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Abstract: The spin-torsion theory is a gauge theory approach to gravity that expands upon Einstein’s

general relativity (GR) by incorporating the spin of microparticles. In this study, we further develop

the spin-torsion theory to examine spherically symmetric and static gravitational systems that involve

free-falling macroscopic particles. We posit that the quantum spin of macroscopic matter becomes

noteworthy at cosmic scales. We further assume that the Dirac spinor and Dirac equation adequately

capture all essential physical characteristics of the particles and their associated processes. A crucial

aspect of our approach involves substituting the constant mass in the Dirac equation with a scale

function, allowing us to establish a connection between quantum effects and the scale of gravitational

systems. This mechanism ensures that the quantum effect of macroscopic matter is scale-dependent

and diminishes locally, a phenomenon not observed in microparticles. For any given matter density

distribution, our theory predicts an additional quantum term, the quantum potential energy (QPE),

within the mass expression. The QPE induces time dilation and distance contraction, and thus mimics

a gravitational well. When applied to cosmology, our theory yields a static cosmological model.

The QPE serves as a counterpart to the cosmological constant introduced by Einstein to balance

gravity in his static cosmological model. The QPE also offers a plausible explanation for the origin

of Hubble redshift (traditionally attributed to the universe’s expansion). The predicted luminosity

distance–redshift relation aligns remarkably well with SNe Ia data from the cosmological sample of

SNe Ia. In the context of galaxies, the QPE functions as the equivalent of dark matter. The predicted

circular velocities align well with rotation curve data from the SPARC (Spitzer Photometry and

Accurate Rotation Curves database) sample. Importantly, our conclusions in this paper are reached

through a conventional approach, with the sole assumption of the quantum effects of macroscopic

matter at large scales, without the need for additional modifications or assumptions.

Keywords: alternative theories of gravity; dark matter; dark energy; galactic rotation curves

1. Introduction

The primary challenge facing the current theory of gravity, the Einstein–Newton
theory, lies in the unresolved mysteries of dark matter and dark energy. To date, there has
been a lack of direct observational evidence confirming the existence of these enigmatic
components. Extensive efforts are being made to address this topic. On the theoretical front,
much attention is directed towards modifying or extending the Einstein–Newton theory of
gravity to align with astronomical observations. For instance, one can enhance the standard
Lagrangian in general relativity by incorporating higher-order curvature corrections [1–6],
or formulate non-linear Lagrangians [7,8]. Other relevant examples include modified
Newtonian dynamics (MOND) [9,10] and its relativistic version [11], as well as conformal
gravity [12,13].

In this paper, we explore the concept of quantum spacetime at cosmic scales as a
potential alternative to dark matter and dark energy. This research represents a significant
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extension of our previous study [14]. Rather than relying on previous assumptions, we
explicitly propose scale-dependent quantum properties of spacetime. This proposition is
motivated by our interest in potentially moving away from the notion of a preferred abso-
lute spacetime (PAS) for the universe, as implied by general relativity (GR) and illustrated
in the standard ΛCDM cosmology. It is believed that the PAS is theoretically characterized
by the Friedmann–Lemaître–Robertson–Walker (FLRW) metric and empirically supported
by the cosmic microwave background (CMB). One aim of this study is to demonstrate
that the notion of a PAS is not inherently valid when considering the quantum effects of
macroscopic matter at large scales.

Before going further, it is imperative to clarify our actual motivation in order to prevent
any possible misunderstandings. For ease of reference, we categorize the universe into
three distinct classes based on spatial scales: the cosmic scale (encompassing galaxies to
the entire universe), the macroscopic scale (ranging from everyday life to the size of the
solar system), and the microscopic scale (where quantum mechanics becomes significant,
as is well-known). According to the mainstream view, the quantum effect for objects at the
macroscopic and cosmic scales can be safely disregarded, due to their large mass. This is
known as the classical limit. We will show, however, that quantum effects are dependent
on the scale of the gravitational system considered and that the “classical limit” is only
reached at macroscopic scale. In other words, quantum effects are significant not only at
microscopic scale but also at cosmic scale, and can only be ignored at macroscopic scale.
Intuitively, when we study cosmology, any observers who perceive distant galaxies in the
universe, would expect them to exhibit quantum behavior resembling that of microscopic
particles, due to their distant location. As for galactic dynamics, quantum effects should
also be taken into account for galaxies, although in the central part, they can be ignored
due to the mechanism presented in this study.

It is helpful to discuss the reasons behind generalizing the quantum effects observed in
microscopic particles to macroscopic ones, as well as why the strength of these generalized
quantum effects appears to increase with the spatial scale, based on our previous paper [14].
It is believed that gravity turns disorder into order, and order is fundamental to space, time,
and spacetime—or, as we might say, spacetime is nothing but the continuous ordering of
events. Thus, without gravity, there would be no spacetime. In any local inertial frame,
gravity is still present, but the net gravitational force is canceled out by the inertial force,
leaving order or flat spacetime behind. In special relativity, rigid rods are used to create
coordinate lattices, ensuring that every event has a position at any given time. According to
GR, the global structure of curved spacetime can still be described using arbitrarily curved
rigid rods (depending on the matter distribution) of arbitrary length. However, quantum
mechanics reveals that microscopic particles can escape the order depicted by spacetime
and thus elude the control of gravity. The quantum effects of electrons, for instance, can be
attributed to their quantum randomness (also known as intrinsic randomness), which is
markedly different from classical randomness (or apparent randomness), exemplified by
Brownian motion. A free electron deviates from a straight line or a curved geodesic, which
implies that gravity is not strong enough to bring it into order. This explains quantum
effects from a geometric point of view. Gravity does bring macroscopic matter into order
in the sense that any free macroscopic object will move along a straight line or a curved
geodesic. This fact is fundamental to both Newtonian theory and GR. However, if we
assume that all matter, irrespective of its mass, has two opposite properties—gravity
and quantum randomness—then it is possible that gravity is not strong enough to bring
any distant macroscopic object into order, just as occurs with microscopic particles. If
our assumption is true, then general relativity (GR) is valid only approximately within a
sufficiently small neighborhood of any point in the spacetime manifold. In this case, the
uncertainty in matter distribution, originating from quantum randomness, will accumulate
with spatial distance. Or, put another way, the strength of quantum effects appears to
increase with spatial scale. On the other hand, since the spin-induced torsion arising from
macroscopic matter vanishes locally, the geodesics of test particles are precisely defined.
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This serves as the physical foundation for physicists to construct coordinate lattices. As
a result, in general, spacetime is not only curved but also flexible. It turns out that the
preferred absolute spacetime (PAS), which is determined by all matter in the universe, loses
its meaning when scale-dependent quantum effects come into play. Any new fundamental
assumptions about physical laws should be falsifiable. The rest of this study represents a
first attempt along this line.

We will illustrate the integration of our assumption with the Einstein equations. It is
natural for us to generalize the Dirac theory to describe the macroscopic matter content of
gravitational systems with cosmic scale.

There are two approaches to interpreting quantum mechanics. The first is the standard
view, which asserts that microscopic particles cannot have continuous trajectories and that
non-commuting observables (such as position and momentum) must satisfy the uncertainty
principle. The second approach is known as the causal interpretation, which posits that each
microscopic particle has a continuous trajectory and replaces the uncertainty principle with
the concept of quantum potential [15,16]. Both approaches yield equivalent predictions
for experimental results. However, the causal interpretation, particularly in its geometric
algebra (GA) version, provides profound insights into the quantum nature of spacetime and
matter [17–20]. In this paper, similarly to in our previous work, we utilize spacetime algebra
(STA) [20–22] as our mathematical language. STA is constructed from a Minkowskian vector
space and provides a straightforward geometric understanding of Dirac theory. It provides
a natural link to classical mechanics, and for expressing Dirac theory with observables, it
offers enhanced computational efficiency and capabilities [18] when compared to the tensor
analysis method [23]. The fundamentals of STA are outlined in Appendix A. In the STA
version of Dirac theory, known as real Dirac theory, Hestenes identified the complex number
present in the matrix version of Dirac theory as the spin plane [17]. Furthermore, since the
complex number is always accompanied by the Planck constant ℏ, a rigorous derivation of
the Schrodinger theory from the Pauli or Dirac theory implies that the Schrodinger equation
describes an electron in an eigenstate of spin, rather than, as commonly believed, an electron
without spin [24]. Correspondingly, there are two gauge theories of gravity concerning our
research work: one is the tensor analysis approach [25], and the other is the gauge theory
gravity (GTG) developed by the Cambridge group using STA [26]. These two theories are
nearly equivalent, but the latter is conceptually clearer and technically more powerful for
comprehending and calculating the challenges encountered in quantum mechanics and
gravity. Therefore, we choose to adopt GTG in this paper. The fundamentals of GTG and
its applications to spin- 1

2 particles are summarized in Appendix C.

It is now widely acknowledged that the quantum random motion of spin- 1
2 particles

can be fully described by their spin. In the presence of gravity, the spin gives rise to
the torsion of spacetime [21,25–29]. In particular, the effects of spin-torsion in GTG were
investigated in Ref. [27]. GTG is nearly equivalent to Einstein–Cartan gravity [25]. The
stress-energy tensor derived from the Dirac theory contains an asymmetric component,
representing the contribution of quantum spin. As a consequence, the metric of spacetime
as predicted by the generalized Einstein equations includes a component that accounts
for the torsion of spacetime. As will be shown later, the torsion term appearing in the
metric represents a modification to GR. To date, the problem of finding solutions for a
Dirac field coupled to gravity in a self-consistent manner has primarily been considered
for microscopic particles. To our knowledge, there is only one work that explored the
massive, non-ghost cosmological solutions for the Dirac field coupled self-consistently to
gravity [30], which is close to our present study. As expected, the authors applied their
methods to the very early universe, with the Dirac field describing massive yet microscopic
particles. This differs from our present study, in which we assume that the Dirac field
describes macroscopic particles within a static universe.

For massive fermions, such as electrons and neutrons, the mass will always appear
in the phase factor of the solutions of wave equations. When gravity matters, this mass
dependence remains. Consequently, it is generally believed that the gravity effect is not
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purely geometric at the quantum level. Hence, the immediate question is how can we
reconcile, if possible, the contradiction between the quantum effect and the requirement of a
geometric description of gravity? For microparticles, reconciling this contradiction is indeed
impossible. However, in this study, we propose that the scale-dependent quantum effect
on macroscopic matter only becomes significant at cosmic scales. Locally, at a macroscopic
scale, the large mass m of each particle, or equivalently, the small value of the number
density ρ of the fluid, guarantees what is known as the classical limit, allowing for a
geometric description of the gravitational effect on macroscopic matter. The remaining
question is what mechanism ensures that quantum effects are significant at cosmic scales
while being negligible at macroscopic scales?

The answer to this question is not intricate, but rather subtle. The specifics will be
provided later, but for now, we will outline the main concepts behind the mechanism.
Our analysis commences with an examination of the Dirac theory within various inertial
frames [18]. Generally, the Lorentz–invariant Dirac spinor is defined in spacetime as

ψ(x) = ρ1/2eiβ(x)/2R(x). (1)

where ρ(x) is a scalar representing the proper probability density and R(x) is a rotor
(Lorentz rotation) satisfying RR̃ = 1. In Dirac theory, the parameter β(x) is intriguing.
It is noteworthy that the states of a plane-wave particle have β = 0, while those of an
antiparticle have β = π. In this paper, we aim to generalize the spinor ψ(x) to describe
free-falling macroscopic, non-relativistic particles with identical mass m. Therefore, it is
logical to set β = 0 throughout. We thus adopt [14]

ψ(x) = ρ(x)1/2R(x). (2)

For our purpose, we can interpret ρ = ψψ̃ as the proper number density of a fluid, then we
refer to ρm = mψψ̃ as the corresponding proper mass density. As illustrated in Appendix B,
the rotor R can be used to transform a fixed frame {γµ} into a new frame {eµ = RγµR̃},
and we identify v = e0 as the proper velocity associated with the expected history x(τ) of
a particle and thus the current velocity of the fluid. Naturally, the corresponding stress–
energy tensor of the fluid can be written as

T(a) = ρma · vv. (3)

It is important to point out that this stress–energy tensor, which originates from the Dirac
spinor given by Equation (2) for a single electron, definitely describes a classical pressure-
free ideal fluid without incorporating quantum spin. Quantum spin is only included if
the spinor satisfies the Dirac equation, as will be discussed soon. In this sense, we can say
that the spinor given in Equation (2) captures all aspects of macroscopic particles, when
considered with or without the Dirac equation.

The Dirac equation is
ℏ∇ψiγ3 = mψ. (4)

where ℏ is the Planck constant. This equation describes a single spin- 1
2 free particle with a

fixed mass m and a probability density ρ. It is convenient to define a spin density trivector
as (note that this is denoted with S3 in Appendix B)

S =
ℏ

2
ψiγ3ψ̃ =

ℏ

2
ρRiγ3R̃. (5)

We show in Appendix B that, from the Dirac Equation (4), the general stress–energy tensor
for the spinor field is

T(a) = ρma · vv + [a · ∇(Sv)] · v − (a ∧∇) · (Sv)v. (6)
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When S = 0 (this is the classical limit), this equation becomes the stress–energy tensor of a
pressureless ideal fluid without spin, as shown in Equation (3). Clearly, if we treat each
free-falling macroscopic particle with a fixed mass m as a single spin- 1

2 free particle, we
have the opportunity to include its quantum behavior under certain circumstances. This is
the main aim of this study.

We are now in a position to discuss how the spinor approach can unify quantum
mechanics and classical mechanics. We believe this will be helpful to understand the
physical significance of our proposal in this study. The general form of the Dirac spinor,
as defined in Equation (1), and the corresponding Dirac equation are translations of the
traditional matrix version of Dirac theory, expressed in terms of STA [18]. They are equiva-
lent in practical applications. The advantages of the STA version of Dirac theory include
providing an explicit geometric and causal interpretation of the theory, which makes it very
convenient when incorporating with general relativity (GR). One of the unique features of
the Dirac equation is that it allows for solutions with both positive and negative energy
states. The negative energy solutions in the Dirac equation lead to the concept of the Dirac
sea, a theoretical model that was used to explain the existence of antiparticles. Because of
the presence of negative energy states, when dealing with Dirac spinors, one encounters
different types of physical quantities called densities, such as scalar densities, which are
Lorentz-invariant. Scalar densities can interact with scalar fields, and the Higgs field is one
such example, which is responsible for giving mass to particles through their interaction
with it. When we generalize the Dirac theory to describe classical macroscopic particles,
however, we restrict ourselves to the positive energy states. This is adequate because, in the
case of the non-relativistic energy of macroscopic particles, there are no particle–antiparticle
creation processes involved. That is, we treat each macroscopic particle as a single Dirac
fermion. As such, we recognize the proper number density ρ = ψψ̃ and the proper mass
density ρm = mψψ̃ (as measured by observers who are comoving with the current velocity
v = Rγ0R̃) as that for the ensemble of a single macroscopic particle, described by the Dirac
spinor give in Equation (2). As mentioned, classical mechanics are recovered when S = 0.

When applying these results to gravitational systems, we simply need to replace ∇
with the covariant derive symbol D, while all other quantities remain gauge-invariant.
As such, the classical limit (also known as the short wave approximation) refers to the fact
that the contribution of the spin to the stress–energy is negligible. Clearly, the magnitude
of the spin |S| = ℏ

2 ρ is determined by the number density ρ. Therefore, an alternative
interpretation of the classical limit is that the value of the number density, ρ, is ignorably
low, whereas a significant quantum effect arises when ρ is sufficiently high. For a fixed
mass density ρm(x), the spin |S| can be determined via ρ(x) = ρm(x)/m. This freedom
strongly indicates that, in order to incorporate the scale-dependent quantum effect at scale,
we can replace the mass m in the Dirac equation with a mass function that depends on
the spatial scale λ of the system, denoted as m(λ). The mass function m(λ) naturally
satisfies the condition that, when λ → 0, then S → 0, corresponding to the macroscopic
scale. Conversely, when λ → ∞, then S becomes a λ-dependent quantity related to the
constant density of the universe. The intermediate functional form of m(λ), which plays a
crucial role in the study of galaxies, can be determined through observations. Consequently,
we can employ the Dirac equation in the presence of gravity without any modifications,
as there are no derivatives of m(λ) involved in our calculations. The properties of the mass
function m(λ) only need to be discussed in the final results.

It is important to explicitly acknowledge that when applying the Dirac equation to
gravitational systems at cosmic scales, we shall show in Section 3 that the anisotropy of
the spin density adheres to the symmetric properties of mass density ρm(x). This fact only
applies to macroscopic matter according to our assumption, where the gravitational effect
is geometric throughout the spacetime manifold and, furthermore, the proper mass density
and the spin density have already been averaged and must satisfy the condition that the
quantum effect vanishes locally. In contrast, when considering electrons, the anisotropy
of spin must be taken into account in all cases, as the gravitational effect is not purely
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geometric. Thus, the quantum effect can never disappear locally, as is commonly under-
stood [30–33].

The subsequent sections present an examination of radially symmetric and static
gravitational systems based on our new postulation in Section 2, the applications of our
findings to cosmology and galaxies in Section 3, and summarized conclusions and discus-
sions in Section 4. We employ natural units (G = ℏ = c = 1) throughout, except where
stated otherwise.

2. Radially Symmetric Gravitational Systems

We want to investigate the quantum nature of spacetime at cosmic scales, with the main
subjects of concern being galactic dynamics and cosmology. Traditionally, a pressureless
ideal fluid has been a good model for both galactic dynamics and matter-dominated
era cosmology. In both scenarios, matter experiences free-fall in a gravitational field
and is characterized by the density distribution ρ(x) and velocity field v(x), where x
represents the position vector in spacetime. This model is usually known as collapsing dust.
In gravitational systems, it is widely recognized that a static state can only be sustained
when there is a substantial gravitational potential well, as observed in galaxies. However,
in the realm of cosmology, the homogeneous and isotropic distribution of matter across the
entire universe renders static solutions non-existent.

Nevertheless, the introduction of quantum effects at cosmic scales fundamentally
alters the situation.

The Dirac theory for radially symmetric gravitational systems can be investigated
using gauge theory gravity (GTG). The latter is constructed such that the gravitational
effects are described by a pair of gauge fields, h̄(a) = h̄(a, x) and ω(a) = ω(a, x), defined
over a flat Minkowski background spacetime [26], where x is the STA position vector and is
usually suppressed for short. Luckily, the majority of the necessary results for our present
study have already been derived in prior work [27]. These results are valid for microscopic
particles; what we need to do is to generalize these to macroscopic matter.

Let us consider a radially symmetric and static gravitational system composed of
free-falling particles with the identical mass m. We make the assumption that the Dirac
spinor ψ(r) = ρ(r)1/2R(r) defined in (2) can fully capture all the essential physical aspects
of the system if it satisfies the Dirac equation

Dψiγ3 = mψ. (7)

We interpret ρ = ψψ̃ as the proper number density and ρm = mψψ̃ as the proper mass
density. We adopt S = 1

2 ψiγ3ψ̃ = 1
2 ρRiγ3R̃ defined in (5) as the spin density trivector for

the gravitational system. So there are four variables, namely m, ρ, ρm, and S, that can be
used to describe the gravitational system. However, only two of them are independent,
as they must satisfy the conditions ρ = ρm/m and |S| = 1

2 ρ. In this paper, we eliminate
m and retain the other three variables. Among them, the relationship between ρm and ρ
can be further determined through observations by assuming a specific form for the mass
function m(λ). Once this has been carried out, we are left with only one variable, which
is the proper mass density ρm. Therefore, if we are given the proper mass density ρm of a
gravitational system, we can predict the entire set of results, including the quantum effects.

Now we define a set of spherical coordinates. From the position vector of the
flat spacetime

x = tγ0 + r sin θ(cos φγ1 + sin φγ2) + r cos θγ3, (8)

we obtain the basis vectors, as follows:

et = ∂tx =γ0,

er = ∂rx = sin θ(cos φγ1 + sin φγ2) + cos θγ3,

eθ = ∂θ x =r cos θ(cos φγ1 + sin φγ2)− r sin θγ3,

eφ = ∂φx =r sin θ(− sin φγ1 + cos φγ2).

(9)
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Since eθ and eφ are not unit, we define

θ̂ ≡ eθ/r, φ̂ ≡ eφ/(r sin θ). (10)

With these unit vectors, we further define the unit bivectors (relative basis vectors for
et = γ0)

σr ≡eret,

σθ ≡θ̂et,

σφ ≡φ̂et.

(11)

These bivectors satisfy
σrσθσφ = eter θ̂φ̂ = i. (12)

As in our previous paper [14], we initially attempted to analyze static systems. The set
of h̄ field that satisfies the spherically symmetric and static matter distribution is assumed
to take the form [21,26]

h̄(et) = f1et, h̄(er) = g1er + g2et,

h̄(eθ) = eθ , h̄(eφ) = eφ,
(13)

where f1, g1, and g2 are all functions of r only. We could have tried the form h̄(et) = f1et + f2er,
but it is more reasonable to set f2 to zero, which is referred to as the ‘Newtonian gauge’ [26].

The subsequent steps of this study can be summarized as follows:

h̄(eµ)
D∧h̄(a)=κh̄(a)·S−−−−−−−−−→ ω(a)

R(a∧b)=Laω(b)−Lbω(a)+ω(a)×ω(b)−−−−−−−−−−−−−−−−−−−−−→
{

R(a) = ∂b · R(b ∧ a)
R = ∂a · R(a)

}

G(a)=κT (a)−−−−−−−→ gµν = h−1(µ) · h−1(ν),

where the metric gµν is introduced to compare our results with those predicted by gen-
eral relativity (GR) and to provide conventional approaches for subsequent applications.
Notably, ω(a) and R(a ∧ b) can be decomposed into torsion-free components and torsion
components [27]. This decomposition allows for the recovery of classical predictions of GR
when the impact of torsion is insignificant. Conversely, given the extensive research on these
classical predictions available in the existing literature, we can easily incorporate torsion
terms into classical results when we deem them to be significant. This allows us to leverage
decompositions and enhance our understanding of the phenomena under consideration.

By solving Equation (A154), we can obtain a solution for ω(a) [26,27], the result is

ω(a) = ω′(a) +
1

2
κa · S, (14)

where

ω′(a) =(a · etG − a · erF)eret −
( g2

r

)

a · θ̂θ̂et

−
(

g1 − 1

r

)

a · θ̂er θ̂ −
( g2

r

)

a · φ̂φ̂et

−
(

g1 − 1

r

)

a · φ̂erφ̂

(15)

denotes the torsion-free component of ω(a), and the new functions G and F are also all
functions of r only. From the ω field, for any bivector B, its strength tensor can be obtained
directly from Equation (A149) [26,27], the result is

R(B) =R′(B) +
1

4
κ2(B · S) · S

− 1

2
κ(B · D) · S,

(16)
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where

R′(B) =α1σrB · σr + (α2σθ + α3iσφ)B · σθ

+ (α2σφ − α3iσθ)B · σφ + α6σr(B ∧ σr)

+ (α4σθ − α5iσφ)(B ∧ σθ)

+ (α4σφ + α5iσθ)(B ∧ σφ)

(17)

denotes the torsion-free component of R(B), with the understanding that σr ∧ σθ = σφ ∧
σθ = 0, and α1, . . . , α6 are given by

α1 =LrG − LtF + G2 − F2,

α2 =− Lt

( g2

r

)

+
( g1

r

)

G −
( g2

r

)2
,

α3 =Lt

( g1

r

)

+
g1g2

r2
−

( g2

r

)

G,

α4 =Lr

( g1

r

)

+
( g1

r

)2
−

( g2

r

)

F,

α5 =Lr

( g2

r

)

+
g1g2

r2
−

( g1

r

)

F,

α6 =(−g2
2 + g2

1 − 1)/r2.

(18)

From Equations (16) and (17), the Ricci tensor R(a) and Ricci scalar R are given by

R(a) =R′(a) +
1

2
κ2(a · S) · S

− 1

2
κa · (D · S),

R =R′ +
3

2
κ2S2,

(19)

where

R′(a) =[(α1 + 2α2)a · et + 2α5a · er]et

+ [2α3a · et − (α1 + 2α4)a · er]er

− (α2 + α4 + α6)a · θ̂θ̂

− (α2 + α4 + α6)a · φ̂φ̂,

(20)

and
R′ = 2α1 + 4α2 + 4α4 + 2α6, (21)

denote the torsion-free components of R(a) and R, respectively.
In order to solve Einstein Equation (A155), we need to know T(a) given by Equation (A157).

Noting that ψ = ψ(r), we find that

T (a) =⟨a · Dψiγ3ψ̃⟩1

=⟨a · h̄(eµ)∂µψiγ3ψ̃ +
1

2
ω(a)ψiγ3ψ̃⟩1

=a · (g1er + g2et)⟨∂rψiγ3ψ̃⟩1 + ω(a) · S.

(22)

The terms ⟨∂rψiγ3ψ̃⟩1 should be derived from the Dirac Equation (7). Nevertheless, as elab-
orated in our previous paper [14], the use of this stress–energy tensor prototype can be
misleading when applied to gravitational systems consisting of macroscopic bodies. This
is because, as S approaches zero, the tensor T(a) defined in (22) also approaches zero.
This contradicts our expectation that as S tends to zero, T(a) should represent a tensor
describing a classical pressureless ideal fluid.



Universe 2024, 10, 333 9 of 38

An appropriate representation of the stress–energy tensor for our specific needs in-
volves decomposing it into two components: one that characterizes the classical pressure-
free ideal fluid and another that accounts for quantum effects. By substituting ∇ with D,
we can rephrase Equation (A113) and express T (a) as,

T (a) = ρma · etet − (a ∧ D) · (S · et)et + [a · D(S · et)] · et, (23)

where we have replaced v with et due to the retained gauge freedom to perform arbitrary
radial boosts in restricting the h̄ function [21,26]. It is important to note that the choice
v = et = γ0 simply fixes the rotation gauge in such a way that the stress–energy tensor
takes on the simplest form; there is no other additional physical content. Furthermore,
setting v = et does not imply that the fluid is at rest or that the observers are comoving
with the fluid. In such a setting, all rotation-gauge freedom has been completely removed,
as it should be, before one can derive a complete set of physical equations. Note also that
R(B) deals directly with physically measurable quantities, whereas the algebraic structure
of the h-function is of little direct physical significance. Therefore, the rotation gauge has
been fixed by imposing a suitable form for R(B), rather than restricting the form of h̄(a),
as discussed in Refs. [21,26]. Consequently, the proper mass density ρm(r), potential energy
density ρQ(r), and the corresponding mass (energy) M(r) presented later acquire a similar
physical meaning as in GR.

The Einstein equation is

G(a) = R(a)− 1

2
aR = κT (a). (24)

A direct and efficient approach is to solve the Einstein equation separately for two scenarios:
when a = et and a = er. To be specific, in general, our results need to be derived from the
following equations:

et · G(et) =κet · T (et),

er · G(et) =κer · T (et),

et · G(er) =κet · T (er),

er · G(er) =κer · T (er).

(25)

However, we demonstrate that, for our intended purpose, solving the first two equations
listed above is adequate. From (23), we obtain

et · T (et) = ρm − (et ∧ D) · (S · et). (26)

Since (et ∧ D) · (S · et) = (et ∧ ∂a) · [a · D(S · et)], we need to calculate a · D(S · et), as follows:

a · D(S · et) =(a · DS) · et + S · (a · Det)

=[a · h̄(er)∂rS + ω(a)× S] · et + S · [ω(a) · et].
(27)

We thus have

(et ∧ ∂a) · [a · D(S · et)] =(et ∧ ∂a) · [S · (ω(a) · et)]

=et · {[∂a ∧ (ω(a) · et)] · S}
=et · {[−Gσr + κ(S · et)] · S}
=κ(et · S)2 = κS2.

(28)

Therefore,
et · T (et) = ρm − κS2. (29)

Similarly, we have
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er · T (et) =[et · D(S · et)] · (et ∧ er)

=G(S · er) · (et ∧ er)

=0.

(30)

On the other hand, for G(et), we find from (19)–(21) that

G(et) =R(et)−
1

2
etR

=2α3er − (2α4 + α6 +
3

4
κ2S2)et

+
1

2
κ2(et · S) · S − 1

2
κet · (D · S).

(31)

Substituting (29)–(31) into et · G(et) = κet · T (et) and er · G(et) = κer · T (et), we obtain

2α4 + α6 = −κ(ρm − 3
4 κS2)

α3 = 0.
(32)

Interestingly, from (20) we find

∂a ∧R′(a) = 2α5σr − 2α3σr = 0, (33)

which gives
α5 = α3 = 0. (34)

By substituting the expressions of αs given by (18) into (32) and (34), our solutions to
the Einstein equations can be summarized as follows:

2
[

g1∂r(
g1

r
) + (

g1

r
)2 − F(

g2

r
)
]

− g2
2 − g2

1 + 1

r2
=− κ(ρm − 3

4
κS2),

g2∂r(
g1

r
) +

g1g2

r2
− G

g2

r
=0,

g1∂r(
g2

r
) +

g1g2

r2
− F

g1

r
=0.

(35)

The first and third equations in (35) can be combined to give

∂r

[

r
(

(g2)
2 − (g1)

2 + 1
)]

= κ

(

ρm − 3

4
κS2

)

r2. (36)

Now, if we define

M =
r

2

(

(g2)
2 − (g1)

2 + 1
)

, (37)

we find (remembering κ = 8π):

M(r) = 4π
∫ r

0

(

ρm(r
′)− 3

4
κS2(r′)

)

r′2dr′. (38)

The expression of M strongly implies that it can be identified as the mass (total energy)
of a gravitational system within r at any given time t. Remarkably, the mass M contains
the quantum effects, − 3

4 κS2(r), as intended. Naturally, when S = 0, the conventional
expression for M in general relativity is regained.

As mentioned earlier, there are three functions in the h̄ field, namely f1, g1, and g2, that
need to be determined by solving Einstein equations. So far, we have obtained expressions
for g1 and g2, and they are linked to the observables ρm and S. Thus, the determination of
f1 remains pending. To achieve this, we substitute a = et into the torsion Equation (A154),
yielding the subsequent equations
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D ∧ h̄(et) =κh̄(et) · S,

∂a ∧
[

a · h̄(eµ)∂µ f1et + f1ω(a) · et
]

=κ f1et · S,

g1∂r f1 =− G f1,

f1 =e
−
∫

G
g1

dr
.

(39)

On the other hand, from the last two equations of (35), it is easy to derive that

G = ∂rg1, F = ∂rg2. (40)

So, we immediately obtain that
f1 = 1/g1. (41)

Now, we turn to the metric tensor gµν = gµ · gν = h−1(eµ) · h−1(eν). From (13) and (41),
we obtain

h−1(et) = g1et − g2er, h−1(er) =
1

g1
er,

h−1(eθ) = eθ , h−1(eφ) = eφ.

(42)

So, the metric tensor depends only on g1 and g2. However, the (g2)
2 included in (37) served

as the kinematic energy in gravitational systems [26]. To see this, we consider a radially
free-falling particle with v = et. We have

ẋ =
dx

dτ
= ṫet + ṙer = h(v) = h(et) =

1

g1
et + g2er. (43)

Clearly, in this case, g2 = ṙ represents the radial velocity of the particle. In general, we can
understand the physical significance of g2 by rewriting (37) as [26]

1

2
(g2)

2 − M

r
=

1

2

(

(g1)
2 − 1

)

, (44)

which is a Bernoulli equation for zero pressure and total non-relativistic energy 1
2 ((g1)

2 − 1).
But for non-relativistic matter, the contribution of kinematic energy to gravity can be

safely disregarded. So, from (37) we have

g1 =

(

1 − 2M(r)

r

)1/2

. (45)

This paper specifically concentrates on non-relativistic matter within static gravitational
systems, enabling us to express the metric as follows:

dτ2 =

(

1 − 2M(r)

r

)

dt2 −
(

1 − 2M(r)

r

)−1

dr2 − r2(dθ2 + sin2 θdφ2). (46)

Remarkably, we have obtained a metric that bears a striking resemblance to the familiar
form in general relativity. However, it is important to note that this metric was derived
from Dirac theory, and the mass M incorporates the quantum effects arising from macro-
scopic matter.

In this paper, the term − 3
4 κS2(r) in the mass–energy expression (38) is referred to as

the “quantum potential energy”. This concept was first introduced by Bohm [34] in 1952
and later by DeWitt [35] in the same year, with both authors commonly referring to it as
the “quantum potential” [29]. Similarly to how traditional mass–energy curves spacetime,
quantum potential energy distorts spacetime. This phenomenon is known as “spin-torsion”
theory [25,26]. By explicitly decomposing the stress–energy tensor T (a) into a spin-free
part and a spin part, as illustrated in (23), the gravitational strength, represented by the
Riemann tensor R(B), can be explicitly decomposed into a torsion-free component and a
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torsion component, as shown in (16). This results in a two-component metric as outlined
in (46). Naturally, when S = 0, the metric reduces to one that describes a spherically-static
gravitational system, as suggested by GR.

It is crucial to grasp the physical significance of the quantum potential energy (QPE)
in this metric. To date, in the literature, QPE has been attributed uniquely to microparticles.
It has been confirmed that QPE would reduce to a time dilation in spacetime. For instance,
when negative muons are captured in atomic s-states, their lifetimes are increased by a time
dilation factor corresponding to the Bohr velocity. So, we expect that, if this QPE-induced
time dilation is extended to macroscopic matter at cosmic scales, it may be disguised as
some extra gravitational potential well. We will show that this extra time dilation can
successfully explain the cosmic redshift and galactic rotation curve problem. For micropar-
ticles, the troubles encountered all arise from the fact that when the QPE is significant, its
gravitational effect is not geometric (i.e., mass-dependent). This results in the concept of
the geodesic for test particles becoming ambiguous. Therefore, as mentioned earlier, if we
want to apply this metric to gravitational systems composed of macroscopic particles, so
that QPE is significant only at cosmic scales and can be neglected locally, we must establish
a mechanism that connects the quantum effects of macroscopic matter to the spatial scales
of gravitational systems. The mechanism, however, can be clearly demonstrated in the
applications of our theory to cosmology and galaxies, as illustrated in the following section.

3. Applications: Cosmology and Galaxies

To investigate the mechanism that connects the quantum effects of macroscopic matter
to the spatial scales of gravitational systems, we begin by considering a radially symmetric
and static gravitational system consisting of N free-falling particles, each with an identical
mass of m. We assume that the direct collisions and the close encounters due to gravity
between the particles can be neglected. This allows us to approximate the gravitational
effect of the particles by a smooth distribution of matter. Namely, we assume a smooth
mass density function ρm(r) and a smooth number density function ρ(r) defined by

ρm(r) = mρ(r) =
N

∑
i=1

mδ(r − ri). (47)

It is evident that the accuracy of the approximation improves as the mass m decreases
and the particle number N increases. However, for a fixed mass density ρm(r), reducing
the mass m leads to an increase in the number density ρ(r). On the other hand, the scale-
dependence of a particle’s mass in a gravitational system can be easily demonstrated.
A particle with a mass of m contributes to the average mass density of a system with a size
of λ through the following relation:

ρ(m, λ) ∼ m

λ3
. (48)

Clearly, from the perspective of average mass density, the “effective mass” of a particle
decreases as the size of the system increases, following a trend of ∼λ−3. While this may
seem trivial, it becomes crucial in our understanding of quantum effects at cosmic scales.
For example, in our Milky Way, λ∼10 kpc. The Sun (m = M⊙) contributes to the average
density of the Milky Way as an electron (m = 9.1 × 10−28g) contributes to a system of size
λ∼230 cm, a macroscopic size. So, as an assumption, we extend the quantum nature of
electrons to macroscopic matter particles distributed in sufficiently large systems.

In a gravitational system, the Dirac equation for a free-falling particle describes a
particle of fixed proper mass m, a constant spin ℏ/2, and a proper probability density
ρ(r). We consider the probability density as the number density of the system. In the
case of spin- 1

2 microparticles, the mass m can vary from neutrinos (m ≈ 0) to neutrons,
while the spin remains constant at ℏ/2. Therefore, the spin of a particle is independent
of its mass. This fact can be naturally extended to macroscopic particles. Typically, when
dealing with large masses (macroscopic matter), the negligible quantum effect can be
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understood as the short wavelength approximation, commonly referred to as the classical
limit. In the context of radially symmetric gravitational systems, we can naturally interpret
the negligible quantum effect as a result of the negligibly small number density of particles
(since each particle has exactly a fixed value ℏ/2 of spin). Given that reducing the mass m
results in an increase in the number density ρ(r), we can introduce a decreasing function
m(λ) (λ is the size of the gravitating system), which in turn leads to an increasing function
ρ(r). Consequently, the strength of the quantum effect would increase as the distance (or
scale) to an observer increases, aligning with our postulation.

To be more precise, we define the density of QPE from (38) as (note that S2 = − 1
4 ρ2,

and ρ(r) = ρm(r)/m(λ))

ρQ(r, λ) =− 3

4
κS2(r)

=
3

16
κρ(r)2

=
3

16
κ

(

ρm(r)

m(λ)

)2

=
ρ2

m(r)

ρc
α(λ),

(49)

where α(λ) is a dimensionless parameter that depends on the scale λ. We require that
the strength of the QPE vanishes when λ → 0 and increases with increasing λ. Note
that, in order to separate the size λ dependence of ρQ completely from coordinate r, we
express ρQ(r, λ) as proportional to ρ2

m(r), and the constant mass density ρc of the entire
universe is introduced into the definition of ρQ only for dimensional consistency. This
choice has nothing to do with our contemplation of the notion that the entire universe
may exert a cosmological influence on local galaxies, as elaborated upon in subsequent
sections. Needless to say, the functional form of α(λ) must be universal, meaning that
it is independent of any particular gravitational system, although it can be different for
the entire universe and galaxies. The specific properties of α(λ) should be determined
theoretically from first principles. However, as a first attempt to compare our predicted
results with observations, when theoretical formulas for α(λ) are lacking, we can derive a
phenomenological formula by fitting the data to observations.

From (38), we observe that the expression for M can be rewritten as

M(r) =4π
∫ r

0
(ρm(r

′) + ρQ(r
′, λ))r′2dr′

=4π
∫ r

0
ρm(r

′)r′2dr′ +
4πα(r)

ρc

∫ r

0
ρ2

m(r
′)r′2dr′

=Mm(r) + MQ(r),

(50)

where we have set λ = r in the integrand to reflect the fact that, in ρQ(r
′, λ), the scale λ is r,

the size of the “system” with mass M(r). And

Mm(r) = 4π
∫ r

0
ρm(r

′)r′2dr′ (51)

MQ(r) =
4πα(r)

ρc

∫ r

0
ρ2

m(r
′)r′2dr′ (52)

represent the conventional mass (energy) in general relativity and the QPE within r, re-
spectively. From (49) and (50), it can be clearly seen that the distribution of QPE exhibits
no extra symmetries, i.e., it aligns with the mass distribution. The reason for this is that
the scale λ characterizes only the amount of QPE for macroscopic matter at cosmic scales.
Therefore, as the scale increases, the amount of QPE also increases, causing the quantum
effects to vanish locally. This is in contrast to electrons, whose QPE can never vanish at any
scale, thus resulting in possible anisotropy if not averaged [31,32].
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As previously mentioned, the functional form of α(λ) should be determined based
on observations. Nonetheless, we have found that the following general form is a suit-
able choice:

α(x) =
A(ex − 1)

x2
+ B(ex − 1) + C, with x = H0λ, (53)

where H0 represents the Hubble constant, which will be defined subsequently. We leave the
coefficients A, B, and C, possibly scale dependent, as free parameters to fit the observational
data of the gravitational systems under consideration.

3.1. Cosmology

Now we are ready to study cosmology. Assuming a static universe with a homoge-
neous and isotropic matter distribution at large scales, characterized by a constant mass
density ρc, the mass M in (50) then becomes

M(r) =4π
∫ r

0
ρcr′2dr′ + 4πα(r)

∫ r

0
ρcr′2dr′

=
1

2
H2

0r3(1 + α(r)),

(54)

where

H2
0 =

8πρc

3
(55)

is the Hubble constant. In cosmology, the entire universe can be regarded as an gravitational
system with an arbitrarily large scale. To compare observations, we suggest setting the
parameters in (53) as A = 2, B = 0, and C = −1. Namely, for cosmology, we assume

αc(λ) =
2(eH0λ − 1)

H2
0 λ2

− 1, (56)

which yields desirable results:

M(r) = r(eH0r − 1) = H0r2 +
1

2
H2

0r3 + · · · . (57)

Before formulating the metric for the spacetime of the universe, it is important to highlight
that the term 1

2 H2
0r3 resulting from ρc in M(r) given in (54) should not be disregarded. One

could argue that the universe is a distinct gravitational system, exhibiting a homogeneous
and isotropic distribution of matter, and infinite in size. Consequently, the observation
of gravitational redshift may not be possible under these circumstances. However, this
conclusion is derived from Newtonian theory or general relativity, and does not hold true
when quantum effects come into play. In fact, the term 1

2 H2
0r3 can be included as the QPE if

we choose C = 0 in (53). In any case, we should keep in mind that any choice of αc(λ) must
be subjected to testing against observations. Moreover, due to the presence of quantum
effects at cosmic scales, we have to abandon the idea of the absolute spacetime predicted by
general relativity. This is quite similar to the case of special relativity, when Einstein had to
relinquish the concept of Newtonian absolute space and time. As a result, the conventional
notion of the geometry of the entire universe becomes meaningless. For instance, it loses
significance to classify the universe as open, flat, or closed according to its mass density ρc.
Thus, for cosmology, we have from (45)

g1 =

(

1 − 2M(r)

r

)1/2

= (3 − 2eH0r)1/2. (58)

Hence, the metric (46) for the universe becomes
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dτ2 =(3 − 2eH0r)dt2 − (3 − 2eH0r)−1dr2

− r2(dθ2 + sin2 θdφ2).
(59)

From this metric, it can be readily deduced that a horizon exists in the static universe,
with the distance to any observer in the universe given by

rh =
1

H0
ln(3/2) ≈ 0.4

H0
, (60)

which is less than half a Hubble radius 1/H0.
As a crucial outcome of our theory, we now derive the Hubble redshift for a static

universe model. Suppose a light signal emitted from a source at r and received by an
observer at r = 0, the redshift arising from the time dilation can be readily derived as

1 + z =
g1(0)

g1(r)
=

1√
3 − 2eH0r

. (61)

It is evident that the redshift approaches infinity as the light source approaches the horizon.
In the scenario where the source is located near an observer, the redshift can be approx-
imated by a linear function of the distance r when z ≪ 1, consistent with observations.
To see this, we expand the expression in (61) as follows:

z = H0r + 2H2
0r2 + · · · . (62)

This shows that the first term, H0r, dominates the redshift at low values of z. In fact, it is
precisely this favorable result that motivated our selection of the function αc(λ) as assumed
in (56).

The close sources’ redshift z and distance r exhibit a well-established and fundamental
observational fact of a linear relationship, one that remains independent of cosmological
models. Hence, it is imperative to subject any plausible cosmological model to rigorous
testing using relevant observations. We validate our cosmological model by comparing the
predicted luminosity distance dL with the values derived from SN Ia data of the MLCS2k2
Full Sample [36].

The luminosity distance is defined such that the Euclidean inverse-square law for
the diminution in light with distance from a point source is preserved. Let L denote the
absolute luminosity of a source at distance r and l denote the observed apparent luminosity,
and the luminosity distance is defined as

dL =

(

L

4πl

)1/2

. (63)

The area of a spherical surface centered on the source and passing through the observer is
just 4πr2. The photons emitted by the source arrive at this surface having been redshifted
by the quantum effect by a factor 1 + z. We therefore find

l =
L

4πr2

1

1 + z
, (64)

from which
dL = r(1 + z)1/2. (65)

The coordinate distance r can be expressed in terms of z and H0 from (61), we thus obtain

dL =

√
1 + z

H0
ln

[

1

2

(

3 − 1

(1 + z)2

)]

. (66)
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The distance modulus is defined by

µ = m − M = 5 log

(

dL

Mpc

)

+ 25, (67)

where m and M are the apparent magnitude and absolute magnitude related to l and L,
respectively, and we have explicitly specified that dL is measured in units of megaparsecs.

We use the full cosmological sample of SNe Ia, MLCS2k2, presented in Table 5 of
Riess et al.’s paper [36]. The sample consists of 11 SNe with redshift ranges from 0.01 to 0.1,
which is ideal for testing our cosmological model. The only free parameter in our model
is the Hubble constant H0, with the best-fitted value being H0 = 59.0+1.68

−1.63 km/s/Mpc,
as presented in Figure 1.

0.02 0.04 0.06 0.08 0.10

redshift z

34
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39

μ
=
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o
g
1
0
d
L
+
2
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Figure 1. The fitting results of the predicted distance moduli given by (67) to the data of the MLCS2k2

full sample [36]. The best fitted value of H0 is H0 = 59.0+1.68
−1.63, and χ2 = 0.0018.

Our cosmological model fits remarkably well with the SNe Ia data, providing evidence
that the cosmological redshift may be due to QPE-induced time dilation rather than the
expansion of the universe. Our model is based on a static universe, which is made possible
by the assumption of quantum effects at cosmic scales, as described by QPE, acting as a
repulsive force to balance gravity. When Einstein introduced the cosmological constant Λ

to balance gravity and obtain a static universe model, he failed, because Λ, regardless
of its physical significance, is independent of the matter distribution. Consequently, any
perturbations in matter result in unstable solutions of Einstein’s equations. In contrast,
according to our proposal, QPE is not independent of matter distribution but is determined
by the matter density, as shown in Equation (49). As a result, any perturbations in matter
distribution result in corresponding perturbations in QPE, to balance the extra gravity,
allowing the universe to remain static.

It is worth noting from (49) that QPE depends on two independent factors: ρ2
m(r)

and α(λ). As mentioned earlier, it is essential for α(λ) to satisfy the condition that α(λ)
approaches zero as λ approaches zero. Thus, even though galaxies possess a high but
finite central matter density, the QPE would vanish in that region. However, in the con-
text of cosmology, the QPE that is dependent on λ displays some intricate yet justifiable
characteristics. To see this, let us rephrase the function αc(λ) in (56) as follows:

αc(λ) =
2

H0λ
+

1

3
H0λ + · · · . (68)
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It is evident that the first term 2/H0λ plays a crucial role in generating a linear correlation
between redshift and distance at a low redshift. At first sight, the inverse relationship
between this term and αc(λ) may appear to contradict the requirement that α(λ) approaches
zero as λ approaches zero. However, upon further examination, this does not turn out to be
the case. To grasp this paradox, it is essential to recognize that it is MQ(λ), not ρQ(r, λ), that
determines the metric and thus the geometry of spacetime for a specific observer, as shown
in (59).

In cosmology, the redshift of light signals emitted from distant sources is entirely
attributed to the QPE, which varies with distance. However, this distance-dependent
phenomenon does not imply any preferred direction in the universe, as demonstrated both
theoretically and observationally.

Although we prefer the presented static universe model, which lacks expansion, a big
bang, and evolution of the entire universe, all local gravitational systems, such as galaxies
and clusters of galaxies, can still evolve. In particular, for macroscopic systems, such as
the solar system, planetary systems, and black holes, the evolution will continue to be
governed by general relativity as usual.

3.2. Our Solution to the Galactic Rotation Curve Problem

After establishing the geometry of the entire universe’s spacetime, we now shift
our focus to examining the galaxies. Traditionally, based on Newtonian theory, when
a stellar system achieves a state of equilibrium, the kinetic energy supports the gravity,
and this equilibrium state must adhere to the virial theorem. However, astronomical
observations indicate that the gravitational force exerted by ordinary matter is insufficient
to counterbalance the kinetic energy of the system. As a result, the presence of a mysterious
substance known as dark matter has been postulated to account for the discrepancy in
mass, often referred to as the missing mass problem.

Based on the theory presented in this paper, we can propose an alternative explana-
tion that challenges the need for dark matter. In fact, in the mass expression provided
in Equation (38), the term QPE defined by Equation (49) serves as the counterpart to
dark matter.

The mass expression presented in Equation (50) is universally applicable to any radially
symmetric system, making it suitable for investigating spherical galaxies. As mentioned
earlier, α(λ) should also be a universal function of scale λ. We assume a functional form
given by (53). In the context of cosmology, the scale can be regarded as arbitrarily large up to
rh, and the reduced specific form of αc(λ) provided in Equation (56) has been demonstrated
to align with observational data. For galaxies, we use the parameters in (53) with A = 0
and C = 0 to obtain

αg(λ) = B(eH0λ − 1), (69)

where, in this paper, we consider B as a constant, although it may be a parameter, possibly
scale-dependent, to be determined by observations. When studying galaxies, the scale λ of
interest is much smaller than the Hubble radius 1/H0, thus αg(λ) can be approximated by
αg(λ) = BH0λ.

It is essential to account for the impact of the entire universe on local galaxies of
finite mass, which is commonly referred to as the boundary condition when the metric of
spacetime is concerned. Specifically, we mandate that the metric surrounding a local galaxy
adheres to the condition that, as r approaches infinity, it converges to the metric of the
entire universe (59), instead of the metric for flat spacetime, which has been conventionally
used. To achieve this, we replace ρm(r) in Equation (50) with ρm(r) + ρc. Since the impact
of cosmological effects on local galaxies is unclear, we make the assumption that

αc(λ) =
A(λ)(eH0λ − 1)

H2
0 λ2

− 1 (70)
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when considering ρc, allowing us to determine the function A(λ) based on observations of
galaxies. We thus have from (50)

M(r) =4π
∫ r

0
(ρm(r

′) + ρc)r
′2dr′ + 4παc(r)

∫ r

0
ρcr′2dr′ +

4παg(r)

ρc

∫ r

0
ρ2

m(r
′)r′2dr′

=Mb(r) + Mm(r) + MQ(r),

(71)

where

Mb(r) =
A(r)

2
(eH0r − 1)r,

Mm(r) =4π
∫ r

0
ρm(r

′)r′2dr′,

MQ(r) =
B4π(eH0r − 1)

ρc

∫ r

0
ρ2

m(r
′)r′2dr′

=
B32π2(eH0r − 1)

3H2
0

∫ r

0
ρ2

m(r
′)r′2dr′.

(72)

Evidently, Mb(r) signifies the contribution of the quantum effects of the background mass
density of the universe, Mm(r) denotes the conventional mass, and MQ(r) represents the
quantum effects of a galaxy itself. We thus have

g1 =

[

1 − 2(Mb(r) + Mm(r) + MQ(r))

r

]1/2

=

[

1 − A(r)(eH0r − 1)− 2Mm(r)

r
− 2MQ(r)

r

]1/2

.

(73)

We require g1 for galaxies to satisfy the boundary condition, i.e., when r → ∞,
g1 → (3 − 2eH0r)1/2, the value for cosmology as shown in (58). For galaxies of finite mass or

finite size, the last two terms
2Mm(r)

r +
2MQ(r)

r → 0 when r → ∞. We thus require A(r) → 2
when r → ∞. This condition imposes a nature constraint on the cosmological effect on local
galaxies, as shown subsequently.

Our findings indicate that, from the perspective of mass–energy, the contributions of
QPE to the metric exhibit no observable distinctions from conventional mass. Both QPE
and conventional mass contribute to time dilation and distance contraction in precisely an
identical manner, as demonstrated in Equation (46). As such, it is reasonable to employ the
conventional approach from general relativity when considering the stress–energy tensor
and geometry of spacetime.

Although our findings are presented in relativistic form, the transition to a non-
relativistic scenario for galaxies is straightforward. Actually, we can directly utilize the mass
expression provided in Equation (71) and apply Newtonian theory to investigate galaxies.

Obviously, near the center of a galaxy, the gravitational effects arising from Mb(r) and
MQ(r) can be neglected when compared to those of Mm(r). Towards the outer regions,
both Mb(r) and MQ(r) become significant, while the contribution of Mm(r) diminishes
with increasing radius r.

It is interesting to investigate the circular velocity of a test particle around a galaxy,
which can be approximated by

v2(r) =
M(r)

r

=
A(r)

2
H0r +

4π

r

∫ r

0
ρm(r

′)r′2dr′ +
B32π2

3H0

∫ r

0
ρ2

m(r
′)r′2dr′,

(74)
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where we have neglected the terms with Hn
0 rn when n ≥ 2 for the scale of galaxies. For a

galaxy with a finite size a, when r increases to the outer regions with r ≫ a, we have

v(r) =

√

A(r)

2
H0r + MQ(a)/a. (75)

This expression does not imply a constant value of v(r) for large radii, as the H0r term
in (75) becomes more and more significant with increasing r. In particular, this leads to a
universal centrifugal acceleration (recall that A(r) → 2 for r → ∞)

v2

r
= cH0, (76)

where c is the speed of light. This result reflects the fact that the matter in the entire universe
can have a local observable effect in galaxies, a fact first discovered in MOND theory but
that cannot be explained within the theory itself [10,37]. In fact, our cosmological model
yields the value of H0 = 59.0, resulting in cH0 = 5.74 × 10−8cm/s2. A value which is
close to, but obviously larger, than that found for the universal acceleration parameter
a0 = 1.2 × 10−8 cm/s2 of the MOND theory [9,38]. This fact has a natural explanation.
As an increasing function of r, A(r) → 2 only at cosmological distances, typically hundreds
of Mpc. The value of a0 is smaller than cH0 only because it is detected at distances in the
outer regions of galaxies, which are much smaller than the cosmological distance. Notably,
conformal gravity yields comparable results when fitting rotation curve data [13,39]. In our
theory, these phenomena are not considered mysteries. The cosmological effects on local
galaxies are the natural results of the boundary condition, which is determined by the
requirement that the spacetime metric around an isolated galaxy, created by the mass
(energy) specified in (72), should align with that of the entire universe, as demonstrated
in (59), when r → ∞.

Despite these remarkable achievements, the most effective way to validate our theory is
by leveraging the abundant observational data on the rotation curves of flattened dwarf and
spiral galaxies. As our results were obtained for spherical systems, they must be converted
into axisymmetric systems where cylindrical coordinates are more suitable. One could
replicate the procedure for axisymmetric systems [21,40], similarly to what was performed
for spherical systems in this paper. However, a more efficient approach to achieve our
objectives is to consider the relevant terms on the right-hand side of Equation (74) as the
gravitational potential generated by a point mass (or a mass element). Subsequently, we
calculate the total potential for disk galaxies in cylindrical systems (R, φ, z) [13].

The first term on the right-hand side of (74) is A(r)cH0r/2. This is a linear potential
originating from the quantum effect of the entire universe, and thus is independent of
specific local galaxies. We simply express the contribution of this term to the total circular
velocity of a test particle on a thin-disk as

v2
L(R) = A(R)cH0R. (77)

In this paper, we initially overlook the gradually increasing nature of the function A(R)
and consider it as a constant A0, which can be determined using rotation curve data.

The second term on the right-hand side of (74) is the usual Newtonian potential. We
write the corresponding potential in cylindrical coordinates as

Φm(R, z) = −G
∫ ∞

0
dR′

∫ 2π

0
dφ′

∫ ∞

−∞
dz′

R′ρm(R′, z′)
(R2 + R′2 − 2RR′ cos φ′ + (z − z′)2)1/2

, (78)

where G is the gravitational constant (we temporarily transition back from natural units
from now on in this subsection). Inserting the cylindrical coordinate Green’s function
Bessel function expansion
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1

(R2 + R′2 − 2RR′ cos φ′ + (z − z′)2)1/2
=

∞

∑
−∞

∫ ∞

0
dkJm(kR)Jm(kR′)eim(φ−φ′)−k(|z−z′ |) (79)

into (78) yields

Φm(R, z) = −2πG
∫ ∞

0
dk

∫ ∞

0
dR′

∫ ∞

−∞
dz′R′ρm(R′, z′)J0(kR)J0(kR′)e−k|z−z′ |. (80)

For razor-thin exponential disks with ρm(R, z) = Σ(R)δ(z) = Σ0e−R/R0 δ(z), where Σ0 is
the central surface mass density and R0 is the disk scale length, the potential is

Φm(R) = −πGΣ0R0y[I0(y/2)K1(y/2)− I1(y/2)K0(y/2)], (81)

where y ≡ R
R0

, In and Kn are modified Bessel functions. If we differentiate Equation (81)
with respect to R, we obtain the circular velocity contributed by the Newtonian potential

v2
m(y) = R

∂Φm

∂R
=

πc2

R0

(

GM⊙
c2

)(

Σ0

M⊙

)

R2
0y2[I0(y/2)K0(y/2)− I1(y/2)K1(y/2)]. (82)

Another potential of the quantum effect for galaxies on the right-hand side of (74) is
(64π2/3H0)

∫ r
0 ρ2

m(r
′)r′2dr′. This corresponds to a logarithmic potential, and the circular

velocity for the razor-thin exponential disk is

v2
Q(R) =

B8πG2

3cH0R0

∫ R

0
dR′

∫ 2π

0
dφ′

∫ ∞

−∞
dz′R′Σ2(R′)δ(z′)

=
B4π2G2Σ2

0R0

3cH0

[

1 −
(

1 +
2R

R0

)

e−2R/R0

]

.

(83)

The total circular velocity used to fit the data is therefore

v(R) =
√

v2
L(R) + v2

m(R) + v2
Q(R). (84)

We fit the predicted circular velocity to the data provided in the Spitzer Photometry
and Accurate Rotation Curves (SPARC) database [41]. The SPARC database is the largest
sample, to date, of rotation curves for every galaxy. It is a sample of 175 nearby galaxies with
new surface photometry at 3.6 mu, and high-quality rotation curves from previous HI/H
studies. As a first try, we consider each of the 175 galaxies in the sample as a razor-thin
exponential disk characterized by a central surface mass density Σ0 and a disk scale length
R0. In addition to Σ0 and R0, we treat A(r) = A0 in (77) and B in (83) as free parameters in
our fitting. Figure 2 displays 12 of them, including 6 low-surface-brightness (LSB) galaxies
(6 upper panels) and 6 high-surface-brightness (HSB) galaxies (6 lower panels).

The fittings reveal that A0 = 0.02 for all galaxies, with B = 3.0 for LSB galaxies
and B = 0.3 for HSB galaxies. The cosmological effect on local galaxies thus suggests
an acceleration of A0cH0∼10−9 cm/s2, significantly smaller than the universal value of
cH0 = 5.74 × 10−8 cm/s2. Our fittings further suggest that A0 can be substituted with

A(R) =
A0 + 2(R/Mpc)2

1 + (R/Mpc)2
. (85)

This slowly varying function provides a good fit to the rotation curve data and also ful-
fills the requirement that A(R) converges to 2 as R approaches cosmological distances.
On the other hand, the value of B for LSB galaxies exceeds that for HSB galaxies, sug-
gesting that LSB galaxies require relatively more QPE than HSB galaxies, and B(λ) is also
scale dependent.

All these results indicate that, in terms of mass-energy, scale-dependent quantum
phenomena do not exhibit a linear superposition, but rather a hierarchical process.



Universe 2024, 10, 333 21 of 38

0 5 10 15

r(kpc h−1)

20

40

60

80

v
(k
m

s
−
1
)

UGC07524,χ2
ν
=0.05

5 10 15

r(kpc h−1)

10

20

30

40

50

60

70

80

v
(k
m

s
−
1
)

UGC00731,χ2
ν
=0.04

2 4 6 8 10

r(kpc h−1)

20

30

40

50

60

70

80

v
(k
m

s
−
1
)

UGC04499,χ2
ν
=0.09

2 4 6

r(kpc h−1)

20

30

40

50

60

v
(k
m

s
−
1
)

UGC08550,χ2
ν
=0.07

1 2 3 4 5

r(kpc h−1)

10

20

30

40

50

60

v
(k
m

s
−
1
)

UGC07603,χ2
ν
=0.08

2.5 5.0 7.5 10.0 12.5

r(kpc h−1)

40

60

80

100

120

v
(k
m

s
−
1
)

UGC06917,χ2
ν
=0.04

0 10 20 30 40

r(kpc h−1)

20

40

60

80

100

120

v
(k
m

s
−
1
)

NGC1003,χ2
ν
=0.10

10 20 30 40

r(kpc h−1)

20

40

60

80

100

120

140

160

v
(k
m

s
−
1
)

UGC09037,χ2
ν
=0.18

0.0 2.5 5.0 7.5 10.0 12.5

r(kpc h−1)

10

20

30

40

50

60

70

80

v
(k
m

s
−
1
)

UGC08490,χ2
ν
=0.11

2 4 6 8

r(kpc h−1)

20

40

60

80

100

v
(k
m

s
−
1
)

UGC07399,χ2
ν
=0.18

20 40 60

r(kpc h−1)

50

75

100

125

150

175

200

225

v
(k
m

s
−
1
)

NGC5907,χ2
ν
=0.16

5 10 15 20

r(kpc h−1)

50

75

100

125

150

175

200

225

v
(k
m

s
−
1
)

NGC3953,χ2
ν
=0.05

Figure 2. The best-fitting rotation curves of LSB (upper 6 panels) and HSB (lower 6 panels) galaxies

with the model presented in this paper. The panels are listed by the increasing effective surface

brightness of the galaxies. In each panel, the dotted curve shows the contribution from the cosmolog-

ical quantum effect, given by (77); the dashed curve indicates the contribution from the luminous

Newtonian potential given by (82); the dash-dotted curve shows the contribution from the quantum

effect of the galaxies themselves given by (83); and finally, the solid curve is the total circular velocity

given by (84).

Despite the very simple model used to describe the matter distribution in LSB and
HSB galaxies, the fittings can still capture the main phenomenological results observed in
other theories of gravity. For instance, the quantum effect contributions (v2

L +V2
Q) dominate

most regions of LSB galaxies, whereas this is only true for the outer regions of HSB galaxies.
Our proposed quantum effect on large scales has proven to be successful in explaining

the mass discrepancy problem in galaxies.

4. Conclusions and Discussions

We have proposed the quantum nature of spacetime at cosmic scales. To investi-
gate this postulation, we examined spherically symmetric and static gravitational systems
composed of free-falling particles with identical mass m. We assumed that the matter dis-
tribution can be smoothed using the proper number density ρ(r) and proper mass density
ρm(r). We further assumed that the Dirac spinor ψ(r) can fully capture all the physical
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aspects of the particles and satisfies the covariant Dirac equation. Therefore, we recog-
nize ρ(r) = ψ(r) ˜ψ(r) and ρm(r) = mψ(r) ˜ψ(r) = mρ(r). For a given mass density ρm(r),
the interplay between the number density ρ(r) and the particle mass m offers us a inherent
mechanism to establish a connection between the spin density S(r) = ℏ

2 ψ(r)iγ3
˜ψ(r) and

the scale λ of gravitational systems.
We utilized gauge theory gravity (GTG) [26,27] to achieve the subsequent derivations.

After solving Einstein equations, the metric of the spacetime for the radially symmetric
and static gravitational systems was derived, as shown in (46). The fundamental results
obtained thus far require additional physical interpretations and practical applications. We
found that the quantum potential energy (QPE) defined by (49)

ρQ(r, λ) = −3

4
κS2(r) = ρ2

m(r)α(λ)/ρc

is contained in the metric via the mass (energy) M(r), where α(λ) is a dimensionless
function of the scale of the system involved. The mass within radius r can then be expressed
in (50).

It is important to note that at each radius r, we consider M(r) as the mass of a
gravitational system; therefore, we identify r as the scale λ of the “system”. As such,
for any given mass density ρm(r) of a gravitational system, we can derive the metric that
encompasses not only the classical mass but also the quantum potential energy (QPE).
When the scale of the gravitational systems are macroscopic, for instance, the solar system,
the QPE can be neglected, and the Einstein–Newtonian theory of gravity is recovered.

The dimensionless function α(λ) is universal, and it should be determined theoretically
from first principles. However, when theoretical formulas are lacking, we can derive a
phenomenological formula by fitting data to observations. We discovered that the general
expression presented in (53) successfully achieved our objective.

While our fundamental results were initially derived for radially symmetric and static
systems, they can be applied to any static gravitational system. By substituting the proper
mass density ρm with ρm + ρQ ++ρc + ρcαc(λ), where ρc is the constant mass density of
the universe, we establish a fundamental boundary condition that the spacetime metric
encompassing any local gravitational system must adhere to. Remarkably, this boundary
condition inherently gives rise to the cosmological impact on local galaxies, as evidenced
by observations of galactic rotation curves [9,10,13,38,41,42].

When applied to cosmology, our model yields a static universe. The predicted luminos-
ity distance–redshift relation fit remarkably well with SNe Ia data, providing evidence that
the cosmological redshift may be due to QPE-induced time dilation rather than expansion
of the universe. It is not surprising that when we extend Dirac’s theory for free electrons to
macroscopic particles (including stars within galaxies and galaxies within the entire uni-
verse), we are effectively moving away from the notion of a preferred absolute spacetime as
suggested by general relativity and commonly accepted by many physicists, as illustrated
in the standard ΛCDM cosmology. Without the existence of absolute spacetime, physical
processes should be described from the perspective of any observer in the universe inde-
pendently and equivalently, without relying on the absolute spacetime reference frame of
the universe. Therefore, the state of a celestial body should be characterized in the frame
associated with a specific observer rather than in the frame of the absolute spacetime of
the universe. Consequently, we assume that, for any observer in the universe, a distant
celestial body behaves akin to a micro-particle and can be effectively described using
Dirac’s theory. On the contrary, in a scenario where absolute spacetime exists, all matter
particles, including observers, must be described in relation to it. As a result, the motion
of distant celestial bodies is typically explained by a combination of the local velocity and
the overall expansion velocity. In this context, we should not anticipate quantum effects at
large scales for any observers.

When considering galaxies, it is intriguing to note that quantum effects can serve as
a substitute for dark matter. To validate our theory, the most effective approach was to



Universe 2024, 10, 333 23 of 38

utilize the extensive observational data on the rotation curves of dwarf and spiral galaxies.
Remarkably, our proposed quantum effect at large scales successfully addressed the mass
discrepancy issue in galaxies. Specifically, our theory presented a fitting formula, as
outlined in (85), which elegantly explains the correlation between the universal acceleration
cH0 suggested by cosmology, a0 proposed by MOND, and 0.02cH0 resulting from the
cosmological effect on local galaxies [13].

Although not investigated in the present study, it is interesting to note that there is
another very important piece of evidence supporting our new theory about the quantum
effects of macroscopic matter at cosmic scales. This evidence comes from a large-scale
structural survey of the universe, which reveals the fractal geometry of matter distribu-
tion at these scales, as cited in Ref. [43]. It has now been established that the quantum
randomness of the electron can be mimicked by Brownian motion; the simulated trajectory
is continuous but non-differentiable. In fact, the non-differentiable trajectory or path of an
electron exhibits a fractal structure due to the uncertainty principle between its position and
momentum in the conventional matrix and tensor versions of quantum mechanics [44]. Nat-
urally, the observations of the fractal geometry of the large-scale structure of the universe
can be regarded as independent and compelling evidence that supports our assumption
when extending the reasoning about the relationship between the quantum nature of matter
and its fractal path from microscopic matter to macroscopic matter.

In conclusion, we have expanded the quantum characteristics of microparticles to
encompass macroscopic matter at cosmic scales. As illustrated, this expansion was remark-
ably coherent. The subsequent outcomes were derived within the framework of the firmly
established theory of gravity (GTG) and mathematical language (STA). While there is room
for improvement in the technical details of our derivations, the fundamental discoveries
are credible and, notably, were verified through astronomical observations of SNe Ia and
galactic rotation curve data. In particular, our proposal provides an alternative view point
to understand the quantum nature of spacetime.

The manifestation of physical laws should be independent of the mathematical lan-
guage used, and thus we believe that our proposal could also be accomplished, for instance,
through the tensor analysis approach. Of course, using an unfamiliar language may make
it challenging for readers to comprehend our theory. However, it has been shown that STA
and GC can significantly streamline the calculations in our area of concern. Additionally,
STA can illustrate the cohesive link between classical mechanics and quantum mechan-
ics, thereby enhancing our comprehension of the enigmatic aspects of quantum theory
and spacetime.

For future work, we could test our theory through observations of gravitational
lensing, cosmic microwave background radiation, and more sophisticated models for
rotation curves. In particular, we could investigate the bullet cluster problem, which is
considered the best evidence for the existence of dark matter. A more ambitious project
would be to derive the α(λ) formula from first principles.
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Appendix A. Spacetime Algebra and Geometric Calculus

Spacetime algebra (STA) is generated by a 4-dimensional Minkowski vector space.
The inner and outer products of the four orthonormal basis vectors {γµ, µ = 0 . . . 3} are
defined to be

γµ · γν ≡ 1

2
(γµγν + γνγµ) ≡ ηµν = diag(+−−−)

γµ ∧ γν ≡ 1

2
(γµγν − γνγµ). (A1)

A full basis for the STA is
1, {γµ}, {σk, iσk}, {iγµ}, i (A2)

where σk ≡ γkγ0, k = 1 . . . 3 constitute the orthonormal basis of a 3-dimensional vector
space relative to γ0, and i = γ0γ1γ2γ3 = σ1σ2σ3 is called pseudoscalar. The STA is a linear
space of dimensions 16. We refer to the general elements of STA as multivectors, and each
multivector decomposes into a sum of elements of different grades. If a multivector contains
only grade-r components, we call it homogeneous, and is denoted by Ar. We call grade-0
multivectors scalars, grade-1 vectors, grade-2 bivectors and grade-3 trivectors. A grade-r
multivector is called simple or an r-blade if and only if it can be written as

Ar = a1 ∧ a2 ∧ ... ∧ ar =
1

r! ∑
π

(sgnπ)aπ(1)aπ(2)...aπ(r), (A3)

where π is a permutation of 1 through r, ‘sgn π’ is the sign of the permutation, 1 for even
and −1 for odd, and the sum is over all r! possible permutations. For r = 2, this reduces
the outer product of two vectors

a ∧ b =
1

2
(ab − ba), (A4)

which is in agreement with the definition in (A1), and clearly a ∧ a = 0.
The geometric product of a grade-r multivector Ar with a grade-s multivector Bs is

defined simply by ArBs, which decomposes into

ArBs = ⟨ArBs⟩|r−s| + ⟨ArBs⟩|r−s|+2 + ... + ⟨ArBs⟩r+s, (A5)

where ⟨X⟩r denotes the projection onto the grade-r part of X. The grade-0 (scalar) part
of X is written as ⟨X⟩. We employ “·” and “∧” symbols to denote the lowest-grade and
highest-grade terms in (A5), so that

Ar · Bs = ⟨ArBs⟩|r−s|, (A6)

Ar ∧ Bs = ⟨ArBs⟩r+s, (A7)

which are called inner and outer products, respectively. They represent a generalization of
the geometric product between two vectors a and b, which can be expressed as follows:

ab = a · b + a ∧ b. (A8)

We define the reverse of a geometric product AB by (AB)∼ = B̃Ã, so that for vectors
a1, a2, . . . , ar, we have

(a1a2...ar)
∼ = arar−1...a1. (A9)

This reverse operator obeys the rule

(A + B)∼ = Ã + B̃, (A10)

⟨Ã⟩ = ⟨A⟩, (A11)

ã = a, (A12)
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where a is a vector. It is easy to show that

Ãr = (−1)r(r−1)/2 Ar. (A13)

Thus, suppose r ≤ s, the inner and outer products satisfy the symmetry properties

Ar · Bs = (−1)r(s−1)Bs · Ar, (A14)

Ar ∧ Bs = (−1)rsBs ∧ Ar. (A15)

The scalar product is defined by
A ∗ B = ⟨AB⟩. (A16)

From (A6), Ar ∗ Bs is nonzero only if r = s, thus the scalar product (A16) is commutative

⟨AB⟩ = ⟨BA⟩, (A17)

which proves to be very useful in our calculations. The inner product and outer product
obey the distributive rule

A · (B + C) = = A · B + A · C (A18)

A ∧ (B + C) = A ∧ B + A ∧ C. (A19)

The outer product is associative

A ∧ (B ∧ C) = (A ∧ B) ∧ C. (A20)

The inner product is not associative, but homogeneous multivectors obey

Ar · (Bs · Ct) = (Ar ∧ Bs) · Ct, for r + s ≤ t, (A21)

Ar · (Bs · Ct) = (Ar · Bs) · Ct, for r + t ≤ s. (A22)

For any vector a, it can be proved that

a · Ar = ⟨aAr⟩r−1 =
1

2
(aAr − (−1)r Ara), (A23)

a ∧ Ar = ⟨aAr⟩r+1 =
1

2
(aAr + (−1)r Ara). (A24)

From which, we immediately have

aAr = a · Ar + a ∧ Ar. (A25)

We also have the following useful identities

a · (ArB) = (a · Ar)B + (−1)r Ar(a · B) (A26a)

= (a ∧ Ar)B − (−1)r Ar(a ∧ B) (A26b)

a ∧ (ArB) = (a ∧ Ar)B − (−1)r Ar(a · B) (A26c)

= (a · Ar)B + (−1)r Ar(a ∧ B). (A26d)

These identities imply the following particularly useful relations:

a · (Ari) = (a ∧ Ar)i, (A27)

a ∧ (Ari) = (a · Ar)i, (A28)

where i is a pseudoscalar, and we have used the fact that a ∧ i = 0.
Any vector a can be decomposed in terms of {γµ} into

a = a · γµγµ = a · γµγµ, (A29)



Universe 2024, 10, 333 26 of 38

where the summation convention is implied. Similarly, an arbitrary multivector A can be
decomposed into

A = ∑
µ<...<ν

Aµ...νγµ ∧ ... ∧ γν, (A30)

where
Aµ...ν = A · (γν ∧ ... ∧ γµ). (A31)

We further define the commutator product

A × B =
1

2
(AB − BA), (A32)

which satisfies the Jacobi identity

A × (B × C) + B × (C × A) + C × (A × B) = 0. (A33)

In addition, we have the Leibnitz rule for the commutator product

A × (BC) = (A × B)C + B(A × C). (A34)

This rule is particular useful with bivectors. It can be proved that

A2 × Ar =
1

2
(A2 Ar − Ar A2) = ⟨A2 Ar⟩r, (A35)

which means that if one of the factors is a bivector, then the commutator product preserves
its grade. Thus, for ⟨A⟩1 = 0, we have

A2 A = A2 · A + A2 × A + A2 ∧ A. (A36)

Since the commutator product with a bivector is grade preserving, the identity in (A34) still
holds if A = A2 and we replace all geometric products with either inner or outer products:

A2 × (B · C) = (A2 × B) · C + B · (A2 × C),
A2 × (B ∧ C) = (A2 × B) ∧ C + B ∧ (A2 × C).

(A37)

Finally, for any vector a and trivector T, it can be proved that

(a · T)× T = 0. (A38)

Geometric calculus (GC) is the extension of a geometric algebra (like STA) to include
differentiation and integration. Let the multivector F be an arbitrary function of a multi-
vector argument X, then the derivative of F(X) with respective to X in the A direction is
defined by

A ∗ ∂X F(X) ≡ lim
τ→0

F(X + τA)− F(X)

τ
, (A39)

where the multivector partial derivative ∂X inherits the multivector properties of its argu-
ment X. Suppose that the set {ek} form a vector frame (which is not necessarily orthonor-
mal), the reciprocal frame is determined by [45]

ei = (−1)i−1e1 ∧ e2 ∧ ... ∧ ěi ∧ ... ∧n e−1 (A40)

e ≡ e1 ∧ e2 ∧ ... ∧ en (A41)

and the check on ě denotes that this term is missing from the expression. As usual, the
two frames are related by

ej · ek = δk
j . (A42)
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From this frame, the multivector derivative ∂X in Equation (A39) is defined by

∂X ≡ ∑
i<...<j

ei ∧ ... ∧ ej(ej ∧ ... ∧ ei) ∗ ∂X . (A43)

The Leibnitz rule can be written in the form

∂X(AB) = ∂̇X ȦB + ∂̇X AḂ, (A44)

where the overdot indicates the scope of the multivector derivative.
We have from (A39) and (A43)

∂X⟨XA⟩ = PX(A), ∂X⟨X̃A⟩ = PX(Ã), (A45)

where PX(A) is the projection of A onto the grades contained in X. These results are
combined using Leibnitz’s rule to give

∂X⟨XX̃⟩ = ∂̇X⟨ẊX̃⟩+ ∂̇X⟨X ˙̃X⟩ = 2X̃. (A46)

For a vector argument x and a constant vector a, (A39) and (A45) yield

a · ∂xx = a = ∂x(x · a). (A47)

For a vector variable a = aµγµ = a · γµγµ = a · γµγµ, where γµ constitutes the
reciprocal basis and satisfies γµ · γν = δν

µ, the vector derivative can be defined as

∂a ≡ γµ ∂

∂aµ , (A48)

For the derivative with respect to a spacetime position vector x, we use the symbol
∇ ≡ ∂x = γµ ∂

∂xµ , if x = xµγµ. From (A47) and (A48), we can obtain useful results

∂a = ∂bb · ∂a = γµγµ · ∂a. (A49)

Some results for the derivative with respect to position vector x in an n-dimensional space
are [45]

∂x(x · Ar) = rAr, (A50a)

∂x(x ∧ Ar) = (n − r)Ar, (A50b)

∂̇x Ar ẋ = (−1)r(n − 2r)Ar. (A50c)

From (A21) and (A50a), an r-blade Ar can be expressed as

Ar =
1

r!
∂a1

∧ ... ∧ ∂ar (ar ∧ ... ∧ a1) ∗ Ar. (A51)

When considering a vector argument x and a constant vector a, (A39) becomes the
definition of the directional derivative a · ∇, thus

a · ∇F = a · ∂xF(x) =
d

dτ
F(x + aτ)

∣

∣

∣

∣

τ=0

= lim
τ→0

F(x + aτ)− F(x)

τ
. (A52)

Then, the general vector derivative can be obtained from the directional derivative us-
ing (A49) as

∇F = ∂xF(x) = ∂aa · ∂xF(x). (A53)

The directional derivative (A52) produces from F a tensor field termed differential of
F, denoted variously by

f (a) = Fa ≡ a · ∇F. (A54)
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The underbar notation serves to indicate that f (a) is a linear function of a. This induced lin-
ear function is very important for us to describe the apparatus of GC for handling transfor-
mations of spacetime and the induced transformations of multivector fields on spacetime.

Suppose there is a diffeomorphism that transforms each point x in some region of
spacetime into another point x′ as

x′ = f (x). (A55)

This induces a linear transformation of tangent vectors at x to tangent vectors at x′ given
by the differential

a′(x′) = f (a) = a · ∇ f . (A56)

If we regard x as a map representing the ordering of points in spacetime, then x′ can be
interpreted as a different map, or a remapping of the same spacetime. The transformation
f also induces an adjoint transformation f̄ , which takes a tangent vector b′ at x′ back to a
tangent vector b at x, as defined by

b(x) = f̄ (b′) ≡ ∂x f (x) · b′(x′). (A57)

The differential and its adjoint are related by

b′ · f (a) = a · f̄ (b′). (A58)

By using this relation, we can find one transformation from another by

f̄ (a) = ∂bb · f̄ (a) = ∂b( f (b) · a), (A59)

f (a) = ∂bb · f (a) = ∂b( f̄ (b) · a). (A60)

In addition to the induced linear transformations f (a) and f̄ (a) of tangent vectors,
by the rule of direct substitution, (A55) can also induce a transformation of a multivector
field F(x) defined by

F′(x′) ≡ F′( f (x)) = F(x), (A61)

in which directional derivatives of the two functions are related by the chain rule

a · ∇F = a · ∂xF′( f (x)) (A62)

= (a · ∇x f (x)) · ∂x′ F
′(x′) (A63)

= f (a) · ∇′F′ = a · f̄ (∇′)F′ (A64)

= a′ · ∇′F′. (A65)

The operator identity is

a · ∇ = f (a) · ∇′ = a · f̄ (∇′) = a′ · ∇′. (A66)

Differentiation with respect to the vector a yields

∇ = f̄ (∇′) or ∇′ = f̄−1(∇). (A67)

Now is an opportune moment to discuss linear algebra. In fact, GC enables us to
carry out coordinate-free calculations in linear algebra, eliminating the need for matrices.
Every linear transformation f on spacetime has a unique extension to a linear function on
the whole STA, called outermorphism. For arbitrary multivectors A, B, and any scalar α,
the outermorphism is defined by the property

f (A ∧ B) = f (A) ∧ f (B), f (α) = α. (A68)
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It follows that for an r-blade Ar = a1 ∧ ... ∧ ar,

f (Ar) = f (a1) ∧ ... ∧ f (ar). (A69)

Since the outermorphism preserves the outer product, it also preserves grade:

f (⟨A⟩r) = ⟨ f (A)⟩r (A70)

for any multivector A. This implies that f alters the pseudoscalar i only by a scalar multiple:

f (i) = (det f )i, (A71)

which defines the determinant of f . The product of two linear transformations h = g f also
applies to their outermorphisms. It follows from (A71) that

h(i) = g( f (i)) = (det f )g(i) = (det f )(det g)i (A72)

det(g f ) = det g det f (A73)

det f−1 = (det f )−1. (A74)

Every f has an adjoint f̄ , which can be extended to an outmorphism denoted by the
same symbol

⟨A f̄ (B)⟩ = ⟨B f (A)⟩ (A75)

for any multivectors A and B. Unlike the outer product, the inner product is not generally
preserved by outermorphisms. However, it obeys the law

Ar · f̄ (Bs) = f̄
(

f (Ar) · Bs

)

for r ≤ s, (A76)

f (Ar) · Bs = f
(

Ar · f̄ (Bs)
)

for r ≥ s. (A77)

From these identities, we can construct a formula for the inverse of a linear transformation.
Consider a multivector B, lying entirely in the algebra defined by the pseudoscalar i,
we have

f (i)B = (det f )iB = f (i f̄ (B)). (A78)

Replacing iB by A, we find
(det f )A = f (i f̄ (i−1 A)) (A79)

with a similar result holding for the adjoint. It follows immediately that

f−1(A) = i f̄ (i−1 A)(det f )−1, (A80)

f̄−1(A) = i f (i−1 A)(det f )−1. (A81)

Once again, one great advantage of GC is that it eliminates unnecessary conceptual
barriers between classical, quantum, and relativistic physics.

Appendix B. Stress–Energy Tensor Derived from Dirac Theory

In this Appendix, we show that the stress–energy tensor derived from the Dirac
equation for free spin- 1

2 particles can be decomposed into the sum of a symmetric part and
an antisymmetric part. The symmetric part represents a classical pressureless ideal fluid,
while the antisymmetric part represents the contribution of quantum potential energy. As a
result, when spin is zero, the stress–energy tensor becomes that of a pressureless ideal
fluid. We follow Hestenes’s work [18], except that we set β = 0 for free spin- 1

2 particles.
As mentioned in our previous paper, the spinor field at spacetime point x takes the form [14]

ψ(x) = ρ(x)1/2R(x), (A82)
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where ρ(x) is a scalar, representing the proper probability density and R(x) is a rotor
(Lorentz rotation) satisfying RR̃ = 1. The rotor R can be used to transform a fixed frame
{γµ} into a new frame {eµ}

eµ = RγµR̃. (A83)

We identify v = e0 as the proper velocity associated with the expected history x(τ) of a
particle, v = dx

dτ . Our present objective is to derive a stress–energy tensor for a pressureless
ideal fluid from the Dirac theory. The desired form of the tensor is as follows:

Tµν = ρmvµvν, (A84)

where v = vµγµ and ρm = mρ, as explained in the previous paper.
For later use, we define

spin bivector : S =
1

2
Rγ2γ1R̃ =

1

2
e2e1 (A85)

spin density trivector : S3 =
1

2
ψiγ3ψ̃ =

1

2
ρe2e1v = ρSv. (A86)

The Dirac equation is
∇ψiγ3 = mψ. (A87)

A stress–energy tensor T(a) is a linear vector function of a vector variable a, which denotes
a flux of energy–momentum through a hypersurface with normal a at spacetime point x.
The tensor T(a) for the free Dirac field is given by [18,21]

T(a) = γν⟨a∂νψiγ3ψ̃⟩ = γνa · ⟨∂νψiγ3ψ̃⟩1. (A88)

This tensor is not symmetric, and its adjoint (transposed tensor) is

T̄(a) = ∂b⟨T(b)a⟩ = ⟨a · ∇ψiγ3ψ̃⟩1. (A89)

We can decompose T(a) into a sum of a symmetric part and an anti-symmetric part as [45]

T(a) = TS(a) + TA(a), (A90)

where

TS(a) =
1

2
(T(a) + T̄(a)) =

1

2
∂a(a · T(a)), (A91)

TA(a) =
1

2
(T(a)− T̄(a)) =

1

2
a · (∂b ∧ T(b)) = −1

2
a · (∂b ∧ T̄(b)). (A92)

From (A86) and (A89), we write

∂a ∧ T̄(a) = ∇̇ ∧ ⟨ψ̇iγ3ψ̃⟩1

=
1

2
⟨∇ψiγ3ψ̃ − γµ(ψiγ3(∂µψ)∼)⟩2

= −1

2
⟨∇ψiγ3ψ̃ + γµ(ψiγ3(∂µψ)∼)⟩2

= −1

2
⟨∇(ψiγ3ψ̃)⟩2

= −∇ · S3,

(A93)

where we have used the fact that the Dirac Equation (A87) implies ⟨∇ψiγ3ψ̃⟩2 = 0. Thus,
according to (A92) and (A93), the anti-symmetric part of T(a) can be written as

TA(a) =
1

2
a · (∇ · S3) =

1

2
(a ∧∇) · S3. (A94)
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We are now ready to define the local energy–momentum p, one of the most fundamen-
tal quantities of the Dirac theory, as [18]

ρp = T(v) = vµTµ, (A95)

where v = vµγµ and Tµ = T(γµ) are understood. Now Tµ can be decomposed in the
form [18]

Tµ = ρvµ p + Nµ, (A96)

where Nµ = N(γµ) describes the flow of energy momentum normal to the velocity. This
can be verified from (A95) and (A96), which reads N(v) = N(vµγµ) = vµNµ = 0, since
vµvµ = v2 = 1.

According to the conservation of energy and momentum, the divergence of a stress–
energy tensor must be equal to the force density exerted on the particle. This relationship
holds true even for free particles, where no external forces are acting on them. We thus write

Ṫ(∇̇) = ˙̄T(∇̇) = ˙̄T(γµ∂̇µ) = ∂µT̄µ = 0, (A97)

where we have used the fact that the divergence of the anti-symmetric part of the stress–
energy tensor vanishes. This is because, according to (A94), ṪA(∇̇) = 0.

One advantage of STA is that the formulations of physical laws in Dirac theory, such as
conservation laws and dynamics, are expressed in the same form as in classical mechanics.
From (A83), it follows that

a · ∇eµ = Ω(a)× eµ, (A98)

where
Ω(a) = 2a · ∇RR̃ (A99)

is a bivector valued function of a vector variable, which can be explained as the angular
velocity of the frame {eµ} rotates in the a direction, and A × B = 1

2 (AB − BA). From (A88)
and (A96), we write

Tµν = Tµ · γν = γµ · ⟨∂νψiγ3ψ̃⟩1 = ρvµ pν + Nµν, (A100)

where pµ = p · γµ and Nµν = Nµ · γν. To express Tµν with observables, we need to calculate
∂νψiγ3ψ̃ from (2). We have

∂νψiγ3ψ̃ = ∂ν(ρ
1/2R)iγ3ρ1/2R̃

=
1

2
∂νρRiγ3R̃ + ρ∂νRiγ3R̃

= (∂ν ln ρ)S3 + ΩνS3

= (∂ν ln ρ)ρSv + ρΩνSv

= ρ(Wν − ∂νS + ΩνS)v,

(A101)

Here, Ων = Ω(γν) = 2∂νRR̃; Wν represents a bivector defined as

Wν ≡ 1

ρ
∂ν(ρS), (A102)

which is called quantum potential, and this holds a pivotal position in quantum mechanics
in the approach of causal interpretation [18]. The vector part of (A101) gives

⟨∂νψiγ3ψ̃⟩1 = Ων · S3

= ρ(Wν · v − ∂νS · v + Ων · Sv + (Ων × S) · v)

= ρ(Wν · v + Ων · Sv),

(A103)
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where we have used ∂νS = Ων × S, which can be proved as follows

∂µS =
1

2
∂µ(Rγ2γ1R̃)

=
1

2
((∂µR)γ2γ1R̃ + Rγ2γ1∂µR̃)

=
1

2
(ΩµS − SΩµ)

= Ωµ × S.

(A104)

We thus obtain from (A88), (A95) and (A103),

T(v) = v · ⟨∂νψiγ3ψ̃⟩1γν = (v ∧ Ων) · S3γν = ρΩν · Sγν = ρp, (A105)

which means
pν = Ων · S. (A106)

Finally, from (A100), (A103) and (A106), we obtain [18]

Tµν = ρvµ pν + ρ(v ∧ γµ) · Wν. (A107)

To achieve the desired result (A84), we need to identify the constraints that would align
the momentum and velocity (i.e., v ∧ p = 0), and ensure the symmetry of the stress–energy
tensor (i.e., T(a) = T̄(a) or Tµν = Tνµ).

Let us first multiply the Dirac Equation (A87) on the right by ψ̃ to obtain

∇ψγ2γ1ψ̃ = mρv. (A108)

Next, we evaluate ∇ψγ2γ1ψ̃ by substituting ψ from (2), resulting in

γµ(∂µψγ2γ1ψ̃) = γµ((∂µ
√

ρ)Rγ2γ1ψ̃ +
√

ρ(∂µR)γ2γ1ψ̃)

= γµ((∂µρ)S + ρΩµS)

= (∇ρ)S + ργµΩµS.

(A109)

The vector part of this equation gives

⟨∇ψγ2γ1ψ̃⟩1 = ⟨(∇ρ)S + ργµΩµS⟩1

= (∇ρ) · S + ργµΩµ · S + ργµ · (Ωµ × S)

= (∇ρ) · S + ρp + ρ∇ · S

= ∇ · (ρS) + ρp.

(A110)

From (A108) and (A110), we obtain

p = mv − 1

ρ
∇ · (ρS). (A111)

Decomposing the stress–energy tensor into its symmetric and anti-symmetric parts
in terms of observables proves to be highly advantageous. In the main text, we specifi-
cally utilize the adjoint form outlined in this Appendix, hence we express T̄µν as derived
from (A107) as follows:

T̄µ = ρpµv + [∂µ(S3v)] · v. (A112)

By substituting p given by (A111), we have
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T̄(a) =ρa · pv + [a · ∇(S3v)] · v

=ρ

[

ma · v − 1

ρ
(a ∧∇) · (S3v)

]

v + [a · ∇(S3v)] · v

=ρma · vv + [a · ∇(S3v)] · v − (a ∧∇) · (S3v)v,

(A113)

where ρm = ρm represents the proper mass density. We see that if S3 = 0, we promptly
obtain the desired expression for a stress–energy tensor that is appropriate to describe a
pressureless ideal fluid

T(a) = T̄(a) = ρma · vv. (A114)

Appendix C. GTG and Matter

By virtue of GC, GTG is constructed such that gravitational effects are described by
a pair of gauge fields, h̄(a) = h̄(a, x) and ω(a) = ω(a, x), defined over a flat Minkowski
background spacetime [26], where x is the STA position vector, which is usually suppressed
for short.

The first of them, h̄(a), is a position-dependent linear function mapping the vector
argument a to vectors. The introduction of h̄(a) ensures covariance of the equations under
arbitrary local displacements (or an arbitrary remapping x′ = f (x)) of the matter fields in
the background spacetime. In order to understand the physical meaning of the h̄ field, we
first define the covariant displacement transformation as

M(x)
x′= f (x)−−−−→ M′(x) = M(x′), (A115)

so that the equations A(x) = B(x) and A(x′) = B(x′) have exactly the same physical
content. Suppose we have a vector field b(x) = ∇φ(x), where φ(x) is a scalar field that is
already covariant under displacement, i.e., φ′(x) = φ(x′). Now can we write b′(x) = b(x′)
or ∇φ′(x) = ∇x′φ(x′)? Using the chain rule, we find

a · ∇φ′(x) = a · ∇φ(x′)
= (a · ∇ f (x)) · ∇x′φ(x′)
= f (a) · ∇x′φ(x′)
= a · f̄ (∇x′)φ(x′),

(A116)

where f (a) = a · ∇ f (x) is a linear function of a and an arbitrary function of x, and

f̄ (∇x′) = ∇ f (x) · ∇x′ , and we call f̄ the adjoint of f , satisfying a · f (b) = f̄ (a) · b, or

f̄ (a) = ∂b⟨ f (b)a⟩. It follows that ∇φ′(x) = f̄ (∇x′φ(x′)), or

∇x = f̄ (∇x′) and f̄−1(∇x) = ∇x′ , (A117)

which shows us that b(x) is not covariant under displacement. In order to make objects
such as b(x) covariant, we must introduce a position-gauge field h̄(a, x), which is a linear
function of a and arbitrary function of x, so that

h̄(a, x)
x′= f (x)−−−−→ h̄′(a, x) = h̄( f̄−1(a), x′). (A118)

Now, if we redefine b(x) = h̄(∇φ(x)), then

b(x) = h̄(∇φ(x))
x′= f (x)−−−−→ b′(x) = h̄′(∇φ′(x))

= h̄( f̄−1(∇φ′(x)))
= h̄(∇x′φ(x′)) = b(x′),

(A119)

which becomes covariant. The h̄(a) field plays the same role as vierbein in the tensor
calculus approach of gauge theory of gravity [25,26]. For later use, we give the relationship
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between h̄(a) and the metric tensor gµν in GR. We define a position gauge invariant
directional derivative as [26,28]

La = a · h̄(∇) = h(a) · ∇, (A120)

where h is the adjoint of h̄ defined by h(b) ≡ ∂c(h̄(c) · b), and a is an invariant vector
(i.e., for x′ = f (x), a(x) is transformed to a′(x) = a(x′)). So, h maps tangent vectors to
tangent vectors and h̄ maps cotangent vectors to cotangent vectors. For a given set of
coordinates {xµ, µ = 0, 1, 2, 3}, we introduce the basis vectors

eµ ≡ ∂x

∂xµ , eµ ≡ ∇xµ, (A121)

which satisfy eµ · eν = δν
µ. From these vectors, we further define vectors

gµ ≡ h−1(eµ), gµ ≡ h̄(eµ). (A122)

These vectors satisfy the relation

gµ · gν = h−1(eµ) · h̄(eν) = eµ · h̄−1(h̄(eν)) = eµ · eν = δν
µ. (A123)

The metric tensor is then given by

gµν ≡ gµ · gν. (A124)

Let x(τ) be a time-like curve (where τ is the proper time), a mapping f : x → x′ = f (x)
induces the transformation

ẋ =
dx

dτ
→ ẋ′ =

dx′

dτ
=

dx

dτ
· ∇ f (x). (A125)

Comparing Equation (A125) with Equation (A120), we introduce an invariant velocity
v = v(x(τ)) as [28]

ẋ = h(v), v = h−1(ẋ). (A126)

From the known formula dx = dxµeµ, the invariant normalization v2 = 1 induces the
invariant line element on a time-like curve in GR

dτ2 = [h−1(dx)]2 = gµνdxµdxν. (A127)

Another gauge field, ω(a), is a position-dependent linear function mapping the vector
argument a to bivectors. Its introduction ensures covariance of the equations of physics
under local Lorentz rotations described by the rotor R. Under local Lorentz rotations,
the multivector M transforms as M′ = RMR̃ and the spinor ψ transforms as ψ′ = Rψ.
To ensure covariance of the quantities like h̄(∇)M and h̄(∇)ψ under local Lorentz rotations,
h̄(∇) = h̄(∂a)a · ∇ should be replaced by a covariant derivative D [26]. To achieve this, we
focus attention on a · ∇ψ′ = a · ∇(Rψ) and write

a · ∇(Rψ) = Ra · ∇ψ + (a · ∇R)ψ. (A128)

Clearly, the presence of the term (a · ∇R)ψ renders the operator a · ∇ non-covariant. Since
the rotor R satisfies RR̃ = 1, we find that

a · ∇RR̃ + Ra · ∇R̃ = 0, (A129)

which implies
a · ∇RR̃ = −Ra · ∇R̃ = −(a · ∇RR̃)∼. (A130)
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Hence, a · ∇RR̃ is equal to minus its reverse and thus must be a bivector in the STA. We
can therefore rewrite (A128) as

a · ∇(Rψ) = Ra · ∇ψ +
1

2
(2a · ∇RR̃)(Rψ). (A131)

This suggests that to achieve a covariant derivative we must add a connection term to a · ∇
to construct an operator

Daψ = a · ∇ψ +
1

2
Ω(a)ψ (A132)

which must be covariant under local Lorentz rotations. The connection Ω(a) = Ω(a, x) is a
bivector valued linear function of a with an arbitrary x dependence. Under local rotations
we expect that the operator Da will be unchanged in form, namely,

D′
a = a · ∇+

1

2
Ω′(a), (A133)

Here, we have used the fact that a · ∇ cannot change under local rotations. Nevertheless,
the property that the covariant derivative must satisfy is

D′
aψ′ = (a · ∇+ 1

2 Ω′(a))(Rψ)

= RDaψ = R(a · ∇ψ + 1
2 Ω(a)ψ).

(A134)

From these identities, it follows that Ω(a) transforms as

Ω′(a) = RΩ(a)R̃ − 2a · ∇RR̃. (A135)

Now, we reassemble the covariant derivative (A132) with the term h̄(∂a) to form

D ≡ h̄(∂a)Da, (A136)

and write

Dψ = h̄(∂a)(a · ∇ψ +
1

2
Ω(a)ψ). (A137)

Note that the vector derivative D is fully covariant, but Da is not, since it contains the
Ω(a) field, which must transform in the same way as a · ∇RR̃ under displacement and thus
picks up a term in f (A66). Recall the definition of the position gauge invariant directional
derivative (A120), we thus define

a · Dψ = a · h̄(∇)ψ +
1

2
ω(a)ψ, (A138)

where ω(a) is defined by
ω(a) = Ω(h(a)). (A139)

It should be pointed out that the vector a is declared to be position gauge-invariant, as stated
below Equation (A120). Therefore, Da is related to a · D by

Daψ = h−1(a) · Dψ

= h−1(a) · h̄(∇)ψ + 1
2 ω(h−1(a))ψ

= a · ∇ψ + 1
2 Ω(a)ψ,

(A140)

or simply
Da = h−1(a) · D. (A141)

We thus also have

Dψ ≡ ∂a

(

a · h̄(∇)ψ +
1

2
ω(a)ψ

)

. (A142)
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We are now ready to establish the form of the covariant derivatives of the observables
formed from a spinor field. In general, such observables have the form

M = ψΓψ̃, (A143)

where Γ is a constant multivector formed from combinations of γ0, γ3 and iσ3. Under dis-
placements x′ = f (x), the spinor fields are covariant: ψ′(x) = ψ(x′). Thus, the observable
M inherits its transformation properties from the spinor ψ,

M(x)
x′= f (x)−−−−→ M′(x) = M(x′), (A144)

exactly the same form in (A115). Under rotations, the spinor transforms as ψ′ = Rψ. So it
follows from (A143) that, under rotations, M transforms as

M(x)
R−→ M′ = ψ′Γψ̃′ = RψΓψ̃R̃ = RMR̃. (A145)

To achieve the fully covariant derivative for M, we first write

La M = LaψΓψ̃ + ψΓ(Laψ)∼. (A146)

This equation is a displacement covariant. We simply replace La with a · D to obtain

a · DM = a · DψΓψ̃ + ψΓ(a · Dψ)∼

= La(ψΓψ̃) + ω(a)× (ψΓψ̃)
= La M + ω(a)× M.

(A147)

Note the difference between the forms of a · D acting on M and ψ.
The field strength corresponding to the ω(a) gauge field is defined by

[a · D, b · D]ψ =
1

2
R(a ∧ b)ψ, (A148)

where
R(a ∧ b) ≡ Laω(b)− Lbω(a) + ω(a)× ω(b), (A149)

a and b are constant vectors. The Ricci tensor R(a), Ricci scalar R, and Einstein tensor G(a)
are defined, respectively, as

R(a) = ∂b · R(b ∧ a), (A150)

R = ∂a · R(a), (A151)

G(a) = R(a)− 1

2
aR. (A152)

The overall action integral is of the form

I =
∫

|d4x|det(h)−1(
1

2
R− κLm), (A153)

where Lm describes the matter content and κ = 8π. In this paper, we adopt the covariant
Lm = Diγ3ψ̃ − mψψ̃ from Dirac theory to describe the macroscopic matter, which has been
well-studied [26,27,30] for electrons. From (A153), we obtain the following equations that
describe the field coupled self-consistently to gravity [27]:

torsion: D ∧ h̄(a) = κh̄(a) · S, (A154)

Einstein: G(a) = κT (a) (A155)

Dirac: Dψiσ3 = mψγ0, (A156)
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where D ∧ h̄(a) is the gravitational torsion which is determined by the trivector spin density
S ≡ 1

2 ψiγψ̃, κ = 8π, and
T (a) = ⟨a · Dψiγ3ψ̃⟩1 (A157)

is the matter stress–energy tensor. We can solve Equation (A154) for ω(a) to obtain [27]

ω(a) = ω′(a) +
1

2
κa · S = −H(a) +

1

2
a · [∂b ∧ H(b)] +

1

2
κa · S, (A158)

this defines ω′(a) as the ω-function in the absence of torsion, and

H(a) ≡ h̄(∇̇ ∧ ˙̄h−1(a)) = −h̄(∇̇) ∧ ˙̄h(h̄−1(a)), (A159)

where ‘overdot’ notation is employed to denote the scope of a differential operator. This
proves convenient if we employ the primed symbols to denote the torsion-free part of the
curvature tensors, and we obtain [27]

R(a ∧ b) = R′(a ∧ b) +
1

4
κ2[(a ∧ b) · S] · S

−1

2
κ[(a ∧ b) · D] · S, (A160)

R(a) = R′(a) +
1

2
κ2(a · S) · S

−1

2
κa · (D · S), (A161)

R = R′ +
3

2
κ2S2. (A162)
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