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Abstract

One of the main challenges in modern mathematical physics is to develop a uni-
fied framework that reconciles General Relativity and Quantum Field Theory. A
promising approach is the holographic principle, which posits a duality between a
d-dimensional gravity theory and a (d — 1)-dimensional quantum field theory living
on the boundary of the d-dimensional spacetime. Building on black hole thermody-
namics and the seminal AdS/CFT correspondence proposed by Maldacena, various
holographic dualities have been explored. This thesis focuses on a specific holo-
graphic correspondence: Warped Anti-de Sitter in three dimensions (WAdS3) and
Warped Conformal Field Theory in two dimensions (WCEFT}).

WAdS; spacetimes emerge in diverse contexts such as extremal black holes, string
theory, and cold atoms. These spacetimes are solutions to extended theories of
gravity, like topologically massive gravity, rather than to standard Einstein grav-
ity. The dual field theories, WCFTs, are characterized by symmetries that form a
Virasoro-Kac-Moody algebra, distinct from the symmetries of traditional conformal
field theories.

In this thesis, we begin by exploring quantum energy conditions for WCFTs and
the various holographic descriptions of entanglement entropy in these theories. Next,
we determine the Hamiltonian reduction of Lower Spin Gravity and its connection to
the geometric action on the coadjoint orbits of the Warped Virasoro group. Finally,
we investigate the relationship between the quasinormal modes of warped black holes
and their associated photon rings.
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Introduction

Motivation

One of the main goals of modern mathematical physics is to produce a theory sat-
isfying both General Relativity (GR) and Quantum Field Theory (QFT). Over the
years, several connections between these two theories were made. The one of our
interest is the holographic principle, proposed first by 't Hooft [!] and Susskind [7]
in 1993. It states that a d dimensional gravity theory is dual to a d — 1 QFT living
on the boundary of the d dimensional spacetime. The name is inspired by holograms
in optics where information contained in a two dimensional object is sufficient to
reproduce an image in three dimensions. The holographic correspondence originates
from black hole thermodynamics. In 1973, Bardeen, Carter and Hawking proposed
that black holes are thermodynamic objects and satisfy an analogue of the four laws
of thermodynamics [0]. In particular, a temperature and an entropy can be associ-
ated with them. This entropy was first suggested by Bekenstein [7] and confirmed
by Hawking [%]. The Bekenstein-Hawking entropy of a black hole is shown to be
proportional to the area A of its event horizon
]{?BCBA

SBH: 46?771’ (1>

where kg is the Boltzmann constant, ¢ the speed of light, A the Planck constant
divided by 27 and G the Newton constant. In natural units, the entropy formula
takes a more compact form S = A/4G. It is remarkable that this formula works for
any black hole in any dimensions. Despite being extensive, the black hole entropy
depends on the area of the black hole instead of its volume. This observation leads
to the proposal of a holographic description of black holes.

In 1997, Maldacena proposed the first holographic model where the N = 4 super
Yang-Mills theory in 3+1 dimensions is dual to type IIb superstrings in AdSs x S® [J].
This model lays the foundations for an important correspondence, the AdS/CFT
correspondence, which even applies beyond the string theory framework. Indeed,
the seminal work of Brown and Henneaux in 1986 showed that the asymptotic
symmetries of AdS3 — in essence, the symmetries of the classical phase space — are
identical to those of a two-dimensional conformal field theory, a CFTy [10].

This novel perspective on gravity has led to the idea of many holographic corre-
spondences, such as flat dualities [! 1] or Kerr/CFT [12]. This thesis will focus on a



particular correspondence: (W)AdS;/WCFT,.

Warped AdS; (WAdS;) are spacetimes emerging in various contexts such as
the near-horizon region of extremal black holes [12—17], perfect fluid solutions in
2+1 dimensions [10], Godel spacetimes [I17, [ &], string theory [19,20], cold atoms
[21=21] and others [25,20]. WAdS; appears not to be a solution to usual Einstein
gravity but rather vacuum solutions of extended versions, such as three-dimensional
topologically massive gravity (TMG) [27, 2] where they are expected to be stable,
contrary to vacuum AdS in the framework of this theory [29]. In the same way that
black hole solutions can be obtained from discrete quotients of AdSs [3(—32], warped
black holes can be constructed from quotients of WAdS; [77] and are also solutions
to TMG [10,31,25].

The asymptotic structure of WAdAS spacetimes has been studied and their asymp-
totic symmetry algebra was shown to consist of a Virasoro-Ka¢-Moody algebra
[30—11]. This is the algebra of a specific class of field theories, known as warped
conformal field theory (WCFT) [12].

A WCEFT is a two-dimensional quantum field theory invariant under “warped
conformal transformations”. Parameterizing the theory with coordinates t.., these
are given by

tJr — f(tJr) ) o=t + g(tJr) ) (2)
where f(t,) and ¢(t,) are two arbitrary functions. The periodicity of ¢+ depends
on the ensemble' and the specific holographic model (see [13]). The symmetries

(2) can be shown to arise assuming translation invariance and chiral scaling [!1],
analogously to the emergence of local conformal symmetry in unitary Poincaré-
invariant two-dimensional QFTs with a global scaling symmetry and a discrete
non-negative spectrum of scaling dimensions [1]. Reparametrizations of ¢, and
coordinate-dependent translations of ¢_ are generated by a stress tensor 7'(t) and
a current density P(t) respectively, whose modes span a Virasoro-Ka¢-Moody al-
gebra with a global sl(2,R) @ u(1) subalgebra.

The holographic duality relating WAdS3 spaces and WCFTs has passed several
tests, including the matching of Bekenstein-Hawking entropy [!”], of greybody fac-
tors from correlation functions [10], and of one-loop determinants in the bulk from
characters [, 17]. The computation of WCFT entanglement entropy and its rela-
tion to a holographic equivalent were studied in [19-53]. Unlike AdS/CFT where
the usual Ryu-Takayanagi prescription [51] is sufficient to reproduce the CFT en-
tanglement entropy, the latter prescription needs to be enhanced for WCFTs and
different holographic descriptions were proposed over the years [15,50,51].

Explicit examples of WCFTs are given in [55,50] for bosonic WCFTs, in [77, 5]
for fermionic ones, in [9,00] with a link to Sachdev-Ye-Kitaev (SYK) models or

A WCFT can be described in two different ensembles, called the canonical ensemble and the
quadratic ensemble. Proper definitions will be given in Section 2.1. The nomenclature ensemble
has nothing to do with ensembles in statistical physics.
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in [01] for supersymmetric WCFT models. In this thesis, we will primarily focus on
two holographic scenarios featuring WCFTs.

In [57], a new set of boundary conditions, different from the well-known Brown-
Henneaux boundary conditions [!0], were proposed for AdS; leading to a Virasoro-
Kac¢-Moody asymptotic charge algebra. This holographic dual has the advantage
to be part of Einstein gravity and contains empty AdS3; and BTZ black holes [30)].
Also notice that in [02], the most general set of boundary conditions for AdS; was
introduced, showing that a variety of symmetry algebras differing from the con-
formal one could appear just in pure AdSs gravity by an appropriate choice of
boundary conditions. Those new boundary conditions were able to encompass all
previous boundary conditions [0, 63—(5], including the Compeére-Song-Strominger
(CSS) boundary conditions [57].

The second holographic model is the so-called Lower Spin Gravity, a SL(2,R) x
U(1) Chern-Simons action. It was constructed in [57] by coupling WCFTs to a
background geometry. The latter turns out not to be Riemannian but a Newton-
Cartan structure in addition to a scaling symmetry. The metric interpretation of the
Chern-Simons connections was able to match the different WAdS3 spacetimes. The
authors of [00] provided asymptotic symmetries for the model at finite temperature
and showed that they reproduce the algebra of a WCFT. They also demonstrated
that WAdAS black holes are contained within this model.

Structure of the thesis

The thesis will be structured as follows. The first chapter will properly introduce
the different WAdS3 spacetimes and the black holes that can be constructed using
quotients. We will see the two different descriptions of a warped black hole, in
the canonical ensemble and the quadratic ensemble. For each ensemble, we will
present the asymptotic boundary conditions and their related asymptotic symmetry
charge algebra. Additionally, we will discuss the corresponding Bekenstein-Hawking
entropy and the coordinate transformations allowing one to transition from one
ensemble to the other.

The second chapter will provide the outlines of WCFTs. We will start from
(2) and determine the symmetry algebra that matches the asymptotic charge al-
gebra of the warped black hole in the canonical ensemble. Even if the theory is
not Lorentz invariant, the presence of modular covariance of the partition function,
up to an anomaly, will enable us to derive the asymptotic density of states and
a warped Cardy formula. This entropy agrees with the black hole entropy of the
warped black hole in the canonical ensemble. A non-local charge redefinition can
transform the symmetry algebra of the canonical ensemble to the symmetry algebra
of the quadratic ensemble, matching the asymptotic charge algebra of the warped
black hole in the corresponding ensemble. This other ensemble has the particularity
to have a charge dependant Kac-Moody level and to be more suitable for deriv-



ing thermodynamic quantities since, as for AdS/CFT, a relation between Rindler
and inertial observers can be exhibited [!2,07]. Once again, the derived entropy
will match the Bekenstein-Hawking entropy of the warped black hole in the corre-
sponding ensemble. We will also compute the warped Virasoro characters [1}], a
generating function that counts the (weighted)” number of states at each level in a
given representation of the algebra. In Chapter 4, we will find this particularly valu-
able when we evaluate the partition function of a specific theory dual to a WCFT,
as the partition function can be expressed as a sum of characters. Following this,
we will review the construction of the Lower Spin Gravity as described in [77, (0],
which will also be use in Chapter 4.

The third chapter will present our first project, which consists in deriving Quan-
tum Energy Conditions (QEC) for WCFTs. The stress-tensor 7),, of a Quantum
Field Theory (QFT) has an important impact on the geometry through Einstein’s
equations. Proofs of several gravity theorems, such as the black hole area law [07]
and singularity theorems [09] depend on the positivity of an energy density called
Null Energy Condition (NEC). However some quantum phenomena like the Casimir
effect or Hawking radiation violate the NEC. The Quantum Null Energy Condition
(QNEC) [70] is a local extension of NEC conjectured to account for quantum ef-
fects. The latter statement has been proven for CFTs [71] and our goal is to extend
this to a simple holographic model involving a WCFT, AdS3; with CSS boundary
conditions [5]. We succeeded to present saturated QECs for WCFTS, and we will
explain why we did not manage to prove unsaturated conditions.

The fourth chapter is dedicated to our second project. In the context of asymp-
totically AdS spacetimes [72], the Hamiltonian reduction of the SL(2,R) x SL(2,R)
Chern-Simons action on the boundaries of the manifold, carrying potential holonomies,
was matched to the geometric action, an action constructed on the coadjoint orbits
of the Virasoro group. The origin of this connection arises from the transformation
laws of the expectation value of the dual stress-tensor under a conformal transfor-
mation. The latter transforms in the coadjoint representation of the Virasoro group.
In [73], a similar correspondence was observed for asymptotically flat spacetimes. In
this chapter, we successfully match the geometric action that can be constructed on
coadjoint orbits of the Warped Virasoro group with the reduced Lower Spin Gravity
action on the boundary of our manifold. Additionally, we establish a correspon-
dence between the orbit representatives and the holonomies of our connections. As
a preliminary step for this chapter, we begin by reviewing a similar problem in the
context of AdS3;/CFTy to familiarize ourselves with different methods and expected
results [72, 71]. We review the computation of the one-loop partition function [77]
and compare it with the Virasoro characters [70]. We finally apply the same strat-
egy to Lower Spin gravity, showing that the one-loop partition function allows to
recover one of the two Warped Virasoro characters from [!3], reviewed in Chapter
2. We conclude by speculating on how the second character could be obtained.

The fifth chapter will discuss quasinormal modes (QNMs) in a WAdS; black

2Due to the non-unitarity of the theory and the presence of states with negative norm.
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hole background and their connection through the eikonal limit to the photon ring
of the spacetime. The photon ring consists in the unstable bounded photon orbits
of a black hole, and QNMs are considered as its vibration modes. They appeared
in various contexts over the years, such as black hole perturbations [77], scattering
of gravitational waves [75], or the gravitational collapse of a star into a black hole
[79=21]. The computation of QNMs in WAdS; black hole spacetime was previously
conducted in [%2]. We have improved this computation by connecting the modes
to the photon ring of the black hole. QNMs are solutions to the wave equation in
a specified black hole background with dissipative boundary conditions and can be
thought of, in the eikonal limit, as scalar perturbations of the black hole leaking
out of its photon ring. In asymptotically flat spacetimes, the different boundary
conditions at spatial infinity (finite flux, ougoing waves and Dirichlet conditions)
are equivalent [2], but we will demonstrate that the situation is different in WAdS;
black hole spacetimes. To select the most natural boundary conditions, we require
to recover the modes originating from the outer photon ring. For this purpose, we
conduct the same analysis near the outer photon ring using three different methods:
the geometric optics approximation, the Penrose limit, and the near-ring region limit
[#1-9%]. The boundary conditions that we impose at infinity differ from [#7], leading
to different results. Additionally, we compute the observable conformal symmetry
of the photon ring as viewed by a distant observer, similar to the analysis done for
Schwarzschild and Kerr black holes [#7], and the self-dual warped black hole [94].
Finally, we take the near-horizon limit and the BTZ limit of our quasinormal modes
to compare them with the modes obtained in the self-dual WAdS case [95] and the
BTZ black hole respectively [09, 100].

The last chapter is devoted to summarising our results and to discussing the
perspectives.






Chapter 1

Warped AdS Spacetime

As the name suggests, Warped Anti-de Sitter spacetimes (WAdS) are deformations
of AdS spacetimes. A notable distinction is that WAdS spacetimes do not solve
Einstein’s equations but instead arise as solutions in other theories, such as the
three-dimensional Topologically Massive Gravity (TMG) with a negative cosmolog-
ical constant [27,2%]. This theory consists of the Einstein-Hilbert action plus a
Chern-Simons term where the connection is the Levi-Civita connection:

/=M (08,0,1 +§FAU T,

(1.1)
where ¢ is the covariant Levi-Civita symbol \/—ge®? = 1, A = —1/¢? the cos-
mological constant and p the Chern-Simons coupling constant. The latter can be
interpreted as the graviton mass because, as the name TMG indicates, the graviton
is allowed to have a mass in this theory. The equations of motion of TMG are

3
STMG—16 G/dx VvV—g(R—2A)+

1 1
RMV — iRg/“, + Agwj + EOMV = O, (12)

where C),,, is the Cotton tensor

1
Cow =€, Va(Ra, — TR0 (1.3)

Every solution of Einstein’s equations is also a solution of TMG’s equations of
motion. As a consequence, we can also work with AdS within the framework of this
theory. However, in this scenario, the graviton carries negative energy, leading to
the anticipation that AdS vacua are typically unstable [33]. Warped spacetimes can
be constructed from AdS by deforming it in the following way:

dsiyaqs = dsias — H 6 @&, (1.4)

where £ is an AdS Killing vector of unit norm. Depending on the nature of the
Killing vector, we can have a variety of WAdS spacetimes that we will describe



shortly: timelike, spacelike, and null. AdS spacetimes possess an SL(2,R)x SL(2,R)
global symmetry. By choosing a Killing vector belonging to one of these SL(2,R)

groups, this symmetry is broken to a U(1), resulting in isometry group of WAdS
being SL(2,R) x U(1).

Timelike WAdS

The timelike warped AdS spacetime, sometimes also called elliptic warped AdS
because of the choice an elliptic element £ in SL(2,R), is given by

412

v2 43

ds? =

713 ((zosh2 odu? + do? —
v

(dT + sinh o du)2> . (1.5)

with {u, 7,0} € |—00,4+00[. We have introduced a new parameter v that is related
to the Chern-Simons coupling constant p as

v="—. (1.6)

When this parameter is set to one, we recover AdS3 written as a kind of Hopf fibra-
tion over Euclidean AdSs, where the real line plays the role of the fiber. Depending
on the range of v, the timelike warped AdS spacetimes split into two categories. If
v? > 1, the coefficient 402 /(v* + 3) is greater than one, and the spacetime is called
stretched. It was shown in I3, 17] that these spacetimes carry closed timelike curves
and are identified with the Godel spacetime. If v? < 1, the spacetime is called
squashed and can be rewritten in global coordinates.

ds? dr?

= —dt’
I A3+

4 2urdtd + g (3(1—12)r +4)d6>.  (L7)

where § € [0, 27[ is an angle and the origin lays at » = 0. The stretched case could
also be written in global coordinates but would have global singularities [7].

Spacelike WAdS

For reasons that will become apparent later on, the spacelike warped solution is the
one that interests us the most. It is given by the metric

2

b
v2 43

4y

ds? =

<— cosh? o d7? + do? + 3 (du + sinh o d7)2> : (1.8)

2

and can also be called hyperbolic WAdS. Again, if #?> > 1, the metric is called
stretched, and if 2 < 1, it is squashed. When v = 1, we recover AdS3 written once
more as a Hopf fibration but this time over Lorentzian AdSs,.



Chapter 1. Warped AdS Spacetime

Null WAdAS

The null warped AdS spacetimes are solutions of TMG only for 2 = 1. They can be
obtained as a kind of Penrose limit with ¥ — 1 of the timelike or spacelike warped
solution with v # 1 and are given by the metrics [}7]

ds?  du?+datdz—  dz—?
2 u2 = ut

(1.9)

Usual AdS is recovered by dropping the last term.

1.1 Black Holes as quotient space

Aside from the different warped vacua, regular black hole solutions were found for
v > 1[106,31,35] and were shown in [33] to be discrete quotients by an element of
SL(2,R) x U(1) of WAdS3. The same approach arises in AdS3, where BTZ black
holes are quotients of AdS by a discrete subgroup of the isometry group SL(2,R) x
SL(2,R) [20-32]. In this section, we review the quotients done for AdS. We can
identify points P in AdS under the action of a Killing vector &

P~ 2P (1.10)

where k is a positive integer. The vector ¢ defines a one-parameter subgroup of
the isometries of AdS. We then identify points belonging in the same orbits under
the action of this subgroup to form the so-called quotient space. This identification
preserves the local properties of the original spacetime. Therefore, the quotient
space is locally AdS. In order to avoid closed timelike curves, the Killing vector
must be spacelike, which is a necessary condition but not sufficient in general [71].
For AdS, this construction yields the BTZ black hole [3()]

2 272 2 2,2\ —1 2
A5ty = — (22 ~ MG+ JAﬁ > dt2+<22 _ MG+ J4g ) dr? 472 (de _ ﬁdt) .
(1.11)
The spacetime possesses two Killing horizons, that we will refer as the inner and
outer horizons, at radii ry. The mass and angular momentum appearing in (1.11)

can be expressed in terms of these radii as

r2 +r? 2
M == - =
G2  J G/

rar_ . (1.12)

We can perform a similar identification (1.10) starting from a WAdS spacetime.
Among the various types of WAdS spacetimes, only the spacelike WAdS spacetime
with v > 1 leads to a quotient space that is not pathological. Throughout this
thesis, this quotient space will be referred to as a warped black hole. This black
hole has two different descriptions that will be reviewed in the following sections.



1.2. Warped Black Holes in the canonical ensemble

1.2 Warped Black Holes in the canonical ensem-
ble

The first description will be denoted as Warped black hole in the canonical ensemble.

The metric in this ensemble is given by
€2

AR5 ()2 Neg(r)

ds?, = —Neg(r)*dt? +

CE

5% 4 Reg(r)? (40 — NGy (r)dt)” (113

where the functions appearing in the above metric are defined by

Rwﬁfzz(%ﬁ—lﬁ+@ﬂ+$04+ﬂJ—4mMyL@l+$>, (1.14)

Now(r)? = 431()< ) —r)(r—r), (1.15)

1 1 .
NO (r) = Ron()? (W - 5\/r+r,(y + 3)) : (1.16)

and the radii 4 here denote the locations of the inner and outer Killing horizons
of the black holes. They should not be confused with those appearing in the BTZ
black holes and other metrics. If it is not specified, it will typically be clear which
metric we are referring to. When v = 1, we recover the BTZ black hole in a rotating
frame.

When r is taken very large in (1.13), the metric becomes

dr? ‘-1
ds? = dt2+(y2+r3)r2 — 2urdtdl + M

r?do*. (1.17)
This metric covers a patch of (1.8) when v? > 1, but with the coordinate 6 that
is no longer an angle. In this sense, it is convenient to say that the warped black
hole (1.13) is asymptotically spacelike warped AdS, even though strictly speaking,
it involves an unwrapping of a coordinate.

In [39,11], a consistent set of boundary conditions was proposed, encompassing
the warped black hole (1.13)":

gu=1+0(r1) g =0(r™2) g =—vr+O0(1")

Vz_ 1.18
Grr = (,/2+13)r2 + O(T_3> gro = O(T_1> Goo = 3 1 1)7,2 + O(T) ( )

Those boundary conditions are preserved under an asymptotic symmetry algebra
generated by asymptotic Killing vectors

l, =™ (0 — inrod,) , Py = ™9, . (1.19)

Tt is important to precise that contrary to the AdS case, the vacuum (1.8) is not contained in
these boundary conditions [29].
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Each of these vectors is associated with a conserved charge denoted as L, and P,
with n € Z. The asymptotic conserved charges satisfy to the algebra
(L, Lon] = (1 — 1) Ly + %n(rﬂ Do,

[Pna Pm] - ];n(sn-l—m .

This algebra precisely matches that of a Warped CFT, as we will demonstrate in
(2.31). The central charges can be expressed in terms of the TMG parameters.
_ i3 __v+31
Cv(2+3)G B 6v (G
As for the AdS/CFT correspondence, this suggests a link between WAdS spacetimes
and WCFT.

(1.21)

The laws of black holes thermodynamics can be verified for warped black holes.
One can compute a mass M“* and an angular momentum J°* associated respectively
with the Killing vectors 0; and Jyp [30]:

2+3
MC® — ;4; . ((m +ro )y —\Jrar_ (V2 + 3)>
vi+3 2 5243
CE __ _ 2 — — 2
JE = e [((nr +ro v —Jror_(v +3)> 1 (ry —r-) ] .

Those conserved charges correspond to the zero modes Fy and —Lg respectively.
One can also derive a Wald entropy for the black hole (1.13) [32, 101-103]

S = ﬁ ((91/2 +3)ry — (V4 3)r_ —dvyJrir (V2 + 3)) : (1.23)

All these quantities satisfy the first law of black hole thermodynamics
dM®® =T"dS" + Q" dJ°", (1.24)

(1.22)

where T°" is the Hawking temperature and Q* the angular velocity of the outer
horizon r,. Both are given by [37]

v+ 3 Ty —T_
Al our, — \Jror_(v? +3) ’
2

2ury — yJryor_(v? + 3) '

It concludes this introductory discussion about warped black holes in the canon-
ical ensemble. However, it is not the only way to describe warped black holes. There
exists another approach that leads to a different asymptotic algebra and different
charges, which also represents a solution to the TMG equations (1.2).

TCE —

(1.25)

QCE —
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1.3 Warped Black Holes in quadratic ensemble

As mentioned earlier, we will now describe another family of black hole spacetimes
in this section. These black holes have the advantage of precisely reducing to BTZ
when a certain limit is taken. The metric for a warped black hole in the quadratic
ensemble is given by [10/]

1—2H? 2

dsge = —Nos(r)*dt® + M (r)zﬂdﬁ + Rap(r)? (dp + NE,(dt)” (1.26)
where
r? + rpr_ 2
1—2H?)
N - 2 _ ( 2 2 2 2, 12
Q (I‘) RQE(I_)QLQ (I‘ I‘+>(I' I‘7> ) ( 8)
1 (rz—rQ)(rz—rQ_)

No(r)=———((1—2H? 2H? + . 1.29
) = g (-2 20 S (1.29)

The constants ry mark the location of the horizons and H? and L are related to the
TMG parameters v and ¢ as follows

3(v?—1) 20

212 + 3) 13 (1.30)
The sign of H? may seem intriguing, but it is necessary to avoid closed timelike
curves.

This metric is a deformation of the BTZ black hole with AdS radius L because

it can be written as

ds?* = dspy, — H*¢® ¢ (1.31)
where ¢ is a spacelike Killing vector given by
1
£ = (—LO; + 0y) - (1.32)
ry —1r_

H? denotes the deviation away from BTZ. When H? = 0, equivalent to v = 1, we
recover a BTZ black hole with AdS radius L = ¢ in the usual coordinates (1.11).

This other family of black holes does not belong to the phase space generated
by the asymptotic boundary conditions (1.18). In [105], a new set of boundary
conditions was proposed that includes the warped black hole (1.26). As usual,
these asymptotic boundary conditions are invariant under an asymptotic symmetry
algebra generated by asymptotic Killing vectors. The latter are associated with
charges satisfying the algebra

{

Lo, o] = =P+ mPobim. (1.33)
[ ns Pm} = _an05n+m y

ns -Z/m:| = (n — m)Ln_,_m + %n(nQ — 1)(5n+m >

[l

!
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where the central ¢ can be expressed in terms of H and L

2(1 — H?)L
c= 2L (1.34)
V1—H?G
This algebra differs from (1.20) primarly because the U(1) central charge is now
charge dependent. The generators of (1.33) are related to those of (1.20) through

B 2 1
L, =L, — ~PP, + ~P26,,
o, 2 k (1.35)
P,==PP, — =P2,.
L Lo

The name quadratic ensemble comes from the fact that this transformation is quadratic.
In the same way that the charges are different from the canonical ensemble, the
mass and angular momentum of the black hole also differ. They are now given

by [104]

3—4H*)(r3 +12) — 2ryr_

MQE — (
24G21+\/1 — 2H? ’

1.36
Jav _ 2 +12 —2(3—4H%)ryr_ (1.36)
24GLv/1 —2H? ’
and they are related to the zero modes by
1 - . . .
MQEIE(L0+P0)7 JQE:LO—P(). (137)
The Wald entropy is given by

w_ T ((3—4H)r, — 1.38
savi = e 1) (1.38)

In this ensemble, the first law of black hole thermodynamics can also be verified
dM®® =T dS¥® + Q¥ dJ", (1.39)
with the Hawking temperature and the black hole angular velocity

2 —r T
T = +F——= Q% = ——. 1.40
2nLlr, T (1.40)

As we will see in the next chapter, the quadratic ensemble has the advantage
of being more suitable for analyzing thermal properties from a field theory point of
view. The structure, being more comparable to a CFT, makes analogies and inter-
pretations easier. In [105], they matched the entropy of the warped black hole in
the quadratic ensemble to the Warped Cardy formula (2.83) using an appropriate
vacuum.
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As a final word of this chapter; we mention that the two ensembles are related
through the following change of coordinates:

t

t=L
A_’

t

6=—0- (1.41)
2

s V'3 3 9

= (AVT’ - 17“+7'—(V - 1)) ,

where
A=(rp+r)v—rir_(v2+3) occ M. (1.42)

Since the time is rescaled by mass, the transformation is state-dependent, similar to
the relation between the generators of the two ensembles (1.35). It is interesting to
note that using the transformation (1.41), the entropy of the two ensembles matches

5F = g9 (1.43)

which was expected since the Wald entropy is invariant under diffeomorphism.



Chapter 2

Warped Conformal Field Theory

In this chapter, we will cover the fundamentals of the Warped Conformal Field
Theory (WCFT), focusing specifically on its two-dimensional formulation, starting
from its definition to the construction of a holographic dual through its coupling to
geometric background.

2.1 Definition of WCFT

To properly define a Warped Conformal Field Theory (WCFEFT), we first need to in-
troduce a broader class of field theories in two dimensions known as 2d Generalized
Conformal Field Theory (GCFT,) !, which includes Conformal Field Theory (CFT)
as a special case [77]. A GCFTj is a unitary local Quantum Field Theory character-
ized by at least three global symmetries. These symmetries consist of translations
in both coordinates x and ¢, and rescaling for one of them, which we will choose as
x without loss of generality. It’s important to note that these coordinates are not
necessarily associated with spatial and time dimensions. The conserved charges H,
H, and D generate the associated symmetries as

H:x—x+dr, H:t—t+6t, D:x— . (2.1)

As a consequence of locality, there are conserved currents J*, J*, and J 1 associated
with the conserved charges H, H, and D, respectively.

It is important to note that generic GCFTy theories are not generally Lorentz
invariant. However, some theories achieve Lorentz invariance by incorporating ad-
ditional symmetries. For example, CFT5 includes an additional scaling symmetry,
where t — At. In this case, the coordinates (z,t) represent light-cone variables.

The commutators for the three charges of a GCFT, are

i[D,H|=H, z'[H,fﬂzo, z'[D,fﬂzo. (2.2)

IThis should not be confused with Galilean CFT, which is also abbreviated as GCFT.
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As in [17], we assume that the eigenvalues \; of D are discrete and non-negative,
and there exists a complete basis of local operators ®;, which have no explicit de-
pendence on the coordinates, with weight A\;. This basis satisfies

i[H, &) = 0,0;, i |H ;] =08, i[D &]=10,P+N\P;.  (23)

Translation and scaling invariances imply that the vacuum two-point function sat-
isfies

(i, ), B (o', ) = m (2.4)

for some unknown functions f;;.

It was shown in [/1] that (J*,J!) and (J®, J!) are local operators of weight
(1,2) and (0,1) respectively. The currents have certain degrees of freedom. The
commutation relations are still satisfied under shifts of the form +0,0(z,t), where
O can potentially have explicit dependence on the coordinates x and ¢ [1]

O(z,t) = Z filz, t)P;(z,t). (2.5)

It was shown in Appendix A of [11], using this shift ambiguity of currents, that for
any charge () commuting with H and H, the corresponding conserved current .J;
satisfies the following commutators:

i[H, 4] = 0,05, i|H, 4] =075 (2.6)

However, for the current associated to D, since D and H do not commute with each
other, the commutator of H and J}, requires an additional term proportional to J*:

i[H,J] = 0,Jt — J* | (2.7)

This implies that J}, is not a local operator and must explicitly depend on x. Nev-
ertheless, we can rewrite it as:

T =z J" + Sb (2.8)

where (S}, S%) are local operators of weight (0, 1).
The conservation of the currents J* and J%, leads to the equation

J* + 0,57 + 0,5, = 0. (2.9)

Since ST, has weight 0, its vacuum two-point function with itself depends only on ¢,
implying that 9,57 = 0.
We will use the shift ambiguity (2.5) to redefine the current J*

J*— J*+ oS, I — J - 0,8, (2.10)

such that
JE=0. (2.11)
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Then, according to the conservation of the current J#, J' can only depend on z
J'=L(x). (2.12)

It leads to the existence of an infinite family of charges

Le= / dz €(2)L(x) | (2.13)

where £(z) is a smooth function. The charges L, form a Virasoro algebra [11].

As J* is also a local operator of weight 0, 0,J* = 0, and due to the conservation
equation, 9,J* = 0. This implies that J* depends only on ¢ and J* depends only on
x. We can then define

J =L(t), J =P). (2.14)

As before, we can construct infinite families of conserved charges
Le= /dt EDL(t), Pe= /dxg(x)P(x) . (2.15)

which will form another Virasoro algebra and a U(1) Ka¢-Moody algebra for L_g and
Pe, respectively.
A CFTjy is a particular case of this construction where the addition of Lorentz
invariance implies P(z) = 0, and the theory then has just two Virasoro algebras.
Another particular case of interest is when £(t) = 0. Such a theory is called a
WCFTs, resulting in the addition of another symmetry generated by the conserved
charge B:

B:t—t+wvrx, (2.16)

where v is a real constant. This symmetry is called a generalized boost symmetry
[7]. It implies that a WCFT is not Lorentz invariant since the coordinates x and
t do not enjoy the same symmetries. The commutation relations with the previous
charges are

i[H,B]:—ﬁ, i[D,B]:—B, i[ﬁ,é}:o. (2.17)

Like before, the non-vanishing commutators of B with H and D imply that the
conserved current Jg associated with B is not a local operator, but it can still be
rewritten as

Ji =xJ" 4 5% (2.18)

where S% is local operator. The conservation equations of J g and J* induce that

J"+0,8% + 9,55 =0. (2.19)

It was argued in [/,57] that unitarity and shift ambiguity lead to S% = 0. The
result is then )

J=0. (2.20)
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This constraint kills one of the Virasoro algebras. The remaining currents satisfy
the algebra:

L) = L) 8 —y) = 2L(y) 0ud(x — y) + 5= 06(x — ),
i[L(x), P(y)] = P'(y) 6(x —y) = Py) dad(x —y), (2.21)
i[P(@), Py)] = 0.3 ~ ).

while for the charges,

. & "/ /i

i[Le, £3] = Lery—ex +487/d$(€ X —&x"),

i[Le,Py] = Pocy s (2.22)
[Pe, P = 5 [ do (€ = €X)

(3 & Py 87T .

This algebra is a semidirect product of a Virasoro algebra of central charge ¢ and
an affine u(1) Ka¢-Moody current algebra with central extension .

2.1.1 Finite transformations

The finite transformations of a WCFT5 can be written as
r— f(x), t—=t+g(x). (2.23)

The commutation relations (2.21) imply the following infinitesimal transformations
of the current

0L =eL +2dL+0"P + %6’” ,
i (2.24)
0P =€eP + P — 50’,

where we have defined
0= i[‘cm ] + i[Pm ] . (225)

The functions € and o are the infinitesimal transformations of the coordinates
or = e(x), it =o(x). (2.26)

We can build the unique finite transformations that reduce to these infinitesimal
versions and that compose appropriately [12]:

Plo) >4, (P +5¢)

, (2.27)

£0) >z (£00) = 500}~ #P0) - 5
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where we have introduced the Schwarzian derivative

n 1! 2
v =535 225)

For example, we can put our theory on a cylinder by considering the map
T =e?. (2.29)
On this cylinder, the currents can be decomposed in modes by picking test functions
& =a" =", (2.30)
leading to the canonical WCF'T algebra
[Lus L) = (0 = m) L+ 75(0* = 1)
(Lo, Pr] = —=mPrim (2.31)

[Pna Pm] = ];n(sn-l—m )

with L, = iL¢, , and P, = P,,. The zero modes are the angular momentum and
the energy and generate the translations:

Ly = Q[0y], Py = Q[0y] . (2.32)
We can then add an arbitrary tilt «
t—=t+ 200, (2.33)

transforming the currents as

Pp) =ixP(x) — ka,

2.34
L) = —2*L(x) + i + 2iaxP(x) — ka?. (2:34)
By defining modes on the cylinder as
1 ) 1 ,
P [aoPr@)em,  Li= - [deri@)ent,  (2.39)
2m 27
this corresponds, in terms of the original modes, to
P =P, + kad,,
2.36
L§:Ln+2aPn+<ka2—zc4>5n. (2.36)

We observe that the tilt, which is arbitrary, changes the zero modes on the cylinder.
This situation is completely different from unitary CFT where the zero modes on the
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cylinder is uniquely determined from the zero modes on the plane and the central
charges.

It was argued in [!7] that for unitary representations of the WCFT algebra,
namely

L,=L, —P,=P, (2.37)
the positivity of states L_,|p, h), P_,|p, h) and Py|p, h) implies the restrictions

2
c>0, k>0, hz%, pER, (2.38)
where p and h are the eigenvalues of Py and Ly of the primary states |p, h) defined
as
P,|lp,h) =0 n>0, L,|p,h) =0 n>0,
Pylp,h) =plp,h) ,  Lolp,h) = hp,h) .

On the cylinder, it may happen that F, # 0 in the vacuum states. Again, they
argued in [12] that

(2.39)

P? c
Lg—-Y>_—— 1 2.4
A TR (240)
using the modes of the Sugawara-substracted stress tensor
1 [o.¢]
L¥ =1L, — - S PP, (2.41)

where :: indicates normal ordering defined in the usual way [ (0]

PuPrm = > PuPym+ S PP (2.42)

m<—1 m>—1

This Sugawara basis has the convenient property to commute with P, and to satisfy
a Virasoro algebra of central charge ¢ — 1.
In the vacuum state, this bound is saturated and the charges can be parametrized

as 2 e
Py =q, Lg:?_ﬁ' (2.43)
The last equation holds true even in non-unitary theories with imaginary eigenvalues
of Py, provided that the vacuum state can be associated with a unit operator.
However, unitary WCFTs do not correspond to holographic duals of gravity
models. Generally, the latter possess a negative U(1) level, leading to descendant
states with negative norm. Despite the presence of these negative norm states, the
modular bootstrap method can still be applied [13]. If the Virasoro-Ka¢-Moody
primaries have positive norm, there exist at least two states with imaginary U(1)
charge p, one of them being the vacuum. In these holographic warped theories, the

requirements

2
¢>1, hz%, with k < 0, (2.44)
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still apply. Depending on the real or imaginary nature of the charge of the primaries
states, the U(1) charges are either hermitian

Pl=P,. ifpeR, (2.45)

n

or antihermitian
Pl=_—P_,, ifp € iR. (2.46)

2.1.2 Asymptotic density of states and Warped Cardy for-
mula
Similar to CF'Ts, the symmetries are sufficient to derive an entropy by counting the

asymptotic density of states. To achieve this, we place our WCF'T on a torus, which
is a plane with coordinates (¢, ¢) subject to the following identifications

o Thermal circle: (t,¢) ~ (t + i, ¢ +i5Q),
o Angular circle: (t,¢) ~ (t, ¢ + 27),

where = 1/T is the inverse temperature and (2 is the angular velocity. It corre-
sponds to a theory at finite temperature and angular potential.

Like for CF'Ts, we seek a transformation that exchanges the thermal circle and the
angular circle. This transformation plays the same role as a modular transformation.
From the ansatz

¢ =\, t'=t+2y¢ (2.47)

the new identifications are
o Thermal circle: (t',¢") ~ (' +iB(1 + 299Q), ¢' +i\5Q),
o Angular circle: (¥,¢') ~ (t' 4+ 4my, ¢' +27w)).

If we choose )
271 1

/\:—B—Q, T="5q (2.48)
the circles are exhanged
o Thermal circle: (t,¢') ~ (¥, ¢' + 27),
o Angular circle: (t',¢') ~ (t' —if’, ¢’ —ip'QY),
where o omi o o 010
q =5 :

Under these warped transformations, the stress energy tensor and the current be-
come

L(¢) = (L(@) —29P() = k7?) . P(&) =1 (P(d)+ky) . (250)

> =
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Now that we have identified the desired transformation and observed its effect on
the currents, we aim to compute the density of states through the partition function.
The evolution operator on the thermal circle is given by

U = exp { i /Oiﬂ dt (P(¢) + QE(gb))} — ¢~ PPo—fLo (2.51)

In the canonical ensemble, the partition function at inverse temperature § and
angular velocity € is the trace of this evolution operator

Z(3,9Q) = Tr e~ PPo—Fko (2.52)

As the energy P, and the angular momentum L are charges generating the trans-
lation, like in (2.32), they naturally implement the identification

(t,¢) ~ (t+iB, ¢ +iB). (2.53)

We observe that the operator

i | a6 T(6), (2.54)

defined by integrating over the thermal circle on the original torus, becomes the
time evolution operator on the new torus

/8/

i [Maoro) =2 [Ty o)+ anie +

40

(2.55)

The presence of the last term on the right hand side of the last equation indicates
the presence of an anomaly. Precisely,

2wy 2
Q' B
We now consider the slowly rotating regime €2 — 0. In this regime, the trace is
projected onto the state of minimal Lj, denoted L, provided L, is bounded from
below. F, then takes the value of the state with minimal Ly, denoted Fj. The
bounded requirement is not needed for P because for real value of the latter and £,

the term containing F, is just a phase. In this slow rotating regime, the partition
function can be approximated by

Z(8,Q) = i 2(8,9) = et Z(— ). (2.56)

2mi dn® e ) . (2.57)

Z(ﬁ,Q)zexp(QPS’ 69[}—1—7

The entropy is derived from the partition function through the thermodynamic
relation S = (1 — 50z — Q0q) log Z (3, €2) giving

2T, 82 v
S = ﬁpo ﬁQL (2.58)
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To express the entropy in the microcanonical ensemble, we first rewrite the partition
function as

Z(5,Q) = / dLodPy p(Lo, Py) e PP—P%Lo (2.59)

where p(Lg, Py) is the density of states. By performing a Laplace transformation,
we can express the density of states as

p(Lo, Bo) = [ dBdQ 2 (5, 5) e r70 (2.60)
To compute this integral, we will use the saddle point approximation in the slow

rotating regime L
p(Lo, Py) = Z(B,Q) ePForhilo (2.61)

where Z(,Q) is (2.57) and 3, Q are the solutions of
0p (2(B,Q) PPty =0, 9y (Z(8,Q) H5M0) =0, (2.62)

Then, the entropy is given by the logarithm of the density of states S = log p(Lo, Fp).
To conclude, in the microcanonical ensemble, the entropy becomes

; v V)2 2
g ARy w . (LS _ <P>> (LO ] f%) | (263)

k k k

To go any further, we can implement the parametrization (2.43) and get

. . PO C P02
S = —47rzq? + QWJ 5 <L0 - k:) . (2.64)

This equation is called the Warped Cardy formula and is the analogue for WCFT of
the Cardy formula. If the theory is unitary, F, is Hermitian and g should be zero.
This implies that the first term of (2.64) is not present. However, if we work with a
non-unitary theory, Py is allowed to be complex. Such situations occur for warped
black holes in the canonical ensemble, where the vacuum charges are given by
l i
Ly=——— Pl =—-——. 2.65

O 240G’ 0 6G (2.65)
The warped Cardy formula (2.64) matches the entropy given by the warped black
hole (1.23). Therefore, the equation (2.64) represents an entropy despite the negative
contributions in the partition function [!2].

2.1.3 The quadratic ensemble

The Warped Cardy formula (2.64), derived in the previous section, differs from the
usual Cardy formula for CFTs. However, there exists an ensemble for WCFTs where
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the two formulas appear similar. This ensemble is the quadratic ensemble, which
satisfies the algebra:
Ly L] = (1 — 1) Ly + TCQnm? — D)6
[Ena pm] = _mpTH-m + mPO(Sn—i-m ) (266>
[P, P] = 2n Py -

The main difference with the algebra (2.31) is that now the U(1) is charge-dependent

with the presence of Py. As we saw in Chapter 1, the algebra (2.66) is related to
(2.31) through the charges redefinition (1.35). In particular for the zero modes

_ P2
LO = LO - ?0 )
i P2 (2.67)
P() == -0 .
k
This corresponds to a nonlocal reparametrization of the theory, i.e. [17]
=t = 2.
rt =gt 2T =0, (2.68)
where ¥+

are the new coordinates in the quadratic ensemble.
If we examine the algebra (2.66) for the modes where n +m = 0, it corresponds
to two copies of commuting Virasoro algebra with central charges ¢ and 0:
(L, L] = 2010 + TCQn(nQ 1),
[ina p fn} = 07
P,

(2.69)

On the other hand, if we consider only the modes where n+m # 0, they correspond
to the modes of the usual Virasoro-Kac¢-Moody algebra:

[znv Em] = (n - m>f’n+m )
(L, Pyl = —mPy i, (2.70)
[P,,P,] =0.

We can adapt the computation done in the previous section to this quadratic
ensemble. Starting from a theory at finite temperature

Z(By. Br) = Tre Peiv—prlo (2.71)
it was shown in |

] that we can again use the WCFT symmetries to determine
a transformation that exchanges the thermal circle and the angular circle. For an
infinitesimal tilt

dat = —5;3:_ : (2.72)
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the zero modes transform like
6Ly=0, 6Py = Pyy. (2.73)
By considering in addition a rescaling of the cylinder
O — Ao, (2.74)

the charges associated to the zero modes and generating translations transform
as [17]

Q[a-l-/] - evé[a—&-] ’ Q[a—/] — C)[f—} . (275)

We notice that under the tilt and the rescaling, all charges transforms independently,
which, in the quadratic ensemble, mimics the behavior of CFTs.

As for the canonical ensemble, we put the theory on a torus and make the
following identifications

o Thermal circle: (%, 27) ~ (2 +ify, 2~ +iPR),
o Angular circle: (zt,27) ~ (at + 2m, 27 4 27).
By picking the parameters of the transformation (2.75) such as

omi omi
eW:—;LZ, A:—é:, (2.76)

one can exchange the angular and thermal circles

o Thermal circle: (z™,27") ~ (2™ 4 27, 27" + 27),

o Angular circle: (z,27") ~ (at — i}, 27" —ifR),
with 2 4
7r T
6/ = ﬁ/ = . 2.77
LB " Br 27)

This transformation provides the identification of the partition functions but this
time, without the presence of an anomaly

47?4y’
Br Br
Indeed, by two repeated transformations, the evolution operator changes as
e BrPo—BrLo  _,  2mi(Po+Lo) g—%%‘%io _ (2.79)

It takes exactly the same form as a 2d CFT. We then take the large temperature
limit where the right hand side of the last equation is projected onto the vacuum
state

2 2
Z(Br, Br) ~ exp (_45:]35 - 47TL5> : (2.80)
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Using the thermodynamic relation

S =(1— Br0s, — PrOs)10g Z(BL, Br) , (2.81)

we get the entropy in the quadratic ensemble

872 82
S = —7PU LU 2.82
Br Br (2.82)

Once again, we go to the microcanonical ensemble to express the entropy from the
density of states p(Lg, Py) and in terms of charges Py and Ly:

S =dm\/—PYPy + 4m\/ —LyLy . (2.83)

By defining the quantities ¢y and cg through

DU 9 Tv CR
Py = ~24" Loz—ﬂ’ (2.84)

we can rewrite the entropy in a more CF'T kind of way

S = o, /%150 +om, /%R[Zo . (2.85)

Although this expression resembles the Cardy formula derived in CFTs, the quanti-
ties ¢z, and cg are not both fixed by the symmetries alone. They can be expressed
in terms of the original charges in the vacuum (2.43)

CR=CcC. (2.86)

While cp is fixed by the central extension, ¢, depends on the details of the theory.
As mentioned in the previous chapter, the warped Cardy formula (2.83) matched
the bulk entropy under an appropriate choice of vacuum [107].

2.1.4 Warped Virasoro characters

We have seen how the modular invariance, or more precisely covariance in our case,

can be used to derive the Warped Cardy formula. As stated in [!3], it can also be
used to derive the warped characters. By placing ourselves in the canonical ensemble
and defining
152 i
= — = — 2.87
T=S s FT 50 (2.87)
we can rewrite the partition function as
Z(1,z)=Tr (qLo_ﬁyPO) : (2.88)
with
q= e27rz7' ’ y = 6271*12 ) (289)
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Written is such a way, we can define two transformations generating an SL(2,Z)
group [ 1]

: (2.90)
(2.91)

N~
\]
1
\]
_|_
—_

The S-transformations correspond to modular transformations while the T-transformations
represent the addition of the angular circle to the thermal circle. For instance, the
S-transformations act on the partition function as

z (-1 Z) — 57 (5, 2). (2.92)

T
This is a rephrasing of equation (2.56).

As with CFTs, the Hilbert space decomposes into a sum over highest-weight
representations of primary states |p, h) (2.39), which implies a decomposition of the
partition function into warped Virasoro characters

Z(1,z) = Z dhp Xnp(T, 2), (2.93)

h,p

where the sum runs only over primary states and d, takes into account their de-
generacy. We will follow the path done in [!2] to compute the warped character of
a primary state |p, h) (2.39).

First, we use the Sugawara basis (2.41) to compute the contribution from the
Virasoro descendants to the partition function. The advantage of this basis is that it
commutes with every P,, allowing us to factorize the norm of mixed states admitting
both Virasoro and U(1) descendants. As a result, the warped Virasoro character
is simply the product of both contributions. The Virasoro descendants are thus
written as -

IT(Z9)™ Ip. by, (2.94)
k=1
with n; integer characterising the descendant. As the commutator between Ly and
the Sugawara basis is
[Lo, L)) = nL®) | (2.95)

the descendants (2.94) are proportional to
IT(2%)" Ip, h) o< [p, o + N) . (2.96)
k=1

where N = Y, ng k. The degeneracy of the states |p,h + N) corresponds to the
number of partitions of the positive integer N, often denoted as p(/N). For instance,
p(4) = 5 because there are five different ways to partition 4: 1-+1+1+4+1, 1+1+2, 242,
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3+ 1, and 4. Under the condition that the conformal weight h of the primary state
and the central charge ¢ satisfy (2.44), the contribution of the Virasoro descendants

Ni:p(N)qNZ ﬁiq”’“z lo_o[

n=1 k=0 n=1

et (2.97)

qTL
like for CFTs. When the primary state is the vacuum |p, 0), the charge L_; acts on
the vacuum as
L%|p,0) =0, (2.98)

implying a state of vanishing norm that we need to exclude from the partition
function by starting the product at n = 2. This can be summarized as

00
11
n=1

1
1—qm

(1= 0vacq) (2.99)

where d,,. = 1 for the vacuum and 0 otherwise.

For the U(1) descendants, we need to separate the discussion into two cases.
If the charge p is real, the P, are Hermitian and the U(1) descendants have two
distinct norms, after an appropriate normalization:

i ? +1 if >, nyis even
ng _ kT )
]Elp_k|p’ hy| = { —1 if 3, nyis odd. (2.100)

The action of the P_,s does not modify the charge p but changes the weight since
(Lo, P_p] =nP_,, (2.101)

implying that the U(1) descendants are proportional to the states of weight h + N

o0

11 P Ip. k) o< [p,h + N). (2.102)
k=1

Unlike the Virasoro descendants, the degeneracy of the state |p, h+ N) is not simply
the partition function p(IN) because, due to the presence of negative norms in (2.100),
we also need to take into account the parity of the number of integers used to build
the integer N. We denote this function as f(N). For example, f(4) = 1 because
1+14+1+1,2+2, and 3+ 1 contain an even number of integers, contributing +3,
but 1+ 14 2 and 4 use an odd number of integers, contributing —2. The total sum
is 3+ (—2) = 1. The contribution of the U(1) descendants to the partition function

is then? . o o
YN =TT Do (D™ =11
N=1 ne

n=1 k=0 1 +an

(2.103)

2 A rigorous proof of the computation of the generating function of f(N) can be done by adapting
the proof done for the integer partition function p(IN) in Section 3.3 of [107].
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Since no P_,, annihilates the vacuum, this result does not change when the primary
state is the vacuum state.

The second possibility for the primary state is to possess a imaginary charge p. In
this situation, the P,s are antihermitians but their corresponding U(1) descendants
always have a positive norm. Their contribution to the partition will then take
the same form as for the Virasoro descendants, without the discussion about the
vacuum,

o o0 1
> pN " =Tl —. (2.104)
N=1 n=1 14
In summary, the warped Virasoro characters are
e 1
xnp ="y [ 7= (1= ducq)  forpeR, (2.105)
n=1 -4
e 1
Xnp = q" 7y 1] A=) (1= 6uweq) forpeiR. (2.106)
n=1 -

2.2 Warped Geometry

Since WCF'Ts do not possess Lorentz invariance, they do not couple to Riemannian
geometry, which is a theory of curved spaces that are locally Lorentz invariant. In
this section, we will construct a geometry that carries the symmetries of a WCFT,
known as Warped Conformal Geometry (WCG). Initially, we will set aside the scal-
ing symmetry and focus solely on the boost symmetry. This construction will lead
us to Warped Geometry (WG), which is the warped analogue of Riemannian geom-
etry. Later, the addition of the scaling generator will lead to WCG. We will consider
the cases for d = 2 and d > 2, starting with the former. For now, we will work in
flat space and address curved space later.

2.2.1 Warped Geometry in d = 2

In flat space, the warped symmetries in some coordinates x* = (x,t) are:

L S G L S N R A S L B L (2.107)

A% — (11} ?) (2.108)

is a generalized boost transformation: * — x and t — ¢ + vz,
o« (X0
Ay = (O 1) (2.109)

is the scaling symmetry but for only one of the coordinates: x* — Az and ¢t — ¢, and
d® stands in for translation invariance. We adopt the coordinate notation from [57],

where
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where (z,t) should not initially be understood as space and time, although in many
contexts it will correspond to them.

As previously mentioned, we will set scaling invariance aside and focus on boost
symmetry to define WG. Similar to Euclidean symmetry, we will use vectors to
construct any geometric invariant, under the constraint of translation symmetry.
Under boost symmetry, vectors must transform as

Ve — A%V (2.110)

The analog of the metric is a symmetric tensor with two lower indices invariant
under the action of the boost symmetry

Gap = N, gea N, . (2.111)

10

and we directly observe that the metric is degenerate because there exists a vector
q* such that

Such a tensor is

g’ = 0. (2.113)
This vector is

g = (?) , (2.114)
and is a boost invariant vector

7 =N (2.115)

The degeneracy of the metric prevents us from using it to lower and raise indices.
However, we can still define a invariant scalar product as

U-V=U%,4V=0"V", (2.116)
and a invariant one form g,
g.=(10), (2.117)
satisfying
Ga =N (2.118)

The metric is the tensor product

Gab = qaqp - (2119)

As stated before, the metric cannot be used to raise or lower indices. Nevertheless,
we can define an antisymmetric tensor hg, as

4o =ha @ - (2.120)
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It implies that

hap = (_01 é) : (2.121)

This tensor is invariant under the boost transformation, non-degenerate and pos-
sesses an inverse h® with h®hy, = §%. Despite the metric being degenerate and
non-invertible, it is possible to define a upper index metric g% as the tensor product
of two vector ¢

G = "¢ = h™g.ah™. (2.122)

The two-form h is then the natural way of rising and lowering indices
Vo =haV". (2.123)

We see that the bar notation was introduced for the vectors to emphasize that they
are not linked with their dual one-form using the traditional metric but with the
two-form h. As a consequence, the product

Vo,V =V, VP =0, (2.124)

because of the antisymmetry of h and is not a good definition of a norm. In any
case, we can define a norm using the scalar product

|UIP=U-U. (2.125)

However, it is pointless to talk about angle in the usual way for the reason that

u-v

S S (2.126)
HUTHIV

This detail is important to be mentioned since the scaling symmetry that we will
add later on is known to preserve angles. A cross product can also be defined using
the antisymmetric tensor h

U x V = UhgV* = 07V — 017" (2.127)
Now, using this other product, we can define an "angle":
UxV

oU. V)= 2V
HUTHIV]

(2.128)

Under a boost transformation, this angle transforms as # — 6 + v like normal
angles under euclidean rotations. Under the scaling transformation ¢ — \%2°, the
different vectors and tensors defined above transform as

Aab(jb - qa ) Aaan = )‘va

o ve 2 4 e B (2.129)
)‘b)‘d.gac*Agbd ) )\b)‘dhac*)\hbd'
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2.2.2 Warped Geometry in d > 2

There are two different ways to extend this framework to higher dimensions. One
approach is to introduce additional coordinates like ¢, each enjoying its own distinct
boost symmetry. The other method involves adding more coordinates like x while
preserving a single boost symmetry for . The approach considered in [57] follows the
second method in order to construct a suitable holographic dual for these theories.
Therefore, the coordinates in d dimensions are

2% = <xt ) , (2.130)

where lower case indices a run from 1 to d and upper case indices I run from 1 to
d — 1. The global symmetries possessed by a WG in d > 2 are

o Translations: x% — z% 4 6 ;
Co 0 I I.
e Boosts: o' —a2', t >t4+ v’

Dilatations: zf — \a!, t =t ;

« Rotations: ! — M, 27 t — ¢, with M!; € SO(d—1) .

As in the previous section, we will initially omit the scaling symmetries and focus
on the implications of the other three. The existence of invariant tensors ¢* and gq,
is ensured by the boost symmetries, similarly to d = 2. However, the lower case
tensor ¢, needs to be adjusted

G — qL, (2.131)

and is not anymore an invariant tensor since it transforms under rotations as
b — M, q . (2.132)
The metric can be expressed from these one-forms
Gab = 44 017 47 - (2.133)
This metric can be used to defined a norm, as for the case d = 2,
1UI* = U*gaU" . (2.134)

We can also defined a d-form hy using the totally antisymmetric euclidean invariant
tensor €r,..1, ,

hal...ad (jad =E€n..1,4 qgll anZ:i 5 (2135)
that provides the WG with a volume form to integrate over this space
I(¢) = /hd Ao, (2.136)

where ¢ is a scalar function.
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2.2.3 Adding curvature to Warped Geometry

For now, we have only worked in flat space. The next logical step is to extend this
discussion to curved space. To achieve this, we will use the standard approach: at
each point on our curved manifold, the tangent space geometry will correspond to
the flat space results from the previous sections. We will separate the discussion
into two parts for simplicity: the case d = 2 and the case d > 2.

Let us start with the d = 2 case. We define an revertible map 7;; from spacetime
vectors in the manifold to tangent Warped Geometry variables

70 Oy — Ty 04 . (2.137)
It allows us to construct spacetime tensors from the WG tensors:

Av=ar o A =0T (2.138)
GW:TSngab ) HW:T/‘ijhab. '

These spacetime tensors are all invariant under the local boost transformations
T =AY, Tfj because of the invariance of the flat tensors q,, ¢*, gup, and hy, under
such transformations. The local boost symmetry can be viewed as a gauge symmetry
induced in the manifold. We can define the full covariant derivative in the base
manifold

D=0+w+T, (2.139)

where w is the "spin" connection one form, because of the gauge symmetry, and I'
is the affine connection associated with diffeomorphism. For example, the covariant
derivative of the map 77 is

D15 = 01y + w1, —Th, 75 (2.140)

Under a local boost transformation of the form

n\ a4

A% = 6% + vg"q, = 0% + vBY, = (") (2.141)

b ’

where we introduced the boost generator Bab = ¢°qp, the "spin" connection trans-
forms as

(e*”Byc Wy (e”B)db — wh, — O BY,. (2.142)

as a gauge field transforms under a gauge symmetry. Therefore, we can express the
"spin" connection in terms of the generator of the boost symmetry

w*, = w,BY, (2.143)

where w,, transforms under a local boost transformation like

Wy — Wy — Ov. (2.144)
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By imposing that the covariant derivative preserves the metric, or in terms of the

vielbein
D,r; =0, (2.145)

we can express the affine connection in terms of 7} and w,
L7, = 100,75 + AP Ayw, . (2.146)

Now we introduce the torsion and curvature two-forms with the aime of specify the

geometry
RY% =dw® , T*=dr"+w% AT, (2.147)

and by using the equation (2.143), we can rewrite them as
R =q¢"qpdw , T =dr"+qwANA. (2.148)

In Riemannian geometry, the next step is usually to require a vanishing torsion
condition in order to fully express the spin connection in terms of the vieldbein
and obtain a unique expression for the affine connection. However, for our Warped
Geometry, if we make the same assumption, it was argued in [77] that it does not
lead to a complete expression of the affine connection in terms of the vielbein 77.
In order to achieve this, warped geometry requires an additional structure called a
scaling structure. This name arises because the scaling symmetry \¢, defines two
preferred axes in the tangent space: one associated with a coordinate that scales
and one that does not. The scaling structure J¢ is defined by the relation

JAJb = Jo (2.149)

and possesses exactly one 0 eigenvalue with eigenvector ¢* and one —1 eigenvalue
with an eigenvector that we will note ¢®. It then takes the form
q“q
JY =— : (2.150)
e

In the (z,t) coordinates, the scaling structure would be

T4 = <_01 8) ! (2.151)

¢ = (é) . (2.152)

This tensor is nothing else than the generator of dilatations

and

for the infinitesimal transformation A\ = 1 4+ d\.
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The analogue of the vanishing condition of the torsion in Riemannian geometry
to fix the "spin" connection is the requirement that the covariant derivative maps
weight —1 vectors to weight —1 vectors and weight 0 vectors to weight 0 vectors. It
implies that the scaling structure is covariantly constant or, in terms of ¢“,

Dyuq® = 0uq" + qpq"wu @ = 0. (2.154)

Two constraints can be derived from this equation. The first one by multiplying the
latter equation by q,,
a 1 a
9a0u4" = 50u(¢aq") = 0. (2.155)
So the vector ¢* can be normalized such that ¢,¢® = 1. In addition, we can define
the vector ¢, such that

Gq" =0 and @, q¢"=1. (2.156)
In the (z,t) coordinates, it would take the form
g.=(0 1). (2.157)

The second constraint is an expression for w,,
Wy = —a0,q" . (2.158)

It implies that in the (x,¢) coordinate system, the spin connection vanishes as w, = 0
and, after a local boost transformation, w, = —9,. Therefore, dw = 0 in this co-
ordinate system, which implies that a covariantly conserved scaling structure auto-
matically imposes a vanishing curvature condition in any coordinate system.

R =0. (2.159)
The preferred basis ¢* and ¢* allows us to decompose the vielbein like
T8 = Aug® + Aq”, (2.160)
and write the affine connection as
I, = AP0, A, + APO,A, . (2.161)
The tensor two-form can then be expressed as
T =dr* —dg° A A = ¢°dA + *dA (2.162)
and decomposes in two parts
T=dA, T=4dA. (2.163)

To summarize, our geometry in d = 2 has vanishing curvature and non-trivial tor-
sion. It is known in the literature as Weitzenbock geometry [104].
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In higher dimensions, we construct the spacetime tensors from the WG tensors
in d > 2 using the invertible map 7

I a I A —a
Au =710 At =T1hq?,
; ; oy (2.164)
G,U,I/:A’uél(]Ay y H,ulm,ud :Tﬂl'”Tﬂd hal...ad‘
We also need the introduction of a scaling structure
J% = —aiq; , (2.165)

that possesses (d — 1) eigenvalues —1 with eigenvectors ¢¢ and one vanishing eigen-
value with eigenvector ¢°. From those ¢, we construct A%

Al = rhgo (2.166)

a

We then define the vector flu such that
AAR =1, A AN =0. (2.167)

The presence of the rotation symmetries involves an additional SO(d — 1) spin
connection Qf Jp 0 the covariant derivative

D=0+w+Q+T. (2.168)

A local boost transformations can be expressed in terms of the boost generator

(B')",
b e
a __ vrB
A% = ()" (2.169)
Like in the case d = 2, we can describe the "spin" connection with the generators of

the boost transformations o
Sy =win (B') (2.170)

and under the requirement that the scaling structure is covariantly constant, we find,
as in the case d = 2, that there exists a frame for which the ’spin’ connection for each
boost generator B’ must vanish. After local boost transformations, dw; = 0. Then,
all curvatures associated with the ’spin’ connection also vanish in any coordinate
system. This implies that the only non-vanishing equations for the torsions and
the Riemannian curvature are those associated with the SO(d — 1) symmetry. By
decomposing the vielbein in the preferred basis ¢ and ¢*

T4 = Augi + Auq”, (2.171)

the remaining equations are
R, =d0', + Q' AQF,, T!H=dA"+ Q' ,AAT, T=dA. (2.172)

Once again, we have non-vanishing torsions, but in d > 2, not all curvatures are null,
only those related to local boost transformations. This geometry can be viewed as a
combination of Riemannian geometry, if we demand 77 = 0, in the (d — 1) subspace
described by !, and Weitzenbéck geometry concerning the symmetries relating 1
and the non-scaling direction.
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2.3 Lower Spin Gravity: a holographic dual for
WCFTs

Now that we have described our curved Warped Geometry, our goal in this section is
to build a bulk holographic dual to WCFTs. There already exist holographic setups,
such as the massive vector model [109] or TMG [27, 2%]. However, those theories
involve more bulk fields than required by the symmetry. In this section, we show
how the authors of [77] build a bulk description that relies solely on the symmetries
of the boundary WCF'T, called Lower Spin Gravity.

The extra space-like dimension that we need in the bulk can be viewed as a radial
direction. Thus, the holographic theory resides in the bulk, while the WCF'T lives on
the boundary. We primarily focus on a 3d holographic dual, meaning the boundary
field theory is a WCFT,. Next, we need to determine how the symmetries act on the
extra dimension. Is it a boosted coordinate like ¢, or a scaling coordinate like x!?
Since we expect this extra dimension to contain information about the RG flow of
the theory, we will consider this holographic direction as a scaling coordinate. This
is why, in the previous sections discussing dimensions greater than 2, we retained
only one boosted coordinate.

On one hand, we have the geometric pieces of our theory: the remaining cur-
vatures R’; and the torsions 7! and T In order to determine the spin connection
Q! ;, we impose that a vanishing condition for the torsions T:

T =0. (2.173)

Since we have already precisely determined the "spin" connection w,, such a condi-
tion is not needed for 7.

On the other hand, we have the fields A’ and A. The choice of equations of
motion will be dictated by the most general covariant set of equations that we can
assemble to leading order in derivative and without the introduction of extra fields.
The existence of the SO(2) antisymmetric tensor €7, allows us to write

T'=0;
RY 4 cATNAT 4 aTe" =0; (2.174)
T+b€[JA[ /\AJ +d€]JRIJ =0.
We can take linear combinations of those equations and if 1 — 2ad # 0, which is
automatically the case otherwise it would violate the assumption of vielbein invert-
ibility [77], we can redefined the constants ¢ and b (or set a and d to zero) and
rewrite the equations like
T'=0;
RY 4 cA"NAT =0; (2.175)
T+b 8[(]14[/\14‘] =0.
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or in components:

dA' —QAA2=0 , dA2+QAA,
) ) - ) ) (2.176)
d2—cA " NA"=0 , dA+20A NA"=0.
where we defined 2 = Q2. The constant ¢ is expected to determine the central
charge of the theory, like for AdS/CFT, and to be linked to the cosmological constant
[77]. As a consequence, we fixed ¢ to be postive. We will see later that the constant
b is related to the warping parameter. Those equations can be derived from the
action

ke

8

S /(AlAdA1+A2AdA2+29AA1AA2

(2.177)

b —1 - - -
+2 QAdQ+abQAdA+OfAAdA>
c
where « is a free parameter and g—; is for the moment an overall normalization which

will become clearer later. This action can be brought to a more familiar form by
the field redefinitions:

- _2b B! B?
A= 8 ’B—B3, Al=" A*=—"— Q=58 (2.178)
k2o c Ve Ve
giving
k _ _
5= 8—/(BlAdBl+BQ/\dBZ—B?’/\dB3+2B1/\B2/\BS) +85/BAdB,
T T
(2.179)
which is nothing else than an SL(2,R) x U(1) Chern-Simons action
k 2 K [ = —
S:/Tr{B/\qutB/\B/\B}%—/B/\dB, (2.180)
4m 3 8m

where k is a continuous parameter determining the central charge of the Virasoro
algebra, k a discrete parameter resulting from the sign of «, describing the sign of
the level of the U(1) Kac-Moody algebra. B = B'L; is the SL(2,R) connection with
L; being the SL(2,R) generators in the basis

1(0 1 1(1 0 1(0 -1
L1_2<1 0>’ L2_2<0 —1)’ L3_2<1 0)’ (2.181)

and B is the U(1) connection. This holographic dual of a WCFT, is called Lower
Spin Gravity.
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2.3.1 Boundary conditions and asymptotic symmetries

Now that we have formulated equations of motion governing the overall dynamics,
the next crucial step is to incorporate boundary conditions. Our objective is to
characterize WAdS; spacetimes and spacelike warped AdS3 black holes using Lower
Spin Gravity, ensuring that these solutions adhere to appropriate boundary condi-
tions. These spacetimes are commonly parameterized by coordinates (p, t, ), where
p signifies the holographic direction, ¢ serves as both time and a boosted boundary
coordinate, and ¢ represents an angular and scaling coordinate at the boundary.
The WCFT at the boundary is then invariant under the transformation

o= flp), t—=t+g(p). (2.182)

Until the end of this section, we will use those coordinates.
Since the Lower Spin Gravity is described by the action (2.180), the equations
of motion for the connections B and B are

dB+BAB=0, dB=0. (2.183)

It implies that the connections are flat. By making a gauge choice to fix the radial
dependence of the gauge field B and B, we can write the solutions of those equations
of motion like

B(p,t, ) = 57 (p) (b(t, ) + d)B(p),

B i (2.184)
B(p,t,¢) =0b(t, ),
with
b(t, 0) = by (t, ) dp + by(t, ) dt
b(t, @) = by(t, ) dp + bi(t, ) (2.185)
b(t, ) = by(t, ) dp + be(t, @) dt,
where
Blp) = e (2.186)

is a group element of the SL(2,R) algebra. This choice for 5 has no impact for the
computation of asymptotic symmetries but will be relevant when we will make a
metric interpretation of the connections.

In [00], the following boundary conditions were proposed
M//
prILl—E/Lfl s bt:,ub@—[l/[/o‘i‘?[/,l,
L - (2.187)
bcp:;P s bt:Mb¢+V,
where 9 9
e = % <£ - 7T7>2> , (2.188)
K
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and the prime denotes a derivative with respect to ¢. The functions £ and P
appearing in the boundary conditions depend on ¢ and ¢ and we can interpreter
them as functions characterizing the physical state. Hence, u and v, also functions
of t and ¢, can be viewed as chemical potentials and are therefore fixed, i.e. du =0 =
ov. The equations of motion determine the time evolution of the state-dependent
functions:

k
8t£ — N£,+2£M/ o 7[///_'_7)”/7
dm (2.189)
P =P +Pu +—/
4
The boundary conditions (2.187) are preserved by the following gauge transforma-
tions:

0:B, = 0.e + [By, €], 0:B, = 0,¢, (2.190)

where

€<t, (p) = 5_1 (6 (L1 — £L_1) — E,LO + €2HL_1> B,
(2.191)

4
5(15,@0):0—1-%7)6.

The gauge parameters € and o are functions on the boundary coordinates (t, ¢) and

have to satisfy

e = pe, 0o = —4—7T,u(673) — e (2.192)

This leads to the infinitesimal transformation behavior of the function £ and P:

0L =eL + 2L +Po’ — fe’",

p m (2.193)
0P = €P' + P + —o
47
Following [0, ], the variation of the canonical boundary charge is given by
IQ[e] + 0QIE] —/d(pTr (e0B,) /dgoTr (£0B,) (2.194)
— /dgp (6L e+ 0P o). (2.195)
Those charges are integrables
Q= / dy(Le + Po) (2.196)

and we can relate £ and P to the currents of a WCFT (2.12, 2.14). Indeed, one
can check that they satisfy the algebra (2.21). As the angle ¢ is 27 periodic, we can
make a Fourier mode expansion for P, £ and the Dirac delta function §(¢ — ¢):

1 .
L=— Z L,e™ "% P=— Z Pe ™ Mp—p)=— Z e ile—9)
2 1= 21 2 T ez
(2.197)
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to get the following algebras:

[Lna Lm] = (TL - m) Ln+m + % TL3 6n+m )

[Lna Pm] = —-m Pn+m ) (2198)
[Pmpm] - Enén—&-ma
2
with ¢ = 6k. We recognize the algebra of a WCFT as expected from a holographic
dual.

2.3.2 Metric interpretation

We will see in this section that we can establish a connection between the connections
B and B of the action (2.180) and WAdS metrics. The boundary conditions (2.187)
are valid for any functions pu(t, p) and v(t, ). However, to relate the connections B
and B to the metrics that interest us, it is sufficient to set g = 0 and v = 1. In this
case, the connections become

B’ =dp, B'=edy,

_ 4 2.199
B =e"Ldp, Bzd?f%—%?dgp. ( )

We can now relate the fields B and B to the fields A’, A, and Q using a more general
identification than (2.178). For this, let us define three linearly independent vectors
in SL(2,R), (¢, ¢, ), and their inverse vectors (¢, ¢}, (7) satisfying

Gy =13 (2:200)

for I, J = 0,1,2. The choice of these vectors will determine whether we are dealing
with spacelike, timelike, or null warped AdS;. Now we build the more general
identification

8
kc2a

A=A =

é:llBl A2 _ 6[23[

Ve Ve
Notice that the extra parameters appearing here are not fully physical because
they are absent from the action (2.180). This is analogous to the AdS radius in
AdS/CFT, where the exact numerical value is not physical; only its unit matters.

Since B has only trivial commutators with the SL(2,R) generators, the natural
metric on SL(2,R) induces a metric on the fields A’ given by

Q=B (2.201)

_ 20 ~
‘B _Dpp A=
C

Mry=C g (5 (2.202)

where gy, is the natural metric on SL(2,R) (see (A.5) in Appendix A). More explic-
itly, goo = %, g+— = g—+ = —1, and the other components are zero. Finally, it is
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possible to form an SL(2,R) x U(1) invariant quadratic form that we will interpret
as the line element

ds? = ATM; ;A7 . (2.203)

Let us now reproduce the different Warped AdS spacetimes and the Warped
black hole. Depending on which (y we pick, the geometry will turn out to be either
spacelike WAAS for a hyperbolic generator of SL(2,R), null WAdS for a parabolic
generator, or timelike WAdS for an elliptic generator. We choose the following
notation for our vectors: ( = (4,0, —) and the parameters b, ¢, and « as

1)2—12 C_V2+3

ek Tt (2.204)

o =

8
K2

Timelike WAdS. We pick {; = (1,0, 1) and complete the basis with (; = (1,0, —1)
and (3 = (0,1,0). Introducing the coordinates r = p 4+ log2 and ¢ = —¢ and by
setting the currents to

L=—, P=0, (2.205)
we end up with

2

v2+3

62
v2+3

ds? = <d7‘2 + cosh?(r) d¢ — (dt + sinh(r) d¢)2) : (2.206)

which corresponds to the time-like Warped AdS spacetime (1.5).

Null WAdS We pick ¢y = (0,0,1) and complete the basis with ¢; = (1,0, 1) and
(2 = (0,1,0). By setting the currents to zero

L=0="P, (2.207)

v to 1 as null WAdS only exist for this value of the wrapping parameter and making
the following change of coordinates

u=e"r"? T, t =232t (2.208)

1
YT
the final metric is

F_UQ—F u?

2 2 + - —\ 2
ds du dx™ dx _(d;;) ' (2.200)

We recover the Null WAdAS metric (1.9).
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Spacelike WAdAS We pick ¢, = (1,0,—1) and complete the basis with (; =
(1,0,1) and ¢, = (0,1,0). We are making the same change of coordinates as for the
time-like case but this time we set the currents to

k
= —— =0. 2.210
L=-2. P (2210)
The end result is
as? = — (ar? — cosh®(r) do+ —X° (At + simh(r) do)? (2.211)
S = r — T mnir .
v+ 3 V243 ’

the space-like Warped AdS metric (1.8).

Warped Black Hole As spacelike WAdS is the only warped spacetime that can
carry non-pathological black holes, we will use the same vectors ;. However we will
perform a different change of coordinates:

p =2log (5\/5(\/7”—7“++\/7"—7“)> , p=—¢, t= jgbr, (2.212)

and set the currents to

(4c? 5 lka Kk, CTyT_
2 = T6(T+ — T_) s P = — 71677r€ bC <T+ + r_ — bQ ) . (2213)

The final metric is

ds® —dr? + dr® + <2yr— T (1/2—|—3)> drd¢
e 7 (T |y o

- (3@2 ) e+ (P +3) (s — 1) — dnSrr (2 + 3)) dg?.

It is the warped black hole in the canonical ensemble (1.13).

(2.214)






Chapter 3

Uniformization of entanglement
entropy in holographic warped
conformal field theories

The stress-tensor T}, of a Quantum Field Theory (QFT) dictates, through Ein-
stein’s equations, constraints on the geometry arising semi-classically when coupling
gravity to matter described by this QFT. Various energy conditions on 7, can be
formulated, expressing, for instance, the positivity of energy density (Weak Energy
Condition) or the causal propagation of energy flow (Dominant Energy Condition).
A weaker energy condition is the Null Energy Condition (NEC).

T "% >0 Wk | Kk, =0 (3.1)

The proofs of the black hole area law [0%] or singularity theorems [09] crucially
rely on the NEC. This condition, however, is violated quantum-mechanically, e.g.
in the Casimir effect or by Hawking radiation. Instead, quantum mechanically
QFTs typically satisfy non-local conditions such as the Averaged NEC (ANEC)
(see e.g. [I11,112] for recent proofs and refs. therein), which states that negative
energy fluxes along null directions are compensated by positive energy fluxes (with
“quantum interest” [117]).

The Quantum Null Energy Condition (QNEC) [7(] is a local energy condition
conjectured to extend the NEC to the quantum regime, and has attracted a lot

of attention in recent years [!!/-121], including proofs for free QFTs [122], for
holographic Conformal Field Theories (CFTs) [123], then for general CFTs [71], and
shown to hold universally for generic QFTs under the same assumptions required for
the averaged NEC [12]. For two-dimensional CFTs (CFTy), QNEC reads [70, [27]
6
2m (T, k"k") > 8" + — 82 VEM | KMk, =0, (3.2)
c

where c is the central charge of the CFT, (1),,k"k") the expectation values of the
null projections of the stress tensor for a given state, and S is the entanglement
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entropy (EE) for an arbitrary interval of this state; prime denotes variations of EE
with respect to null deformations in the null direction defined by k* of one of the
endpoints of the entangling region.

In the context of AdS3/CFT,, it was shown that QNEC saturates not only for
the vacuum, for states dual to particles on AdS3 or BTZ black holes, or for any state
that is a Virasoro descendant thereof [120], but also for all states dual to Banados
geometries [120], some of which describe systems far from thermal equilibrium [121].
This was done by exploiting the fact that all Banados geometries are locally AdSs
and using a uniformization map between Poincaré AdS; and the Banados geometries
[127].

Following a similar strategy, a Quantum Energy Condition was derived recently
[125] for a class of non-Lorentz invariant holographic theories with BMS; symmetries,
through a uniformization map between Minkowski space and the flat version of
Banados geometries [129], yielding inequalities involving the supertranslation and
superrotation fields instead of the CFT stress-tensor.

Importantly for this work, universal expressions for EE in WCFTs were derived
holographically [15,50,51].

In this chapter, we take the first steps towards extending these results to another
class of non-relativistic theories, Warped Conformal Field Theories (WCFTs) [17].
We first review the results for AdS;3 gravity with Brown—-Henneaux boundary con-
ditions and the derivation of the saturated version of (3.2) for Banados geome-
tries. We then turn to a simple holographic model for WCF'Ts, consisting in pure
Einstein gravity in 2 + 1 dimensions with a negative cosmological constant and
chiral/Compeére-Song—Strominger (CSS) boundary conditions [75]. The role of the
Banados geometries there is played by a gauge-fixed and on-shell version of the CSS
boundary conditions, referred to as CSS geometries. We determine a uniformization
map that allows us to derive EE for states of a WCFT dual to these geometries.
We express components of the holographic stress tensor in a form reminiscent of
the saturated form of QNEC (3.2). Finally, we present an unsuccessful attempt to
derive unsaturated equations for the energy conditions based on the strategy applied
in [120] for QNEC (3.2).

3.1 Saturated QNEC for hologaphic CFT,

In this section we review a holographic derivation of the saturated QNEC for
CFTy. In AdS; gravity with Brown—Henneaux boundary conditions, the most gen-
eral vacuum solution in Fefferman-Graham gauge is the Banados metric [120] (see

also [127,120])

ds?  dz? —dryda_
2 22

+Lyda? + L_da? —2°LyL_dx, do_, (3.3)

where Ly = Ly(z4) and { is the AdS radius.
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The expectation values of the stress tensor are related to the functions L4 present
in the Banados metric (3.3) by

c
2T <T:t:|:> == éLi, (34)
where ¢ is the Brown-Henneaux central charge [10]. The Poincaré patch is just a

special case where L. = 0 in (3.3). As the Banados metric is locally AdSs, there is
a mapping for the Poincaré patch to (3.3) [131, 132]:

L+ (das 22T
b= o)
z

TR a2

where the functions 1* (x4 satisfy Hill’s equation:

(3.5b)

v — Lyt =0 (3.6)

and zj, is one of the Killing horizons of the Banados metric (3.3). Expressing the
two independent solutions of Hill’s equation by ¢ff2, it is convenient to normalize
them as
Uiy — Uiy = £l (3.7)
From this diffeomorphism, we can find the holographic EE of the Bafiados metric
starting from the one of the Poincaré patch [7]:

T
Spp—clnl—gln<(xl $2)§$1 952))’ (3.8)

3 € €

where me are the boundary points of the entangling interval [. It is sufficient to
know the near boundary behaviour of (3.5) to compute the holographic EE. Close
to the boundary, one has the conformal transformation

+
+_ " <
Tp = —F, Zp = —, 3.9
PTUE PTG &
and one finds [132]
I+ + -
Stes = gln <x1 T2 )2 (wl 2 ) =S, +5_, (3.10)
€
with
(o, 25) = i (@9)vs (23) — ¥ (2395 (a1) (3.11)
We are now in position to show that the Banados geometries saturate QNEC [121].
Defining the ‘vertex function’
6 I (af,2d) 1 (a7, 23
V = exp <S> _ Pl ’x2)2 (1, 25) (3.12)
c €
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it is straightforward to show that it satisfies Hill’s equation (3.6),
V" =LV (3.13)

On the other hand, the definition (3.12) implies
| A 6
7 — E (S” + CS,2> . (314)

Now, using the relation between the stress tensor and the functions L., proves that
for the Banados metric the QNEC inequality (3.2) saturates.

6
2m (Tex) = S+ p SZ, (3.15)

3.2 Holographic WCFT model

We take as our holographic model AdS; gravity (again with AdS radius ¢) with CSS
boundary conditions [77]. The counterpart of the Banados metric is given by
ds?  dz? ( 1 2A

A 2 A 2
672:? 22+kpl+k2LZ>dt+dt_—|—kdt_

P 1 A
+ <Z2 + %(L +A P?) + =L P 22) e, (3.16)
where k = (/4G, A is a constant and the functions P’ =: 9, P and L depend on

t, only. If the latter functions vanish, we recover an extremal BTZ black hole with
(M —J=0and (M+J=A ]

The CSS boundary conditions in (z, ¢, t_)-coordinates ["] read
€2
g+ = O(2),
4 3.17
g+,:—@+(’)(l), ( : )
P'r?

g+ =5 T o),
g =4GIA + O(z),
where the boundary is located at z = 0. The points (z,t",t7) ~ (z,tT +2m,t~ —27)

are identified. In Fefferman-Graham coordinates the boundary conditions (3.17)
read

2dz2 2 (o (2)
ds* = ——+ 5 (9% + 22055 + O(z%)) da"da®, (3.18a)
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where 2% = (t+,¢7) and ¢'2 and ¢'?) read in {+, — }-coordinates

1

¢ =0, a0 =P, g9 =gl = ~5 (3.18D)
AG

g = -4 (3.18¢)

We will assume in the following that A > 0. The asymptotic boundary is at z = 0;
to map it to r = +00, we use from now on r = 1/z as radial coordinate.

Asymptotically the CSS metric (3.16) has a Virasoro-Kaé-Moody algebra sym-
metry that acts at the boundary as

te — F(ty),
o=t + g<t+) )
and is generated infinitesimally by the asymptotic Killing vectors
r
€) = e(ty )0, — =€ (t4)0, + subleading ,
£(e) (t4)0+ 9 (t+) g (3.20)

n(o) = o(t4+)0- + subleading,

The corresponding charges generating the Virasoro-Ka¢-Moody algebra are given
by

Q=5 [0 e(t) (L-aP?)

| (3.21)
Qo= 5 /d¢> o(t,) (A +2AP) |

By setting € = e+, o = ¢+ and defining L, = Q., P, = Q,, we can write the
algebra given by the Dirac bracket

Cc

Z[Ln, Lm] = (n — m)Ln+m -+ En35n+m s
i[Ln, Ppn] = —=mPpim , (3.22)
1[Pn7 Pm] = —2P07’L 5n+m )
with
3¢
= — Py=A. 2
c=oe B (329

We recognize the algebra of a WCFT in the quadratic ensemble (2.66) where the
Kac¢-Moody level is charge-dependant.
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3.3 Energy-momentum-tensor from well-defined
variational principle

3.3.1 Variational principle

The variation of the action after addition of the Gibbons-Hawking term and standard
counter term reads [77]

¢ 2 ab Kl (0)ab
050 = 167G /d x\/% <9(2) ~ 99kY ) 09 (0)ab - (3.24)
Here, indices are raised and lowered with the inverse metric
a 0 -2
9i0) = <_2 4 P,> - (3.25)

In our case, this reduces to

€ - a
R T / At dt™ /= 90093 09(0)an- (3.26)

However, the variation of the action does not vanish due to the fact that dg( )4+ # 0.
In particular, the variation of the action gives

A
58y = = / dt*dt=5P' . (3.27)
2
Here k = ¢/(4G). This can be remedied by addition of a boundary term [7)]
A A
_ + - — _ + 14— pf
S = Q/dt ™\ /~g090) = —%/dt AP (3.28)

In this way, since A =0

The boundary term S; is not written in a covariant manner. To write (3.28) covari-
antly, we introduce the vector

ko =9, , (3.30)
with which we can write (3.28) equivalently as
A - a
Si= o [t =aeg k. (3.31)

3.3.2 Energy-momentum tensor

To find the energy momentum tensor, we must vary the entire action. The variation
of Sy gives (3.24). For the variation of S;, we have

S + 94— _
051 = In /dt dt 5( —90)9(0) )
A - —— 1 ab __
= E /dt"‘dt \/?(m (59(0) + 29(0)59(0)(1(29(0)) (332)

A 1
. + 1= a— b— —— ab
== / dt*dt™ /=g (—g(o)g(o) + 590 9(0)> 09(0)ab -
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From this, it follows that

0S5 =050+ 95
l A A
o + b a— b— —— ab
/dt de™ \/%(16 aJ 471_9(0)9(0)"‘8?9(0) g(o)) 09(0)ab (3.33)
=5 / dt—"—dt_\/?(o)Tabag(O)aby

with

T = (8 2L _OAP,2)> : (3.34)

We can also vary the action with respect to k, and obtain

1 , A a
oS = 3 / dttdt™ /[~ g (Wg ) Sk = / dt*dt /=g S 0ka . (3.35)

Here, we have defined J* as

a A ab 2A 1
Jt = ?g(o)kb S <2P’> : (3.36)
The vector k, can be used to project out the relevant components of 7% and J¢
L — AP?
Tkoky = 2= —— | (3.37)
s
and A
Jk, = ——P/ (3.38)

3.4 Uniformized warped entanglement entropy

In this section, we derive the EE expressions for the family of metrics (3.16) after
deriving a warped version of the uniformization procedure reviewed above.

3.4.1 Subleading terms

We first derive the explicit form of the infinitesimal diffeomorphism (3.20). The
infinitesimal transformations leaving (3.16) invariant are of the form [120, 130]:

OOd /
=1 o), X = () — oo / Tffyabw, 29, (3.39)
with
as? = 24 ) dz® dz? 3.40
s = T2+'yab(r,x)a: x”, (3.40)
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and where € is a conformal Killing vector at the r = co boundary and o is the Weyl
factor of e.
The explicit results

r_ Ty
X - 267
kA€”
X+::e@+)+-§0?;;:7;§5, (3.41)

gy g Bl PR
X T Sk LAY

yield finite variations of the functions defining the physical state

k
0L =2€L+el — 56”/,
6P = (eP — o).

(3.42)

We recover the same infinitesimal transformation for L as in the Banados metric.
This is expected, since in both cases there is an underlying Virasoro symmetry. The
transformation of P’, however, is not governed by Virasoro symmetries; instead, it
is governed by u(1) Kaé¢-Moody symmetries.

3.4.2 Uniformization from extremal BTZ

In the boundary conditions of [77], A is a fixed constant, and one cannot reach
a metric (3.16) with A # 0 from one with A = 0, in particular Poincaré AdS;.'
Therefore, let us consider a CSS metric with A # 0 and vanishing P’ and L.

ds3  du? —dy,dy. A
e L (3.43)

The change of coordinates between (3.43) and (3.16) is given by

. dt+ Aw/24
Y+ = v V(kp? — Ap2z4)” (3.44)

y- = t-—C(ty) — \/Eartanh ( 22/;/:2) , (3.45)

u = Ve (3.46)

/k¢2 _ A¢1224 )
!This is related to the fact that the CSS boundary conditions are dual to a WCFT in the so-
called quadratic ensemble, in which the level is U(1) charge-dependent, the latter not being able

to vary over phase space — here the zero mode U(1) charge is given by A. There exist alternative
boundary conditions yielding a constant level and a varying zero mode U(1) charge, see Appendix

of [55] or the AdS3 limit of WAdSs boundary conditions of [39]. These are naturally dual to a
WCEFT in the canonical ensemble. See e.g. [13] for a discussion on the relation between the two
ensembles.
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where C'(ty) and (¢, ) are given by the warped analogue of Hill’s equation.

L(ty)

Plty) =C'(ty), " - ’

=0, (3.47)

3.4.3 Uniformized entanglement entropy

EE for a WCFT in a state dual to (3.43) is given by [1%,50,51,00]?

[k oyl —ys
— 4
A 2¢2 ’ (3.48)

where yiF are the endpoints of the interval and € a UV cut-off.
Performing the diffeomorphism (3.45) yields the EE of the WCFT state dual to
the CSS metric

See = —VAk(y; —y,) +kln

where we separated the entropy in a Kac-Moody part Sp and a Virasoro part Sy,
Sp=—VAK(l; —t, = C() + C(3)),

kU 1) (3.50)
A 2¢? ’

and used the same normalization for ¢ than in the CFT case and (3.11).

3.4.4 Entanglement entropy and warped conformal trans-
formations

The expression for the uniformized warped entanglement entropy that we derived
previously can also be used to understand the transformation behavior of the EE
under finite and infinitesimal warped conformal transformations. To do this, we
take (3.48) and perform a finite warped conformal transformation of the entangling
intervals of the form (3.19). This yields

Sp = —VAk (yr —ys +9(u) — 9(u3)) .
\/?(f(yf)—f(yf?))] (3.51)
Aoe[Fuh) )]

where we have also taken into account the rescaling of the UV cutoff € under this

SL =kln

transformation as €2 — €2/ f/(y;7) f'(y5 ) that can be read of from the leading order
term of (3.46).

2To recover the metric (3.43) from the section 5 in [(0], one has to choose the parameters as
a=4/A, b= 1/\/2, ¢ = 2, makes the change of radial coordinate e# = \/A/kz? and sets the
functions £ and K to zero.
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Now, looking at infinitesimal warped conformal transformations of the form
yt =yt elyt), oy =y oy, (3.52)

it is straightforward to work out the infintesimal transformation properties of Sp
and Sy. These are given by

!/ / C /
where ¢ = 6k. From this one can see that the u(1) part of the entanglement entropy
transforms like a weight-0 scalar and the s[(2) part like an anomalous weight-0 scalar,
which is not suprising given the underlying structures and symmetries of a WCFT.

3.4.5 WCFT saturation equations

The AdS; stress tensor [133-130] for the CSS boundary conditions reads *
127 9 2 (0 L Ap2 _Ap
— (Tw) = 95 — g%)gl(cl)géb) = (k _ékpl Ko (3.54)
Z k

Using (3.49), its components are shown to satisfy

6
2m (Thy) = ST + E(S/LQ +57),

om (Ty_) = iS},SP, (3.55)
om (1) = 83,

where prime denotes a derivation with respect to £, and the dot a derivation with
respect to t_. Another set of relations can be derived in terms of the currents
responsible for the Virasoro-Ka¢-Moody charges (3.21). Defining

2m (T1) = L — AP? | 27 (Tp) = A +2AP, (3.56)
one has
6
2m (T) = Sp+ —(SE — Sp),
6 . °C ' (3.57)
21 (Tp) = E(SJ% —255,5p).
3As argued in [17], the background geometry to which WCFTs couple is not Riemannian, but

rather has Newton—Cartan structure. From this perspective, the so-defined stress tensor is not
the most natural object to consider, but for now we take (3.54) as a useful way to repackage the
WCFT currents generating the conserved charges.
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These equalities are WCFT analogues of the QNEC saturation equations (3.15). If
one defines a second constant boundary covector

ko =061, (3.58)
then one obtains additionally

1

Sh=—A= gjalfca. (3.59)

To bring everything in a covariant form, we notice that
k?0,Sp = =25, k%0,S, =0, k°9.Sp=2VAkP', k%0,Sp=2VAk. (3.60)

Now, it is possible to write down fully covariant saturation equations:

1
2T ko ky = k*k'0,0,51 + . ((k*0aS1)* = (K*0.Sp)°) -
2

(3.61)
o = 1 (k0u5p) (K" 0uSp)

gjak:a n gﬂ% (k0,55 .

1

Tk

3.5 To an unsaturated version of the QEC for
WCFT ?

After defining saturated equations, the natural next step is to prove their non-
saturation in a precise context. As we have shown, every vacuum solution satisfying
the CSS boundary conditions (3.16) will saturate the equations (3.61). Therefore,
we need non-vacuum solutions satisfying the boundary conditions (3.17). In the
AdS/CFT case, it was proposed in [!20] to apply a shockwave in the bulk sourced by
bulk matter. The strategy is to use the holographic correspondence to compute EE
using the Ryu-Takayanagi (RT) prescription [5]. If the RT surface passes through
the bulk matter, the QNEC is unsaturated, as long as one requires a certain bulk
energy condition, weaker than the NEC but stronger than the ANEC, which can be
derived from it by sending the endpoints of the interval to infinity. However, this
strategy will face some difficulties for WCF'T.

To derive the saturated equations (3.61), we separated the EE into two parts.
These separations are quite natural from (3.49) and (3.51), but for a generic metric
satisfying the CSS boundary conditions, it is not obvious. In AdS, the question does
not arise since the dependence on both coordinates x* decouples from each other
(3.10). For flat spacetime [!2%], the same issue appears, but it is possible to evade
this question by using a flat limit from the AdS/CFT result. For WCFT, such a
limit does not exist. One could suggest the limit » — 1 mentioned in Chapter 1,
but this limit allows us to transition from WAdS to AdS, not the other way around.

Furthermore, the RT recipe relies on the computation of extremal surfaces, which
are geodesics in 2 + 1 dimensions. For gravity duals of WCFT, a simple massive
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geodesic is not sufficient to express EE. In [77], an extension to massive spinning
geodesics was proposed, while in [50], it was suggested that the spinless geodesic
is not anchored at the boundary. One could also mention [’1], where the world-
line action of a massive charged particle was used, and [73] introduced the concept
of swing surfaces. In Chern-Simons formalism, there also exists a method, using
Wilson lines, to compute EE (see [137, 135] for AdS space holography, [139, [10]
for flat holography or [60] for WAdS holography). One could then use a Chern-
Simons formulation of CSS boundary conditions. The choice between these different
holographic prescriptions of EE for WCF'T provides a versatile toolbox for selecting
the appropriate solution to our problem. However, it also lengthens the time required
to explore each option and determine the most suitable one.

All these reasons explain why we did not succeed in proving non-saturated QNEC
for WCFT. Nevertheless, this does not imply that the problem is unsolvable. Anyone
interested in computing non-saturated QNEC for WCF'T is encouraged to explore
and utilize the toolbox described earlier.



Chapter 4

Coadjoint orbits of the Warped
Virasoro group and SL(2,R) x U(1)
Chern-Simons reduction

In 1995, Coussaert, Henneaux, and van Driel [!11] performed a reduction of the
Chern-Simons action for AdS; under Brown-Henneaux boundary conditions [10].
Their results showed that the action can be expressed as two Wess-Zumino-Witten
(WZW) chiral bosons [|12—111]. A WZW model is a particular two-dimensional
o-model where the fields g live on a semi-simple Lie group manifold [I17]. After
implementing all the Brown-Henneaux boundary conditions in terms of the gauge
connection, it reduces to a Liouville action on the asymptotic boundary. This action
originally represented the equation of motion for the Liouville differential equation,
which dates back to the 19th century and was introduced in the context of the
uniformization theorem for Riemann surfaces [I10—115]. In 1981, Polyakov [I19]
proposed that the Liouville differential equation describes the equation of motion
for the quantum field theory encountered in string theory, particularly in relation
to the transformation of the path integral measure under Weyl rescaling.

This all procedure is called the Hamiltonian reduction of the WZW model to Li-
ouville theory [150-152]. To include Banados-Teitelboim-Zanelli (BTZ) black holes
[30] in this framework, one must allow the gauge field to carry holonomies [72,75]. A
fixed-time slice of a BTZ black hole has the topology of an infinite hollow cylinder.
The actions on each boundary are coupled through their shared holonomy.

Although Liouville theory is a CF'T, it does not serve as the quantum theory
of AdSs; because the derivation mentioned earlier is classical. The reduction from
a WZW model to Liouville was performed at the quantum level and is known as
Drinfeld-Sokolov Hamiltonian reduction [150, 153, 151]. This process reproduces
the BTZ spectrum and the Brown-Henneaux central charge only within the semi-
classical approximation. Consequently, Liouville theory can be regarded solely as
an effective theory of the holographic dual CFTy [71].

In the 1980s, an alternative formulation of this reduced action was found using
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the symplectic 2-form, also known as the Kirillov-Kostant form, which can be de-
fined on a coadjoint orbit of the central extension of the group of diffeomorphisms
of the circle, the Virasoro group [I52]. The orbit representatives are connected to
the holonomies of the gauge fields. Asymptotically locally AdSs; spacetimes solu-
tions are Banados geometries [177], parameterized by two functions representing the
expectation values of the dual stress tensor. These expectations transform in the
coadjoint representation of the Virasoro group [/0], linking Banados geometries to
the coadjoint orbits of the Virasoro group [127, 151, 150, 157]. The orbit representa-
tives match the global charges of the bulk geometry.

These constructions have been successfully adapted for other geometries, such
as flat spacetimes [73, 175] and dS3 spacetimes [159]. Other applications in higher
spin physics and Carroll groups can be found in [[60-103]. In this chapter, we
demonstrate its applicability to warped spacetimes [33,57,00].

The reduced action in locally AdS3 spacetimes is also related to a 1d effective
theory through dimensional reduction of the action. This effective theory is known
as Schwarzian theory [1 0], which has found applications in various contexts such as
Sachdev-Ye-Kitaev (SYK) models [105, 160] and 2d Jackiw-Teitelboim (JT) dilaton
gravity [107,105]. From the dimensional reduction of the warped reduced action that
we construct, a warped alternative called Warped Schwarzian theory [109] arises.

The partition function of the gravity dual of the geometric action was shown to
be one-loop exact in the context of AdSs spacetimes [77] and flat spacetimes [73]. For
these geometries, which exhibit a 2d conformal symmetry for AdS; and an ISL(2,R)
symmetry for BMS3, the vacuum and its one-loop corrections suffice to derive the
Virasoro character [170, 171] and the BMS character [172, 173]. We demonstrate
that, through a path integral derivation, it is possible to partially recover the warped
Virasoro characters [13].

The chapter will be structured as follows. The first section will explain the
construction of the geometric action and its application to the Virasoro group. The
second section will review well-known results found in the context of AdS/CFT. The
tools mentioned in this first section will be applied to WCFTs in the final one. We
will construct the coadjoint orbits, identify their orbit representatives, and develop
the geometric action for the warped Virasoro group. Additionally, we will begin
with a lower spin SL(2,R) x U(1) Chern-Simons theory [57,00], reviewed in Section
2.3 of this thesis, and perform a Hamiltonian reduction at the boundaries, taking
into account the holonomies to establish correspondence between holonomies, global
charges, and orbit representatives. Finally, we will briefly discuss the connection
with Warped Schwarzian theory and conduct a one-loop computation of the partition
function to derive the warped characters.

4.1 Geometric action on coadjoint orbits

As emphasized in the introduction of this chapter, various reduced actions can be
formulated as a geometric action with an orbit representative. In this section, we
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will introduce the concept of geometric action and explain why it is meaningful to
recover it at the boundary of our spacetime.

Let G be a Lie group with Lie algebra g and its dual g*. We define the scalar
product (hermitian product if the algebra is complex) as

(,):g"xg—R (orCif hermitian product)

(X,a) — (X,a) = X(a). (4.1)

We define the adjoint representation as the action of the group G on the algebra g.
If g € G,

Ad;, :g—9g

4.2
a s Ady(a) = gag™". (4.2)
The infinitesimal version of (4.2) is the action of the algebra on itself
dy : g —
adp : g — 9 (4.3)

a +— ady(a) = [b,al,

with b € g. An action of the group G on the dual g* can also be defined and is
called the coadjoint representation

Ad; gt —g (4.4)
X — Ad;(X),
where
(Ad}(X),a) = (X,Ad,"(a)), (4.5)

with g € G, X € g* and a € g. Like for the adjoint action, there is an infinitesimal
version of the coadjoint action

ad, : g — g"

X o adi(X), (4.6)

where

<adZ<X)a CL> = <X7 [a7 b]) ) (4'7>

with X € g* and a,b € g. For a chosen covector Xy, the coadjoint orbit Oy, is the
set of elements of g* reachable through the coadjoint action of an element g € G on
X()I

Ox, ={X € g" | X = Ad}(Xo)} . (4.8)

The covector X is called the orbit representative of Ox,. The orbit is isomorphic
to the quotient G/H where H is the stabilizer subgroup, also called little group,
defined as the set of elements in G leaving X invariant under the adjoint action

H={g€G|Ad(Xy) = Xo}. (4.9)
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All coadjoint orbits Oy, are symplectic manifolds on which a symplectic structure
can be defined. The dual space g* then foliates into symplectic leaves. We may think
of these orbits as different phase spaces. As for classical systems where we can define
Hamiltonian actions on the phase space, we can construct an action 7, on the orbit,
that is invariant under G. This action is called the geometric action.

The symplectic form, denoted as Kirillov-Kostant symplectic form [ 71, 177], acts
on tangent vectors to Ox, on a point X. A tangent vector on Oyx, is a coadjoint
vector that can be written as

ad; (Xo) = X;. (4.10)

We can then define a bilinear form acting on tangent vectors at a point X

wg :g"xg"- =R (orC) ) (4.11)
(Xl,XQ) — CUX(Xl,XQ) = <X, [al, CLQ]) .

This bilinear form is nondegenerate and closed, as required for a symplectic form.
Since it is closed, it is locally exact and one can find a 1-form « such that

w=da. (4.12)

It allows us to define an action I by integrating the 1-form « along a path v on the
orbit Oy,

I:/a. (4.13)

This action is the geometric action on a coadjoint orbit of representative Xy. As the
orbit is isomorphic to G/H, it gives to the action an additional gauge symmetry.
We can then add to the geometric action the integration of an element Ly € H along
the path without breaking the symmetry.

The groups we are going to work with are centrally extended G = G x R”,
where the number n depends on the dimension of the second cohomology space of
G [176,177]. For the Virasoro group, n = 1, while for the Warped Virasoro group,
n = 3 [175]. The algebra is also extended g = g x R™. Let us see how the definitions
above are impacted under the adding of a central extension for n = 1. The cases for
n > 1 follow similarly. A group element of G is now a pair (g,n) where g € G' and
n is a number. The group multiplication is defined as

(g1,m1) - (g2,m2) = (91 - g2, 1 + 1o + C(g1, g2)) (4.14)

The function C(gy, gs) is the 2-cocycle of the group G' and satisfies the property
Clg,971)=0. (4.15)

Thus, the inverse element in G is

(g;n) " = (97", —n). (4.16)

IFor the readers interesting in the connection bewteen cocycles, group extensions and the second
cohomology group, see [179, 150]
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The coadjoint action of an element (g,n) of G on an element (X, ¢) of §* is

(g:m)

Adj, (X, ¢) = (Ad3(X) + e7(g),c) | (4.17)

where Adj(X) is given by (4.5) anf 7(g) is the 1-cocycle of the group G. We notice
that the central element n acts trivially under the coadjoint action and that the
central element c is left invariant.

To proceed further, we will specify the extended group we are working with and
begin this section with the Virasoro group as originally presented in [152]. Here, the
group G represents the group of diffeomorphisms of the circle Diff" (S!). The circle
St is parametrized by the real coordinated ¢ with the identification

@~ @+ 2. (4.18)

As mentioned earlier, the centrally extended group is G = G x R. Elements of the
algebra are pairs (a(¢), A) where a(¢)d, is a vector field and A a number. Elements
of the dual are (X (i), c) where X (p)(dp)? is a quadratic differential and c is dual
to the center. The product (,) is defined by

(X,0), (0, 1) = § dp X(p)alg) + e, (4.19)

Example of the Virasoro group

We will now continue the discussion by considering a well-known example: the
Virasoro group and its algebra. This group corresponds to the central extension of
the group of diffeomorphisms of the circle, Diff *(S!), and it has the corresponding
algebra

[Loy Ln) = (n — m) Ly + —n(n* — 1)pim - (4.20)

c
3"
This algebra appears in the context of the AdS;/CFT, correspondence and is present
in the asymptotic charge algebra of the transformations preserving the AdS phase
space under Brown-Henneaux boundary conditions [! ()] and in the symmetry algebra
of the dual CFT. Later, we will observe that the geometric action constructed on
the coadjoint orbits of the Virasoro group matches the reduced gravity action on
the boundary of an asymptotically AdS3 spacetime.
For the Virasoro group, the 2-cocycle is given by [170, [ 77]

1 g//
Cg1,92) = —%fdso log(g; o 92);Z ; (4.21)
and the 1-cocycle is
1
— = qg 4.22
19) = =5, g0}, (4.22)

where o denotes function composition, g o ¢ = f(¢), and {g; ¢} is the Schwarzian
derivative (2.28).
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To compute the symplectic form (4.11) on an orbit Oy,, we need the coadjoint
action on Xy and the commutator of the algebra. One may write the adjoint action
of the group G on its algebra g as

d _
Ad(gyn)(av A) = de (9, n) - (e, 6)‘> : (g>n) ! =0’ (4'23)
and then computes the commutator (4.3)
d
[(a17 )\1>7 (a27 >\2>] - _di Ad(eEal,E)\l)(a?u )\2)‘6*0
€ ] - (4.24)
= (ala’Q — alay, pro %dgp(a’l”ag - amé”)) :
The coadjoint action of the Virasoro group now reads
« c
Adig-+(X.0) = (£2X(9) = S Afi0he) (1.25)
By defining )
(X5¢) = Ad{y)-1(X, ), (4.26)
we observe that the orbit representative transforms as
-~ c
X(p) = ?X(f) — 5 —Afie}. (4.27)
241

It is interesting to precise as a remark that this is also the transformation law of the
stress tensor of a CFT,.

For a large class of orbits, specifically those corresponding to highest-weight rep-
resentations?, it is possible to choose the representative X such that it is constant.
However, there exist others for which providing any tractable expression for Xj is
not feasible [70, 152]. These orbits will not be discussed further. For the remaining
orbits, two different cases arise. If Xo # —z=n? for n € N, the stabilizer is U(1) and
the orbits are isomorphic to Diff(S')/U(1). If the representative is X, = n?,
the little group is significantly larger and extends to SL™(2,R) [76,152].

With everything in hand, we are now ready to compute the Kirillov-Kostant
symplectic form (4.11)

Wiz = <(X7 C)? [(alv )‘1)7 ((12, )‘2)]>

C
=~ fdp (£ Xo(ah — aaa)) + 5 (s + {0} (or0) — aaa)))

__c
487

(4.28)

We can rewrite it as a form and using the transformation df = f’ da to end up with

w=— 7{ dop (ng FAdf + ﬁdlog £ A (dlog f’)’> | (4.29)

2This statement is alluded to in Section (4.2.7), where Virasoro characters are computed for a
broad set of orbit representatives.
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By solving locally the equation w = da and by integrating over a path ~ along the

orbit, we find o
T[f; Xo) = /j{dgo<Xofdf+Cff(}2f).

We can parameterize the path by d = d¢d; and add to the action an element Lg of
the stabilizer subgroup given by the zero mode of X (¢):

(4.30)

12
Lo = ]{dch j{dg) < 2X, + 48?2> , (4.31)
where we performed a integration by parts for the last term. The final action is then
f/l@ fl
I:I[f;XO]—/dtLO:/dtdw(Xofa [+ 1 7 ) (4.32)

with 0_ = 3t - a<p.

4.2 AdS; gravity and Virasoro symmetry

In this section, we review the connections between AdSs3 gravity, Chern-Simons ac-
tions, Liouville theory, Schwarzian mechanics, and geometric actions. We gather
classic results on the AdS3 gravity phase space, as well as more recent developments
such as a one-loop computation of the partition function. This review will be bene-
ficial in the next section when we attempt to conduct a similar analysis for WAdS;
gravity. The curious reader that want to learn more about the Chern-Simons formal-
ism for AdS; and the Hamiltonian reduction of the SL(2,R)x SL(2,R) Chern-Simons
action with Brown-Henneaux boundary conditions can look at [/, 181, 122].

4.2.1 Chern-Simons formalism for AdS;

In [152], Achucarro and Townsend proposed a new way to describe three-dimensional
Einstein gravity with a negative cosmological constant A by reformulating it as a
Chern-Simons gauge theory with gauge group SL(2,R) x SL(2,R). They showed
that the action is equivalent to the difference of chiral and anti-chiral Chern-Simons
action:

Sgp[A, Al = Scs[A] — Scs|A] . (4.33)

The gauge field A (A) is associated with the first (second)SL(2,R) factor and the
action Scg[A] is the Chern-Simons action

SeslA] = f/' Tr [AAdA+ ZANANA (4.34)

where k is a coupling constant called level. The gauge fields A and A are connected
to the triad e and the spin connection w by A =w + ¢/l and A = w — e/l using the
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existence of the length scale [ of A = —1/I?. Indeed up to a boundary term, one can

show than the Chern-Simons action (4.33) is equivalent to the 3d Einstein-Hilbert’s

action with k = L

4rG
SplA, A = | VR oma N (4.35)
, —= —_ xr — w ea . *
z 167G Jau VY 167G Jom
This reinterpretation of Einstein gravity in 2 4+ 1 dimensions as a Chern-Simons
action was extended to arbitrary cosmological constant in [1%1, 125] and even to
supergravity [153, 150] and higher-spins [187, 155].

4.2.2 Brown-Henneaux boundary conditions

In 1986, Brown and Henneaux proposed boundary conditions on the metric for three
dimensional gravity with A < 0 [10]. In Fefferman-Graham coordinates where the
metric is given by [7]

12 S
ds® = ﬁd'r‘2 + (7, 2¥)dr'da? (4.36)

with @ = 0,1 and the expansion, when r — oo, v;;(r, z%) = TQgS»)) (z%) + O(1), these
boundary conditions read as

gg»))dxidxj = —dztda™, (4.37)

where ¥ =t & ¢ are the light-cone coordinates. They showed that the asymptotic
charges algebra associated to the symmetries preserving these boundary conditions
are two copies of the Virasoro algebra:

[Lm7 Ln] = (m - n)Lm+n + %(ng - n)6n+m )
(L, Ln] = 0, (4.38)
[f)m, En} = (m—n)Lpn+ 1—02(n3 — 1) 0ntm 5

where c is the Brown-Henneaux central charges

3l

= o (4.39)

C

The most general solution satisfying the conditions (4.36)(4.37) (up to trivial dif-
feomorphism) is the Bafiados metric [155]:
2

2 2 _
ds* = l—dr2 - (Tda:+ - iL(x‘)dm‘) (rdx_ - ZTL(ij)der) , (4.40)

r2

where L and L are two single valued arbitrary functions. We can recover well-known
metrics for specific values of L and L. For example empty AdS3 in global coordinates
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when L = L = —1/4 or massless BTZ when L. = L = 0. For generic BTZ, it
corresponds to positive values of L , L related to the mass M = (L + L)/(4G) and
angular momentum J = [(L—L)/(4G) of the black hole. These boundary conditions
on the metric can be translated on boundary conditions on the connections A and

A l]:
dr LT (p+)dat _ —dr Ldx~
~ 2r T ~ 2r l

These conditions can be separated in two sets of conditions:

(i) A =0= A, or equivalently A, = A, and 4, = —A

©;
(i) Ay = LL(z")Ly + 0Ly — 7L_y and A_ = 7Ly + 0Ly — LL(z7)L_; where L,
are generators of the si(2,R) algebra defined in (A.3).

Before proceeding, let us clarify one final point. The Brown-Henneaux boundary
conditions do not lead to a well-defined action principle. First, let us explicitly
introduce the coordinates r, ¢, and ¢ in our action (4.34):

k . .
SeslA] = - /M B Tr [A A, — A A, +2A,F,,] (4.42)

where F' = dA + A A A is the curvature two-form associated to the connection A
and we dropped a boundary that we will take care in a few steps. Now, varying the
action (4.33), one obtains

k _
6Sp = (EOM) + o | %z Tr [A0A, — AGA,| . (4.43)

The last terms does not vanish under the conditions (4.41). To ensure this, we need
to add the following surface term to the action (4.33)

k

_ N 2 2 72
I=— | &oT A2+ A2 (4.44)
such that the final action is
T _ T k 2 2 72
S[A, A = Sp+1 = SeslA] = SeslA] = - | dw Te[AL+ AL (445)

4.2.3 From Chern-Simons action to WZW action

In [I13, 111], it has been shown that the Chern-Simons action with the Brown-
Henneaux boundary conditions reduces to a Wess-Zumino-Witten (WZW) action
on the boundary. We will rederive their results. First, let us focus on the chiral
part of the action (4.45). In the last term of (4.42), we observe that A; plays the
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role of a Lagrange multiplier for the constraint F,., = 0. Therefore, by solving the
constraint,

where i = r,p and G is a SL(2,R) group element. Here, we have assumed no
holonomies.®> Plugging this into (4.45), we obtain for the chiral part

k k
S[A] = e d*z Tr[g~ 0,99 '0_g] + o7 Ju Tr[(G™1dG)Y, (4.47)
where ¢ is the group element G evaluated on the boundary. This action represents
a chiral Wess-Zumino-Witten action S&.,;-[g] and describes a right-moving group
element. Indeed, the solution of the equation of motion d_(¢g7'd,9) = 0 is g =
f(®)k(z™), which is the equation for a group element moving along the =™ axis.
On the other hand, we can perform the same development for the anti-chiral
part of (4.45) and get

k

U k L .
= 1 o &’z Tr[g7'0, 957 0,9 + — | Tr[(G7'dG)?] = Sk wlgl, (4.48)

S[A] 127 Jm

where g is the group element G evaluated on the boundary. This time, the action
describes a left-moving element. The Chern-Simons action reduced on the boundary
is thus the difference between two chiral WZW actions

SIA, Al = S§ ywlg) = Sivawlal- (4.49)
We can combine the left and right movers as h = ¢~ 'g and H = G~'G and define
1 “1- _ =—1g -
=-0 0,99 979 0,9, (4.50)

to end up with the standard (non-chiral) WZW action, after elimination of the
auxiliary field II using its equation of motion,

_ k k
S[A, A] = Swzw[h] = E oM d21’ Tr[hflébrhh*la,h] + E /M Tr[(H’ldH)?’]
(4.51)

4.2.4 From WZW action to Liouville action

It is important to clarify that we have not yet used all of the Brown-Henneaux
boundary conditions (4.41). So far, we have only employed conditions (i) A_ = A, =
0 to demonstrate that the Chern-Simons action reduces to a standard WZW action.
Implementing the remaining conditions will lead us to a Liouville action [150-152].

3To account for holonomies, one would need to take 4, = G719,G and A, = G19,G+G 1 KG,
where K = K (t) is an element of the s/(2,R) algebra that could depend on time. We will address
this later in Section (4.2.6).
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However, before proceeding, it will be useful to express (4.51) in a local form using
a Gauss decomposition:

/2
(NS

where XY, ¢ depend on r,t, . This allows us to rewrite the action (4.51) as a

two-dimensional integral

k 1
Swowlh] = — [ & <a+¢a_¢ + 2e—¢a_xa+y) , (4.53)
4Am Jom 2
where now X, Y, ¢ take values on the boundary. The last set of boundary conditions
(ii) will take the following form in terms of the gauge field h:
(hto_h)M == [p'o_h)® =0,
(4.54)

[0, hh~ Y = — 0 [—0,hh 7O = 0.

The indices in parentheses are Lie algebra indices. It is interesting to notice that
the left and right moving WZW currents are given by

J,=h"*0,h, J=—0,hh". (4.55)

Thus, the second set of boundary constraints (ii) has the effect to set the WZW
currents to constant. In terms of the ¢, X, Y fields, the constraints (4.54) are
equivalent to the set

1 1
€_¢87X = 7 y €_¢8+Y = —7 s

X =20,6, Y=-20_¢.

(4.56)

Before applying these constraints to the action, as for set (i) of the boundary condi-
tions, we need to ensure a well-defined variational principle. It is achieved by adding
a boundary term to the action (4.51):

k 2
Sianpr = Swzw[h] — — 7( dp (e *(X0.Y +Y0_X))[" . (4.57)
2 t1
After implementing the constraints, we end up with the Liouville action
Sinor = Stioneld] = - [ d% (18 $O_¢+ 26¢>> (4.58)
impr — *Liouville - A M 9 + — l2 . .

One might initially infer from this derivation that Liouville theory is the dual
CFT of three-dimensional gravity with negative cosmological constant, but this is
not actually the case. The reduction described here pertains to classical computa-
tion. To establish a legitimate dual theory, one must establish a correspondence at
the quantum level. At the very least, Liouville theory serves as an effective theory
in the holographic duality with CFTs.
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4.2.5 Link with Schwarzian action

In the SYK model and in nearly AdS,, JT gravity gives rise to a model known as
the Schwarzian theory, which is embedded within Liouville theory (4.58) through
dimensional reduction [75, 161,159, 190]. To observe this, we begin by performing a
field redefinition f"? = [?e?, where the prime denotes a derivative with respect to o,
and then project (4.58) onto the right (or left) moving sector:

B k o_f'f" ,
S_%/aMd%( " —6_ff>. (4.59)

The projection is not mandatory; otherwise, we would end up with two copies of the
Schwarzian model. Now, we perform a Wick rotation to Euclidean time ¢ = 1y and
consider the time circle to be very small, Ay — 0, with &' = kAy fixed. The result
of this dimensional reduction is the Schwarzian action (up to boundary terms):

k/ "2 k
S = g/dgo <f’2 —1—f’2> = —;/dgp {tan];;go} , (4.60)

where {f;x} is the Schwarzian derivative (2.28).

4.2.6 Taking care of the holonomies

In the previous section, we neglected the potential holonomies present in our space-
time. However, they become crucial for describing black holes, as illustrated in
Figure (4.1). To incorporate these holonomies, we assume our spacetime has two
boundaries at spatial infinity, each corresponding to a disconnected region outside
the eternal black hole. These asymptotically AdS3; boundaries can be mapped onto
the two boundaries of an annulus, denoted as ¥, and ¥; [/2]. As previously dis-
cussed, we initially derived two chiral WZW actions which we later combined into
a non-chiral one. Introducing holonomies complicates this approach, particularly
when dealing with zero modes of the fields at the boundaries [72]. Therefore, it is
more practical to refrain from combining them and instead focus on a single gauge
field, such as A.

As before we want a well-defined variational principle for the action (4.42), we
need to add two boundary terms, one for each boundary X, ;:

k 2 2
Iy, =1 /E % TrA2 | (4.61)

We impose the condition A_ = 0 in the outer boundary and A, = 0 in the inner one
in order for the Hamiltonians on the respective boundaries to have the same sign.
In that way, the time evolution on both sides runs in the same direction. Thus, the
improved action for A is

S[A] = Scs[A] + I, + I, . (4.62)
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Z] Z2

] 2

Figure 4.1: The topology of a fixed time slice of an eternal black hole is an infinite cylinder,
which is equivalent to an annulus. In this way, the two asymptotic boundaries of AdS3 are
mapped to the two boundaries of the annulus. The figure is taken from [72].

Like in the case with no holonomy, we need to solve the constraint F,., = 0,
giving the solutions

A, =G19,G,  A,=G Y 0,+K(1)G. (4.63)

the function K (t) parameterizes the holonomy and takes value in the Lie algebra.
By plugging these solutions in (4.62), we get the equivalent of (4.47) in the presence
of holonomies

k _ _
S19o, gi, K (V)] = e d%z Trg, 18<pgo 9o0—9go + 29, 'Ko_g, — K2]

- 4]; /E d*z Tr[g; ' 0pgs 9:04 9i + 29; ' KOy g + K] (4.64)

k —1,71\3

T 1or /M TG da)T,
where we defined g, and g; as the boundary values of G on ¥, and ¥; respectively.
Having two boundaries explains the presence of two boundary integrals in the action
(4.64). The difference in sign between the latter terms arises from the distinction in
boundary conditions between ¥, and ;.

Before proceeding further and imposing the remaining boundary conditions,
specifically condition (ii), we need to discuss the holonomy K (¢). The action (4.64)
provides its equation of motion at the outer boundary, with the computation at the
inner boundary being analogous,

0K = [a, K], (4.65)
with 1
0= f dpd_go g (4.66)
Its solution is
K(0) = SOKO)S@) ™, 80)=Tew [ "a(r)dr, (4.67)
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with 7 the time-ordering operator. It shows that K does not leave its conjugacy class
during time evolution. While the precise value of K is not physical, its conjugacy
class is. As a consequence, we only need to specify a "canonical" element of either
one of the three conjugacy classes of SL(2,R).

Hyperbolic holonomy

Hyperbolic holonomies characterize non-extremal black holes. A canonical hyper-
bolic element can be chosen as

K(t) = ky(t) Lo,  kn(t) #0. (4.68)

We then use the Gauss decomposition (A.11-A.12) to write the fields g, and g; as

YL1 @LO L _ 1

go = e PrePloertor g = Vi

eVloeltn (4.69)
The choice between the two different Gauss decompositions was done in order to
impose a heighest-weight boundary condition on the outer boundary and a lowest-
weight boundary condition on the inner one®. Plugging these decompositions in
(4.64) gives

b / d’z (;8_<I>(<I>’ + 2kp) — 2e*0_X (Y — kYY) — ;k}%)

Tan s

_k
47

s

! X (4.70)

[ @ (2(1\1:(\1:’ 1+ 2ky) — 2eY0, U (V' + kaV) + 2k,%> .
pIF

We now add the set (ii) of boundary conditions adapted for the case of two boundary.
On Y, it reads
Ar = O, Atp = L1 - E(t, (,D)L_l s (471)

and on X;,
A, =0, Ay, =Ly — M(t,o)L_; . (4.72)
The functions £ and M are the analogues on each boundary of L(x") in (ii). In
terms of the fields of the Gauss decomposition, one writes at the outer boundary
e?(Y —kyY) =1,
O + k), = -2X, (4.73)
X -X*=-L,
and on the inner one
eV +kV) =1,
U+ ky, = 2U, (4.74)
U-U*=-M.

4This difference arises from the different conditions that we imposed on each boundary in order
to have time evolution running in the same direction on both sides.
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Solving the first two equations on each boundary will allow to express Y and X (V
and U) in terms of ® (V) and kj,. The precise computation is done in Appendix C
of [72]. The final action is then

1 1
Sk, ®, W] = 4’; /de <25_q><1>' — SOV 4 (00 - 0,W) - k,‘i) . (475)

This action represents two chiral bosons coupled to the holonomy. Although the
kinetic terms for ® and ¥ have opposite signs, their Hamiltonians have the same
sign, ensuring time flows in the same direction for both boundaries. To complete
the picture, one still needs to consider the other SL(2,R) connection, A. This will
lead to a similar action as (4.75), resulting ultimately in four chiral bosons coupled
through two different holonomies.

After a last effort, we can write (4.75) as the action of a free non-chiral boson
on a cylinder by defining an inversible change of variables

p=0—V, Iy=& + U +2k,, (4.76)

and by elimating the conjugate momenta Il using its own equation of motion

S[¢] = 1§7T / & (§ — 7). (4.77)

It was shown in [101-193] that this final action can be classically mapped to the
Liouville action (4.58) via a Bécklund transformation. This implies that the effective
action without holonomy and the one with hyperbolic holonomy, which includes
the description of black holes, are equivalent. However, we will see later that this
equivalence does not hold for other types of holonomies.

Before proceeding to consider other holonomies, let us backtrack a bit and re-
define the field Y to explicitly highlight its connection with the geometric action.
Boundary diffeomorphisms act as residual gauge symmetries that are compatible
with the constraints of Hamiltonian reduction. These symmetries are parameter-
ized by the L; factor in the Gauss decomposition, which makes it convenient to
rewrite the action and constraints in terms of a field f(t, ¢) related to Y as follows

Y(t, ) = e k(O (f(t.p)=¥) (4.78)

The boundary conditions (4.73) become

e ® — —kn, e kn(f=¥) f’7
| (4.79)
X=—=—Zkf.
2 3 nf

The function £ is now expressed in terms of f as

_ P

L=

7~ Sifieh, (1.80)
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with {f;¢} the Schwarzian derivative (2.28). Up to boundary terms, the reduced
action (4.75) on the outer boundary only takes the form

Sy = k;T d*z (a‘;i;f” + kp(t)?0_f f’) : (4.81)

We recognize the geometric action of the Virasoro group (4.32) for a positive orbit
representative.

Elliptic holonomy

A solution with an elliptic holonomy describes point particle sources and define

conical singularities [100, 191, 195]. A canonical elliptic element can be chosen as

K(t) = "”@2(’5) (Li+L1), k() £0. (4.82)

Contrary to the hyperbolic case, we will use the Iwasawa decomposition (A.13)
instead of the Gauss decompostion. We then write g, and g; as
Go = ) (LitL-1) o®(tp)Lo on(te)L—1 183
g’i — eﬂ(tﬁp)(L1+L,1) e\P(t»SO)LO ey(t"P)Ll ( ’ )
All fields used in the Iwasawa decomposition are periodic in ¢. Inserting all of those
in (4.64) leads to

k 2 1 / / P , 1 1 2)
= —0_ 00 — 20_ 0ty 1y, 1

" /zod x(za 20-6(6" + ke) — 270 0(9 +2ke) + 5k
A Iy, ‘ 2 " + ¢ € + 2 g've )

(4.84)

We can now rewrite the boundary condition (ii) in terms of the fields of the Iwasawa
decomposition on the outer boundary

1 1
[ / /
9—|—/€e)—1, ———qu,
‘ ( 2 " 2

1 (4.85)
£ — _672‘1) + Z((I)IZ + 2(1)/1) ’
and on the inner boundary
1 1
67\1/ (79/+2k6> :—1, y:ikﬂl,
(4.86)

1
_62\11 + Z(\IIIQ o 2\Ij//) )

M
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Using a last field redefinition to express the action in terms of a diffeomorphism of
the circle f(t,p) with f(t,p 4+ 27) = f(t,p) + 27:

(f(t.o) — ), (4.87)

and the constraints, the action on the outer boundary turns into

L 8_f’f”
3o — /
Shay = oy d%( o kn(t)*0_f f> : (4.88)
with the function £ given by
ke o 1.,

The difference with the hyperbolic case (4.81) is the relative sign of the representative
term. One could obtain (4.81) through an analytic continuation k. = ik;,. We can
then interpret (4.88) as the action of a chiral boson as for the hyperbolic case but
with purely imaginary zero modes.

Parabolic holonomy

The last case to analyze is parabolic holonomies. They describe extremal BTZ black
holes. They can be parameterized by

K(t) =ky(t)L_y . (4.90)
We will also use a Iwasawa decomposition but inverting the order of (4.83):

Go = eNtP) L1 (@) Lo O(tp)(Li+L-1) :

(4.91)
g = V()L U (tp)Lo (O(tp)(Lai+L-1)
One again, by putting those in (4.64), the action separates into different boundary
actions

k 1
S=p [ @ (cp/acp _20'0.0 — 2¢-%0_0(y] + k;p))

. A2 (4.92)

- /Z d (2\11’@\1/ _20'0. 9 — 260 9( + kp))
with as constraints on ¥, coming from the boundary conditions

® =20 —1)cotd, n =—k,+ePd® cot20, (4.93)
and .

L=—-0— §<I>’ cot 6. (4.94)
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On X;, we get
U= —-2(¢ +1)cotd, V = —k, — e YW cot 20, (4.95)
and .
M=19 — 5\1/’ cot . (4.96)
By making the following field redefinition
cot = —2fJ:/ (4.97)

and by using the constraints, one can show that the action on the outer boundary

becomes L o
v an7 *ff :
8t Jx, fr?

S, = (4.98)

with the function £ given by
1
L= _i{f; ¢} (4.99)

One would get an equivalent action at the inner boundary. We notice that the de-
pendence on the holonomy drops out of the action. This is the geometric action
with a vanishing representative.

As a conclusion, we can combine the three different actions (4.81, 4.88, 4.98) into

k 8_ f/f//
So 2
Spdy = e Y d°z ( 17 + a@ff’) : (4.100)
with the function L(¢, ) given by, for the three different conjugacy classes,
1
L= = S{fie}, (4.101)
4 2
with
Holonomy | K(t) | a
Hyperbolic kn(t)Lo k2
Elliptic | Lko(t)(Ly + L) | —k? (4.102)
Parabolic ky(t)L_4 0
The equation of motions of this action imply that
O.L=0, (4.103)

indicating that £ is a function of 2™ only. This result makes sense since the function
L was originally defined as the analogue of L(xz™) in (ii).

Those actions are equivalent to the geometric action on the coadjoint orbit of
the Virasoro algebra (4.32) with the correspondence between the holonomy « and

the orbit representative X
c

Xog=—«a.
0 487ra

(4.104)
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The hyperbolic (elliptic) holonomies represent positive (negative) representatives
while the parabolic holonomys lead to vanishing representatives.

One can also establish a connection between the little group of an orbit repre-
sentative and the residual gauge symmetry of the action. For cases where a # —n?,
which includes hyperbolic and parabolic holonomies, the residual gauge transforma-
tion is U(1), consistent with the little group. However, when o = —n?, which occurs
only for elliptic holonomies, the residual gauge group is enhanced to SL™(2,R),
aligning with the stabilizer group of the corresponding coadjoint orbit [72].

4.2.7 Virasoro characters from the one-loop partition func-
tion of the reduced action
In this section, we will review the computation of the Virasoro characters as outlined

in Section 5 of [75]. Starting from the geometric actions on the coadjoint orbits of
the Virasoro group, we have the action (4.100):

]{7 8_ ! £
Shsy = e d%( ;c 2f + ad_ ff’) : (4.105)

on the outer boundary where o encodes the different types of holonomies. In [77],
they considered 2 distinct cases. First, a« = —1, corresponding to the vacuum and
an elliptic holonomy with Diff(S')/SL(2,R) symmetry. Second, a > —1, where the
residual symmetry group is always Diff(S?)/U(1). In both cases, the Hamiltonian of
the action (4.105) is bounded from below when we expand the field around a critical
value, allowing for a path integral derivation of the Virasoro character. Indeed, the
Hamiltonian is related to Ly (4.31)

c a
Hef@ —_¢ . _'2) 1.1
o= 55 [de ({61 = 507 (4.106)
and possesses a unique critical value for f = ¢ [75]. We can expand H around this
critical point to get
HIf = o+ 3 foe™] = 2mXo+ = Son(n? + o) fu + O(F).  (4.107)

The second term is always positive when o« > —1 with a sum beginning at n = 1
when this is a strict inequality and at n = 2 when o« = —1. Thus, in the case of a
elliptic holonomy with v < —1, it is expected that the path integral does not exist
and the computations below are not valid. We will start by making no distinction
between the two cases until it is required.

On the inner one, Y;, we have the equivalent action:

a+ f/ f//
f/2

k
Spay = ——— | d’z (

8 Jx;

+a(t)d, f f’) . (4.108)
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We will focus only on ¥; to stick with [75], the computation on the other boundary
being equivalent. First, we perform a Wick rotation ¢ = —iy to get the Fuclidean
action

247 fr
where 0 = 0, +10,. The field f satisfies the following periodicity conditions:

flo+QB8,y+8) = flo,y),
flo+2m,y) = flo,y) +27.

Sp=—iS=_" /2 d*z <8f’f” + a(t)éff) , (4.109)

(4.110)

To get the Virasoro character, we need to compute the partition function. For a
chiral CF'T on the torus of module 7, it is given by

Z(r)=Tr (¢ 35) ,  g=e"", (4.111)

where ¢ = 6k and may be decomposed into a sum of Virasoro characters

_c e 1 _c i 1
2 =g r [ —m+2d - (4.112)
n=2 q h n=1 q

The first term represents the vacuum module while the other terms stands for a sum
over Virasoro primaries of weight h.
For the gravity dual, we aim to compute the partition function

Z:/Dfeif":/Dfe—SE. (4.113)

This path integral is in general very complex to evaluate. Typically, the partition
function is expanded in terms of a dimensionless coupling constant, in our case k.
Around a saddle point fy, the path integral takes the form

log Z ~ —kS© +SW 4 O(k™), (4.114)

where S is the classical on-shell action and S™) represents the first-order correction
to the saddle point action, corresponding to the one-loop contribution. We assume
that k is large, equivalent to a large central charge, allowing us to neglect higher-
order corrections. However, it has been argued in [/5, |71] that for locally AdSs
gravity, the computation is in fact one-loop exact. The one-loop contribution suffices
to reproduce the entire partition function. A similar argument applies to BMS3 as
well [73, 173].
Thus, we are interested in solution of the equation of motion for f (4.109)

L5 (5 i) =0, s

consistent with the remaining boundary condition (4.101). Satisfying the previous
periodicity conditions, the saddle point is
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fo=¢—Qy, (4.116)

giving the saddle point action
k k
So = —i7aB(Q+i) = —i%aT, (4.117)

where we define 7 = ;- (5Q + ).
Now we expand the field f around its saddle point:

2mimy

floy) = fo+> é’”;;e einfo (4.118)

and plug this into the Euclidean action, leaving us with

i > .
Sp =50~ 563 ; %:0 | frunl?n(n? + ) (m — n1) + O(f?), (4.119)

where the sum over n excludes 0 for generic values of o and excludes —1,0,1 when
a=—1.
Now we can evaluate the one-loop partition function

Zl—loop = /Dfe_SE = NQ% H <(m - Tn)(n3 + an))_l/Q s (4120)

m,n
where we define ¢ = ™7,
To compute the product over m, we will employ the following technique. First,
we differentiate with respect to 7 the logarithm of the partition function. This allows
us to perform a sum over m

i 1 & n
0,108 Z1400p = — —
08 Z1-loop 120a+27;)m2200m—7n

T 1 1 > ™
- o — = Z 49 o
' 1
= %ca — 27rnzﬂncot(mr7')
= Zea—n > ncot(nmr)
12 =
or with a sum over n beginning at 2 when aw = —1. This sum diverges. One way to
regularize it is to use the zeta function
[ee) [ee) o
> ncot(nmr) = > n(cot(nrr) +1) —i Y n. (4.121)
n=1 n=1 n=1

— 77 —
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The first sum converges for Im(7) > 0, and the second is evaluated using zeta-
function regularization. Now, after exponentiation and integration over 7, we obtain
a partition function with only a sum over n, up to an overall normalization constant:

ca=l T 1
24 H 1_qn_

n=1

Z1100p = (4.122)

By comparing to the partition function (4.112), we see that the Hilbert space simply
corresponds to a single Verma module of weight

(a+1)c—1
h=-—F"—. 4.123
54 (4.123)
When o = —1, this result is not valid because (4.120) contains a division by 0 if

we allow n to be 1. Thus, we need to start the product at n = 2, and in this case,
the derivative with respect to the modular parameter 7 of the one-loop partition
function is
i >
07 log Zy100p = —RCT TN cot(nmr). (4.124)

n=2

The zeta function regularisation adds only a sum starting at n = 2 and gives

> 13
=((-1)—-1=——. 4.125
3 =< = (4.125)
The one-loop partition function is then
—c—13 e 1
Zitoop =q~ 7 |] : (4.126)
n=2 1 - qn

We obtain the vacuum module with central charge ¢ + 13. This result is consistent
with the computation performed in [171], where they calculate the one-loop partition
function of thermal AdS3 using the Heat Kernel method. Although the computation
in this section is a one-loop calculation within the large ¢ approximation, equation
(4.126) is considered one-loop exact as argued in [77].

4.3 Lower Spin Gravity and Warped Virasoro Sym-
metry

We aim to extend the analysis from the previous section to WCFTs. To achieve
this, we will examine one of the simplest holographic models of a WCFT, known
as Lower Spin Gravity, as reviewed in Section (2.3) of this thesis. In this model,
the Warped Virasoro group for WAdS; plays a role analogous to the Virasoro group
in AdS3 gravity. Our objective in this section will be to perform the Hamiltonian
reduction of Lower Spin Gravity and establish connections with the dual theory on
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the boundary, such as the Warped Schwarzian action and the geometric action of
the Warped Virasoro group.

We will begin by labeling the different coadjoint orbits with a representative,
computing their corresponding little group, and constructing a geometric action on
each of them.

4.3.1 Coadjoint representation

The warped conformal group is the centrally extended semi-direct product group of
diffeomorphisms of the circle Diff " (S!) with C*°(S1). In Appendix A of [I75], the
coadjoint representations of this group were studied, which we will summarize here
for convenience and to fix conventions.

We take ¢ to be a coordinate along the circle and denote elements of Diff*(S1)
by f(p), satisfying f'(p) > 0 and f(p+27) = f(p)+2m7, and elements of C°°(S') by
p(¢). The group multiplication of the semi-direct product group G = Diff " (S') x
C>(S) is

(f1,p1) - (fasp2) = (fio fa,p1 + 0pp2) with: afp:pof’l. (4.127)

where o denotes functional composition, f o¢ = f(p).

Since the second cohomology space of GG is three-dimensional, the warped confor-
mal group has three central extensions. They are defined by the three 2-cocycles in
G. Denoting elements of the centrally extended group G =G xR?, by (f,p; A, w,v),
group operation now reads

(1, P15 A1, i1, 1) - (fa, as Ao, pho, o) = (fl o fa, 1+ P2 M+ A + B(f1, fa),

w1+ p2 + C(f1,p2), 1 + va + D(py, UﬁPz)) .
(4.128)

Here B,C and D are real-valued 2-cocycles in the group. They are given explicitly
by

BUfu ) = — g § de 10800, s 0 1200, 1080, s
Clfip) = —o- f o 120, 108(0.1). (4.129)

1
D(f1,05p2) = I j{dso P10,0 1, D2 -

We recognize for the 2-cocycle B(f1, f2), the Bott-Thurston cocycle of the Virasoro
group (4.21).

The adjoint action of a group element g, = (f1,p1; A1, p1, 1) on an element of
the algebra (Xs, pe; Ao, 2, o) is computed by

d

Adgl (X27p2; )\Q,MQ’ 1/2) — & g1 -

(€2 epy, €Ny, €ft, €13) - gfl‘ , (4.130)
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which explicitly evaluates to

1
Ad(fp) (X, p2s A ) = (Ade, Opp2 + Xad,xP1; A — %?{dw X () {f; 0},
! / 12 02
p= o= fde (0,l0g £ = X(0)f0}pr 0 ).
1 1
Yo fdg’ <p18w0’fp2 — 5 X (@) (pr 0 f)]2> > . (4.131)

Here, the notation AdyX denotes the adjoint action of the Virasoro group on the
components of a vector field X (¢)0,, i.e. the transformation of a vector field on the
circle under diffeomorphisms: Ad;X = f/(f~)X (™).

The symbol X x denotes the infinitesimal version of o¢, and hence Xxp; =
X(p)py(¢). Finally, {f;¢} denotes the Schwarzian derivative (2.28).

The adjoint representation of the algebra on itself gives the commutators

—adx, pr) (X2, D23 A2, pi2, v2) = [(X1, p1; Ay pia, 1), (Xo, p2; Ao, 2, 12)] (4.132)
1
_ <X1X’ ~ X! Xy, Xup, —plng; — fd X" X,

5 f dSD X{’Pz p1X2 j{dso p1p2>

From here we can read off the warped conformal algebra, by taking the genera-
tors to be L, = (¢M%,0;0,0,0), P, = (0,¢™%;0,0,0) and Z; = (0,0;1,0,0), Zy =
(0,0;0,1,0) and Z3 = (0,0;0,0,1):

Z
Z[Lna Lm] = (’I’L - m)Ln+m + ﬁngén—&—m )
Z[Lna Pm] _um+n —in 225n+m )

Z[Pna Pm] = _mZ35n+m .

(4.133)

Elements of the dual space g* will be denoted by (£, P;c, k, k). We denote by
(,) the pairing between the dual space and the algebra, i.e. () is a map from
g° x g — R. In our case, we will take

(L, Pic,kr). (X,pida,v) = § Ao (L9)X (9) + P(o)p(0) + A+ b+ v
(4.134)
We can now define the coadjoint action of the group on elements of the dual space
as

(Ad(p -1 (£, P ks 6), (X pas A s v)) = (£, Ps ¢, by 1), Ad 1) (X P23 A 1, 7)) -
(4.135)
By using (4.131) and (4.134) we obtain

Ad?ﬂpl)_l(E’,P; ¢, kﬂi) = (2775;07 k, fi) ) (4.136)
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with

20 =17 (e + Poostve ) - g2 Loro s Sy i)
- k "

P =1 (P - T+ oo ) (4.137)
The notation here differs from the appendix A of [I7%], but this is due to the

fact that there Ad(, (L, P;c, k, k)(f(¢)) is computed, whereas here we have given
Ad( £.p)- (L, P;c,k,k)(¢). For completeness, we also list the other expression here,
which is equivalent to (4.137):

Mg £010) = 72 (£60) = P 1) + 5= Ui} = 1-(pe 1))
+ o ().
Adgy ) P(f(0)) = }, <7’(90) + ;J;,, —=(po f)’(w)) :

4.3.2 Coadjoint orbits

Here we classify the coadjoint orbits of the warped Virasoro group and their corre-
sponding little group. The main point is that coadjoint orbits O, p,) are defined
as all elements of the dual space (£, P) which can be obtained from a fixed repre-
sentative (Lo, Py) by the coadjoint action (4.137). The orbit is isomorphic to the
symplectic manifold O ~ G /H z, p,), Where G is the group manifold and H ., p,) is
the stabilizer subgroup of the orbit, consisting of all elements which leave (Lg, Pp)
invariant under the coadjoint action (4.137). From now on we will take (Lg,Pp)
to be constant. Through the reduction of the Chern-Simons theory with constant
charges, we should be able to relate the orbit representatives (Lo, Py) to the Chern-
Simons charges of the bulk solution. Generically, the infinitesimal coadjoint action
(4.137) gives

k
ad! _ L(p) =e L'+ 2¢, L — €] + epP +5 eP :

e k‘” } (4.138)
ad! P(p) =€, P+eP — %ez + %6}) i

We will here focus on orbits with constant representatives, hence they as obtained
from the coadjoint action of the algebra on constant Ly and Py, in which case the
above formula simplifies to

* k
adg, op Lo =2¢p Lo — 5 —ep +epPo+ o —cp, (4.139)
k K
de, epPo=€LPo— 5 €L+ 5 ¢p- (4.140)
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As we will see below, whenever k # 0, one can make a field redefinition such that
k = 0, so we should distinguish two cases, kK =0 and k # 0 or k # 0 and k = 0. Let
us focus first on the case where k = 0.

ex=0and k#0

Let us first classify the orbits O, for p € g* under the o-action of GG. This amounts
to solving the differential equation

k
;P — —¢; =0, (4.141)
2
for €;, a function on the S'. The general solution is

27 Pg

ep=a+be x 7. (4.142)

This is only well defined on the S' whenever Py = ikn/2r and hence there are two
distinct cases

o Py #ikn/2m: b =0 and the little group G, is U(1)

o Py = ikn/2m: b # 0 and the little group G, is two-dimensional: i[Lg, L,] =
—nL, for L, = e™ and Ly =1

In the first case, the remaining equation (4.139) gives
/ k: "

which is solved by ep = c+ de=F¢. This once again gives only one solution on the
circle, under the assumption that Py # ikn/2mw. Hence these orbits are characterized
by a two-dimensional Abelian little group.

The second case is more interesting. In that case the remaining equation (4.139)
gives

2 , ,
in€p + € = —%(2&) + ﬁnz)e“w = a,e"?. (4.144)
In this case, the solution reads
i An
ep=c+de "’ — e’ (4.145)

2n?

Hence, regardless of the value of Ly, this solution is well defined on the circle,
however, only when a,, = 0, or, whenever

(4.146)
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does the algebra [(er,€ep), (€L, €p)], understood as (4.132), close linearly. In that
case, the algebra written in the form of the generators Ly = (1,0), L, = (e¥,0),
Py=(0,1), and P_, = (0,e"™¥) reads:

i[LO, L, =—-nL,, ?[LO, P, =nP_,, (4.147)
i[Ly, P_p] =nPy, i[Py, L,] = 0.
In the case of n = 1 this gives exactly the Py algebra, or the central extension of
the two dimensional Poincaré algebra.

To summarize, if Py # ikn/2m, the little group is U(1) x U(1) and for Py =
ikn/2m, it necessarily implies that £y = —ﬁnQ and the little group has the algebra
(4.147).

orx #£0

In this case, the analysis in slightly different, because the semi-direct product does
not act on an Abelian group. It is always possible to set k to zero when x # 0 [175].
Indeed, by making the redefinition

k
€p — €p+ —€p, (4.148)
K

the equation (4.140), set to zero in order to analyze the orbits of the o action of G
on C*(S1), gives

€. (4.149)

Note that now there is no special value for Py. The gauge parameter €p is completely
fixed in terms of €1, up to a constant a (which represents the U(1) factor in the little
group).

Plugging the above into (4.139), redefining

2

Ceff = C — 12— s (4150)
K
and setting this to zero gives
e L, —4el =0, (4.151)
where ,
12
gy = =1 ( o — WO) . (4.152)
Ceff K

This is the usual differential equation which characterizes the little group of
Virasoro coadjoint orbits. Hence there are two distinct cases

o £y F# —"IQ. These are the generic orbits with U(1) little group
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o £y = "I In this case the orbits little group is enhanced to the n-fold cover

of SL(2,R).

Combined with the previous U(1) little group in (4.149), this implies that coad-
joint orbits of kK # 0 warped Virasoro group are characterized by the value of the
Sugawara shifted £,. For generic values of this quantity there is a two-dimensional
Abelian little group, whereas for £3 = —%2 the little group on the coadjoint orbits
is SL™(2,R) x U(1).

4.3.3 Geometric actions

The coadjoint orbits form symplectic manifolds, with the symplectic structure given
by the Konstant-Kirillov symplectic form w. For the warped Virasoro group, this

has been constructed in [109], which we follow here in our own notation:
Wig = <(£7 7)) c, ka K‘)a ad(Xl,pl) (X27p2; )\27 2, I/2)> . (4153>
See also [154] for the generic construction of the geometric actions for centrally ex-

tended semi-direct product groups, such as the warped Virasoro group. To consider
the orbit O, p,), we take the dual space elements to be

£lp) = 1 (.co+7>oaf<pof> s Lo + oo )
Plo) = 1 (Po- gt + gedstpo ) (4.154)

Using this, (4.153) reads explicitly
wig = — 7{(180 2(Lo+ 0r(po f)Po) (X1X5 — XoX{) + Pof (Xuph — Xz]?/l))
S §de (XIXG+{f, 9} (X1X) - X X)) (4.155)
+ - j{ dip (X{ph — Xgph — 207 (p o f)(X1Xh — X X]) + (log 1) (X1ph — Xop)))
e j{dso (2010, + (o )2 (X0 X5 = X XT) + 2(p o f) (Xiph — Xop)))
In terms of differential forms, the above expression can be brought in the form
W= f dp (Lof?dX AdX'+ Pof'dX A (dp+ (po f)dX))
487T fchp (AX' A dX" — 2{f;¢}dX A dX)
+ 5 ]{ de (dX" + (log f')YdX) A (dp + (po f)dX)) (4.156)

E fdp W+ (po fYAX) A (dp + (po FYAXY
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We now change variables to the finite transformations, by using that
df = f'dX,  dg=dp+9,(po f)dX, (4.157)

where g = p o f does not only transform under Diff(S') but also under C'*(S').
The result simplifies even further by writing it as

W= —fdgp (Eodf NS+ Podf A dg (4.158)

k K
Ca 1 — Zdlog f' Adg + ’).
+48 dlog f' A (dlog [ 27Tdogf/\dg~|—47rdg/\dg

It is now strikingly clear that whenever k # 0, the term proportional to k£ can be
removed by redefining

k
g=g-+— logf (4.159)

The result is (dropping a total derivative term proportional to Py):

W= —fd(p (ﬁodf Adf' + Podf Adg' + :gf;dlogf’ A (dlog f') + %dg A dg’).
(4.160)

where )

k
Cot = € — 12— | (4.161)
K

Now that we have the Konstant-Kirillov symplectic form for any orbit with con-
stant representatives (Lo, Py), we can obtain the geometric action on this orbit.
Since dw = 0, we can locally write w = da. Then the kinetic part of the geometric
action on the coadjoint orbit is the integral over the orbit of «, i.e.

I[f, 95 Lo, Po] = La (4.162)

c f//df/ k, f//
= d d dg + — ——dg 'd )

[ fae(coras+pofag+ o tmh v o g
Here v is a path along the orbit. By parameterizing v by a coordinate ¢ on the orbit
and using d = dt0d; we find the two dimensional action

; Ceff f” k L
1= [atag (Lof [ ata 55 . 4.163
w( of '+ 15r f’2> w(Pongngg ( )
Here dots denote t-derivatives and we have used the redefinition (4.159) to remove
the term proportional to k. The above action is expressed in terms of go f o . By
redefining f o ¢ as ¢ and switching variables as §(¢) = ®(¢), we may equivalently
write the action above as:

Coft f//f/
f/2

I= /dtdgo (Eof’f + + —<I>’<I> + P, <I>f> (4.164)
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The Hamiltonian for this action can be found as the action of Ly and F,, i.e.
we can add — [dt(Lo + Fp) to (4.163), as in section 4 of [109] and in (4.32) for
the Virasoro group. This generalizes the warped Schwarzian action (4.5) of [109]
to a generic orbit parameterized by Ly and Py. For further insights, we refer the
reader to [|7%] for a discussion on invariant Hamiltonians for geometric actions.
The key concept is that Ly always belongs to the stabilizer subgroup of the orbit,
thereby generating a gauge symmetry on the orbit. The generator of this gauge
symmetry can then be included in the action as the Hamiltonian, preserving the
gauge symmetry.

From (4.160), we can make the field redefinition § — § — 22Pyf and get the
following symplectic form:

w:—fd¢Q@—”%mpmf+%ﬂmngM%f%+“@A@)44m@
K 487 47

leading to the action

I:/&@:Q@—Zﬂﬂ' fﬁv®®> (4.166)

48 f/2

But now the field ® is no longer periodic around the circle. So we need to make a
last field redefinition & — &+ 2%77(]@ to get the final geometric action after dropping
some boundary terms:

B _z oy o f//f/ K
Adding the Hamiltonian
H = [,LL() + VPO s (4168)

where p and v are chemical potentials and Lo and By are the zero modes of L(p)
and P(p) respectively:

T off f//2
Loz/dg0<<£0—l€7>§)f/2+48 P—i‘fq)a—i‘ P0> R Poz/d(pp(],
(4.169)
this leads to the action
S:I—/&H
T , cef "0 f’

(4.170)

This action represents the geometric action on the coadjoint orbits of the warped
Virasoro group with orbit representatives (Lo, Py). We expect it to match the re-
duction of the Chern-Simons theory with constant charges that we will compute in
the next section.
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4.3.4 Chern-Simons reduction

We start with a SL(2,R) x U(1) Chern-Simons action:

k 2 K
[ (AndA+ZANANAY + 2 / 4171
Scs 47T/M< Ad +ANAN >+47T M<C/\dC), (4.171)
written in Hamiltonian form:
k . . 3 K . - 3
Sos = 4= /M (ApAr = A, Ay +24F, ) d /M(qocr LGB, B, (4.172)

where F = dA+ AA A and F = dC. We suppose that the topology of our manifold
M is a annulus times R, such that there are two boundaries at » = r; and r = r,,
respectively for the inner and the outer ones. On these boundaries, we impose the
following boundary conditions for ;4 and v constant:

[ A,=L,—-£L, C,=2P
Atr_ro‘{At:uA¢ and{ctzuqo—i-l/
R B C, =P
Atr—Tz.{At:_ﬁA@ and{ct:_ﬂap_ﬂ

with € = 25(£ — ZP?) and £ = Z2(£ — ZP?). The equations of motion fix the time
evolution of £ and I for constant chemical potentials:

(4.173)

0L = pul | 0P = uP (4.174)

where the prime denotes a derivative with respect to ¢.
To have a well defined variational principle, we need to add boundary terms to
the action:

_ k 2\ 12 K 2 2

Iy, = 47T/EO/UL<AQP>d x ZMT/ZO(MC‘P +2vC,) d°x (4.175)
_ _/ (Wl + vP) &z,
_ ko ~/ a2\ 12 K ~ 2 ~ 2

Iy, = 47?/2, ,u<A<p>d T M/Zi(,uqo +20C,) d*x (4.176)
=~ [ L+ P) a%

Our final action is then
S[A,C] = Scs + I, + I, . (4.177)

Solving the constraints F,, = 0 and Fw = 0 and taking care of the holonomy, we
get:
A, =G19,G, A, =G0, +K({))G,

C. =0\, CL = DA+ kolt), (4.178)
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where G is a group element of SL(2,R) and is periodic, such as A. K (t) is a function
parametrizing the holonomy and taking value in the Lie algebra.

First, we will focus on the U(1)-part of the action (4.177). The U(1)-part in
(4.172) can be expressed as

K

S[R(t, ), W(t, ), ko(t)] = 1= / (8,80, — 0, VO,V + 2ko(0,® — 9, V)) dt dyp |
m
(4.179)
where A\(r = r,,t, ) = ®(t,¢) and A\(r = r;,t,) = VU(t,¢). From the boundary
terms (4.175) and (4.176), we have
Ig = —ﬁ / (u(a¢q>)2 + 1(0,0) + (u+ p)kg +2(v + D)ko) dt dp.  (4.180)

Using the boundary conditions (4.173), the functions ® and ¥ are constrained by

2
0,8 + ko = —P,
2’; i (4.181)
0V +ky=—7P.
K
So to summarize, we have
S[@(t, ), B(t, ), ko(1)] = 8P + SV 4 5O, (4.182)
with
K
s == / Lz (0,20, — u(9,9)?) .
K
() — ﬂ/d% <_a¢\1;at\p — ﬂ(a¢\11)2> : (4.183)
sO == [d <k:0(8t<1> PR i S D)k()) .
2m 2
This action is invariant under the U(1) gauge transformation
O — D+ €(t), U — U+ €(t), ko — ko, (4.184)
and under the % global symmetry with G = U(1) [72, [ 1]
D — O+ alp), U — U+ B(p), (4.185)
where LG is the loop group of a topological group G [190]. The quotient by G arises

from the sharing of the same zero mode, related to the holonomy kg, for & and V.
If we want to focus only on one boundary:

S = = / 0 (¥0_B + 2kod — ki — 20k | (4.186)

where we have defined - = 0, — 0, and dropped a total derivative at the time
boundaries. The remaining action has lost its gauge invariance and is left with only
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a LG global symmetry.

Now, let us talk about the Si(2,R) part of the action (4.177). The computation
was already done in Section 4.2.6 for similar boundary conditions. The only dif-
ference is the presence of u in the boundary conditions (4.173) (set to 1 in Section
4.2.6) and the replacement of £ by £. In summary, we have at the outer boundary:

. k a_f‘lf‘ll
Soky = 2 [ didg [ et ad_ff'| , (4.187)
and 1
e =207 - SAfse), (4.188)

with « defined in (4.102) A similar action holds for the inner boundary. The fields
® and f living on the outer boundary are coupled through the boundary conditions
(4.173):

Q' +ky=—P,
r (4.189)

a o . _41 T2

and follow the action

o= B e (0T pp) [ a2 (900 4 2k — k2 — 20k
bdy = g1 Js.. xr Iz +ad_ff +E 37( @+ O—MO_VO)-
(4.190)
We can now compare (4.190) with (4.170) and observe that
K T k
Po=5-ko,  car=0k,  Lo— EP(? =3 (4.191)

The residual symmetries of (4.190) are a U(1) gauge symmetry for the field f, in
order to maintain the conjugacy class of the holonomy «, as long as o # —n? [77]
and SL(2,R)™ when o = —n?, while the field ® has a LG global symmetry [77].
All of this should be in concordance with the little group of the coadjoint orbits for
constant representatives in the case k # 0.

4.3.5 Dimensional reduction and link with warped
Schwarzian theory

The idea for this section is to perform the dimensional reduction of our action (4.190)
as for Liouville theory where it ends up with a Schwarzian theory [77].

So the first step is to make a Wick rotation ¢ = 7y. Then we take the time circle
to be very small, Ay — 0, with & = kAy and £’ = kAy. With that, we end up with

"2

pk' / ) pik' / 2 1.2 v
=— [dy| = — [dp | P k 2—ko | . 4.192
S 87 30<f/2—|—04f +47T ¥ + Ko+ MO ( 9)
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Now, up to some boundary terms, we can rewrite it with the Schwarzian derivative
(2.28):

S = Mk,/dcp ~2{f10} +af?) + 4 /d¢<¢’2+k2+2 k0> (4.193)

i)} o fruon

where for the last step we used the equations (4.191). The last equation is the
Warped Schwarzian action in [109] with additional source terms.

4.3.6 One-loop partition function

We are now interested in computing the partition function for our action (4.190) in
a similar manner as Section 5 of [75]. The general idea behind this strategy was
outlined in [170,171,197]. The canonical ensemble partition function can be thought
of an Euclidean functional integral weighted by the classical action with typical cou-
pling constant 1/K (for AdS; gravity, this would be related to the Brown-Henneaux
central charge ¢ = 24K). At large K the dominant contribution to the path integral
is given by the saddle point approximation, i.e. as a sum over classical saddles satis-
fying the appropriate boundary conditions of an exponential whose argument consist
in a series expansion starting with the classical action evaluated on the saddle, fol-
lowed by subleading terms representing quantum corrections to the effective action
at n'* order in perturbation theory (as it turns out, there are instances where the
partition function happens to be one-loop exact). On general grounds, the partition
function is expected to be expressible as a sum of characters of the corresponding
symmetry algebra - Virasoro for AdSs3 gravity, and BMS; for flat space holography.
This indeed turns out to be the case [73,75,171]. In the present situation the relevant
characters are those of the warped conformal algebra taking the following form [ /7]
(see Section 2.1.4 for a brief review and notations):

Xhp = qh‘ﬁy 1= bpeq) forpeR, (4.194)

Xhp = ¢ 21y" H (1qn)2 (1 —0vacq) forpeiR. (4.195)
n=1

We will therefore expand the partition function for our action (4.190) in orders

of k and x and limit ourselves to the 1-loop contribution. We refer the reader to [7]

for a sketch of the proof of the one-loop exactness of the partition function for

any geometric action defined from the Kirillov-Konstant symplectic form. We will
investigate whether this allows us to recover the above characters.

From now on, we will assume that p = 0 and v = 1, as suggested in [00].

This implies that the mass and angular momentum of the solutions with boundary
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conditions (4.175) are given by
M = 7P, J=-=2nL, (4.196)

and the thermal entropy is the one of a spacelike warped AdS3 black hole and a
WCFT at finite temperature. The action (4.190) then reduces to

f'/ f//
f/2

To compute the one-loop partition function, we first need the classical saddle
point of the action (4.197) and then evaluate the euclidean action on this saddle
point. The equations of motion derived from (4.197) for constant orbit representative
are

k
ngy = — | d* (

- K /3 .
3r s, +aff> +E/d2x (<I><I>+2k0(<b—1)). (4.197)

2o (552 = ieh) = 0.

N2 (4.198)
8,5(1)/ - O .

Using (4.189) and supposing f' # 0, we recover the equations of motion of the
original Chern-Simons theory (4.174) for our choice of chemical potentials. The
solutions of interest to the saddle point approximation are those with constant £
and P, where their values are given by the zero modes Ly and Py, implying from
(4.189) the equations

!

. <f/2 _ 1) ={f; ¢}, ' =0. (4.199)

We get as saddle point the solution:

flp,t)=p+a(t),  (pt)=calt). (4.200)

We make a Wick rotation ¢ = —iy and compute the euclidean action iSg = Sggy,

koo (P i\ R [ (e o
Sy — _Z&T/Eod x( o talf) - E/d o (10D + 2ikod — 2k) . (4.201)

For this part, we will separate the discussion into two cases. The first one for a
real orbit representative Py and the second one for a purely imaginary Py. Let us
begin with a real U(1) holonomy, which corresponds to warped black hole solutions,
and derive the Hamiltonian as the real part of the action

H = kky = 27P, (4.202)

which could already be seen from (4.168) with 4 = 0 and v = 1. It corresponds to
an orbit representative P, that is also real. For a given value of the holonomy, the
Hamiltonian is always bounded from below. It is interesting to note that in the case
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of p = 0 and v = 1, the path integral is well-defined for any value of «, as long as
ko is real, contrary to the Virasoro case where only values of o greater or equal to
—1 were allowed.

Then, we periodically identify the euclidean time y. We get as periodicity con-
ditions on the fields:

fle+Q8,y+8)=fle,y) .  e+QB,y+5)=2(py), (4.203)
fle+2my) = fle,y)+2r , P(p+2my) =2(p,y).
in terms of the fields ¢;(y) and cy(y), it gives
aly+B)=aly) -8 .  aly+h)=cly). (4.204)
So the solution is
fo Y — Qy s (I)O = O y (4205)
and the euclidean action evaluated on this saddle point (4.205) is
SO = 8 (kko + ikQL,) . (4.206)

From there, we can already state that the 0-loop contribution will give the factors

,Sg)) i q 24 yznko (4207)
where we defined
q= 627rz7' y = 627rzz (4208)

with Q2 = 277 and f = 27z. Furthermore, we are imposing that 5 and {2 are
determined in terms of the holonomies o and ko [(0]

exp lii?/fl@d@] = -1, exp [ (/ Ctdgo—l—Q/C dgp)} =™ (4.209)

leading to the following relations between £, €2 and the zero-modes:

™ 7)0 1 s
Y Q= , 0= —" . (4210
e (7 H\/E()) 29V & — 2Py ’ VL ( )

The ~ is an arbitrary constant and represents a kind of deformation at the level of
the holonomy [00]. If it is an integer, one recovers a similar result to BTZ with an
holonomy living in the center of the gauge group. However, it is expected that it is
not necessarily the case for warped spacetimes. For instance, for the warped black
hole in the canonical ensemble (1.13) [00],

2v

—_ 4.211
v2+3 ( )

"}/:
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Now we can expand the fields f(p,y) and ®(y,y) around their saddle points

fm7n 2wimy in
f(907y):f0+2 277'26 he fO’
o (4.212)

27rzmy

(I)m,n in
(I)((p7y) = Z (27’()26 € fo

One can check that these series expansions satisfy the periodicity conditions (4.203).
Plugging this into the euclidean action, it becomes

Sp=258 Z > n(m—1n <§|fm,n\2(n2+a)+m\<1>m,n|2>+..., (4.213)

m=—00 n#0

where [ = fom —n, Ppn = P —n and the dots contains terms of the third order
and more on the fields. One does not need to take into account the vacuum in this
case since it possesses an imaginary value for Py [00].

We can now compute the one-loop partition function by integrating out the fields
fmn and @, .

Z1oop = /DfD@ e o8 = Ne_s<0 H n- —Tn) 1(n2 + a)_1/2 , (4.214)

where N is a normalization constant that did not depend of 3 and €. To perform
the product for the m’s, we take the derivative of the logarithm of the partition
function with respect to 7:

87— 10g Zl—loop = —271'2]{3,80 -+ Z Z

n#0 m=—o0

m—Tn

n#0 m=1 T*n?
= —2mik& — 7 »_ ncot(nwr)
n#0
= —2mik&y — 27 Y _ ncot(nmT)
n=1

for nt ¢ Z. This sum diverges but there are several ways to deal with it. One is to
use the zeta function regularization to write

i ncot(nmr) = i n(cot(nmt) 4+ 1) — i i n. (4.215)

Now, the first sum on the right hand side converges for Im(7) > 0. This requirement
is not a problem for negative value of «, such as the vacuum. However for positive
value of the holonomy, one needs to perform an analytical continuation 7 — 7 +
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i as done in [I73]. After exponentiation, the partition function reads (up to a
normalization constant)

(0) 1 1 1. > 1
Z11o0n = € q 24 — = q"’“so’ﬂyl”k0 —_ 4.216
oer W=y Ha—gp 029
The 1-loop partition function reproduces the full WCFT partition function (4.195),
originally computed in [13] for the precise value k = —1,
s 1
Xnp(1:2) = ¢ P[] 55 (4.217)
n=1 (1 —q )
for p € iR which is our case here (see (4.216)). From there we read that
s c—1
h=-2r(Ly—— 2) — = 2mi Py . 4.218
m < 0 /{PO + 24 ) b TM/PO ( )

It thus seems that starting from a real Py, solutions containing black holes, we
recover the partition function of a primary field with imaginary charge p, like the
vacuum, and its descendants.

Such a result may seem unusual, but a similar phenomenon was discussed in [ /7],
where the authors computed the one-loop partition function in AdSz with CSS
boundary conditions [77] using a quasinormal mode method [19%]. Their primary
focus was to describe the BTZ black hole, a unitary representation, but they unex-
pectedly obtained the vacuum character, also a unitary representation in this con-
text, which they associated with thermal AdS. They argued that, akin to CFTs, an
appropriate modular transformation relates thermal AdS to BTZ [12,50], rendering
them indistinguishable because they both derive from Euclidean AdS [71, 199, 200].
The only distinguishing factor is their contractible or non-contractible thermal cir-
cle, which explains why they obtained the vacuum determinant while computing the
BTZ determinant.

We are now interested in purely imaginary values of Py, like the vacuum. Indeed,
in that case, from [00], @ = —(1+25)* where j is an integer and ky = iy. We choose
the branch j = 0 as in [00] to make the link with the WCFT vacuum values in [12].
When the orbit representative Py is purely imaginary, £y stays real and the euclidean
action (4.201) is instead

ik . (f'f" , o (0K .
Sy — —%/Zod z <4f,2 L Soff) - /d z (87Tc1>’c1>+z7>0c1> —730> . (4.219)
The real part of the action is then

Re[Sp] = —i / dpPod . (4.220)

Since we are now dealing with a non-unitary representation, (4.220) can no longer
be interpreted as the Hamiltonian (4.168). For the field periodicity (4.203), a saddle
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point of the action (4.219) is also (4.205). One can show that any perturbations
around this saddle point keep the real part of the action (4.220) bounded, such
that the path integral derivation can also be performed. Following the previous
computations, the one-loop partition function is simply

_ —kLo—55, —Kko - 1
Z1oop = ¢ Yy nl;[l =g (4.221)
which is (4.216) with ky — iko. This does not reproduce either the character for a
real charge (4.194) or for an imaginary one (4.195).

In order to address this apparent puzzle, we momentarily pause on some partic-
ularities of WCF'T partition functions. We have so far implicitly assumed that the
bulk and boundary theories are defined by the following partition function

Z°E(B,0) = Tr e~ PPoHi0Lo (4.222)

which is said to be in canonical ensemble, and where L, and P, are the zero modes
of the algebra (2.31). It appears however more natural in some situations [!”] to
define the following generators and partition function:

2 1 2 1
L8 =1L, — PP+ EP(?% , P9 = — b+ %chsn : (4.223)

and
Z®(Bp, By) = Tr e Prfa—PuLd (4.224)

The latter defines the so-called quadratic ensemble partition function. Importantly,
we have in particular that POQ = — P2 /k, hence states with opposite values of P, are
identified.

We will refrain from reconsidering our previous analysis in quadratic ensemble,
which would entail reformulating the appropriate bulk boundary conditions [107] in
Chern-Simons/Lower-Spin Gravity language, then going through the steps of the
Hamiltonian reduction, and identifying the corresponding geometric action. We will
leave this for further work. However, it is natural to expect that the periodic bound-
ary conditions on the quadratic ensemble U (1) field, when expressed in terms of the
canonical U(1) field above, will lead to either periodic, or anti-periodic boundary
conditions. Let us inspect the consequences of this observation, by considering the
following periodicity condition:

(e +QB,y+5) = —2(p,y). (4.225)

The new saddle point satisfying the new antiperiodic condition (4.225) can be

written in the form
T

@, = sin (;) , (4.226)
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and the expansion of the field around his saddle point is

iTY

By, y) = B + Z ¢ B ginfo (4.227)

The real part of the action (4.220) is also bounded for the perturbations (4.227)
and we can perform the path integral derivation. Focusing on the U(1) part of the
action, the euclidean action around the saddle point is

(m—Tn— ;) + ... (4.228)

/iﬂko‘l‘* Z Z

m=—00 n#0
And the one-loop U(1) partition function becomes

1 —1/2
2V _ ppyinko I 1/2( S ) , (4.229)

1 loop — 2

for n # 0. Using the same trick in Section 4.3.6, we derive the logarithm of the
partition function according to 7 to perform the sum over m, then we integrate and
exponentiate to get the one-loop partition function. First we perform the logarithm
and rewrite the sum as

(1) 1

1
logZ1100p = 52 Z 10g< —Tn—2>
13 & 1 1
= — Z Z {log(m—ﬂz—2>+10g<m+rn—2D
Z Z log(—m+m —n27'2>.

Now, deriving according to 7:

TLQT

o0
B gé()mz_ooi—m%—m? n272

0, logZ

1- loop

—1 n%r n2r
. z(zzl
n#0

m + m?2 — n272

m=—0o0 4
n2r nr s n2r
= + +
(5 S

n#0 \m=1 4 n?r? — n?7? el i —m+m2—n272
T n2r n2r -
= > 5tan(mrT) to s Tt T st Etan(mrr)
n#0 1 4
= Y mtan(nnr).
n#0
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Again this sum diverges but can be regularized using the zeta function regularization.
After integration and exponentiation (up to a normalization constant), the U(1) part
of the one-loop partition function is

. © 1
ZU(l) :Nl irkko ’ 4.230
1-loop Y nl;[l 1+ qn ( )
which is related to the U(1) part of the Virasoro-Ka¢-Moody character in (3.11)
of [13]. Combining this with the SL(2,R) part that remains the same, we end up
with - .
Ziaoop = g F0 721y [T ———, 1.231
1 P nl;[l (1 o qgn) ( )

which is completely equivalent to (4.194) with weight and real charge (since Fy is
purely imaginary) (4.218).
For the vacuum, the computation of the SL(2,R) part of the partition function

needs to be improved because & = —1 in (4.214), making start the product at n = 2.
It implies a slightly modified zeta regularization (4.215)

s 13

dn—=((-1)-1=——. (4.232)

o 12
The one-loop partition function for the vacuum, o = —1 and ky = 47, is thus

e = 1
Zfi(c)op =q erig yilﬁw H 72”(1 - 5vacQ) : (4233>
n=1 (1 —q )

The factor 13 raised from the zeta regularization because we wanted to "regularize
first, integrate later". In [/, 173], a different approach, "integrate first, regularize
later", was performed which prevents the apparition of the regularization factor.

We can conclude from this section that for the natural periodic conditions
(4.203), we only recover one of the warped Virasoro character. In order to find
the other one, we need to impose the antiperiodic condition (4.225) which, for the
moment, does not possess a physical motivation. Furthermore, the warped character
are exchanged. When we tried to compute the warped character of a unitary rep-
resentation, like a black hole, we get the warped character for an imaginary charge
p and when we computed the warped charter of the vacuum, a non-unitary repre-
sentation, we ended up with the warped character for a real charge p-modulo the
strange antiperiodic condition. To confirm our results, it could be interesting to
use a different approach such as the Heat Kernel method [171] or the quasinormal
modes approach [17].

4.4 Summary and perspectives

In this chapter we have used the geometric action on the coadjoint orbits of the
Warped conformal algebra to refine and further develop one of the simplest bulk
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models for Holographic WCF'Ts, consisting in Lower Spin Gravity. We have per-
formed the Hamiltonian reduction of the classical gravity action in Chern-Simons
form and obtained exactly the geometric action on the coadjoint orbits of the Warped
Virasoro group. The orbit representatives correspond to the zero modes of the grav-
itational charges as we have shown by explicitly by taking into account the bulk
holonomy, as was already observed in other holographic set-ups such as AdS; and
flat space in 241 dimensions [72, 73, 75]. This makes the relationship between the
different lower spin gravity saddles obeying the boundary conditions of [00] and
the coadjoint orbits of the Warped conformal group explicit and provides an action
principle for warped boundary gravitons. These are the excited states generated
by boundary condition preserving diffeomorphisms of a given gravitational saddle
and correspond to descendants of primary operators in the boundary WCFT. The
action can be used to compute the contribution of Virasoro and KM descendants to
the one-loop partition function of a given classical saddle on the torus, and we show
how the result compares to the Warped Virasoro characters of [13].

Several extensions and further investigations could be envisioned following up on
this chapter, of which we list some below. A direct one concerns a thorough analy-
sis of Lower Spin Gravity in quadratic ensemble. This could allow to clarify some
intriguing features observed in the one-loop computation. The effective action for
Warped conformal transformations around a given background could be exploited
for several further purposes. For instance, it could be used to compute boundary
correlators from Wilson lines ending on the boundary as well as entanglement en-
tropy and its leading order quantum correction. Furthermore, Wilson lines could be
used to compute the Warped Virosoro identity block and its subleading terms, both
for light operators and in the heavy-light limit, in the spirit of [/], and even more
general blocks generalizing the open Wilson line networks of [201].

An interesting avenue to explore in our opinion would be a supersymmetric
generalization of Lower Spin Gravity. Susy WCFTs have been addressed in [01]
from a field theory perspective, and it would be interesting to generalize this to
more supersymmetries and investigate the bulk counterpart, in the spirit of [20?2] for
AdS3 or [203-200] for flat space. Also, a susy generlization of Lower Spin Gravity
would open the door to an exact evaluation of its partition function using localization
techniques, along the lines of [207,205].

Another remarkable connection was made recently between the geometric action
on the coadjoint orbits of the Virasoro group and complexity growth in 2d CFTs
[209]. In that chapter a suitable definition for Nielsen complexity for 2D CFTs was
introduced and led to the Alekseev-Shatashvili action as complexity functional for
the CFT. Since the Alekseev-Shatashvili action also arises from the Hamiltonian
reduction of AdS;z gravity with Brown-Henneaux boundary conditions, one could
view this as an explicit realization of the “complexity equals bulk action” proposal
of [210]. It would be interesting to see if these arguments can also be applied to
WCFTs and Lower Spin Gravity.



Chapter 5

Quasi-normal modes in warped
black hole background

Quasinormal modes (QNMs) are a well-studied subject in General Relativity. They
are considered characteristic modes of vibration of black holes, similar to the vibra-
tion of a bell. These modes appear as electromagnetic or gravitational perturbations
of black holes. In fact, the study of QNMs began in the late 1950s by Regge and
Wheeler [77], well before the term black hole was coined by Wheeler in 1967 during a

talk at the NASA Goddard Institute of Space Studies [?11,212]. Regge and Wheeler
aimed to study the stability of the Schwarzschild metric under small perturbations
independently of astrophysical context. In 1970, Zerilli [ |7] extended their work to

include all perturbations. At that time, the term quasinormal modes did not exist
yet; they were merely regarded as perturbations of a black hole.

The following year, Vishveshwara observed these modes in the scattering of grav-
itational waves by a Schwarzschild black hole [7%], and Press subsequently named
them quasinormal modes [211]. Since then, QNMs have appeared in various con-
texts, such as particles falling into Schwarzschild [215] and Kerr black holes [216,217],
or as the gravitational collapse of a star into a black hole [79-%1]. In 1975, Chan-
drasekhar and Detweiler numerically computed the QNMs of Schwarzschild black
holes in a weakly damped regime [215].

The first link between QNMs and the unstable photon orbit around a black hole,
called the photon ring, was established by Mashhoon in 1975 [27], where he proved
Goebel’s statement [210] that QNMs are essentially gravitational waves orbiting
in spiral orbits around the photon ring and slowly leaking out. Their connection
to gravitational waves allows us to use them to deduce the mass and angular mo-
mentum of an observed black hole [220] and to test the no-hair theorem of general
relativity [221,227] through the LIGO and LISA experiments. Ferrari and Mashhoon
formalized the connection between the photon ring and the QNMs of a Schwarzschild
black hole in 1984 [%(]. They shown that the dispersion relation of the angular fre-
quency w of the modes in the eikonal limit demonstrates a connection to the angular
velocity €2 and the ratio of the Lyapunov exponent to the orbital period of the photon



ring 77, outside the outer horizon

1 1
Wimnn = <l + 2> O —i (n + 2> v . (5.1)

It was later generalized to stationary, spherically symmetric, asymptotically flat
spacetimes in [*] and to Kerr black holes in [J0]. After the advent of the AdS/CFT
correspondence, Birmingham, Sachs, and Solodukhin [99] showed in 2001 that the
QNM frequencies of BTZ black holes correspond to the poles of the retarded cor-
relation function in the dual CFT. The following reviews are recommended for the
interested readers [223-220].

In the context of Schwarzschild and Kerr black holes, the QNM spectrum can-
not be computed exactly and requires approximation methods such as the inverse-
potential approaches [#0], Wentzel-Kramers-Brillouin (WKM) methods [%%,96,227],
geometric optics approximations [#3, 51, 01, 03-00, 05, 225] or numerical methods
[220,230]. However, warped AdSs black holes have the particularity to have an ex-
act QNM spectrum [#2]. This characteristic is also observed in BTZ black holes [99]
and self-dual WAdS3 black holes [9%]. However, the former do not exhibit a photon
ring, while the latter are a near-horizon limit of near-extremal WAdS; black holes.
This renders the WAdS; black holes particularly interesting to examine in this con-
text.

We aim to calculate the QNMS as scalar solutions of the massless wave equations
in a warped AdSs3 black hole background and connect them to the photon ring in the
high-frequency (eikonal) limit. Considering only spinless solutions is adequate since
the spin’s influence is minimal in this limit [<]. The QNM results for asymptotically
flat spacetimes were achieved by applying different boundary conditions at the hori-
zon and at infinity, all of which are equivalent. An alternative definition of QNMs
can be formulated based on their eikonal limit rather than the boundary conditions
of the modes: QNMs are solutions to the massless wave equation that behave in
the high-frequency limit like (5.1). Defining QNMs in this manner becomes relevant
within the context of Warped Black Holes because, as we will see, the boundary
conditions are not equivalent in this background. Consequently, we cannot base our
definition upon them. We will select the relevant conditions leading to (5.1).

In this chapter, we will start by solving the massless scalar wave equation in
a WAdS; background and determining the exact spectrum of QNMs. To achieve
this, we will examine various boundary conditions at infinity, including finite flux,
outgoing waves, and Dirichlet conditions. We will demonstrate that these conditions
differ across coordinate systems for the WAdS black hole. To identify the appropriate
boundary condition, we will explore several limits, such as the Penrose limit, the
near-ring region limit, and the geometric optics approximation, which provide a
physical interpretation related to the outer photon ring. We will then conclude
that the outgoing waves condition at infinity is the most suitable. Finally, we will
consider the BTZ limit and the near-horizon near-extremal limit to compare our
findings with established results.
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5.1 Warped AdS; Black Holes

The black hole solution we will be discussing in this work first appeared in [10, 31—
], and was initially studied holographically in [’3]. The metric is given by

)

(1.13)

2

Wer +R(r)? (A0 + N'(r)dt)” ,  (5.2)

ds? = —N(r)*dt* +

where we defined

R(r)* = 2 (3(y2 —Dr+ @ +3)(ry +r-) — 4V\/m> ;

NP = RET)Q (P4 3)(r — ) — 7o) | (5.3)

2ur — \Jryr_(v? + 3)

N(r) = ot ,

where 0 € [0, 27[ is an angle, € [0, +o00] is the radial coordinate and v, ry, r_ are
constants. We assume 2 > 1 to avoid closed timelike curves and will in addition
restrict ourselves to v > 1 without loss of generality. The constants r. determine the
positions of the inner and outer horizons of the black hole. We have r, > r_ > 0.
These solutions are obtained as quotients by a discrete subgroup of the isometry
group of spacelike warped AdSs [77], much like BTZ black holes are obtained from
global AdS;3. Actually for v = 1, the metrics are locally AdSs3, and represent BTZ
black holes, albeit in an unusual coordinate system.

5.2 Photon ring

Photon rings are gravitationally bound light rays. They are described (when they
exist) by affinely parameterised null geodesics, z#(s) = (t(s),r(s),@(s)), whose
coordinate remains bounded. The two Killing vectors 0, and 0y lead to two conserved
quantities. The corresponding conserved quantities are the energy

E | ;
Egz—t+2<—2ry+\/m>9, (5.4)

and the angular momentum

EI; = i<3r2(y2—1)9—2\/r+r (V2 + 3)i+7‘<(r++r)(V2+3)9+4y(i—9\/r+7"(y2 + 3)))) )

(5.5)
For null geodesics, g, a"3" = 0 gives

—0, (5.6)
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where

V(r) = 4(L* + 2LER(r)*N°(r) + E*R(r)?). (5.7)
Assuming E # 0, simultaneously solving the conditions
V(r)=V'(r)=0, (5.8)
provides solutions of the geodesic equation with
r =T = const., (5.9)

the photon ring'. We find as solutions, the two photon rings

LTyt n (ry —r_)v

Py . (5.10)
2 /3?2 —1)
By defining a critical energy-rescaled angular momentum,
L
A= — 5.11
E Y ( )

each photon ring has

AM7e) = Ay = ;( rer_(v2+3) — (ro +ro)vF ;(m —r_)y/3(v? — 1)) . (5.12)

For both photon rings, the impact parameter Ay is negative. It will be helpful when
we examine the direction of propagation of the QNMs.
One can check that we have the following inequalities

Ty >rp >ro >7F_ . (5.13)

It is interesting to notice that, since the radial coordinate r cannot be negative [37],
we have two photon rings as long as

2 — /3?2 —1
= ( ), (5.14)

T+ 2w 4,/3(12 - 1)

meaning that for a given v, the ratio of the radii of the horizons cannot be too small.
In the limit of large v, the lower bound tends to an nonzero value indicating that
even in that limit, the location of the horizons cannot be arbitrary. On the other
hand, when v goes to one, the only situation where we have two photon rings is the
extremal case, where the two horizons coincide.

This condition can also be equivalently expressed in terms of v as

> J S(ry +r-)* (5.15)

4ryr —rt —r2

n the special case, E = 0, (5.9) is fulfilled at L = 0.
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Number of photon rings

10

r_

0.0 0.2 0.4 0.6 0.8 1.0r,

Figure 5.1: This represents the phase space of the different number of photon rings that

you can have in your spacetime as a function of v € [1, +oo[ and the ration r_/r, € ]0,1].

In the red region, there are two photon rings 74, while in the yellow region, there is only

an outer photon ring 7 outside the two horizons. On the blue line, we are at the boundary

of the two zones where the inner photon ring is located at 7— = 0 and its angular velocity

is infinite. The dashed vertical line at r_ /r, = (2 — v/3)/(2 + v/3) shows the asymptotic
behaviour of the boundary between the two zones.

This specific lower bound of v is always greater than 1, as long as the radicand
is positive. This implies that there will always be a certain value of v where the
inner photon ring disappears. If :—; < glg, the radicand is negative, meaning that
there is always only one photon ring for any value of v, see Figure 5.1. When the
inequalities are saturated, the inner photon ring is located at 7 = 0 and the impact

parameter A_ vanishes, i.e.

- 3 )2
A —0 when v= (re4r)* (5.16)
Mryr_ —r2 —r2
The angular velocities at criticality Q4 = Q(ry) are given by

~ do 1
, = B0) =, (5.17)

dt(S) Fﬁ:75\i )\i

and the half-orbital period? is given by

r=— = —T Ay . (5.18)

Oy

2A light ray emitted close to the photon ring can perform a certain number of rotation around
the black hole due to the presence of the photon ring before arriving to a distant observer. To
quantize this number into integers, one may count in terms of half-orbits [232].
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The bound geodesics are unstable because for the critical orbital radii,

V(L) = —6E*(v® — 1) < 0. (5.19)
Any small perturbation will push them away from the photon ring. The photon
ring image arises by these photons travelling on such “nearly-bound” geodesics. We
consider two such nearby geodesics, one which is exactly bound at 7, and the other

one initially differing only by an infinitesimal radial separation dry. By solving the
radial geodesic equation (5.6) for such geodesics, we get

or(s) =eV —aVIL)s 5y (5.20)
After n = % half-orbits, the separation grows as
dr(n) =e""ory, (5.21)
where 7 is the Lyapunov exponent and is defined as

™

1
=/ —=V"(ry) |~ . 5.22
gl 5V (74) |5 s (5.22)
For our spacetime, it appears to be the same for both photon rings
T2
v = Z(l/ +3)(ry — 7). (5.23)
The period-averaged radial deviation as a function of time, ¢, becomes
— Lt 7
or(t) = e ory, L= —, (5.24)
T
where
ol 1 5 1
=— =4/ -V = . 5.25
w=l=y gl (5.25)

In the following, we will often refer to v, as the Lyapunov exponent even if it is
more precisely the ratio between the true Lyapunov exponent and the half-period.
As the latter differs for each photon ring, we get different results

v +3 ~
TiE = T (ry =), (5.26)

which are positive because )y is negative. Together with ¢ ~ Q4t, we have the
complete solution of the null geodesic in the near-ring region of the warped AdS;
black hole.
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5.2.1 Near-ring region

For our analysis, we consider nearly-bound geodesics in the near-ring region. To
define this region, let us introduce the following parameters,

ni=ry4+r_, oc:=ry—r_, (5.27)

and therefore, n > 0. We can rewrite the critical orbital radius (5.10) and the
critical energy-rescaled angular momentum (5.12) as

o= n (1 + L 2ov ) ’ (5.28)
n

2 /3?2 —1)
Ay = Z(;\J (1 — U;)(ﬂ—i-?)) —VF 2077\/3(1/2 - 1)) ,

Ui

where 0 < % < 1 by definition. Since 7 controls the scale of 7, and Ay, we can
define the near-ring region in phase space as

|0r] < n  (near-peak),

NEAR-RING REGION: (5.29)

’5)\‘ < n (near-critical),

where dr = r — 7 and 0\ = \ — S\i. The first condition zooms into the spacetime
of the bound photon orbit and the second condition zooms into the bound orbit in
momentum space. The outer photon ring is defined by the following phase-space
locus

PHOTON RING: &r =0 =0\ (5.30)

5.3 Quasi-normal modes

5.3.1 Exact spectrum

We recall that scalar quasinormal modes are solutions to the wave equation and
eigenfunctions of the operators 9, and Jy (i.e. Killing vectors of the translational
isometries along ¢ and ¢) with boundary conditions at the horizon and at infin-
ity. Therefore, we consider massless scalar perturbations, which satisfy the wave
equation

V2®(t,0,7) =0. (5.31)

Although we are primarily interested in photons or gravitons, as the effects of spin
are subleading in the geometric optics regime [], it is sufficient for our purposes to
solve the wave equation of a massless spin-zero field in a Warped AdS3 background.

Thus, we write: -
O(t,0,r) = e W p(r) (5.32)
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where w is the energy of the scalar mode and k is the quantized angular momentum.
The radial part of the scalar wave equation takes the form

[0(r)d, (0(r)d,) + Virui(r) | é(r) = 0, (5.33)
where we defined
or) = (7 4 3)(r — ) — 1) = RPN, (5.34)

and the wave potential is given by
Vasn(r) = 4(k? + 2kwR(r)?N°(r) + w*R(r)?) . (5.35)

In terms of the following change of coordinates

T — T+
S 5.36
SRR (5.36)
we can rewrite the mode as:
B(t,0,2) = e TR (2) . (5.37)

Here, z = 0 and z = 1 correspond to the locations of the horizon and spatial infinity
respectively, and ¢(z) has to satisfy

2(1=2)9"(2)+ (1 —2)¢'(2) — [142 — B*+ C(C_l)] o(z) =0, (5.38)

z 1—2

where we define

v (s )
+3) <2k w2 m» , (5.39)

2 1)2
0:1 1 1_12(V 1w '
2 (v2 4 3)2
This linear second order differential equation can be brought to a standard hyper-
geometric differential equation by the function redefinition [%2, 23]

o(z) = 2" (1= 2) f(2). (5.40)

Curious readers can refer to Appendix B for a review of the general properties of
the hypergeometric function, which will be used throughout the chapter.
By defining,

V(A 2) =2 3Fi(A+ B+C,A—B+C;1+2A;2), (5.41)
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the general solution can be expressed as
B(t,0,2) = e (1 = 2)%(C, W(A,2) + C_ W(=A4,2)), (5.42)
with constant C'; and C_.

With the general solution to the massless wave equation in hand, our next ob-
jective is to impose the appropriate boundary conditions that yield the behavior
(5.1) in the eikonal limit. To achieve this, we will analyze the various asymptotic
behaviors of (5.42).

First, let us examine the region near the horizon. As z — 0, we can approximate
the mode W(A, z) as

(A, z) = z* + (subleading terms) . (5.43)
For the sake of simplicity, let us express A as
A=ick+icuw, (5.44)
where

9 (2V7’+ —\Jrar_ (V¥ + 3))

T ) R iy oty T i b L e

C1 =

Since quasinormal mode frequencies are complex, we decompose them as
W= Wpg — Wy . (5.46)

With this, we can express the complete wave solution as

d,(t,0,2) = exp (—in <t - (01i +c2)ln z) + ik@) e wrtmeawrinz, (5.47)

WR
Meanwhile, close to the horizon, the second solution W(—A, z) can be simplified to
U(—A,2) =2z + (subleading terms). (5.48)

which leads to the following asymptotic wave solution
. k : —wrt—cowrInz
O_(t,0,2) =exp | —iwg |t + (c1— + o) Inz | + ik | em 1P 72wz, (5.49)
WR

To determine the direction of propagation for the two different solutions near the
horizon, we examine the eikonal limit, where it is anticipated that
k

wr A~ Qik = T (5.50)
+

- 107 —



5.3.  Quasi-normal modes

Then, one has to analyse the sign of the factor ¢; Ay + ¢o. Indeed,
e+ >0, (5.51)

which implies that while ®, is an outgoing mode at the horizon, ®_ is ingoing. To
have only ingoing (outgoing) solutions, one must impose Cy =0 (C_ = 0).
We now examine the flux of the modes through the outer horizon. The flux of a
complex scalar field is [27]
v+

.;:y%%L4@@@_¢@¢g: o (e =)z (@70.0 — ©0.9%) . (5.52)

Near the horizon, the flux is
F o~ Ag (|C4 222290 | CLP272r ) — iy (C7CL2® — C1C_z724%) | (5.53)

where Ap is the real part of (5.44). We can observe that an ingoing mode, C', = 0,
will have a diverging flux at the horizon if w; is positive, which will be the case in
the eikonal limit (see (5.71)). On the other hand, an outgoing mode, C_ = 0, will
have a finite flux.

Let us look at the other boundary of our spacetime, spacial infinity, and com-
pute the asymptotic behaviour of our solutions. Using a standard formula for the
hypergeometric function , we can expand ®(x) (5.42) near z = 1 as

B(t,0,2) m e W (Qu(1— 2)74= + Q_(1—2)277) (5.54)
where we have defined
0, - PL+24T2C-1) I(1—24)T(2C —1)
T TA+B+OT(A-B+C) ' T T(-A+B+O)I(-A-B+C)’

(5.55)
(1 - 2A4)T(1 - 2C)
Tl-A+B-CO)I(1-A-B-0)°

(1 +24)0(1 — 2C)

= i T AT BTt A-B-0) &

Q

Again, we have decomposed C' = % — w for simplicity, where we define

1 3(r?—1)w? 1
=, |-=——=—""7" =/ —bw? i
w \J 1 71 3) 5 e (5.56)
where we have introduced 3 ) )
V J—
= 5.57
(12 +3)%7 (5:57)

and because w is complex, we further decompose w = wpg + iw;. We define the
square root of a complex number such that the real part is positive, or, for a purely
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imaginary complex number, its imaginary part is positive. In the eikonal limit, we
have

1

w = f—b( — w?) + 2ibwrwr

&

bwrp v/ —wg + 2wy

( wR+4wI—wR+Z\/\/w%+4w%+wR>

WR( )

The imaginary part of w is negative, so the real part of w is indeed positive. Anal-
ogously to the case with the horizon, we consider the phase

Tﬁ?

Q

—iwt + <; + w> log(l — z) ~ —iwg (t T Vblog(l — z)) : (5.58)

As the function log(1 — 2) is decreasing, we can conclude that a mode proportional
to (@4 is ingoing at infinity while a mode proportional to ()_ is outgoing at infinity.
For a flux condition at infinity, we have

F ocizmn(1Q-Pl1 = 27297~ [Qu(1 - =)
(5.59)

- (thl e Qg (1 - z)*"m) .

Because the real part of w is positive, we note that an outgoing wave, ), = 0, will
lead to a diverging flux, while an ingoing wave, ()_ = 0, will have finite flux.

We could also look at a Dirichlet condition at infinity
®(t,0,2) Z50. (5.60)

It does not impose a condition on @), since the real part of %+ w is always positive.
Thus, the Dirichlet condition only implies () = 0, similar to the finite flux condition.

One can notice that the natural proposal of ingoing waves at the horizon and
outgoing waves at infinity, namely C', = 0 and ). = 0, does not align with the
boundary conditions proposed in [%2], which specify ingoing waves at the horizon
(C+ = 0) and a finite flux at infinity (- = 0). We will examine both cases
independently and compare the implications.

— 109 —



5.3.  Quasi-normal modes

Outgoing at infinity

For both cases mentioned above, we take ingoing modes at the horizon. To achieve
vanishing value of the () coefficient, we have two possibilities

—-A+B+C=-n  or —A—B+C=—n, (5.61)

for n a positive integer.

Case 1: —A— B+ (C = —n. This condition leads to

1 1202 — w2\ i(4k+wd)d
(- ) e e

where we have introduced

J= 2(y(r+ +ro) —Jrer_ (V2 + 3)) and d= ! : (5.63)

Ty —T-

To solve this equation, the easiest way is to isolate the square root and square
the equation. It will provide us with two independent solutions, which we will
substitute back into the original equation to determine the correct one. It give a
quadratic equation in terms of w of the form:

Aw? +Bw+C=0, (5.64)
where
A=a**-b,
B =2a0X,,
1
= X241
C n+4,

1

We defined two positive parameters to simplify the equations: a = m and
b= ?5;’1;;2) The general solution of (5.64) is
—B++VB?—4AC
Wit = . (5.65)

2A

Here and in the following cases, we label w such that the first subscript “1” or “2”
stands for the case and the second subscript stands for the two solutions “+”. By
taking the eikonal limit we obtain:

~ 1
Wi+ Q:I:k; —1 (’I’L + 2> YL+ (566)
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with Qu, .+ given by (5.17) and (5.25). Now, to determine which solution satisfies
the original equation (5.62), we need to substitute them into it and take the eikonal
limit. Using the fact that in this limit, @ ~ iv/bw with b being defined in (5.57),

00 X 1
Wit Ikl Ok —i (n - 2) Vo4 - (5.67)
The full modes are then the solution (5.65) with the positive sign
o Sign(k
o ==t 2B B e e . (568)
where . 1
=00 <k; +7 (n + 2) (V2 +3)(ry — r_)> , (5.69)

which can be rewritten as
~ ~ 1
=0, <Q_k i (n + 2) ’yL_>
(5.70)

- 1
—0. <Q+k—i<n+2) vL+) .

The modes (5.68) exhibit a symmetry in terms of the parameters of both photon
rings, but it is really the sign in front of the square root that will determine the
behavior for large k and whether the modes depend on the inner or outer photon
ring in that limit.
One could argue that these angular frequencies are not well defined when v =
3(ry—r_

2)_2T2 because Q_ = 1/\_ — 400, cf. (5.16). However, by carefully taking

ryr—ry
the limit, we observe that the divergent parts cancel out, and the behavior of the
modes near this singular point takes the same form as in the eikonal limit

~ 1
UJ1+ ~ Q+k — Z (n + 2> ")/L+ . (571)
Case 2: —A+ B+ (C = —n. This condition reads
1 12(v% — 1)w? 2iwy
—|1-,/1l-—1 — =-—n. 5.72
2( J (2 + 3)2 ) 2+ 3) n ( )
The 2 solutions for w are
Wotr = —iV (Qn + 1) + i\/3(1/2 —nn+1)+v2. (5.73)

By replacing these solutions in (5.72), we select the correct one

ey = —iu<2n + 1) +i 32— Dn(n+1) + 2. (5.74)

These frequencies are purely imaginary and are independent of the angular momen-
tum k. This implies that for these modes, there is no notion of ingoing or outgoing;
they do not propagate. Furthermore, they only depend on the warp factor v. One
could argue that in the absence of an eikonal limit for these solutions, they cannot
strictly be considered as QNMs.
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Finite flux and Dirichlet condition at infinity

Another condition that one could naturally propose (and this was done in [27]) is
a finite flux at infinity. This condition implies the same constraint as the Dirichlet
condition which was mentioned before. We will see that the resulting modes are the
ones that we reject in (5.65) and (5.73).

Case 1: 1 — A— B —(C = —n. This condition leads to

1 12(v? — 1)w? i(4k + wd)d
2<1+J1_ e >_ =, (5.75)

By isolating the square root and squaring the equation, the general solutions are
also (5.65). However, only one of them is a solution to (5.75), such that

Sl n(
wi- = — g \/3 —7_)2X% — 4y (5.76)

with eikonal limit
\k\—>oo

3 1
o M2 g (n+ 2) . (5.77)

This time, the modes depend on the inner photon ring instead of the outer one.

Although the modes diverge when v = %, as was already pointed out
in [%2], the modes behave as in the eikonal limit in its vicinity.

Case 2: 1 — A+ B —C = —n. This condition reads

;(HJl_WW)_?w:_n. (5.78)

(12 1 3)2 (2 +3)

This time, the solution is

Wy = —iv (Qn + 1) - i\/?)(l/? —n(n+1)+v2. (5.79)
Once again, these modes are purely imaginary.

To conclude, if one requires outgoing waves at infinity, the resulting modes are,
in the eikonal limit,

~ ) 1
W1+ZQ+I{?—Z<TL+2)’YL+,

(5.80)
w2+:—iy<2n+ >+z\/3 n(n+1)+v2.
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While, if one imposes a finite flux or a Dirichlet condition at infinity, one gets

) 1
wW1— NQk-Z(TL‘i‘) YL—
2 (5.81)

Wy ~ —iy<2n + 1) - z'\/3(u2 —Dn(n+1)+ 2.

For each condition at infinity, we found a purely imaginary solution that depends
solely on the warp parameter v and not on the black hole parameters. The next
section will explore if this property persists in other coordinate systems and whether
it is possible to interchange the modes wy4, indicating that the boundary conditions
are not independent.

5.3.2 Another set of coordinates?

The presence of purely imaginary modes in the QNM spectrum is troubling because
no eikonal limit can be taken in this case. Since the dispersion relation depends on
the coordinate system, one can wonder whether there exists one where the dispersion
relation acquires a real part that could be relevant in the eikonal limit, and whether
the modes found by imposing a finite flux at infinity can be obtained from the
outgoing modes. We will limit ourselves to a linear and invertible transformation
M for the t and 6 coordinates:

(5= (5)= (3 2 (0) -

where A;, Ay and By, By are real constants. A transformation of the radial coordinate
is not relevant because it will have no impact on the modes, and we do not want
cross terms mixing r with the other coordinates in the metric. Our starting metric
is as before (5.2), and we will examine how the different parameters of the photon
ring (74, Ay, and ~vr+) will be modified after such a transformation. Our new metric
is of the form

ds? = g (r)d? + 2g;5(r)didd + gg5(r)d6* + g, (r)dr?. (5.83)
A null geodesic satisfies the following equation
P+ V(r)=0, (5.84)

where
2 9a0(r) + 2293 (r) + Aii(r)

Vi) = 9re(r) (935(r)* = 94 (r) gz (r))

(5.85)

where \ is given by (5.11) and £ and L are the constants of motion related to 9; and
0. We find the critical radius and the critical energy-rescaled angular momentum
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by examining the zeros of the potential and its first derivative. In terms of the old
critical parameters (5.10, 5.12), the new parameters of the photon rings are

f.i = fi )

- A\: + By b (5.86)
T A+ By QL

As the change of coordinates does not modify the radial coordinate, the critical radii

remain identical, but the angular momenta {2 are modified.

For the Lyapunov exponent, the easiest method is to compute the second deriva-
tive of the geodesic potential (5.25)

1 1
'S/L:t = —5‘/”(7"); (587)
T:?i,)\zjxi
. YL+
= Sign(detM)————— . 5.88
an(detd) L (5.55)

Now, we can examine how w and k are modified in the dispersion relation. They
are defined by the decomposition of the modes as

O(x) = e HMo(r) (5.89)

As we aim to describe the same quasinormal modes, the phase needs to remain
identical

—iwt 4 ik = —idt + k0. (5.90)
It implies that under the change of coordinates (5.82)
w= A& — Ak,
) (5.91)
k = Bgk — By& .

Now that we have observed how the different quantities are modified under the
new coordinate system (5.82), we will explore how we can use that to modify the
dispersion relation in the eikonal limit as desired. Originally, we have two sets of
modes described by:

~ ) 1
W = Qik — z(n + 5)")/Li R

wy = —if(n).

The second set consists entirely of an imaginary part. Ideally, we are looking for a
coordinate system where the new modes satisfy, in the eikonal limit, the relations:

(5.92)

NN Lo

o =k —in+ = ,
1 + ( 2)’YLi (5.93)
N AN(2) 7T . ~(2

By = OPk —if(n)AL,
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because the QNMs are expected to depend on the photon ring parameters. We chose
to consider in @y the parameter of the opposite photon ring of @;. It follows that

am Ap + BySds A Ao
+ - ~ ) F A
Ar+ Bl A (5.94)
(1) Yot 2 1

The equations for Q;” and ﬁfj[ are automatically satisfied according to (5.86) and

(5.88). However, the equation for Qg) and (5.86) lead us to the constraint that the
determinant of the transformation is zero, which is in contradiction with our initial
supposition.

If we slightly loosen our requirements and only impose that the second set of
modes acquire the Lyapunov exponent, without specifying a precise real part,

@y = fok —if(n)32 (5.95)
it implies that
B sl (5.96)
A, Qx ’
and the second modes take the final form
. AVLr  A@3 e A (2)
= ——— Ok —if(n . 5.97
w2 A, + BngF T f( )7L:F ( )

The coefficient in front of Qg) cannot be set to 1 by a choice of Ay and By be-
cause it would imply the same condition (5.96) for them, leading to a non-reversible
transformation. Therefore, the imaginary modes cannot be in the form (5.1) in any
coordinate system. In this sense, it strongly suggests that those modes cannot be
interpreted as QNMs.

It is really interesting to conclude that the form

~ 1
w=0k—i (n + 2> Vot s (5.98)

in the eikonal limit is conserved through linear transformation of the form (5.82).
Although we have proven this starting from our metric (5.2), we expect that it
should hold true for any metric.

The mode solutions for the two different boundary conditions, outgoing or finite
flux at infinity, are fundamentally different in any coordinate system. In view of
determining which boundary condition gives the most physically relevant modes
outside the horizon, we need to analyze the spectrum near the outer photon ring.
To do this, we will use three different methods and will examine each of them
separately in the following sections.
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5.4 Penrose limit

After exploring the potential modification of the modes (5.67) through a coordinate
transformation, our attention will turn to analyzing how these modes behave in the
vincinity of various photon rings. To define this vincinity, we will initially study the
Penrose limit of the Warped AdS3; black hole spacetime in this section, followed by
an investigation into the region near the rings in the subsequent section.

In [07], an alternative method was proposed for computing the eikonal limit of
the modes. This involves performing a Penrose limit of the geometry around the
outer photon ring of (5.2), followed by solving the wave equation (see Figure 5.2).

Penrose limi
General spacetime (M, g) errose WY Plane wave spacetime (M., g)

| |

Wave equation on (M, g) Wave equation on (M., g,)

—
Geometric optics,

Figure 5.2: Geometrical optics approximation, including the leading amplitude evolution,

to the wave equation based on the null geodesic v on a spacetime M with metric g, is the

exact wave equation on the Penrose limit spacetime M, with metric g,. This figure was
taken from [97].

We will first compute the Penrose limit around any null geodesic of a general
metric.

5.4.1 A Penrose limit guidebook

We will outline the steps provided in [231] to perform the Penrose limit for any
metric of the relevant form. The approach is quite general but will be adapted for
the specific class of metrics

ds® = gtt(r)dtz + 2g49(r)dtdl + geg(r)d92 + gm«(r)dr2 , (5.99)

where we can interpret r as a radial coordinate.
The first step is to rewrite this in Penrose coordinates. The change of variables
is
dt = —dV + \dy + £(U) dU
do = 4(U) AU + dy, (5.100)
dr =7(U)dU,

where A = L/E is the impact parameter, L the conserved angular momentum, F
the conserved energy and U is an affine parameter along a null geodesic such that
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¢, 0 and 7 satisfy the following equations

gttf+gt09:—1>
goo 0+ grot = X,

(5.101)
o GuN + 29w\ + gee
r- = 3 = eff(T) .
9rr (Gip — GuGee)
Performing that change of coordinates gives the following metric:
ds* =2dUdV + g(U) dy® + gu dV? — 2 (gu) + gio) dy dV . (5.102)

where we defined g(U) = g A\* + 2910\ + gog. We can now take the so-called Penrose
limit. We perform a boost for the U and V' coordinates combined with an overall
rescaling of the coordinates:

(U, V,y) " (kU KV, y) S (U, K2V, ky). (5.103)

Then, we rescale the metric as ds?> — k~2ds? and consider the limit & — 0. This
process yields the Penrose limit of the original metric:

dsh =2dUdV + g(U) dy*. (5.104)

The metric is a plane wave written in Rosen coordinates. We then need a last change
of coordinates to rewrite it in terms of Brinkmann coordinates:

U=u,
I
V=vr s (5.105)
1
y=—=x.
V9
The final result is:
ds% = 2dudv + da® + A(u) 2* du?, (5.106)
where 2
1g 1g
Alu) = =% — == 5.107
=507 (5.107)

Now the dots refer to derivatives according to the affine parameter u. If the wave
profile A is constant, we can perform one last change of coordinates u — u/v/A and
v — VAv to get:

dsh = 2dudv + da® + 2 du?. (5.108)

This approach involves two specific changes of coordinates.

We can apply this method for any null geodesics in the warped black hole space-
time (5.2) and obtain the wave profile

A=301%-1). (5.109)
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Hence, as long as v # 1, the Penrose limit yields a non-trivial pp-wave and can be
brought to the form (5.108). From its isometries, it is a Warped Flat space [237].
When v = 1, the Penrose limit of AdS; or BTZ is flat, as expected on general
grounds.

However, if we continue in this manner, we will encounter a problem. When solv-
ing the wave equation in this spacetime, we eventually need to relate the coordinates
of the Penrose limit back to the initial coordinates, particularly to impose appro-
priate boundary conditions for the pp-wave. These changes of coordinates become
unclear when the null geodesic is precisely located on the photon ring. Therefore,
we require an alternative method, which we will derive using Fermi coordinates in
the next section.

5.4.2 Penrose limit with Fermi coordinates

In this section, we will derive the Penrose limit of both photon rings of warped AdS;
black holes using Fermi coordinates and show that it takes the form

ds’ 2 24,2
= 2dudv 4 dz® + z*du”. (5.110)

For the convenience of the reader, we summarize the construction of the Penrose
limit for both photon rings 7+ simultaneously. We first define a set of vectors that
satisfy

utu, = v, = ute, = vle, =0, ut'v, =e'e, =1, (5.111)

on the photon ring with u* a tangent vector to the null geodesic, which implies that
u,dat =dS, (5.112)

where S satisfies the Hamilton-Jacobi equation
g 9,50, =0, (5.113)

with g, given by (5.2). By separation of variables, a particular solution is expressed
as

S=—t+A0+p(r), (5.114)
where \ is determined by (5.11) and
p'(r) = D(r)r, (5.115)
with 7 given in (5.6) and the function D(r) defined as

1

PO RGN

(5.116)
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Then a set of vectors can be found on each photon ring as
w0, = b (0 + Qw0y) |

b b~
v”aﬂz—(1+2> Or — 52409,

2 (5.117)
1
19, = ——=0), ,
VD(7x)
where we defined
A 243 .
m:izi, A=301%-1), Wi:—f’+ (ry —r)Q, (5.118)
Yo+ 4

with v, the Lyapunov exponent. This frame must be parallel transported along the
geodesic. A parallel transported vector satisfies the equations:

14 v S\i
Vi) £ ——
D(7+) o) VD (1)
VT =V"(0)T 4+ V"(0),
Vvt — 20/ D7) (;V’"(O)TQ + vr(O)T) V),
VO — 202s/D(7) (;VT(O)TQ + vr(o)r) +V00),

where 7 is an affine parameter and the dot represents the derivative with respect to
this parameter. Solving these equations, we obtain a parallel transported null frame
attached to the null geodesic:

MOEE: V().

(5.119)

u“au =b (815 + Qiag> y

- b ~ 1
L9, = —0p + | £A %/ D(F 2—>8+Q@ +———70,,
vToy t ( +V ()T 9 (t + 9) D(fi)T (5.120)
¢"0,, = 20\ D(iy )7 (A0, + 0p) + 1( )ar.
D(ry

Defining 0, = v"0, , 0, = v*9, and 0, = €0, this frame allows us to perform the
Penrose limit of the photon ring and obtain the metric:

d 2
l—z = 2dudv + da? + A x*du?, (5.121)

where u = 7 is the affine parameter along the null geodesic, v is constant along the
wave front, x is the transverse coordinate associated to the direction e* and

A = Ryappute®u’e’ =32 — 1) (5.122)
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is the wave profil. Now, we can solve (5.120) to find the linear change of coordinates:

t:bu—<1+g>v,

o= 2 (u - ”) , (5.123)

We can perform a last change of coordinates to absorb the constant wave profile A

u—>\}%, v— VA, (5.124)

5.4.3 Quasinormal modes from Penrose limit

Having demonstrated that the Penrose limit around the different photon rings can
be formulated as (5.110), and having identified a coordinate transformation (5.123)
linking (5.110) to our initial spacetime (5.2), we are now poised to investigate the
quasinormal modes in this regime. As previously, we solve the wave equation for a
massless scalar field @, albeit now in the background (5.110):

V,.VE® =0. (5.125)
Using the ansatz . .
O (u, v, x) = PPy (z) (5.126)
where p, and p, are, a priori, complex numbers, the wave equation becomes
V() = (2pupy — Poa?)ib(x) . (5.127)
The solution for this equation takes the form
b(@) = 1D, 3 (14 i)y/pra) + CaD_y s (i — 1)y/Br ). (5.128)

with a = ip, and where C, Cy are integration constants and D,(x) are parabolic
cylinder functions.

To determine the integration constants, we examine the behavior at both infini-
ties, i.e x — 400, and require for both photon rings an outgoing wave condition.
Because of the exponential time dependence, every null geodesic will be arbitrarily
far from the photon rings for a sufficiently large time. At both infinities, the function
(5.128) behaves as:

v C o o
¢($) =6 (CI + P(lj—)) e~ v /Zxa 1/2 + C2€1pvz /21: a 1/27
5 a
2 (5.129)
Cy

w(x) T 700 C«lefipvx2/2xa*1/2 4 ( + 02) eip”m2/2x*a*1/2 .
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Relating back to the original metric, we can use the inverse transformation of (5.123)
and (5.124):

=Y e )
_ Loy 5.130
v= gt ), (5.130)

x=/D(FL)(r—711),

to rewrite our quasinormal modes. In this case, we have two waves of the form:

O e—\/iz(pu§+pv)tiiva(fi)(7’—f+)2 ‘ (5.131)

To ensure outgoing waves near the photon rings, it is necessary for the factor
in front of ¢ and the one in front of r to have opposite signs. One can verify that
choosing 4 always imposes a condition on p, and makes it purely imaginary. Since
D(7,) and A are always positive, our focus should be on the terms involving p,.
Thus, we consistently need to choose the + sign between the ¢t and r terms. This
requirement is equivalent to imposing

1
C’leandi—i-a:—n,nEN. (5.132)

It implies then that p, = i(n + 1/2) and

O, ~ ¢~ (H/2utip (va®/2) <—,/—z'p1, x) : (5.133)

where H,,(x) are the Hermite functions.
We can now compare to the quasinormal modes in the original spacetime:

O(t,0,7r) = e TR f(r) (5.134)

Using the change of coordinates (5.123) and comparing the results to (5.133), we
get:

b b ~ 1
—i—w+ i =k = F(n+ 5), 5.135
7 Aw i 5 I F(n 2) ( )
b b ~
<1+2>w—291k:pv. (5.136)

So we obtain the dispersion relation for each photon ring:
~ 1
w:Qik—i (Tl+2> YL+ - (5137)

We notice that around each photon ring, the modes depending on the corresponding
parameters prevail.
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5.5 Symmetries of the eikonal QNNM spectrum

In this section, we will analyze the symmetries of the QNM spectrum within what
we will denote as the near-ring region of phase space. Following this, the massless
wave equation will be solved within this region. We expect the outcomes to mirror
those derived from the Penrose limit, given that they share the same philosophy:
exploring the QNM spectrum near the photon rings.

To define this region, we will once again study the QNM potential (5.35). In the
eikonal limit, when wg and k are both large and of comparable magnitude, the real
part of the QNM potential closely resembles the potential for null geodesics (5.7) if
we identify

wpe E and k< L. (5.138)

It is therefore reasonable to define an analogous version of (5.29). We will describe
both photon rings simultaneously using the subscript 4+ for quantities that differ
between the two photon rings. We define the phase space of waves for warped AdSs
black holes, known as the near-ring region, as [%7,95]:

|or| < n (near-peak)
NEAR-RING REGION: £ —Xi| <n  (near-critical) (5.139)
i <L (high-frequency)

where 7 is defined by (5.27) and, in this section, ér = r — 7. The final condition
indicates that we are considering the eikonal limit of our modes. The families of
modes that lack a real part are therefore not included in the description of this
section.

In this near-ring region, the QNM potential (5.35) takes the form

2
3 -
Vanm (0r) = 3(v* — 1wgrdr? ¥ QiL(m — 7))y WRWY . (5.140)
3(r?2—-1)
The radial ODE (5.33) can be rewritten as
H p(or) = iwy ¢(dr) (5.141)
where we defined the Hamiltonian
1
H=— 03+ prw or?) 5.142
22?10.73( or T P2WR ) ( )
with A 32
124/3(v= =1
p="2 = (2 2) - (5.143)
g (re —r)2(? +3)
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This represents a time-independent Schrodinger equation where ¢ are the eigenstates
of an inverted harmonic oscillator, and the eigenvalues iw; can be imaginary due to
the presence of non-Hermitian boundary conditions. Based on [220,237], we define
the operators

etp2t/p1 g ipy a2
= ——— | F10s — or), Lo=—- _Ha_ =N, Li=+—=,
ay m(iﬁ 5 — DaWR r) 0 4(a+a +a_ay) 2p27-[ 4 5
(5.144)
where ay are the generators of the Heisenberg algebra [ay,a_] = i1, and L,, satisfy
the SL(2,R)qn algebra
(Lo, L+] = FLy, [Ly,L_]|=2L,. (5.145)

An important clarification is needed here regarding the notation. For a4 and L., the
subscript 4+ no longer refers to the different photon rings but follows the standard
notation for ladder operators for the sake of clarity. In the definitions of these
operators, the only dependence on the different photon rings is encapsulated in the
coefficient p;, and the definitions remain the same for both 7. In principle, these
operators are defined everywhere in our spacetime, but our focus lies in the near-
ring region where L is proportional to the Hamiltonian 7. We can also define the
Casimir operator

=13~ Loy—L L, =L+ Lo+ L,L_. (5.146)
It commutes with every L,,, and consequently, by Schur’s lemma, it is proportional
to the identity. We can compute the proportionality coefficient

3
e —— 5.147
16 ( )

The eigenstates of Ly satisfy the relation
Lo¢n = hon, (5.148)

with eigenvalues h. We thereby identify
wr=—2P2h = —oy,.h. (5.149)
P1
The mode ansatz (5.32) in the near-ring region (5.139) reduces to
B(t,0r,0) = e WRFHROD, (£ 51),  Dp(t,0r) = ey (0r) = e PP, (67)
(5.150)
Henceforth, we center our attention on the outer photon ring, but the compu-
tations and results are entirely identical for the inner photon ring. Since we desire

outgoing boundary conditions for the fundamental modes, it is equivalent to impose
the highest-weight condition [J5]

Li®,=0 <+ da’9,=0. (5.151)
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5.5. Symmetries of the etkonal QNM spectrum

This requirement implies that

1
D0, = h(h— 1)@, = h=jorh= i (5.152)

As the highest-weight condition is a second-order differential equation, there exist
two independent solutions ®; ;, and ®, 5 such that

ar Py, =0 and Dy =a_Dy . (5.153)

One can verify that these equations imply (5.151) and that they are indeed indepen-
dent. Using the commutation relation between a,, we can also demonstrate that
the solutions satisfy
ar Py p = 1Py,
CL_‘_CL_CI)L}Z = iq)l’h (5154)

a_a;Pyp = 1Dy

and, as a consequence,

1
Ly®, ), = th,h;

4 (5.155)
Lo®y ), = Z(DQ,h-

®, is thus associated with the eigenvalue h = % and ®, with the eigenvalue h = %.
We adjust our notation to clarify this association

By =®py, O

Dy, . (5.156)

)

|

It remains to solve (5.153):

LDy = e Bttt (5.157)

P, — o 3VLytTEPawR
1
The higher overtones are obtained as the tower of the SL(2, R)qn-descendants,
Dy n(t,0r) = LN O, (t, 6r) = e e+ NG, (67) (5.158)

x 6_27L+(h+N)tD2(h+N)f% (\/%M) '

where D,,(dr) denotes the n'™ parabolic cylinder function. With n = 2(h + N) —
near the edges of the near-peak region, where dr — +o00, we have

lim D,/ =2ipawr 0r) & drmearHRi (5.159)

and the n'" overtone near the edges is therefore,

1
2

—iw -1 T 7
D, (t,6r,0) ~ ¢ M+ (TRigpme w (- 4p2s "’)”". (5.160)
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As in the near-ring region where wgr = Q+k, we observe the same behavior around
the outer photon ring as we do from the Penrose limit

~ ) 1
w:Q+k—z<n+2> YL, - (5.161)

As previously outlined, the discussion for the inner photon ring is exactly identi-
cal. Due to the exponential time dependence near the inner photon ring, we require
outgoing boundary conditions which are equivalent to the highest-weight condition
(5.151), and the overtones are derived from

Dy, n(t,67) = LN®(t, 67) . (5.162)

Near the edges, the n'* overtone behaves like

—iw —Lpodr? )+
D, (t,0r,0) ~ e - gpme R<t 220 )+ ke, (5.163)

and, as in the near-ring region of the inner photon ring wgr = Q_k, the modes are
~ 1
w:Qk—i(n+2> VL - (5.164)

Once again, we observe an equivalent behavior as seen in the Penrose limit and the
geometric optics approximation.

5.6 Quasinormal modes from geometric optics

The final method we will employ to derive the quasinormal mode expression is
through the use of the geometric optics approximation. This method was primarily
used for Schwarzschild and Kerr black holes where the exact spectrum is unknown.
Despite being an approximation, it offers the advantage of having a clear interpre-
tation and can be used to verify if the exact spectrum obtained from our boundary
conditions behaves as expected. The geometric optics approximation connects solu-
tions of the wave equation for a massless scalar field with null geodesic congruences
in the eikonal limit. It has been demonstrated that when these null congruences
occur near the photon ring, the approximation reproduces the eikonal limit of the
quasinormal modes in many scenarios [53, %1, 01, 03-00, 9%, ].

When the wave frequencies are large compared to the local curvature, a solution
of the massless wave equation (5.31) takes the approximate form

O~ A, (5.165)

where S(z#) is a rapidly oscillating phase and A(x*) a slowly varying amplitude.
The wave equation can then be expressed in terms of the gradient of the phase

Pu = ausy (5166)
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as

—pup" A+ (2p"V A+ V,pHA) + VA =0. (5.167)

The usual way to find a solution to this equation in the geometric optics approxi-
mation is to solve it order-by-order in inverse power of p. At leading order, p,, is a
null vector

pup" =0. (5.168)

It also implies that the phase S(z*) is a solution to the Hamilton-Jacobi equation.
As p, is a gradient, one can show that

P"V,p, =0. (5.169)
Indeed,
p'Vup, = p'V,V,S = p'V,V,S
="V, = ;Vu (P"py)
=0.
Thus, p, satisfies the geodesic equation and naturally defines an affine parameter s

8, = p'd, . (5.170)

In the subleading terms of (5.167), the expansion 6 = V,.pt is related to the
parallel transport of the amplitude

1A
PVA=—S0A. (5.171)

If the expansion is constant, as it will be in our case, this equation can be solved in
terms of the affine parameter s

1 ~ ~
dlogA=—20 = A=A e 3% (5.172)

So for a positive expansion, the amplitude decays exponentially.
One may also show that if a function u(z*) does not vary along the null congru-
ence

p'V,u=0, (5.173)

one can use it to produce towers of approximate solutions. If Ag is a solution up to
the subleading equation (5.171), then A,, = u™Ay is also a solution.

We encountered the Hamilton-Jacobi equation while computing the Penrose limit
(5.113) and found a particular solution through a separation of variables (5.114)

S =—wt+kb+p(r), (5.174)
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where the function p(r) satisfied the equation

p'(r)? = g2 Vonu(r) (5.175)

with the potential given in (5.35). We are seeking rays whose impact parameter is
close to that of the outer photon ring, as they are asymptotically confined to it. It
leads us to, k/w = A,

y 1/2—1/ (r—1+) dr

v?+3 (r—ry)(r—r_)

Wy r—r_ 3(v?—1)
= i,ﬂ 3 log [ ] + log[(r —ry)(r—r_)] (5.176)

r—Try 2v

In the near-ring region, this function approximates as

6(v? — 1w
s )

where C'is an irrelevant constant. This determines the behavior found in the Penrose
limit and in the near-ring region approaches. Since we are interested in rays leaking
out of the photon ring, we choose the positive sign in (5.177) and consequently in
(5.176).

The expansion of these congruences is

p(r)~C+ 6r? (5.177)

0=1/3>— 1w, (5.178)

and is constant as mentioned earlier. We are now able to address the subleading
order equation (5.171). Its solution is defined in the whole spacetime, yet we will
restrict ourselves to the near-ring region, where it assumes a more elegant form and
allows for comparison with the various previous approaches:

<2(57"857« + i&g + 1) A(t,ér) =0. (5.179)

YL+
A simple solution to this equation is
Ao(t,8r) = e 21+t (5.180)
We then build the other approximate solutions
Ap(t,6r) = orme (e )rest (5.181)

The general solutions in the geometric optics approximation in the near-ring region
are

6(v2 — 1)k
(V2 +3)(ry —r-

Dpn = Ap(t,67)e™ = 5r™ exp (—m + k6 + )25r2> . (5.182)
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with
~ 1

From the results of these different methods, we conclude the QNMs outside the
horizon are primarily sourced by the outer photon ring. This indicates that the
correct boundary conditions for QNMs in a warped black hole background are an
ingoing condition at the horizon and an outgoing condition at infinity.

5.7 Observable conformal symmetry of the pho-
ton ring

In this section, we are interested in the consequences of the photon ring’s presence for
a distant observer looking at the black hole. Light rays traveling close to the outer
photon ring will undergo several rotations around the black hole before escaping and
reaching the distant observer. This implies that a single source can have multiple
images, depending on their winding number. Similar to Schwarzschild, Kerr [%3], and
self-dual warped AdS3 black holes [)5], we will construct the observable symmetry
group SL(2,R)pgr of the photon ring. We will see that the dilation generator of this
symmetry allows us to connect null geodesics with successive winding numbers. In
2+ 1 dimensions, the observer screen is simply a line, and the black hole photon ring
is a single critical point at infinity rather than a closed critical curve as in higher
dimensions.

Let ' be the phase space of null geodesics in (5.2) with coordinates (r, 6, p,., pa),
and € the canonical symplectic form?

dQ =dp, Adr +dpg A dE. (5.184)

The Hamiltonian is obtained by solving the null condition ¢**p,p, = 0 for p, = —H

m(r)

H=- n(r) ot 2n(r)D(r)

VD) +n(r)p? (5.185)

which reduces at the bound orbit (r, p,) = (74,0) to the critical energy H = pg/A,.
Since the system is integrable, it admits a canonical transformation to action-angle

3For this subsection, we are using different functions as the ones defined in (5.3). Their relations

are
1

IREGRGEE

Their use is only to produce more compact and elegant equations.

D(r) = R(r)* , m(r) = R(r)’N°(r)
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variables (r,p,,0,ps) — (T, H, O, L) which preserves the symplectic form d€2:

ar = 22U oV H 4+ mr) L) ar
V(r)
2D(r)

V(r)

(5.186)

de =df + (m(r)H + L)dr,

L:p97

where V(r) is related to the radial geodesic potential

V()= D”éy = (L*+ 2m(r)HL + n(r)H?). (5.187)

In these variables, the equations of motion are trivialized:

H={H,HY =0, L={L H} =0,

. . (5.188)
©={0,H}=0, T={T H}=1.

The two equations on the first line indicate that the phase space I' foliates into
superselection sectors of fixed (H, L), which are conserved momenta. The first one
on the second line implies that a photon with initial coordinates (r;, 0;, H, L) evolves
to final coordinates (ry, 07, H, L) according to:

AO=0; —0; = /:f 6= —2 /f DV(Z:) (m(r)H + L) dr, (5.189)

where the integral is evaluated along the photon trajectory. The last equation implies
that the time elapsed along such trajectory is:

vt D

T = 2/ " D) VH 4 mr) L) dr (5.190)
V)

Since we are focusing on optical images, we will only consider geodesics that begin

and end at infinity, always remaining outside the ring orbit at » = 7,. An observer
at infinity receives these null geodesics with impact parameter

L -
A=—> A 5.191

and energy .
H=H-=. (5.192)

At

The radius of closest approach ry;, is reached when the radial momentum p, van-
ishes. From (5.187), this is equivalent to requiring that V' (ry;,) = 0:

Pt = T — 3@22_1) (21/()\ )3 A(— L))  (5.193)
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Geodesics with H = 0 are homoclinic, i.e they represent transitions between stable
and unstable orbits in the phase space I', asymptoting to the photon orbit at r = 7+
in the far past and/or future. Their impact parameter A = Ay defines the critical
point on the observed line at infinity. Since the variables (7, ©, H, L) are canonical,
it is possible to define an action of the conformal group SL(2,R)pr on the phase
space I' with the generators:

A

H.,=H, Hy=-TH, H_=TH. (5.194)

This algebra commutes with the U(1) algebra generated by L and acts within su-
perselection sectors 'y, of fixed angular momentum. However, it modifies the energy
(5.192), as well as the impact parameter and the radius of closest approach for each
geodesic.

The photon ring is an attractive fixed point for the flow generated by the dilation
e~®Ho under which [, 95]

H(0) = H(a) = e “H(0) , (5.195)

because H satisfies R R A
0.H={Hy,H} = —H. (5.196)
For large «, H becomes small and T — cc. Defining 6r = % such that it has no

dimension, the point of closest approach (5.193) becomes to leading order as H—0

402 +3) N - . H
Ot = — = (Ap — A_)— 5.197
Tmin 9(1/2 N 1)2 ?;_2"_( + )L ’ ( )
while ]
dT ~ ——dlogér = or ~ érget+T (5.198)
YL+
as expected. It follows that under SL(2,R)pr dilation (5.195),
1
Oy log 07 min = —5 - (5.199)
For a geodesic beginning and ending at r = oo,
© D 2
A = —4/ (r) (m(r)H + L)dr ~ nill log d7min (5.200)
rmin [V (1) g

to leading order as dry;, — 0. Then, the winding number of the geodesics around
the black hole, w = |Af|/2m, diverges like

1
2704

Dot = (5.201)

under dilations. If we consider a source at (rg, 05) and an "observer" at (r,,6,), there
is an infinite number of null geodesics labeled by their winding number w between
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the two endpoints with the same angular shift A8 modulo 27. We conclude that for
large w, or equivalently small H or small dry,, if @« = 2v,,, the dilation

Dy = e~ Fre+to (5.202)

maps null geodesics with successive winding number w — w + 1. The products of
Dq form a discrete subgroup of SL(2,R)pg mapping the phase space of observed null
geodesics to itself.

5.8 QNDMs for Warped BTZ in the quadratic en-
semble

First we will investigate the modes for Warped BTZ in the quadratic ensemble.
Afterwards, we will take an appropriate limit to get the BTZ metric in the usual
system of coordinates and compare them to the modes of BTZ [09]:

G =k —2i(fFy —F_)(n+1),

. (5.203)

The starting point will be the metric (5.2) for which the change of coordinates to
the quadratic ensemble is well known. The warped BTZ black hole in the quadratic
ensemble has the metric in the ADM form (1.26)

(1—2H?)

2472 + Rou(P)2(d0 — NO(P)dD? . (5.204
RQE(f>2NQE<f)2T T+ QE(T> ( (r) /> ) ( )

ds® = — N (F)*dt* +

where

) A A 2
Re(7)” = 2 = 2H (71 * 7””) ,

Py +7_
~\2 ( 2H ) A2 A2\/a2 a2
Now(7)” = R (f)QLQ(r — ) (P —72), (5.205)
by Y (o o (P2 = P2)(7* = 72)
N = g ((1 27+ 2 ) .

This metric has the nice feature of leading to BTZ when H? — 0. The change of
coordinate from (5.204) to (5.2) is (1.41)

~ t
— -
t A
A t
0=—0- . (5.206)
~ V2 +3 3
2 T (Al/?" 4r+7"_(y2 — 1)) ,
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with

A=(ry+r)v—yrir_(v2+3). (5.207)

The constants H? and L in the quadratic ensemble correspond to v and [ for the

metric (5.2). They are related through
312 — 1) 21
£ A A J S 5.208
212+ 3) 2 +3 ( )

We can now compute the parameters of the photon rings, their location 7y, their
angular velocity 2. and their Lyapunov exponent 4., and express them in terms of
the parameters of the photon rings of the metric (5.2):

- IS N
2 2H? 2

F (
. NEE 5.209
L JI— o (Fy 47 ) £ (7 — ) (5.209)
5 —A’y B 2,/1 — 7 (72 — 72)
L+ — 7 /L+ — .
L L (1= g (s + 7)) £ (P — 7))

We can already look at the BTZ limit of those parameters

Py — +oo,
Qe — 1, (5.210)
Ape — 2(Fy — 7).
The location of the inner photon ring at —oo must be taken carefully, because the
domain of variation of r is R*. In this limit, one photon ring disappears while the

other one is pushed at spacial infinity.
Starting with the modes in the eikonal limit

. . 1
wy =k —i(n+ §)VL+ ;

(5.211)
wy = —w(2n+1)+ i\/3(y2 —Dn(n+1)+ 12,
by defining the modes as
—i&t+iko i — ﬁ —iwt+ik o
e RL” 2= R(z), (5.212)

we end up with

~ B L.
w1 = Q+k — Z(Tl + 5)"}/L+ y

Gy = —h— 7 21?(}[; P (VI3 o 1) - U221 (£ 1))

(5.213)
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We can perform another limit, when H? — 0, to see whether we recover the BTZ
modes. For this, we need to start with the full version of the modes, not the eikonal
limit. Taking this limit, we get

oy =k —i(Py — ) (2n+ 1 —sign(k)) (5.214)
Gy = —k — 2i(Py +7_)n. (5.215)

We can rewrite the modes @, in terms of the parameters of the outer photon ring,

" 1 — sign(k
o =00k —i(n+ S;gn()m+ . (5.216)

We observe that we do not exactly recover (5.203). However, the purely imaginary
modes are necessary to obtain a form similar to wg. This difference arises because
the boundary condition at infinity used in [99, 100], a vanishing Dirichlet condition,
differs from the one we use. As previously mentioned, in non-asymptotically flat
spacetimes, different boundary conditions are not equivalent. Since there is no pho-
ton ring in AdSs, it was impossible to relate an eikonal limit of (5.203) to something
like (5.1), as we did for the WAdS black hole.

5.9 Extremal limits

5.9.1 QNDMs of extremal warped black holes

In this section, we want to adapt the computation to the case where the two horizons

coincide, ry = r_ = ro. In this scenario, the metric takes the form
) ) 02 dr?
ds® = dt* + + (2vr —roV? +3)dtdd

(V2 +3)*(r — 1o)? (5.217)
+ % (3(1/2 —1)r—=2rovV2+3Q2v — V2 + 3)) de?.

In this background, null geodesics follow
i+ V(r)=0, (5.218)

where

V(r) =4 (L +m(r) EL +n(r) E?) . (5.219)

In order to simplify the equations, we defined the functions m(r) and n(r) as

m(r) = 2vr —roVv? + 3,
r

n(r) = 1 (3(u2 —1)r—2rvVr2+32v — V2 + 3)) .

(5.220)
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As before, A is the impact parameter and is defined as the ratio of the angular
momentum L by the energy F. The photon ring satisfies

V(ir)y=0=V'(r), (5.221)
giving the unique solution
- 1
F=ro, A:—%(Qy— 8= 5. (5.222)

As a result, the photon ring is located at the horizon, making it impossible to define
a Lyapunov exponent in this context. In fact, for a slight perturbation 0r = r — rq
around the photon ring,

V2 +3)/3(2 -1
4o = | ) ~( ) 6r?. (5.223)
dt 4\

So the perturbation ér does not behave exponentially but as

5r(t) = L2 ! (5.224)

(v2+3)y/3(02 — 1)t —to

where t is an integration constant.
Quasi-normal modes in this background have the form

O(t,0,r) = e W p(r) (5.225)
and satisfy the wave equation
V20(r,0,r) = 0. (5.226)

The radial part of the wave equation is

(r = 710)20, ((r = 10)?0,0(r)) + Varu(r) 6(r) =0, (5.227)
where 4
Vanm(r) = i3 (k:2 +m(r) kw+n(r) w2> . (5.228)

We now perform the change of coordinate

1

r—ro

z= (5.229)

The horizon is located at z — oo, and the radial infinity is at z — 0. Thus, the
coordinate z is always positive in this range. We rewrite the equation (5.227) as

L 248 C(C; D) o(2), (5.230)

o) = (2

z
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where

1
_ 2
A—V2+3<2k+ro(2u v +3)w) :
2ivw

23 (5.231)

1 12(02 — 1)
C=-[1-,1-=22 "Ly,
2 ( J 2+3e2 " )
The definition of A, B and C allows for a choice of sign, but this choice is inconse-

quential because it merely transforms one of the two independent solutions into the
other. The general solutions to (5.227) are

P(2) = Q_e 29 [ (B + C;20;2Az%)

5.232
+Qie 2 F(14+B—C;2-20;2Az%), ( )

where 1 Fi(a, b, z) is the confluent hypergeometric function. We now want to impose
the same boundary conditions as for the non-extremal case: ingoing at the horizon
and outgoing at radial infinity (z — 0). Let us first examine the second requirement.
Near z = 0 the radial part of the modes behaves like

B(z) ROQ_z2" 4+ Q, 22t (5.233)

where we have defined C' = % — w, as before. We recall that we defined the square
root of a complex number such that the real part is positive. Decomposing w into
its real and imaginary parts, the modes behave at infinity as

O(x) ~ exp (—z’wR(t T Vblog Z)) : (5.234)

where we focus only on the oscillating part in the last equation. In this geometry,
an ingoing wave corresponds to a wave moving along decreasing z, so we need to
impose Q4 = 0.

Around the horizon, at z — 0o, the modes become

O(z) 7 Chet B 4 Oem 7B (5.235)
with
Qs Q- Qs Q-
pr— _ = . 2
“ertare-0 Tt Y Tra-B-0) TCBL0) Y

In the case of a QNM, where the real part of the energy in the eikonal limit is
k/wr = A, A =0 and one needs to look at the next order in z. Once again, looking
at the propagation of a wave packet,

O () ~ exp (—z’wR (t F o log z)) . (5.237)

v24+3
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The wave is ingoing at the horizon if it moves towards the positive values of z. It
selects C_ = 0. Combined with the outgoing condition at infinity, one needs to
impose that

—B+C=-n
2iv 1 12(02 - 1) (5.238)
— 1= 12 2| = —n.
— V2+3w+2( \J (y2+3)2w) n

It is exaclty the equation (5.72) where the solution was (5.74):

Woy = —iy<2n + 1> + i\/S(l/2 —Dn(n+1)+v2, (5.239)

a solution with no real part in the dispersion relation. It means that in order to
compute QNMs with a non-zero real value for the energy, one needs to impose that
A vanishes for any value of k, not only in the eikonal limit. In that case, the wave
equation that we need to solve simplifies as

dw? — 1
02¢(2) = — 7 (2), (5.240)
and the general solutions are
d(2) = Q22" 4 Q_277% . (5.241)

It exhibits the same behavior as (5.233), but in this case it is valid for any z. Since
we are interested in QNMs leaking out of the photon ring, and since the photon ring
is precisely located at the horizon, it suffices to require that the modes propagate
towards spatial infinity, from z = oo to 2 = 0, i.e. . = 0. The dispersion relation
for these solutions then becomes

w=Qk. (5.242)

One can obtain this solution from sending 7o — r; = 1 in (5.68).

5.9.2 QNMs in the near-horizon region of near-extremal
warped black holes
Now, we want to take the near-horizon limit of the extremal warped black hole. The

resulting metric is the self-dual Warped AdSs spacetime studied in [9%]. To achieve
this limit, we first need the Hawking temperature at the outer horizon (1.25)

v?+3 Ty —T_

Ty = ’
Al Qur, — \Jror_ (v +3)

(5.243)
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and we define a rescaled dimensionless temperature

vV 3Ty

Tr =
R v+ 3 £

(5.244)

We want to zoom close to the horizon in the extremal case while keeping the rescaled
temperature Tx fixed. In other words, we rewrite the locations of the horizons

ry =1o(1+e2nTg),

5.245
r_ =ro(1 —e2nTg), ( )

where 7 is the location of the extremal horizon, and make the following change of
coordinates:

t=— et,
U — 1?2+ 3
R . 3 2 2
b— (21/ v +3)<I/ +3) o+ v +3t, (5.246)
4u
p=""T0_ormy.
o€

We then perform the limit ¢ — 0 and Ty — 0 while keeping Tx fixed. The end
result is the metric

1 P2 . & 2
ds* = —P(P +4nTR) df* + ——————~ + A* (d0 + (7 + 27TR) di
5 V2+3<r(r+7r3) T (A6 + (7 + 27Tp) ))
(5.247)
where 5
v
A= —— 5.248
s (5.248)
goes to 1 when v — 1, as required in [0%]. Using the change of coordinates (5.246),
we can compute the locations of the new photon rings:
=TT e o [ (5.249)
ry = — 4T = 4T - . .
* o€ R R A2 -1

Also, as the change of coordinates is linear in (t,6), we can compute the angular
velocities and the Lyapunov exponents of the new photon rings using (5.86,5.88):

~ / 1 R
Qi = :F27TTR 1-— E , Yo+ — 27TTR . (5250)

Before applying the change of coordinates (5.246) and taking the near-extremal
near-horizon limit of the modes (5.80), we will briefly review the self-dual results [04].
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5.9. Extremal limits

The ingoing modes solution of the scalar wave equation V2® = 0 in the background
(5.247) is

O(L,7,0) = e “HiRy(7) (5.251)
with
@D(T) :f_%(zwqu“R-i-if) ( r I 1) 2 (2"TR )
AnTr (5.252)
1 ~ 1 “ w ~ 7
Fi|= k,— — k1 — 1 —
2 1l2+6 R, ﬁ (% Z(Q’]TTR )a 27TTR‘| )
where
. 1 1
f=i \/( A2> " ( )
This solution is symmetric under § <+ —/3. Close to infinity, the modes read
G(F) QAP QP (5.254)
where A )
o, D(£28)T (1 — iy — ik) | (5.255)
T(3+B—ik)T (3 £8—iz5)

The oscillating part of the scalar wave is then

AN N k 1 1 A
®(f,7,0) ~ exp {—sz (t F wR\/(l — A2> -5 log r) } . (5.256)

When k becomes large, the real part of the frequencies is proportional to the angular
velocity of one of the photon rings. We will look at each situation separately. First,

~

when wr ~ (2, k, it implies that

A A log 7
O(F,7,0) ~ exp —idon (t + 2?’32) . (5.257)
Thus, an outgoing mode needs Q+ = 0.
Secondly, when wgr ~ €2_k, one has
log 7
D(x) ~ —iwR |t 5.258
(x) ~ exp sz< F 27TTR> , ( )
and an outgoing mode satisfies )— = 0.
Solving both conditions @)+ = 0 leads to
Log_ i@ (5.259)
o TP T oy T T |
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Chapter 5.  Quasi-normal modes in warped black hole background

and thus

. A YA

As for WAdS;3 black holes, the exact QNM spectrum can be computed in the self-dual
WAdS; case. In the eikonal limit, the QNM modes are

A A 1
(D:ﬁ: ~ Q:i:k —1 (TL + 2) ﬁL:I: . (5261)

Contrary to the WAdS3 case, both photon rings are necessary to recover the QNM
spectrum.

Similar to our warped black holes, one can show that the various boundary
conditions at infinity are not equivalent for self-dual WAdSs3. For instance, the flux
at infinity is

F= 7V_29i9 ($*0;® — $O, D) (5.262)

f7>voo 6-2@11& (ﬁ[ <‘Q+|2 7@2,313 . |Q_|2 f_2BR) . iﬁR (Qi@-}- f2i51 B QiQ— f_QzﬂI)) 7
where we have decomposed [ into a real and an imaginary part 5 = g + if3;. For

the flux to remain finite at infinity, as g > 0 from our definition of the square root,
we need to impose

Q. =0. (5.263)
This condition is equivalent to
LY (5.264)
2 TR |
leading to the solution
. ~ 1 1 . 1
w = 2nTRrk (1 — A2> T 1 (n + 2) 21 Tg . (5.265)

In the eikonal limit |k| > 1, this solution becomes

. !
=0 f—i (n + 2) An (5.266)

This mode solution, which is the only one obtained under the finite flux condition
at infinity, differs from (5.267) and recovers partially (5.261).

We can now evaluate the near-extremal near-horizon limit of the modes (5.80).
The first modes persist in the expected form in the eikonal limit

. |
o=k —i (n + 2) e (5.267)
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5.9. Extremal limits

The purely imaginary mode diverges in this limit

Gy~ O (i) : (5.268)

and therefore cannot be considered as physical. Only one of the modes (5.261)
is obtained. Indeed, solutions that were previously excluded in the non-extremal
scenario because of not satisfying the outgoing boundary condition, such as (5.81),
now do in the near-extremal near-horizon limit (5.261). When we observed which
modes of the WAdS; black hole were outgoing at infinity in (5.58), we studied the
high-frequency regime of the function w (5.56), which depends on w. This allowed us
to express the outgoing condition without specifying the real part of w; in particular,
it did not matter whether wg = Q. k or wg = Q_k. Subsequently, the outgoing
condition implied () = 0, which selected the modes wgr = Q+k For the self-dual
case, we needeed to examine the high-frequency regime of §, which only depends
on k. Thus, for the outgoing condition, we considered wrp = Q+k and & = Q_k
separately, and we observed that both modes could be outgoing: one with Q+ =0
and the other one with Q, = 0. Therefore, it seems that there is a transition from
a function depending on w to one depending on /;:, giving additional outgoing mode
solutions. We also note that, after transforming © under the change of coordinates
(5.246) and taking the near-horizon limit, we obtain the function 3:

1 302-1)
“ = 4_(V2—|—3)2w
1 2 i\
EQ
— =3 | —— e+ —
4 v )<2u— v2 4+ 3 2V>
820\/1_3(V2_1)]%2
4 412
1 A2—-1.
— /= 2
4 A2

= 8.

It would then be interesting to investigate more precisely how this transition affects
the direction of propagation of the solutions.
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Conclusions and Outlooks

Through this thesis, we worked with different holographic models for WCF'Ts: CSS
boundary conditions for AdSs, the SL(2,R) x U(1) Chern-Simons theory and WAdS
solutions in TMG, giving us an overview of various facets of the (W)AdS/WCFT
correspondence.

In Chapter 3, we introduced a set of Quantum Energy Conditions (QECs) tai-
lored for WCFTs. Using holographic computations of the entanglement entropy
(EE) for vacuum solutions satisfying CSS boundary conditions, we demonstrated
the saturation of these QECs. To establish the unsaturation of QECs for non-
vacuum solutions, we sought solutions with non-trivial stress tensors on the bound-
ary. For CFTs, a common method involves considering shockwave solutions sourced
by bulk matter, where the minimal surface in the Ryu-Takayanagi (RT) prescrip-
tion intersects it. Adapting this approach to WCFTs necessitates an improved RT
prescription, even if we were still working in locally AdS spacetimes. Various propos-
als exist in the literature with distinct advantages and disadvantages, yet we have
not determined the most suitable one for describing shockwave geometries dual to
WCFTs. Nonetheless, we do not assert its impossibility and encourage further ex-
ploration. Another avenue could involve exploring alternative methods apart from
shockwave solutions or use a Chern-Simons formulation to compute EE using Wil-
son lines. Furthermore, since we have not proven the non-saturation of QECs, it
remains possible that the correct set of QECs is a linear combination of those we
proposed, derived from currents associated with Virasoro-Ka¢-Moody charges

In Chapter 4, we constructed the geometric action on coadjoint orbits of the
warped Virasoro group and successfully matched it with the action of Lower Spin
Gravity on the boundary, employing Hamiltonian reduction under appropriate bound-
ary conditions. This correspondence enabled us to relate the holonomies of our man-
ifold to orbit representatives. Moreover, the residual symmetries arising from the re-
duced action are connected to the little group associated with each orbit. Such a cor-
respondence was anticipated and has been previously established in AdS3/CFTy [77]
or flat space holography contexts [73].

Through dimensional reduction, we recovered the Warped Schwarzian action
[109]. Subsequently, we computed the one-loop partition function to compare the
result with the known warped Virasoro character. However, we only recovered one
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of the two characters. When attempting to compute the one-loop partition function
for a warped black hole solution with a real orbit representative Py, we obtained the
character of a non-unitary representation, akin to the vacuum state in the context
of Lower Spin Gravity, and vice-versa. This mirrors a similar finding in [/7], where
the vacuum character was obtained while computing the BTZ character. However,
their framework involved AdS; with CSS boundary conditions, where every repre-
sentation, including the vacuum, is unitary. We additionally suggested imposing an
antiperiodic condition around the thermal circle of the U(1) field to derive the second
warped character. While this ad-hoc proposition lacks strong physical motivation,
it could be worthwhile to pursue further investigation in this direction.

To validate our results, one could compute the partition function using meth-
ods such as the quasinormal modes approach as in [17], or employ the Heat Kernel
method [171].

For the last project, in Chapter 5, we aimed at revisiting the computation of the
quasinormal modes in a warped black hole background, as previously done in [%7],
and relate their eikonal limit to the photon rings that the spacetime possesses, as has
been done for Schwarzschild and Kerr black holes or self-dual WAdS. The advantage
of warped black holes is that the QNM spectrum can be computed exactly, and
they possess photon rings, unlike BTZ. However, contrary to asymptotically flat
spacetimes where different boundary conditions at infinity are equivalent, things are
different for asymptotically WAdS spacetimes. The finite flux condition, as originally
studied in [%2], leads to different solutions than the outgoing solution at infinity.
Both solutions exhibit modes that are purely imaginary and others that are related
to different photon rings in the high-frequency regime. To select the appropriate
boundary condition, we performed several limits around the photon ring outside
the event horizon, as well as inside, to capture the modes that physically exist
outside the black hole. These limits include the Penrose limit, the near-ring region
approximation, and the geometric optics approximation. Each limit indicates that
the correct boundary condition at infinity is the outgoing condition, for which the
modes depend on the outer photon ring in the eikonal limit. We also demonstrated
that the purely imaginary modes cannot be brought to the form

1
w:Qk—z’<n+2>7L,

in any coordinate system, indicating that they do not constitute proper quasinormal
mode solutions. Additionally, we showed that this specific form of the modes is pre-
served under linear redefinitions of time t and angle 6 starting from the warped black
hole metric in the canonical ensemble. We expect that this preservation holds for
any metric, and it would be interesting to provide a general proof of this statement
in future work. Furthermore, we also demonstrated that, similar to Schwarzschild,
Kerr, and self-dual warped black holes, a conformal symmetry emerges when ob-
serving the photon ring from a distant observer’s perspective.
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Conclusions and Outlooks

Finally, a natural next step would be to interpret these quasinormal modes in
the context of the dual field theory. In AdS/CFT, quasinormal modes correspond
to poles of thermal Green’s functions, known as quantum Ruelle resonances [235].
In [229], a matching of the modes of a warped black hole obtained in [#?] with CFT
retarted Green’s function was achieved. However, as we have discussed, we believe
that these were not the correct modes to consider. Furthermore, this correspondence
was established in the context of WAdS/CFT, predating the exploration of WCFTs.
It would be interesting to adapt such analyses for WAAS/WCFT. In [/0], the re-
tarded Green’s functions in WAdS/WCEFT were computed. A deeper understanding
of the computations in [23%] and [1(] could aid in constructing the appropriate dual
description for our quasinormal modes and determining whether WAdS3 is dual to
a CFT or a WCFT.

It is interesting to point out that none of these projects followed a straight line
to the expected results. The non-Lorentzian nature of WCFTs or the deformation
of the WAdS3 spacetime led us to ask profound questions about the holographic
dictionary of the (W)AdS/WCFT correspondence, such as those regarding EE and
the RT prescription, warped characters, and quasinormal modes and quantum Ruelle
resonances. This underscores the significance of studying WCFTs and their various
holographic duals. The summary of these questions and the answers we have been
able to provide are presented in this thesis, and we hope it contributed to shed light
on some aspects of the (W)AdS/WCFT correspondence.
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Appendix A
The group SL(2,R)

In this section, we will provide a brief overview of the group SL(2,R). This group
has been referenced multiple times throughout this thesis, and since some of its
properties are used, we have deemed it beneficial to consolidate them in a dedicated
section.

The SL(2,R) group is the special linear group of 2 x 2 real matrices with deter-
minant equal to one:

SL(2,R) = { (‘CL Z)

It is a non-compact simple Lie group of dimension 3. Its Lie algebra, si(2,R), is the
set of 2 x 2 real traceless matrices with:

der-{( )

such that any element GG of the group can be expressed in terms of elements g of
the algebra using the exponential map.
A common basis for the algebra is

1/1 0 00 0 —1
LO - 5 <O _1> 9 Ll - <1 0) 9 L*l - (0 O) 9 (AB)

where the generators L, satisfies the commutation relations

(L, L] = (0 — m) Luysm (A.4)

a,b,c,d € R and ad—bc:l}. (A.1)

a,b,c,d € R and ad= 0} , (A.2)

Sometimes, for more clarity, we used the index +, — instead of 1, —1.
We can define a invariant bilinear form, which is the natural metric on si(2,R),
using the trace:

| Ly Ly L,

_ _ | L]0 0 -1
i = (L) = Tr(LnLn) = | 71| L (A.5)

La|-1 0 0
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The elements of the SL(2,R) group can be classified in three conjugacy classes,
up to conjugacy in GL(2,R), depending on the trace of the elements. The eigenvalues
A of an element G € SL(2,R) satisfy the characteristic polynomial

M —Tr(G)A+1=0. (A.6)

The solutions of this equation are

A= ; (Tr(G) + \/Te(G)? — 4) . (A7)

It implies the following classification:

 Elliptic: |Tr(G)| < 2. The eigenvalues of such element are complex conjugates
and take value on the unit circle. The corresponding element is conjugate to
rotations on the Euclidean plane. For example, picking the generator L+ L_,

o(LitLon) _ (COS(@ —Sin(f)> , (A.8)

sin(z)  cos(x)

Indeed, for x # 0, the absolute value of the trace of this matrix is always lower
than 2.

o Parabolic: |Tr(G)| = 2. The eigenvalues are degenerate and are both 1 or —1.
The corresponding element is conjugate to shear mappings on the Euclidean
plane. For example, picking the generator Ly or L_,

xlq 10 yL_1 __ 1 -y
e —<x 1), e _<O 1). (A.9)

The trace of such element is always equal to 2.

« Hyperbolic: |Tr(G)| > 2. The eigenvalues of such element are real and opposite
to each other. The corresponding element is conjugate to hyperbolic rotations
on the Euclidean plane. For exemple, picking the generator Ly — L_; or Ly,

o(Li—L_1) _ (cosh(z) sinh(x) oo (€70
‘ _<sinh(:n) cosh(z) )’ =10 w2l (A.10)

The names of those different conjugacy classes, elliptic, parabolic and hyperbolic,
come from the classification of conic sections by their eccentricity.
If G is an hyperbolic element, it can be decomposed in terms of simpler matrices:

G = e*b-1eflogrln (A.11)

This decomposition is unique and is called Gauss decomposition. One could also
write the Gauss decomposition like

G = e l1ef Lo L (A.12)
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Appendiz A. The group SL(2,R)

where (o/, 3',7") are related to (a, 3,7) through a field redefinition [72]. However
this decomposition is not valid for any element of the group. If we seek a more
general one, we can use the so-called Iwasawa decomposition. A group element
G € SL(2,R) can be written as the product of three matrices

G=KAN, (A.13)

where each of the matrices K, A, N belongs to different conjugacy classes (elliptic,
hyperbolic and parabolic respectively).
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Appendix B

Hypergeometric functions

In this appendix, we will review some properties of the hypergeometric functions
that are used in Chapter 5 [210].

Hypergeometric functions are solutions of the differential equation

diié(? Fetatb 1) YE i =0, (B

2(1—2z) p
where a, b and ¢ are some constant parameters. This equation has three regular
singular points, in 0, 1 and co. One can solve the differential equation around
any of those singular points and have two linearly independent solutions. For the
situation in Chapter 5, z is a radial coordinate with domain between 0 and 1 such
that we choose to solve the equation (B.1) around the singular point z = 0. Under
the condition that ¢ is not an integer, the two independent solutions are

fi(z) = 2F1(a,b;¢;2),
fo(2) =29 (14+a—c,1+b—c2—c2),

(B.2)

where o Fi(a, b; ¢; z) is the so-called hypergeometric function. This function has the
property to be symmetric under the exchange a <> b, which can already be seen
from the differential equation (B.1).

For general knowledge, most usual functions in mathematics can be expressed in
terms of hypergeometric function. For examples,

In(1

2F1(171;2;_Z):M7
2z
1

Fi(a,b;0;2) = ———

2 1(@, ) 72) (1—Z>a’

JF, (171;3;22) _ arcsinz.
2°2 2 z

Any second order linear ordinary differential equation with three regular singular
points can be turn into the differential equation (B.1). This is the reason why for
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B.1. Confluent hypergeometric functions and parabolic cylinder functions

the equation (5.38), we perform the function redefinition (5.40).

We are interested in Chapter 5 in series expansion at the boundaries, correspond-
ing to the singular points z = 0 and z = 1. Around the special point z = 0, the
hypergeometric function is simply

o F1(a,b;c;2) ~ O(1), (B.3)
while around the the point z =1

Fe)l(c—a—0b) T(c)I'(a+b—c)
I(c—a)l'(c—0) ['(a)L(b)

o F1(a,b;c;z) ~ (1—z)", (B.4)
B.1 Confluent hypergeometric functions and
parabolic cylinder functions

The confluent hypergeometric functions are solutions of the differential equation

d*f(z) df(z) _
P L af(z) =0, (B.5)

with a regular singular point at z = 0 and an irregular singular point at z = oo.
The two linearly independent solutions are

fi(2) = 1Fi(a;b; 2)
fa(z) = AV Fia+1—b;2-b; z).

z

+(b—2)

(B.6)

The confluent hypergeometric function can be view as a limit of a hypergeometric
function where the regular singular point at z = 1 is send to the other regular
singular point at z = oo, making the latter irregular

1Fi(a;e; z) = blim o Fy(a,b;c; z/b) . (B.7)
—00

As for the hypergeometric functions, some common mathematical functions can
be written in terms of confluent hypergeometric function as

1F1(07ba Z) = 17
1F1(b; b; 2) = e,
e —1

Fi(1;2:2) =
1 1(7 ,Z) e )

and the parabolic cylinder functions D,(z) that we were also used in Chapter 5

20/2 Ta a+1 a1 22
Da(e) = e [(z)r( ;) (‘g?ﬂ)
. [/Ta a 1l—a 3 22
+\/§ZSIH(2>F(2+1> 1F1< 5 ;2;2” .
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Appendix B. Hypergeometric functions

The connection between the hypergeometric function o F; (a, b; ¢; z) and the parabolic
cylinder function D,(z) trough this limit is linked to the Penrose limit procedure,
the near-ring region and the geometric optics approximation where limits are taken
from the original phase space.

The expansion of the confluent hypergeometric function and the parabolic cylin-
der function around z = 0 is

1Fi(a;b;2) ~ O(1),

B.9
D.(2) ~ 0(1), ()
while around the irregular singular point at z = oo,
ezza—b (_Z>—a )
Fi(a;b;z) ~T'(b + ,
etz ~ 1) ( [(a) ~ T(b—a) (B.10)

Da(z) ~ e 21420

Furthermore, when a is a natural number, a = n, the parabolic cylinder function is
expressible in terms of the Hermite function H,(2)

Dy(z) =272 e/ H,(2/V?2). (B.11)
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