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A spinor fields classification with non-Abelian gauge symmetries is introduced, generalizing the U(1) 
gauge symmetries-based Lounesto’s classification. Here, a more general classification, contrary to the 
Lounesto’s one, encompasses spinor multiplets, corresponding to non-Abelian gauge fields. The particular 
case of SU(2) gauge symmetry, encompassing electroweak and electromagnetic conserved charges, is then 
implemented by a non-Abelian spinor classification, now involving 14 mixed classes of spinor doublets. 
A richer flagpole, dipole, and flag-dipole structure naturally descends from this general classification. 
The Lounesto’s classification of spinors is shown to arise as a Pauli’s singlet, into this more general 
classification.
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1. Introduction

The Lounesto’s spinor fields classification [1] represents an as-
sortment of all spinor field in Minkowski spacetime that has been 
shown to be complementary to the Cartan’s and the Wigner’s 
classifications of spinors. In the Lounesto’s spinor fields classifi-
cation the standard Majorana, Weyl, and Dirac spinor fields are 
representatives of very particular subsets in different classes of 
spinors, classified according to their bilinear covariants. Several 
non-standard spinors, charged and neutral as well, have been stud-
ied. Refs. [2,3] encode an up-to-date on the Lounesto’s classifica-
tion. Besides, concrete examples of non-standard spinor fields were 
provided in, e.g., [4–6]. This classification has been extended, in 
order to further encompass new classes of spinors on higher di-
mensional spacetimes. For example, new spinors were constructed 
on 7d manifolds, that in particular arise as new solutions of the 
Euler-Lagrange equations in the AdS4 × S7 compactifications in 
string theory [7], as well as for AdS5 × S5 compactifications [8].

Both from the formal and the pragmatic points of view, the 
Lounesto’s classification of spinors is well established and success-
ful, for its huge variety of applications and exploratory features 
on the search of new fermions fields [2]. However, it is remark-
ably limited in the context of gauge symmetries, just holding for 
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the case of U(1) (abelian) gauge symmetries. In fact, spinors in 
the Lounesto’s classification can be split into classes of charged 
and neutral spinors, under the conserved electric charge that is 
evinced from the Noether’s theorem, due to the U(1) gauge sym-
metry underlying the equations for motion ruling all the spinor 
fields. Therefore, the Lounesto’s classification is not able to encom-
pass spinor multiplets, corresponding to non-Abelian gauge fields. 
In particular, it does not encode electroweak and strong conserved 
charges. In fact, the Standard Model (SM) of elementary particles 
is described by a gauge theory, effectively governed by the gauge 
group SU(3) × SU(2) × U(1), describing strong, weak and electro-
magnetic interactions. Those interactions are implemented when 
the corresponding bosonic gauge fields, that include 8 massless 
gluons, 3 massive bosons, W± and Z , and 1 photon, are exchanged, 
to respectively describe strong and electroweak. The fermionic sec-
tors of the theory describe matter and it is encoded into 3-fold 
families of quarks and leptons, together with their antiparticles. 
The Lounesto’s classification can solely encompass Abelian gauge 
symmetries, with conserved electric charge. Exploring algebraic so-
lutions for the U(1) electromagnetic potential appearing in the 
Dirac equation, Refs. [16,17] showed the prototypical inversion the-
orem for the real vector potential. The SU(2) case was scrutinized 
in Ref. [18].

The main aim here is to propose a spinor field classification 
that further encompasses non-Abelian gauge symmetries, encod-
ing the Lounesto’s classification of spinors that correspond, into 
this extended classification, to a Pauli’s singlet, also encompassing 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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electroweak and electromagnetic conserved charges corresponding 
to the SU(2) × U(1) symmetry. The extended, non-Abelian, Fierz 
identities are then here scrutinized.

This paper is organized as follows: after reviewing the Lou-
nesto’s classification, the Fierz identities and the Fierz aggregate 
in Sect. 2, Sect. 3 is devoted to analyze the inversion of the Dirac 
equation, showing that it holds for the case of type-1 regular 
spinors. The electromagnetic potential can be also expressed as 
spinor fields for the case of type-2 and type-3 regular spinors, and 
we show that the inversion can not be implemented for singular 
spinors. In Sect. 4 a non-Abelian spinor classification is imple-
mented, with a richer flagpole, dipole, and flag-dipole structure, 
where 14 classes of spinor doublets are allowed, corresponding 
to bispinor fields. The particular case of SU(2) gauge symmetry 
is implemented, making the Lounesto’s classification of spinors to 
correspond to a Pauli’s singlet in this quite more general classifi-
cation that encompass electroweak and electromagnetic conserved 
charges. In Sect. 5, non-Abelian Fierz aggregates and generalized 
Fierz identities, corresponding to the proposed doublet spinors, are 
listed and rederived.

2. The U(1) classification of spinor fields, the Fierz aggregate and 
the Fierz identities

(Classical) spinor fields are objects defined on Minkowski 
spacetime M that are well known to carry the 

( 1
2 ,0

) ⊕ (
0, 1

2

)
Lorentz group representations. With respect to an arbitrary basis 
{γμ} ⊂ sec �(M), where �(M) = ⊕4

i=0�
i(M) denotes the exterior 

bundle, the bilinear covariants are sections of �(M), whose split-
ting is then represented by [9]

sec�0(M) sec �1(M) sec �2(M) sec�3(M) sec �4(M)

σ = ψ̄ψ J = Jμγμ S = Sμνγμ ∧ γν K = Kμγν ω = ψ̄γ5ψ

where Jμ = ψ̄γμψ , Sμν = ψ̄[γμ, γν ]ψ , and Kμ = ψ̄γ5γμψ are the 
respective coefficients of the Lorentz bilinear covariants, in the 
above table. Also, γ5 = iγ0γ1γ2γ3 is the chiral operator implemented 
by the volume element (for the Clifford product denoted by juxta-
position); the Dirac-conjugated spinor reads ψ̄ = ψ†γ0, and hereon 
γμν := i

2 [γμ, γν ]. Besides, γμγν + γνγμ = 2ημν1, where ημν denotes 
the Minkowski metric. The physical observables, exclusively for the 
Dirac’s theory describing the electron, are realized by the bilinear 
covariants. In fact, the 1-form current density J, the 2-form spin 
density S, and the 1-form chiral current density K, satisfy, together 
to the scalar and pseudoscalar bilinears, the Fierz identities [1]

−ωSμν + σε
αβ

μν Sαβ = εμναβ Jα K β, (1a)

ημν Jμ Jν + ημν K μK ν = 0 = ημν JμK ν, (1b)

ημν Jμ Jν = ω2 + σ 2 . (1c)

The Lounesto’s classification reads [1]:

(1) K �= 0, S �= 0, ω �= 0, σ �= 0, (2a)

(2) K �= 0, S �= 0, ω = 0, σ �= 0, (2b)

(3) K �= 0, S �= 0, ω �= 0, σ = 0, (2c)

(4) K �= 0, S �= 0, ω = 0 = σ , (2d)

(5) K = 0, S �= 0, ω = 0 = σ , (2e)

(6) K �= 0, S = 0, ω = 0 = σ . (2f)

The condition J �= 0 holds for all spinors into the above classes 
(2a)–(2f). Other classes corresponding to J = 0 have been derived 
in Ref. [11], whose representative spinors have been conjectured 
to be ghost spinors. The most general representative spinor fields 
of each Lounesto’s spinor class, were listed in Ref. [13]. More-
over, a gauge spinor field classification have also been proposed 
in Ref. [15].

Singular spinors consist of flag-dipole, flagpole, and dipole 
spinors, respectively in the fourth, fifth, and sixth classes in the 
just mentioned six classes (2a)–(2f). The standard Dirac spinor 
is an element of the set of regular spinors in class 1. Moreover, 
Majorana spinors are neutral spinors that embrace particular real-
izations of flagpole type-5 spinors. The chiral Weyl spinors consist 
of a tiny subset of dipole spinors. In fact, in Ref. [13] one sees that 
chiral spinors are in the classes 6 that consists of dipole spinors, 
however only chiral spinors that satisfy the Weyl equation are 
Weyl spinors. Since type-5 spinors phenomenologically accommo-
date mass dimension one spinors [12,14], the class 6 might also 
accommodate mass dimension one spinors, whose dynamics, of 
course, is not ruled by the Weyl equation. Nevertheless, the classes 
(2a)–(2f) provide a comprehensive sort of new possibilities that 
have not been explored yet [5].

The Fierz identities (1a) do not hold for singular spinors. Based 
on a Fierz aggregate,

Z = (ω − K)γ5 + iS + J + σ , (3a)

the Fierz identities (1a) can be replaced by the most general equa-
tions

4iωZ = −Zγ5Z, (3b)

4i JμZ = −ZγμZ, (3c)

4i SμνZ = −ZγμγνZ, (3d)

4iKμZ = −Zγ5γμZ . (3e)

The above equations are reduced to Eqs. (1a), in the case where 
both σ and ω are not equal zero, e.g., for type-1 spinor regu-
lar spinor fields in the (2a) Lounesto’s class. When γ0Z†γ 0 = Z, 
then the Fierz aggregate is a self-conjugated structure called a 
boomerang [1].

The 1-form field J is interpreted as being a pole, and flagpoles 
are consequently elements of the class 5 in Lounesto classification. 
In fact, for this one has K = 0 and S �= 0, being the flagpole hence 
characterized by the non-vanishing S and K. Besides, as type-4 
spinors have the 2-form field S and the 1-form fields J and K
non null, together they corresponding to a flag-dipole structure. 
For type-6 spinors, J and K are the only bilinears that are not null 
and, then, they do correspond to a dipole structure. The bilinear 
covariants also satisfy [12]:

ημα Sμν Jαγν − ηνα Sμν Jαγμ = ωKργρ, (4a)

ημα Sμν Kαγν − ηνα Sμν Kαγμ = ω Jργρ, (4b)

iε ρτ
μν (ημα Sρτ Jαγν − ηνα Sρα Jαγμ) = 2σ Kργρ, (4c)

iε ρτ
μν (ημα Sρτ Kαγν − ηνα Sρα Kαγμ) = 2σ Jργρ, (4d)

Sμν Sραηνρημα = −ω2 + σ 2, (4e)

iε τξ
ρα Sμν Sτξη

νρημα = −4ωσ, (4f)

ημα Sμν Jαγν − ηνα Sμν Jαγμ + JμSνργμ ∧ γν ∧ γρ

= −ωKτ γτ + i

2
σεαβτξ K αγβ ∧ γτ ∧ γξ (4g)

ημα Sμν Kαγν − ηνα Sμν Kαγμ + KμSνργμ ∧ γν ∧ γρ

= −ω Jτ γτ + i
σεαβτξ Jαγβ ∧ γτ ∧ γξ (4h)
2
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εαβμν Sαβ Sμνγ5 + 1

2
Sμν Sμν = ω2 − σ 2 − 2iωσ γ5, (4i)

A spin- 1
2 fermion, with charge e, is ruled by the Dirac equation 

(/∂ − e /A(x) − m)ψ(x) = 0, with /∂ = γμ∂μ , mass m, and electromag-
netic potential /A(x) = γμ Aμ(x). The current density Jμ is always 
conserved, related to the U(1) symmetry, ∂μ Jμ = 0, whereas the 
chiral current ∂μK μ = −2i mψ̄γ5ψ is just conserved for m = 0. 
In fact, the Dirac Lagrangian that originates this equation is U(1) 
invariant, namely, by the transformations ψ(x) �→ eiθ(x)ψ(x) and 
Aμ(x) �→ Aμ(x) + 1

e ∂μθ(x). The U(1) covariant Dirac equation was 
shown to be equivalent to the following expressions for the inver-
sion of the electromagnetic potential [16,18]:

Aμ = i

2qψ̄ψ

[
ψ̄γμ/∂ψ − ψ̄

←−
/∂ γμψ − 2m Jμψ̄ψ

]
(5)

= i

2qψ̄γ5ψ

[
ψ̄γ5γμ/∂ψ + ψ̄

←−
/∂ γ5γμψ

]
. (6)

Eqs. (2a)–(2c) show that the inversion (5) exists for spinors in 
Lounesto’s classes 1 and 3, whereas the inversion (6) holds for 
spinors in Lounesto’s classes 1 and 2. For the other cases, includ-
ing singular spinors, there is no inversion, in particular for Weyl 
spinors, that satisfy ψ̄ψ = 0 = ψ̄γ5ψ .

3. Non-abelian spinor classification

Starting with the SU(2) gauge group, with associated Lie algebra 
su(2) generated by the set {τa} (a = 1, 2, 3) of generators, satisfy-
ing [ τa

2 , τb
2 ] = i εab

c τc
2 , non-Abelian SU(2) gauge fields /W = Wμγμ

can be thought of as being a matrix of the type generated by 
an infinitesimal gauge transformation, meaning that the Wμ takes 
values in su(2) and, therefore, can be split as Wμ = W a

μτa , where 
the Waμ are the SU(2)-Yang–Mills fields. The field strength is then 
given by Gμν = ∂μWν − ∂ν Wμ − [Wμ, Wν ]. Requiring that the 
Lagrangian for spinor fields must be invariant under local SU(2) 
transformations, the SU(2) gauge covariant Dirac equation that 
governs a doublet spinor ψ, with SU(2) gauge field interactions, 
reads[

i/∂ − g

2
τ · /W − m

]
ψ = 0, (7)

where τ0 = id2×2 and g drives the Yang–Mills field running cou-
pling. Remembering the definition of the charge conjugate spinor, 
ψc = Cψ̄ᵀ = i γ2γ0ψ̄ᵀ , the complex conjugate of Eq. (7), multiplied 
by I ⊗ U , where U is an operator that implements the parity and 
the complex conjugation, UγμU−1 = −γ∗

μ , such that ψc = Uψ∗ , 
yields[
γμ

(
i ∂μ + g

2
τᵀ · Wμ

)
− m

]
ψc = 0. (8)

In order to implement a covariant gauge potential, Eq. (8) can 
be thus multiplied by iτ2, together with the Pauli’s identity τa =
−τ2τ

ᵀ
a τ−1

2 , to yield 
[
/∂ − g

2 τ · /W − m
]

ψ̃ = 0, where ψ̃ ≡ iτ2ψc de-
notes the isospin-charge conjugate spinor [18]. Defining

� = τ aγμψWaμ = 2

g
(/∂ − m)ψ, (9)

and multiplying the first equation in (9) by ψ̄τaγμ , it reads 
τaτ

b Wbμ = (δab + i εa
bcτc)Wbμ , yielding therefore

ψ̄(δμ
ν − iγμ

ν)ψWaν + εabcψ̄τc(iδμ
ν + γμ

ν)ψWbν

= ψ̄τaγμ�. (10)
The analogue non-Abelian bispinors are, then, defined by [16,18]

¯̃ψ(τi ⊗ �)ψ̃ = −ψ̄(τ−1
2 τi

ᵀτ2) ⊗ (C−1�ᵀC)ψ, (11)

where � is an arbitrary multivector in the Clifford–Dirac spacetime 
algebra and the (Euclidean) indexes run as i = 1, 2, 3, for i = 0
corresponding to the 2 × 2 identity. Eq. (10) implies that

gWaμψ̄ψ + gεabc Wb
νψ̄τ cγμνψ

= i ψ̄(τaγμ/∂ − ←−
/∂ τaγμ)ψ − 2mψ̄τaγμψ. (12)

The non-Abelian bilinear covariants are defined by (i = 0, 1,2,

3):

σi = ψ̄τiψ, (13a)

J iμ = ψ̄τiγμψ, (13b)

Siμν = ψ̄τiγμνψ, (13c)

Kiμ = ψ̄τiγ5γμψ, (13d)

ωi = ψ̄τiγ5ψ, (13e)

originating the classification of non-Abelian spinor fields into the 
following disjoint classes (i = 0, 1, 2, 3; j = 1, 2, 3):

1) σ �= 0, σ j �= 0, ω �= 0, ω j �= 0,

Kiμ �= 0, Siμν �= 0 (14a)

2) σ = 0, σ j �= 0, ω �= 0, ω j �= 0,

Kiμ �= 0, Siμν �= 0 (14b)

3) σ �= 0, σ j = 0, ω �= 0, ω j �= 0,

Kiμ �= 0, Siμν �= 0 (14c)

4) σ = 0, σ j = 0, ω �= 0, ω j �= 0,

Kiμ �= 0, Siμν �= 0 (14d)

5) σ �= 0, σ j �= 0, ω �= 0, ω j = 0,

Kiμ �= 0, Siμν �= 0 (14e)

6) σ �= 0, σ j �= 0, ω = 0, ω j �= 0,

Kiμ �= 0, Siμν �= 0 (14f)

7) σ �= 0, σ j �= 0, ω = 0, ω j = 0,

Kiμ �= 0, Siμν �= 0 (14g)

8) σ = 0, σ j = 0, ω = 0, ω j = 0,

Kiμ �= 0, Siμν �= 0 (14h)

9) σ = 0, σ j = 0, ω = 0, ω j = 0,

K0μ = 0, K jμ �= 0, Siμν �= 0 (14i)

10) σ = 0, σ j = 0, ω = 0, ω j = 0,

Kiμ �= 0, S0μν = 0, S jμν �= 0 (14j)

11) σ = 0, σ j = 0, ω = 0, ω j = 0,

Kiμ = 0, Siμν �= 0 (14k)

12) σ = 0, σ j = 0, ω = 0, ω j = 0,

Kiμ = 0, S0μν = 0, S jμν �= 0 (14l)

13) σ = 0, σ j = 0, ω = 0, ω j = 0,

Kiμ �= 0, Siμν = 0 (14m)

14) σ = 0, σ j = 0, ω = 0, ω j = 0,
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K0μ = 0, K jμ �= 0, Siμν = 0. (14n)

The classes 1)–7) correspond to SU(2) × U(1) regular spinors, 
whereas classes 8)–14) are SU(2) × U(1) singular spinors. It is 
worth to mention that the field J = J iμγμτi can be thought as 
an SU(2) × U(1) current density, for the classes 1)–7) of regu-
lar spinors. Analogously to the previous geometric interpretation 
to singular spinors in the Lounesto’s classification, class 8) con-
sists of SU(2) × U(1) flag-dipole spinors. Up to the class 8), all 
spinor classes are in close straightforward non-Abelian generaliza-
tions. However, new aspects are unveiled with non analogy to the 
Lounesto’s classification, from class 9) to class 14). In fact, class 9) 
correspond to SU(2) flagdipole-U(1) flagpole spinors. This feature 
is completely unexpected, as the bispinors in this class are flag-
dipole spinors with respect to the SU(2) sector ( j = 1, 2, 3), having 
4 non-null flags, Siμν and 3 non-Abelian poles, K jμ; however, 1 
pole given by K0μ ≡ Kμ , corresponding to the U(1) sector (i = 0) 
given by the usual bilinear covariant Kμ = ψ̄γμγ5ψ , equals zero. 
Class 10) is characterized by SU(2) flagpole-U(1) dipole spinors. In-
deed, the bispinors in class 10) are flagpole spinors with respect to 
the SU(2) sector ( j = 1, 2, 3), having 4 non-null poles, Kiμν and 3 
non-Abelian flags, S jμν , with 1 additional flag S0μν ≡ Sμν , cor-
responding to the U(1) sector (i = 0) given by the usual bilinear 
covariant Sμν = ψ̄γμνγ5ψ , that is equal to zero. Class 11) is a 
case of a pure class of SU(2) flagpoles, as well as class 13) is also a 
pure class of SU(2) dipoles. On the other hand, the class 12) con-
sist of SU(2) flagpoles-U(1) poles and class 14) consist of SU(2) 
dipoles-U(1) poles. Besides, the inherent geometric structure un-
derlying the bispinor classes (14a)–(14n) relies on the existence 
of four flags, Siμν , and eight poles, Kiμ and J iμ , in the defining 
Eqs. (13b)–(13d), corresponding to a 4-fold richer structure than 
the one provided by the Lounesto’s classification. Moreover, classes 
12) and 14) admits, respectively, subclasses of SU(2) flagpoles and 
dipoles bispinors, that are U(1) poles. This has non analogy to the 
Lounesto’s classification, having for the classes 12) and 14) all the 
bilinears, but J, vanishing.

In order to emulate the (ghost) spinors that extend the 
Lounesto’s classification in Ref. [11], we present the following ad-
ditional spinors classes:

15) σ = 0, σ j = 0, ω = 0, ω j = 0, Jiμ = 0,

Kiμ �= 0, Siμν �= 0 (15a)

16) σ = 0, σ j = 0, ω = 0, ω j = 0, Jiμ = 0,

Kiμ = 0, Siμν �= 0 (15b)

17) σ = 0, σ j = 0, ω = 0, ω j = 0, Jiμ = 0,

Kiμ �= 0, Siμν = 0. (15c)

It is immediate to notice that the Lounesto’s classification arises 
as a Pauli’s singlet corresponding to i = 0 in the classification 
(14a)–(14n). In fact, when i = 0, Eq. (13a) reads σ0 = ψ̄τ0ψ =
ψ̄Iψ = ψ̄ψ = σ . When i = 0, the other SU(2) × U(1) bilinears 
(13b)–(13e) are also led to their usual U(1) bilinears, namely, 
J0μ �→ Jμ , S0μν �→ Sμν , K0μ �→ Kμ and ω0 = ω. Hence, when 
i = 0, the above bilinears correspond to a Pauli’s singlet, and the 
(isomorphic) Lounesto’s classification arises, as σ0 = ψ̄τ0ψ = σ ⊗ I , 
which vanished if σ equals zero. A similar analysis holds for 
ω0 = ψ̄τ0γ5ψ = ω ⊗ I .

With the definition of the non-Abelian bilinear covariants, 
Eq. (12) can now be rewritten in a more condensed form [18]
(
δμ

νδa
b J0 − Scμ

νεa
cb

)
gWbν = iψ(τaγμ/∂ −←−

/∂ τaγμ)ψ −2m Jaμ.

(16)
Now, defining �Siμν = i
2 εμναβ S αβ

i and multiplying Eq. (9) by 
ψ̄τaγ5γμ yields

(
δμ

νδa
b K0 − �Scμ

νεa
cb

)
gWbν = i ψ̄(τaγ5γμ/∂ + ←−

/∂ τaγ5γμ)ψ.

(17)

Adding Eqs. (16) and (17) implies that[
εa

cb(�Scμ
ρ + Scμ

ρ) − δμ
ρδa

b( J0 + K0)
]

Wbρ

= − i

g
[ψ̄τaγμ(I + γ5)/∂ψ − ψ̄

←−
/∂ τaγμ(I − γ5)ψ]

− 2m( J0 + K0) Jaμ. (18)

Since the left-hand side of the above equations is invertible, a Neu-
mann series analysis implies that [18]

g

2
J aν Waν = i ψ̄/∂ψ − m J0, (19)

explicitly providing the coupling between the Lorentz non-Abelian 
density current Jaμ and the vector potential field. It is worth to 
emphasize that interpreting the Jaμ as a non-Abelian density cur-
rent holds for non-Abelian regular spinors in classes 1)–7). In the 
next section, the generalized Fierz identities are briefly reviewed 
and introduced.

4. Non-abelian Fierz aggregate and Fierz identities

Now, the non-Abelian analogs of Eqs. (4a)–(4i) can be now 
studied, considering ψψ̄ 8 × 8 matrices. We have already seen that 
Eq. (3a) represents the Fierz aggregate. The non-Abelian bilinear 
covariants, hence, make the definition of the non-Abelian Fierz ag-
gregate

Zψ = ωi(γ5 ⊗ τ i) − Kiμ(γ5γμ ⊗ τ i) + Siμν(γ μν ⊗ τ i)

+ J iμ(γμ ⊗ τ i) + σi(I ⊗ τ i), (20)

where the coefficients are the non-Abelian bilinear covariants 
(13a)–(13e), consisting of SU(2) bispinors.

Hence, the Fierz identities (4a)–(4i) can be then generalized 
for the non-Abelian case, yielding, for example the following ex-
pression [18] (hereon the expressions for symmetrized [antisym-
metrized] indexes A(μν) = Aμν + Aνμ [A[μν] = Aμν − Aνμ], for 
any tensor Aμν and higher order generalizations, shall be used):

Ja
μKb

ν = ψ̄τaγμψψ̄τbγ5γνψ

= 1

4

[
i J (a � Sb)

μν − i K(a Sb)
μν + J (a

(μKb)
ν) − Jc

(μK cν)

+ i Kc Scμν + J0
(μK0

ν)

+ δab(i J0 � S0
μν − i Jc � Scμν − i K0 S0

μν

+ (− J0σ K0
σ + Jcσ K cσ )

ημν)
]

+1

4
εab

c [
i(K0 Jc + J0 Kc)η

μν

+ ( Jcσ J0λ + Kcσ K0λ)ε
μνσλ − i

2
S(0

(μ|σ | � Sc)
|σ |ν)

]
.

(21)

Emulating the Fierz identity Sμν = 1
σ 2−ω2 [σε

μν
ρχ −

i ωεαρχεαμν ] Jρ K χ , [9,10] for the i = 0 case that corresponds to 
a Pauli’s singlet equivalent to the Lounesto’s classification, one can 
further calculate other Fierz identities for the non-Abelian case, as



L. Fabbri, R. da Rocha / Physics Letters B 780 (2018) 427–431 431
J i
[μK iν] = 2i ( J0 � S0

μν − K0 S0
μν). (22)

Hence, adding the term εμνρχ J0ρ K0χ to εμναβ Jaα K a
β yields [18]

εμναβ J iα K i
β = 2( J0 S0

μν − K0 � S0
μν), (23)

following that

S0
μν = 1

2( J 2
0 − K 2

0 )

(
J0ε

μν
ρχ − i K0εαρχεαμν

)
J i

ρ K iχ . (24)

Moreover a generalized Fierz identity holds for the non-Abelian 
density, written as a function of the non-Abelian chiral current and 
the non-Abelian spin density [18]:

Sa
μν = J ρ

(a K χ
0)

J 2
0 − K 2

0

[
J0ε

μν
ρχ − iK0εαρχεαμν

]

− J 2
0 + K 2

0

2( J 2
0 − K 2

0 )2

[
Jaε

μν
ρχ + iKaεαρχεαμν

]
J i

ρ K iχ

+ J0 K0

( J 2
0 − K 2

0 )2

[
Kaε

μν
ρχ + i Jaεαρχεαμν

]
J i

ρ K iχ . (25)

5. Conclusions

Due to the limitations of the Lounesto’s spinor field classifica-
tion we have proposed an extended non-Abelian spinor field clas-
sification that encompasses the SU(2) × U(1) gauge symmetries, 
responsible for the conservation of the electroweak and electro-
magnetic conserved charges, by the Noether’s theorem. This gen-
eralized spinor field classification can be still led to the Lounesto’s 
classification, considering the identity 2 × 2 matrix (i = 0) into all 
the expressions in Sect. 3. In particular, the U(1) gauge bilinear 
covariants, that compose to the original Lounesto’s classification, 
are obtained as the particular case of a Pauli’s singlet, in the non-
Abelian spinor field classification. Non-Abelian generalized Fierz 
aggregates and some of the corresponding non-Abelian generalized 
Fierz identities have been also studied.

Although the SU(2) × U(1) gauge symmetry was chosen to be 
the fundamental gauge symmetry to illustrate the 14 new classes
of regular and singular non-Abelian spinors in Eqs. (14a)–(14n), 
SU(3) gauge symmetries can be analogously introduced, with the 
immediate difference that the gauge indexes should run as i =
1, . . . , 8, being again i = 0 correspondent to the Lounesto’s classifi-
cation. Obviously, the similar generalized Fierz identities of Sect. 4
should be derived for the SU(3) gauge symmetric case, which is 
not our current goal here. In fact, any gauge group G , with as-
sociated Lie algebra g, can be used for an immediate generaliza-
tion of the non-Abelian bilinear covariants and the classification 
(14a)–(14n), when one considers a set {τa}rank G

a=1 of generators, sat-
isfying [τa, τb] = fab

cτc .
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