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Abstract: Machine learning has been applied to a wide variety of models, from classical statistical

mechanics to quantum strongly correlated systems, for classifying phase transitions. The recently

proposed quantum convolutional neural network (QCNN) provides a new framework for using

quantum circuits instead of classical neural networks as the backbone of classification methods.

We present the results from training the QCNN by the wavefunctions of the variational quantum

eigensolver for the one-dimensional transverse field Ising model (TFIM). We demonstrate that the

QCNN identifies wavefunctions corresponding to the paramagnetic and ferromagnetic phases of the

TFIM with reasonable accuracy. The QCNN can be trained to predict the corresponding ‘phase’ of

wavefunctions around the putative quantum critical point even though it is trained by wavefunctions

far away. The paper provides a basis for exploiting the QCNN to identify the quantum critical point.

Keywords: quantum neural network; convolutional neural network; quantum phase transition;

transverse field Ising model; quantum convolutional neural network; variational quantum

eigensolver; variational method; quantum computing; quantum machine learning

1. Introduction

Machine learning (ML) and quantum computing (QC) are among the most notable
topics that significantly impact various fields of physics. ML has become a powerful tool for
scientific and academic use in the age of big data. The progress of QC, in particular, the real-
ization of quantum computers with tens of qubits, may provide a new opportunity to study
challenging problems in strongly correlated many-body physics, among other applications.

The motivation for the present work was to take advantage of recent developments in
quantum algorithms to find the ground state of the many-body Hamiltonian and classify
quantum states [1–5]. Understanding quantum criticality is the driving force of many
exotic phenomena in condensed matter physics and material science [6,7]. In particular,
the theory to explain non-Fermi liquid is based on the existence of a quantum critical point
in high-temperature superconducting cuprates [6,8]. Unfortunately, numerical studies are
relatively limited, primarily due to the minus sign problem in the quantum Monte Carlo
algorithm. Thus, a new direction for studying quantum critical points may be essential for
analyzing strongly correlated systems.

ML has been applied to physics and other branches of science and engineering. Explo-
sive growth has been seen in diverse applications in the past decade or so. This growth
is principally driven by the availability of an extensive dataset and accessible libraries for
sophisticated deep learning methods based on neural networks [9,10]. Among the different
types of neural network, the convolution neural network (CNN) is widely used [11]. Unlike
conventional dense or fully connected neural networks, CNN emphasizes local correlation
information. It serves as a high-performance classifier for computer vision. Image identifi-
cation is a central topic for classifiers. Most images have a certain level of spatial correlation.
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CNN is designed to utilize the local spatial correlations in the input data. In practice, most
physical data also possesses a robust spatial correlation; therefore, in hindsight, it is not
surprising that CNN has seen many successful applications in physics.

In ML, CNN has been adopted mainly to identify phase transitions for classical
statistical models from snapshots of classical Monte Carlo or molecular dynamics con-
figurations and also configurations from quantum Monte Carlo of strongly correlated
systems [12–16]. Attempts have been made to use the quantum wavefunction from
exact diagonalization [17–29]. Recent studies further involve feeding spatially resolved
experimental data from scanning tunneling microscopy to identify different phases of
materials [30].

However, a quantum computer for fault-tolerant quantum computations, which can
supersede the best classical computer for many tasks, may not be available in the near
future. Noisy quantum computers with tens of qubits are immediately available. Noisy
intermediate-scale quantum (NISQ) computers are likely to be feasible shortly [31]. They
open up new opportunities to use quantum computation to solve problems strikingly
different from classical numerical simulations. Among the various methods feasible on
such NISQ computers, the variational quantum eigensolver [32] and the general idea of the
quantum approximation optimization algorithm represent promising proposals [33].

An enormous amount of effort for addressing problems in optimization, chemistry,
and strongly correlated systems has been invested in recent years [3,34]. Conceptually,
the approach is based on a quantum state with parameters. The quantum computer is used
to calculate the expectation value of a given quantum state to the quantity produced for
optimization [34]. This can be a cost function, an optimization problem, or the ground state
energy of a molecule. In general, calculating such an expectation value scales exponentially
to the problem size by classical methods. The quantum computer offers an opportunity
to speed up such calculations. A classical optimization algorithm then optimizes the
parameter. The idea of variational methods is not limited to ground state calculation; it is a
general concept used to mimic any operator in the variational sense. For example, quantum
dynamics based on solving the Schrödinger equation can be estimated by the variational
method [35,36].

Variational methods have been widely adopted in condensed matter physics. Specifi-
cally, the variational quantum Monte Carlo (VMC) is one of the effective numerical methods
for solving correlated systems [37,38,38–42]. Monte Carlo calculates the quantum expecta-
tion values for the ground state energy. The multivariate minimization method minimizes
the ground-state energy with respect to the variational parameters of the wavefunction. Its
main advantage is the absence of the minus sign problem, which hinders most quantum
Monte Carlo methods for fermion problems.

The VQE provides a new framework for sidestepping the computational intensive part
of the conventional VMC method in calculating quantum expectation values by quantum
computers [34]. The wavefunctions represented in quantum circuits also provide new
opportunities and challenges due to the different nature of the wavefunctions used in the
conventional VMC [43]. It is worth noting that most numerical methods for finding the
‘ground state’ of a many-body system are based on the non-unitary propagation of a trial
state; a typical example is the projection quantum Monte Carlo [44].

From the viewpoint of utilizing quantum computing approaches for strongly corre-
lated systems, the ground state energy calculation alone is often insufficient to reveal much
detail of the system. An exciting issue is the possibility of quantum phase transitions at zero
temperature by tuning the parameters in the Hamiltonian [7,45]. The ground-state energy of
relatively small system sites, which could be simulated in the near future, does not provide
a direct answer to determine a quantum phase transition. Constructing an order parameter
corresponding to the known broken symmetry in the thermodynamic limit allows direct
access to phase transitions. Given the small system size and the nature of a second-order
phase transition of quantum phase transitions, an order parameter alone is often a more
obscure way to tell whether the systems possess a phase transition. A true singularity at
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the phase transition is realized only in the thermodynamic limit. This challenge has led to
the development of the finite-size scaling method [46]. However, proper finite-size scaling
may not be feasible for quite small system sizes that can be simulated. Moreover, there
are systems where phase transitions do not appear in local-order parameters, or the order
parameter is simply unknown [47,48].

The notion of using a quantum circuit as a classifier or clustering algorithm began to
attract attention more than two decades ago [49–55]. The concept of the classical neural
network has been filtered into the idea of quantum classifiers in recent years [1,56–77].
The classical neural network consists of links and neuron units represented by activation
functions, which are organized in a layered structure. The key properties of CNN are
translationally invariant convolution and pooling layers, each characterized by a constant
number of parameters (independent of the system size), and sequential data size reduction
(i.e., a hierarchical structure) [78].

Using a neural network as a classifier decreases the number of neuron units in each layer
until one or a few units remain in the output layer. Thus, each layer can be regarded as a
pooling layer because the number of inputs to the neuron units at each layer is smaller than the
number of outputs. It is a method for compressing and reducing the degrees of freedom; thus,
the suggestion of a renormalization group can be pertinent in particular neural networks.

For most space-dependent data, there is a non-zero spatial correlation. Short-range
correlations appear in data from images of objects to physical systems, such as spin correla-
tion and spatial correlation of the positions of atoms or molecules in a solid phase and even
in a liquid phase. Therefore, it is not surprising that CNN has seen many applications in
physics in learning patterns from statistical models to strongly correlated systems.

CNN is realized by introducing a so-called convolutional layer within each layer
of activation functions of a dense neural network. The purpose is to extract ’hidden’
information through some combination of local data, which is missing in the standard
dense neural network. In practice, the combination is a weighted sum of local data.

A simple analogue can be drawn to the quantum circuit by replacing the links and
activation by the quantum links and the quantum gates, respectively [78]. The principal
structure of a QCNN is composed of two distinct types of layers. First, the pooling layer,
which reduces the degrees of freedom, can be replaced by multi-qubit gates. The sim-
plest possibility is the CNOT gate [78]. Second, the convolution layer in the CNN can
be replaced by multi-qubit quantum gates among nearby qubits. Thus, QCNN can be
understood naively as a quantum neural network classifier with convolutional layers in
which ‘convolution’ between nearby qubits can be processed.

In short, a quantum circuit model is introduced, which extends the key properties
of the classical CNN to the quantum domain. The circuit’s input is a quantum state.
A convolution layer applies a single quasilocal unitary in a translationally invariant way
for finite depth. A fraction of qubits are measured for pooling; their outcomes determine
unitary rotations, which are applied to nearby qubits [78]. Hence, the non-linearities in
QCNN arise from reducing the number of degrees of freedom. Convolution and pooling
layers are performed until the system size is sufficiently small. Then, a fully connected
layer is applied as a unitary function on the remaining qubits if needed. The outcome of the
circuit is finally obtained by measuring a fixed number of output qubits. Similarly, in the
classical CNN, circuit structures (i.e., hyperparameters of QCNN), such as the number of
convolution and pooling layers, are fixed.

Recent studies have shown that quantum-enhanced machine learning is a promising
approach for recognizing the phase of matter [79]. An interesting question is whether the
QCNN method can identify different phases of a quantum many-body system. This is the
first step towards applying it for detecting quantum phase transitions. Using ML to identify
phases by inputting the wavefunction is a challenge, as the Hilbert space of the system
increases exponentially with respect to the system size. A practical method to bypass such
a challenge is to consider the reduced density matrix or some other derived quantities
based on the wavefunction [18].



Quantum Rep. 2022, 4 577

An evident advantage of the QCNN approach is that the input is naturally quantum
mechanical; the wavefunction does not need to be written as a classical vector. The dimen-
sion grows exponentially to the system size to be fed to the ML method. The disadvantage,
or perhaps an unknown factor, is that the wavefunction is not calculated exactly, and that
there is no control parameter to systematically improve the wavefunction.

It has to be input as some form of a quantum circuit—the one which is most promising
in the NISQ is the VQE. The primary purpose of the present paper is to present a study
of a many-body quantum system solved by VQE and then to use the QCNN to identify
the VQE wavefunction corresponding to the different phases of the model. This provides a
possible framework for extracting quantum critical points.

The use of quantum algorithms for machine learning is a rapidly developing topic.
Some of the latest developments have included, but have not been limited to, edge detec-
tion [80], quantum particle swarm optimization [81], quantum circuit Born machine [82],
and image generation via generative network [83]. We refer readers interested in the
proposed applications to a recent review paper [84].

This paper is organized as follows: In Section 2, we briefly describe the transverse
field Ising model (TFIM). In Section 3, the data from the VQE of the TFIM is discussed,
and the structure of the QCNN is presented. The results from the variational autoencoder
are described in Section 4. We conclude the paper and discuss the implications and possible
future applications of the method developed in this study in Section 5.

2. Transverse Field Ising Model

2.1. Model

We consider the one-dimensional Ising model with a transverse field. The Hamiltonian
is given as

H = −J
N

∑
i=1

σ̂z
i σ̂z

i+1 − Γ
N

∑
i=1

σ̂x
i , (1)

where σ̂α(α = x, y, z) are the Pauli matrices that obey the commutation relation, [σ̂α
i , σ̂

β
j ] =

2ιδijǫαβγσ̂
γ
i , where ι is an imaginary number. J is the coupling between the nearest-neighbor

spins and is set to 1 to serve as the energy scale of the problem. We only consider a
ferromagnetic case with periodic boundary conditions.

σ̂z has the eigenvalues of ±1, and their corresponding eigenvectors are symbolically
denoted by

| ↑>=

(

1
0

)

(2)

and

| ↓>=

(

0
1

)

. (3)

The model is solvable in the sense that the eigenenergy can be obtained exactly via the
Jordan–Wigner transformation. The quantum critical point can also be determined exactly
by mapping the model to an anisotropic two-dimensional Ising model in a square lattice
and employing the self-duality property of the model. The quantum critical point of the
TFIM is at Γc = J [85]. Given the relative simplicity of the model and that the value of the
transverse field is exactly known at the quantum critical point, the TFIM provides a good
test bed for the capability of a quantum classifier for identifying the phase transition of a
quantum many-body system.

2.2. Wavefunction from VQE

As our goal is to demonstrate that the QCNN can identify the wavefunction in different
phases, the input should be represented in a quantum circuit. It is possible to cast the
wavefunction in terms of a classical vector into quantum data. This is precisely what needs
to be done using a quantum classifier for classical data, such as identifying classical images.
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We use the database provided by Tensorflow Quantum for TFIM [10,86]. There are,
in total, 81 datapoints for Γ = [0.2, 1.8] in the spacing of 0.02. The variational wavefunction
is presented in the Figure 1. Each qubit in the wavefunction represents a spin in the
TFIM. The first layer of the quantum circuit is composed of a Hadamard transform by
adding a Hadamard gate to each qubit. Then, N/2 layers of gates are enacted on the
quantum circuit. Each layer contains two sub-layers. The first sublayer comprises N ZZ
Ising coupling gates, which act on each pair of nearest-neighbor spins represented by the
corresponding qubits. The rotation angle is fixed for each ZZ Ising coupling gate within the
same sublayer. The second sublayer is composed of N Pauli X gates, each acting on a qubit
with a fixed rotation angle within the sublayer. Therefore, the quantum circuit contains
N/2 × (1 + 1) = N variational parameters.

Only 81 datapoints are available in the Tensorflow Quantum database, which is a
relatively small number for applying ML [86,87]. We generate additional datapoints for
finer grids of Γ points so that more data is available for the training and testing of the
QCNN. We did not optimize as in the standard VQE method to obtain the new data. We
take advantage of the fact that all the variational parameters vary smoothly as a function
of the transverse field Γ in the TFIM. The additional datapoints are simply generated by
linear interpolation of the variational parameters with respect to Γ.

Figure 1. Variational wavefunction for the TFIM in the Tensorflow Quantum database, for N = 4 [86].

The notation of the quantum gates is adopted from the Cirq [87]. H is the Hadamard gate, X is the

Pauli X gate with the rotation angle associated with the number, and ZZ is the Ising coupling gate

with the rotation angle given by the associated number. An Ising coupling rotation is given explicitly

as ZZ∧θ = exp(−i θ
2 Z ⊗ Z) for the rotation along the z direction, and similarly for the rotations along

the x and y directions. x0, x1, x2, x3 are the four parameters for the wavefunction.

We note that the choice of a variational wavefunction is not unique. Choosing an
optimized variational wavefunction has been an important, but largely unsolved, problem,
even in the context of the classical variational method as routinely performed by VMC [38].
We do not attempt to find the ‘best’ possible wavefunction in the present study. The ‘best’
wavefunction is model- and even parameter-dependent. We fix the functional form of the
wavefunction for the entire range of transverse field strength, which likely is not the ‘best’
optimized wavefunction.

3. QCNN

By generating a larger set of datapoints, we can train a QCNN. The input for our
QCNN model is a quantum circuit. This quantum circuit represents our wavefunction from
the VQE solver for the TFIM.

The QCNN is another quantum circuit constructed with an alternating series of
convolutional and pooling layers until the number of pooling layers dwindles to a single
qubit. The idea is that the quantum circuit can acquire important information from the
input quantum data. An example of a four qubit QCNN is shown in the Figure 2.

An N qubit input requires N/2 convolutional units and N/2 pooling units to reduce
to N/2 output qubits. Therefore, for the input of N qubits, assuming that N is a power

of two, the QCNN circuit contains ∑
logN/log2
i=1 2i−1 convolutional units and pooling units.

The N qubits reduced to a single qubit are then measured as the output.
For the detection of the quantum critical point of the TFIM, the goal is to prepend

our datapoints to a QCNN model and train it to identify the ‘phase’ of each wavefunction
correctly. This is performed in a supervised environment, as we already have the correct



Quantum Rep. 2022, 4 579

phase identification for each datapoint in the database. We have either a ferromagnetic or
paramagnetic phase for a given transverse field. In the Γ = [0.2, 1.8] range, the system is in
a ferromagnetic phase below 1 and a paramagnetic phase above 1.

The pooling unit we used for the present study, which pools two qubits into one qubit,
is shown in the Figure 3. It consists of local rotation gates on each qubit, a controlled X-gate,
and the inverse rotation on the controlled bit. Thus, in total, there are six parameters in
each pooling unit that pool two qubits into one qubit.

Conv.

Conv.

Conv. Pool.

Pool.

(0,0)

(0,1)

(0,2)

(0,3)

Pool.

Figure 2. An example of the entire QCNN circuit for 4 qubits, two convolutional units act on the

pairs of nearest neighbor qubits. A pooling unit which reduces the 4 input qubits into 2 output qubits.

Another layer of convolutional units on the nearest neighbor pair of qubits, and the pair of qubits is

then fed into another pooling unit with one output qubit. The final qubit is measured. Note that the

parameters in one convolutional unit can be different from the other, as may the pooling units.

Figure 3. Pooling between two qubits. A pooling layer from N qubits to N/2 qubit is composed of

N/2 of pooling units. The circuit contains single qubit rotation gates and a CNOT gate. x0, x1, . . . , x5

are the parameters.

The convolutional layer is composed of multiple two-qubit convolution units. A con-
volution unit for two qubits is shown in Figure 4. It consists of local rotation gates on each
qubit sandwiched between the Ising coupling gates for the two qubits. Therefore, there are
15 parameters for each convolutional unit between two qubits.

Figure 4. Convolution between two qubits. A convolutional layer of N qubits is composed of N/2

convolutional units acting on the qubits which represent pairs of nearest neighbor spins. The notation

of the quantum gates is adopted from the Cirq. The circuit contains single spin rotation gates and

Ising coupling gates. XX, YY, and ZZ are the Ising coupling gate with the rotation angle given by the

associated number along the x, y, and z directions, respectively. x0, x1, . . . , x14 are the parameters.

In addition to single-spin rotations, the convolution between two qubits is performed
via a series of rotation gates on the coupling in the x, y, and z directions. The pooling
between two qubits is via a controlled X-gate. A natural question is how to guarantee
that the designated convolutional units and pooling units provide the ‘best’ optimized
neural-network-like structure to produce the ‘best’ performance.

As for the classical convolutional neural network, the ‘best’ network architecture is
mainly obtained through trial and error. We do not attempt to find the ‘best’ architecture
available. We set a simple enough architecture that is easily optimized but sufficient to
provide reasonably good predictions.

The code for the QCNN is written in Cirq and uses the Tensorflow Quantum package
for training [86,87].
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4. Results

We trained the QCNN using two different sets of training data. For the first, the train-
ing of the QCNN was carried out randomly by picking 80% of the wavefunctions with
labels to designate their corresponding phases as the training data set. For the second, only
the datapoints related to the small and large transverse fields were used for training. We
defined the label for the ferromagnetic phase as −1 and the paramagnetic phase as +1.
For benchmarking the accuracy of predictions, we cast the output to −1 if the measure-
ment of the output from the QCNN was smaller than 0, and similarly, cast it to +1 if the
measurement was larger than 0.

4.1. Training QCNN with Data for Randomly Picked Data for 0.2 ≤ Γ ≤ 1.8

The accuracy of the trained QCNN was benchmarked against the remaining 20% of
the available samples. We show the loss and accuracy during each iteration of the training
processes for three system sizes N = 4, 8, and 12.

By training our QCNN with randomly chosen wavefunctions, we allowed our network
to study samples across the entire dataset. The QCNN becomes familiar with values of Γ

close and far from the quantum critical point. In doing so, we expected the QCNN to be
familiar with the wavefunctions, giving us valid results for the trained data predictions.
This is exactly what we observed when using a system size of N = 4 (see Figure 5).
The accuracy for both the training and testing data was consistently high, and we observed
minimal fluctuations in accuracy from start to finish. This method of randomized data
allowed the QCNN to adjust to the variations in wavefunctions during training and then to
apply this to our testing data. We observed very similar results for the accuracy with system
sizes N = 8 and 12 (see Figures 6 and 7). Increasing the system size had no significant
impact on the results for accuracy. The ability to predict the ‘phase’ of wavefunctions
proved to be a task that our QCNN could execute.

Figure 5. Accuracy and loss for the training and validation datasets of the QCNN for N = 4 as a

function of the number of epochs.
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Figure 6. Accuracy and loss for the training and validation datasets of the QCNN for N = 8 as a

function of the number of epochs.

Figure 7. Accuracy and loss for the training and validation datasets of the QCNN for N = 12 as a

function of the number of epochs.

We observed what happened as the QCNN underwent the training phase, studying
the results of the network’s loss. The network became fully trained once the loss converged.
Once the loss stopped decreasing, the QCNN was fully trained and at its maximum
potential. The loss of system size N = 4 decreased at a high rate during the initial training
iterations and then began to flatten as the QCNN reached its full potential. We noticed
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a pattern when observing larger system sizes. As more input variables were included,
the initial and final loss increased. Regardless of the increased loss value, we were still
able to observe how the system became trained at each iteration. All the system sizes
tested allowed visualization of the QCNN’s training phase and showed that the network
could improve its ability to provide correct predictions for the ‘phase’ corresponding to
the wavefunctions.

4.2. Training with Data for 0.5 < Γ and Γ > 1.5

We tested QCNN with the chosen training and testing data in light of the above results.
For training, we used wavefunctions with values of Γ below 0.5 and above 1.5. The testing
data were in the range of [0.5, 1.5]. This allowed observation of how the QCNN behaved
when classifying data near the known quantum critical point (Γc = 1) after being trained
with data far from the quantum critical point. One hundred percent accuracy during the
training phase was observed for each system size. This was perhaps not surprising, given
that the two datasets for very large and very small Γ were far apart.

In Figures 8–10, we plot the results for N = 4, 8, and 12, respectively. The accu-
racy from the testing data was consistently lower than that from a randomized dataset,
but showed a sharp increase during its initial iterations. High accuracy in training indi-
cates that the QCNN can classify datapoints far from the quantum critical point. As we
approached the quantum critical point, the network had more difficulty with predictions.
The inability to familiarize itself with datapoints in this range impaired the accuracy of
the testing data. The sharp increase shows that, after encountering a few datapoints near
quantum critical, the network can learn to improve its capability in our range of [0.5, 1.5].
The loss showed small changes during the training phase compared to using randomized
data. Although we still observed a decrease, this decrease was minimal. The QCNN
had little room for improvement when the testing data were isolated from the quantum
critical point.

Figure 8. Accuracy and loss for the training and validation datasets of the QCNN for N = 4 with

training data Γ < 0.5 and Γ > 1.5 as a function of the number of epochs.

The result of using only large and small values of Γ for training the QCNN is significant
with respect to the prospect of using QCNN to detect the quantum critical point. A relatively
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well-studied scheme for using supervised classical ML to detect phase transitions is to
train a supervised classical ML, such as CNN, for the control parameters of a system.
For example, the temperature in the thermal transition and the external parameter in the
quantum phase transition are away from the putative phase transition or critical point [21].
The results demonstrate that the QCNN can be trained using data away from the putative
quantum critical point and be used to predict the label of wavefunctions around the critical
point with good accuracy.

Figure 9. Accuracy and loss for the training and validation datasets of the QCNN for N = 8 with

training data Γ < 0.5 and Γ > 1.5 as a function of the number of epochs.

Figure 10. Accuracy and loss for the training and validation datasets of the QCNN for N = 12 with

training data Γ < 0.5 and Γ > 1.5 as a function of the number of epochs.
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4.3. Predicted Labels as a Function of Γ

To locate the quantum critical point, we can plot the predicted values from our QCNN
to find a pattern in the outputs. In this calculation, we sought to find the value of Γ, where
the QCNN predicted labels switch between the two phases, ferromagnetic and paramag-
netic. This marks a good approximation to the quantum critical point. The quantum phase
transition occurs at Γ = 1 for the TFIM, and we sought to observe this with the results
given by the QCNN. A plot describing how the predicted labels change as Γ changes is
needed to find if the network is capable of this. If the phase transition occurs at or near
Γ = 1, then we can infer the validity of QCNN.

Observing these transitions for systems N = 4, 8, 12 in Figures 11–13, each trial holds
a transition near Γ = 1. This deduces the value of Γ that holds a quantum critical point.
The QCNN predicts a ferromagnetic phase for low values of Γ and a paramagnetic phase
for high values of Γ. The network output for ferromagnetic prediction is for Γ < 1. As Γ

approaches 1, we expect to find a quantum critical point. This can be identified by a sudden
jump to a different output value, which signifies a paramagnetic phase. In the Figures 11–13,
this jump is seen near Γ = 1. We observe a series of ferromagnetic predictions and then
paramagnetic predictions. Our approximate quantum critical point is the value of Γ where
the predicted phase change occurs. As our predicted quantum critical point consistently
lies near the true value, we conclude that the network can be used to identify quantum
critical points. It might be expected that the results for smaller system sizes would be
more accurate and closer to the true critical point (Γc = 1). However, the wavefunctions
for smaller system sizes may contain stronger fluctuations and, thus, adversely affect
the accuracy of our approach.

Thus, the technology developed for classical supervised ML can be adapted for de-
tecting quantum critical points [21]. The significant modification is to replace the classical
supervised ML, such as the classical CNN for the classical data, with the QCNN for the
quantum wavefunctions.

Figure 11. Predicted test labels vs Γ for N = 4. The predicted labels jump at Γ = 0.89.

Figure 12. Predicted test labels vs Γ for N = 8. The predicted labels jump at Γ = 1.02.
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Figure 13. Predicted test labels vs Γ for N = 12. The predicted labels jump at Γ = 1.05.

5. Discussion and Conclusions

We conclude from the results that the QCNN model can detect whether a TFIM
wavefunction is ferromagnetic or paramagnetic. A QCNN model is trained to detect the
represented phase of the wavefunction by implementing a dataset of varying external
parameters. Once the training phase is completed, we will have a fully trained network
that provides an efficient method for phase detection for the TFIM.

For multiple reasons, studying quantum phase transitions has been one of the major
topics in condensed-matter physics. First, devising an effective theory for describing
the quantum critical point is often complex. Various approaches have been proposed to
understand the quantum critical point from a straightforward renormalization group from
the upper critical dimension to more exotic gauge gravity duality approaches [7,45]. Second,
the quantum critical point is responsible for many exotic behaviors in strongly correlated
systems, including high-temperature superconductivity in cuprates [8], and non-Fermi
liquids [6]. The study of the properties, or even the detection, of a quantum critical point,
has been a significant topic in computational condensed matter physics for models from
two to infinite dimensions [8,88–90].

The encouraging results of using QCNN to identify the ferromagnetic and the param-
agnetic phase of the TFIM from the wavefunction obtained by VQE offers a new direction
for the study of quantum critical points. This presents an opportunity that is different from
that provided by other conventional computational approaches, such as quantum Monte
Carlo and other diagonalization-based methods.

Whether such an approach can be applied to more exciting and complicated models,
such as the Hubbard model beyond one dimension, requires to be addressed in future
studies. There are two key questions that need to be answered. First, can the VQE provide
a sufficiently accurate wavefunction for strongly correlated problems [91]? Second, can the
wavefunction contain sufficient features that some form of quantum classifier can identify?
These questions are more acute due to the limited system size of the models, which can
be simulated on the NISQ machines. The ground-state energy alone or even the order
parameters may not be beneficial for identifying phase transitions for small system sizes.

The nature of the Hamiltonian in chemistry problems is somewhat different from
that of strongly correlated systems. The Hamiltonian for molecules is often diagonally
dominated because the off-diagonal matrix elements are smaller than the diagonal ones.
On the other hand, models for strongly correlated systems often have comparable off-
diagonal and diagonal matrix elements. This is why some highly successful methods in
computational chemistry, such as conventional coupled cluster theory, have seen limited
success for strongly correlated systems. Therefore, whether the current approach can be
transplanted to strongly correlated systems, which are relevant to a plethora of exotic
properties of materials, remains to be examined.
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