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Abstract

In this thesis a new method and result for the study of gluon spin in
the proton using particle clusters from jets in proton-proton collisions are
presented. The proton spin is composed of the spins and the orbital angular
momenta of quarks and gluons in the proton. The understanding of the
proton spin structure is one of the most important subjects in the particle and
hadron physics. In 1988 the EMC experiment revealed that the contribution
of the quark spin (1/2∆Σ) to the proton spin is (12 ± 9 ± 14)%. Many
deep inelastic lepton scattering (DIS) experiments have been carried out to
precisely measure the 1/2∆Σ, and recent analyses conclude that it is only
30%.

High-energy proton-proton collision is also an important method as gluon-
gluon scattering, gluon-quark scattering etc. take place. I started a new
method to study the gluon spin in the proton using particle clusters from
jets. I developed this method and analyzed the data for the first time. This
thesis reports the double helicity asymmetry (ALL) of particle clusters from
jet production process in longitudinally polarized proton-proton collisions at√

s = 200 GeV. ALL is defined as the difference in cross section between two
beam-helicity patterns; the same (++ or −−) and the opposite (+− or −+).
It is sensitive to the gluon spin in the proton (∆g). The ∆g can have a large
contribution to the proton spin.

The Relativistic Heavy Ion Collider (RHIC) is the first collider capable of
polarized proton-proton collisions. In 2005 the PHENIX experiment at RHIC
accumulated, with a high-energy (& 1.4 GeV) photon trigger, collision data
about 3.8 pb−1 in integrated luminosity with average beam polarizations
〈P 〉 = 49%. The PHENIX Central Arm consists of two arms which are
positioned almost back-to-back on their azimuth and each of which covers a
pseudo-rapidity |η| < 0.35 and 90-degree azimuthal angle. I performed an
energy calibration of every module of electromagnetic calorimeters (EMCal)
in the Central Arm and an development of the high-energy-photon trigger.
Photons and charged particles in jets were measured with the Central Arm.
Measured particles were clustered with a seed-cone algorithm to obtain the
sum of pT of the particles in a cluster (pcone

T ). The relation between pjet
T

and pcone
T was evaluated with the PYTHIA event generator and the GEANT

detector simulator. To confirm the reproducibility of the simulation, event
structures and cone production rate were measured.



The ALL of particle clusters was measured at 4 < pcone
T < 12 GeV/c and

a mid-rapidity |η| < 0.35. The main systematic errors are the pT scale un-
certainty of 10% and the beam polarization uncertainty of 9.4%. Particle
clusters at the measured pcone

T range are mainly produced from gluons with
the momentum fraction 0.02 < x < 0.3 according to the PYTHIA simula-
tion. The measured ALL was compared with the predictions that assumed
various ∆g(x) distributions. The present result imposed the limit −1.1 <∫ 0.3

0.02
dx∆gGRSV (x, Q2 = 1) < 0.4 at 2σ level or

∫ 0.3

0.02
dx∆gGRSV (x,Q2 = 1) <

0.5 at 3σ level, and thus excluded the large-∆g scenarios in the GRSV pa-
rameterization.
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Chapter 1

Introduction

The motivation of this research is to understand the spin structure of the
proton, particularly the polarized gluon distribution function

∆g(x) ≡ g+(x) − g−(x) (1.1)

where x is the Bjorken scaling variable and g+(−)(x) means the probability
of finding gluons with the spin parallel (anti-parallel) to the proton spin
and with the momentum fraction x of the proton momentum. The integral
∆g =

∫ 1

0
dx∆g(x) represents the total spin of gluons in the proton.

The contribution of the quark spin to the proton spin

1

2
∆Σ ≡ 1

2

∑

f

∫ 1

0

dx∆qf (x) ≡ 1

2

∑

f

∫ 1

0

dx(q+
f (x) − q−f (x)) (1.2)

was measured by the EMC experiment at CERN in 1988, and was revealed
to be only (12± 9± 14)%[1][2]. The EMC experiment extended the x range
down to very small region, which enabled a precision measurement com-
pared to the earlier SLAC experiments[3]. In a theoretical interpretation[4]
proposed just after the EMC experiment, the apparent smallness of 1

2
∆Σ

was attributed to large gluon spin polarization ∆g (∼4) in the proton due
to the triangle anomaly. However, it then means that the large ∆g needs to
be mostly compensated by a large orbital angular momentum to make the
proton spin 1/2. After the EMC experiment many deep inelastic scattering
(DIS) experiments have measured ∆q even more precisely. The recent result
of the HERMES analysis[5] reported that

∆Σ = 0.330 ± 0.011(theo.) ± 0.025(exp.) ± 0.028(evol.) (1.3)

at Q2 ∼ 5 GeV2, which is only ∼30% of the proton spin. It indicates that the
large amount of proton spin should be carried by the remaining components;
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the spin of gluons (∆g) and/or the orbital angular momenta of quarks and
gluons (Lq,g).

1

2proton
=

1

2

∑

f

∆qf + ∆g + Lq + Lg (1.4)

The understanding of the proton spin structure is one of the most important
subjects in the particle and hadron physics of today.

DIS with lepton beams are mainly sensitive to the quark distribution
∆qf (x) because of the electromagnetic interaction (lq → lq). They are partly
sensitive to the gluon distribution ∆g(x) via the Q2-depending variation of
the ∆qf (x). Therefore the gluon contribution ∆g has been obtained from
DIS data as well. Several analyses have estimated the ∆g to be non-zero,
∼ 0.3 at Q2 ∼ 1 GeV2, but zero or much larger values are still allowed within
the uncertainty of the analyses.

The longitudinally-polarized proton-proton collision is suited for the mea-
surement of the ∆g because gluon-involved scatterings, such as qg → qg or
gg → gg, dominate in the cross section at high energy. The double helic-
ity asymmetry (ALL), which is the asymmetry in cross section between two
beam helicity patterns

ALL ≡ σ++ − σ+−

σ++ + σ+−
, (1.5)

is measured because many systematic errors cancel out in ALL and thus
a high precision can be achieved. In a gluon-gluon s-channel scattering
(gg → g∗ → gg), for example, the spins of two initial-state gluons have
to be anti-parallel with each other to make a valid spin (Sz = 0) of the
virtual gluon g∗. Such spin conservation, or helicity conservation in other
processes, makes spin-dependent asymmetry in gluon-gluon scattering cross
section. This asymmetry selects one spin state (parallel or anti-parallel to
the proton spin) of gluons in polarized proton, and thus the spin-dependent
distribution can be extracted from polarized proton-proton collisions.

The PHENIX experiment is being carried out using the Relativistic Heavy
Ion Collider (RHIC) at Brookhaven National Laboratory. One of the goals
of the PHENIX experiment is the determination of ∆g(x). The PHENIX
experiment mainly focuses on single-particle productions, and results on π0

production measurement have been published[6]. This thesis reports a mea-
surement of jet production process, which is measured as a cluster of particles
that have collinear momenta. These two measurements have different types
of systematic uncertainties and thus one can provide a systematic check for
the other. Jet measurement can reach larger statistics at high-pT region
and have smaller ambiguities in the treatment of the jet fragmentation pro-
cess than single particle measurements. Subprocess fractions of gg, qg, qq̄
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scatterings etc. are different for π0 inclusive measurement and jet (particle
cluster) measurement. Jet measurement is in fact more sensitive to qg scat-
tering which we like to detect. The reason is that a particle cluster has a
wider transverse distribution around jet axis when it is generated from gluon.
When it is generated from quarks it is narrower. As a result, the particle
cluster from quark is enhanced when measured with a finite cone region. The
fraction of qg scattering is larger than gg scattering in wide pT range in the
measurement of particle cluster. This is why I started and developed this
new method. The analysis technique and the result presented in this thesis
open a new possibility for proton spin studies in proton-proton collisions.

In Chapter 2, major topics of the proton spin structure and jet produc-
tion are introduced. In Chapter 3, experimental setups including the RHIC
accelerator and the PHENIX detector are explained. In Chapter 4, analysis
methods such as data selections, simulation studies and ALL measurement
are described. In Chapter 5, results and discussions of this measurement are
shown.

6



Chapter 2

Physics of the proton structure
and jet production

2.1 Proton structure

2.1.1 Quark-parton model and parton distribution func-
tion

The structure of proton has been investigated with lepton-proton deep in-
elastic scattering (DIS),

e(k) + p(P ) → e(k′) + X (2.1)

as schematically shown in Fig. 2.1. The kinematic variables listed in Tab. 2.1
are commonly used. The cross section for lepton-proton DIS can be expressed
with the proton structure function, F1(x,Q2) and F2(x,Q2), in laboratory

k

k

q

P, M W

Figure 2.1: Schematic drawing of DIS.
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Table 2.1: Kinematic variables in DIS.

k = (E, k), k′ = (E ′,k′) 4-momenta of the initial- and final-state leptons

P
lab
= (M,0) 4-momentum of the initial target proton

q = k − k′ 4-momentum of the virtual photon
Q2 ≡ −q2 Negative squared 4-momentum transfer

ν ≡ P ·q
M

lab
= E − E ′ Energy of the virtual photon

x = Q2

2P ·q = Q2

2Mν
Bjorken scaling variable

y ≡ P ·q
P ·k

lab
= ν

E
Fractional energy of the virtual photon

W 2 = (P + q)2 the mass squared of the
proton-virtual photon system

s = (k + P )2 the center-of-mass energy squared of
the lepton-proton system

M proton mass

frame as

d2σ

dΩdk′ =
α2

4k2 sin4 θ
4

(
mp

P · q
F2(x,Q2) cos2 θ

2
+

2

mp

F1(x,Q2) sin2 θ

2

)
(2.2)

where θ is the lepton scattering angle and Ω is the solid angle of scattered
lepton detection. The scaling variable x has been proposed by Bjorken[7]. It
represents at large Q2 the ratio of parton momentum to the proton momen-
tum,

x =
pparton

Pproton

(2.3)

The structure function F2(x,Q2) depends only on x and not on Q2 in good
approximation. This x scaling has been experimentally observed in SLAC
data[8].

It is well established that the structure of the proton in high-energy (large
Q2) interactions can be described with the quark-parton model, in which
all partons are assumed to be independent of each other. On the other
hand, partons cannot be observed directly and are confined in hadrons. This
phenomenon is called “color confinement” and indicates a strong coupling
between quarks. These two behaviors can be consistently explained with the
asymptotic freedom of non-Abelian gauge theory, which was discovered by
Gross, Wilczek and Politzer in 1973[9][10][11][12]. The Q2 dependence of the
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strong coupling constant αs at leading order is

αs(Q
2) =

4π

β1 ln(Q2/λ2
QCD)

, β1 =
33 − 2nf

3
(2.4)

where nf is the number of flavors that can be virtually produced at a given
Q2, and λQCD ≈ 250 MeV/c is the QCD scale. As seen in the equation,
αs(Q

2) decreases as Q2 increases. Because of the smallness of αs(Q
2) at large

Q2 (À λQCD), a hard-scattered parton can be regarded free, and the cross
section for parton scattering is calculable using perturbative expansion[13].

The cross section for lepton-proton DIS can be factorized to the product
of the parton distribution in the proton and the cross section for lepton-
parton scattering. The proton internal structure is represented with the
parton distribution function (PDF, f(x)). f(x) means the probability of
finding partons with a certain x. Often q(x) and g(x) are used as the f(x)
of quarks and gluons, respectively, and also u(x), ū(x), d(x), etc. instead of
f(x) of each quark flavor.

Many DIS experiments with electron, muon or neutrino beam have mea-
sured the structure function of the proton and the neutron (with deuteron
target), F p

2 (x,Q2) and F n
2 (x, Q2), which are well summarized in [14]. In the

quark-parton model the structure function can be written as

F2(x, Q2) = x ·
∑

f

e2
f

(
qf (x,Q2) + q̄f (x,Q2)

)
(2.5)

in the leading order, and the quark distribution functions can be extracted by
globally analyzing all experimental data. Also the gluon distribution g(x) can
be determined with DIS data via the scaling violation (Q2 dependence) of the
F2(x,Q2), which appears in higher-order calculation due to gluon radiation;

F2(x,Q2) = x
∑

q

e2
q

{
q(x,Q2) +

αs(Q
2)

2π

(
Cq(x, αs) ⊗ q(x,Q2) (2.6)

+
1

Nf

Cg(x, αs) ⊗ g(x,Q2)
)}

(2.7)

The convolution Cf (x, αs) ⊗ f(x, Q2) is defined as

Cf (x, αs) ⊗ f(x,Q2) ≡
∫ 1

x

dy

y
C(

x

y
, αs)f(y, Q2) (2.8)

where f(y,Q2) is the distribution density of parton f with a momentum
fraction y, and C(x

y
, αs) is the probability that a quark q with a momen-

tum fraction x is produced from a parton f with a momentum fraction y.
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Cf (x, αs) is called “coefficient function”. In addition, global PDF analyses
usually include jet production cross section in hadron-hadron collisions in
order to improve the precision of g(x). Figure 2.2 summarizes the PDFs
determined by

• the ZEUS-JETS fits[15], which used inclusive DIS cross section, in-
clusive jet cross section and dijet cross section in e-p collisions by the
ZEUS experiment,

• the ZEUS-S fit[16], which used inclusive DIS cross section in e-p colli-
sions by the ZEUS experiment and fixed-target DIS cross section,

• the MRST2001 fit[17] and the CTEQ6.1M fit[18], which used inclusive
DIS data, inclusive jet cross section in proton-antiproton collisions, etc.

All analyses have determined the PDFs with a good consistency.
The Q2 dependence of the distribution functions is described by the

DGLAP evolution equation[19][20][21] that has the schematic form of

∂fa

∂ ln Q2
∼ αs(Q

2)

2π

∑

b

Pab ⊗ fb (2.9)

where fb is the distribution density of parton b, and Pab is the probability
that a parton a is produced from a parton b via q → qg, g → qq̄ or g → gg
splittings. Figure 2.3 shows the Q2 evolution of

∫
dxg(x) in the GRV98 PDF

set[22]. Because the Q2 evolution is rapid at lower x, the
∫ 1

10−4 dxg(x) has a

stronger Q2 dependence than
∫ 0.3

0.02
dxg(x).

2.1.2 Polarized parton distribution function

The polarized (spin dependent) distribution functions of partons, ∆q(x) and
∆g(x), are defined as

∆q(x) ≡ q+(x) − q−(x) (2.10)

∆g(x) ≡ g+(x) − g−(x) (2.11)

where q+(x) (q−(x)) is the probability of finding quarks which have a spin
parallel (anti-parallel) to that of proton.

Many DIS experiments have measured the spin-dependent structure func-
tion of the proton and deuteron (gp

1(x,Q2) and gd
1(x,Q2)), although the total

amount of the experimental data is much less than F2(x,Q2). Figure 2.4
shows the gp

1(x) and gd
1(x) measured by HERMES, E143, E155, SMC and
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Figure 2.2: Unpolarized parton distribution functions (PDFs) determined
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COMPASS experiments. The structure function of the neutron (gn
1 (x)) re-

lates to the gp
1(x) and gd

1(x) as

gd
1 =

1

2
(gp

1 + gn
1 )

(
1 − 3

2
ωD

)
(2.12)

where ωD = 0.05 ± 0.01 takes into account the D-state admixture to the
deuteron wave function. In the quark-parton model the g1(x,Q2) can be
written as

g1(x,Q2) =
1

2

∑

f

e2
f

(
∆qf (x,Q2) + ∆q̄f (x,Q2)

)
(2.13)

in the leading order. The current g1(x,Q2) data were however not suffi-
cient to decompose the g1(x,Q2) into the ∆f(x) of each flavor, particularly
into the contributions from valence and sea quarks. The flavor decomposi-
tion has been achieved by the use of Semi-Inclusive measurement of DIS
(SIDIS)[23][24]. It detects not only scattered leptons but also produced
hadrons, whose flavor is correlated with the flavor of struck quarks.

The first moments of ∆q(x) and ∆g(x), namely
∫ 1

0
dxxn−1∆f(x) with
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n = 1, mean the total spin of quarks and gluons in the proton,

1

2
∆q ≡ 1

2

∫ 1

0

dx∆q(x) =
1

2

∫ 1

0

dx
(
q+(x) − q−(x)

)
(2.14)

∆g ≡
∫ 1

0

dx∆g(x) =

∫ 1

0

dx
(
g+(x) − g−(x)

)
(2.15)

2.1.3 Sum rules and proton spin problem

Sum rules about the spin independent or dependent proton structure have
been proposed by theories based on the quark-parton model. They have been
tested by experiments to examine the validity of the quark-parton model.

Momentum sum rule

The total amount of quark momentum in the proton is given by the parton
number density (q(x)) multiplied by the momentum fraction (x) as

Squark(Q
2) =

∫ 1

0

dxx{u(x,Q2) + ū(x,Q2)

+ d(x,Q2) + d̄(x,Q2) + s(x,Q2) + s̄(x,Q2)} (2.16)

It can be represented by the proton and neutron structure functions with
neutrino beam, F νp

2 and F νn
2 , as

∫ 1

0

dx{F νp
2 (x,Q2) + F νn

2 (x,Q2)} = 2Squark(Q
2) (2.17)

In the naive quark-parton model, Squark should be one, but actually the
momentum carried by gluons (Sgluon(Q

2) =
∫

dxxg(x, Q2)) contributes to
the proton momentum as

Smom = Squark(Q
2) + Sgluon(Q

2) = 1 (2.18)

The momentum sum rule cannot be tested accurately because g(x,Q2) is
only determined indirectly. It is rather used to give a constraint on g(x,Q2).
A global analysis of DIS data[25] shows Squark(Q

2) ∼ 0.5 at Q2 & 100 GeV2,
which suggests Sgluon(Q

2) ∼ 0.5.

Gross-Llewellyn-Smith sum rule

The number of valence quarks in the proton must be three;
∫ 1

0

dx
{
u(x,Q2) − ū(x,Q2) + d(x,Q2) − d̄(x, Q2)

}
= 3 (2.19)
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The left side can be represented by the proton structure functions with neu-
trino and anti-neutrino beams, F νp

3 and F ν̄p
3 . The Gross-Llewellyn-Smith

sum rule[26] is

SGLS(Q
2) =

1

2

∫ 1

0

dx{F νp
3 (x,Q2) + F ν̄p

3 (x,Q2)}

= 3

{
1 − αs(Q

2)

π
− 3.58

(
αs(Q

2)

π

)2

− 20.22

(
αs(Q

2)

π

)3
}

(2.20)

where the polynomial of αs(Q2)
π

is a QCD radiative correction with the number
of flavors Nf = 3[27].

A measurement by the CCFR collaboration[28]

SGLS(Q
2 = 3 GeV2) = 2.50 ± 0.018(stat) ± 0.078(syst) (2.21)

agrees with the theoretical value of 2.66 ± 0.04.

Adler sum rule

The Adler sum rule[29] relates the proton structure functions with neutrino
and anti-neutrino beams, F νp

1 and F ν̄p
1 , to the difference between the number

of u valence quarks and the number of d valence quarks in the proton;

SA =

∫ 1

0

dx{F ν̄p(x,Q2)
1 − F νp

1 (x,Q2)}

=

∫ 1

0

dx
[
{u(x,Q2) − ū(x,Q2)} − {d(x,Q2) − d̄(x,Q2)}

]
= 1 (2.22)

It needs no QCD radiative correction because it can be derived from the
commutator of conserved currents. The QCD evolution in the integral of
u − ū is exactly cancelled by that of d − d̄.

A measurement by the WA25 experiment[30]

SA = 1.08 ± 0.08(stat) ± 0.18(syst) (2.23)

agrees with the theoretical expectation although the experimental uncer-
tainty is rather large.
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Gottfried sum rule

The difference of the proton and neutron structure functions can be repre-
sented as

F ep
2 (x,Q2) − F en

2 (x,Q2) =
x

3

[
{u(x,Q2) + ū(x,Q2)} − {d(x,Q2) + d̄(x,Q2)}

]

=
x

3

[
{u(x,Q2) − ū(x,Q2)} − {d(x,Q2) − d̄(x, Q2)}

]

− 2x

3

{
d̄(x,Q2) − ū(x,Q2)

}
(2.24)

The Gottfried sum rule assumes ū = d̄ and is

SG =

∫ 1

0

dx

x

{
F ep

2 (x,Q2) − F en
2 (x,Q2)

}
=

1

3
(2.25)

The New Muon Collaboration (NMC) reported the first evidence of a
violation of the Gottfried sum rule[31][32]; SG integrated over the range of
0.004 < x < 0.8 is 0.2281± 0.0065(stat) at Q2 = 4 GeV2. It indicates a non-
zero (∼0.15) d̄− ū. Since the NMC measurement, the non-zero d̄− ū and also
its x dependence have been measured by Drell-Yan experiments, NA51[33]
and E866/NuSea[34]. The theoretical understanding of the violation of the
Gottfried sum rule has not been established yet. One possible source is
the pion cloud of the nucleon, namely the d̄ dominance in pions virtually
produced via p → nπ+[35].

Bjorken sum rule

The Bjorken sum rule[36] assumes the SU(2) isospin symmetry and is

SBj =

∫ 1

0

dx{gp
1(x,Q2) − gn

1 (x,Q2)}

=
gA

6

{
1 − αs(Q

2)

π
− 3.58

(
αs(Q

2)

π

)2

− 20.22

(
αs(Q

2)

π

)3
}

(2.26)

where gA = 1.26 is the isovector axial charge of the nucleon which is measured

in neutron β decay. The polynomial of αs(Q2)
π

is the QCD radiative correction
just like in the Gross-Llewellyn-Smith sum rule. Because this sum rule has
been derived from current algebra, it provides a very fundamental test of the
structure of QCD.

A recent measurement by the E155 experiment[37]

SBj = 0.176 ± 0.003(stat) ± 0.007(syst) (2.27)

at Q2 = 5 GeV2 agrees with the theoretical value of 0.182 ± 0.005.
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Ellis-Jaffe sum rule and proton spin problem

The integral of gp
1(x,Q2) over x can be written as

Sp =

∫ 1

0

dxgp
1(x,Q2)

=

∫ 1

0

dx

{
4

18
∆u(x,Q2) +

1

18
∆d(x, Q2) +

1

18
∆s(x,Q2)

}

=
4

18
∆u +

1

18
∆d +

1

18
∆s (2.28)

when the contribution of gluons to gp
1 is neglected. Under the assumption of

SU(3) flavor symmetry, the first moments of polarized u, d and s distributions
can be expressed with the singlet (a0), triplet (a3) and octet (a8) axial charges
as

a0 = ∆u + ∆d + ∆s (2.29)

a3 = ∆u − ∆d (2.30)

a8 = ∆u + ∆d − 2∆s (2.31)

where a3 = gA, and a8 = 0.57± 0.06 is measured in hyperon β decay. There-
fore Sp becomes

Sp =
a0

9
+

a3

12
+

a8

36
(2.32)

Since a0 has not been directly measured by any experiments, s quark polar-
ization is neglected (∆s = 0) so that a0 = a8. The Ellis-Jaffe sum rule[38]
corrected for the QCD radiation[40] is

Sp(Q
2) =

a3

12

{
1 − αs(Q

2)

π

}
+

5a8

36

{
1 − 7

15

αs(Q
2)

π

}
(2.33)

With the values of gA and ∆q8 quoted above, Sp at Q2 = 10 GeV2 is expected
to be 0.167 ± 0.008.

Sp was measured by the EMC experiment at CERN in 1988, and was
revealed to be 0.114±0.012±0.026[2]. It is clearly inconsistent with the Ellis-
Jaffe sum rule. Earlier SLAC measurements did not detect this deviation
because the covered x range was only down to 0.1 and therefore the error
was large. This inconsistency indicates that at least one of the assumptions is
wrong; rather large contributions of s quark or gluons to gp

1, or SU(3) flavor
asymmetry. Altarelli and Ross[4] show that the contribution of the gluon
spin to gp

1 can be large even at large Q2 due to the triangle anomaly;

a0 = 2

√
2

3

(
∆u + ∆d + ∆s − 3αs

4π
∆g

)
. (2.34)
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The Ellis-Jaffe sum rule can hold if ∆g is quite large (∼ 5), although it needs
a large opposite contribution of orbital angular momenta in order to conserve
the total proton spin and there is a different theoretical interpretation of the
contribution of the gluon spin to gp

1[39].
The proton spin can be expressed with angular momenta of its con-

stituents, namely spins and orbital angular momenta of quarks and gluons;

1

2
=

1

2

∑

f

∆qf + ∆g + Lq + Lg (2.35)

where f is a flavor of quarks (u, d, s, ū, d̄, and s̄). The contribution of
the quark spin 1

2

∑
f ∆qf is equal to 1

2
a0. After the EMC experiment many

experiments have measured Sp even more precisely. The recent result of the
HERMES analysis[5] showed

∑

f

∆qf = 0.330 ± 0.011(theo.) ± 0.025(exp.) ± 0.028(evol.) (2.36)

at Q2 ∼ 5 GeV2, which is only ∼30% of the proton spin.

Ji sum rule

Ji sum rule[41][42][43] formulates a gauge invariant decomposition of the
nucleon spin into the contributions of quark helicity, quark orbital angular
momentum and gluon angular momentum. It also introduces generalized
parton distributions (GPDs; H(x, ξ, t), E(x, ξ, t), H̃(x, ξ, t) and Ẽ(x, ξ, t)),
which contain the information on the nucleon structure represented by both
the nucleon form factors and the parton distribution functions.

The QCD angular momentum operator ( ~JQCD) can be separated into

gauge-invariant quark and gluon parts; ~JQCD = ~Jq + ~Jg. Using energy-

momentum tensor T µν
q,g , ~Jq and ~Jg can be written as

J i
q,g =

1

2
εijk

∫
d3x(T 0k

q,gx
j − T 0j

q,gx
k) (2.37)

and using QCD equations of motion and superpotentials,

~Jq =

∫
d3xψ†[~γγ5 + (~x × i ~D)]ψ

~Jg =

∫
d3x(~x × ( ~E × ~B)) (2.38)

In ~Jq, ~γγ5 means a quark helicity contribution and (~x × i ~D) a quark orbital
contribution. These two are separated in this gauge-invariant expression.
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Figure 2.5: Handbag diagram of Deeply Virtual Compton Scattering
(DVCS), ep → epγ.

On the other hand, in ~Jg, two contributions cannot be separated because the
spin space of gluons coincides with the ordinary space and time.

One possible process that can probe ~Jq is Deeply Virtual Compton Scat-
tering (DVCS), which is illustrated in Fig. 2.5. Momentum vectors of initial-
state proton, final-state proton, virtual photon and final-state photon are
represented by P µ, P ′µ, qµ and q′µ, respectively. The momentum trans-
fer from photon to proton is represented by ∆µ. When momentum vec-
tors are expanded in terms of two light-like vectors, pµ = Λ(1, 0, 0, 1) and
nµ = (1, 0, 0,−1)/(2Λ), where Λ is an arbitrary constant, the amplitude of
the γ∗p → γp part can be written as

T µν(P, q, ∆) =
1

2
(gµν − pµnν − pνnµ)

∫ 1

−1

dx

(
1

x − ξ/2 + iε
+

1

x + ξ/2 − iε

)

×
[
H(x, ξ, ∆2)Ū(P ′)/nU(P ) + E(x, ξ, ∆2)Ū(P ′)

iσαβnα∆β

2M
U(P )

]

+
i

2
εµναβpαnβ

∫ 1

−1

dx

(
1

x − ξ/2 + iε
− 1

x + ξ/2 − iε

)

×
[
H̃(x, ξ, ∆2)Ū(P ′)/nγ5U(P ) + Ẽ(x, ξ, ∆2)

∆ · n
2M

Ū(P ′)γ5U(P )

]

(2.39)

where the negative x in the integral corresponds to anti-quarks with a mo-
mentum fraction |x|; ξ means the change of the momentum fraction x of a

scattered quark (x + ξ/2
scatt.−−−→ x − ξ/2); H, H̃, E and Ẽ are off-forward

parton distributions. These distributions can be connected to the usual form
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factors;

∫ 1

−1

dxH(x, ξ, ∆2) = F1(∆
2)

∫ 1

−1

dxE(x, ξ, ∆2) = F2(∆
2)

∫ 1

−1

dxH̃(x, ξ, ∆2) = GA(∆2)

∫ 1

−1

dxẼ(x, ξ, ∆2) = GP (∆2) (2.40)

They become the usual parton distribution functions at the forward limit
(∆µ → 0);

H(x, ξ, ∆µ → 0) = q(x) , H̃(x, ξ, ∆µ → 0) = ∆q(x) (2.41)

The contribution of the quark angular momentum to the proton spin
(Jq) can be expressed with the second moment of GPDs at the forward limit
(∆µ → 0) as

Jq =

∫ 1

−1

dxx[H(x, ξ, ∆µ → 0) + E(x, ξ, ∆µ → 0)] (2.42)

2.1.4 ∆g(x) measurement with DIS

∆g(x) can be determined with polarized DIS data via the scaling violation
(Q2 dependence) of the structure function g1(x,Q2). In 2000 the GRSV
group (Gluck, Reya, Stratmann and Vogelsang) evaluated polarized PDFs
including ∆g(x) with polarized DIS data in a NLO pQCD framework[44]. It
assumed the SU(3)f symmetry and the functional forms of ∆f(x, µ0

2) as

∆u(x, µ0
2) = Nux

αu(1 − x)βuu(x, µ0
2)GRV

∆d(x, µ0
2) = Ndx

αd(1 − x)βdd(x, µ0
2)GRV

∆q̄(x, µ0
2) = Nq̄x

αq̄(1 − x)βq̄ q̄(x, µ0
2)GRV

∆g(x, µ0
2) = Ngx

αg(1 − x)βgg(x, µ0
2)GRV (2.43)

where µ0
2 = 0.4 GeV2 is the initial scale where the functional forms are de-

fined as above; u(x, µ0
2)GRV etc. are the unpolarized PDF of the GRV98[22].

Figure 2.6 shows polarized PDFs ∆u(x), ∆d(x), ∆q̄(x) and ∆g(x) that have
been evaluated by the GRSV analysis. The polarized valence-quark distri-
bution functions are well determined.
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Figure 2.6: Polarized PDFs determined by the GRSV analysis[44].
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Figure 2.7: Q2 dependence of ∆g(x) determined by the GRSV analysis[44].

Figure 2.7 shows four distributions of ∆g(x) at Q2 = 1 and 100 GeV2;
one is the optimal distribution in the GRSV analysis (named “GRSV std”),
and the other three are the distributions that are defined as

∆g(x, µ0
2) = g(x, µ0

2)GRV

∆g(x, µ0
2) = 0

∆g(x, µ0
2) = −g(x, µ0

2)GRV (2.44)

named “∆g = g input”, “∆g = 0 input” and “∆g = −g input”, respectively.
The “∆g = g input” and “∆g = −g input” scenarios mean an extremely
large gluon polarization in the proton, but are not inconsistent with the DIS
data within their uncertainties and thus have not been excluded by the GRSV
analysis. Figure 2.3 shows the Q2 evolution of the integral of the GRSV-std
gluon distribution as well as the unpolarized one.

The BB (Blumlein and Bottcher)[45] and the AAC (Asymmetry Analysis
Collaboration)[46] are newer global analyses that adopted newer experimen-
tal data, another parameterization and/or another error estimation method.
Figure 2.8 shows the polarized PDFs determined by the BB analysis with 1σ
error bands drawn as the shaded areas. The PDFs by the GRSV and AAC
analyses are also drawn for comparison. The errors of the three analyses on
∆g(x) are roughly same. Note that the definition of “1σ error” in the AAC
analysis is different from others; it assigns the error to the polarized gluon
distribution using χ2 increase of 12.647 since 11 parameters are involved in
the fit. All these analyses which used inclusive DIS data provide only a rough
constraint on ∆g(x). It suggests positive ∆g(x) though not conclusive.
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Figure 2.8: Polarized PDFs at the scale Q2 = 4 GeV2 determined by the
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Figure 2.9: The process of virtual photon-gluon fusion.

2.1.5 ∆g(x) measurement with SIDIS

∆g can be measured with Semi-Inclusive DIS (SIDIS) data via the process
of virtual photon-gluon fusion, gγ∗ → qq̄, illustrated in Fig. 2.9. When the
qq̄ pair in the final state is a cc̄ pair, this process can be clearly identified
by reconstructing D mesons, although the statistics is limited. When the qq̄
pair is a light quark pair and becomes two jets, this process is characterized
by the two jets having large transverse momentum (pT ), where pT is the
momentum component perpendicular to the direction of the virtual photon.
In the latter case, there are several background processes whose detection rate
is similar to that of the signal process; the QCD Compton (qγ∗ → qg instead
of gγ∗ → qq̄) and the Vector Meson Dominance process (interaction with the
hadronic structure of the virtual photon). The subtraction of the background
processes have been studied mainly with the PYTHIA event generator. The
HERMES experiment published a first result in 2000[47], and the HERMES
and COMPASS experiments are carrying out further analyses with updated
data. Figure 2.10 shows preliminary results of the SIDIS measurement. All
measurements indicate small ∆g at measured region x ∼ 0.1.

2.1.6 ∆g(x) measurement with proton-proton collisions

Longitudinally polarized proton-proton collisions are the powerful tool to
access to ∆g(x), since gluon in the proton can directly scatter via strong
interaction. The main reactions to probe ∆g(x) are

• direct photon production (~p~p → γX),
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Figure 2.10: Preliminary results of the gluon polarization evaluated with the
virtual photon and gluon fusion process in SIDIS. The length of a vertical
error bar represents the quadratic sum of statistical and systematic errors,
and the small tick on the vertical error bar represents the size of the statistical
error.
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(a) (b) (c)

Figure 2.11: Examples of lowest-order Feynman diagrams for elementary
processes with gluons in the initial state in pp collisions; (a) quark-gluon
Compton process for prompt-photon production, (b) gluon-gluon and gluon-
quark scattering for jet production, and (c) gluon-gluon fusion for heavy
quark pair production. ([48])

• jet production (~p~p → jetX), and

• heavy flavor pair production (~p~p → cc̄X, bb̄X).

Figure 2.11 shows the lowest-order Feynman diagram for each process.
Direct photons are produced via qg → γq and qq̄ → γg. The quark-gluon

Compton process (qg → γq) is favored in proton-proton collisions as opposed
to proton-antiproton collisions. Direct photons are promptly produced from
parton-parton scattering and are measured without any conversion or decay.
Therefore the measurement of direct photons can determine ∆g precisely.

Jets are produced via gg scattering (including gg → gg, gg → qkq̄k,
where the subscript denotes quark flavor), qg scattering (qig → qig) and qq
scattering (qiqj → qiqj, qiq̄i → qkq̄k, qiq̄i → gg). There are two approaches to
measure the jet production process for the ∆g determination;

• measuring all produced particles as a jet, and

• measuring only leading hadrons such as π0 or π± in a jet.

The advantage of jet production is its large cross section, which is roughly
100 times larger than that of the direct photon production.

Heavy flavor pairs are produced via gg → qq̄ to form D, B, or J/Ψ mesons
and are detected with µ+, µ−, e+, and/or e−. The heavy flavor measurement
can probe the low x region because even at small pT the heavy quark mass
assures large Q2 where the theory calculation can safely use the perturbative
expansion.
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Figure 2.12: Diagram of π0 production in proton-proton collision[48].

Unpolarized cross section

The unpolarized cross section for inclusive pion production (pp → πX), as
an example, illustrated in Fig. 2.12, can be written as

σpp→πX =
∑

f1,f2,f

∫
dx1dx2dzf1(x1, µ

2)f2(x1, µ
2)

× σ̂f1f2→fX′
(x1p1, x2p2, pπ/z, µ)Dπ

f (z, µ2) (2.45)

where f1 and f2 are qf or g. The equation is factorized into three elements;
1) parton distribution function (f1, f2), 2) parton-parton scattering cross
section (σ̂f1f2→fX′

), and 3) fragmentation function (Dπ
f ). The fragmentation

function represents the finding probability of a particle (π in this case) with
a momentum fraction of z in the parton f .
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Polarized cross section and double helicity asymmetry

The polarized cross section for inclusive pion production is defined as

∆σpp→πX ≡1

4

[
σpp→πX

++ − σpp→πX
+− − σpp→πX

−+ + σpp→πX
−−

]

=
∑

f1,f2,f

∫
dx1dx2dz∆f1(x1, µ

2)∆f2(x1, µ
2)

× ∆σ̂f1f2→fX′
(x1p1, x2p2, pπ/z, µ)Dπ

f (z, µ2) (2.46)

∆σ̂f1f2→fX′ ≡1

4

[
σ̂f1f2→fX′

++ − σ̂f1f2→fX′

+− − σ̂f1f2→fX′

−+ + σ̂f1f2→fX′

−−

]
(2.47)

where “+” and “−” denote the helicity of proton or parton, and ∆σ̂f1f2→fX′

is polarized parton-parton cross section. The parton-parton cross section is
well predicted by perturbative Quantum-Chromo Dynamics (pQCD), and the
fragmentation function has been determined with electron-positron collision
experiments and lepton-nucleon DIS experiments. Therefore, the polarized
parton distribution function can be extracted from the polarized cross section
of the pion production.

The double helicity asymmetry (ALL) is defined as

ALL ≡ ∆σ

σ
(2.48)

We usually measure ALL instead of the absolute value of ∆σ itself to access
the information on ∆g, because many systematic errors cancel out between
the denominator σ and the numerator ∆σ and thus a precise measurement
can be achieved. The ALL of pion production is derived from Eq. 2.45 and
Eq. 2.46 as

ALL =

∑
f1,f2,f

∫
dx1dx2dz · ∆f1 · ∆f2 · σ̂f1f2→fX′ · âf1f2→fX′

LL · Dπ
f∑

f1,f2,f

∫
dx1dx2dz · f1 · f2 · σ̂f1f2→fX′ · Dπ

f

(2.49)

where âf1f2→fX′

LL is the spin-dependent asymmetry for the parton-parton scat-
tering,

âf1f2→fX′

LL ≡ ∆σ̂f1f2→fX′

σ̂f1f2→fX′ (2.50)

and is called “analyzing power” because the non-zero âLL makes ALL sen-
sitive to ∆f . Table 2.2 shows the lowest-order unpolarized and polarized
partonic cross sections that are related to jet production process. Figure 2.13
shows the lowest-order analyzing powers as functions of the partonic scat-
tering angle in center-of-mass system. At mid-rapidity (θ ∼ 0) the gg → gg
subprocess, which dominates in the jet production process, has large âLL.
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Table 2.2: The lowest-order unpolarized cross sections and analyzing powers
that are related to jet production process[49]. Subscript i or j (i 6= j)
specifies a quark flavor. s, t and u are Mandelstam variables of parton-parton
scattering.

Subprocess Unpolarized cross section Analyzing power âLL

qiqj → qiqj
4πα2

s

9s2

s2 + u2

t2
s2 − u2

s2 + u2

qiq̄i → qj q̄j
4πα2

s

9s2

t2 + u2

s2
−1

qiq̄i → qiq̄i
4πα2

s

9s2

[
s2 + u2

t2
+

t2 + u2

s2
− 2

3

u2

st

] s2−u2

t2
− t2+u2

s2 + 2
3

u2

st
s2+u2

t2
+ t2+u2

s2 − 2
3

u2

st

qiqi → qiqi
4πα2

s

9s2

[
s2 + u2

t2
+

s2 + t2

u2
− 2

3

s2

ut

] s2−u2

t2
+ s2−t2

u2 − 2
3

s2

ut
s2+u2

t2
+ s2+t2

u2 − 2
3

s2

ut

qiq̄i → gg
32πα2

s

27s2

[
u

t
+

t

u
− 9

4

t2 + u2

s2

]
−1

qig → qig
4πα2

s

9s2

[
−u

s
− s

u
+

9

4

s2 + u2

t2

]
s2 − u2

s2 + u2

gg → qiq̄i
πα2

s

6s2

[
u

t
+

t

u
− 9

4

t2 + u2

s2

]
−1

gg → gg
9πα2

s

2s2

[
3 − tu

s2
− su

t2
− st

u2

] −3 + 2s2

ut
+ ut

s2

3 − tu
s2 − su

t2
− st

u2
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Figure 2.13: Lowest-order analyzing powers[49] for various reactions rele-
vant to RHIC, as functions of the partonic scattering angle in center-of-mass
system, θ. Left: longitudinal polarization, right: transverse polarization (a
factor cos(2φ) has been taken out, where φ is the azimuthal angle of one
produced particle).
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Sensitivity of ALL to ∆g(x)

The ALL in jet production is contributed from three subprocesses, gg, qg and
qq scatterings. The qq subprocess can make a non-zero ALL, but such ALL

is not sensitive to ∆g(x) but only to ∆q(x). Therefore, when the fraction of
gg and qg subprocesses are larger, the ALL becomes more sensitive to ∆g(x).
The gg subprocess always makes a positive ALL with positive or negative
∆g(x) because ALL ∼ ∆g(x) × ∆g(x). Therefore the qg subprocess has an
advantage in determining the sign of ∆g(x).

Figure 2.14 shows the fraction of gg, qg and qq subprocesses in unpo-
larized jet, particle cluster and π0 production processes as functions of pT .
The “particle cluster” is a jet core that is measured by this analysis, and
the definition is described later. The π0 is a particle produced in the jet
fragmentation. Therefore the pT of a particle cluster and a π0 in an event is
a fraction of a jet in the event. A relation pjet

T ∼ pparticle cluster
T /0.8 ∼ pπ0

T /0.5
holds on average, although the ratios largely fluctuate event-by-event. All
production processes are dominated by qg or gg subprocess in the pT range
shown. As stated in Chapter 1, the measurement of particle cluster is more
sensitive to qg subprocess than the measurement of inclusive π0. Thus, it is
suited to determine the sign of ∆g(x).

2.2 Jet production in proton-proton collisions

2.2.1 Jet cone and clustering procedure

Jet is a group of particles fragmented from a scattered parton as illustrated
in Fig. 2.15. The fragmentation is caused by the confinement of a parton by
strong color interaction. The phenomenon of jet production was discovered
in 1975 at SLAC with e+e− → qq̄ reaction[50]. The momenta of particles in
a jet have almost the same direction as that of the original parton, but are
spread a little within the principle of uncertainty. The transverse component
of the momentum of each particle against the jet direction is independent of
the jet momentum itself and the mean value is almost constant;

〈jT 〉 ∼ 300 MeV/c (2.51)

Figure 2.16 shows energy flow in φ-η (transverse) plane measured in proton-
antiproton collisions by CDF Collaboration[51]. φ is the azimuthal angle
around the proton beam axis. η is the pseudo-rapidity which is defined with
the polar angle from the proton beam axis (θ) as

η ≡ − ln

(
tan

θ

2

)
(2.52)
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Figure 2.14: Subprocess fractions in unpolarized jet (Top), particle cluster
(Middle) and π0 (Bottom) production processes as functions of pT . The
first was evaluated with a pQCD NLO calculation, and the others with a
PYTHIA event generator. Detailed information on the processes is described
later.
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gluon

proton
proton

fragmentation

jet

jet

Figure 2.15: Diagram of jet production in proton-proton collision (through
gluon-gluon scattering in this case).

Figure 2.16: Energy flow in the transverse plane for the three events con-
taining the highest total transverse energies [(a)-(c)] observed in the CDF
high-

∑
ET data sample, and (d) an example of an event with a complicated

jet topology. ([51])
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Figure 2.17 shows transverse energy flow etc. in jets measured in proton-
antiproton collisions by UA1 Collaboration[52].

To find jets in one proton-proton collision event, a cone algorithm is usu-
ally adopted. The distance between a cone axis (ηC , φC) and the momentum
direction of a particle (ηi, φi) is defined as

Ri =
√

(ηi − ηC)2 + (φi − φC)2, (2.53)

and particles with a Ri less than the cone radius RC are included in the cone
to form a jet. The size of the RC is usually 0.4 to 0.7, which collects about
90% of pT of a jet on average. Some cone algorithms are described below.

Snowmass algorithm

The Snowmass algorithm was proposed at the Snowmass Workshop[53] in
1990. Momenta of all particles are used as a seed of the cone axis. Particles
inside the cone are gathered, and the transverse energy (EC

T = EC sin θC)
and the centroid (η̄C , φ̄C) of the particles in the cone are defined as

EC
T =

∑

i∈C

Ei
T , η̄C =

∑

i∈C

Ei
T ηi/EC

T , φ̄C =
∑

i∈C

Ei
T φi/EC

T . (2.54)

The cone position is replaced with the centroid and the procedure above is
iterated until ηC = η̄C and φC = φ̄C are satisfied.

Due to the use of seed, the algorithm is sensitive to the infrared singularity
and the collinear singularity which appear in higher-order pQCD calculations.
An example of the sensitivities are illustrated in Fig. 2.18. The algorithm
without seed can be realized by, for example, checking whether every possible
combination of 2, 3. . . N particles in one event is in a stable cone or not.
But in reality it takes too long calculation time O(N2N) to be applied on
experimental data.

Midpoint algorithm

The midpoint algorithm[54] has been developed by the CDF experiment
based on the Snowmass algorithm. It adds a midpoint between two sta-
ble cones that are found with the Snowmass algorithm, and checks whether
a cone at the midpoint can be a newly stable cone or not. It avoids most of
the infrared sensitivity with rather a short calculation time.

SISCone algorithm

The SISCone (Seedless Infrared Safe Cone) algorithm[55][56] has been pro-
posed recently in 2007. It doesn’t use a seed and tries to identify all distinct
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Figure 2.17: (a)-(c): Transverse energy flow as function of ∆η, i.e. pseudo-
rapidity distance from the jet axis, for 3 slices of jet ET . The bin width
is d∆η = 0.05, azimuthal integration is taken within ∆φ = ±90o. (d)-(f):
Charged transverse momentum flow as function of ∆η. (g)-(i): Charged
multiplicity flow as function of ∆η. ([52])
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Figure 2.18: Left: An illustration of infrared sensitivity in a seed-cone
algorithm. The presence of soft radiation between two jets causes a merging
of the jets. Right: An illustration of collinear sensitivity in a seed-cone
algorithm. The collinear splitting causes a disappearance of a seed particle
and then a jet[54].

cones, where the “distinct” cone means that it contains its own set of par-
ticles. It can be performed with a reasonable calculation time O(Nn ln n),
where N is the number of particles in an event and n is the typical number
of particles in a cone. It is infrared safe because of its seedlessness.

2.2.2 Cross section

The jet cross section has a form similar to Eq. 2.45 except the fragmentation
function.

σpp→jetX =
∑

f1,f2,f

∫
dx1dx2f1(x1, µ

2)f2(x1, µ
2)σ̂f1f2→fX′

(x1p1, x2p2, pjet, µ)

(2.55)
A calculation of the jet cross section under the condition of the PHENIX
experiment (

√
s = 200 GeV, |η| < 0.35, R = 1) has been done by W. Vogel-

sang in next-leading-order (NLO) pQCD with the Small Cone Approximation
(SCA)[57][58]. The jet cross section can be written at the next leading order
as

dσ

dpjet
T dηjet

=
2pjet

T

S

∑

a,b

∫ V

V W

dv

v(1 − v)

∫ 1

V W/v

dw

w
fa(xa, µF )fb(xb, µF )

×

[
dσ̂

(0)
ab→jetX(s, v)

dv
δ(1 − w) +

αs(µR)

π

dσ̂
(1)
ab→jetX(s, v, w, µF , µR; δ)

dvdw

]

(2.56)

where δ = R/ cosh(ηjet) is the half-aperture of cone; dσ̂
(0)
ab→jetX and dσ̂

(1)
ab→jetX

are LO and NLO partonic cross sections; V and W are dimensionless kine-
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matic variables defined as

V ≡ 1 − pjet
T√
S

exp(ηjet) , W ≡ (pjet
T )2

SV (1 − V )
(2.57)

with the proton c.m.s. energy squared S = (Pa +Pb)
2; v etc. are parton-level

kinematic variables defined as

v ≡ 1 +
t

s
, w ≡ −u

s + t
, s ≡ (pa + pb)

2 , t ≡ (pa −Pjet)
2 , u ≡ (pb −Pjet)

2

(2.58)
where Pjet is the four-momentum of jet; xa and xb are the Bjorken-x variables
and are given by

xa =
V W

vw
, xb =

1 − V

1 − v
; (2.59)

fa and fb are the PDFs; µR and µF are the renormalization and factoriza-
tion scales. Under the SCA, where only collinear final state radiation can
contribute to dσ̂

(1)
ab→jetX , the 2 → 3 matrix elements factorize into 2 → 2 ones

and LO splitting functions, and thus the calculation dramatically simplifies
and can be done largely analytically.

Figure 2.19 shows the unpolarized jet cross section at a pseudo-rapidity
|η| < 0.35 with a cone radius R = 1, which was calculated at NLO under the
SCA. The fraction of gg, qg, and qq subprocesses in the jet cross section is
shown at the top of Fig. 2.14. At mid-rapidity the gg and qg subprocesses
are dominant. The validity of the SCA has been checked by comparing
the cross section in the SCA with that in a full Monte-Carlo approach at
5 < pjet

T < 27 GeV/c and R = 0.4, 0.7, 1.0. At the pjet
T range, the ratio

dσ(SCA)/dσ(full MC) is ∼1 for R = 0.4, 0.90 to 0.95 for R = 0.7 and 0.80
to 0.85 for R = 1.0.

2.2.3 Double helicity asymmetry

The jet ALL can be written in analogue to Eq. 2.49 as

ALL =

∑
f1,f2,f

∫
dx1dx2 · ∆f1 · ∆f2 · σ̂f1f2→fX′ · âf1f2→fX′

LL∑
f1,f2,f

∫
dx1dx2 · f1 · f2 · σ̂f1f2→fX′ (2.60)

A jet ALL calculation under the condition of the PHENIX experiment has
been done also based on the SCA[58]. Figure 2.20 shows the jet ALL with
four assumed ∆g(x). Jets at mid-rapidity are produced mainly via gg and
qg subprocesses, and each subprocess has a different magnitude of ALL as
shown in Fig. 2.21.
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Figure 2.19: Unpolarized jet cross section at a pseudo-rapidity |η| < 0.35
with a cone radius R = 1. It was calculated at NLO under the SCA with
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As well as the unpolarized cross section, the validity of the SCA has
been checked by comparing the polarized cross section in the SCA with that
in a full MC approach at 5 < pjet

T < 27 GeV/c and R = 0.4, 0.7, 1.0. At
the pjet

T range, the ratio d∆σ(SCA)/d∆σ(full MC) is 1.0 to 1.1 for R = 0.4,
0.90 to 1.0 for R = 0.7 and 0.85 to 0.90 for R = 1.0. Then, the ratio
ALL(SCA)/ALL(full MC) is ∼1.1 at pjet

T = 5 GeV/c and ∼1.0 at pjet
T = 27

GeV/c for the three cone sizes.
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Chapter 3

Experimental Setup

3.1 Accelerator

The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Labo-
ratory is a unique machine for polarized proton-proton collision. Figure 3.1
shows the schematic layout of the RHIC accelerator complex which is relevant
to polarized proton-proton collisions. The RHIC Spin Collaboration aims to
investigate the characteristics of the proton spin structure using polarized
proton-proton collisions. Polarized protons are generated at a polarized ion
source and are accelerated via RFQ, Linac, AGS and RHIC up to

√
s = 200

GeV or 500 GeV. Two experiments, the PHENIX and the STAR, are now
being carried out at RHIC.

3.1.1 Polarized proton source

The RHIC utilizes an Optically Pumped Polarized Ion Source (OPPIS)[59].
Figure 3.2 is the general layout of the BNL OPPIS. In a strong magnetic
field a left-circulated laser pumps up an electron of Rb atoms to the higher
Zeeman-split state and makes electrons of Rb atoms polarized. H+ ions are
injected into the Rb gases in the direction parallel to the magnetic field and
picks up polarized electron of Rb atoms to form H0s. The electron polar-
ization transfers to the protons by the Sona type diabatic (slow) transition
in the zero-magnetic-field space. H0s pass through a Na gas volume where
a strong magnetic field is applied in the direction anti-parallel to the first
magnetic field, to strip electrons and form H−s. The direction of the H− po-
larizations can be reversed by changing the direction of the magnetic fields.
A polarization of ∼ 90% has been achieved in 2007.

The polarized H− beams are accelerated by a Radio Frequency Quadrapole
(RFQ) accelerator up to 75 keV, by a Linac up to 200 MeV and by a Booster
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Figure 3.1: Schematic layout of the RHIC accelerator complex which is
relevant to polarized proton-proton collisions[48].
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Figure 3.2: The general layout of the BNL OPPIS[60].
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up to a kinetic energy of 1.52 GeV. They are strip-injected into the AGS
synchrotron and are accelerated up to 24.2 GeV. In the Booster, AGS and
RHIC the direction of the proton polarization is vertical.

3.1.2 RHIC

The RHIC is composed of two separate beam pipes called “blue ring” and
“yellow ring”, in which ions circulate clockwise and counterclockwise, respec-
tively. The circumference of the RHIC is 3.83 km. Polarized protons in the
AGS are slow-extracted by a kicker magnet and are injected first into the
blue ring and then the yellow ring. The beams are accelerated up to 100
GeV. There are six beam interaction points called “2 o’clock”, “4 o’clock”
. . . “12 o’clock”. The PHENIX experiment and the STAR experiment are lo-
cated at the 8 o’clock and the 6 o’clock, respectively. The number of bunches
stored in RHIC at a time is 120 and the interval between the bunches is 31.9
cm or 106 ns. The number of bunches that are actually filled with ions was
typically 55 at the beginning of year 2005 and 111 at the end of 2005 and
in 2006. A set of beam injection, acceleration, store and dump is called a
“fill”. The polarization directions of the filled bunches are made different in
each fill so that all four polarization patterns in a collision (++, +−, −+
and −−) take place. Four polarization orders, such as + +−−+ +−− · · ·
for blue-ring bunches and + − + − + − + − · · · for yellow-ring bunches, are
used in each fill to avoid possible bunch-dependent systematic errors. One
fill lasts typically 4∼8 hours.

3.1.3 Beam luminosity

The luminosity of two colliding beams, whose beam profiles are assumed to
be Gaussian, is given by

L =
frevNBNY

2πσxσy

(3.1)

σx =
√

σ2
xB + σ2

xY (3.2)

σy =
√

σ2
yB + σ2

yY (3.3)

where frev is the frequency of the beam revolution (78 kHz), namely the
frequency of the crossing of each bunch pair; NB and NY are the numbers
of ions stored in the blue and yellow rings, respectively; σx and σy are the
width in x and y direction of collisions between the two beams. They are
represented with the widths of the blue beam (σxB, σyB) and the yellow beam
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(σxB, σyB) at the collision point. The luminosity is obtained by measuring
all the values as described below.

The number of ions (N1 and N2) are measured with two types of equip-
ments; the Direct Current Current Transformer (DCCT) and the Wall Cur-
rent Monitor (WCM). The DCCT is a high-permeability copper toroidal coil
and has been installed in both the blue and yellow rings near the 2 o’clock
interaction point. It measures the electric current induced in itself by the
beam current and can precisely determine the integral of beam current dur-
ing ∼1 sec with an accuracy of ≈ 0.2%. Due to the long integral time, it
doesn’t distinguish bunched and debunched ions. The WCM is a large-RLC
circuit placed between two adjacent insulated barrels of the beam pipe and
has been installed in both the blue and yellow rings near the 2 o’clock inter-
action point. It measures, with a sampling time of ∼0.25 nsec, the voltage
across the circuit that is caused by an image charge dragged by the beam cur-
rent on the beam pipe. It is not as precise as the DCCT but can distinguish
bunched and debunched ions because of its short sampling time. A possible
contribution of debunched ions is checked with the comparison between the
two measurements.

The widths of the beams (σxB etc.) are measured with the Vernier scan
method[61]. When the offset (dx) of two colliding beams in x direction
become non-zero, the luminosity varies as

L(dx) =
frevNBNY exp (−dx2/2σ2

x)

2πσxσ2
y

(3.4)

First, any trigger in the PHENIX DAQ needs to be selected, whose trigger
rate is proportional to L(dx). Then the trigger rates are measured as a
function of dx, while the RHIC control room moves the x position of one
beam stepwise. Since the efficiency of the trigger doesn’t depend on dx, the
width of the trigger rate distribution is equal to σx.

3.1.4 Beam polarization

The evolution of the spin direction of polarized protons in an external mag-
netic field such as what exists in a circular accelerator is governed by the
Thomas-BMT equation,

dP

dt
= − e

γm

[
GγB⊥ + (1 + G)B‖

]
× P (3.5)

where P is polarization vector expressed in the frame that moves with the
proton, G = 1.7928 is the anomalous magnetic moment of the proton, and

45



γ = E/m. This expression is similar to the Lorentz force equation that
governs the evolution of the orbital motion in an external magnetic field,

dv

dt
= − e

γm
B⊥ × v. (3.6)

The spin rotates Gγ times faster than the orbital motion. Thus Gγ is called
spin tune νsp since it means the number of spin precessions per orbital rota-
tion.

There are many sources of depolarization during acceleration. Any de-
polarization is caused by small horizontal magnetic fields, which move spin
away from the stable vertical direction. Two main sources are an imper-
fection resonance and an intrinsic resonance. The imperfection resonance
is due to horizontal fields caused by magnet errors and misalignments and
arises when νsp = n, where n is an integer. The intrinsic resonance is due
to horizontal focusing fields (it is intrinsic to stable acceleration) and arises
when νsp = kP ± νy, where k is an integer, P is the super-periodicity (= 12
for AGS and = 3 for RHIC), which is given by the number of identical peri-
ods of the accelerator, and νy is the vertical betatron tune (= 8.75 for AGS
and = 29.23 for RHIC). When a polarized beam is accelerated through an
resonance, the final polarization is given by

Pf

Pi

= 2 exp

(
−π |ε|2

2α

)
− 1, (3.7)

where Pi and Pf are the polarization before and after the resonance crossing,
ε is the resonance strength[62][63] obtained from the spin rotation of the
driving fields and is shown in Fig. 3.3, and α is the change of the spin tune
per radian of the orbit angle. At RHIC, the depolarization resonances are
avoided using spin rotation magnets called “Siberian Snake”. The Siberian
Snake rotates the spin by 180◦ around the horizontal axis. It makes the stable
spin direction unperturbed at all time as long as the spin rotation from the
Siberian Snake is much larger than that from the resonance driving fields.
At AGS, two Siberian Snakes that rotates the spin partially (not 180◦) are
adopted.

Spin rotators are placed upstream and downstream of the collision points
for both the blue and yellow beams. They make it possible to collide protons
with longitudinal polarization as well as transverse polarization.

The beam polarization at RHIC is measured using two polarimeters at
the 12 o’clock; the pC polarimeter and the H-jet polarimeter. The pC po-
larimeter utilizes the left-right asymmetry in the cross section of polarized
proton-carbon scattering (~pC → ~pC) at the Coulomb Nuclear Interference
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Figure 3.3: RHIC intrinsic spin resonance strength as a function of beam
energy[62].

kinematic region (0.001 . |t| . 0.01(GeV/c)2)[64]. The polarized proton is
the beam stored in RHIC, and the carbon is a ribbon of a ∼5 µm width
and a ∼5 µg/cm2 thickness and is inserted into the RHIC beams during po-
larization measurements. Since the carbon is a solid target, the scattering
rate is large enough to precisely measure the asymmetry in a few minutes
and thus the beam polarization is usually measured two or three times per
fill using the pC polarimeter. But the systematic error of the polarization
measurement is 20% mainly due to an uncertainty on the measurement of
recoil carbon energy. The H-jet polarimeter utilizes the left-right asymmetry
in the cross section of polarized proton-proton scattering (~pp → ~pp) at the
CNI region[65]. The (unpolarized) proton target is a hydrogen-gas jet (H-jet)
that is sprayed downward across the RHIC beams all the time. The scatter-
ing rate is too small to determine a beam polarization fill-by-fill. The H-jet
is also polarized and its polarization is measured with a 2% accuracy with
a Breit-Labi polarimeter placed downstream of the H-jet. The systematic
errors in the left-right asymmetry for the determination of the proton beam
polarization (εbeam

L ) and the H-jet polarization (εtarget
L ) cancel out since the

detector used is common. Therefore the beam polarization can be determined
precisely as

Pbeam =
εbeam
L

εtarget
L

· Ptarget (3.8)

At present a 5% accuracy has been achieved.
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Figure 3.4: The schematic drawing of PHENIX detector.

The polarizations of the blue and yellow beams measured with the CNI
polarimeter and the pattern of spin directions of all bunches are provided by
the RHIC control room for all experiments during collisions via a hardware
called “Common Device (CDEV)”.

3.2 PHENIX detector overview

The PHENIX detector[66] can be grouped into three parts; the Inner De-
tectors, the Central Arms and the Muon Arms. Figure 3.4 is a schematic
drawing and Fig. 3.5 is cross sections in the beam view and the side view.
Figure 3.6 shows the magnetic field lines formed by four magnets called
Central Magnet Inner (CMI), Central Magnet Outer (CMO), Muon Magnet
North (MMN) and Muon Magnet South (MMS).

The Inner Detectors include the Beam-Beam Counters (BBC) and the
Zero-Degree Calorimeters (ZDC). The BBC measures the number of charged
particles in forward and backward regions to determine collision time, colli-
sion z-vertex, and beam luminosity. The ZDC measures neutrons in forward
and backward regions and is used as a local polarimeter, which assures that
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Figure 3.7: The PHENIX coordinate system.

the beam polarization is correctly longitudinal or transverse at the interac-
tion region by observing the left-right asymmetry in the ~p+p → neutron+X
scattering cross section[67].

The Central Arms have a tracking system and an Electro-Magnetic Calorime-
ter (EMCal). The tracking system consists of Pad Chambers (PC), Drift
Chambers (DC), Ring-Imaging Cherenkov (RICH) detectors, etc. The PC
and DC measure the track information of charged particles, and the RICH
and other detectors are used for identifying the type of charged particles.
The EMCal measures the position and energy of photons and electrons.

The Muon Arms have the Muon Trackers (MuTr) and the Muon Iden-
tifiers (MuID). The MuTr consists of three multi-plane drift chambers, and
the MuID consists of alternating layers of steel absorbers and Iarocci-type
streamer tubes.

Fig. 3.5 shows the PHENIX coordinate system. The z axis is along the
beam direction. The x and y axes are in horizontal and vertical directions,
respectively. +x, +y and +z directions point to the West Arm, the top and
the North Arm, respectively.

Table 3.1 summarizes the coverage of the main PHENIX detector subsys-
tems. In the subsections below, subsystems used in this analysis are explained
in detail. Particularly I have performed two experimental tasks related to the
EMCal of the Central Arms. One is an energy calibration of every EMCal
module using π0 invariant mass peak. It checked that each EMCal mod-
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Table 3.1: Coverage of the main PHENIX Detector Subsystems. ∆η is the
pseudo-rapidity coverage, and ∆φ is the azimuthal angle coverage.

Element ∆η ∆φ
Magnet: central (CM) ±0.35 360o

muon (MMS) −1.1 ∼ −2.2 360o

muon (MMN) 1.1 ∼ 2.4 360o

Beam-beam (BBC) ±(3.1 ∼ 3.9) 360o

ZDC ±2 mrad 360o

Drift chambers (DC) ±0.35 90o × 2
Pad chambers (PC) ±0.35 90o × 2
TEC ±0.35 90o × 2
RICH ±0.35 90o × 2
ToF ±0.35 45o × 2
T0 ±0.35 45o × 2
PbSc EMCal (East) ±0.35 45o

PbSc EMCal (West) ±0.35 90o

PbGl EMCal (East) ±0.35 45o

Muon tracker (South) −1.15 ∼ −2.25 360o

Muon tracker (North) 1.15 ∼ 2.44 360o

Muon identifier (South) −1.15 ∼ −2.25 360o

Muon identifier (North) 1.15 ∼ 2.44 360o

52



Figure 3.8: The arrangement of detection modules in BBC North.

ule had a expected gain and also adjusted a tower-to-tower gain fluctuation.
The methods and results of the energy calibration is described in the chapter
“Analysis Methods”. The other is a development of ERT, which is a high-
energy-photon trigger of the EMCal. Pedestal levels of each trigger module
are different, and thus are measured module-by-module in order to achieve
a uniform trigger-energy threshold. I have developed a fast program that
measured a pedestal level of every trigger modules. It enabled us to adjust
the pedestal levels frequently enough.

3.3 Beam-beam counter (BBC)

The BBC is two identical sets of counters placed at both the north and south
sides of the collision point[68]. The distance between the collision point and
the BBC is 144 cm. Each counter is composed of 64 one-inch diameter
mesh-dynode PMTs (Hamamatsu R6178) equipped with 3 cm quartz as a
Cherenkov radiator. Figure 3.8 shows the arrangement of the pairs of the
quartz and the PMT in the BBC North. The outer and inner diameters are
30 cm and 10 cm, respectively, and it covers a pseudo-rapidity of 3.0 < |η| <
3.9 over the full azimuth. The gain of each PMT is adjusted using a MIP

53



(minimum ionizing particle) peak in pulse height distribution. During data
taking, timing drifts of each element are monitored and calibrated using a
laser signal.

The BBC measures the number of charged particles in forward and back-
ward regions to determine the collision time, collision z-vertex, and beam
luminosity. The hit timing (TN and TS) of each BBC is defined as the aver-
age of hit times of all the modules in each side. The time (T0) and z-vertex
(zBBC) of a collision is then determined as

T0 =
TS + TN

2
− L

c
(3.9)

zBBC =
c(TS − TN)

2
(3.10)

where L = 144 cm is the distance between collision point and the BBC. The
resolutions of T0 and zBBC in proton-proton collisions are ∼ 20 ps and 2 ∼ 3
cm, respectively.

3.4 Zero degree calorimeter (ZDC)

The ZDC is two sets of hadronic calorimeters placed at the north and south
sides of the collision points with a distance of 18 m[69]. Figure 3.9 shows the
mechanical design of a ZDC module, and three modules per side are placed
along the beam direction. It covers a 10 cm × 10 cm area perpendicular
to the beam direction, which corresponds to 2.8 mrad when viewed from
the collision point. It consists of alternating layers of tungsten absorbers
and sampling fibers, and has 150 radiation length and 5.1 interaction length.
Before the ZDC, a DX dipole magnet is located to bend the beams in RHIC.
Therefore charged particles are swept out by the magnetic fields. A counter
made of plastic scintillator is placed in front of the ZDC to veto charged
particles coming from the collision point.

The Shower Maximum Detector (SMD) is inserted between the first and
second ZDC modules to determine the hit position of neutrons. It consists
of 16 scintillator hodoscopes; eight in vertical and eight in horizontal. The
position of an incident neutron is evaluated as the centroid of deposit energies
in the hodoscopes.

3.5 Electromagnetic calorimeter (EMCal)

The EMCal system is located at a 5 m distance from the beam pipe to
measure the position and energy of mainly photons and electrons[70]. The
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Figure 3.9: Mechanical design of the production Tungsten Modules. Dimen-
sions shown are in mm. ([69])
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Figure 3.10: The construction of the PbSc module.

system consists of four sectors in each of the East and West Arms, and each
sector has a size of 2×4 m2. The system is composed of two-type towers;
one is PbSc used in all the four sectors in the West Arms (called W0, W1,
W2 and W3 from bottom to top) and two upper sectors in the East Arms
(called E2 and E3 from bottom to top), and the other is PbGl used in two
lower sectors in the East Arms (called E0 and E1 from bottom to top).

The PbSc is a sampling calorimeter read out by PMT. It consists of
alternating layers of lead absorbers and scintillators. A tower of the PbSc
has a size of 5.535×5.535×37.5 cm3 (see Fig. 3.10) and a 18 radiation length.
It consists of 66 cells of a 0.15 cm Pb and a 0.41 cm scintillator. 36 wave-
length-shifting fibers penetrates all cells, where each fiber is loop-backed at
the front of the tower so that it penetrates all cells twice, and guide light
signals to the PMT. The Moliere radius is ∼ 30 mm. One sector is composed
of 72×36 towers. The resolutions of energy (σE) and position (σx) are given
by

σE

E
(%) =

8.1√
E(GeV)

⊕ 2.1 (3.11)

σx(E, θ)(mm) = σ0
x(E) ⊕ ∆ sin(θ) (3.12)

σ0
x(E)(mm) = 1.55 ⊕ 5.7√

E(GeV)
(3.13)
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where θ is the incident angle of photons against the detector surface and ∆
is the radiation length. The energy resolution is shown in Fig. 3.11.

The PbGl is a homogeneous calorimeter made of lead-glass Cherenkov
radiator read out by PMT. A tower of the PbGl has a size of 4×4×40 cm3

and a 14.4 radiation length. The Moliere radius is 37 mm. One sector is
composed of 96×48 towers. The resolutions of energy (σE) and position (σx)
have been measured with electron test beams and are given by

σE

E
(%) =

5.9√
E(GeV)

⊕ 0.8 (3.14)

σx(E, θ)(mm) = σ0
x(E) ⊕ ∆ sin(θ) (3.15)

σ0
x(E)(mm) = 0.2 ⊕ 8.4√

E(GeV)
(3.16)

where θ is the incident angle of photons against the detector surface and ∆
is the radiation length. The energy resolution is shown in Fig. 3.11.

Energies deposited by photons over some towers are clustered to recon-
struct the energies of the original photons using a method below, which is
almost common to the PbSc and PbGl. Only towers whose detected energy
is above a threshold are used in the clustering. The energy thresholds of
the PbSc and PbGl tower are 10 MeV and 14 MeV, respectively. Neighbor-
ing towers that have an energy above the threshold are gathered to form a
first-level cluster, which may be made by more than one photons. In the
first-level cluster, local maxima (in space) of deposited energies are found,
and the first-level cluster is divided into the number of the local maxima. The
energy deposited in a tower between the local maxima is shared according to
the breakdown of the deposited energy that is predicted from the energies of
the local maxima and the shape of the electromagnetic shower. The energy
of a PbGl cluster is the energy sum of all towers in the cluster. The energy
of a PbSc cluster is the energy sum of “core” towers in the cluster, where the
“core” tower means the towers where the deposit energy predicted from the
tower energy at cluster center is >2% of the measured cluster energy. The
ratio of core energy to total energy is 91.8% on average and weakly depends
on energy. The energy of a cluster is corrected for incident angle and energy
non-linearity based on the studies with test beam experiments and GEANT
simulations. The energy non-linearity is caused by energy leakage and, only
for the PbSc, light attenuation in the wave-length-shifting fiber. Figure 3.12
shows the correction functions for these effects.

The shape of a cluster, namely the spacial distribution of tower energies
in a cluster, is parameterized into a value “photon probability”, which repre-
sents the probability that the cluster is made by a photon. It is a confidence
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level evaluated with

χ2 =
∑

i

(Emeas
i − Epred

i )2

σ2
i

(3.17)

where i is tower index in a cluster, Emeas
i is energy measured in a tower i,

Epred
i is energy predicted to be deposited in a tower i, and σi is an error on

Epred
i . Figure 3.13 shows χ2 distribution for showers induced by 2 GeV/c

electrons and pions in the PbSc-type calorimeter. For example, a cut of
“photon probability > 0.01” eliminates 1% of photon clusters and ∼50% of
hadron clusters.

3.6 Charged particle tracking

The DC system[71] is located in the region from 2 to 2.4 m from the beam
pipe to measure the position and momentum of charged particles with the
help of the PC (pad chamber). The DC system consists of one frame in each
of the East and West Arms, and each frame has a cylindrical shape and a
size of 2.5 m×90◦ in z-φ direction (see Fig. 3.14). Each frame is divided into
20 sectors covering 4.5◦ in φ direction, and each sector consists of four sense
planes with a 2∼2.5 cm drift space in the φ direction (see Fig. 3.15). Each
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Figure 3.14: The construction of the DC frame.

sense plane has six types of wire modules stacked radially. Two of the six
type wires in one sector, which are called X1 and X2, run in parallel to the
beam to perform precise track measurements in r-φ. The other four type
wires, which are called U1, V1, U2 and V2, are tilted by a ±5◦ stereo angle
to determine the z coordinate of tracks. In total, 40 wire planes are placed
in the following order; 12 X planes (X1), 4 U planes (U1), 4 V planes (V1),
12 X planes (X2), 4 U planes (U2) and 4 V planes (V2) from inner to outer.

The PC system[71] is composed of multi-wire proportional chambers and
form three separate layers, which are called PC1, PC2 and PC3, of the Cen-
tral Arms tracking system. The PC1 is located behind the DC and is used for
determining the momentum vector together with the DC by providing the z
coordinate. The PC1 consists of a single plane of anode and field wires lying
in a gas volume between two cathode planes (see Fig. 3.16). One cathode
is segmented into pixels and the other is solid copper, and signals from the
pixels are routed outside the gas volume. Figure 3.17 shows the PC pixel
pattern. One cell has an effective readout size of 8.45 mm in z × 8.40 mm
in the x-y plane, and is divided into three pixels; one center pixel and two
side pixels. Nine pixels over nine (3 × 3) cells compose a pad that is read
out by a single preamplifier and discriminator. Charges made by a particle
in the gas volume spread over one or two cells, and the hit reconstruction of
the PC system requires that all three pixels in a cell must have a signal si-
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Figure 3.17: The PC pixel pattern. The three pixels form a cell at the center
of the figure. Nine connected pixels form a pad.

multaneously. This requirement reduces mis-reconstructions due to electrical
noises.

Charged particle tracks are reconstructed using the information of the
DC and the PC1[72]. The magnetic field between the collision vertex and
the DC is axial, and thus bends particles in the x-y plane. The field is so
weak at the DC and the outer side that particle tracks can be assumed to
be straight. First, in the DC, a track reconstruction is performed using a
combinatorial Hough transform technique. In this technique, the DC hits
are mapped pair-wise into a feature space defined by the polar angle at the
intersection of the track with a reference radius near the midpoint of the
DC (φ) and the inclination of the track at that point (α). Figure 3.18 shows
variables appeared in the Central Arm tracking, such as φ and α. Figure 3.19
shows an example of track hits and a result of the Hough transform using
the track hits. The α variable is proportional to the inverse of transverse
momentum, and is used as a probable value of reconstructed momentum.
Then the tracks reconstructed in the DC are associated with hits in the
PC1. If there is an unambiguous PC1 association, θ of a track is defined by
z of the associated PC1 hit and z of the collision vertex. If there is no PC1
association or are multiple association candidates, the U and V wires of the
DC are used instead of the PC to define θ of a track. The condition of the hit
association to a track is represented as a integer parameter “track quality”.
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Figure 3.19: Left: Simulated hits from a central Au+Au collision for a small
physical region of the DC. Right: The Hough transform feature space for
the region shown in the left plot. Tracks appear as peaks.

It contains 6-bit information; 1st bit = X1 used (or not), 2nd bit = X2 used,
3rd bit = UV found, 4th bit = UV unique, 5th = PC1 found, 6th bit = PC1
unique. Usually the track quality cut “= 31 OR ≥ 61” is required, where
the “= 31 (= 011111)” means “X1 and X2 used, UV found and unique, PC1
found” and the “≥ 61 (≥ 111101)” means “X1 or X2 used, UV found and
unique, PC1 found and unique”.

The momentum resolution is given by

σ(p)

p
= 8.1 · p(GeV/c) + 0.9(%) at p & 0.5 GeV/c (3.18)

3.7 Data acquisition (DAQ) system

3.7.1 DAQ outline

The RHIC facility provides the PHENIX with two clocks (blue clock and
yellow clock) that synchronize with bunches in either the blue ring or the
yellow ring. When the two beams collide the two clocks should make a com-
mon timing, and the PHENIX DAQ synchronizes the blue clock practically.

Figure 3.20 shows a block diagram of the PHENIX DAQ system. The blue
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Figure 3.20: Block diagram of PHENIX DAQ system.

clock inputs to the Master Timing Module (MTM) and the MTM distributes
the clock timing to the Granule Timing Modules (GTM). Each GTM provides
the clock timing to its own granule, where the “granule” means a handy group
of detectors such as the BBC, the DC West and EMCal East Bottom (two
bottom sectors of the East Arm), and this scheme enables us to operate many
granules separately at a time.

The GTM clock inputs to the Front-end Electronics Module (FEM) of its
granule that is placed in the interaction region. The FEM holds all data from
its detector in the Analog/Digital Memory Unit (AMU/DMU) on the FEM
over many RHIC clocks. If an event is decided to be taken by a PHENIX
hardware trigger, data of the event stored in the AMU/DMU are read out
into the Data Collection Module (DCM) after a digitalization if needed. The
DCM formats the data into the PHENIX Raw Data Format (PRDF) and
sends them to the Sub Event Buffers (SEB) and then to the Assembly and
Trigger Processors (ATP). The SEBs and the ATPs gather all data of each
event and write the event data onto five or six hard disks, called PHENIX
Buffer Boxes, simultaneously.

As an example of the treatment of detector signals, the EMCal FEM is
explained in detail here. Figure 3.21 shows the scheme of the EMCal FEM.
One EMCal FEM handles signals from 12 × 12 towers.
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Figure 3.21: The scheme of the EMCal readout circuit.

The PHENIX EMCal PMT emits a negative current pulse with a rise
time of < 5 ns. The voltage profile at the point A in Fig. 3.21 follows the
current profile and has a fast rise time as the input pulse. The voltage profile
at the point B follows the integral of the current, and is a step function with
a rise time of ∼ 100 ns. The fast and slow voltage pulses are inputted into
an ASIC chip, which is designed specially for the PHENIX EMCal system,
and are used as a timing and energy signals, respectively.

The timing signal is discriminated in either a leading-edge mode or a
constant-fraction mode, where the choices of mode and threshold voltage are
remotely selected via ARCNet which is commonly used for the monitoring
and the slow control of the PHENIX FEMs. The discriminator starts a
voltage ramp generator. The ramp is stopped on the next edge of the RHIC
clock providing a common-stop mode TAC. The voltage after a stop is held
for two clock cycles and then sampled in an AMU on the EMCal FEM.

On the other hand, the energy signal passes through a Variable Gain
Amplifier (VGA), which is exclusive to each PMT and whose gain can be
set remotely in a range of ×4 ∼ ×12 with 5-bit resolution. The VGAs
compensate for the gain variation of PMTs that share a common high voltage.
The dynamic range of physics signals from the EMCal is too large to be
covered with a single 12-bit ADC conversion. Thus two different levels of
amplification are adopted: one signal is amplified only once by the VGA
(called “low-gain”), and another signal is amplified twice by the VGA and a
×16 amplification (called “high-gain”). The low-gain and high-gain signals
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are sampled in AMUs on the EMCal FEM.
The TAC, low-gain and high-gain signals are sampled once per RHIC

clock tick and each signal is held in a ring buffer of 64 AMUs exclusive to
each signal. Therefore the signal is preserved for 64 RHIC clock ticks or
∼ 7 ms, which covers the latency of the PHENIX hardware trigger, 40 RHIC
clock ticks. When the FEM receives a signal of hardware trigger acceptance
on an event, the signals of the event stored in an AMU unit are read out
and converted in the ADC. The ADC outputs are controlled, collected and
reformatted by several Xilinx FPGAs and are sent to the DCM.

3.7.2 Triggers

The PHENIX experiment has various trigger configurations to efficiently se-
lect many interesting rare events. The PHENIX Level-1 trigger is a hardware
trigger and consists of two types of subsystems; the Local Level-1 (LL1) trig-
gers and the Global Level-1 (GL1) trigger. Input data from detector systems
are processed individually by a LL1 trigger system of each detector to pro-
duce a data set of trigger bit for each RHIC beam crossing. The GL1 trigger
receives the data from the LL1 triggers and provide a trigger decision. The
GL1 trigger can hold 32 sets of trigger configurations and issues a trigger
acceptance when at least one of enabled trigger configurations is fired. Any
trigger configuration can be prescaled by an arbitrary number, namely one
triggered event per prescale+1 triggered events is recorded. The decision by
the GL1 trigger causes all subsystems to send data to the DCM of each sub-
system. This measurement uses the BBCLL1 and ERTLL1 trigger systems.

BBCLL1

The BBCLL1 trigger in proton-proton collisions requires one hit on both
the north side and the south side. In other words, it requires that one
charged particle is produced at both the forward range (3.0 < η < 3.9)
and backward range (−3.9 < η < 3.0). The reconstructed z-vertex is re-
quired to be within ± ∼ 50 cm in order to assure an flat acceptance of the
PHENIX detectors. The BBCLL1 trigger is used as a minimum bias trigger.
In addition, a trigger configuration without the vertex cut, which is called
“BBCLL1(noVertexCut)”, is used in luminosity measurements.

The efficiency (fBBC) of the BBCLL1 trigger for high-pT QCD scatterings
such as jet production has been evaluated using data triggered by a high-pT

photon trigger, which is called ERTLL1 4x4b and is explained later,

fBBC =
NErt&BbcAnyV ertex

π0

NErt
π0

(3.19)
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Figure 3.22: The efficiency of the BBCLL1 trigger for π0 measured with the
PbSc (left) and PbGl (right) sectors as functions of π0 pT . Lines are fits to
a constant.

where NErt
π0 is the number of π0s in events that fired the ERTLL1 4x4b trig-

ger, and NErt&BbcAnyV ertex
π0 is the number of π0s in events that fired both the

ERTLL1 4x4b trigger and the BBCLL1(noVertexCut) trigger. The data an-
alyzed in the fBBC evaluation were taken only by the ERTLL1 4x4b trigger,
and a BBCLL1 trigger bit stored in event data was checked in the offline
analysis. Figure 3.22 shows the efficiencies fBBC as functions of pT of π0

when π0s were measured with the PbSc or PbGl sectors. The results are
independent of π0 pT in the measured range. The constant value from the fit
are 0.782 ± 0.002 for the PbSc and 0.780 ± 0.003 for the PbGl. The average
value 0.781 had to be increased by 0.005 ± 0.005 because of a drop of fBBC

from the vertex range |z| < 30 cm (the cut is used in physics analysis) to
the vertex range |z| < 40 cm (where the fBBC was measured). Therefore the
final value is

fBBC = 0.786 ± 0.005 (3.20)

ERTLL1

The ERT stands for EMCal-RICH Trigger. It is fired by the EMCal and/or
the RICH of the Central Arms. It has various configurations concerning
the threshold energy or the number of EMCal modules in which the total
detected energy is calculated. Figure 3.23 shows the scheme of the EMCal
signal summing. Signals from 2 × 2 EMCal modules (called 2 × 2 tile) are
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A total of 36 overlapping

several thresholds.

Figure 3.23: The scheme of the EMCal signal summing.

summed up in an ASIC chip on EMCal FEM. Five copies of the summed
signal are made and used. One copy is discriminated with an adjustable
threshold and used in a trigger called ERTLL1 2x2. One copy is added to
three summed signals that come from three adjacent 2× 2 tiles, and a 4× 4
summed signal is made. The 4 × 4 summed signal is divided into three sub
signals, and three sub signals are discriminated with three different thresholds
which are individually adjustable. The three discriminated signals are called
ERTLL1 4x4a, ERTLL1 4x4b and ERTLL1 4x4c. Three copies are sent to
three adjacent 2 × 2 tiles to form 4 × 4 summed signals on them. 4 × 4 tiles
overlap with one another, namely the right-top 2× 2 tile in a 4× 4 tile is the
left-top 2 × 2 tile in the right-next 4 × 4 tile, and thus the trigger efficiency
doesn’t change even if a photon hits on an edge of a 4 × 4 tile. Table 3.2
summarizes ERT trigger configurations. The ERTLL1 4x4c trigger was used
in the analyses for this thesis.

The efficiency (fERT ) of the ERTLL1 4x4c trigger has been evaluated
using data triggered by the BBCLL1 trigger:

fERT (E) =
NMB&ERT

ph (E)

NMB
ph (E)

(3.21)

where NMB
ph (E) is the number of photons with an energy E in events that
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Table 3.2: The main ERT configurations concerning the photon detection.
name EMCal energy threshold EMCal modules

ERTLL1 2x2 0.4 or 0.6 GeV 2×2
ERTLL1 4x4a 2.1 GeV 4×4
ERTLL1 4x4b 2.8 GeV 4×4
ERTLL1 4x4c 1.4 GeV 4×4

Figure 3.24: The ERTLL1 4x4c trigger efficiency as a function of photon
energy.

fired the BBCLL1 trigger, and NMB&ERT
ph (E) is the number in events that

fired both the BBCLL1 trigger and the ERTLL1 4x4c trigger. The data
analyzed in the fERT evaluation were taken only by the BBCLL1 trigger,
and a ERTLL1 4x4c trigger bit of 12 × 12 modules that a photon hit was
checked in the offline analysis. Figure 3.24 shows the efficiency fERT . The
turn-on curve at E ∼ 1.4 GeV is caused by variations of tower gains and
of trigger thresholds. The efficiency is almost flat and close to unity above
E ∼ 2 GeV.
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Trigger count scaler

The PHENIX DAQ have two types of scalers, GL1 scaler and GL1P scaler.
The GL1 scaler counts the events triggered by each trigger configuration.
Three types of counts are accumulated; raw, live (event count when the DAQ
isn’t in dead time) and scaled (event count after the prescale). The GL1P
scaler counts the events which occured at each beam crossing and triggered
by one of four trigger configurations. The GL1P scaler counts are used in
evaluating luminosities of every beam crossing in proton-proton collisions.

3.8 Simulation settings

To understand the response of the detectors in jet measurement, the PYTHIA
event generator[73] and the GEANT detector simulator[74] were used.

3.8.1 PYTHIA event generator

The PYTHIA version 6.220 was used. The collision condition is the same as
the actual experiment: proton-proton collisions in their center-of-mass frame
at

√
s = 200 GeV. With the MSEL set to 1, the PYTHIA generates QCD

high-pT process. With the CKIN(3) set to 1.5, the PYTHIA generates the
events which have a p̂T of > 1.5 GeV/c, where p̂T is transverse momenta
of scattered partons in center-of-mass frame of the two scattered partons.
The modified MSEL and CKIN(3) reduces the time for event generation and
does not affect any physics results at measured pT region. We call a PYTHIA
simulation with these conditions “PYTHIA default”.

3.8.2 Underlying event and Multi-Parton Interaction

When a hard parton-parton scattering event takes place in proton-proton
collisions, the event contains particles which originate from the two outgoing
partons and also particles which come from the breakup of the proton, i.e.
beam-beam remnants. The former particles consist of the two outgoing jets
and initial- and final-state radiation. The latter particles are everything
except the former ones, and are called “underlying event”. The two kinds
of particles cannot be completely distinguished with topological selection of
events. Therefore, reconstructed jets are contaminated with the underlying
event.

The PYTHIA reproduces the underlying event with Multi-Parton Inter-
action (MPI) mechanism. The MPI includes many semi-hard or soft parton-
parton scatterings in one event. Figure 3.25 is a schematic drawing of MPI.
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pr oton proton

Figure 3.25: Schematic drawing of multi-parton interaction.

First the hardest parton-parton scattering is generated with its initial- and
final-state radiation, next any multiple interactions, and finally beam rem-
nants are attached to the initiator partons of the hardest scattering to form
Lund strings.

By default the PYTHIA employs the MPI for reproducing the underly-
ing event, but it does not reproduce the data with satisfactory precision.
Therefore we modified MPI parameters as shown in Tab. 3.3. The values in
Tab. 3.3 have been tuned with CDF data[75]. We call the PYTHIA with
these conditions “PYTHIA MPI”.

Actually the values in Tab. 3.3 have been adopted as default values in
the PYTHIA version 6.226 and later. We checked outputs of the “PYTHIA
default” and the “PYTHIA MPI” to estimate the effect of the underlying
event on our measurement.

3.8.3 GEANT detector simulator

The PHENIX experiment has developed a GEANT3-based detector simu-
lator, called Phenix Integrated Simulation Application (PISA). It holds the
position and material of all detectors as drawn in Fig 3.26 and generates
hit signals made by simulated particles. The hit signals are formatted into
the PRDF and then are processed in the same way as the real data. But
the PISA doesn’t have actual detector conditions such as a variation of the
EMCal tower gains and a bad (dead/noisy) area of the tracking system.
Therefore outputs of the simulation were compared with the real data and
the simulation has been tuned as described in the next chapter.
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Table 3.3: PYTHIA MPI parameters.
parameter default used

MSTP(81) 1 1
MSTP(82) 1 4
PARP(81) 1.9 1.9
PARP(82) 1.9 2.0
PARP(83) 0.5 0.5
PARP(84) 0.2 0.4
PARP(85) 0.33 0.9
PARP(86) 0.66 0.95
PARP(89) 1000 1800
PARP(90) 0.16 0.25
PARP(67) 1.0 4.0

Figure 3.26: The detector geometry in the simulation. It is seen from top.
The East Arm is on the right side.
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Chapter 4

Analysis Methods

4.1 Outline

In this thesis, ALL of jet production process is analyzed to extract ∆g. The
data taken in 2005 are used. The total luminosity delivered to PHENIX
is 3.8 pb−1, and the PHENIX DAQ recorded 2.7 pb−1, mostly with the
ERTLL1 4x4c & BBCLL1 trigger. The BBCLL1 (without ERTLL1 4x4c)
trigger was also used for a check on systematic errors in the analyses for
this thesis. The effective luminosity recorded with the trigger was ∼0.3 pb−1

because the BBCLL1 trigger was prescaled by ∼10 on average in order to
match the total bandwidth of the PHENIX DAQ ∼ 5 kHz. Some data were
discarded because of bad conditions as described in Section 4.2.

Core particles of jet were measured and clustered with the cone method.
Photons in jets were detected with the EMCal, and charged particles in jets
were detected with the DC and PC1. Quality assurances and calibrations of
the detectors were made as described in Section 4.3. The methods of particle
clustering is described in Section 4.4.

The relation between measured jet core and original jet was estimated
with the PYTHIA+GEANT simulation. Simulation studies are explained in
Section 4.5. To confirm that the simulation reproduces well the real data in
terms of event structure, namely spacial distribution of particles in an event,
quantities sensitive to event structure were measured and was compared be-
tween the real data and the simulation output. It is described in Section
4.6.

Rate of cone production was measured in prior to ALL. It assures that
pQCD is applicable to our measurement. The methods of the rate measure-
ment are described in Section 4.7. The methods of ALL measurement and
various checks on systematic errors are described in Section 4.8.
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4.2 Run selection

The PHENIX DAQ usually takes data continuously for 0.5 to 1 hour, and
such continuous data taking period is called “run”. All quality assurances
were done run-by-run. After the run selections which are described below,
the integrated luminosity of usable data was 2.2 pb−1.

Obvious problems were detected during the data taking. High voltage
trips of the DC, PC and EMCal were monitored, which cause an increase
of dead areas. Variations of gain of the EMCal modules were traced us-
ing a test pulse by laser or LED. Detector QA analyses detected further
problems: Noisy EMCal modules were detected as a large π0 combinatorial
background. Noisy wires of the DC and/or PC1 were detected as a high oc-
cupancy. The status of beam polarization was checked (wrong spin pattern,
bad local polarimeter condition, etc.). Runs with bad scaler counts were
discarded because scaler counts are used in luminosity evaluation.

4.3 Quality assurance and calibration of de-

tectors

4.3.1 EMCal

Bad-tower map

Noisy or dead towers were detected by checking the number of hits per tower
compared to its mean value in a sector. All runs were divided into nine
ranges of run numbers, and energies were divided into four ranges; 0.4∼0.5,
0.5∼2, 2∼5 and 5∼30 GeV. The check has been done in each run and energy
range. The towers that were bad in at least one range were labeled bad. All
the edge towers and the uncalibrated towers in the tower-by-tower energy
calibration which is described later were also labeled bad. Towers around
the noisy/dead/edge/uncalibrated towers (3x3 towers) were excluded in this
analysis. Figure 4.1 shows the bad-tower map.

EMCal and ERT live area

Table 4.1 shows the history of ERTLL1 4x4c masks due to noisy trigger
tiles. The first half of statistics has been taken with four masks (W0-FEM5,
E0-FEM26, E2-FEM1, E0-FEM12) and the latter half has been taken with
additional four masks (W3-FEM4, W2-FEM9, E0-FEM6, E0-FEM16). The
additional four masks cover only 2% of the acceptance. Therefore we decided
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Figure 4.1: EMCal bad-tower map. (red: noisy, yellow: dead, green: uncal-
ibrated/edge, glaucous: around them).

Table 4.1: The history of the ERT 4x4c FEM mask.
date run from masks added statistics

2005.04.09 - W0-FEM5, E0-FEM26, E2-FEM1 0%
2005.04.17 168320 E0-FEM12 55%
2005.06.03 176574 W3-FEM4 0%

176608 W2-FEM9 1%
2005.06.04 176803 E0-FEM6, E0-FEM16 44%
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Table 4.2: The live areas of the EMCal towers and ERTLL1 4x4c trigger
tiles. All two towers from sector edges have been excluded in advance.

Sector EMCal live ERT live Both live N of towers

W0 2052 (94.30%) 2076 (95.40%) 1952 (89.71%) 2176
W1 2061 (94.72%) 2176 (100.00%) 2061 (94.72%) 2176
W2 1898 (87.22%) 2032 (93.38%) 1769 (81.30%) 2176
W3 1506 (69.21%) 2056 (94.49%) 1506 (69.21%) 2176
E0 2812 (69.47%) 3544 (87.55%) 2363 (58.37%) 4048
E1 3050 (75.35%) 4048 (100.00%) 3050 (75.35%) 4048
E2 1827 (83.96%) 2056 (94.49%) 1710 (78.58%) 2176
E3 1930 (88.69%) 2176 (100.00%) 1930 (88.69%) 2176

Total 82.86% 95.66% 79.49%

that the live area with the eight masks was used in acceptance correction with
the absolute 2% systematic error.

Table 4.2 shows the live areas of the EMCal towers and the ERTLL1 4x4c
trigger tiles. All the edge towers (two towers from edge) were excluded in
this calculation.

Energy calibration

The gains of the EMCal towers have been measured before the installation
and are used to evaluate energy deposited in each tower. But the gains
gradually shift and thus a fine recalibration using physics data is needed.
The energy calibration for the data taken in 2005 has been done with the
following procedure;

1. correction for tower-by-tower gain variation,

2. correction for run-to-run gain shift, and

3. correction for residual non-linearity at low energy.

The correction for the tower-by-tower gain variation used a part of data
taken in 2005. The correction is represented with one parameter εi for each
tower (index i), with which a calibrated tower energy is given by Ecalib

i =
εiE

orginal
i . The εi of a tower i was adjusted so that a π0 mass peak position

was at 135 MeV (Particle Data Group value[14]).
The π0s were reconstructed with photon pairs in which one photon hits

the tower i with an energy of > 0.8 GeV and another photon hits other
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Figure 4.2: The distribution of the correction factor εi on tower energy.

tower with an energy of > 0.1 GeV. All photons had to have the photon
probability of > 0.01, and only π0s with pT > 1.0 GeV/c were used. The
π0 mass peak position was obtained by fitting it to a “Gaussian + 2nd/3rd
order polynomial” function, and the εi was set to the ratio of the PDG value
to the obtained peak position. Here it was assumed that the peak position
only depended on the energy of the tower i, but in reality it did depend on
the energies of towers around the tower i and the energy of the pair photon.
The parameters ε of other towers were obtained with the same procedure.

Since the εi wasn’t accurate due to the assumption above, the procedure
was iterated on all towers seven times. In the iterations, a photon energy
was calibrated with ε’s obtained in a previous iteration as Enew =

∑
j εjej,

where the j was indices of towers that composed the photon cluster, and ej

is the energy deposited in tower j. Figure 4.2 show the distribution of the
correction factor εi. Figure 4.3 shows the position and width of π0 mass peak
before and after the correction. The width was decreased by ∼ 10%, which
is consistent with the width of the εi distribution.

The correction for the run-to-run gain shift was done because the π0 mass
peak position was gradually decreasing by 3% during the whole data taking
period. All runs were divided into 10 run periods. One parameter for each
run period and each sector was evaluated so that the π0 mass peak positions
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Figure 4.3: The position (Top) and width (Bottom) of π0 mass peak as
functions of pT of π0 in each sector before (Black) and after (Green) the
correction for the tower-by-tower gain variation.
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Figure 4.4: The position of π0 mass peak as a function of photon-pair
momentum at each EMCal sector, where only photon pairs with a symmetric
energy were used. Lines are the correction factor ε(Ē) = a − b/Ē where
Ē = pγγ/2.

reconstructed in every run period and sectors became equal to one another.
The parameters varied from 0.98 to 1.01.

The correction for the residual non-linearity at low energy also used the
π0 mass peak position. Although the non-linearity correction have been ap-
plied in the EMCal photon reconstruction together with the incident-angle
correction, residual non-linearity has been checked and corrected. Two pho-
tons with a symmetric energy (energy asymmetry a ≡ |E1−E2|

E1+E2
< 0.2) were

used to reconstruct π0s. Under this condition the effect of the non-linearity
on two photons was the same. The effect was parameterized with the av-
erage of two photon energies Ē = |pγγ|/2. Figure 4.4 shows the π0 mass
peak position as a function of photon-pair momentum. The PbSc sectors
and the PbGl sectors have some strong dependencies. The correction factor
ε(Ē) was determined so that the mass peak position at each pγγ bin moves
to the expected value (136 MeV). The expected value of the π0 mass is not
135 MeV because of the energy smearing effect. It has been estimated to be
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Figure 4.5: Top: The mean value of π0 mass peak for PbGl (left) and PbSc
(right) vs run number. Bottom: The sigma of π0 mass peak for PbGl (left)
and PbSc (right) vs run number. The non-linearity correction and run-to-run
scale correction have already been applied.

136 MeV with a simulation. The correction factor ε(Ē) are represented as a
function

Ecorrected = Eorg/(a − b/Eorg) (4.1)

a = 1.012 , b = 0.0127 (PbSc) (4.2)

a = 1.033 , b = 0.0269 (PbGl) (4.3)

Figure 4.5 shows the mean and sigma of π0 mass as a function of run
after applying all the corrections.

Energy scale and resolution

After all the corrections above have been applied to the data, the energy scale
and resolution of photons were confirmed by checking the position and width
of π0 mass peaks. Photon selections used in the cone measurement described
later were applied. Figure 4.7 and 4.6 show π0 mass distributions measured
with the PbGl and the PbSc, respectively, at π0 pT bins. Figure 4.8 shows
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the position and width of the peaks as functions of π0 pT . The red lines are
results of the real data. The peak position is around the expected value of
136 MeV over all pT range, but small deviations still remain. Therefore a
1.5% systematic error was assigned to the photon energy scale.

The black lines in Fig. 4.7, 4.6 and 4.8 are results of the simulation. This
comparison has been done to assure that the simulation condition matches
the real one. A data set of input π0s was generated with flat distributions in
pT , η and φ spaces and weighted by the measured pT slope[76];

w(pT ) =
ApT

(1 + pT /p0)n
(4.4)

A = 386 mb GeV−2c3 , p0 = 1.219 GeV/c , n = 9.99 (4.5)

In the simulation the bad-tower map was applied to match the masked area as
was in the real data analysis. An additional smearing by ∼6% on simulated
energy was applied. Finally the simulation output agrees with the real data.

4.3.2 Tracking detectors

Fiducial cut

Low-efficiency or dead areas in the DC and PC1 were detected by checking
hit counts. Hit position of tracks were parameterized by a board number
and the alpha value (shown in Fig. 3.18). The board number is an index
of the sense-wire planes of the DC, where 80 planes cover the 90◦ azimuth.
A straight track crosses a single plane while a track that have a large alpha
crosses multiple planes. Thus low-efficiency or dead areas can depend on
the alpha as well as the board number. Tracks that had the track quality
of “= 31 OR ≥ 61” were used. Hit counts in 100 runs at the beginning of
the data taking, 50 runs at the end and the simulation output were checked.
Some (alpha, board) positions have been masked in the measurements and
the simulation so that the fiducial areas became the same. Figure 4.9 and
4.10 show the hit counts in the real data before and after the fiducial cut.

Momentum scale and resolution

The momentum scale and resolution of the central tracking system were
checked both for the real data and the simulation output to confirm the
reproducibility of the simulation. The momentum scale and resolution were
evaluated from m2s for π±, K± and p± using the DC, the PC1 and a high-
resolution TOF which is located at the front of the PbGl-type EMCal. The
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Figure 4.6: π0 mass distribution for PbGl with single particle simulation
after applying the scale and resolution correction (red: real data, black:
simulation output).
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Figure 4.7: π0 mass distribution for PbSc with single particle simulation
after applying the scale and resolution correction (red: real data, black:
simulation data).
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Figure 4.8: The mean value and sigma of π0 mass distribution for PbSc with
single particle simulation after applying the scale and resolution correction
(red: real data, black: simulation data).
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Figure 4.9: Left: The hit counts in (alpha, board) bins for East/West Arms
and zed > 0/zed < 0 positions in 100 runs at the beginning before fiducial
cut. Right: Same as the left plots after fiducial cut.
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Figure 4.10: Left: The hit counts in (alpha, board) bins for East/West
Arms and zed > 0/zed < 0 positions in 50 runs at the end before fiducial
cut. Right: Same as the left plots after fiducial cut.
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m2 is given by

m2 = p2

(
t2c2

d2
− 1

)
, (4.6)

where d is the path length of particles. The error in m2 can be expressed as

σm2
2 =

σα
2

K1
2 (4m2p2) +

σms
2

K1
2

[
4m2

(
1 +

m2

p2

)]
+

σtof
2c2

L2

[
4p2

(
m2 + p2

)]

(4.7)
where K1 =

∫
0.3/RDC

lBdl = 87 mrad GeV, σα is the angular resolution of

the central tracking detector, σms is the angular smearing due to multiple
scatterings and σtof is the TOF resolution. With σα and σms, the momentum
resolution of the central tracking can be expressed as

(
δp

p

)2

=

(
σα

K1

p

)2

+

(
σms

K1β

)2

(4.8)

The m2 was calculated for positive and negative particles at eight mo-
mentum bins. Figure 4.11 shows the m2 distributions obtained from the real
data. The peaks of π±, K± and p± were fitted to a Gaussian + polynomial
(2nd order for real data and 1st order for simulation) function to obtain the
mean (m2) and width (σm2) of the peaks. The σm2 of π±, K± and p± at
all momentum bins were fitted to the formula above with σα, σms and σtof

being free parameters. The σα, σms and σtof were evaluated for positive and
negative particles separately.

Figure 4.12 shows the m2, σm2 and momentum resolution as a function of
momentum. The deviation of m2/m2

PDG[14] from 1.0 is caused by discrepan-
cies of the momentum scale and the TOF offset. The deviation caused by a
discrepancy of the momentum scale must be momentum independent. The
deviation caused by a discrepancy of the TOF offset must increase as the
momentum increases, and must be larger for heavier particles. These two
facts indicate that a 1.5% momentum scale error, which makes 3% error in
m2, is sufficient to explain the momentum-independent deviation.

The same analysis has been done for the simulation in order to assure that
the simulation condition matches the real one. A data set of input π±, K±

and p± was generated with flat distributions in pT , η and φ. An additional
smearing by ∼1% on simulated momentum was applied. Figure 4.13 shows
the m2, σm2 and momentum resolution of the tuned simulation. It agrees
with the result of the real data well.
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Figure 4.12: Identified charged particles with the real data. Top:
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Figure 4.13: Identified charged particles with the simulation.
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4.3.3 Run dependence of the summed transverse mo-
mentum

The summed transverse momentum psum
T is defined as

psum
T ≡

∣∣∣∣∣
∑

i∈arm

pi
T

∣∣∣∣∣ (4.9)

where the sum over i is performed over particles detected with a single arm
in each event. The number of events with certain psum

T values was com-
pared between runs to search for bad (noisy or silent) runs. Event yields
were normalized by the number of offline triggered (pph

T > 2 GeV/c) events.
The binning of psum

T was 0.4∼1, 1∼2, 2∼3, 3∼5, 5∼8, 8∼12, 12∼20 GeV/c.
Photon-psum

T and charged-psum
T were checked separately. Figure 4.14 and 4.15

shows the normalized event yields in each photon- or charged-psum
T bin. All

runs were found to be stable in terms of psum
T . The χ2/NDF of the photon-

psum
T at 2 < psum

T < 3 GeV/c was smaller than 1.0 because the normalization
factor was strongly correlated with the event yields.

4.4 Particle Clustering with Cone Method

One particle cluster in one arm is constructed with photons and charged
particles detected with the EMCal, the DC and the PC1 of the Central
Arms. A seed-cone algorithm is used for the cluster finding.

4.4.1 Particle selection

To select the energy region where the efficiency of the ERTLL1 4x4c trigger
is plateau, it was required that at least one photon with pT > 2.0 GeV/c
existed in each event. The requirement causes the bias that a jet includes
mostly high-pT π0, η, etc. or partly fragmentation (radiated) photon.

To select true photon signals from all EMCal clusters, a pT cut, a charged
track veto, and an electro-magnetic shower shape cut were applied. The pT

cut reduces low energy noise and was set to > 0.4 GeV/c. The charged track
veto reduces charged particle contaminations and was performed by checking
whether each EMCal cluster has a matched charged track within 3σ of their
position resolutions. The shower shape cut reduces hadron contaminations
by requiring a photon probability of > 0.01.

To select true charged particle signals from all tracks, a pT cut and the
usual track quality cut (= 31 OR ≥ 61) were applied. The pT cut was set
to 0.4 < pT < 4.0 GeV/c. Below the lower limit the acceptance is strongly
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Figure 4.14: Event yields normalized with the number of offline triggered
events at each photon-psum

T bin.
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Figure 4.15: Event yields normalized with the number of offline triggered
events at each charged-psum

T bin.
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distorted due to large bending angle. The upper limit eliminates fake high-pT

tracks, which originate from low-pT particles that are produced from a decay
in the magnetic field.

4.4.2 Cluster finding algorithm

All particles that satisfied the experimental cuts in one arm were used as a
seed to determine the cone axis. Starting with the momentum direction of a
seed particle as a temporal cone axis, we calculated the next temporal cone
axis with particles which were in the cone. The distance between the cone
axis (ηC , φC) and the momentum direction of each particle (ηi, φi) is defined
as

Ri ≡
√

(ηi − ηC)2 + (φi − φC)2 (4.10)

The cone radius R was set to 0.3, which was about a half of the η acceptance.
The cone size is smaller than the typical one (∼ 0.7), but the simulation study
described later showed that even this small cone can collect ∼ 80% of jet pT

on average. The next temporal cone axis is calculated as a vector sum of
momenta of particles in the cone.

~pcone ≡
∑

i∈cone

~pi (4.11)

~econe ≡
~pcone

|~pcone|
(4.12)

This procedure was iterated until the temporal cone axis became stable.
The cluster finding is done with all seed particles, and then each seed

particle has one cone and some of cones can be the same or overlapped. The
cone which has the largest pcone

T in an event is used in the event.
An evaluation of pcone

T without seed has been done using a part of the
statistics in order to check the effect of the use of seed. The initial direction
of cone was scanned over all the PHENIX Central Arm acceptance (|η| <
0.35, ∆φ = 90◦ × 2) with a step of δη = δφ = 0.01 in each event. The
pcone

T distribution with the seedless method was larger than that with the
seed method by ∼20% at pcone

T = 4 GeV/c, ∼10% at pcone
T = 8 GeV/c and

∼5% at pcone
T = 12 GeV/c. The deviation is compensated in the relation

between measured jet core and original jet estimated with the simulation, and
therefore the pcone

T difference between the cluster finding methods is smaller
than the deviation above.
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4.4.3 Remaining hadron contribution

Among hadrons remaining after the particle selections, antineutron (n̄) makes
the largest contribution to the photon component of pcone

T because of the
neutrality and the reaction with n or p in the EMCal material. The fraction
of n̄-origin clusters after the particle selections is ∼20% at Ecluster = 1 GeV,
∼1% at Ecluster = 3 GeV and ∼0.1% at Ecluster = 8 GeV, which has been
estimated with a GEANT simulation tuned with the EMCal response to
identified p̄s. In the simulation, the sum of pT of n̄-origin clusters in cone
was excluded from pcone

T , and as a result the cone yields at 4 < pcone
T < 10

GeV/c decreased only by 0.02%. Therefore the n̄ contribution is negligible.
Because the live area of the DC and PC1 is ∼90%, a part of EMCal

clusters made by charged particles was not eliminated by the charged track
matching. The fraction of clusters which match to a charged track is ∼40%
at Ecluster = 0.4 GeV and ∼4% at Ecluster = 4 GeV. Therefore the remaining
charged-particle-origin clusters are 40% × (1 − 90%) = 4% of all clusters at
Ecluster = 0.4 GeV, and is also negligible.

4.4.4 pcone
T distribution

Figure 4.16 shows the distribution of pcone
T measured with the clustering

method above. The simulation outputs have been normalized so that they
matched to the real data result at pT = 5 GeV/c. Therefore the difference
in only pT slope between the real data and the simulation outputs can be
studied.

The slope of the PYTHIA MPI output is consistent within 10% with that
of the real data at all pT range. The slope of the PYTHIA default output is
less steep.

4.5 Simulation Study

The particle cluster measured with the cone method is a part of an original
jet, not the whole jet. The relation between particle clusters and jets has
been studied with the PYTHIA+GEANT full simulation.

4.5.1 Relating cone to jet

In the scheme of PYTHIA hadron+hadron collisions, a hard-scattered par-
ton (from partonic 2 → 2 scattering) is first split into several partons as
a sequence of 1 → 2 branchings up to a certain cut-off scale (by default,
the invariant mass of two branched partons m < 1 GeV). Then Lund color
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strings are generated between the partons and fragment into hadrons, some
of which decay like π0 → γγ. All stable particles at the final state are in-
put into the GEANT simulator, and converted to detected particles. The
detected particles are clustered with the cone method.

For a measured cone, one of two hard-scattered partons, which are of
particle number 7 or 8 in PYTHIA event list, is selected as an original jet
of the measured cone with the condition that the angle between the cone
momentum and the parton momentum, ∆R =

√
∆η2 + ∆φ2, is smaller than

the others. The calculation of QCD hard scatterings in the PYTHIA is at
leading order, although the PYTHIA phenomenologically adopts higher order
effects such as initial/final-state radiations. Therefore the jet that is related
to the measured cone with the method above is what is basically defined at
leading order. On the other hand, the unpolarized cross section and ALL

of jet production that is compared with ALL measured in this analysis have
been calculated at the next-leading order. Therefore the definitions of the jet
and thus its pT in the PYTHIA simulation and the theory are not identical
to each other. To minimize the difference in pjet

T between the simulation and
the theory, the cone radius R in the theory was set to the largest, R = 1,
which is the limit value where the Small Cone Approximation can apply. The
uncertainty on pjet

T was estimated from the dependence of jet cross section on
the cone radius. Figure 4.17 shows the R dependence of the unpolarized jet
cross section. The difference in cross section between R = 1 and R = 0.1 is
60% of the value at R = 1. The difference in cross section can be expressed
as the difference in pT scale since a smaller cone radius causes a more pT leak
from the cone. Assuming that the R dependence at R > 1 is smaller than
that at R < 1, we assigned the 10% difference to the pT scale uncertainty,
which covers the 60% cross section variation.

The relation between pcone
T , which is the value measured in the experiment,

and pjet
T , which is the value calculated in the theory, has been evaluated using

the PYTHIA+GEANT simulation. Figure 4.18 shows the event fractions in
each pcone

T and pjet
T bin.

4.5.2 Bias of cone measurement

The relation between cones and jets can be characterized by

• pT leak from cone and pT contamination from the underlying event,

• pT smearing, and

• biases due to high-pT photon and small cone.
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The leak and contamination of pT

Since the acceptance is limited and the size of the cone is small, some particles
in a jet can leak from the cone. Some particles produced in interactions
between beam remnants can go into the cone and contaminate pcone

T .

The pT smearing

pjet
T of events that are in a pcone

T bin is distributed widely due to the finite
pjet

T resolution of the PHENIX Central Arm. It is difficult to unfold the cone
yield vs pcone

T into the jet yields vs pjet
T because the relation between pcone

T and
pjet

T is not diagonal and thus unfolding methods do not work stably.

The biases due to high-pT photon and small cone

This bias is due to the fact that gluon jet is softer and broader than quark
jet[77][78]. Because of the softness of gluon jets, the high-pT photon require-
ment has lower efficiency for gluon jets. Because of the broadness of gluon
jets, the ratio of pcone

T to pjet
T for gluon jets is smaller on average. Figure 4.19

shows the ratio pcone
T /pjet

T for each subprocess estimated with the PYTHIA
simulation. Clearly the ratio in gg subprocess is smaller than others particu-
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Figure 4.18: Top: pcone
T vs pjet

T evaluated with the PYTHIA default (Left)
and the PYTHIA MPI (Right). Center: Same as the top plots but are
normalized in each column (pjet

T ) bin. Bottom: Same as the top plots but
are normalized in each row (pcone

T ) bin. The normalization in each row or in
each column included underflow and overflow bins.
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Figure 4.19: The ratio of pcone
T to pjet

T for each subprocess at four different
pcone

T bins. It was estimated with the PYTHIA MPI simulation.
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larly at higher pcone
T . These effects suppress the fraction of the gg subprocess

as appeared in the middle plot of Fig. 2.14.

4.6 Event structure

4.6.1 Multiplicity

Multiplicity is defined as the number of particles which satisfied the experi-
mental cuts in one event.

4.6.2 Transverse momentum density

The pT density, DPT
(∆φ), is defined as

DpT
(∆φ) ≡

〈
1

δφ · δη
∑

i in [∆φ, ∆φ+δφ]

pTi

〉

event

(4.13)

where ∆φ is φ angle with respect to the direction of a trigger photon in
event, δφ and δη are area widths in φ and η direction (δη = 0.7), and pTi

is transverse momentum of i-th particle in event. Therefore the pT density
means the area-normalized total transverse momentum in an area of δφ× δη
at a distance ∆φ from trigger photon.

We name the region at ∆φ . 0.7 ‘toward’ region and the region at
∆φ & 0.7 ‘transverse’ region (see Fig. 4.20). Since particles from a jet are
concentrated along the jet direction, the DpT

at the transverse region are
sensitive to the underlying events.

To avoid the effect of the PHENIX Central Arm acceptance in the calcu-
lation of DpT

, we limited the φ direction of trigger photons to less than 20◦

from the edge of the PHENIX Central Arms, and didn’t use photons and
charged particles which were in the φ area between the trigger photon and
the near edge. With this method the DpT

distribution is not affected by the
finite acceptance of the PHENIX Central Arms up to 70◦ (∼ 1.2 rad).

4.6.3 Thrust distribution in PHENIX Central Arm

Thrust T represents the topology of particles in one event, and is defined as

T ≡ max
u

∑
i |pi · u|∑

i |pi|
(4.14)

Here, u is a unit vector which is called the thrust axis and is directed to
maximize T , and pi is a momentum of each particle in one arm. T is equal
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Figure 4.20: Toward and transverse region in φ space with respect to the
direction of a triggered photon.

to one when all pi are collinear, and T decreases as the jet cone size increases
(see Fig. 4.21). The above equation is approximately equal to

T =

∑
i |pi · p̂|∑

i |pi|
(4.15)

p̂ =

∑
i pi

|
∑

i pi|
(4.16)

Here, p̂ is the unit vector of the sum of pi. This equation can be calculated
without iterations to determine the thrust axis.

We defined and evaluated a PHENIX thrust, TPH , with particles in one
arm (∆η = 0.7, ∆φ = 90o) as

TPH =

∑
i |pi · p̂|∑

i |pi|
(4.17)

p̂ =

∑
i pi

|
∑

i pi|
(4.18)

In the PHENIX Central Arm acceptance, ∆η = 0.7 and ∆φ = 90◦, the mean
value of the thrust of high-multiplicity isotropic events is equal to 0.88 (see
Fig. 4.21).

The PHENIX thrust distribution of isotropic events in the PHENIX Cen-
tral Arm acceptance for each psum

T bin was calculated with the following
method. First, the particle production cross section is assumed to be pro-
portional to exp(−6 pT (GeV/c)) and is independent of η and φ. Second,
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Figure 4.21: Thrust value in the case of collinear (T = 1.0), isotropic (T =
0.5), and isotropic in one Central Arm (T = 0.88).

the similar cuts to the experiment are applied numerically; the geometrical
acceptance (|η| < 0.35, ∆φ = 90o), the momentum limit (pT > 0.4 GeV/c),
and one high-pT particle (pT > 2.0 GeV/c). The magnitude of psum

T is ig-
nored and all simulated events are used in the calculation for each psum

T bin.
Therefore, the effect of the high-pT particle can be stronger than the actual
case at particularly high-psum

T range. Third, the PHENIX thrust distribu-
tion of isotropic events was calculated for each number of particles in one
event (fn(T ) for n = 1, 2, 3, . . . ). Figure 4.22 shows fn(T ) distributions for
n = 2 ∼ 7. Particularly the thrust distribution of n = 2 events is steep.
Thus we applied a cut of n ≥ 3 in the TPH measurement. The fT is eval-
uated as the sum of fn(T )s weighted by the fraction of n-particle events to
total events;

f(T ) =
∑

n

εnfn(T ) , εn =
Nn

evt

Nevt

(4.19)

4.7 Cone production rate

4.7.1 Evaluation method

The cone production rate Y , namely the cone yield per luminosity, is defined
with measured quantities as

Y ic ≡ N ic
cone

L · fBBC · fERT

(4.20)

where L is the integrated luminosity; fBBC is the BBC trigger efficiency in
the high-pT photon trigger; fERT is the the live area of the ERTLL1 4x4c
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Figure 4.22: Thrust distribution for isotropic events with N = 2 ∼ 7 in
the PHENIX Central Arm acceptance. As the number of particles increases
(2 → 7), the mean value of thrust becomes smaller (black → purple).

trigger; N ic
cone is the cone yield in a ic-th pcone

T bin.
The Y is defined with theory and simulation quantities as

Y ic ≡
∑

ij

f ic,ij · εij
trig+acc · Y

ij
theo (4.21)

where the label ic and ij are the indices of pcone
T and pjet

T bins, respectively.
The Y ij

theo is a jet production rate within |η| < 0.35 in a ij-th pjet
T bin, which is

calculated from the jet cross section. The εij
trig+acc is a high-pT -photon trigger

efficiency and acceptance correction, which is evaluated with the simulation.
The εij

trig+acc · N ij
theo is a yield of jets that include a high-pT photon within

|η| < 0.35. The f ic,ij is the probability that a photon-included jet within
a ij-th pjet

T bin is detected as a cone within a ic-th pcone
T bin. The f ic,ij is

shown at the center row of Fig. 4.18. This method uses the relative pcone
T

distribution in each pjet
T bin and thus the slope of pjet

T distribution in the
simulation doesn’t affect the result of Y ic.

Below the methods of evaluating L and εij
trig+acc are described.
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4.7.2 Luminosity in measurement

The integrated luminosity of the analyzed data was evaluated as

L = σBBC ·
∑

irun

F irunN irun
BBC (4.22)

where σBBC is the cross section of the BBCLL1 trigger, namely the proton-
proton total cross section multiplied by the BBCLL1 trigger efficiency; F irun

is the prescale factor of the BBCLL1 trigger, which can vary between the
runs; N irun

BBC is the number of scaled BBCLL1 trigger counts with the offline
30 cm z-vertex cut in run irun, where the vertex cut has to be required
because it is also required in the particle cluster measurement. In the RHIC
Vernier scan, the BBCLL1 trigger was used to record the collision rate at the
PHENIX interaction point since it is the minimum bias trigger. Therefore it
is also used in evaluating the luminosity.

σBBC has been evaluated using Vernier scan data taken in 2002. It is
defined as

σBBC ≡ Rmax

Leffective

=
Rmax

Lmachine · εvertex

=
σraw

BBC

εvertex

(4.23)

where Rmax is the maximum rate of the BBCLL1 trigger, i.e. the trigger rate
at dx = 0; Leffective is the effective luminosity for the PHENIX; Lmachine is
the total luminosity delivered to the PHENIX; εvertex is the efficiency of the
offline z-vertex cut (|z| < 30 cm). The online z-vertex cut in 2002 was ±75
cm. Because the longitudinal length of beam bunches was wider than the
online z-vertex cut, collisions outside the region could occur and was included
in the machine (accelerator) luminosity. Therefore the extra collisions have
been corrected by εvertex. The raw value of Rmax was the trigger rate with the
online z-vertex cut, and thus it has been corrected by the fraction of events
with the offline z-vertex cut. The systematic errors on σBBC , such as beam
current, beam position, non-zero crossing angle and beam size blow-up, have
been studied. σBBC was obtained to be 21.8 ± 9.6%.

The BBC trigger efficiency in 2005 increased by 0.051 ± 1.6% from that
in 2002 mostly due to changes of BBC HV setting, and thus σBBC changed
to 22.9 mb ± 9.7%.

The integrated luminosity of the analyzed data was estimated to be 2.2
pb−1 ± 9.7%, where the error almost came from σBBC .
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Figure 4.23: The correction factor εij
trig+acc for high-pT photon trigger ef-

ficiency and acceptance effect. The PYTHIA default (Black) and the
PYTHIA MPI setting (Green) were used.

4.7.3 Trigger efficiency and acceptance correction in
simulation

The high-pT photon (pT > 2.0 GeV/c) trigger efficency and acceptance cor-
rection (εij

trig+acc) were estimated using the PYTHIA+GEANT simulation.
The high-pT photon efficency is the probability that jets include a high-pT

photon which is detected with the EMCal. The acceptance in the experiment
is not for jets but for trigger photons, and thus the acceptance correction
means the correction from trigger photon acceptance to jet acceptance. The
correction factor can be written as

εij
trig+acc =

N ij
jet with

{
pph

T > 2 and {(ηph, φph) in EMCal acceptance}
}

N ij
jet with {|ηjet| < 0.35}

(4.24)
Figure 4.23 shows εij

trig+acc as a function of pjet
T estimated with the PYTHIA

default and MPI simulations.
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4.7.4 Systematic error estimation

A systematic error on the cone production rate was estimated by compar-
ing cone yields with and without the high-pT -photon requirement in the real
data and the simulations. The cone yields without the high-pT -photon re-
quirement in the real data was measured with the minimum bias (BBCLL1
trigger) sample.

The efficiencies of the BBCLL1 trigger and the ERTLL1 4x4c trigger
haven’t been included in the simulation. The BBCLL1 efficiencies on the
high-pT photon sample and the minimum bias sample for the real data are
the same and thus cancel out. Since a high-pT (> 2 GeV/c) photon is required
to exist in each event, the efficiency of the ERTLL1 4x4c trigger is ∼100%
except for the masked trigger tiles (4.34% in area). But the inefficiency is less
than 4.34% for the particle cluster measurement because jet may include more
than one high-pT photons. The correction factor for the trigger efficiency was
set to 0.975 ± 0.025, where the error covers all possible values.

Figure 4.24 shows cone yields vs pcone
T . The ratio (r) of the cone yields

in the high-pT photon sample to that in the minimum bias sample, and the
difference of r between the real data and the simulation outputs are also
shown. The r of the PYTHIA MPI output agrees with that of the real data
within ∼10%. The r reflects not only the fragmentation function, which is
related to the probability that a jet includes at least one high-pT photon, but
also the jet-cone relation, namely the pjet

T distribution in each pcone
T bin. If

more events with lower pjet
T contributes to a pcone

T bin, the r becomes smaller
since the probability that a lower-pT jet includes high-pT photon is smaller.
It is the reason why the PYTHIA default shows the smaller r than the
PYTHIA MPI although the fragmentation function is common. The similar
tendency is seen in the pcone

T distribution (Fig. 4.16), where the cone yield in
the PYTHIA MPI simulation normalized with that of the real data yield is
smaller at low pcone

T than at high pcone
T by ∼10%. It indicates that the 10%

difference in r is due to mostly the difference in the cone yield of the high-pT

photon sample rather than the minimum bias sample. Therefore a 10% error
was assigned to the cone production rate calculated using the PYTHIA MPI
simulation, which uses the high-pT photon sample.
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Figure 4.24: Top: pcone
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4.8 Double helicity asymmetry

4.8.1 Evaluation method

The ALL is expressed with measured quantities as

ALL =
1

|PB||PY |
N++ − RN+−

N++ + RN+−
(4.25)

R ≡ L++

L+−
(4.26)

where N++ and N+− are yields of measured objects, namely the particle
clusters in this analysis, with colliding proton beams having the same (++
or −−) and opposite (+− or −+) helicity, respectively; PB and PY are the
beam polarizations; R is the relative luminosity. The methods of measuring
each quantity are described below. The ALL is measured fill-by-fill and the
results are fitted to a constant, because the beam polarization and the relative
luminosity are evaluated fill-by-fill to decrease systematic errors. Due to bad
conditions on the beam polarization, three fills out of ∼100 fills have been
discarded in the ALL measurement. Finally the integrated luminosity used
was 2.1 pb−1.

With the cone method described in the previous section, the yields of
particle clusters (N++ and N+−) were measured in six pcone

T bins, 4 ∼ 5,
5 ∼ 6, 6 ∼ 7, 7 ∼ 8, 8 ∼ 10 and 10 ∼ 12 GeV/c. The statistical error of the
ALL is written as

σALL
=

√(
∂ALL

∂N++

)2

· σ2
N++

+

(
∂ALL

∂N+−

)2

· σ2
N+−

=
1

PBPY

2R
√

N2
+−σ2

N++
+ N2

++σ2
N+−

(N++ + RN+−)2

=
1

PBPY

2R
√

N++N+−(N++ + N+−)

(N++ + RN+−)2
(∵ σN ≈

√
N) (4.27)

When R ' 1 and N++ ' N+− ' N/2 are assumed, it becomes

σALL
' 1

PBPY

1√
N

(4.28)

The relative luminosity at PHENIX is defined with the BBCLL1 trigger
counts (N++

BBC and N+−
BBC) as R = N++

BBC/N+−
BBC . The BBCLL1 trigger counts

for each beam crossing were stored in the GL1P scaler and were summed up
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Table 4.3: The subprocess fractions in events that fired the BBCLL1 trigger
and the ZDCLL1 trigger. It has been estimated with a PYTHIA and GEANT
simulation.

Subprocess ID BBCLL1 ZDCLL1

Elastic 91 0% 22%
Single diffraction (AB→XB) 92 1.7% 9.8%
Single diffraction (AB→AX) 93 1.6% 9.9%

Double diffraction 94 6.0% 19%
Low-pT production 95 32% 21%

QCD fig → fig 28 23% 6.9%
QCD gg → gg 68 31% 10%

to obtain N++
BBC and N+−

BBC by taking into account the polarization direction
of each beam crossing. According to a PYTHIA and GEANT simulation, the
subprocess of events that fire the BBCLL1 trigger in proton-proton collisions
at

√
s = 200 GeV is partly hard scatterings as shown in Tab. 4.3. A possible

spin dependence, ALL, of such hard scatterings causes an error on the relative
luminosity. The error has been checked by comparing the relative luminosity
with another relative luminosity defined with the ZDCLL1 trigger counts.
The ZDCLL1 trigger is fired when both the north ZDC and the south ZDC
have a hit and the reconstructed z-vertex is <30 cm. Table 4.3 shows the
subprocess fractions also for the ZDCLL1 trigger, and the two triggers are
mostly independent. The difference was zero within its error and thus this
error size was used as the error of the relative luminosity on ALL, which is
2.3 × 10−4.

The beam polarizations were measured with the pC and H-jet polarime-
ters at 12 o’clock of the RHIC ring. The luminosity-weighted-average polar-
izations are

〈PB〉 = 0.503 ± 0.002(stat) ± 0.025(systB) ± 0.015(systG) (4.29)

〈PY 〉 = 0.485 ± 0.002(stat) ± 0.025(systY ) ± 0.015(systG) (4.30)

where “systB” and “systY” are systematic uncertainties from the CNI po-
larimeter in the blue and yellow beams, respectively, and “systG” is a global
systematic uncertainty due to the calibration with the H-jet polarimeter.
The error on 〈PB〉〈PY 〉 is 9.4%.

Figure 4.25 and 4.26 show the polarizations and the relative luminosity
vs fill number. Figure 4.27 shows ALL vs fill and the result of fittings in each
pcone

T bin. The χ2 value in the fittings are normal.
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Figure 4.25: Polarizations of yellow and blue beams vs fill number.
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Figure 4.26: Relative luminosity vs fill number.
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Figure 4.27: Asymmetry in every fill in each pcone
T bin.
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4.8.2 Check on systematic errors

Bunch shuffling method

Any fill- or bunch-dependent systematic errors can be checked with a bunch
shuffling method. The spin polarization directions of every bunch in every
fill are randomly assigned while the balance between the number of bunches
with correctly and oppositely assigned helicities are kept. The ALLs with
such a random polarization direction should be zero and fluctuate by the
statistical uncertainty. A mass of random data (10000 sets in this analysis)
are generated, and it is checked whether the width of ALL distribution in
the random data correctly matches the ALL statistical error estimated with
Eq. 4.27.

Figure 4.28 shows ALL distributions from bunch shuffling in each pcone
T

bin. Figure 4.29 shows χ2/NDF distributions from bunch shuffling in each
pcone

T bin. This study shows that the statistical error on ALL are correctly
estimated and no additional systematic errors exist.

Single helicity asymmetry

Single helicity asymmetry, AL, is defined as

AL ≡ σ+ − σ−

σ+ + σ−
=

1

P

N+ − R N−

N+ + R N−
, R ≡ L+

L−
(4.31)

where the subscripts + and − denote the polarization direction of either the
blue beam or the yellow beam. It must be zero under the parity symmetry.
Thus any non-zero value indicates systematic errors.

4.8.3 Calculation of predicted asymmetry

Polarized/unpolarized cross sections of jet production for every subprocess
(qq, qg and gg) was calculated at NLO based on the SCA. The polarized
cross sections were calculated using various ∆g(x) in order to compare the
measured ALL with various predicted ALLs to search for a ∆g(x) most agree-
able to the measured ALL. The various ∆g(x) are drawn in Fig. 4.30 and
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Figure 4.28: ALL distributions from bunch shuffling in each pcone
T bin.
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Figure 4.29: χ2/NDF distributions from bunch shuffling in each pcone
T bin.

The red lines are calculated statistical distributions.
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explanations, see the text.

the integrated values are

∫ 1

0

dx∆g(x,Q2 = 0.4 GeV2) =





−1.24 (∆g = −g),

−1.05,

−0.90,

−0.75,

−0.60,

−0.45,

−0.30,

−0.15,





0 (∆g = 0),

0.24 (GRSV-std),

0.30,

0.45,

0.60,

0.70,

1.24 (∆g = g)

(4.32)
Each ∆g(x) (except the GRSV-std, the ∆g = g input, the ∆g = 0 input
and the ∆g = −g input) have been newly obtained with a global fit to the
DIS data used in the original GRSV analysis[44]. In a global fit, the integral
value of ∆g(x) was fixed to its peculiar value listed above, and the shape
of ∆g(x) and the quark-related parameters were made free. The χ2 in the
global fits are almost constant over all the various ∆g(x), and this means
that the variation of ∆g(x) is insensitive to the DIS data.

The various ∆g(x) above were evolved up to a Q2 of every events in ALL

calculation. ALL of every subprocess (Aqq
LL, Aqg

LL and Agg
LL) can be derived
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Figure 4.31: The ratio of the unbiased jet yield in the PYTHIA simulation
to that in the theory calculation. The vertical axis is in arbitrary unit.

as functions of pjet
T from the unpolarized and polarized cross sections. The

PYTHIA+GEANT simulation produces the relative yields of every subpro-
cess (nqq(pjet

T ), nqg(pjet
T ) and ngg(pjet

T )) in pcone
T bins where Acone

LL is measured.
The relative yields take into account the convolution from jets to cones. Acone

LL

is calculated as a mean of Aqq
LL, Aqg

LL and Agg
LL weighted by the relative yields;

Acone
LL =

∫
dpjet

T

∑

isub=qq,qg,gg

nisub(pjet
T ) · Aisub

LL (pjet
T )

∫
dpjet

T

∑

isub=qq,qg,gg

nisub(pjet
T )

(4.33)

As an estimation on systematic errors, the slope of jet yields and the
fraction of subprocesses were compared between the theory calculation and
the PYTHIA simulation. Both the slope and the fraction were raw in the
PYTHIA simulation, namely not biased by the high-pT photon and the small
cone, since the theory calculation cannot be biased. Figure 4.31 shows the
ratio of the unbiased jet yield in the PYTHIA simulation to that in the
theory calculation. The non-flat distribution indicates a discrepancy in jet
yield slope. The sudden decrease at the lowest pjet

T bin is caused by the cross
section regularization at low pT in PYTHIA. To check the variation of Acone

LL

caused by the slope difference, the relative yields of each subprocess were
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of pjet

T . This is an unbiased fraction, i.e. no cone and no trigger photon are
required in the PYTHIA simulation as well as the theory calculation.

modified as
nisub(pjet

T ) → nisub(pjet
T )/R(pjet

T ) (4.34)

where R(pjet
T ) is the ratio shown in Fig. 4.31. Figure 4.32 shows the fractions

of subprocesses in the theory calculation and the PYTHIA simulation. The
fraction of the qq subprocess in the PYTHIA simulation is a little larger at
higher pjet

T . To check the variation of Acone
LL caused by the fraction difference,

the relative yields of each subprocess were modified as

nisub(pjet
T ) → nisub(pjet

T ) · risub
th (pjet

T )/risub
PY (pjet

T ) (4.35)

where risub
th (pjet

T ) and risub
PY (pjet

T ) are the fraction of a subprocess isub in the the-
ory calculation and the PYTHIA simulation, respectively, which are shown
in Fig. 4.32.

Figure 4.33 shows the relative yields of qq/qg/gg subprocesses in the
PYTHIA MPI+GEANT simulation, and Fig. 4.34 shows Ajet

LL derived from
the polarized/unpolarized cross sections. Figure 4.35 shows Acone

LL evaluated
with the Ajet

LL and the relative yields of qq/qg/gg subprocesses. The Acone
LL s

estimated bin-by-bin were fitted to a 3rd-polynomial function to obtain a
smooth Acone

LL curve. The statistical errors (vertical bars in the figure), the
yield slope difference (dash lines) and the subprocess-fraction difference (dot-
ted line) are negligible when compared with other systematic errors.
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Figure 4.33: The relative yields of qq, qg and gg subprocesses in the
PYTHIA+GEANT simulation. The yields corrected for the slope-of-yield
difference and the subprocess fraction difference are also shown.
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4.9 Statistical overlap with π0 measurement

The PHENIX experiment also measured π0 ALL with the identical data set[6].
Since π0 comes from jet via fragmentation process, the statistical overlap
between the cone measurement and the π0 measurement has been studied.
For events in which a high-pcone

T particle cluster was found, photon pairs that
passed the experimental cuts used in the π0 measurement were judged as π0

or not. When an event included several π0s, a highest pπ0
T in the event was

chosen. Two methods of identifying π0 were used to check the systematic
error of the methods.

One method (named “M1”) used only measurable quantities and thus was
applied to both the real data and the simulation. In principle π0 can be iden-
tified not individually but statistically due to the combinatorial background,
but in this estimation each photon pair was regarded as π0 by the probability
that was set to the fraction of signals under the mass peak, P = S/(S+B) at
112 < mγγ < 162 MeV. This assumption is valid when π0s in one event are
not correlated. The P has been evaluated at each (pcone

T , pπ0
T ) bin. Because

the statistics of the simulation was not enough particularly at low pπ0
T and

the S/(S + B) in the simulation agreed with that of the real data over the
measured (pcone

T , pπ0
T ) range, the P evaluated with the real data was also used

for the simulation output.
The other method (named “M2”) used the simulation information on

the origin of particles in order to judge whether each photon pair was π0

or not. The comparison with the first method can check the validity of the
assumption on P in the first method.

Figure 4.36 shows results with the two methods. The real data M1 result
agrees with the simulation M1 result in general. The points at 4 < pcone

T < 5
GeV/c and 4 < pπ0

T < 5 GeV/c shows ∼40% difference, and it may be caused
by the difference in π0 reconstruction efficiency between the real data and the
simulation. The simulation M1 and M2 results are consistent within ∼20% at
most, and thus the accuracy of the M1 is at this level. In every pcone

T bin, the
event fractions are distributed widely over pπ0

T bins. Therefore no outstanding
correlation between a pcone

T bin and a pπ0
T bin has been observed.
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Figure 4.36: The fraction of events that include π0 in each pcone
T bin. The

horizontal axis is the π0 pT maximum in each event. The vertical bar on
every point shows statistical error.
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Chapter 5

Results and discussions

5.1 Event structure

5.1.1 Multiplicity

Figure 5.1 shows the mean value of multiplicity in the Central Arm vs psum
T

and in the cone vs pcone
T . The multiplicities in arm and cone of the simulation

outputs agree, on the whole, with that of the real data. The PYTHIA MPI
output is larger than the PYTHIA default output as expected, and the real
data is closer to the PYTHIA default output. On the other hand, the pcone

T

distributions (Fig. 4.16) shows better agreement between the real data and
the PYTHIA MPI output. It means that the PYTHIA MPI reproduces the
sum of pT of particles well, which is less sensitive to particle fragmentation
process, while it doesn’t reproduce the particle multiplicity very well. The
reproducibility of the pT sum is checked in the measurement of the transverse
momentum density and the PHENIX thrust.

5.1.2 Transverse momentum density

Figures 5.2 and 5.3 show the DpT
distributions for each psum

T range. In the
“toward” region, the simulation outputs agree well with the real data. It
shows that the shape of jets produced by the simulation is consistent with
the real data. In the “transverse” region, the PYTHIA default output is
generally smaller than the real data. It shows that the PYTHIA default
does not contain sufficient underlying events. The PYTHIA MPI output
agrees with the real data well.
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= dΣipTi/dφ (GeV/c/rad), in each psum

T bin.
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5.1.3 Thrust distribution in PHENIX Central Arm

Figures 5.4 and 5.5 show the thrust distribution in each psum
T range. The

PYTHIA MPI output agrees with the real data well. The PYTHIA default
has a steeper slope. It means the number of particles at the vicinity of
jets is insufficient. In all the real data, the PYTHIA default output and
the PYTHIA MPI output, the thrust distribution becomes sharper as psum

T

increases. It is due to the jet characteristic that its transverse momentum (jT )
is independent of its longitudinal momentum (pjet

T ) and is almost constant.
If the real data include a contribution from non-jet (isotropic) events,

the TPH distribution of the real data is a mixture of the distribution of the
simulation output and the distribution of the isotropic case. The contribution
from non-jet events is negligible based on the PYTHIA MPI output.

5.2 Cone production rate

Figure 5.6 shows the cone production rate. The sources of the systematic
errors are listed in Tab. 5.1. The main sources on the measurement are
the BBC cross section and the EMCal energy scale. Each error is fully
correlated bin-to-bin. The error on the EMCal energy scale includes the
change of pT of individual photons and the change of the threshold of the
high-pT photon requirement. The main sources of errors on the calculation
are the relation between jet and cone and the EMCal energy scale. The errors
on the EMCal energy scale in the measurement and in the calculation are
fully correlated and cancel out in the comparison between them. The largest
uncertainty in comparing the measurement and the calculation is the 10%
pT scale uncertainty caused by the definition of jet. The calculation with
the PYTHIA MPI agrees with the measurement within their errors over the
measured range 4 < pcone

T < 15 GeV/c.
The result with the PYTHIA default are smaller than the result with the

PYTHIA MPI by 50% at pcone
T = 4 GeV/c, by 35% at pcone

T = 9 GeV/c and
by 20% at pcone

T = 14 GeV/c. It can be fully explained with the difference
appeared in Fig. 4.23 between the PYTHIA default and the PYTHIA MPI.
According to the comparisons of the event structures, the PYTHIA MPI
reproduces the space distribution of particle momenta in one event much
better than the PYTHIA default. Therefore, for the cone production rate
evaluated with the PYTHIA MPI simulation, the error due to possible in-
sufficient tunings of the PYTHIA MPI should be smaller than the difference
of the cone production rate between the PYTHIA MPI simulation and the
PYTHIA default simulation.
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Figure 5.4: PHENIX thrust distribution in each psum
T bin. All distributions

have been normalized so that their areas were equal to one another. The
purple lines are the distributions of isotropic events in the acceptance of the
PHENIX Central Arms, which are evaluated with Eq. 4.19.
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Figure 5.5: PHENIX thrust distribution in each psum
T bin (continued).
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Table 5.1: The sources of the systematic errors on cone event rate.
source its error error on event rate

Measurement
BBC cross section 9.7% 9.7%

EMCal energy scale 1.5% 7∼6%
Tracking momentum scale 1.5% 0∼3%
Trig. eff. (ERTLL1 4x4c) 2.6% 2.6%

Trig. eff. (BBCLL1) <1% small
Calculation

Jet-to-cone relation - 10%
EMCal energy scale 1.5% 7∼6%

Tracking momentum scale 1.5% 0∼3%
Simulation stat. error - 2∼5%

10% pT scale uncertainty between measurement and calculation

Table 5.2: Measured particle cluster ALL.
pcone

T range and mean (GeV/c) ALL stat. error
4∼5, 4.42 -0.0014 0.0037
5∼6, 5.43 -0.0005 0.0059
6∼7, 6.43 0.0058 0.0089
7∼8, 7.44 0.0034 0.0132
8∼10, 8.79 0.0077 0.0152

10∼12, 10.81 -0.0181 0.0282

5.3 Single helicity asymmetry AL

Figure 5.7 shows measured AL. AL has been measured for the blue beam
polarization while the yellow beam was assumed to be unpolarized and vice
versa. Measured ALs for the blue and yellow beam polarizations were aver-
aged. No significant asymmetry was observed.

5.4 Double helicity asymmetry ALL

Figure 5.8 shows measured Acone
LL and four prediction curves. Table 5.2 shows

the values of measured Acone
LL . The systematic error of the relative luminosity

is much smaller than the statistical error and is negligible. On the prediction
curves the systematic errors related to the relative yields of subprocesses are
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smaller than the 10% pT scale uncertainty by roughly a order of magnitude.
Therefore it is not included in this plot.

The statistical fluctuation of the data points seems smaller than the size
of the statistical errors. One possible cause for this is an overestimate of
the statistical errors, but the bunch shuffling analysis proved the statistical
errors assigned to be correct. Another possible cause is an statistical cor-
relation between the data points, but we could not find any origin of such
correlation. Therefore we concluded that the small fluctuation of the data
points happened statistically despite its small probability.

5.5 Constraint on ∆g

5.5.1 Probed xgluon range

To determine the range of xgluon probed by this measurement, the PYTHIA
MPI simulation without GEANT was used to obtain event-by-event xgluon

(one or two values per event) and pcone
T (one or two values per event). Figure

5.9 shows xgluon distributions for pcone
T bins. The xgluon values where yield

is half maximum are 10−1.7 = 0.02 at the lower side of the “4 < pcone
T < 5”

distribution and 10−0.6 = 0.3 at the upper side of the “11 < pcone
T < 12”

distribution. Therefore we adopted a range of 0.02 < xgluon < 0.3 as the
range probed by this measurement, although the definition of the ‘range’ is
obviously not unique.

By way of parenthesis, Figure 5.10 shows Q2 distributions for pcone
T bins.

Q2 increases on average as pcone
T increases, and this measurement probes a

range of 5 < Q2 < 300 GeV2.

5.5.2 χ2 between measurement and calculation

The measured ALL was compared with the calculated ALLs which assumed
various ∆g values in order to estimate the constraint of the measured ALL

on ∆g. The method of evaluating χ2 between the measured ALL and the
calculated ALL is as follows:

1. fix the integral value of ∆g(x) and fit the parameters of the polarized
structure function to the DIS data, where the number of parameters in
this fit is practically 11 because the integral of ∆g(x) is fixed,

2. calculate ALL of jet in each subprocess (qq, qg and qq scatterings),
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T < 12 GeV/c. It has been estimated with the PYTHIA MPI
simulation.
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Figure 5.11: χ2 between the measured ALL and the calculated ALL as a
function of the integrated value of ∆g(x).

3. calculate ALL of particle cluster using the ALL of jet in (3) and the
relation between pcone

T and pjet
T evaluated with the PYTHIA+GEANT

simulation, and

4. evaluate χ2 between the 6 data points and each calculated ALL of par-
ticle cluster,

where 1 and 2 were provided by W. Vogelsang, and 3 and 4 were performed
by myself. This way the χ2 at different integral values of ∆g(x) are obtained.
The method of calculating ALL is described in Sec. 4.8.3 in detail.

Figure 5.11 shows the χ2 between the 6 data points and the prediction
curves as a function of the integral

∫ 0.3

0.02
dx∆g(x,Q2 = 1) for each prediction

curve. The value of Q2 (= 1 GeV2) has been arbitrarily chosen in order to
show the value of the ∆g integral in horizontal axis, and actual Q2 used in
the ALL calculation varies event-by-event.

The minimum of the χ2 is ∼ 1.5 at ∆g = 0.07, namely the GRSV ∆g = 0
input. It is the most probable ∆g value and the error limit is where the χ2

increases from the minimum by 4 at 2σ level or by 9 for 3σ level. Therefore

138



we obtained

−1.1 <

∫ 0.3

0.02

∆gGRSV (x,Q2 = 1) < 0.4 (2σ level) (5.1)

∫ 0.3

0.02

∆gGRSV (x, Q2 = 1) < 0.5 (3σ level) (5.2)

It should be noted that the GRSV model contains 12 parameters in total as
shown in Eq. 2.43. In the assumptions of the present approach, the parame-
ters in the u, d and antiquark distributions are well fixed with the DIS data.
The shape of the gluon distribution (αg, βg) are also well fixed with the DIS
data. Therefore, the only parameter to be fitted to the p+p collision data
is the normalization parameter in ∆g(x). The correlations of error between
the normalization parameter and the shape parameters in ∆g(x) are not in-
cluded in the analysis. The effect of the shape parameters is discussed in the
subsequent subsection.

5.5.3 Comparison with SIDIS results

Figure 5.12 shows the gluon polarization ∆g(x)/g(x) measured with the
SIDIS experiments and ones calculated with pQCD at Q2 = 4 GeV2. In
the pQCD calculation, ∆g(x) is one of the four GRSV polarized PDFs and
g(x) is the GRV98 unpolarized PDF.

The result of the SIDIS measurements indicates small ∆g. The data
points which are negative have large errors. It is consistent with the result
of the particle cluster ALL measurement. In the SIDIS measurements, the
“HERMES (Method II)” and the “COMPASS (Q2 < 1 GeV2)” have the
smallest uncertainty and disfavor both the GRSV ∆g = g input and the
GRSV ∆g = −g input at a similar statistical significance. The particle
cluster ALL disfavors the former strongly but the latter weekly. It is because
the particle cluster ALL with the ∆g = −g input is as nearly small as that
with the ∆g = 0 input due to the cancellation between the large positive
gg-subprocess ALL and the large negative qg-subprocess ALL.

5.5.4 Systematic uncertainty on theory calculation

The discussion above hasn’t taken into account systematic uncertainties on
the theory calculation. Particularly the uncertainty due to the assumed func-
tional form is large because the measurement probed the limited range 0.02 <
xgluon < 0.3. The uncertainty hasn’t been quantitatively estimated yet, but
can be partly discussed by comparing the GRSV parameterization with an-
other parameterization, the GS (Gehrmann and Stirling) parameterization[79].
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In the GS parameterization the PDFs are parameterized in the forms;

x∆uv(x, Q2 = Q2
0) = ηuAux

au(1 − x)bu(1 + γux + ρux
1/2)

x∆dv(x,Q2 = Q2
0) = ηdAdx

ad(1 − x)bd(1 + γdx + ρdx
1/2)

x∆q̄(x,Q2 = Q2
0) = ηq̄Aq̄x

aq̄(1 − x)bq̄(1 + γq̄x + ρq̄x
1/2)

x∆g(x,Q2 = Q2
0) = ηgAgx

ag(1 − x)bg(1 + γgx + ρgx
1/2) (5.3)

where Q2
0 = 4 GeV2 is the initial scale, and Af is the normalization factor that

is a function of the free parameters (af , bf , γf and ρf ) and ensures that the

first moment (
∫ 1

0
dx∆f(x,Q2 = Q2

0)) is given by nf . The SU(3)-symmetric
antiquark polarization is assumed, ∆q̄(x,Q2) = ∆ū(x,Q2) = ∆d̄(x,Q2) =
∆s̄(x,Q2). The ∆g(x,Q2) was very weakly constrained only with DIS data,
and thus the parameters in ∆g(x,Q2) have been fixed in three ways;

GS-A : ag = aq̄, γg = 0, ρg = 0 (5.4)

GS-B : ag = aq̄, γg = −1, ρg = 2 (5.5)

GS-C : ag = aq̄, γg = 0, ρg = −3 (5.6)

The three scenarios have different functional forms as shown in Fig. 5.13 but
have a similar χ2 in the global fit.

When the GS-C parameterization is assumed, the ALL is almost zero
(|ALL| < 0.2%) and is consistent with the measured ALL. It is probably
because ∫ 0.3

0.02

∆gGS-C(x,Q2
0) ≈ 0 (5.7)

The integration range is where the cone measurement probed. It is the same
for the GRSV ∆g = 0 input,

∫ 0.3

0.02

∆gGRSV ∆g=0 input(x,Q2
0) = 0 (5.8)

But the first moments of these two parameterizations are very different
∫ 1

0

∆gGS-C(x, Q2
0) = 1.02 (5.9)

∫ 1

0

∆gGRSV ∆g=0 input(x,Q2
0) = 0 (5.10)

because the contribution from small x region, namely at x = 0.01 and below,
is large in the GS-C parameterization. The shape of the GS-C parameteriza-
tion has a node at x ∼ 0.1. The measurement has not quantitatively excluded
this possibility yet. Therefore it is concluded that the ∆g(x) outside of the
measured x range has not been constrained well.
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Chapter 6

Conclusion

In this thesis I presented the new method and result for the study of the
gluon spin in the proton using particle clusters from jets in proton-proton
collisions.

The contribution of the gluon spin to the proton spin was investigated in
detail. The proton spin structure has been studied so far with deep inelastic
scattering (DIS) experiments with high-energy lepton beams. In the mea-
surement reported in this thesis, polarized proton-proton collision was used
where direct gluon-quark collision can be observed. The method of measur-
ing the particle clusters in the jet production process has been developed,
and the first result was presented in this thesis.

The double helicity asymmetry (ALL) of particle clusters from jet produc-
tion process at a mid-rapidity |η| < 0.35 in longitudinally polarized proton-
proton collision at

√
s = 200 GeV was measured. In 2005 at RHIC the

PHENIX experiment took, with the high-energy (& 1.4 GeV) photon trig-
ger, collision data about 3.8 pb−1 in integrated luminosity with average beam
polarizations 〈P 〉 = 49%. I have performed the energy calibration of every
EMCal module using π0 invariant mass peak and the development of the
high-energy-photon trigger (ERT). Not only the measurement of particle
cluster but also all PHENIX measurements at mid-rapidity are based on the
calibration and the development.

Photons and charged particles in jets were measured at |η| < 0.35 and
∆φ = 90◦ × 2 with the EMCal, the DC and the PC of the PHENIX Central
Arm. Measured particles were clustered by the seed-cone algorithm with a
cone radius R = 0.3. The sum of pT of particles in cone (pcone

T ) was related
to the pT of original jet (pjet

T ) with the PYTHIA and GEANT simulation. To
confirm the reproducibility of the simulation, the event structures and the
cone production rate were measured and compared between the real data
and the simulation outputs. The MPI-enhanced PYTHIA well agreed with
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the real data in terms of the transverse momentum density as a function
of the azimuthal angle from trigger photon and the thrust in the PHENIX
Central Arm. Also the cone production rate of the real data agreed with
that of the calculation based on the SCA jet cross section and the PYTHIA
MPI simulation.

The ALL of particle cluster was measured at 4 < pcone
T < 12 GeV/c. The

main systematic errors are a pT scale uncertainty of 10% and a beam polar-
ization uncertainty of 9.4%. The xgluon range probed by the measurement of
the particle clusters with 4 < pcone

T < 12 GeV/c are mainly 0.02 < x < 0.3
according to the simulation study. The measured ALL was compared with
the predicted values based on the GRSV parameterization, and the compar-
ison imposed the limit −1.1 <

∫ 0.3

0.02
dx∆gGRSV (x,Q2 = 1) < 0.4 at 2σ level

or
∫ 0.3

0.02
dx∆gGRSV (x,Q2 = 1) < 0.5 at 3σ level, and thus excluded large-∆g

cases of the GRSV parameterization. This provides an important impact in
understanding the gluon spin in the proton because a very large ∆g (∼ 4)
was once theoretically suggested in order to explain the EMC result. This
large ∆g is not consistent with the present result. The result of the SIDIS
∆g(x)/g(x) measurements indicates small or even negative ∆g, and is con-
sistent with the result of the particle cluster ALL measurement. Due to
the uncertainty on the functional form in the theory calculation, the ∆g(x)
outside of the measured x range has not been constrained well.

The new method of ALL measurement with particle clusters which I
started and developed provides a powerful tool to investigate the proton
spin problem. As the luminosity of RHIC is increasing every year, further
strong constraint will be obtained in coming years with this method.

144



Acknowledgement

I would like to thank Prof. Toshi-Aki Shibata, my supervisor. He demon-
strated many interesting and important aspects of the spin physics to me,
and provided the opportunity to participate in the PHENIX experiment. His
advice throughout my graduate course was indispensable for this thesis.

I am obliged to Dr. Hideto En’yo, the chief researcher of the Radiation
Lab at RIKEN, and Dr. Gerry Bunce, the leader of the experimental group in
RIKEN BNL Research Center (RBRC), for their supports of my participation
in the PHENIX experiment as well as physics discussions on this thesis. Their
supports were the foundation of my experimental works and analyses at BNL.

All collaborators in the PHENIX experiment were, of course, essential
to carry out such a massive experiment. I am obliged especially to the
spokespersons—Dr. William A. Zajc and Dr. Barbara Jacak—, the con-
venors of the Spin Physics Working Group—Dr. Kiyoshi Tanida, Dr. Sasha
Bazilevsky, Dr. Christine Aidala and predecessors—, and the members of the
EMCal and ERT groups. They organized all operations necessary for experi-
ments and analyses, and managed my activities. Dr. Yuji Goto, Dr. Yasuyuki
Akiba and Dr. Kensuke Okada discussed with me the results of my analyses
in depth. They really improved my understandings of the results.

I am grateful to the members of Shibata Lab at Tokyo Institute of Tech-
nology for their supports over many years. Particularly, Dr. Yoshiyuki Miy-
achi, the assistant professor, helped me in physics studies, computings and of-
fice works. Mr. Nobuyuki Kamihara, Dr. Takuma Horaguchi and Mr. Kouichi
Sakashita helped me in various issues at BNL as well as at Shibata Lab.

I appreciate all smooth and heartful supports by the current and past
secretaries at RIKEN, RBRC and Tokyo Institute of Technology. I could
efficiently perform this research by the grace of them.

Concerning my daily life, I would thank the following persons. Dr. Yoshi-
nori Fukao, Mr. Manabu Togawa, Mr. Kazuya Aoki and Mr. Seishi Dairaku
shared long joyful time with me at the RIKEN Team Apartment inside BNL
in addition to research activities. Mr. Johann Sebastian Bach and Mr. Hel-
mut Walcha brought the beauty of eternity and strength to my mind when I

145



was weary with the paper writing. My parents, Shigetomi and Shizuko, kept
encouraging me to perform the research.

I would again express my gratitude to all the persons. I could not have
completed this thesis without their thankful supports.

146



Bibliography

[1] J. Ashman et al. [European Muon Collaboration], Phys. Lett. B 206, 364
(1988).

[2] J. Ashman et al. [European Muon Collaboration], Nucl. Phys. B 328, 1
(1989).

[3] G. Baum et al., Phys. Rev. Lett. 51, 1135 (1983).

[4] G. Altarelli and G. G. Ross, Phys. Lett. B 212, 391 (1988).

[5] A. Airapetian et al. [HERMES Collaboration], Phys. Rev. D 75, 012007
(2007) [Erratum-ibid. D 76, 039901 (2007)] [arXiv:hep-ex/0609039].

[6] A. Adare et al. [PHENIX Collaboration], Phys. Rev. D 76, 051106 (2007)
[arXiv:0704.3599 [hep-ex]].

[7] J. D. Bjorken and E. A. Paschos, Phys. Rev. 185, 1975 (1969).

[8] H. W. Kendall, Rev. Mod. Phys. 63, 597 (1991).

[9] D. J. Gross and F. Wilczek, Phys. Rev. Lett. 30, 1343 (1973).

[10] H. D. Politzer, Phys. Rev. Lett. 30, 1346 (1973).

[11] D. J. Gross and F. Wilczek, Phys. Rev. D 8, 3633 (1973).

[12] D. J. Gross and F. Wilczek, Phys. Rev. D 9, 980 (1974).

[13] R. Brock et al. [CTEQ Collaboration], Rev. Mod. Phys. 67, 157 (1995).

[14] W. M. Yao et al. [Particle Data Group], J. Phys. G 33, 1 (2006).

[15] S. Chekanov et al. [ZEUS Collaboration], Eur. Phys. J. C 42, 1 (2005)
[arXiv:hep-ph/0503274].

[16] S. Chekanov et al. [ZEUS Collaboration], Phys. Rev. D 67, 012007
(2003) [arXiv:hep-ex/0208023].

147



[17] A. D. Martin, R. G. Roberts, W. J. Stirling and R. S. Thorne, Eur.
Phys. J. C 23, 73 (2002) [arXiv:hep-ph/0110215].

[18] J. Pumplin, D. R. Stump, J. Huston, H. L. Lai, P. Nadolsky and
W. K. Tung, JHEP 0207, 012 (2002) [arXiv:hep-ph/0201195].

[19] V. N. Gribov and L. N. Lipatov, Sov. J. Nucl. Phys. 15, 438 (1972)
[Yad. Fiz. 15, 781 (1972)].

[20] G. Altarelli and G. Parisi, Nucl. Phys. B 126, 298 (1977).

[21] Y. L. Dokshitzer, Sov. Phys. JETP 46, 641 (1977) [Zh. Eksp. Teor. Fiz.
73, 1216 (1977)].

[22] M. Gluck, E. Reya and A. Vogt, Eur. Phys. J. C 5, 461 (1998)
[arXiv:hep-ph/9806404].

[23] B. Adeva et al. [Spin Muon Collaboration (SMC)], Phys. Lett. B 369,
93 (1996).

[24] B. Adeva et al. [Spin Muon Collaboration], Phys. Lett. B 420, 180
(1998) [arXiv:hep-ex/9711008].

[25] A. D. Martin, R. G. Roberts, W. J. Stirling and R. S. Thorne, Eur.
Phys. J. C 4, 463 (1998) [arXiv:hep-ph/9803445].

[26] D. J. Gross and C. H. Llewellyn Smith, Nucl. Phys. B 14, 337 (1969).

[27] S. A. Larin, Phys. Lett. B 334, 192 (1994) [arXiv:hep-ph/9403383].

[28] W. C. Leung et al., Phys. Lett. B 317, 655 (1993).

[29] S. L. Adler, Phys. Rev. 143, 1144 (1966).

[30] D. Allasia et al., Z. Phys. C 28, 321 (1985).

[31] D. Allasia et al. [New Muon Collaboration (NMC)], Phys. Lett. B 249,
366 (1990).

[32] M. Arneodo et al. [New Muon Collaboration], Nucl. Phys. B 487, 3
(1997) [arXiv:hep-ex/9611022].

[33] A. Baldit et al. [NA51 Collaboration], Phys. Lett. B 332, 244 (1994).

[34] E. A. Hawker et al. [FNAL E866/NuSea Collaboration], Phys. Rev. Lett.
80, 3715 (1998) [arXiv:hep-ex/9803011].

148



[35] J. Speth and A. W. Thomas, Adv. Nucl. Phys. 24, 83 (1997).

[36] J. D. Bjorken, Phys. Rev. 148, 1467 (1966).

[37] P. L. Anthony et al. [E155 Collaboration], Phys. Lett. B 493, 19 (2000)
[arXiv:hep-ph/0007248].

[38] J. R. Ellis and R. L. Jaffe, Phys. Rev. D 9, 1444 (1974) [Erratum-ibid.
D 10, 1669 (1974)].

[39] R. L. Jaffe and A. Manohar, Nucl. Phys. B 337, 509 (1990).

[40] S. A. Larin, T. van Ritbergen and J. A. M. Vermaseren, Phys. Lett. B
404, 153 (1997) [arXiv:hep-ph/9702435].

[41] X. D. M. Ji, Phys. Rev. Lett. 78, 610 (1997) [arXiv:hep-ph/9603249].

[42] X. D. Ji, Phys. Rev. D 55, 7114 (1997) [arXiv:hep-ph/9609381].

[43] P. Hoodbhoy, X. D. Ji and W. Lu, Phys. Rev. D 59, 014013 (1999)
[arXiv:hep-ph/9804337].

[44] M. Gluck, E. Reya, M. Stratmann and W. Vogelsang, Phys. Rev. D 63,
094005 (2001) [arXiv:hep-ph/0011215].

[45] J. Bluemlein and H. Bottcher, Nucl. Phys. B 636, 225 (2002) [arXiv:hep-
ph/0203155].

[46] M. Hirai, S. Kumano and N. Saito [Asymmetry Analysis Collaboration],
Phys. Rev. D 69, 054021 (2004) [arXiv:hep-ph/0312112].

[47] A. Airapetian et al. [HERMES Collaboration], Phys. Rev. Lett. 84, 2584
(2000) [arXiv:hep-ex/9907020].

[48] G. Bunce, N. Saito, J. Soffer and W. Vogelsang, Ann. Rev. Nucl. Part.
Sci. 50, 525 (2000) [arXiv:hep-ph/0007218].

[49] N. S. Craigie, K. Hidaka, M. Jacob and F. M. Renard, Phys. Rept. 99,
69 (1983).

[50] G. Hanson et al., Phys. Rev. Lett. 35, 1609 (1975).

[51] F. Abe et al. [CDF Collaboration], Phys. Rev. D 45, 2249 (1992).

[52] G. Arnison et al. [UA1 Collaboration], Phys. Lett. B 132, 214 (1983).

149



[53] J. Muth et al., “Proceedings 1990 Summer Study on High Energy
Physics”, ed. E. Berger, Singapore: World Scientific, 134 (1992).

[54] G. C. Blazey et al., Proceedings of the Run II QCD and Weak Boson
Physics Workshop (hep-ex/0005012)

[55] G. P. Salam and G. Soyez, JHEP 0705, 086 (2007) [arXiv:0704.0292
[hep-ph]].

[56] SISCone web page, http://projects.hepforge.org/siscone/

[57] F. Aversa, M. Greco, P. Chiappetta and J. P. Guillet, Z. Phys. C 46,
253 (1990).

[58] B. Jager, M. Stratmann and W. Vogelsang, Phys. Rev. D 70, 034010
(2004) [arXiv:hep-ph/0404057].

[59] L. W. Anderson, Nucl. Instrum. Meth. 167, 363 (1979).

[60] A. Zelenski et al., Proceedings of PAC07, 3771 (2007).

[61] S. van der Meer, ISR-PO/68-31, KEK68-64.

[62] M. Bai et al., Phys. Rev. Lett. 96, 174801 (2006).

[63] E. D. Courant and R. Ruth, BNL Report No. BNL-51270, 1980 (unpub-
lished).

[64] J. Tojo et al., Phys. Rev. Lett. 89, 052302 (2002) [arXiv:hep-
ex/0206057].

[65] H. Okada et al., Phys. Lett. B 638, 450 (2006) [arXiv:nucl-ex/0502022].

[66] K. Adcox et al. [PHENIX Collaboration], Nucl. Instrum. Meth. A 499,
469 (2003).

[67] A. Bazilevsky et al., Phys. Lett. B 650, 325 (2007) [arXiv:hep-
ex/0610030].

[68] M. Allen et al. [PHENIX Collaboration], Nucl. Instrum. Meth. A 499,
549 (2003).

[69] C. Adler, A. Denisov, E. Garcia, M. J. Murray, H. Strobele and S. White,
Nucl. Instrum. Meth. A 470, 488 (2001) [arXiv:nucl-ex/0008005].

[70] L. Aphecetche et al. [PHENIX Collaboration], Nucl. Instrum. Meth. A
499, 521 (2003).

150



[71] K. Adcox et al. [PHENIX Collaboration], Nucl. Instrum. Meth. A 499,
489 (2003).

[72] J. T. Mitchell et al. [PHENIX Collaboration], Nucl. Instrum. Meth. A
482, 491 (2002) [arXiv:nucl-ex/0201013].

[73] PYTHIA Webpage, http://www.thep.lu.se/˜torbjorn/Pythia.html

[74] CERNLIB Webpage, http://cernlib.web.cern.ch/cernlib/

[75] R. Field, Proc. A1, 34th International Symposium on Multiparticle Dy-
namics

[76] S. S. Adler et al. [PHENIX Collaboration], Phys. Rev. Lett. 91, 241803
(2003) [arXiv:hep-ex/0304038].

[77] G. Alexander et al. [OPAL Collaboration], Phys. Lett. B 265, 462
(1991).

[78] R. Akers et al. [OPAL Collaboration], Z. Phys. C 68, 179 (1995).

[79] T. Gehrmann and W. J. Stirling, Phys. Rev. D 53, 6100 (1996)
[arXiv:hep-ph/9512406].

151


	Introduction
	Physics of the proton structure and jet production
	Proton structure
	Quark-parton model and parton distribution function
	Polarized parton distribution function
	Sum rules and proton spin problem
	g(x) measurement with DIS
	g(x) measurement with SIDIS
	g(x) measurement with proton-proton collisions

	Jet production in proton-proton collisions
	Jet cone and clustering procedure
	Cross section
	Double helicity asymmetry


	Experimental Setup
	Accelerator
	Polarized proton source
	RHIC
	Beam luminosity
	Beam polarization

	PHENIX detector overview
	Beam-beam counter (BBC)
	Zero degree calorimeter (ZDC)
	Electromagnetic calorimeter (EMCal)
	Charged particle tracking
	Data acquisition (DAQ) system
	DAQ outline
	Triggers

	Simulation settings
	PYTHIA event generator
	Underlying event and Multi-Parton Interaction
	GEANT detector simulator


	Analysis Methods
	Outline
	Run selection
	Quality assurance and calibration of detectors
	EMCal
	Tracking detectors
	Run dependence of the summed transverse momentum

	Particle Clustering with Cone Method
	Particle selection
	Cluster finding algorithm
	Remaining hadron contribution
	pTcone distribution

	Simulation Study
	Relating cone to jet
	Bias of cone measurement

	Event structure
	Multiplicity
	Transverse momentum density
	Thrust distribution in PHENIX Central Arm

	Cone production rate
	Evaluation method
	Luminosity in measurement
	Trigger efficiency and acceptance correction in simulation
	Systematic error estimation

	Double helicity asymmetry
	Evaluation method
	Check on systematic errors
	Calculation of predicted asymmetry

	Statistical overlap with 0 measurement

	Results and discussions
	Event structure
	Multiplicity
	Transverse momentum density
	Thrust distribution in PHENIX Central Arm

	Cone production rate
	Single helicity asymmetry AL
	Double helicity asymmetry ALL
	Constraint on g
	Probed xgluon range
	2 between measurement and calculation
	Comparison with SIDIS results
	Systematic uncertainty on theory calculation


	Conclusion

