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A spinor fields classification with non-Abelian gauge symmetries is introduced, generalizing the U(1)
gauge symmetries-based Lounesto’s classification. Here, a more general classification, contrary to the
Lounesto’s one, encompasses spinor multiplets, corresponding to non-Abelian gauge fields. The particular
case of SU(2) gauge symmetry, encompassing electroweak and electromagnetic conserved charges, is then

implemented by a non-Abelian spinor classification, now involving 14 mixed classes of spinor doublets.
A richer flagpole, dipole, and flag-dipole structure naturally descends from this general classification.
The Lounesto’s classification of spinors is shown to arise as a Pauli’s singlet, into this more general

classification.
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1. Introduction

The Lounesto’s spinor fields classification [1] represents an as-
sortment of all spinor field in Minkowski spacetime that has been
shown to be complementary to the Cartan’s and the Wigner’s
classifications of spinors. In the Lounesto’s spinor fields classifi-
cation the standard Majorana, Weyl, and Dirac spinor fields are
representatives of very particular subsets in different classes of
spinors, classified according to their bilinear covariants. Several
non-standard spinors, charged and neutral as well, have been stud-
ied. Refs. [2,3] encode an up-to-date on the Lounesto’s classifica-
tion. Besides, concrete examples of non-standard spinor fields were
provided in, e.g., [4-6]. This classification has been extended, in
order to further encompass new classes of spinors on higher di-
mensional spacetimes. For example, new spinors were constructed
on 7d manifolds, that in particular arise as new solutions of the
Euler-Lagrange equations in the AdSs; x S’ compactifications in
string theory [7], as well as for AdSs x S®> compactifications [8].

Both from the formal and the pragmatic points of view, the
Lounesto’s classification of spinors is well established and success-
ful, for its huge variety of applications and exploratory features
on the search of new fermions fields [2]. However, it is remark-
ably limited in the context of gauge symmetries, just holding for
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the case of U(1) (abelian) gauge symmetries. In fact, spinors in
the Lounesto’s classification can be split into classes of charged
and neutral spinors, under the conserved electric charge that is
evinced from the Noether’s theorem, due to the U(1) gauge sym-
metry underlying the equations for motion ruling all the spinor
fields. Therefore, the Lounesto’s classification is not able to encom-
pass spinor multiplets, corresponding to non-Abelian gauge fields.
In particular, it does not encode electroweak and strong conserved
charges. In fact, the Standard Model (SM) of elementary particles
is described by a gauge theory, effectively governed by the gauge
group SU(3) x SU(2) x U(1), describing strong, weak and electro-
magnetic interactions. Those interactions are implemented when
the corresponding bosonic gauge fields, that include 8 massless
gluons, 3 massive bosons, W and Z, and 1 photon, are exchanged,
to respectively describe strong and electroweak. The fermionic sec-
tors of the theory describe matter and it is encoded into 3-fold
families of quarks and leptons, together with their antiparticles.
The Lounesto’s classification can solely encompass Abelian gauge
symmetries, with conserved electric charge. Exploring algebraic so-
lutions for the U(1) electromagnetic potential appearing in the
Dirac equation, Refs. [16,17] showed the prototypical inversion the-
orem for the real vector potential. The SU(2) case was scrutinized
in Ref. [18].

The main aim here is to propose a spinor field classification
that further encompasses non-Abelian gauge symmetries, encod-
ing the Lounesto’s classification of spinors that correspond, into
this extended classification, to a Pauli’s singlet, also encompassing
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electroweak and electromagnetic conserved charges corresponding
to the SU(2) x U(1) symmetry. The extended, non-Abelian, Fierz
identities are then here scrutinized.

This paper is organized as follows: after reviewing the Lou-
nesto’s classification, the Fierz identities and the Fierz aggregate
in Sect. 2, Sect. 3 is devoted to analyze the inversion of the Dirac
equation, showing that it holds for the case of type-1 regular
spinors. The electromagnetic potential can be also expressed as
spinor fields for the case of type-2 and type-3 regular spinors, and
we show that the inversion can not be implemented for singular
spinors. In Sect. 4 a non-Abelian spinor classification is imple-
mented, with a richer flagpole, dipole, and flag-dipole structure,
where 14 classes of spinor doublets are allowed, corresponding
to bispinor fields. The particular case of SU(2) gauge symmetry
is implemented, making the Lounesto’s classification of spinors to
correspond to a Pauli’s singlet in this quite more general classifi-
cation that encompass electroweak and electromagnetic conserved
charges. In Sect. 5, non-Abelian Fierz aggregates and generalized
Fierz identities, corresponding to the proposed doublet spinors, are
listed and rederived.

2. The U(1) classification of spinor fields, the Fierz aggregate and
the Fierz identities

(Classical) spinor fields are objects defined on Minkowski
spacetime M that are well known to carry the (%,0) ® (0, %)
Lorentz group representations. With respect to an arbitrary basis
{y*} C sec (M), where Q(M) = @fzoﬁi(M) denotes the exterior
bundle, the bilinear covariants are sections of (M), whose split-
ting is then represented by [9]

sec 20(M)
o=y

sec Q' (M)
J= ]m”“‘

sec Q2 (M)
S=S,uyt AyY

sec 23 (M)
K=Ky’

sec Q4 (M)
=9y

where [, =¥y, Spv =¥ vu, Wiy, and Ky = ¢y5y,9 are the
respective coefficients of the Lorentz bilinear covariants, in the
above table. Also, y5 = iYoY1Y27y3 is the chiral operator implemented
by the volume element (for the Clifford product denoted by juxta-
position); the Dirac-conjugated spinor reads = IIIT’Y(), and hereon
Yuv = %[Yus w]. Besides, v, vv +Y Y = 2101, where 1, denotes
the Minkowski metric. The physical observables, exclusively for the
Dirac’s theory describing the electron, are realized by the bilinear
covariants. In fact, the 1-form current density J, the 2-form spin
density S, and the 1-form chiral current density K, satisfy, together
to the scalar and pseudoscalar bilinears, the Fierz identities [1]

— S0+ 06,07 Sap = €pvap UK, (1a)
nquM]v+qul<MKV:OZUW)JMKV’ (1b)
77;1\)]“]”:6024‘02. (1c)

The Lounesto’s classification reads [1]:

(1) K#0, S#0, w#0, o #0, (2a)
(2) K#0, S#0, w=0, o #0, (2b)
(3) K#0, S#0, w#0, 0 =0, (2¢)
(4) K#0, S#0, w=0=o0, (2d)
(5) K=0, S#0, w=0=o0, (2e)

)

(6) K#0, S=0, w=0=o0. (2f

The condition J # 0 holds for all spinors into the above classes
(2a)-(2f). Other classes corresponding to J = 0 have been derived

in Ref. [11], whose representative spinors have been conjectured
to be ghost spinors. The most general representative spinor fields
of each Lounesto’s spinor class, were listed in Ref. [13]. More-
over, a gauge spinor field classification have also been proposed
in Ref. [15].

Singular spinors consist of flag-dipole, flagpole, and dipole
spinors, respectively in the fourth, fifth, and sixth classes in the
just mentioned six classes (2a)-(2f). The standard Dirac spinor
is an element of the set of regular spinors in class 1. Moreover,
Majorana spinors are neutral spinors that embrace particular real-
izations of flagpole type-5 spinors. The chiral Weyl spinors consist
of a tiny subset of dipole spinors. In fact, in Ref. [13] one sees that
chiral spinors are in the classes 6 that consists of dipole spinors,
however only chiral spinors that satisfy the Weyl equation are
Weyl spinors. Since type-5 spinors phenomenologically accommo-
date mass dimension one spinors [12,14], the class 6 might also
accommodate mass dimension one spinors, whose dynamics, of
course, is not ruled by the Weyl equation. Nevertheless, the classes
(2a)-(2f) provide a comprehensive sort of new possibilities that
have not been explored yet [5].

The Fierz identities (1a) do not hold for singular spinors. Based
on a Fierz aggregate,

Z=(w—-Kys+iS+]+o, (3a)

the Fierz identities (1a) can be replaced by the most general equa-
tions

4iwl = —7ZysZ, (3b)
4iJ,Z=—-7Iy,Z, (30)
4iS,Z= -2y, 2, (3d)
4iK,Z=—Zysy,Z. (3e)

The above equations are reduced to Eqs. (1a), in the case where
both o and w are not equal zero, e.g., for type-1 spinor regu-
lar spinor fields in the (2a) Lounesto’s class. When y°Ziy? = Z,
then the Fierz aggregate is a self-conjugated structure called a
boomerang [1].

The 1-form field J is interpreted as being a pole, and flagpoles
are consequently elements of the class 5 in Lounesto classification.
In fact, for this one has K= 0 and S # 0, being the flagpole hence
characterized by the non-vanishing S and K. Besides, as type-4
spinors have the 2-form field S and the 1-form fields J and K
non null, together they corresponding to a flag-dipole structure.
For type-6 spinors, J and K are the only bilinears that are not null
and, then, they do correspond to a dipole structure. The bilinear
covariants also satisfy [12]:

NS Jay” — 10" Spuv Ja ¥ = 0Ky, (4a)
NS uwKaY = 10" SpuvKa¥* = Jp¥?, (4b)
i€ " S pr Ja” — 1S pa Ju¥™) = 20K pY", (4c)
i€y MM S prKay” — 10" S pa Ka¥") =20 ] oy, (4d)
SuvSpan”’ M = —* + 02, (4e)
iepfswsrgn”pn““ = —4wo, (4f)

S Ja¥” — 10" Spv Ja ¥ + JuSveY* AYY AYP
i
= —wKy* + EafaﬂrsKa'Yﬂ AYEAYE (4g)
NS KoY — 0" S uw Ka Y™ + K Svp¥* AYY AYP

i
=—wJy" + Eafaﬁréjayﬁ AYEAYE (4h)
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2 _ 0% = 2iwoys, (4i)

€apuvS?PSHys + %s,ws““ =w

A spin-% fermion, with charge e, is ruled by the Dirac equation
(@ — eA(x) —m)yr(x) =0, with § =y, mass m, and electromag-
netic potential A(x) = y*A, (x). The current density J* is always
conserved, related to the U(1) symmetry, 9, J* = 0, whereas the
chiral current 9, K" = —2imyysy is just conserved for m = 0.
In fact, the Dirac Lagrangian that originates this equation is U(1)
invariant, namely, by the transformations v (x) > e?® v (x) and
Ap®) = AL + %aue(x). The U(1) covariant Dirac equation was
shown to be equivalent to the following expressions for the inver-
sion of the electromagnetic potential [16,18]:

i - _ <« _
A= 5o [Ty =9 oy —2m )7y (5)
i _ _ <
= W [WYSY;LWP +v YSY;LW] . (6)

Egs. (2a)-(2c) show that the inversion (5) exists for spinors in
Lounesto’s classes 1 and 3, whereas the inversion (6) holds for
spinors in Lounesto’s classes 1 and 2. For the other cases, includ-
ing singular spinors, there is no inversion, in particular for Weyl
spinors, that satisfy ¥y =0 = yysi.

3. Non-abelian spinor classification

Starting with the SU(2) gauge group, with associated Lie algebra
su(2) generated by the set {174} (a =1, 2, 3) of generators, satisfy-
ing [, 2] =i€xp %, non-Abelian SU(2) gauge fields W = W, y*
can be thought of as being a matrix of the type generated by
an infinitesimal gauge transformation, meaning that the W, takes
values in su(2) and, therefore, can be split as W, = Wﬁ‘l:a, where
the Wy, are the SU(2)-Yang-Mills fields. The field strength is then
given by G,p =9, Wy, — W, — [Wy, W,]. Requiring that the
Lagrangian for spinor fields must be invariant under local SU(2)
transformations, the SU(2) gauge covariant Dirac equation that
governs a doublet spinor , with SU(2) gauge field interactions,
reads

[i&l—%rW—m]w:O, (7)

where 79 =idyx2 and g drives the Yang-Mills field running cou-
pling. Remembering the definition of the charge conjugate spinor,
Y€ = CYT = iy2yOyT, the complex conjugate of Eq. (7), multiplied
by I ® U, where U is an operator that implements the parity and
the complex conjugation, Uy, U~! = —Y;;» such that y¢ = Uy*,
yields

[y" (iaﬂ—k%tT-Wu) —m]\uczo. (8)

In order to implement a covariant gauge potential, Eq. (8) can
be thus multiplied by ity, together with the Pauli’s identity 7, =
—To1 T, !, to yield [# — §7-W —m]§ =0, where J = iToy¢ de-
notes the isospin-charge conjugate spinor [18]. Defining

2
Q=1YryW, = E(a —my, (9)

and multiplying the first equation in (9) by ytsyy, it reads
TaT? Wiy = (8ab + 1 €°°Tc) Wy, yielding therefore

\I/((S;Lv - i'YpLU)WWav + Eabc\_l’fc(ifsuv +Y;LV)\|/va
= YTaYu Q. (10)

The analogue non-Abelian bispinors are, then, defined by [16,18]

Y@ oDy =41, '571) @ (CTITTO)y, (11)
where I' is an arbitrary multivector in the Clifford-Dirac spacetime
algebra and the (Euclidean) indexes run as i =1,2,3, for i =0

corresponding to the 2 x 2 identity. Eq. (10) implies that

EWau Wy + g€qpc vaquCYqu
_ < _
= illf(fa'Y;La -4 TaYu)V — 2my Ty, y. (12)

The non-Abelian bilinear covariants are defined by (i =0, 1, 2,

3):
oi =yTiy, (13a)
Jip = VTivu v, (13b)
Sipy =YYV, (13¢)
Kiy = WTivsyu W, (13d)
i = YTiYsV, (13e)

originating the classification of non-Abelian spinor fields into the
following disjoint classes (i=0,1,2,3; j=1,2,3):

1o #£0, 0;#0, ©#0, wj#0,

Kiy #0, Siyv #0 (14a)
2)0=0, 0j#0, w#0, w;#0,
Kiy #0, Siyv #0 (14b)
3)a #0, 0;=0, w#0, w;j#0,
Kiy #0, Sipv #0 (14c)
4)0=0, 0j=0, w#0, wj#0,
Kiy #0, Sipy #0 (14d)
5)0 #0, 0j#0, w#0, w;j=0,
Kip #0, Sipy #0 (14e)
6)0c#0, 0j#0, w=0, w;#0,
Kip #0, Sipy #0 (14f)
7o #0, 0j#0, w=0, w;=0,
Kiye #0, Sipv #0 (14g)
80 =0, 0j=0, w=0, w;=0,
Kiy #0, Siyv #0 (14h)
90 =0, 0j=0, w=0, w;=0,
Koy =0, Kj, #0, Sjyy#0 (14i)
10)0 =0, 0j=0, w=0, w;=0,
Kiy #0, Souv =0, Sjuu#0 (14j)
11)0 =0, 0j=0, w=0, w;j=0,
Kiy =0, Sjyy#0 (14k)

12)0 =0, 0;=0, w=0, w;=0,

Kiy =0, Souv =0, Sjun#0 (141)
13)0 =0, 0j=0, w=0, w;=0,
Kiy #0, Sijpv=0

14)0 =0, 0j=0, w=0, w;=0,

(14m)
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Koy =0, Kj #0, Sjpy=0. (14n)

The classes 1)-7) correspond to SU(2) x U(1) regular spinors,
whereas classes 8)-14) are SU(2) x U(1) singular spinors. It is
worth to mention that the field J = Ji,y*t; can be thought as
an SU(2) x U(1) current density, for the classes 1)-7) of regu-
lar spinors. Analogously to the previous geometric interpretation
to singular spinors in the Lounesto’s classification, class 8) con-
sists of SU(2) x U(1) flag-dipole spinors. Up to the class 8), all
spinor classes are in close straightforward non-Abelian generaliza-
tions. However, new aspects are unveiled with non analogy to the
Lounesto’s classification, from class 9) to class 14). In fact, class 9)
correspond to SU(2) flagdipole-U(1) flagpole spinors. This feature
is completely unexpected, as the bispinors in this class are flag-
dipole spinors with respect to the SU(2) sector (j =1, 2, 3), having
4 non-null flags, Si,» and 3 non-Abelian poles, Kj,; however, 1
pole given by Ko, = Ky, corresponding to the U(1) sector (i =0)
given by the usual bilinear covariant K, = 1/_/)/,”/510, equals zero.
Class 10) is characterized by SU(2) flagpole-U(1) dipole spinors. In-
deed, the bispinors in class 10) are flagpole spinors with respect to
the SU(2) sector (j =1, 2, 3), having 4 non-null poles, Kj,, and 3
non-Abelian flags, S;,,, with 1 additional flag So;y = Sy, cor-
responding to the U(1) sector (i = 0) given by the usual bilinear
covariant S, = @ylwyy//, that is equal to zero. Class 11) is a
case of a pure class of SU(2) flagpoles, as well as class 13) is also a
pure class of SU(2) dipoles. On the other hand, the class 12) con-
sist of SU(2) flagpoles-U(1) poles and class 14) consist of SU(2)
dipoles-U(1) poles. Besides, the inherent geometric structure un-
derlying the bispinor classes (14a)-(14n) relies on the existence
of four flags, Si,v, and eight poles, Kj, and Ji,, in the defining
Egs. (13b)-(13d), corresponding to a 4-fold richer structure than
the one provided by the Lounesto’s classification. Moreover, classes
12) and 14) admits, respectively, subclasses of SU(2) flagpoles and
dipoles bispinors, that are U(1) poles. This has non analogy to the
Lounesto’s classification, having for the classes 12) and 14) all the
bilinears, but ], vanishing.

In order to emulate the (ghost) spinors that extend the
Lounesto’s classification in Ref. [11], we present the following ad-
ditional spinors classes:

150 =0, 0j=0, w=0, wj=0, Ji;, =0,

Kiy #0, Siyy #0 (15a)
16)0 =0, 0;=0, ®=0, wj=0, Ji, =0,
Kiy =0, Siyy#0 (15b)
17)0 =0, 0;=0, =0, wj=0, Ji, =0,
Kiy #0, Siyy=0. (15¢)

It is immediate to notice that the Lounesto’s classification arises
as a Pauli’s singlet corresponding to i = 0 in the classification
(14a)-(14n). In fact, when i =0, Eq. (13a) reads op = Y1y =
Yy = yy = 0. When i =0, the other SU(2) x U(1) bilinears
(13b)-(13e) are also led to their usual U(1) bilinears, namely,
Jou = Ju» Sopv = Suv, Koy = K, and wo = w. Hence, when
i =0, the above bilinears correspond to a Pauli’s singlet, and the
(isomorphic) Lounesto’s classification arises, as 0p = Yoy =0 ® I,
which vanished if o equals zero. A similar analysis holds for
WO =YY =0 I.

With the definition of the non-Abelian bilinear covariants,
Eq. (12) can now be rewritten in a more condensed form [18]

«—
(5,uv5ab Jo— Scuv€a6b) gWpy = iW(TaYud — 3 TaYu)W —2m Jou.
(16)

Now, defining *S;,, = %ewaﬁsiaﬁ and multiplying Eq. (9) by
YTaYsY, yields

_ <~
(SuvsabKO - *Scuvead’) gWpy = i\V(Ta’YSYMa + 9 TaY5Ypu)W.

(17)
Adding Eqgs. (16) and (17) implies that

[€a® xS + Seu?) = 8”8 o + Ko) | Wi

_ —é[ﬁfrayu(l 95y — 9 T Ty — ys)v]
—2m(Jo + Ko) Jau- (18)

Since the left-hand side of the above equations is invertible, a Neu-
mann series analysis implies that [18]

%J‘”wau = iyiy —mJo. (19)

explicitly providing the coupling between the Lorentz non-Abelian
density current Jq, and the vector potential field. It is worth to
emphasize that interpreting the Jq,, as a non-Abelian density cur-
rent holds for non-Abelian regular spinors in classes 1)-7). In the
next section, the generalized Fierz identities are briefly reviewed
and introduced.

4. Non-abelian Fierz aggregate and Fierz identities

Now, the non-Abelian analogs of Eqs. (4a)-(4i) can be now
studied, considering yy 8 x 8 matrices. We have already seen that
Eq. (3a) represents the Fierz aggregate. The non-Abelian bilinear
covariants, hence, make the definition of the non-Abelian Fierz ag-
gregate

Zy=wi(1s®T) — Kip (157" @ T) + Sipn (Y @ T
+ Jip(* @ TtH + ol @), (20)

where the coefficients are the non-Abelian bilinear covariants
(13a)-(13e), consisting of SU(2) bispinors.

Hence, the Fierz identities (4a)-(4i) can be then generalized
for the non-Abelian case, yielding, for example the following ex-
pression [18] (hereon the expressions for symmetrized [antisym-
metrized] indexes Ay = Apv + Avp [Apuv) = Ay — Ay, for
any tensor Ay, and higher order generalizations, shall be used):

Ja"Kp” = Wray" yytpysy’y
- }1 [i Ja* Sp™ — i K@Spy"” + Jia " Kp)” — J KD
+iKSM 4 Jo %Ko
+8ap(i Jox So*¥ — i Jex STV —iKgSoh
+ (= Joo Ko” + Jeo K<) n*")]

1 .
+Zeabc [l(KOJC + JoKe)n™”

i
+ (Jeo Jor + Keo KOA)EIWU)L - ES(O(M\U\ * SC)WV):| .

(21)

Emulating the Fierz identity S*' = —lofoe"), —

iweqpy€**V1JPKX, [9,10] for the i =0 case that corresponds to
a Pauli’s singlet equivalent to the Lounesto’s classification, one can
further calculate other Fierz identities for the non-Abelian case, as
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Ji K™ = 2i (Jo % So*¥ — KoSoMY). (22)
Hence, adding the term €/"?X o, Ko, to eﬂvaﬂ]aaK‘lﬁ yields [18]
" P [iyK's =2(JoSo™ — Ko * So"), (23)

following that

SohV =

=371 (Joe™ py — i Ko€apy€®™’) JiPK'X.  (24)
0 0

Moreover a generalized Fierz identity holds for the non-Abelian
density, written as a function of the non-Abelian chiral current and
the non-Abelian spin density [18]:

v ](51(0))( 3% : oLy
Sau = W [J[)E ox — lI(OGO[pXG H ]
0 0
JE+ K2 . -
B 2(Jg _ I(g)Z [Ja€"” py +iKa€apy € ] iK'
0 0
JoKo

o [Ka€™ px +1 Ja€apy €] JiPKX. (25)
JZ—K2)

5. Conclusions

Due to the limitations of the Lounesto’s spinor field classifica-
tion we have proposed an extended non-Abelian spinor field clas-
sification that encompasses the SU(2) x U(1) gauge symmetries,
responsible for the conservation of the electroweak and electro-
magnetic conserved charges, by the Noether’s theorem. This gen-
eralized spinor field classification can be still led to the Lounesto’s
classification, considering the identity 2 x 2 matrix (i = 0) into all
the expressions in Sect. 3. In particular, the U(1) gauge bilinear
covariants, that compose to the original Lounesto’s classification,
are obtained as the particular case of a Pauli’s singlet, in the non-
Abelian spinor field classification. Non-Abelian generalized Fierz
aggregates and some of the corresponding non-Abelian generalized
Fierz identities have been also studied.

Although the SU(2) x U(1) gauge symmetry was chosen to be
the fundamental gauge symmetry to illustrate the 14 new classes

of regular and singular non-Abelian spinors in Eqs. (14a)-(14n),
SU(3) gauge symmetries can be analogously introduced, with the
immediate difference that the gauge indexes should run as i =
1,...,8, being again i = 0 correspondent to the Lounesto’s classifi-
cation. Obviously, the similar generalized Fierz identities of Sect. 4
should be derived for the SU(3) gauge symmetric case, which is
not our current goal here. In fact, any gauge group G, with as-
sociated Lie algebra g, can be used for an immediate generaliza-
tion of the non-Abelian bilinear covariants and the classification
(14a)-(14n), when one considers a set {1}2K ¢ of generators, sat-
isfying [T, T5] = fap“Tc.
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