1)]. (B.7)

As an example, according to the definition (B.6), we have the relation useful in practice:

c(a1 · · · cai · · · caj · · · cak) = (−ε)(−1)
[ai ][aj ]+

j−1∑
l=i+1

([ai ]+[aj ])[al ]
c(a1 · · · caj · · · cai · · · cak).

(B.8)

In eq. (5.19) we have defined the supersymmetric invariants Im Using this definition, the repre-
sentation (B.6) and the definition (6.11) of z, we obtain the recurrence relation

−σ Im · z = Im I1 = εa1b1 . . . εambm∂
a1
κ1 . . . ∂

am
κ1 ∂

bm
κ2 . . . ∂

b1
κ2 εab(∂

a
κ1

+ 1
2ε(−1)aκa

1 )(∂b
κ2

+
+ 1

2ε(−1)bκb
2 )eκ1·c1+κ2·c2 |κi=0 = Im+1 + 1

4εa1b1 . . . εambm∂
a1
κ1 . . . ∂

am
κ1 ∂

bm
κ2 . . . ∂

b1
κ2 εab(−1)a×

×κa
1 κb

2 eκ1·c1+κ2·c2 |κi=0 = Im+1 − ε
4

∑m
i=1 εa1b1 . . . εai−1bi−1εai+1bi+1 . . . εambm∂

a1
κ1 . . . ∂

ai−1
κ1 ×

×∂
ai+1
κ1 . . . ∂

am
κ1

(
ω
ε

− εκd
1 ∂κ1,d

)
∂

bm
κ2 . . . ∂

bi+1
κ2 ∂

bi−1
κ2 . . . ∂

b1
κ2 eκ1·c1+κ2·c2 |κi=0

= Im+1 + m
4

(
(m − 1) − ω

)
Im−1 .

(B.9)

For a proof of (B.9) we refer to the papers [1] (see analogous calculation in eq. (5.6) there) and 
[2]. Taking into account the initial conditions I0 = 1 and I1 = −σz, we deduce from (B.9) that 
the invariants Im are polynomials in z of the order m.
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P.P. Kulish, N.Yu. Reshetikhin, Universal R matrix of the quantum superalgebra Osp(2 | 1), Lett. Math. Phys. 18 
(1989) 143.

[24] A.B. Zamolodchikov, Al.B. Zamolodchikov, Relativistic factorized S-matrix in two dimensions having O(N) iso-
topic symmetry, Nucl. Phys. B 133 (1978) 525.

[25] B. Berg, M. Karowski, P. Weisz, V. Kurak, Factorized U(n) symmetric S-matrices in two dimensions, Nucl. Phys. 
B 134 (1) (1978) 125–132.

[26] A.P. Isaev, Quantum groups and Yang-Baxter equations, preprint MPIM (Bonn), MPI 2004-132, http://webdoc .sub.
gwdg .de /ebook /serien /e /mpi _mathematik /2004 /132 .pdf.

[27] V.G. Drinfeld, Hopf algebras and the quantum Yang-Baxter equation, Dokl. Akad. Nauk SSSR 283 (5) (1985) 1060.
[28] S.E. Derkachov, Factorization of R-matrix. I, J. Math. Sci. 143 (1) (2007) 2773, arXiv :math .QA /0503396.
27

http://refhub.elsevier.com/S0550-3213(21)00052-3/bibD2181375F91678F1C0C91A76173CE95Ds1
http://refhub.elsevier.com/S0550-3213(21)00052-3/bibD2181375F91678F1C0C91A76173CE95Ds1
http://refhub.elsevier.com/S0550-3213(21)00052-3/bib361E34E5C0731B359A999E0BA0C5BBD1s1
http://refhub.elsevier.com/S0550-3213(21)00052-3/bib361E34E5C0731B359A999E0BA0C5BBD1s1
http://refhub.elsevier.com/S0550-3213(21)00052-3/bib0391A9A99563BD4805B52427514F88AFs1
http://refhub.elsevier.com/S0550-3213(21)00052-3/bibDA046CD5D21F79252FB4E7FF0A1AE16Ds1
http://refhub.elsevier.com/S0550-3213(21)00052-3/bibDA046CD5D21F79252FB4E7FF0A1AE16Ds1
http://refhub.elsevier.com/S0550-3213(21)00052-3/bibA19943CD058FC7156A0FFCF29AAEA797s1
http://refhub.elsevier.com/S0550-3213(21)00052-3/bibA19943CD058FC7156A0FFCF29AAEA797s1
http://refhub.elsevier.com/S0550-3213(21)00052-3/bibC0739BC182991CAB5DE9B8AC704BF16As1
http://refhub.elsevier.com/S0550-3213(21)00052-3/bibC0739BC182991CAB5DE9B8AC704BF16As1
http://refhub.elsevier.com/S0550-3213(21)00052-3/bibC0739BC182991CAB5DE9B8AC704BF16As1
http://refhub.elsevier.com/S0550-3213(21)00052-3/bibCD6274AC1B3D4A59AF29EEE77157469Cs1
http://refhub.elsevier.com/S0550-3213(21)00052-3/bibCD6274AC1B3D4A59AF29EEE77157469Cs1
http://refhub.elsevier.com/S0550-3213(21)00052-3/bibA264CD35E256BB6FF3D1C8048515C627s1
http://refhub.elsevier.com/S0550-3213(21)00052-3/bibA264CD35E256BB6FF3D1C8048515C627s1
http://refhub.elsevier.com/S0550-3213(21)00052-3/bib8EA9B095218638A54EA4B2242C3CA911s1
http://refhub.elsevier.com/S0550-3213(21)00052-3/bib8EA9B095218638A54EA4B2242C3CA911s1
http://refhub.elsevier.com/S0550-3213(21)00052-3/bibFFC4CB867671F0990B1428029EA8D123s1
http://refhub.elsevier.com/S0550-3213(21)00052-3/bibFFC4CB867671F0990B1428029EA8D123s1
http://refhub.elsevier.com/S0550-3213(21)00052-3/bib8F79D5EBB26D2246624DCFCDC72EEFC6s1
http://refhub.elsevier.com/S0550-3213(21)00052-3/bib8F79D5EBB26D2246624DCFCDC72EEFC6s1
http://refhub.elsevier.com/S0550-3213(21)00052-3/bib3CAE73F6CB4586C9BD897A47B4825848s1
http://refhub.elsevier.com/S0550-3213(21)00052-3/bib3CAE73F6CB4586C9BD897A47B4825848s1
http://refhub.elsevier.com/S0550-3213(21)00052-3/bib03FCDFFF532625971D8F4DD2F225C0E3s1
http://refhub.elsevier.com/S0550-3213(21)00052-3/bib03FCDFFF532625971D8F4DD2F225C0E3s1
http://refhub.elsevier.com/S0550-3213(21)00052-3/bib1FD579593AB6ADFBD9E95240A5625BC9s1
http://refhub.elsevier.com/S0550-3213(21)00052-3/bib1FD579593AB6ADFBD9E95240A5625BC9s1
http://refhub.elsevier.com/S0550-3213(21)00052-3/bib1FD579593AB6ADFBD9E95240A5625BC9s2
http://refhub.elsevier.com/S0550-3213(21)00052-3/bib1FD579593AB6ADFBD9E95240A5625BC9s2
http://refhub.elsevier.com/S0550-3213(21)00052-3/bib81043F8C681575BCA3E4EFF6AFBD9DB9s1
http://refhub.elsevier.com/S0550-3213(21)00052-3/bib734655D7006CB5084E7F8C597C7B0C17s1
http://refhub.elsevier.com/S0550-3213(21)00052-3/bib734655D7006CB5084E7F8C597C7B0C17s1
http://refhub.elsevier.com/S0550-3213(21)00052-3/bibBC138A5D21FFD54CE525033053A927E6s1
http://refhub.elsevier.com/S0550-3213(21)00052-3/bibA2E1839759386868ACD948A471FD41F5s1
http://refhub.elsevier.com/S0550-3213(21)00052-3/bibB1C9143D97B92574BD662F75520531DEs1
http://refhub.elsevier.com/S0550-3213(21)00052-3/bibAA1D887FE0A23329106BBA8D82DAA7C8s1
http://refhub.elsevier.com/S0550-3213(21)00052-3/bibAA1D887FE0A23329106BBA8D82DAA7C8s1
http://refhub.elsevier.com/S0550-3213(21)00052-3/bib2F72CD9469ECB3FDF09302CB9EDF7D26s1
http://refhub.elsevier.com/S0550-3213(21)00052-3/bib2F72CD9469ECB3FDF09302CB9EDF7D26s1
http://refhub.elsevier.com/S0550-3213(21)00052-3/bibD4FAB5E386707D1C110E6EE6320CE4F1s1
http://refhub.elsevier.com/S0550-3213(21)00052-3/bibD4FAB5E386707D1C110E6EE6320CE4F1s1
http://refhub.elsevier.com/S0550-3213(21)00052-3/bib8F801865FCBEEBF770E656414B498B56s1
http://refhub.elsevier.com/S0550-3213(21)00052-3/bib8F801865FCBEEBF770E656414B498B56s2
http://refhub.elsevier.com/S0550-3213(21)00052-3/bib8F801865FCBEEBF770E656414B498B56s2
http://refhub.elsevier.com/S0550-3213(21)00052-3/bibB1E40676B1446C58278CAC6A66019742s1
http://refhub.elsevier.com/S0550-3213(21)00052-3/bibB1E40676B1446C58278CAC6A66019742s1
http://refhub.elsevier.com/S0550-3213(21)00052-3/bibB8B824BDC16DDF5DDE02E1BA7FD8E0F7s1
http://refhub.elsevier.com/S0550-3213(21)00052-3/bibB8B824BDC16DDF5DDE02E1BA7FD8E0F7s1
http://webdoc.sub.gwdg.de/ebook/serien/e/mpi_mathematik/2004/132.pdf
http://webdoc.sub.gwdg.de/ebook/serien/e/mpi_mathematik/2004/132.pdf
http://refhub.elsevier.com/S0550-3213(21)00052-3/bib8B4A1F694983F429EAD197AD95E98BEEs1
http://refhub.elsevier.com/S0550-3213(21)00052-3/bib1B61F59CA9BE0302727595E6765FEE61s1


A.P. Isaev, D. Karakhanyan and R. Kirschner Nuclear Physics B 965 (2021) 115355
[29] S.E. Derkachov, A.N. Manashov, Factorization of R-matrix and Baxter Q-operators for generic s�(N) spin chains, 
J. Phys. A, Math. Theor. 42 (2009) 075204, arXiv :0809 .2050 [nlin .si].

[30] A.P. Isaev, V.A. Rubakov, Theory of Groups and Symmetries. Representations of Groups and Lie Algebras, Appli-
cations, World Scientific, 2020, 600 pp.

[31] L.D. Faddeev, N.Yu. Reshetikhin, L.A. Takhtajan, Quantization of Lie groups and Lie algebras, Algebra Anal. 1 (1) 
(1989) 178–206, (in Russian). English translation in: Leningr. Math. J. 1 (1) (1990) 193–225.
28

http://refhub.elsevier.com/S0550-3213(21)00052-3/bib839A145AB8594482DE561904CB5B3DC5s1
http://refhub.elsevier.com/S0550-3213(21)00052-3/bib839A145AB8594482DE561904CB5B3DC5s1
http://refhub.elsevier.com/S0550-3213(21)00052-3/bibED9B711DD072BCE8C20CC85322E3732Bs1
http://refhub.elsevier.com/S0550-3213(21)00052-3/bibED9B711DD072BCE8C20CC85322E3732Bs1
http://refhub.elsevier.com/S0550-3213(21)00052-3/bib787190759CF78D6BAF716A59D4F27484s1
http://refhub.elsevier.com/S0550-3213(21)00052-3/bib787190759CF78D6BAF716A59D4F27484s1

	Yang-Baxter R-operators for osp superalgebras
	1 Introduction
	2 The ortho-symplectic supergroup and its Lie superalgebra
	3 The OSp-invariant R-matrix and the graded Yang--Baxter equation
	4 Graded RLL-relation and the linear evaluation of Yangian Y(osp)
	5 Super-oscillator representation for linear evaluation of Y(osp)
	6 The construction of the R-operator in the super-oscillator representation
	6.1 The Shankar-Witten form of the R operator
	6.2 The Faddeev-Takhtajan-Tarasov type R operator

	7 The R̂ operator in special cases of osp(N|2m)
	7.1 The case of osp(M|N)=osp(1|2)
	7.2 The case of osp(2|2)
	7.3 The case of osp(n|2)
	7.4 The case of osp(n|2m)

	8 The relation between two approaches
	Declaration of competing interest
	Acknowledgements
	Appendix A Properties of operators P, K and relations for matrix generators of Brauer algebra
	Appendix B Supersymmetrized products of super-oscillators
	References


