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A MAP APPROACH FOR ELECTRON CLOUD DENSITY
IN A STRONG LHC DIPOLE

W. Di Carmine, S. Petracca®, A. Stabile, University of Sannio, Benevento, and INFN, Salerno, Italy

Abstract

The evolution of the electron density during electron
cloud formation can be reproduced using a bunch-to-bunch
iterative map formalism. The reliability of this formalism
has been proved for RHIC [1] and LHC [2]. A formula for
the linear coefficient has been already found [2]. Here we
derive an analytic expression for the quadratic map coeffi-
cient in the LHC strong magnetic dipole and compare with
simulations results.

INTRODUCTION

Most studies performed so far were based on computer
simulations (ECLOUD [3]) yielding a very detailed descrip-
tion of the electron cloud evolution. In [2,4,5] it was shown
that, for the typical parameters of the LHC, the evolution of
the transverse electron cloud density from bunch to bunch
can be described by a simple cubic map:

Amat = Adm +b A+ Ap° (1)

where 4,, is the average cloud density of electrons after the
m-th passage of the bunch. The coefficients a, b, ¢ are ex-
trapolated from simulations, and are functions of the beam
parameters and of the beam pipe features. The linear term
describes the linear growth and the coefficient a is larger
than unity in the presence of electron cloud formation. The
quadratic term describes the space charge effects, and is neg-
ative reflecting the concavity of the curve A,,,41 vs 4,,. The
cubic term, ¢, corresponds to a variety of subtler effects,
acting as perturbations to the above simple scenario.

In this paper we generalize our results in [5] and derive
an analytical expression for the quadratic coefficient b, un-
der the simple assumptions of a round chamber and in the
presence of a uniform magnetic field with reference to the
LHC (Table 1). The coeflicient b turns out to be dependent
on few beam and machine parameters, and can be computed
analytically once for all.

Table 1: LHC Input Parameters

Parameters Quantities Unit Value
Beam pipe radius (circ.) R, m 0.020
Beam size o m 0.002
Bunch spacing Sp m 7.480
Bunch length oy m 0.023
Particles per bunch Np 1010 8=12
Magnetic filed B T 8
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THE SATURATION ELECTRON DENSITY

The average transverse electron density grows up expo-
nentially in time until the space charge due to the electrons
themselves produces a saturation level. Once the saturation
level is reached the average electron density does not change
significantly. The final decay corresponds to the empty in-
terval between successive bunches (Fig. 1).
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Figure 1: Time evolution of the (average transverse) elec-
tron density computed with PyCLOUD [6]. The points
mark the average electron density between two consecutive
bunches. The machine/beam parameters used are listed in
Table 1.

The energy barrier seen by each electron coming from
the pipe wall towards the center of the chamber, is given
by:

&E(r,p) =—eV(r.¢), 2

where r = +/x2 +y2, ¢ = arctan(y/x) are the polar coor-
dinates in the transverse (x y) plane and r is in units of the
pipe radius R,,. The total electrostatic potential

Vir,¢) =Vo(r, ¢) + Vec(r, ¢) 3)
due to the bunch and the e-cloud is computed from:

Vec (r,¢) = fs ds’g(r', ¢" ) v(r,¢.1r",¢") “

edp
Vi =—2

Inr®(r—a,) (5)
T €Q

where ® is the Heaviside function and v(r,¢,r’,¢’) is
the electrostatic potential generated by a negative uniform
charge line density (—e A,), located in (r’,¢"), satisfying
the boundary conditions v(1, ¢) = 0 on the chamber wall:

Ao P22 = 2rp cos(¢p’ —¢) + 1

—e
b 9 ” ! = 1
v, ¢) dreo P2 2rr cos(¢’ — ¢) +r’?

(6)

The choice of the function g(r, ¢) is crucial. In fact g(7, ¢)
has to provide the two-dimensional distribution of the elec-
tron cloud in the saturation phase. In Fig. 2 we show the
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output of simulation and, then, we formulate a distribution
model,

AVERAGE DISTRIBUTION OF ELECTRONS DURING THE SATURATION
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Figure 2: Snapshot of the space charge spatial distribution
in the trasverse plane with SEY=1,5 and B=S8T.
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where x = r cos¢ and X,,X,,,X,0,,0 are free parame-
ters. In the absence of the magnetic field the electron cloud
density has a circular distribution in the plane x y.

In Fig. 3 we compare the energy barrier in the presence
and in the absence of the magnetic dipole field B. The bar-
rier inside the dipole is lower than in free space, assuming
a radial distribution, with ¢ = /2.

g(r, @) = (®)

E(r ¢)/mcc

r

Figure 3: Plot of energy barrier inside the dipole for fixed
values of angle ¢ = 0, n/8, n/4, 37/8, n/2 (colored lines
from the top to the bottom). For B = 0 we consider the
uniform (black line) and the gausslike distribution of space
charge (dashed line). In Eq. (8) we assume: X, = 2,x, =
07,0, = 02,X, = 05,0, =01,2, = 10%4, =
10,

ANALYTICAL DETERMINATION OF
LINEAR COEFFICIENT

The linear coefficient of the map (1) in a dipole magnet
has been computed [2] as
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where k is the total number of collisions with the pipe
wall made by electrons with energy E, during the inter-
val preceding the passage of the next bunch and ¢ =
VEo/Eg < 1. The adopted SEY model is given by the
following expressions [7]:

_ S(E/Emax)
OulE) = G e
— 2
5.y = R(SENEER )
VE+ VET By
6i01(E) = 015(E) +6,(E)

where 0,nax = 0rs(Emax). The other parameters are sum-
marized in Table 2.

Table 2: Values of SEY Parameters (Eq. 10)

Parameters Quantities Unit Value
Maximum SEY Omax / 1.5+ 1.7
Energy for max ¢ Eax eV 332

- s / 1.35

- Ey eV 150

- Ro / 0.7

The SEY also depends on the angle at which the elec-
trons strike the chamber wall. From fitting of the experi-
mental data one has ,,,4x(0) = Imax exp((1 — cos6)/2)
and E,;4x(0) = Epax(1 +0.7 % (1 = cos6)).

ANALYTICAL DETERMINATION OF
QUADRATIC COEFFICIENT

The coefficient b is found by imposing the condition of
saturation Ad,,+1 = A,; = 2*%" in the map (1), and neglect-
ing the cubic term. Using the more general expression (9)
we accordingly obtain

1-a(E,&Ep)

sat
Ae

b = b(E,&E) = (11)
The saturation density can be obtained by imposing that at
some points (7, $) of the trasverse plane (x,y) the electron
energy & satisfies the condition (7, ) > & [8].

We can rewrite equation (2) as:

E(r, ¢) = 2remec*(Aehe(r, §) = Aphp(r)),  (12)
to get:
B &(r,9) hp (r)
A S ) = e e ety
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At saturation the transverse motion of electrons is approxi-
mately vertical (x = const) inside the dipole. Therefore

F(x) = \/x2 +(1-x2)(—1)2
(14)
V1—x2(r—1))

X

H(x) = arctan(
where I' = (s5/R)) 280/mec? ~ 1.65 for LHC (see Ta-
ble 1), and we can compute the saturation density as
asat :f ds'g(x',y')ae(f(x'),é(x'), &o(l —x'z)) (15)

S!

2541 ~ /le(f(xp), é(xp), Eo (1 —xpz))

The coefficients a and b of the quadratic map are thus given
by

a(Eg, Eo (1 - x,%))

Q
Il

(16)
1 —a(Eq, & (1 —x,%))

ae(ﬂxp), F(xp). Eo (1 - x,,2>)

where E, is the energy gain of the accelerated electron after
the passage of the bunch. In Fig. 4 we show the comparison
between our model and the PyCloud simulations for the co-
efficients a and b in the presence of a magnetic dipole field.
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Figure 4: Comparison between mapping and simulations
results for the coefficient @ and b (16) by setting 0,4 =
1.5 (blue line and triangles), 1.6 (black line and squares), 1.7
(yellow line and circles). The values of density parameters
are X = 1,X, =04,0, =02,X. =0,X, =0.3.
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CONCLUSIONS

A simple analytic form for the quadratic map coeflicient
has been derived in the presence of a uniform magnetic field,
and found to be in good agreement with the results obtained
from PyCLOUD simulations. The map formalism can thus
be easily applied to determine safe regions in parameter
space where the electron clouds effects are reduced.

REFERENCES

[1] U.Iriso and S.Peggs, "Maps for Electron Clouds", Phys.Rev.
ST-ABS, 024403, 2005.

[2] T.Demma et al., "Maps for Electron Clouds: Application To
LHC", Phys.Rev.ST-AB10, 114401 (2007).

[3] F. Zimmermann, "A Simulation Study of Electron-Cloud In-
stability and Beam-Induced Multipacting in the LHC", CERN
LHC-Project-Rept. 95 (1997).

[4] Th. Demma et al., "Maps for Electron Cloud Density in
Large Hadron Collider Dipoles", Phys. Rev. ST-AB 10 (2007)
114401.

[5] Th. Demma et al., "E-Cloud Map Formalism: an Analytical
Expression for Quadratic Coefficient", Proc. IPAC’10, Kyoto,
Japan, May 23-28 2010.

[6] G.Iadarola, G. Rumolo, CERN Yellow Rep. 2013-002 189

[7] M. Furman, M. Pivi, "Probabilistic Model for the Simulation
of Secondary Electron Emission", Phys. Rev. ST-AB 5 (2002)
12404.

[8] S. Heifets, "Electron Cloud at High Beam Currents", SLAC-
PUB-9584 (2002).

05 Beam Dynamics and Electromagnetic Fields

DO5 Instabilities - Processes, Impedances, Countermeasures



