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Abstract

The Standard Model of particle physics forms the theoretical basis of modern physics
alongside the general theory of relativity. Precision measurements are used to search for
flaws in this theory in order to discover physics beyond the Standard Model. One of the
most interesting physical processes is the longitudinally polarized scattering of two same-
charged W# bosons. Polarized W= boson scattering offers a unique opportunity to explore
the electroweak symmetry breaking of the Standard Model.

The investigation of W+ boson scattering requires particle collisions at center-of-mass
energies that can only be achieved at the Large Hadron Collider (LHC). The final states
of the scattering process are measured by the CMS and ATLAS detector. The W*W+*
scattering process was observed for the first time in 2018 by the CMS collaboration in Ref. [1]
and confirmed one year later by the ATLAS collaboration in Ref. [2]. Due to the short
lifetime of the W* bosons, the leptonic decay products of the bosons were investigated in
both analyses. Based on these analyses, the Run 2 data recorded at the LHC from 2015
to 2018 are examined for the polarization states of the scattered W+ bosons. The same-
charged W= boson scattering is the first possibility to study the polarization in vector boson
scattering (VBS). In 2021, the CMS analysis of longitudinally polarized W* boson scattering
was published in Ref. [3]. However, this analysis did not provide evidence above the 3¢
significance threshold for the existence of a longitudinal polarization state in VBS.

This thesis is a major contribution to the ATLAS analysis of the Run 2 data aiming
for this evidence. In this thesis, the first experimental application of approximate polar-
ized next-to-leading-order corrections on same-charged W* bosons scattering is achieved.
These corrections employ state-of-the-art calculations of the polarized cross-sections and
significantly improve the Standard Model prediction. Based on the Standard Model predic-
tion, deep neural networks (DNNs) are trained to study the W= boson polarization in the
measured data. The DNNs are optimized for the polarization discrimination and validated
against data in a control region. The decision-making of the DNNs is investigated to achieve
a better understanding of the kinematic information learned by the networks. The DNN
output for the measured data and the Standard Model prediction is analyzed by a profile
likelihood fit to extract the significance and cross-section of the longitudinal polarization
state. The likelihood fit requires the estimation of the theoretical uncertainty of the polar-
ization states which is implemented in this thesis. Furthermore, a new strategy is developed
to investigate and constrain the impact of these uncertainties. For the final application of
the profile likelihood fit, a two-dimensional bin optimization algorithm is designed for the
histograms of the DNN output to maximize the expected significance.

The contribution of the W*W scattering with at least one longitudinally polarized W+
boson is measured with a significance of 3.4 ¢ and a fiducial cross-section of 1.04 + 0.35 fb.
Thus, this ATLAS analysis provides the first evidence for the longitudinal polarization in
VBS. The measured fiducial cross-section is in agreement with the Standard Model prediction
of 1.35tb.

For the scattering of two longitudinally polarized W# bosons, a significance of 0.082 ¢
is observed. The corresponding fiducial cross-section is found to be smaller than 0.50fb at
95% confidence level. This upper limit covers the Standard Model prediction of 0.33 fb and
constraints the fiducial cross-sections predicted by alternative theories.






Zusammenfassung

Das Standardmodell der Teilchenphysik bildet neben der allgemeinen Relativitatstheorie
die theoretische Grundlage der modernen Physik. Mit Hilfe von Prézisionsmessungen wird
nach Schwachstellen in dieser Theorie gesucht, um Physik jenseits des Standardmodells zu
entdecken. Einer der interessantesten physikalischen Prozesse ist die longitudinal polarisierte
Streuung von zwei gleichgeladenen W*-Bosonen. Die polarisierte W *-Bosonenstreuung bi-
etet eine einzigartige Moglichkeit, die elektroschwache Symmetriebrechung des Standard-
modells zu erforschen.

Die Untersuchung der W*-Bosonenstreuung erfordert Teilchenkollisionen bei Schwer-
punktsenergien, die nur am Large Hadron Collider (LHC) erreicht werden konnen. Die
Endzustéinde des Streuprozesses werden mit dem CMS- und ATLAS-Detektor gemessen. Der
WEW=*_Streuprozess wurde 2018 zum ersten Mal von der CMS-Kollaboration in Ref. [1]
beobachtet und ein Jahr spéater von der ATLAS-Kollaboration in Ref. [2] bestétigt. Auf-
grund der kurzen Lebensdauer der W*-Bosonen wurden in beiden Analysen die leptonis-
chen Zerfallsprodukte der Bosonen untersucht. Basierend auf diesen Analysen werden die
von 2015 bis 2018 am LHC aufgenommenen Run 2-Daten auf die Polarisationszustidnde
der gestreuten W*-Bosonen untersucht. Die gleichgeladene W*-Bosonenstreuung ist die
erste Moglichkeit, die Polarisation in der Vektor-Bosonen-Streuung (VBS) zu untersuchen.
Im Jahr 2021 wurde die CMS-Analyse der longitudinal polarisierten W *-Bosonenstreuung
in Ref. [3] veroffentlicht. Diese Analyse lieferte jedoch keinen Beweis oberhalb der 3o-
Signifikanzschwelle fiir die Existenz eines longitudinalen Polarisationszustandes in VBS.

Diese Arbeit ist ein wichtiger Beitrag zur ATLAS-Analyse der Run 2-Daten, die auf
diesen Nachweis abzielt. In dieser Arbeit wird die erste experimentelle Anwendung von
approximativen polarisierten Korrekturen néichstfithrender Ordnung auf gleichgeladene W *-
Bosonenstreuung erreicht. Diese Korrekturen verwenden modernste Berechnungen der polar-
isierten Wirkungsquerschnitte und verbessern die Vorhersage des Standardmodells erheblich.
Auf der Grundlage der Vorhersage des Standardmodells werden tiefe neuronale Netze (DNNis)
trainiert, um die Polarisation des W*-Bosons in den gemessenen Daten zu untersuchen.
Die DNNs werden fiir die Polarisationsunterscheidung optimiert und anhand von Daten in
einer Kontrollregion validiert. Die Entscheidungsfindung der DNNs wird untersucht, um ein
besseres Verstdndnis der von den Netzen erlernten kinematischen Informationen zu erreichen.
Die DNN-Ausgabe fiir die gemessenen Daten und die Vorhersage des Standardmodells wird
durch einen Profil-Likelihood-Fit analysiert, um die Signifikanz und den Querschnitt des
longitudinalen Polarisationszustands zu extrahieren. Der Likelihood-Fit erfordert die Ab-
schitzung der theoretischen Unsicherheit der Polarisationszustinde, welche in dieser Arbeit
implementiert wird. Auflerdem wird eine neue Strategie entwickelt, um die Auswirkungen
dieser Unsicherheiten zu untersuchen und zu begrenzen. Fiir die endgiiltige Anwendung
der Profil-Likelihood-Fit wird ein zweidimensionaler Bin-Optimierungsalgorithmus fiir die
Histogramme der DNN-Ausgabe entwickelt, um die erwartete Signifikanz zu maximieren.

Der Beitrag der W+ W *-Streuung mit mindestens einem longitudinal polarisierten W =*-
Boson wird mit einer Signifikanz von 3.4 ¢ und einem Wirkungsquerschnitt von 1.04+0.35 fb
gemessen. Damit liefert diese ATLAS-Analyse den ersten Nachweis fiir die longitudinale
Polarisation in VBS. Der gemessene Wirkungsquerschnitt stimmt mit der Vorhersage des
Standardmodells von 1.35 fb iiberein.

Fiir die Streuung von zwei longitudinal polarisierten W *-Bosonen wird eine Signifikanz
von 0,082 ¢ beobachtet. Der entsprechende Wirkungsquerschnitt ist kleiner als 0,50 fb bei
einem Konfidenzintervall von 95%. Diese Obergrenze deckt die Vorhersage des Standardmod-
ells von 0, 33 fb ab und schriankt die von alternativen Theorien vorhergesagten Wirkungsquer-
schnitte ein.
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CONTENTS

Conventions

Units: The following thesis uses natural units by setting the speed of light ¢ and the reduced
Planck constant /& to 1. Thus, the energy unit eV is also used for masses and momenta.

Summation convention: The Einstein summation convention is used for contravariant
and covariant indices. In order to distinguish the summation convention from indices that
simply occur twice, it is only used for indices that are Greek letters. For example the term
a,b* is a scalar product of two four-vectors a and b while a;b’ is the product of their i-th
component.

Vectors: Vector-type variables are written in bold type k. Vectors in three-dimensional
space, such as momentum or velocity, are indicated by a vector arrow v.

Order of measured objects: Events measured at the ATLAS experiment contain mul-
tiple particles or jets. A set of these objects is sorted in descending order according to their
momentum transversal to the beam axis. The object with the largest transverse momentum
is referenced as the “leading” object, followed by the “subleading” object.
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Chapter 1

Introduction

Modern physics is based on two fundamental theories: the theory of General Relativity and
the Standard Model of particle physics. These two theories cover two distinct aspects of our
physical world. General Relativity describes the concept of gravity and is based on the geo-
metrical idea of a curved spacetime. The theory of General Relativity is thus a description of
our universe, which primarily takes place on the size scales of planetary systems and galax-
ies. On the other hand, the Standard Model of particle physics describes the interactions
of the smallest components of our world. This theory covers the electromagnetic, weak and
strong interactions of elementary particles. The Standard Model is the unification of special
relativity and quantum mechanics and comprehensively describes all known fundamental in-
teractions apart from gravity. The theory has existed since the 1970s but had a fundamental
weakness when it was first conceived: Although the interactions of particles could be accu-
rately predicted, these particles were massless in theory. Since particles are experimentally
known to have masses, theorists were investigating different methods to introduce particle
masses into the Standard Model. The most successful approach was the Higgs mechanism,
which postulates the existence of a new particle: the Higgs boson. Although this theory
became increasingly popular, the existence of a Higgs boson could not be confirmed experi-
mentally until the 21st century. The hope of discovering this new particle lay in high-energy
physics and motivated the construction of the Large Hadron Collider (LHC) at the European
Organization for Nuclear Research (CERN). The LHC accelerates hadrons and collides them
at previously unattainable center-of-mass energies. The experimental setup of the LHC and
one of its most important detectors is described in chapter 2. In 2012, the experiments at
CERN led to the discovery of the Higgs boson. This discovery was one of the most important
physical breakthroughs of the 21st century so far because it finally filled a gap in one of the
most fundamental theories of physics. The resulting Standard Model with Higgs mechanism
is summarized in chapter 3.

Although the discovery of the Higgs boson was a massive breakthrough for modern
physics, various physical problems remain unresolved. The Standard Model does not explain
the matter-antimatter asymmetry in the universe, neutrino oscillations, or the dark matter
and dark energy known from astronomic measurements. Therefore, although the Standard
Model is a very well tested theory, it has to be replaced by other theories in the future. The
particle physics community searches for flaws in the theory and possibilities for physics be-
yond the Standard Model. Since neither the Standard Model nor current experiments raise
hope of discovering further particles, scientific research focuses on precision measurements.
If differences between experimental data and the Standard Model prediction were discovered,
new theories could emerge that would change our understanding of the universe.

Since the recently discovered Higgs boson has a central role in the Standard Model, many
of the precision measurements focus on further investigating the Higgs mechanism. One of
the most promising approaches is the polarization measurement in the scattering of W=+ or
Z bosons, called vector bosons. The polarization of a particle is given by the orientation
of its spin relative to its direction of motion. Particles with spin 1 can have a transverse
polarization and, if not massless, longitudinal polarization. Since the vector bosons gain their
mass by interacting with the Higgs field, their longitudinal polarization directly results from

3



1 Introduction

the Higgs mechanism. Moreover, without a Higgs boson, the scattering of two longitudinally
polarized bosons would violate a fundamental physics concept, even if a different source for
the boson masses were available. Without a Higgs boson, the longitudinally polarized vector
boson scattering would violate unitarity, leading to unphysical scattering probabilities of
more than 100%. The interaction with the Higgs boson avoids the unitarity violation. The
polarization measurement in the scattering of vector bosons thus tests not only the relevance
of the Higgs mechanism for particle masses but also the necessity of the Higgs boson to restore
the fundamental concepts of physics. Therefore, the polarized vector boson scattering is one
of the most promising processes for investigating the Higgs mechanism and searching for
physics beyond the Standard Model.

The LHC is the only experiment capable of producing the necessary center-of-mass energy
to study vector boson scattering. The corresponding measurements are performed using the
ATLAS and CMS detectors. The design of the LHC and the ATLAS detector is explained in
chapter 2. Possible candidates of vector boson scattering are the oppositely charged W+W F-
, the same-charged W*W*-, the W*Z- and ZZ-scattering. A polarization analysis of the
oppositely charged WEW T scattering is not feasible currently due to the high background
contribution from other processes. Two ATLAS analyses [4][5] and one CMS analysis [6]
have studied the polarization of WW*Z boson pairs. The polarization of a ZZ boson pair was
investigated in the ATLAS analysis in Ref. [7]. These analyses showed that a polarization
analysis in the case of two vector bosons is possible in principle. However, they did not
directly investigate the scattering of the vector bosons, which has only been possible for the
same-charged W*W¥ scattering so far.

The Run 2 data recorded from 2015 to 2018 at the CMS detector was analyzed for the
polarization in same-charged W= W scattering [3]. Two reference frames were used to define
the polarization: the center-of-mass frame of the two interacting W*W=* (WW-cmf) and the
partonic center-of-mass frame (pp-cmf). For the scattering of two longitudinally polarized
W= bosons, a 95% confidence interval upper limit of 1.17 fb in the WW-cmf and 1.06 fb in
the pp-cmf was obtained. When measuring events with at least one longitudinal W+ boson,
a significance of 2.3 o was achieved in the WW-cmf and 2.6 o in the pp-cmf. However, these
significances are not sufficient to claim evidence nor observation.

This thesis analyzes the Run 2 data of the ATLAS experiment to provide the evidence of
longitudinal polarization in W*W¥ scattering and test new techniques for future analyses.
The existing analysis of unpolarized same-charged W= boson scattering in Ref. [8] is used
as a baseline for the polarization analysis. The existing analysis strategy is extended by
the Standard Model prediction of the polarization states and an extensive machine learning
strategy to extract the polarization information from data. Since the leptonic decays of the
W= bosons are studied, a significant part of the kinematic information about the polarized
W= boson is lost, as the emitted neutrino is not detectable in the ATLAS detector. Therefore,
neural networks extract the remaining information from the entire measured phase space.

For the sake of clarity, this thesis is split into two parts. The first part contains the

theoretical background necessary to understand the analysis strategy. In the second part,
the polarization analysis is described with a focus on the author’s personal contribution to
the ATLAS analysis:
In chapter 8, recent event generator features and theory calculations are used to correct the
individual predictions of the polarization states for next-to-leading-order effects. A state-
of-the-art hyperparameter optimization strategy is applied to train neural networks with an
optimal discriminative power for the polarization states. In chapter 10, the resulting networks
are validated and their decision-making process is investigated. The theory uncertainties of
the polarization prediction are implemented in chapter 11. In chapter 12, a new strategy is
presented to study and constrain the impact of these theory uncertainties. This final chapter
provides also the expected and observed analysis results of the polarization measurement.



Part 1

Background and Methodology






The first part of this thesis provides the theoretical background of the polarization analy-
sis. The investigated data originates from the ATLAS experiment at the LHC. An overview
of this experimental setup and the reconstruction of the measured objects is provided in
chapter 2. Subsequently, the relevant theoretical framework of particle physics is summa-
rized in chapter 3. It introduces the Standard Model and the corresponding Higgs mechanism
and highlights the importance of polarization in vector boson scattering. The chapter ends
with an explanation of polarization in same-charged W boson scattering produced at the
LHC. The measurement of the polarized vector boson scattering requires the Standard Model
prediction of the polarized signal and the corresponding background processes. Therefore,
the concept of event generators is described in chapter 4 to provide an overview of how the
Standard Model prediction is achieved by simulations. For the polarization measurement,
neural networks extract the available information from the entire phase space. The concept
and functionality of fully-connected feedforward networks are explained in chapter 5. This
description covers the network architecture, the training process, the generalization error,
and the investigation of the network performance.






Chapter 2

Experimental Setup

Very high interaction energies are necessary to study processes like the scattering of two
W* bosons. These energies are achieved by the collision of two high-energetic particles
or nuclei. At the time of this thesis, the biggest and most powerful accelerator is the Large
Hadron Collider (LHC) [9] at the research complex of the European Organization for Nuclear
Research (CERN) at the Swiss-French border. Several detectors are available at the LHC ring
to measure the resulting collision. This thesis focuses on the measurement at the ATLAS
detector [10]. The following sections briefly introduce the setup of the LHC and ATLAS
detector, followed by a section summarizing how the objects relevant to this analysis are
reconstructed in the ATLAS experiment.

2.1 The Large Hadron Collider

The Large Hadron Collider (LHC) [9] is a ring accelerator with a 26.7km circumference. It
is built in the underground 45 m-170 m below the surface in the tunnel of the former LEP
accelerator operating between 1989 and 2000. The LHC accelerates and collides beams of
protons and beams of heavy ions for various experiments. Experiments besides the ATLAS
experiment are CMS, LHCB, TOTEM, and ALICE, which are not studied in this thesis. The
LHC is built to reach a center-of-mass energy of 14TeV for proton-proton collisions. The
LHC consists of two superconducting accelerator rings to collide two protons at this energy.
The two proton beams are separated by 194 mm and only share about a 130m long pipe
along the interaction regions.
The number of events
Nevent = Loevent (21)

of a specific event type produced at the LHC is determined by the corresponding cross-section
Oevent and the luminosity L of the accelerator. The luminosity

NZnp frev?y.
[ = eV T o 2.9
4d7e, B* (2:2)

depend on the following properties of the collider:
e Number of particles per bunch N,
e Number of bunches per beam n;,
e Revolution frequency frey
o Relativistic gamma factor ~,
o Normalized transverse beam emittance ¢,
o Beta function at collision point 5*

e Geometric luminosity reduction factor F' due to the beam crossing angle at the collision
point
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Figure 2.1: Overview of the CERN accelerator complex during Run 2 taken from
Ref. [15].

The LHC is designed for 2808 proton bunches per beam with 25 ns bunch spacing [9]. Thus, a
luminosity of 103* cm~2s™! can be reached [9]. In order to achieve this impressive luminosity
and collision energy, the LHC was built with a cutting-edge vacuum and magnet system and

a multi-step injection chain that pre-accelerates the used proton beams.

2.1.1 Injection Chain of the LHC

The LHC is the final step of an accelerator chain relying on several pre-accelerators. The
acceleration of the proton beam starts at the linear accelerator Linac2 [11] followed by the ring
accelerators Proton Synchrotron Booster [12], Proton Synchrotron [13], and Super Proton
Synchrotron [14] before the beam is injected in the LHC. An overview of the entire CERN
accelerator complex during Run 2 of the LHC is shown in figure 2.1.

Linac2

The origin of the protons colliding in the LHC is a bottle of hydrogen gas. An electrical
field ionizes the hydrogen atoms before injecting them into the linear accelerator Linac2 [11].
Linac2 consists of cylindrical conductors accelerating the protons and quadrupole magnets
focusing the beam. The resulting pulsed proton beam enters the subsequent Proton Syn-
chrotron Booster at a proton energy of 50MeV. For the next runs of the LHC Linac2 is
replaced by Linac4.

Proton Synchrotron Booster

The proton beam leaving the Linac2 accelerator is split vertically by a series of pulsed
magnets. The separated beam enters the four rings of the Proton Synchrotron Booster (PSB)
[12]. The Booster rings have a radius of 25m and consist of 32 dipole and 48 quadrupole
magnets to accelerate and preserve the proton bunches. At the end of the acceleration,
the proton bunches of the four PSB rings are synchronized and recombined by a system of
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vertical kickers. The PSB was initially designed to produce beams with 800 MeV proton
energy. After several upgrades until the early 2000, the PSB can reach 1.4 GeV to fulfill the
requirements for the LHC injection chain.

Proton Synchrotron

The PSB is followed by the Proton Synchrotron (PS) [13][16] which was after its first run
in 1959, one of the most powerful colliders. The PS has a circumference of 628 meters
and is assembled on a floating floor to minimize the impact of external disturbance. The
accelerator consists of 100 straight sections separated by 100 main magnets. At the straight
sections, additional auxiliary magnets and radio-frequency cavities accelerating the protons
are installed. The same magnetic elements are used to focus and bend the beam, which
caused many technical challenges at the time the PS was built. After numerous uses in
various experiments and for pre-acceleration for other accelerators, the PS, which accelerates
protons to up to 26 GeV, is an integral part of the LHC injection chain.

Super Proton Synchrotron

The last step of the injection chain is the Super Proton Synchrotron (SPS) [14], the second-
largest accelerator at CERN. 1317 magnets are installed at the SPS, including 744 main dipole
magnets to bend the proton beam. Similar to the previous steps of the injection chain, these
magnet systems consist of mainly conventional room-temperature electromagnets. One of
the greatest achievements of the SPS as a stand-alone accelerator was the discovery of the
W and Z bosons. Today, with an acceleration to 450 GeV, it is the last step in the LHC
injection chain.

2.1.2 Magnet System

Since the LHC has to accelerate two counter-rotating proton beams, the magnet system
described in [9] provides opposite magnetic fields in two separate rings. To reduce space
consumption and costs, a "twin-bore” design was chosen for almost all magnet systems. The
superconducting magnets are based on NbTi Rutherford cables. With the cooling below
2K provided by superfluid helium, these cables can operate at magnetic fields above 8T.
In total, 1232 main dipole magnets, about 3800 single aperture, and 1000 twin-aperture
corrector magnets are installed along the ring. The resulting magnet system of the LHC
consists of a complex combination of dipole, quadrupole, sextupole, and octupole magnets
to deflect, correct, focus, and defocus the beams.

2.1.3 Vacuum System

The LHC operates three vacuum systems described in Ref. [9]. The first two are the in-
sulation vacuum systems for the cryomagnets and the helium distribution. At cryogenic
temperatures, these systems operate at a pressure of 107% mbar. The third vacuum system
provides the vacuum for the beam pipelines. This vacuum has a gas density that is equivalent
to 10'® Hy m 2 to enable a beam lifetime of 100 hours. An even purer vacuum of 10 Hom—3
is generated in the interaction regions, which further reduces the potential background for
the experiments.

2.1.4 Run 2 Performance

The LHC’s outstanding design and injection chain are also reflected in its luminosity. The
LHC runs until 2016 can be split into main periods: Run 1, mainly from 2011 to 2012, and
Run 2, in 2015 to 2016. During Run 1 the proton beam operated at an energy of 3.5 TeV
to 4 TeV [17]. In the second period, Run 2, this energy was increased to 6.5 TeV [18]. The
integrated luminosity over the individual years of Run 1 and Run 2 can be seen in figure 2.2.
The commissioning years 2011 for Run 1 and 2015 for Run 2 show a significantly lower
luminosity than their corresponding production years in 2012 and 2016 to 2018. From the
comparison of the slopes of the integrated luminosities in figure 2.2 and the reached peak
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Figure 2.2: The LHC’s integrated luminosity of Run 1 and Run 2 periods. The figure is
taken from Ref. [18]

luminosities in figure 2.3 one can see that the Run 2 of the LHC provided a significant higher
luminosity than during Run 1. The higher luminosity is the result of various improvements
done after Run 1. In particular, the higher brightness in the LHC injection chain and the
B* function at the collision point, which is smaller than intended in the initial design of the
LHC, should be emphasized. Thus Run 2 produced a total integrated luminosity of 160 fb~*
despite technical difficulties such as air ingress into the beam vacuum system during the
winter shutdown 2017 [18].

In summary, the Run 2 data analyzed in this thesis was produced with a record center-of-
mass energy of 13 TeV and an outstanding integrated luminosity of 160 fb~!. For the ATLAS
experiment, an integrated Run 2 luminosity of 140 fb™! is recorded and passes the standard
data-quality selection explained in Ref. [19]. Therefore, the Run 2 dataset offers promising
possibilities for studying high-energy physics and searching for physics beyond the Standard
Model. This thesis analyzes the 140fb™" Run 2 dataset of the ATLAS detector.

2.2 The ATLAS Experiment

The LHC offers a unique opportunity to study collisions at an unprecedented center-of-mass
energy and luminosity. In order to fully utilize these possibilities, the four independent
detectors ATLAS, CMS, ALICE, and LHCb are installed along the LHC ring. The data
analyzed in this thesis originates from the ATLAS detector shown in figure 2.4. With a
length of 45m and a height of 22m ATLAS is the largest detector ever built for a particle
collider. It is built to handle the high collision rate of the LHC and the emitted radiation
doses while performing particle measurements with high precision. The following sections
give a short overview of the ATLAS detector, the object reconstruction, and the trigger
system.
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Figure 2.3: The peak luminosity during Run 1 and Run 2 of the LHC taken from Ref. [18]
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Figure 2.4: Schematic overview of the ATLAS detector and its main components. The
image is taken from Ref. [20].
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2.2.1 Detector Coordinate System

The ATLAS detector is built around the beam pipeline with the collision point at its center.
Thus, the detector has a rotation symmetry with respect to the beam pipeline. The coordi-
nate system used to describe particles originating from the collision is shown in figure 2.5. In
the Cartesian coordinate system the x-axis is directed towards the center of the collider and
the y-axis points upwards. Therefore, the x- and y-axes are transverse to the beam pipeline.
The z-axis points counterclockwise in the direction of the beam.

To simplify the description of particles emitted from the collision the spherical coordinates
¢ and @ are introduced. ¢ is the polar angle with respect to the x-axis in a plane orthogonal
to the beam pipeline. The azimuth angle 6 is measured with respect to the z-axis. In most
cases, the pseudo-rapidity

_—n )

is used instead of the angle 6 to describe the azimuth orientation. The pseudo-rapidity n
contains the same geometrical information, but in the relativistic limit £ > mc? or for
massless particles, the differences in 7 are invariant under boosts in the direction of the
beam pipeline. Therefore, using 7 instead of 6 enables an invariant description of the event
kinematic. Based on this coordinate system, the overall angular separation can be measured
by

AR = +/(An)% + (Ag)2. (2.4)

CMS

pre_ i

N

Figure 2.5: The coordinate system of the ATLAS detector with respect to the LHC. The
image is taken from Ref. [21].

2.2.2 Layout of the ATLAS Detector

The ATLAS detector is built of different layers of detector systems around the collision
point. From the inside to the outside, the inner detector, the electromagnetic calorimeter,
the hadronic calorimeter, and the muon chamber follow one another. The choice of these sys-
tems and their sequence was made to ensure the optimal reconstruction of electrons, muons,
photons, and jets. The description of the ATLAS detector system is based on Ref. [22], [23],
and [24].

Inner Detector

After the proton collision within the beam pipeline the emerging particles enter the inner
detector. This detector part has a length of 5.3 m and a diameter of 2.5 m covering the pseudo-
rapidity range of |n| < 2.5. The inner detector measures the track of charged particles and
consists of three layers of subdetectors. Closest to the beam pipeline, four silicon pixel layers
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are installed. The innermost layer is the Insertable B-Layer (IBL), which was installed for
Run 2 to maintain the required performance for the higher collision rate. The IBL is followed
by the B-Layers, Layer 1 and Layer 2, which were already in operation during Run 1. The
pixels have a size of 50 um x 250 um for the IBL and 50 pm x 400 um for the outer pixel
layers, thus offering very high granularity. This is crucial to achieve high vertex precision
and enable the reconstruction of secondary vertices. The pixel detectors are followed by the
semiconductor tracker, which consists of four layers of silicon microstrip trackers supporting
the precision tracking of the pixel detector. The outermost subdetector is the transition
radiation tracker. This tracker consists of layers of 4 mm diameter straw tubes filled with
gas. These layers of tubes allow the continuous tracking of charged particles, improving
pattern recognition, that is crucial for electron identification. A homogeneous magnetic field
is generated in track detectors to reconstruct the momentum of charged particles. This
magnetic field is provided by a system of superconducting magnets.

Electromagnetic Calorimeter

The inner detector is followed by the electromagnetic calorimeter. This calorimeter is a
liquid argon detector using lead plates as absorber material with a high showering rate for
electrons, positrons, and photons via pair production and bremsstrahlung. The barrel region
is covered in the range |n| < 1.475 with a 4mm gap at n = 0. The end-caps are covered
on both sides by an inner wheel at 2.5 < |n| < 3.2 and an outer wheel at 1.375 < |n| <
3.2. The kapton electrodes of the electromagnetic calorimeter are arranged in an accordion
geometry. This geometry provides an optimal azimuth coverage in ¢. To reconstruct the full
energy of electrons and photons, the electromagnetic calorimeter has a thickness of about
24 radiation lengths in the barrel region and 26 radiation lengths at the end-caps. Within
a radiation length, the kinematic energy of the electrons is reduced on average by a factor
of 1/e. Therefore, electrons and photons are expected to store their full energy within this
calorimeter.

Hadronic Calorimeter

The hadronic calorimeter encloses the electromagnetic calorimeter to measure the energy of
jets. The hadronic calorimeter consists of the tile calorimeter, the end-cap calorimeter, and
the forward calorimeter. The tile calorimeter barrel covers |n| < 1.0 and is extended by two
barrels at 0.8 < |n| < 1.7. The tile calorimeter is divided into 64 modules of scintillator tiles
with steel as absorber material. The scintillator layers add up to a thickness of approximately
7.4 interaction lengths. The interaction length is the mean distance between two inelastic
interactions of the hadron. The end-cap calorimeter has a geometrical coverage of 1.5 <
|n| < 1.7 and thus overlaps with the tile and forward calorimeter. Each end-cap is covered
by a 25mm thick inner wheel and a 50 mm outer wheel. The wheels are made of copper
plates with liquid argon gaps for the active material. The forward calorimeter covers the
end-caps close to the beam axis. On each end-cap, this liquid argon calorimeter consists
of one copper module for electromagnetic measurements followed by tungsten modules for
hadronic interactions. The high-density design of the forward calorimeter reaches a thickness
of about ten interaction lengths to minimize punch-through effects into the muon system.

Muon Chamber

The only detectable particles that escape the hadronic calorimeter are muons. These are
measured in the muon chamber, which makes up a major part of the volume of the ATLAS
detector. A very precise measurement of the muon tracks is provided by the monitored drift
tubes. Approximately 12000 precision-mounted alignment sensors monitor their deformation
and relative position. In the region of 2 < |n| < 2.7, cathode strip chambers with higher
granularity are installed. Air-cone toroid magnets provide a strong magnetic field to recon-
struct the muon momentum. Eight large magnets are installed in the barrel region of the
muon chamber, and the additional magnet systems at the end caps also consist of eight coils
each.
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2.2.3 Object Reconstruction

The presented structure of the ATLAS detector allows a sophisticated object reconstruction.
The following sections provide a brief overview of the reconstruction of electrons, muons, and
jets, all of which are relevant to the polarization measurement in this thesis. Therefore, the
reconstruction of these objects enables the object and event selection in chapter 6 to define
a kinematic region for polarization measurement.

Electron Reconstruction

The electron reconstruction is described in detail in Ref. [25]. An electron passing the
inner detector is measured by its hits in the tracking layers. These hits are assembled into
clusters. The clusters in the different tracking layers are combined via pattern recognition,
ambiguity resolution, and an extension by the transition radiation tracker. A track candidate
is considered if it has a transverse momentum above 400 MeV. An optimized Gaussian-sum
filter is applied to the clusters to account for energy losses. For an electron candidate, the
resulting track in the inner detector has to be matched to a cluster in the electromagnetic
calorimeter (EM cluster). This EM cluster is constructed by summing the energies collected
in the three calorimeter layers. A sliding-window algorithm is used to seed electromagnetic
cluster candidates for the energy deposits. This seeding process is repeated for all elements
of the calorimeter and overlaps are removed by selecting the clusters with higher transverse
energy. These clusters are then matched with the track candidates in the inner detector.
At least one track has to be matched to the electromagnetic cluster to be reconstructed as
electron. In the case of several matching tracks, a selection algorithm is performed based on
the distance in 7 and ¢ to the cluster and the number of hits in the silicon layers.

Since also photons lead to an electromagnetic shower in the electromagnetic calorimeter,
their reconstruction also relies on the EM cluster algorithm. The electromagnetic cluster
of a photon can either be assigned to a conversion vertex or has no associated track in the
inner detector. More details about the different reconstruction of electrons and photons are
provided by Ref. [26].

Muon Reconstruction

As described in Ref. [27], muons are reconstructed by their hits in the inner detector and the
muon chamber combined with information from the calorimeters. Hits in the muon chamber
are combined into preliminary track candidates with parabolic trajectory due to the magnet
field in the muon system. Based on this preliminary track, a global x? fit removes outliers and
includes hits not considered. Overlaps between tracks are solved by removing lower-quality
tracks. Including information from the rest of the ATLAS detector five different types of
muon reconstructions are used:

o Combined (CB)
For CB muons, a combined track fit is performed for the hits in the inner detector and
the muon chambers. Additionally, also the energy loss in the calorimeters is taken into
account.

o Inside-out combined (IO)
IO muons are reconstructed by extrapolating tracks in the inner detector to match
them with at least three hits in the muon chamber.

o Muon-spectrometer extrapolated (ME)
ME muons cannot be matched to any track in the inner detector and their track is thus
extrapolated to the beamline.

o Segment-tagged (ST)
If a track in the inner detector can be matched to at least one hit in the muon chamber,
an ST muon will be reconstructed. The parameters of ST muons are directly taken
from the track in the inner detector.
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o Calorimeter-tagged (CT)
For CT muons, no hits in the muon chamber are matched. They are reconstructed
by extrapolating the track in the inner detector to energy deposits in the calorimeters.
The transverse momentum of the inner detector tracks of CT muons must exceed 5 GeV
instead of the 2 GeV required for reconstructing the other muon types.

Jet Reconstruction

Jets consist of a group of particles originating from emitted gluons or quarks. They cause
a bundle of tracks in the inner detector and extensive showers in the electromagnetic and
hadronic calorimeter. To cluster the signature of individual particles to a jet, the anti-
k: algorithm [28] is used. This algorithm was introduced as an alternative to the k; and
Cambridge/Aachen inclusive jet finding algorithm and defines the default jet reconstruction
in the ATLAS experiment. The anti-k; algorithm combines entities measured in the detector
according to their minimal relative distance. By repeating this procedure until no entity
is left to combine the full jet of particles is reconstructed. For the reconstruction of jets
used in this analysis, a radius parameter of R = 0.4 is chosen for the anti-k; algorithm.
For Run 2 analyses, the resulting jet reconstruction is improved by the particle-flow (Pflow)
algorithm [29]. The Pflow algorithm combines information from the calorimeters with the
track information from the inner detector. This algorithm updates the energy deposition
in the calorimeters by charged particles with the more precise momentum reconstruction in
the inner detector. Thus, the energy and angular resolution, reconstruction efficiency, and
pile-up stability are significantly improved [30].

2.2.4 Trigger System

With a bunch crossing every 25ns, the ATLAS detector measures collisions at a rate of
40 MHz. Since this rate exceeds the technical possibilities of data storage, the measured data
is processed by a trigger chain. This trigger chain consists of the Levl-1 trigger and the High-
Level trigger and reduces the mean rate of recorded data down to 1.2 kHz. The trigger chain
is designed to significantly reduce the data rate with a high efficiency of selecting interesting
events. The following summary of the trigger system is based on the detailed descriptions in
Ref. [31].

Level-1 (L1) Trigger Ll is a hardware-based trigger system using information from the
calorimeters and muon chamber with reduced granularity. The Cluster Processor of the L1
trigger identifies electrons, photons, and 7 candidates above a kinematic threshold. The
jet candidates and the missing transverse momentum are selected by the Jet/Energy-sum
Processor. Their output is fed into the central trigger processor, which decides on the event
selection based on the output of the various calorimeter trigger systems. This selection is
made according to the kinematics of individual objects, the overall event kinematics, and
topological requirements. The resulting event selection reduces the event rate down to the
maximum ATLAS detector red-out rate of 100 kHz. In addition to the event selection, the
L1 trigger system also identifies Regions-of-Interest (ROI). These ROI are selected in the
spherical geometry of ¢ and 7 and are investigated by the next trigger stage.

High-Level Trigger (HLT) The software-based HLT is the second stage of the trigger
system. This trigger system is executed on a computing farm of 40000 Processing Units
designed for decisions within a few hundred milliseconds. The decision chain consists of an
early event rejection in a fast trigger algorithm and a second rejection step that uses CPU-
intensive reconstruction algorithms. This decision chain uses the kinematic information in
the ROI chosen by the L1 trigger in combination with a reconstruction algorithm of features
measured in the overall ATLAS detector. The HLT is mainly based on the offline software
ATHENA [32] and reduces the event rate to 1.2kHz. This rate corresponds to a data rate of
1.2 GB/s and is permanently stored for physics analyses.
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Chapter 3

Theoretical Foundations

The polarization analysis in this thesis probes the fundamental concepts of the Standard
Model. Section 3.1 introduces the concept of spin and helicity that are directly connected to
the polarization of a particle. Afterwards, section 3.2 provides a short introduction to quan-
tum field theory with a focus on the interactions of the Standard Model. In section 3.3, the
polarization in electroweak same-charged W+ W # scattering is explained, and its importance
within the Standard Model is highlighted.

3.1 Spins in Relativistic Theory

The mathematical description of spins is based on group theory. The following introduction
of the spin is based on the detailed explanation of group theory in Ref. [33]. This section
summarizes the Lorentz Group, the corresponding spin representations, and the resulting
helicity which is the quantity studied in this analysis.

3.1.1 Lorentz Group and Lorentz Algebra

The Lorentz group is a SO(3,1) Lie group of the Lorentz transformations in special relativ-
ity. The description of special relativity is based on the Minkowski metric 7,,, defining the
invariant line element

ds? = N dat dz”

= dt? — dz? — dy? — d2? 3.1)
with 20 = ¢, 2! = x, 2 = y, and 23 = 2 in cartesian coordinates. The values of the covariant
and contravariant Minkowski metric are 799 = 7°° = 1, n;; = % = —1 for i = 1,2,3, and
Mij = n¥ = 0 for i # j. This line element ds? is invariant under Lorentz transformations
A#, applied on the coordinates. Thus, the Minkowski metric does not change under Lorentz
transformation

Nap = NG A 3000 (3.2)

The Lorentz transformation is introduced by the infinitesimal transformation §# + A* . Ap-
plying this infinitesimal transformation to the metric tensor

Nap = (06 + A%) (0% + A'5) N

3.3

=Nap + A”aﬂuﬁ + Ayﬁnau + O(AMaAy[j) ( )

requires A%, .3 = —A%Nay. This requirement leads to a fully off-diagonal A/, with six
independent generators: .

A% =AY fori=1,2,3 (3.4)

Al = -4 fori,j=1,2,3andi # j (3.5)

The antisymmetric spatial components Aij represent spatial rotations J, in three dimensions.
The symmetric mixed time-space components A% and A%, correspond to the three orthogonal
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Lorentz boosts K, which describe a linear relative motion. Therefore, an arbitrary Lorentz

transformation
A= et i Oudiki 30 miKs (3.6)

is the combined application of the six group generators J; and K; and describes rotations of
the angles #; and Lorentz boosts with the rapidities n;. The corresponding commutators

(i Jj) =iy €* Ty, (3.7)
k
k
and -
[Ki, K] = —i Y %, (3.9)
k

of these group generators form the Lorentz algebra.

3.1.2 Representations of the Lorentz Group

In the previous section, the SO(3,1) Lorentz algebra was introduced with the generators
of rotations J; and Lorentz boosts K;. These generators do not commute with each other.
However, the commutation properties can be simplified by introducing a new set of generators

1
JE = 5 (i £iK;) (3.10)

of the SO(3,1). The resulting commutators

EAN RIS PR A (3.11)
k
AT PLY (3.12)
k
and
+ 71—
[ J;1=0 (3.13)

define two distinct SU(2) algebras. Thus, the complexity of the SO(3,1) Lorentz algebra de-
composes into a SU(2) ® SU(2) algebra motivating the spinor representations of the Lorentz
algebra. The spinor representations of the Lorentz algebra can be labeled by (5, ) with the
half-integers 7~ and j%. The dimension of this representation is given by (25~ +1)(25% + 1)
resulting from the two independent SU(2) algebras. In the following, three special spinor rep-
resentations are discussed which correspond to different particle spin states in the Standard
Model of particle physics.

The Scalar (0,0) Representation

In this representation, the generators J,  and Jf are zero and thus the rotation and Lorentz
boost generators are zero. This representation is a one-dimensional scalar which is not
affected by rotations and Lorentz boosts [34].

The (3,0) and (0, ;) Representations
The spinorial representations (4,0) and (0, %) are the two-dimensional representations of
spin—% particle states. The group elements in this representation are called left-handed Weyl
spinors ¥y, and right-handed Weyl spinors ¥ with

VL € (;70> . YR € (0, ;) . (3.14)
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The Vectorial (1, 1) Representation

The four-dimensional (27 2) representation corresponds to spin-1 particles. One can show
that the four-dimensional elements of the (2, 2) representation can be interpreted as complex
four-vectors V), affected by the Lorentz transformation. More details about the interpretation
of the individual components of the four-vector V), are presented in section 3.2.1.

3.1.3 Spin and Helicity in the Poincare Algebra

For the description of particle states, the Lorentz transformation has to be extended by

translations
't = A a” + ot (3.15)

The resulting Poincare algebra provides the mathematical basis for describing the particles.
The particle properties are defined via Casimir operators which commute with all generators
A, of the Poincare group. The product of the momentum operators P* leads to the Casimir
operator P, P*. The application on a particle state P, P* |p) = m? |p, m) returns the mass
m of the particle. Since the Casimir operator commutes with A,,,, the mass of the particle is
Lorentz invariant. The second Casimir operator of the Poincare group W, W* results from
the Pauli-Lubanski operator

1
Wy = 3 Cunpr AP PP (3.16)

where €,,,,0 is the four-dimensional extension of the Levi-Civita symbol. For a particle state
|p,m, s) with spin s, the application of the Casimir operator W, WH [p,m,s) = m?s(s +
1) |p, m, s) shows the Lorentz invariance of the particle spin s. Thus, the particle mass and
spin are fundamental particle properties in the Poincare algebra that do not depend on the
reference frame.

Massive particles can have (2s 4 1) spatial spin states §. Since these spatial spin states
are not Lorentz invariant, their definition relies on the choice of a reference frame. The most
commonly used spin basis are the canonical and helicity basis. This thesis focuses on the
helicity basis: The reference system rotated in the direction of the particle momentum and
the system is boosted into the rest system of the particle [35]. The resulting spin states in
the helicity basis are defined by the eigenstates of the helicity operator

|y

h=L 3 (3.17)

|
The helicity is the projection of a particle spin on its direction of motion. The possible
eigenstate values of the helicity are h = 07:|:%,:|:17 ... Particles with a positive helicity
are called right-handed, and particles with a negative helicity are called left-handed. The
concept, of helicity is directly connected to the definition of polarization. The polarization
of vector bosons measured in this thesis is further explained in section 3.2.1. Since helicity
and polarization are not Lorentz invariant, the choice of the reference frame is discussed in
section 3.3.4.

=

3.2 Quantum Field Theory

The previous section introduces the concept of scalars, Weyl spinors, and vector represen-
tations. These representations of the Lorentz algebra are directly associated with particles
and their spin property. Their klnematlcs in quantum field theory is described by the mini-
mization of the resulting action S = f Ldt of the defined Lagrangian density £. For a field
¢, the Lagrangian has to fulfill the Euler- Lagrange equation

oc P oL
I )
to give a stationary action S = f "2 Lat.

The following introduction into the Standard Model und the corresponding Higgs mech-
anism is based on Ref. [36] and Ref. [37].

=0 (3.18)
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3.2.1 Lagrange Density of Free Particles
Free Scalar Particles

The relativistic motion of a free spin-0 particle is described by the Lagrangian

L= % (0,00" ¢* —m>pg™) (3.19)

of the complex scalar field ¢(7,t) where m corresponds to the rest mass of the particle. The
complex conjugate ¢* ensures real values for the Lagrange density. Since this Lagrangian
contains only Lorentz scalars, it remains invariant under Lorentz transformations and the
resulting kinematics is thus in agreement with special relativity. The kinematic of the scalar
field can be derived by inserting the partial derivatives

oL 9 oL
=— d = o+ 3.20
into the Euler-Lagrange equation. Thus, the field has to fulfill the wave equation
0,0"p —m*¢p =0 (3.21)

to minimize the action S. This wave equation is an analogy to the energy-momentum-relation
E? = p? + m? of special relativity with E = idy and p'= —iV.
Free Spin-% Particles

A spin—% particle is given by the complex four-component Dirac spinor . This spinor de-
composes into the left- and right-handed Weyl spinors ¢ ;, and ¢ g introduced in section 3.1.2.
To ensure a real scalar Lagrange density, the adjoint spinor

b =9Ty° (3.22)

is introduced by the Hermitian conjugate of the Dirac spinor and the time-like component of
the gamma matrices 4v*. The gamma matrices are 4x4 matrices based on the Pauli matrices:

0 _ 0 I P 0 O'i . 5 - 0.1.2 3 —I 0
’Y(I o) V= o) =123, Y=y =, ;) 23

The kinematic of the free spin—% particle is given by the Lagrangian

L = ipy" 8,10 — my. (3.24)
By substituting the partial derivatives
oL oL
— =iv"0,0 — my and — =0 (3.25)
o 0(0u)
into the Euler-Lagrange equation, one can directly derive the Dirac equation
V"0, —map = 0. (3.26)
The Dirac equation is solved by the Dirac-spinor wave functions
1 0
0 - 1 -
'l/)l — /E rm . ez(prEt) and w2 _ /E Fm Pa—ipy ez(pmet) (327)
Etm Efm
Pz +ipy —Pz
E+m E+m

for spin—% particles and

Epz pl_ipy
potipy | A
V3 =VE+m E-il-m e {PE-EY) and Yo =vVE+m EBm e (PE-EY)
0 1

(3.28)
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3.2 Quantum Field Theory

for spin—% anti-particles. The distinction between particles and antiparticles arises from their
corresponding energy. While Spil’l—% particles possess a positive energy, Spin—% antiparticles
correspond to solutions of the Dirac equation with a negative energy. In the Feynman-
Stiickelberg interpretation in equation (3.28), these negative energy particles move backward
in time, thus representing antiparticles with positive energy propagating forward in time. The
antiparticles have the same properties, like mass and spin, as the corresponding particles,
except their charges have opposite signs.

Free Spin-1 Particles

The kinematic of a free spin-1 field V,, is given by the Lagrangian
1 pv 1 2 Iz
L=—GuG" +5m*V,V (3.29)
with the field strength tensor
G = 0.V, = 0,V,. (3.30)
From this Lagrangian, the equations of motion
(0,0 +m*) V" =0 and  9,V* =0 (3.31)
can be derived. These equations are solved by a set of plane waves [38]:
2

. B3y 1 e, ; N
V“(gﬂ):/(QW)BM,;(G’;(E,@a,\(E,ﬁ’)e it L ME, Pl (B, e’ w) (3.32)

a and a' are the bosonic annihilation and creation operators, and e\ represent the different
polarization states of the field. Massive and massless spin-1 ﬁglds have two transvere polar-
izations €1(E, p) and é&(FE,p). €1(E,p) is an arbitrary vector p) orthogonal to the direction
of motion and thus é(E,p) is given by the vector 7 x pL. In the case of a motion in z
direction, one can choose the explicit form €} = (0,1,0,0) and €5 = (0,0,1,0). From these
two linear polarization states the circular polarizations

ey = (el £ i€h) (3.33)

1
V2
can be derived. The left- and right-handed circular polarizations €’ and €/ correspond to
the helicity states. For massive spin-1 fields the additional longitudinal polarization € (p)
arises. If the direction of motion aligns with the z axis, the longitudinal polarization can be
written as

Gg(ﬁ) = (|]51,0,07E). (3.34)

1
m
Since the longitudinal polarization state is proportional to %, it becomes dominant at high
energies. The sum of the different polarization states fulfills the completeness relation:

2

* v 1 v
> ADE (B) = —g" + —p'p (3.35)
A=0

The momentum space propagator

—g" + Sphp”

o (3.36)

is associated with the internal spin-1 V, line in Feynman diagrams [38].
If not stated otherwise, the indices L and T in this thesis refer to the longitudinal and
transverse polarization states.
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3 Theoretical Foundations

3.2.2 U(1) Symmetry of Quantum Electrodynamics

So far, the kinematic of free particles was discussed. The interaction between the particles
is introduced by gauge symmetries. Symmetries play a central role in the description of
physics. According to Noether theorem each continuous symmetry results in a conservation
law [39]. Prominent examples are the continuous time, translation, and rotation symmetry,
which imply the conservation of energy, momentum, and angular momentum. Therefore,
such symmetries are deeply connected with the most fundamental laws of physics.

These existing symmetries motivate the introduction of other laws of physics as conse-
quences of corresponding gauge symmetries. A simple example of a local gauge symmetry is
the local rotation in the complex plane by an angle «(7,t). For a Dirac field ¢ of a spin-%
particle, this means the transformation ¥ — 1’ = €'%1) with a position- and time-dependent
a. However, this transformation applied in the spin—% Lagrangian density leads to

L= i&/,yﬂauwl _ qu/wl
_ ie*iqo‘t/;’y“ap (eiqa,(/}) _ me*iqalz)eiqaw
= ipy" (O + iqdua) h — mapy)
£L

and thus requires additional modifications to the Lagrangian density. The derivative 0,, is
extended by an additional field B, to the covariant derivative D, = 0, + igB,, to establish
this invariance. Here ¢ represents a constant which, as shown below, corresponds to the
electrical charge of the spin-% particle. If the field B,, behaves under U(1) transformation
like

(3.37)

B, — B; =B, — 0,0, (3.38)
the Lagrange density
E/ _ Z?/;I’Y”D;Lfll)/ o m'l[]"l/]l
= )/ (8u + iqBL) P —ma)y’

= ie”1%%yH (9, +iqB, — iqd,a) (") — me ™ 1%he 1% (3.39)
= i)y (O +iqBy) ¥ — mapy)
=L

shows the desired additional gauge invariance. Thus, this U(1) invariance could only be
guaranteed by introducing a new field B,,. The kinematics of this new vector field must now
be introduced into the Lagrangian

L = ipy"D,1h — mipyp — %FWF‘“’ (3.40)

by the field strength tensor
F‘/w = a,uBy - aqu . (341)

This Lagrangian provides a complete description of a complex spin—% particle ¢ under U(1)
invariance and the corresponding vector field.

If one compares field B, which was added to ensure the local gauge invariance, with
classical physical theories, it becomes apparent that this must be the electromagnetic field.
The field strength tensor in equation (3.41) can also be found in Maxwell’s equations and the
required transformation in equation (3.38) also corresponds to Maxwell’s electromagnetism.
Thus, the field B, can be identified with the electromagnetic field, where the constant ¢
corresponds to the electric charge e. This electric charge corresponds thereby to the conser-
vation quantity which follows according to Noether’s theorem from the introduced continuous
Symimetry.

Hence, the Lagrangian density in equation (3.40) represents a theory of quantum electro-
dynamics (QED) for a complex spin—% particle ¢ with the electric charge ¢ and an electro-
magnetic vector field B,,, which is associated with the photon.
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3.2 Quantum Field Theory

3.2.3 SU(3) Symmetry of Quantum Chromo Dynamics

The previous section showed that electromagnetism can be derived by introducing a U(1)
gauge symmetry into the Lagrangian density. The same strategy of local gauge invariances
is used to introduce the other interactions known from modern particle physics. In order
to explain why quarks form stable protons and neutrons, the strong interaction of quantum
chromo dynamics (QCD) is introduced. The quarks get three additional degrees of freedom
represented by the three color charges: red, blue, and green. A SU(3) gauge invariance is
introduced to describe this new interaction with three charge states. The generators of this
SU(3) gauge group correspond to 3 x 3 matrices. The SU(3) has eight generators which can
be represented by the Gell-Mann matrices

01 0 0 —i 0 1 0
M=1[1 0 0], XX=[i 0 0], X=[0 -1 0],

00 0 0 0 0 0 0 0

0 01 00 —i 00 0
M=10 0 0], X=(o 0 o], X={fo o0 1], (3.42)

1 00 i 0 0 01 0

00 0 L (L0 0
N=|0 0 —i], X=—1[01 o0

0 i 0 V3o 0 —2

The algebra defined by the Gell-Mann matrices is given by the commutation relation:

NN =20y fIRAR, (3.43)
k

with the structure constant f“* of the SU(3). In SU(3), the Dirac field ¢ with color charge
states is transformed by
. 8 i
Yo ! = € L Yy (3.44)

with eight position- and time-dependent parameters a;.

The invariance of the Lagrangian density L is ensured by covariant derivative
D, =0, +igs Z?zl G4,% which consists of the sum over eight fields G4,. Similar to equa-
tion (3.39) the derivative has to fulfill

8 ; 8 i
. i A 7 8 ap A NF 7 8 e . M
0utigs 3Gy | (€7 2 Y p) = oo 2 %tins 2y | ¥
J

(3.45)
to enable the SU(3) invariance. This requirement results in the vector field transformation:

8
Gl = Gl =By = 95 3" 1o (340
Lk

The derivatives of the functions «; are similar to the transformation in the U(1) symmetry,
but the second term is a direct consequence of the non-commutating Gell-Mann matrices.
The eight fields Gi represent the gluons transmitting the strong interaction. Due to the
non-commutating Gell-Mann matrices, the SU(3) of QCD is a nonabelian gauge theory with
self-interactions of the gluons.

The kinematics of a spin—% particle ¢ in QCD is determined by the Lagrangian

8
-~ — 1 . (i
L =iy Dy —mapp — Z GaGm D (3.47)
J
with the field strength tensor [40]
GO) = 0,G, —0,G), + g5y > MGG (3.48)
k l

The last term of the field tensor leads to products of three and four vector boson fields in the
Lagrangian. The products correspond to the triple and quartic self-coupling of the gluons.
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3 Theoretical Foundations

3.2.4 SU(2) Symmetry of Weak Interaction

An invariance that has long been assumed for the laws of physics is parity. Parity is the
spatial inversion ¥ — —Z. The QED and QCD described in the previous sections are indeed
invariant under this transformation. In 1957, however, Wu and her collaborators were able to
show that this does not apply to all of physics. They studied the decay of polarized °Co in a
magnetic field. The magnetic moment of the cobalt nuclei was aligned with the strong exter-
nal magnetic field and the direction of the electron resulting from the ©°Co —% Ni* + e~ + 77,
decay was measured. Since the polarization and the magnetic field are axial vectors, but the
momentum is not, only the momentum changes under parity transformation. Thus, if parity
invariance applies to this decay process a specific momentum direction of the resulting elec-
tron would be as likely as its opposite direction. However, this was not the case, so Wu and
her collaborators showed that the weak interaction involved was not invariant under parity
transformation.[37]

Therefore, the gauge invariance on which the weak interaction is based must reflect this
parity violation. The weak interaction acts on weak isospin doublets with the weak eigen-
states of the particles. These weak eigenstates of the particles are connected to their mass
eigenstates by the CKM mixing matrix for quarks and the PMNS mixing matrix for neu-
trinos. Due to the parity violation, the weak interaction only acts on left-handed particle
doublets (or right-handed antiparticle doublets)

SORDRCROROROR S

and does not affect the right-handed particle singlets (or left-handed antiparticle singlets)
R e {ej_zvuj_{aTjgauRvdR7cRa8R7tRabR} . (350)

The left-handed doublets are also called isospin doublets. Their corresponding weak charge
of left-handed particles is given by I ;fV = % for neutrinos and up-type quarks and I ?E/V = —%
for charged leptons and down-like quarks.

The SU(2) gauge theory for the weak interaction provides the transformation of the weak
isospin doublets

. 3 1.
Lo [ = W 259375, (3.51)

using the Pauli matrices o;.

Three gauge fields are introduced into the covariant derivative D, = 0, + igw Z? Wg%ﬂ
to maintain the gauge invariance of the Lagrangian. Similar to the SU(3) gauge theory in
the previous section, the transformation of these fields is given by

3
W) = Wi =Wi - 0ua; —gw Y _eWhoy, (3.52)
Ik

but the permutation relation of the Pauli matrices must be used instead of the Gell-Mann
matrices. By adding the field strength tensor

WD) = 0,W] = 0,Wi +gw Y > Hwrw!, (3.53)
k l

the Lagrangian
3

_ _ 1 ) )
L= ipy"Dytp — maptp — > whwe ) (3.54)

J
describes the kinematic of left-handed particle (right-handed antiparticle) doublets, right-
handed particle (left-handed antiparticle) singlets, and weak gauge bosons [40].

In the case of the isospin doublet of electron and electron-neutrino, the interaction with
the weak field is given by

— IV oy Wi Wy —iWiy (ve
Lw.nT =1 5 7 (7 er) (W;} +iw? “w? er ) (3.55)
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3.2 Quantum Field Theory

Thus, the fields Wiﬁ = % (Wl} F ZWE) connect the electron and muon parts of the doublets

in the weak interaction. The resulting Lagrangian of the interaction with the weak fields

— W (& Wi V2 (v
Lw-iNt =177 (v er) <\/§Wu_ “wh ) \es

. 1_ 1_ 1 1 _ _
= ng’Y“ <2I/LW31/L — 56LW3€L + EVLW;GL + EGLWM I/L)

consists of a W™ boson with a positive electrical charge, a W™~ boson with a negative electrical
charge, and an electrical neutral W3 boson.

(3.56)

3.2.5 Electroweak Unification in U(1), ® SU(2)

The electrical neutral gauge boson W3 of the weak interaction introduced in the previous
section only couples on left-handed particles (right-handed antiparticles). Experiments have
shown the existence of a neutral boson taking part in weak interactions, the Z boson. How-
ever, in contradiction to the described W3 boson, the experimentally found Z boson couples
to both left-handed and right-handed particles. This flaw of the theory can be solved by
unifying the U(1) symmetry of QED with the SU(2) symmetry of the weak interaction. In
the Glashow-Salam-Weinberg (GSW) electroweak model the U(1) of QED is replaced by a
U(1)y symmetry

W) = e T (3.57)

with the weak hypercharge Y = 2(Q + I}V). The invariance under the new U(1),, symmetry
leads to the corresponding covariant derivation D, = 9, + ig’ %Bw The gauge field B,, of
U(1)y is combined with the W} gauge field of SU(2) to give the photon field

A, = By, cos by + Wg sin Oy (3.58)

and the Z field
Z, = =B, sinfw + WE’ cos Oy . (3.59)

Ow is the electroweak mixing angle which will be introduced by the Higgs mechanism in the
next section.

3.2.6 Higgs Mechanism

The previous sections derived the Lagrangian of a massive spin—% particle assuming local
gauge invariance under transformations from different gauge groups. The invariance was
achieved by introducing massless gauge fields. For the weak interaction, this conflicts with
experiments showing that the W+, W, and Z bosons have a mass. Directly adding mass
terms like %mQBMB“ would violate the initial gauge invariance. An additional field, the Higgs
field ¢, is introduced to achieve the particle masses without gauge violation. This Higgs field
has a potential V(¢) and breaks the U(1), ® SU(2) symmetry. The approach of Ref. [37] is
followed where the Higgs mechanism is introduced for the simpler U(1) symmetry, requiring
a complex scalar Higgs field. Afterwards, the Standard Model Higgs doublet is explained,
breaking the electroweak Uy (1) ® SU(2) symmetry.

Higgs Mechanism with U(1) Symmetry Breaking

To explain the concept behind the Higgs mechanism the simple case of the U(1) symmetry
of section 3.2.2 is used. This symmetry results in the massless gauge field B,,. The complex

scalar field .

V2

is introduced with two real field components ¢; and ¢5. The Higgs field has the potential:

¢ (61 + ig2) (3.60)

V() = 12p¢* + X\ (p0*)? (3.61)
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The parameters p? and A are free real parameters with x? < 0 and A > 0. The shape of this

potential is shown in figure 3.1. The kinematic of the scalar ¢ is described by the Lagrangian
* 1 y
‘C = (Du(b) Dué - V(¢) - ZF‘}U/F# . (362)

The interaction with B,, originates from the covariant derivative D, = 0, + i¢B,. The
ground state, also called the vacuum state, of the field ¢ fulfills:

* 1,9 2 M2
00" =5 (91 +93) = —55 = (3.63)

with v denoting the vacuum expectation value of the potential V' (¢). By choosing a discrete
minimum like ¢ = v and ¢ = 0, the initial U(1) is broken since the groundstate is not
invariant under a rotation in complex numbers. The consequences of this symmetry breaking
arise when the field is expanded around its ground state. The field around the chosen
groundstate is given by ¢ = % (v+n + if) with the real scalar fields  and £. By inserting
this parametrization of the field ¢ into the Higgs potential

1 1 1 1
V(p) = —Z)\U4 + 2% + o + 1)\174 + \ong? + §An252 + ixg‘l (3.64)
and the derivative term
* 1 . . . .
(Dud)” D¥é = 5 (0 — iqBy) (v +n — i€) (0" +1gB") (v + 1 + i) (3.65)
the Lagrangian in equation (3.62) takes the form:

1 1 1 L1
L= 3 Lok — \vPn? + 58#58”5 - ZF‘“’FM + iqzszuB“

massive n massless § massive B, field

1 1 1 1
+ 1)\04 — 4+ \onpe? — 1/\774 — 5)\77252 — 1)\54 + qud,EBY
[ — —_———

triple self-couplin i i
P pling quartic self-coupling direct coupling to B,

1 1
— q0,mB"€ + q0,EB"n + ¢*vB,B"n+ iquuB“nn + iqu#B“ff

triple coupling to B,

(3.66)

quartic coupling to B,

As already illustrated in equation (3.66), the Lagrangian can be separated into different
terms. The choice of the vacuum state results in a massive real field 7, a massless real
Goldstone field ¢, and a massive field B,. Thus, the U(1) symmetry breaking give the
previously massless field B,, the mass mp = qv and also the 1 boson field obtaina the mass
my = V2Av?. The interactions of the complex field ¢ are given by triple and quartic self-
couplings, and triple and quartic couplings to the B, field. In addition to these triple and
quartic couplings, the term quvd,&B* arises. This term represents a direct coupling between
the fields £ and B,. Thus, the spin-1 gauge field B, can directly transform into the spin-0
Goldstone field €. Furthermore, a problem regarding the degrees of freedom arises. Before
the symmetry breaking, the Lagrangian had two spin degrees of freedom in ¢; and ¢, and
four spin degrees of freedom in the two transverse polarized states of the spin-1 B3,,. After the
U(1) symmetry breaking, the B,, becomes massive and thus gains a longitudinal polarization
state providing an additional degree of freedom. These two problems can be solved by an
appropriate U(1) gauge transformation. For small £, the complex field becomes in first order

1 is
¢ = ﬁ(v +n)e'v. (3.67)

With the transformation

=it ! (v+ )ei'é
= Sz (3.68)
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3.2 Quantum Field Theory

and 1
Bu = Bl =Byt _-0ut, (3.69)

the Goldstone field £ can be entirely removed from the Lagrangian in equation (3.66). There-
fore, the resulting Lagrangian describes a massive scalar field 7 and a massive gauge field B,
whose longitudinal component is associated with a Goldstone field.

v(¢)

Figure 3.1: The potential V(¢) = u?¢d* + A (¢¢*)2 of a complex scalar field ¢ breaking
the U(1) symmetry.

Standard Model Higgs Mechanism

To introduce masses for the W+, W~, and Z boson, the Higgs mechanism is applied for
the Uy (1) ® SU(2) symmetry. Thus, the Standard Model Higgs field is given by a complex
electroweak doublet

4 L (¢1+ip2
= = 5 ) 3.70
i (¢0 V3 \6s + i (3.70)
As in section 3.2.6, the dynamics of the Higgs field is given by the Lagrangian
1
L= (D,¢) Dtp—V(g)— 2 Ew (3.71)
with the Higgs potential
2
V(g) = poTo+ A (670)" . (3.72)
The minimum ¢f¢ = —"2‘—/2\ of the potential V(¢) represents the vacuum state. As in sec-
tion 3.2.6, one specific groundstate is chosen by ¢3 = v and ¢1 = ¢ = ¢4 = 0 with the
2
vacuum expectation value v? = —5-. The choice of this specific groundstate breaks the
electroweak Uy (1) ® SU(2) symmetry. For the expansion of the field
_ 1 ¢1 + id2
9= V2 (v +h+igy (3.73)

around the chosen ground state, the field components ¢, ¢2, and ¢4 can be removed by
a suitable gauge transformation similar to section 3.2.6. The Goldstone bosons associated
with the scalar fields ¢1, ¢o, and ¢4 become the longitudinal components of the Z and W+
bosons. This unitarity gauge transformation leads to the Higgs doublet

¢ = % (U 3 h) (3.74)

29



3 Theoretical Foundations

of the Salam-Weinberg model. The real lower component v + h of this Higgs doublet has the

electric charge @@ = 0 and the weak isospin I 1(43,') = —%. Thus, the weak hypercharge of the

Higgs boson is Y = 1 in the Uy (1) ® SU(2) symmetry. The resulting covariant derivative of
the Higgs field

g — [ Ont 129 But izgwWW; e 3 1( 0 >
9w W, Ou+i39' By —izgwW, 2\v+h (3.75)
_1< isgw W, (v+h) )
V2 \(Ou +i39' By —izgwW2) (v+h)

introduces the interactions between the Higgs field and the electroweak gauge bosons. In the
final Lagrangian, these interactions arise in the term

1 1
(Do) D" ziﬁuhaﬂh + 1gﬁvwﬂ—wﬂt(v + h)?
1 3 / 3u I R 2 (376)
+§<9WWH —g'B,) (gwW?™ — g'B*) (v + h)

that also contains the mass terms of the bosons. The mass my, = % gwv of the W+ and W~
bosons is therefore directly proportional to the weak coupling strength gy and the vacuum
expectation value v of the Higgs field. The last term in equation (3.76) introduces a mass
term for the fields B,, and Wﬁ’ As motivated in section 3.2.5, the combination of these
two fields results in the photon field A, = B, cosfw + WS sin Oy, and the Z boson field
Z, = — B, sin Oy + VVlf cos By known from experiments. Since it is known from experiments
that the photon is massless and the Z boson is massive, one can directly identify the photon
field

_ gwW; +¢'B,

A 3.77
1 /g?/V + g/2 ( )
with m4 = 0 and
W3 —¢'B
7 = IV 9 On (3.78)

nw

Vi + 97

with my = %v\/ g%, + ¢’>. The mass of the Higgs field arises directly from the Higgs potential
V(¢) = p*(v + h)? + Av + h)*. With the vacuum expectation value v = —§7 the mass of
the Higgs boson is given by myg = v2Av2. Since this mass depends on the free parameter

A that does not occur in the masses of the electroweak gauge bosons, the value of the Higgs
mass is not predicted by theory and has to be measured in experiments.

The Fermion Masses

So far, the masses of the fermions were introduced by simply adding the term —m2). How-
ever, the term 1) = (Ygibr, + r¥R) is not invariant under the Uy (1) ® SU(2) symmetry
since the SU(2) transformation only affects the left-handed particles (right-handed anti-
particles). This problem can be solved by using the Higgs field ¢. The Higgs doublet ¢ is
combined with the left-handed fermion doublet L. Under an infinitesimal SU(2) transforma-
tion, the product L¢ transforms as

3 3
Y 1 : 1
Lo—L¢ =L|[I ng%:eJQUJ I+19w§k:€k2"k ¢ (3.79)
= Lo+ O(e})

and is therefore invariant under the SU(2) gauge transformation. By multiplying also with the
right-handed singlet R, the resulting term L#R becomes invariant under the Uy (1) ® SU(2)
gauge transformation. Due to this invariance, the Yukawa term —gy (L(bR + RqﬁTL) is added
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to the Lagrangian to generate the fermion masses. In the Salam-Weinberg model, the Yukawa
mass term of the weak doublet e.g. of the electron and its neutrino becomes

om0 (et o0 ()

ge — - ge — —

= —=—v(egrer +érer) — —=h(egrer +€re 3.80
\/i(RL LER) ﬁ(RL LER) ( )
e g

This Yukawa coupling term can generate the mass m; = % for the charged leptons e,

mu~, and 7~ and the down-type quarks d’, s’, and &'. In addition, these particles couple
to the Higgs field with the coupling strength gy proportional to their mass. The neutrinos
are massless in the Standard Model, but the masses of the up-type quarks u, ¢, and ¢ are
still missing. To generate masses also in the upper components of the fermion doublets, the

conjugate Higgs field
. * _¢3 + 7’¢4
e = — = , 3.81
Ge = 1020 ( 61 — it (3:81)
is used. The field ¢, transforms under SU(2) in the same way as ¢ and thus preserves the

gauge invariance in Lo.R. This Yukawa leads to the up-type quark mass terms:

gu — gu —
Ly = —"=vuu — ~=huu 3.82
o= Bevin - B (32)

So, the masses of the up-type quarks and their coupling to the Higgs field are equivalent to
the Yukawa coupling of the lower components of the fermion doublets.

3.2.7 Summary of the Standard Model

As presented in the previous sections, the Standard Model of particle physics is a relativis-
tic quantum field theory with a Uy (1) ® SU(2)®SU(3) symmetry. The Standard Model
Lagrangian

£ = ity Dy = Lvi = Lpiy — {FuF + (D) Do -V(e) (389

describes the kinematics of massive fermions 1) and boson fields. The covariant derivative
Y & 0 SN
Dy =0 +ig' 5 By +igw Y Wi +igs Y Gl (3.84)
J J

introduces the interaction with gauge bosons. The strong interaction is transmitted by the
gluons GfL coupling to all particles with a color charge. The bosons B,, and Wg represent the
electroweak part of the Standard Model. Their combination gives the physical boson fields
of the Photon A,, for the electromagnetic interaction and the Z, W+, and W~ boson of the
weak interaction. The field tensor

F,, =0,B, - 0,B,

3
+)° (aﬂwg‘ — W +gw d Y ejklewj>
J k l
8
+> (%GZ —0,Gl +gs> > fj’“GﬁGf,>
J k l

generates additional self-coupling interactions between specific gauge bosons. The masses
of the Standard Model particles are introduced by the Higgs field ¢ connected to the Higgs
potential V(¢). The minimum of this potential breaks the Uy (1) ® SU(2) symmetry and

(3.85)
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generates the gauge boson masses via the covariant derivative (Dugb)TD#gb and the fermion
masses via Yukawa couplings.

The Standard Model of particle physics applies to several generations of fermions. The
first generation is the electron, electron-neutrino, up-quark, and down-quark. Two further
generations of fermions are known from experiments with the same charges but higher masses
than those of the first generation. The complete list of particles known in the Standard Model
and their properties are listed in table 3.1.

Table 3.1: The Standard Model Particles with their corresponding masses, spin, and
charges taken from Ref. [41]

Particle ‘ Mass (GeV) ‘ Spin ‘ Electric charge ‘ ‘Weak Isospin ‘ Color Charge
Quarks
Up 2.2 x 1073 1/2 +2/3 +1/2 Yes
Down 4.7x 1073 1/2 -1/3 -1/2 Yes
Charm 1.3 1/2 +2/3 +1/2 Yes
Strange 93.4 x 1073 1/2 -1/3 -1/2 Yes
Top 172.7 1/2 +2/3 +1/2 Yes
Bottom 4.2 1/2 -1/3 -1/2 Yes
Leptons
Electron 0511 x 1073 | 1/2 -1 -1/2 No
Muon 105.66 x 1073 | 1/2 -1 -1/2 No
Tau 1.777 1/2 -1 -1/2 No
Electron Neutrino <2x107° 1/2 0 +1/2 No
Muon Neutrino | < 0.19 x 1073 | 1/2 0 +1/2 No
Tau Neutrino <182x 1073 | 1/2 0 +1/2 No
Bosons
Photon 0 1 0 0 No
w* 80.377 1 +1 +1 No
70 91.1876 1 0 0 No
Gluon 0 1 0 0 Yes
Higgs 125.25 0 0 -1/2 No

3.3 Polarized Same-Charged W*W# Scattering

This thesis studies the scattering of same-charged polarized W* bosons. As described in
section 3.2.6, the W* bosons gain their mass and thus their longitudinal polarization from the
electroweak symmetry breaking. Therefore, the measurement of the W+ boson polarization
states is very sensitive to the Higgs mechanism and potential physics beyond the Standard
Model.

3.3.1 Polarized Intermediate W+ Bosons

Due to the high mass of W boson, they decay quickly in lighter particles. Thus, the
kinematic of the W* boson is experimentally accessible via its decay products. The W+
boson can decay hadronically or leptonically, with the focus of this thesis being on the
leptonic decay channels. The amplitude of a single intermediate W™ boson

i Kt kP ig -
M = MPred —g"f + —— L=y, ). 3.86
B kok® —m2 +iT'm < g m?2 Qﬂwmﬂ( L (3.86)
depends on the four-momentum k,,, the mass m, and the decay width T' of the W7 boson
[42]. Mgmd is the matrix element of the corresponding W= boson production, and ; and
1y, are the spinors of the antilepton-neutrino-pair originating from the W+ boson decay. The
completeness relation in equation (3.35) can be used to introduce vector boson polarization
into equation (3.86). For an intermediate spin-1 field, the completeness relation becomes

1
D et = —g" + —hk” (3.87)
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3.3 Polarized Same-Charged W+W=* Scattering

Similarly to the polarization of free spin-1 fields described in section 3.2.1, an intermediate
W# boson whose momentum & aligns with the z axis has the longitudinal polarization

(%,0,0, E) (3.88)

B
M-
0 T2 _ 2

but additional obtains the auxiliary polarization

E2 — 2 —m?2

&= )z 0. 0.0 (3:59)

n_
€3 =

For on-shell bosons with E? — k2 = m?2, this auxiliary polarization vanishes and the longi-

tudinal polarization is equivalent to equation (3.34) for free spin-1 fields. With the on-shell
W™ boson production and decay amplitude,

ro _Zg Tk 5
ME = MEdel and  ME = Tﬁwleg Y (1 =45ty (3.90)

the matrix element of equation (3.86) can be written as

2

2 .
M= M7 . MB =37 M7 (3.91)
A=0

A o 2 ;
kok m? +1i1I'm =

Thus, the unpolarized amplitude M is the sum of the individual polarization amplitudes
M];\ However, for the calculation of the cross-section, the polarization states cannot be
fully separated in the squared amplitude

2
2 2
M2 = DT IMAT + Y MM, (3.92)
S~ _
coherent sum Q=0 a
incoherent sum interference terms

The resulting interference must be considered as an additional contribution to the transverse
and longitudinal cross-sections. The interference contribution only vanishes for an integral
over the full azimuthal angle ¢ of the decay leptons [42]. Therefore, as soon as specific
lepton selection criteria are applied, this interference component can generally no longer be
neglected.

With an integral over ¢, the differential cross-section

1 do(9,X) 3 ) 3 ) 3.,
——==—(1 X —(1+ X - X .
BT doos i ~ 51T oSO Fu00) + 50 om0 () + e oY) (393

of a decaying W¥ boson depends on the polar decay angle @ in the W+ boson rest-frame
and the remaining phase space variables denoted by X [42]. The upper sign represents the
solution for the W and the lower sign for the W~ boson. The right-handed (fr), left-
handed (fr), and longitudinal (fy) polarization fractions depend on the additional phase
space kinematic X. Due to the absence of interference, these three polarization fractions add
up to one.

In this thesis, the leptonic decay channels of the scattered W+ bosons are investigated.
Since the resulting neutrinos do not interact with the ATLAS detector, the decay angles of the
W* bosons cannot be measured. Thus, a direct W+ boson polarization measurement via the
decay angle dependency in equation (3.93) is not possible. For the polarization measurement,
the individual components of the squared amplitude in equation (3.92) are simulated® to
predict the contributions of different polarization states. The predicted kinematics of the
polarization states are compared to measured data to extract the polarization fractions.
Since the neutrino kinematics are accessible in the simulated predictions, equation (3.93)
can be used to validate the W= boson decay angle for the polarization simulation.

1The concept of simulation is explained in chapter 4
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3 Theoretical Foundations

3.3.2 Motivating the Higgs Boson by Same-Charged WEW; Scat-
tering

In section 3.2.6, the Higgs boson is motivated by the lack of particle masses in the Stan-
dard Model. However, a Standard Model without the Higgs boson would have additional
fundamental problems. These problems arise from the interaction of the electroweak bosons.
One example is the longitudinal scattering VVLﬂE T/VLjE — I/VLi VVLjE The leading-order Feynman
diagrams of this scattering process are shown in figure 3.2. Considering only the quartic
gauge coupling of the W* bosons in figure 3.2a lead to an amplitude M guartic ~ €0€0€0€ED

proportional to the longitudinal polarization vector €j. Since €} is proportional to % the

amplitude M quartic is proportional to s? with s being the squared center-of-mass energy
of the interacting W+ bosons. Thus, the amplitude of this interaction would diverge at
high energies violating the principle of unitarity. The unitarity principle is equivalent to the
requirement that the probabilities of a specific initial state leading to different final states
should always add up to one. Proving if this requirement is fulfilled would require calcu-
lating an infinite number of Feynman diagrams. Therefore, to validate unitarity for 2 — 2
processes, a commonly accepted criterion is that the amplitude of the leading-order diagrams
should become asymptotically flat with increasing energy [43]. Since the amplitude of the
quartic vertex Mguartic diverges with 52 the WLinE — VVLjEVVLi scattering would violate
this fundamental requirement.

w* wE w* wE w= W=
A)Z A)Z

w* wE w* wE w= wE
(a) (b) (c)
W=+ w* w* w=*

e

w* w* w* w*
(d) (e)

Figure 3.2: Leading-order Feynman diagrams for the WEWE 5 wEw* scattering

As shown in figures 3.2b and 3.2c¢, a Standard Model without Higgs would still have
additional VVLiVVLi — W;EVVLi Feynman diagrams with the exchange of a photon or a Z
boson. These extra terms can cover some divergence of the quartic vertex but an amplitude

Muange = =gfy - + O(s") (3.94)
remains that still increases with increasing energy [43]. Thus, only considering the quartic
vertex and the exchange of a photon or Z boson would lead to a theory with unitarity violation
for WLiWLi — I/VLiWLi scattering. Introducing the exchange of an electrical neutral scalar
particle H solves this problem. The scalar particle H in figures 3.2d and 3.2e couples to the
W= boson with the coupling strength ggww. This interaction generates the additional term

S
My = g?fwme +0(s") (3.95)
w

that can only cancel out the divergence of Mgayge for guww = gwmw [43]. This require-
ment is exactly fulfilled by the Standard Model Higgs introduced in section 3.2.6. With the
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3.3 Polarized Same-Charged W+W=* Scattering

Standard Model Higgs, the amplitude at high energies s > m?% becomes

o My
Mgauge +Mpy = —9w

prcy (3.96)
finally fulfilling the unitarity requirement for WLiVVLi — WLiVVLi [43].

Thus, the longitudinal scattering of W bosons plays a crucial role in the Higgs mech-
anism of the Standard Model. The W+ bosons gain their mass trough the electroweak
symmetry breaking, and the resulting longitudinal component VVLi originates directly from
the Goldstone bosons of the Higgs field. Independently of the Higgs mechanism described in
section 3.2.6, the unitarity principle applied on longitudinal scattering WLin — WLiWLi
motivates a scalar particle with properties equivalent to the Standard Model Higgs boson.
This makes the longitudinal scattering WgEI/VLi — I/I/LiI/VE—L one of the most interesting pro-
cesses to study the electroweak symmetry breaking of the Higgs mechanism.

3.3.3 Same-Charged W*W* Scattering at LHC

Since no experimental setup is available which is able to directly create two colliding W+
boson beams, the W* bosons have to be produced in a collision. The energy necessary
to produce an interacting W= pair becomes achievable with the proton-proton collisions at
the LHC. The W¥ bosons are emitted by quarks of the colliding protons and their leptonic
or hadronic decay products are measured in the ATLAS detector. Since an analysis of the
hadronic decay channels would be impeded by a variety of multi-jet backgrounds from proton-
proton collisions, this thesis focuses on the purely leptonic decay channels of the W* bosons.
The reconstruction of the outgoing W+ boson polarizations from their decay products is not
straightforward and is the main challenge tackled in this thesis. However, even if a perfect
tagging of the longitudinal polarization would be possible for the decaying W bosons the
study of VVLi I/VLi — Wfo scattering is still not fully achieved because the polarization of
the incoming bosons cannot be pre-determined. At this point, a significant advantage of the
same-charged W*W+ — W*W scattering over other vector boson scattering processes
arises. As shown in figure 3.3 taken from Ref. [43], at high center-of-mass energy, the final
state WEE Wf originates almost exclusively from the Wf Wf initial state. Other VV — ViV,
processes are significantly affected by helicity-flips, but for same-charged W*W+ — W+Ww+
scattering at the high center-of-mass energy achieved at the LHC, the polarization of the final
state is similar to the initial state polarization [43]. Therefore, the measurement of W*W* —
Wfo at the LHC is almost equivalent to the measurement of I/VEEVVLi — Wfo

This thesis studies the same-charged W*W* scattering via pp — [*1'Fv1/jj processes
at the LHC. Figure 3.4a shows the typical W*W# scattering process where the circle is a
placeholder for the W*W* — W*W¥ diagrams given in figure 3.2. Due to the hadronic
production and the leptonic decay a variety of additional diagrams can lead to the same
final state. These Feynman diagrams can be grouped by the number of their electroweak
couplings apw € {g2/(4n), g%, /(4m)} with g. := ¢’ and strong couplings ag = g%/(4m). At
leading-order, the amplitude coupling orders O(a%,;,) shown in figure 3.4 and O(a%y, as)
shown in figure 3.5 contribute to the pp — [*1'*v1'jj process. Thus, the cross-section of the
WEW3j scattering with two jets in the final state can be split into

2

W EWEjj ~ ‘Mom%w + Mo(az,,, as)

, , (3.97)
~ ‘MO(O‘?}EW)‘ + ‘Mo(o‘%wo‘s) +2Re (MO(Q%W)M*O(aZEWas)
The resulting cross-section
Ow+wj; = OWxW=*;;-EW + OW+w=;j-QCD + OW=W=;j-INT (398)

consists of the pure electroweak contribution oy + = ;;-pw at order O(a%w), a QCD-induced
production oy +yy+ j;.qep at order O(agwa?), and the interference of electroweak and QCD-
induced production oty + Nt at order O(agy as). As shown in figure 3.4j, the pure
electroweak contribution W*W+;j-EW does not only include diagrams with W* boson
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Figure 3.3: "Total WTW™ — W W, scattering cross-sections in the SM as a function
of the center-of-mass energy. Shown are the individual contributions of different initial po-
larization states to the final state consisting of purely longitudinal Wz' WE‘ pairs. Subscript
X denotes any polarization (T or L). Assumed are two on-shell, unpolarized, colliding
W™ beams. A cut on the scattering angle that corresponds to pseudorapidity of £1.5 with
respect to the incoming W direction was applied. Results of MadGraph calculations.” [43]

scattering. However, since the W*W#*;j-EW process cannot be further split in a gauge
invariant way, ow+w+ ;. pw is taken as the signal for the W*W=*jj polarization analysis
[44]. WEW*;5-QCD and W*W*;-INT have to be considered as irreducible backgrounds
leading to the same final states.

Electroweak W*W=*;j-EW Contribution

Figure 3.4 shows an exemplary set of Feynman diagrams contributing to W*W=;j-EW. The
incoming quark lines in figures 3.4a to 3.4c have no color exchange and are directly connected
to the outgoing quark lines. Therefore, the resulting final jets are expected in the forward
regions giving them a significant separation in Ay;; and a high invariant mass m;; [44]. The
resulting jet kinematic differs significantly from the kinematic originating from the s-channel-
like diagrams in figures 3.4d to 3.4g. Since their jets originate from W¥ boson decay their
invariant mass m;; is expected to follow a Breit-Wigner distribution peaking at the W= boson
mass and is therefore significantly smaller than for the t/u-channel-like Feynman diagrams
in figures 3.4a to 3.4c. Indeed, the analysis performed in this thesis chooses a high m;
selection, giving a clear preference for the t/u-channel-like Feynman diagrams. Although
the choice of this selection is primarily motivated by the suppression of backgrounds, the
explicit preference for t/u-channels also offers an advantage for polarization reconstruction.
The quark lines in the t/u-channel-like Feynman diagrams are directly connected to the
initial W* bosons without any additional interaction at leading-order. Thus, polarization
information of the emitted W* boson can be accessed via the final jet kinematics [43]. Since
no significant impact of helicity-flips is expected for WEW#* — W*W=* this improves also
the polarization reconstruction for the leptonically decaying W+ bosons.

In addition to these fully-resonant diagrams, a group of single-resonant and non-resonant
diagrams shown in figures 3.4h to 3.4j contributes to the W*W=*;j-EW process. How-
ever, these non-resonant diagrams are suppressed by a factor of I'yy /my, typically reducing
their contribution to a few percent at maximum [44]. This suppression is crucial for the
polarization definition in W*W#*;j-EW. As described in section 3.3.1 an additional un-
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Figure 3.4: A selection of possible Feynman diagrams for W*W*;j-EW with only
electroweak interactions. This selection includes fully-resonant t/u-channel-like diagrams
in figures 3.4a to 3.4c, fully-resonant s-channel-like diagrams in figures 3.4d to 3.4g, single-
resonant diagrams in figures 3.4h and 3.4i, and a non-resonant diagram in figure 3.4j.
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Figure 3.5: A selection of possible Feynman diagrams for W W= jj-QCD at the coupling
order O(akwa%).

physical auxiliary polarization arises for intermediate off-shell bosons. Thus, only for the
fully-resonant diagrams a physical meaningful polarization can be assigned. The commonly
used solution for this problem is to drop the single-resonant and non-resonant diagrams and
assign the polarization for the resonant boson decays in the remaining diagrams. However,
dropping these diagrams leads to gauge violation. This thesis uses polarization templates
generated by SHERPA and MADGRAPH that have different approaches to deal with this gauge
violation:

o Narrow-Width Approximation (NWA) used by SHERPA [45]:
For the leptonically decaying W= bosons, the denominator of the W#* propagator is
replaced by a delta function:

1 . w (q2 — m%v)
— m%v + iLymy Tymw

- (3.99)

The propagator denominator of the other intermediate bosons is not replaced by a
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delta function and only their width 'y is set to O:

1 1
. 3.100
¢ —mi +ilymy ¢ —mi ( )

This can lead to a divergence of the propagator of hadronically decaying W= bosons in
s-channel-like diagrams (figures 3.4d to 3.4g). At leading-order, this is avoided by the
mj; > 200 GeV selection criterion in the signal and Low-m;; control region introduced
in section 6.3.

» Neighborhood Restriction used by MADGRAPH [46]:
The violation of the gauge invariance is constrained by limiting the invariant mass of
the intermediate bosons to the neighborhood of their literature mass. A |my — k'k,| <
bwcutoff-I'y selection is applied to only consider on-shell-like contributions [47][48][49].

With these approximations, the single-resonant and non-resonant diagrams can be
dropped without the calculation being affected by gauge violations. However, the effects
of the diagram selection combined with the NWA or the neighborhood restriction must be
considered for the polarization analysis. Therefore, the effects of this approximation are
studied in section 8.1 and a corresponding correction is derived.

QCD-Induced W*W*;j-QCD Contribution

As shown in figure 3.5, the W*W*;-QCD contributions including QCD interactions lead to
the same final states as the W+W=jj-EW diagrams. Due to the additional strong couplings,
diagrams with gluons as incoming particles, outgoing jets, and intermediate color interactions
also contribute to the W*W*5j-QCD background. A characteristic property of most of
the WEW=;;-QCD contributions is the strong color interaction connecting their incoming
gluons/quarks. Thus, their final state jets have a much more central distribution than the t/u-
channel-like diagrams in figure 3.4 [44]. Therefore, excluding events with hadronic activity
in the central region can significantly constrain this background.

Interference between Electroweak and QCD-Induced Production

The W*W*5j-INT background arises from the interference between the fully electroweak
and the QCD-induced contributions. These contributions have a coupling order O(a%y, as)
and originate solely from the interference of W*W=*;j-EW and W*W=*;;-QCD dia-
grams with identical external quarks. Since the phase space used in this thesis favors
the t/u-channel-like diagrams of the W*W*jj-EW process, their interference with the
WEW*5j-QCD process is expected to give the dominant interference contribution. The
resulting interferences can be split into three categories discussed in Ref. [44]:

e Different flavored quark lines
When the incoming quarks are of different flavor they have to be connected via a gluon
for WEW=45-QCD as in figure 3.5a. This leads to the exchange of a color octet between
the two quarks. Since the quarks in t/u-channel-like diagrams of W*W*;j-EW are
always connected via a color singlet the resulting interference vanishes exactly.

e Identical quark flavor lines
In this case the W*W=*;j-EW interfere with W+W=;5-QCD diagrams with flipped
quark lines as shown in figure 3.5b. This leads to a non-vanishing contribution to
the interference. However, due to the color connection between the quarks in the
WEW=*,j-QCD process their jet kinematic prefers a phase space that significantly
differs from the jet kinematic of the t/u-channel-like diagrams of W*W*j-EW. Thus,
this interference does not fully vanish but is significantly suppressed.

e Quark-antiquark lines
Quark-antiquark pair diagrams like figure 3.5¢ interfere with W*W=*j-EW. This
interference is not vanishing but suppressed by the jet kinematics for the same reasons
discussed for the case of the identical quark flavor lines.
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Due to the limited number of possible diagram combinations and the differences in the jet
phase space, the interference W*W=j-INT is expected to introduce a significantly lower
background for the polarization analysis than the QCD-induced W*W=;;-QCD contribu-
tion.

3.3.4 Polarization Reference Frame

The polarization of a particle depends directly on its momentum and is therefore not Lorentz-
invariant. Therefore, the W boson polarization is not strictly defined but depends on the
kinematic reference frame. For the scattering of two bosons, the center-of-mass system
of the two bosons is best motivated by the theory of the Standard Model. As described in
section 3.3.2, the cancelation of the Higgs contributions and the pure gauge boson interactions
is one of the main motivations of polarization measurements in vector boson scattering.
According to Ref. [50], this unitarity cancelation at tree-level becomes maximal in the W W+
center-of-mass frame (W*W*-cmf). Thus, the W*W*-cmf is the natural choice to study the
polarization in diboson scattering. This reference frame was already chosen for the ATLAS
polarization analyses of the W+ Z [4] and ZZ production [7]. Therefore, the W*W*-cmf is
the nominal reference frame of the polarization measurement in this thesis.

The existing CMS polarization analysis [3] for same-charged W*W*;j-EW scattering
provided results in the W*W*-cmf but also in the center-of-mass frame of the two initial
partons (pp-cmf). Therefore, an additional polarization measurement is performed in the
pp-cmf to provide values comparable to the CMS experiment. However, the main focus of
this thesis remains on the polarization in the W =W *-cmf.
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Chapter 4

Simulation of the Standard
Model Prediction

The Standard Model of particle physics comprehensively describes the known interactions in
proton-proton collisions at the LHC. However, an analytic calculation of the corresponding
Standard Model prediction would include an infinite amount of Feynman diagrams for a
vast amount of particles and is thus impossible. In order to make a theoretical prediction
factorization is used combined with perturbation theory. The overall problem is split into
subprocesses in different energy scales. In figure 4.1, this factorization of the event simulation
is visualized for the simulation of a ttH event. This chapter briefly summarizes the detailed
explanations in Ref. [51], which is recommended for a deeper understanding of the event
generation. The factorization steps covered in the following sections are:

o Hard subprocess: (red blobs in figure 4.1)
Primary scattering process at the collision energy

o Parton shower: (red lines in figure 4.1)
Evolution of the emitted partons down to an energy scale of 1 GeV

e Multi-jet merging:
Combination method for the hard subprocess calculation and the subsequent parton
shower

o Hadronization: (light green blobs in figure 4.1)
Transition of colored partons in the parton shower to color-neutral hadrons

o Hadron and tau decay: (dark green blobs in figure 4.1)
Decay of unstable hadrons and leptons

e QED radiation: (yellow lines in figure 4.1)
QED-induced radiation of particles

o Underlying event: (purple blob and lines in figure 4.1)
Secondary interactions in addition to the hard scattering

4.1 Hard Subprocess

The number of predicted events Neyent = LOevent depends on the luminosity L of the detector
and the cross-section of the event geyent determined by the hard subprocess. At the LHC,
the hard subprocess describes the initial interaction of the partons a and b. This interaction
involves a large momentum transfer, creating the final state f with n particles. The resulting
ab — f process can be described by perturbation theory using Feynman diagrams. The
corresponding matrix element Mg, ¢ is calculated by summing over the single Feynman
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Figure 4.1: Representation of a ttH event produced by the SHERPA event generator
taken from Ref. [52]. The simulation includes the hard interaction (big red blob), the
decay of the top quarks and the Higgs boson (small red blobs), photon radiations (yellow),
the QCD radiations (red), parton hadronization (light green blobs), and the final decay of
the hadrons (dark green). In addition, a secondary interaction (purple) is included in the
represented simulation.

diagrams. By integrating over the phase space element d®,, of the final state particles, the
partonic cross-section is obtained:

Oparton :/d(I)n|Mab~>f<(I)n)|2 (41)

The differential phase space element of the final state is defined by

n 3, n
o, =] (2;{)521& - (2m)*o (Pa + B — Z:R) (4.2)

and fulfills the energy momentum conservation P, + P, = Z? P;. Due to the infinite number
of Feynman diagrams, the partonic cross-section is written as perturbation series

)
Oparton = Z O'l()];)rton (O(ammak)) (4.3)
k=0

by expanding it into contributions with different order in the coupling strength
a € {ag,agw}. The lowest order of the coupling strength for the studied process is given by
a™m The impact of Ué?rton decreases with increasing coupling order k of electroweak and
high-energetic QCD interactions. Therefore, stopping the perturbation series at a specific
coupling order offers the possibility to limit the calculation on dominant Feynman diagrams.
The contribution ag?mn with the lowest number of vertices is called leading-order (LO).
When the Feynman diagrams with one additional vertex are taken into account, the calcu-
lation is called next-to-leading-order (NLO). The partonic NLO cross-section

NLO ._ 0 1
parton ‘T Uparton + Uparton

_ 40 14 I R S
- Uparton + Uparton + Uparton + /dq)l (Uparton - Uparton)

(4.4)
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4.2 Parton Shower

. . . . . V . . . . . R . .
includes virtual emissions in o, ., via internal loops and real emissions in 0., via radia-
tion of additional particles in the final state. The partonic cross-section of the real emissions

is integrated over the phase space element d®; of the additionally emitted particle. Since

O ¥arton diverges towards negative infinity and o[, diverges towards positive, the aux-
iliary terms oéarton and o’ffmton are introduced. These auxiliary terms are constructed in

such a way that they prevent the individual divergences and cancel each other out with
aéarton = dq’lffgarton- This enables the individual calculation of the real and virtual NLO
contributions without changing the total NLO cross-section.

Further divergences originate from high momenta in loop integrals. These ultraviolet
divergences can be resolved by introducing a renormalization scale pr into the matrix element
calculation [53]. The matrix element couplings are evaluated at the specific energy scale
defined by pg.

At the LHC, the interacting partons a and b are part of the protons hy and hy accelerated
at the LHC. Their momentum is be defined by the fractions x, and x; of the momentum of
their corresponding parent hadron. The parton distribution function (PDF) f"(z, ur) gives
the probability density of partons inside the proton. The PDFs are derived by a global to fit
to measured data. The choice of the specific PDF is associated with systematic uncertainties,
which are discussed in more detail in section 11.2. For a given hadronic center-of-mass energy
s, the cross-section

1
2x,xpS

1
o =3 [ dmaden, [ g2 o) £ ) (Mabsp (@ i i) > (45)
a,b 0

of the hard subprocess is defined by the integral over the momentum fractions carried by the
interacting partons and the integral over the final state phase space ®. For the factorization
into parton density and matrix element calculation, a factorization scale yr has to be chosen.
This factorization scale up separates the perturbative QCD calculation of the matrix element
at high energy scales and the non-perturbative QCD description at the low-energy scales.

Due to the high dimensionality of the integral in equation (4.5), Monte Carlo techniques
are used to calculate the integral in equation (4.5). Regardless of the number of dimensions,
the statistical uncertainty of Monte Carlo techniques decreases with the increasing number
of generated events Nys¢ by the factor of 1/Nyc.

A variety of event generators can simulate the hard subprocess. The ones used in this
thesis are MADGRAPH [46], SHERPA [54], and POWHEG [55].

4.2 Parton Shower

The hard subprocess describes the differential cross-section of the scattering at a high energy
scale. The subsequent evolution of jets and their inner structure is derived by the parton
shower. The shower is described as a Markov process in which further partons are emitted
in succession, with each emission depending only on the current state and not explicitly
on the previous emissions. This iterative approach describes the evolution of a state with
few partons at the energy scale of the hard subprocess to a state with many partons at
low energy. The momentum transfer of the parton shower decreases in each step down
to the order of 1 GeV where the QCD becomes strongly interacting and the perturbation
theory breaks down. The initial state of the parton shower starts with the final state of the
hard subprocess. The shower algorithm is implemented as subsequent collinear splittings
ordered according to a shower-dependent evolution scale. The initial parton is split into
two partons whose direction of motion is almost parallel to the momentum direction of the
initial parton. The resulting state with one additional parton is the starting point for further
collinear splittings. The evolution of parton momenta is continued until no branchings are
produced above the minimal energy scale of the shower algorithm. To connect the parton
shower algorithm with the hard subprocess a resummation scale has to be chosen. This
resummation scale represents the energy at which partons emit other partons. This starting
condition of the shower evolution ensures that any emission of the parton shower is distinct
from emission calculated in the hard subprocess and thus avoids double counting. So far,
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only the collinear emission of partons has been discussed, not the emission of soft gluons.
This contribution can be considered by performing the collinear shower algorithm with the
opening angle as the evolution scale. An alternative and more common approach is based
color dipoles.

In addition to the final state parton shower originating from the hard subprocess, colliding
protons emit partons also before the hard collision. The emitted partons can participate in
the subsequent hard interaction. This initial state radiation is simulated in a backward
evolution. Starting with a highly energetic parton participating in the hard subprocess, the
parton is traced back to the low energy scale of its initial emission from the proton. Thus, a
similar algorithm as for the final state radiation is used but with evolution backward in time.

In this thesis, the default shower algorithms in HERWIG [56] and PYTHIA [57] are used
for hard subprocesses generated by MADGRAPH. For processes generated by POWHEG, the
PyTHIA’s default shower algorithm is used. For events generated by SHERPA the parton
shower is directly provided by this event generator.

4.3 Multi-Jet Merging

As described in the previous sections, the simulation of final state radiations is possible in
the hard subprocess or by the parton shower evolution. While matrix element calculations
provide an excellent prediction for well-separated hard emissions, the parton shower algo-
rithm is more applicable for collinear and soft partons. Thus, a clever combination of these
two methods can provide a more precise prediction for the emission of additional partons. To
correctly combine these two methods, one has to consider that the matrix element calculation
gives the inclusive probability of at least n partons in a state calculated at the lowest order of
the strong coupling avg. The parton shower, on the other hand, provides an exclusive proba-
bility of exactly n partons by an approximate calculation to all orders in ag. Thus, a naive
combination of matrix element calculation and parton shower can lead to double-counting
for the parton shower evolution.

One procedure for merging the matrix element calculation and the parton shower is
the CKKW algorithm [58] which is a key element of the SHERPA event generator. This
algorithm is based on a phase space separation into a region of hard jet production and a
region for soft jet evolution. The matrix element calculation is interpreted as a core process
with a subsequent series of shower branchings. The shower history within the matrix element
calculation is required for a correct merging with a subsequent shower evolution. This shower
history is reconstructed by a clustering algorithm running the shower evolution backward.
For a final state with n partons, the most probable previous state with n — 1 partons is
determined. A merging scale Q. must be chosen to define resulting shower histories of
the generator. Hard parton emissions above the merging scale Q.. are taken from the
calculation of the matrix element. For the description of soft and collinear parton emission
with @ < Qcut, the parton shower algorithm is used. The resulting algorithm can consider
higher-order QCD effects of real emissions by merging matrix element calculations of different
jet multiplicity and the subsequent parton showers. This method has been extensively studied
and successfully applied in producing individual W+ and Z bosons and their corresponding
pair productions.

Therefore, the merging algorithm is used for the simulation of the same-charged
WEW=j-EW contribution in section 7.1 and for the correction for higher-order QCD effects
in section 8.1.

4.4 Hadronization

The parton shower describes the parton and jet evolution down to an energy scale of 1 GeV.
At this energy scale, the QCD perturbation theory breaks down as ag — 1. Thus, phe-
nomenological models have to be used to describe how hadrons are formed. The hadroniza-
tion process from the colored partonic state to a color neutral hadronic final state can be
described by the string or cluster model:
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String Model: At high distances, the strong interaction leads to a linear confinement.
Color flux tubes between partons describe the linear potential between two color charges.
The endpoints of the color tubes represent the quarks, while gluons are given as kinks on
the tube. If the two partons move away from each other, the tube is stretched with its
tension increasing with length. Thus, the energy stored in the tube increases linearly. As
soon as enough energy has been stored in the tube, a new quark-antiquark pair is formed, to
which the original partons are now connected according to their color charge. This procedure
forms color-neutral parton systems that can further break down if their invariant mass is high
enough. This process is repeated until color-neutral hadrons are formed.

Cluster Model: The preconfinement property of parton showers allows the clustering of
the shower into color-neutral sets of partons. In this step, gluons are represented by color-
anticolor lines connected at the gluon vertices. The clusters within the parton shower are
formed by combining nearby color-anticolor partners into pairs. In the next step, these
clusters decay into hadrons. A two-body decay is performed under consideration of the
flavors and kinematics leading to individual color-neutral hadrons.

4.5 Hadron and Tau Decay

After hadronization, unstable particles decay during their travel through the ATLAS detec-
tor. The decay of heavy hadrons is simulated by combining matrix element calculations with
experimental results. Different decay algorithms are possible for the hadron decay depending
on the used hadronization algorithm, the hadrons selected for the simulation, and the choice
of considered decay modes. In addition to unstable hadrons, only the decay of 7 leptons has
to be considered since muons are stable enough to travel through the whole detector. Its
semileptonic decay channel dominates the decay of 7 leptons into a neutrino and a virtual
W boson that decays hadronically.

4.6 QED Radiation

Besides the QCD-induced radiation of particles, QED radiation must also be considered in
the event generation. The most common strategy is using the same shower algorithm used for
the QCD-induced radiations. Especially for processes with QED and QCD radiations using
the same shower algorithm is the preferred method to simulate both simultaneously. An
alternative and less used method to model the QED radiation is the Yennie-Frautschi-Suura
formalism, which is described in more detail in Ref. [51].

4.7 Underlying Event

In addition to the hard subprocess and the initial state radiation further interactions and
particles can originate from the initial proton-proton collision. This additional activity is
described in the underlying event with contributions from multiple parton interaction (MPI).
These processes are softer than the hard subprocess and usually lead to a higher multiplicity
and total transverse energy of the event. For more details about the underlying event and
the MPI simulation, Ref. [51] is recommended.

4.8 Event Levels of Simulated Data

The simulation process described in this chapter aims to generate data distributions predicted
by the Standard Model. Depending on the use case, the generated events are taken from
different stages of the simulation process to prevent the computational effort of the following
simulation steps. In this thesis three event levels are used:

o Parton-level:
Events at parton-level originate from the simulation of the hard process. They consist
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of fundamental particles, such as leptons, quarks, and gluons. In section 8.2, the-
ory calculations on parton-level are used to implement a NLO-EW correction for the
WEW=;j-EW polarization states.

Particle-level:

After the subsequent simulation steps described above, the event is considered to be
on particle-level. The event consists of long-living leptons and hadrons. The particle-
level represents the event state an idealized detector would measure. Simulations on
particle-level are used to define the fiducial signal region in section 6.3.4, derive ap-
proximate NLO-QCD corrections in section 8.1, and implement theory uncertainties in
section 11.2.1.

Reconstruction-level:

The last step of the simulation chain is the simulation of the measurement at the
ATLAS detector. This simulation is performed by GEANT4 [59] followed by the ob-
ject reconstruction described in section 2.2.3. The resulting reconstruction-level pro-
vides the final prediction of data measured at the ATLAS detector. Therefore, the
reconstruction-level is the default and most commonly used event level in this thesis.



Chapter 5

Neural Networks

In many analyses, such as the search for same-charged W*W*;; scattering, individual mea-
sured variables are examined to see how well they separate signal and background processes.
Signal regions are defined using physically motivated selection criteria, and the data is an-
alyzed in a sensitive variable. However, this procedure is only applicable if such a sensitive
variable exists and is measurable. For the measurement of the longitudinal polarization in
WEW* scattering, however, most of the information about the original W boson kinemat-
ics is lost via the leptonic decay. Only their decay products leave the beam pipeline and the
resulting neutrinos cannot be measured in the ATLAS detector. Thus, this analysis faces
the problem that no variable exists to improve the sensitivity to the longitudinal polarized
WEW=*-EW scattering. Therefore, multiple physical variables are combined by neural net-
works to boost the significance. For this thesis, only binary classifiers are trained, used as
sensitive variables in chapter 9 and as multivariate reweighting algorithms in section 8.1.

The basic concept of neural networks is inspired by the human brain. The human brain
consists of about 10! neurons. Each neuron has about 1000 dendrites and an axon that
branches towards the end [60]. The axon branches can couple to the synaptic regions of
other dendrites. The neuron gets stimulated by electro-chemical processes at the dendrite,
which can increase or decrease the electric potential within the neuron. As soon as the
voltage exceeds a threshold value, an electrical impulse is transmitted via the axon to other
neurons. The key to information processing in the brain is the synapses, which either amplify
or inhibit the signal and grow with frequent use and regress with infrequent use. Since these
biological concepts are capable of performing very complex tasks, they are transferred to
artificial neural networks to outperform the sequential rule-based algorithms for information
processing [61].

5.1 Basic Components of Neural Networks

An artificial neuron model is designed to transfer the principles of the brain to machine
processes. The artificial neuron, also called a node, is connected to other neurons given by
the network architecture. Analogous to what happens at synapses in the biological equivalent,
the output x; of the 7th neuron is combined with an associated weight w;;, a bias 6;, and
a propagation function h; before it enters the jth neuron [62]. The bias § is comparable
to the electrical threshold of a biological neuron. In most applications, as in this thesis,
the resulting input signal s; = h; (Z,w;,0;) is calculated using a scalar product as the
propagation function h; (Z,w;,0;) = >, x;w;; + 6;. The resulting inner activation is now
given to an activation function a; to calculate the output y; of the neuron. Thus, the output

of the j-th neuron results in
Y = ay (Z Tiwgj + 9j> (5.1)

when using a linear propagation function [61].
A neural network is a cluster of neurons defined by the connections between them. A
suitable network topology must be chosen to process information with a neural network.
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Since neural networks are, in principle, directed graphs, they can be constructed into any
graph. However, neurons are often grouped into layers whose members are connected to the
same subsets of neurons in the network. For simplification, the neurons of one layer usually
also have the same propagation and activation function [61].

In this thesis, the use of neural networks refers to modeling a function f, which maps
the measured values = to a value y = f(x). This function can be, for example, a physical
probability density used for classification. For feedforward neural networks (FFNs), the in-
formation flows only in one direction through the network without any feedback connections.
This information flow gives an order to the layers of the network, starting with the input
layer, which for example receives the event variables, followed by several hidden layers, which
are finally followed by the output layer [63].

In figure 5.1, a model for binary classification used in this thesis is shown. It takes 24
input variables ranging from the transverse momentum and energy of the leading lepton to
the invariant mass of the two jets. The input layer is directly connected to a normalization
layer, normalizing the distribution of these variables to a mean of 0 and a standard deviation
of 1. The normalization layer is applied to ensure that all input variables can have the
same impact on the model’s prediction even if their values are in very different orders of
magnitude. The normalization layer is fully-connected to the first hidden layer, followed
by another hidden layer. The second hidden layer is connected to the output layer, which
consists of a single neuron representing the score of the binary classification. Adding more
neurons to the output layer could extend the model to a multi-class classifier. Although the
shown network is relatively small, with two layers of 60 neurons each, it already has 5221
trainable parameters. By adding more layers and neurons per layer the number of trainable
parameters can easily grow into the millions.

Input Layer Normalization Layer First Hidden Layer Second Hidden Layer Output Layer

shifti, scalex

shifty, scaley

Figure 5.1: Neural network with normalization layer, two hidden layers, and an output
layer with one neuron.

5.2 Activation Functions

Without the activation function introduced in equation (5.1) the neural network would rep-
resent a linear combination of the input features. To handle complex non-linear problems the
non-linearity introduced by the activation function is required. The default recommendation
for neural networks is the rectified linear unit (ReL.U) function

freru(z) = max(0, ) (5.2)
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representing a constant activation of zero for negative neuron input and a linear activation
for positive input [63].
An alternative to the ReLU function is given by the Swish function

X

fSwish(x) = mo

(5.3)
As can be seen in figure 5.2 the Swish function is very close to the ReLU function but is
non-monotonic and smooth. In Ref. [64], the Swish function was proven to outperform the
ReLU function, especially for deep networks.

The activation function is not only required to introduce non-linearity into the network
but can also be used to restrict the output of a neuron. Such a restriction is often the case
for the output layer. For a binary classification the Sigmoid function

1

- 4
1+e b (5.4)

fSigmoid (‘T)

is very useful in the output layer since it restricts the network output to (0, 1) and thus
enables an interpretation as probability. The parameter 5 can be chosen as part of the
training progress, but the choice 8 =1 is suitable for most of the applications [63].

RelU Activation Swish Activation Sigmoid Activation

61 61 1.0

51 57 0.8

4 41
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Figure 5.2: The ReLU, Swish, and Sigmoid function as examples for the neurons acti-
vation function.

5.3 Loss Functions

For the supervised training of a network, a loss function must be chosen to quantify the
agreement between the network output and the target values for the training data. In general,
the maximum likelihood approach is used for this purpose [63]. Thus, the loss function is
given by the cross-entropy between the training data distribution and the distribution of the
network output.

The loss function derived by the maximum likelihood is dependent on the model and
the task it should perform. For the binary classifications used in this thesis, the true clas-
sifications in the training dataset y; € {0,1} are compared to the network score p; € (0,1)
assigned to these events. As shown in Ref. [65], the binary cross-entropy (BCE) for the
binary classification is given by the BCE loss

N
Liog(y,p) = =Y (wiln (pi) + (1 — ) In (1 = py)) - (5.5)

K2

As shown in figure 5.3, minimizing the BCE loss for each event results in the correct classi-
fication. Thus, the minimization of the mean BCE loss in equation (5.5) leads to an overall
improved agreement between the true classification y of the training data and the corre-
sponding network output p.
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Figure 5.3: The BCE loss used for the binary classification with y; € {0,1}

5.4 Training Neural Networks

As described in the previous section, a network is trained by minimizing a corresponding loss
function. Since networks usually consist of thousands to millions of trainable parameters and
require huge sets of training data, the minimization process is not trivial.

5.4.1 Stochastic Gradient Descent

The training of a neural network begins with a random initialization of its trainable param-
eters 0. Starting with this random initialization the minimum of the loss function L(x, 8) is
searched for the given training data @ by the method of gradient descent [63]. By calculating
the derivative Vg L(x,0) a new set of training parameter

0t = Ot_l — UVQL(:L’, 0t_1) (56)

can be chosen which results in a lower training loss. The step size in the training parameter
space is given by the learning rate 7, which is generally set to a small value. Repeating this
gradient descent moves the set of trainable parameters towards the nearest minimum in the
loss function. The global minimum does not necessarily have to be found, as a sufficiently
small loss can already lead to a well-performing network. However, poorly performing minima
should be avoided.

For additive loss functions like equation (5.5) the computational cost of gradient descent
scales linearly with the size of the training dataset. A large training set is required for
sufficient training, but this would blow up the training effort. This problem can be solved by
using the stochastic gradient descent. Instead of using the whole training dataset to calculate
the next step in the training parameter space only a subset, a so-called minibatch, of the
training data is used. This mini-batch is drawn evenly from the training set and usually
consists of 1 to several hundred events. By only computing the expectation of gradient
descent on a small minibatch, the trainable parameters can updated more rapidly leading to
a much faster convergence for most optimization algorithms. Also increasing the training set
while introducing redundancy does not affect the convergence time of the training process if
a fixed minibatch size is used. In addition, the use of minibatches also introduces some noise
in the training process which decreases the probability of stopping in small local minima [63].
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5.4.2 Adam Optimization

Directly using the stochastic gradient descent to optimize the training parameter does not
result in a smooth training behavior. Due to the small size of the minibatches the derivative
VoL(x,0) shows large variations dependent on the minibatch. Thus, the direction of the
updating in the training parameter space has huge fluctuations and does not smoothly lead
to the minimum. This problem is solved by the Adaptive Moment Estimation optimizer
(Adam) [66]. The Adam optimization combines the momentum method with Root Mean
Square Propagation (RMSProp) which are described below. All of these methods rely on the
calculation of the gradient descent

9, = VoL(z,0:1). (5.7)

Momentum Optimization

In Ref. [67] the idea was proposed to assign momentum to the training process. Instead of
updating the position in the training parameter space, the momentum

m; = am;_1 —ng, (5.8)

is updated. « is an exponential decay factor determining the contribution of previous mo-
menta. The training itself starts with mg = 0. In each training step the parameter 6 are
updated by

0, =0;_1+m;. (59)

With this approach, each training step becomes dependent on the previous one, resulting in
a significantly smoother and faster convergence toward the minimum of the loss function.

RMSProp

The idea of RMSProp was initially published in a Coursera lecture [68] and then taken up by
later papers. So far the constant step size 7 resulted in a constant learning rate during the
entire training. With RMSProp, this learning rate is adapted for each training parameter
during the training process. The exponential moving average v; of the element-wise product
over 0 g, ® g, is introduced which gets updated in each training step by

vi=pvi 1+ (1-0)g:©9, (5.10)
with the exponential decay parameter 8 [69]. At the beginning of the training v, is initialized
to vg = 0 [66]. For the next training step

0, =6, , — (5.11)

T og
1/vt+€ t

the gradient descent is element-wise divided by /v:. Usually, a very small parameter € is
introduced to avoid a divergence. The RMSProp method increases the learning rate for a
specific training parameter if the corresponding gradient descent is rather small over the
previous training steps. This leads to faster convergence in flat regions of the loss function
and smaller training steps in regions with higher loss changes.

Adam Algorithm

These two approaches are combined in the algorithm of the Adam optimizer introduced in
Ref. [66]. The full algorithm is described in table 5.1 and the list of necessary parameters
for the optimization is given in table 5.2. These parameters have to be chosen before the
training and determine the training process.

The algorithm in table 5.1 shows that the Adam optimization is not only a combination
of the RMSProp with momentum. The procedure is extended by the calculation of the bias-
corrected moments m; and ¥;. This bias arises if one calculates the exponential moving
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momentum of a variable k; by

ki = Bki—1 + (1 = B)f(gt)

S B Y B (). (512

=1

The expected value of this moving average results in

EwdE%1m§jWiﬂmﬂ
t ) 5.13
—E[f(g)]1-B) > (543)

_E[f(a)](1 - 8

if g; is stationary. This bias correction of m; and v, results in more stable training as shown
in Ref. [66].

Table 5.1: Algorithm of the Adam optimizer [66]

Initialization
mgy = 0
Vo = 0

Updating in the t-th training step
g, = VgL(m,Ot_l)
my = fimy_q + (1 - B1)g,
vy = fovi1 + (1 — B2)g; © gy
iy =my /(1 - B7)
vy = v /(1 - B3)
0, =0, — ﬁth

Table 5.2: Parameters of the Adam optimization and their recommended defaults [66]

Parameter | Description Recommended default value
n Learning rate 0.001

B1 €10,1) | Exponential decay for first moment estimate 0.9

B2 € 10,1) | Exponential decay for second moment estimate 0.999
€ Stabilizer for the division operation 108

The Adam algorithm is a simple, computationally efficient optimization procedure requir-
ing little memory. Ref. [66] has shown that the Adam method is robust and well-performing
across different fields of machine learning. Therefore, this algorithm is used for the training
of neural networks in section 8.1 and chapter 9 with a focus on the correct choice of the
optimizer parameters in table 5.2.

5.4.3 Back Propagation for FFNs

As described in the previous sections, the core idea of training a network is to optimize the
trainable parameters according to the derivative VoL(x, ) of the loss function. However,
the calculation of this derivative for a specific weight or bias in a multilayer feedforward
network has not yet been explained. Since the network usually has thousands of connections
between the neurons, this problem seems quite complicated but can be solved using the chain
rule for derivatives. For an FFN with n layers, the output of the j-th neuron in the k-th
layer is given by
N
y9 = a® (3 w0 4w | (5.14)
3
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To optimize the training weights w](:L

tive

) and 9§n) in the output layer of the network the deriva-
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(5.15)

has to be calculated for the gradient descent. If the loss and the activation functions are dif-
ferentiable and their corresponding derivatives are known this calculation is straightforward.
For the updating of the weight wﬁfl) in the (n — 1)-th layer, the chain rule can be used to
calculate the derivative

oL XX ar o™
BT 2
. (5.16)
N (n—1)

oL 8yl(n) ayj
oy oy ol

In the same way, the derivatives for the remaining weights and biases in the front layers
can be calculated by multiplying and summing the partial derivatives 8yi(k)/ 8yj(-k_1). This
procedure is called back-propagation since it describes the flow of information from the loss
function backwards through the network.

For the training process, the derivative of the loss function has to be calculated for
every trainable parameter. Thus, the same partial derivatives would be calculated several
times leading to a potential waste of computational power. By storing the results of these
subexpressions the computational effort for the partial derivatives scales only linearly with the
number of connections between the neurons. More details about the technical implementation
via graphs and tensor operations can be found in Ref. [63].

5.5 Network Hyperparameters

The previous section explained the training procedure to optimize the trainable parameters.
However, there exists an additional set of parameters that is not adapted during training,
called hyperparameters. These hyperparameters affect the architecture of the network and
its training behavior. Examples of hyperparameters are the number of layers and nodes per
layer defining the network’s size, and the choice of the activation function in each layer.
To train a network using the Adam algorithm, the step size 1, the stabilizer €, and the
exponential decays 51 and 2 must be chosen before the training. If regularization, explained
in section 5.6.2, is used, their parameters are also counted as hyperparameters for the training
process. All in all, there can be many possible hyperparameters when training a machine
learning algorithm. Since they are not adapted during training but can significantly impact
the training progress, choosing suitable hyperparameters is crucial for successful training.
Therefore, an extensive algorithm for hyperparameter optimization is used in chapter 9. In
most cases, the optimization of hyperparameters focuses on the generalization of the network,
which is explained in the next section.

5.6 Generalization

So far, the overall architecture of a neural network and its training process have been de-
scribed. During the training, the network optimizes its trainable parameters to minimize the
loss for the training data. However, the application of machine learning generally focuses
rather on the design and training of a model that has a good performance on data not used
for the training. Thus, the generalization error is introduced in addition to the training error
represented by the training loss. This generalization error indicates the model performance
on unseen inputs.
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5.6.1 Overtraining and Undertraining

The generalization error [63] can be measured on a validation dataset not used for training
if the training and validation datasets

e are independent of each other
o and follow the same underlying probability distribution.

Since the trainable parameters are adapted to the training dataset, the model is expected
to perform better on the training dataset than on the validation dataset. Thus, successful
training is usually defined by a distinct minimization of the training loss while keeping
the gap to the validation loss as small as possible. An insufficient minimization of the
training loss is called undertraining since the trainable parameters cannot adapt well enough
to adequately solve the problem. If minimizing the training loss results in an increasing
validation loss, the trainable parameters can adapt well to the training data but only with
a poor generalization which is called overtraining. The risk of over- and undertraining is
determined by the capacity of the model. The capacity of a network is characterized by the
variety of functions it can depict. A capacity that is too low leads to undertraining since
the network is not able to fit the underlying probability density of the training data. On
the other hand, a model with a too-high capacity tends to learn the noise in the training
dataset instead of the underlying probability density, leading to overtraining. Therefore, an
adequate choice of network capacity has to be made to enable successful training with good
generalization.

5.6.2 Regularization

The model performance can be improved by introducing preferences into the training process.
Although these regularizations can restrict the minimization of the training loss, they improve
the generalization of the model [63]. Various regularization methods commonly used to
modify the training algorithm exist. In this thesis, early stopping, dropout, and batch
normalization are used to improve the generalization of the neural networks.

Early Stopping

As explained in the previous section, the model’s actual performance is not necessarily im-
proved by a smaller training loss since the generalization can worsen due to overtraining.
Thus reaching the minimum in the training loss does not correspond to the optimal per-
formance for later application. This fact raises the question of when one should stop the
training process. This problem can be solved by monitoring the loss on the validation data
during the training process. The trainable parameters are adapted to the minibatches using
the stochastic gradient descent. One run over all minibatches of the training dataset is called
a training epoch. At the end of an epoch, the loss is evaluated for the validation dataset
before the next training epoch is started. In figure 5.4, the training process of an exemplary
neural network trained on ATLAS Open Data [70] is shown. The model is chosen to have a
capacity that is too high for the given training data to illustrate the problem better. While
the training loss decreases continuously, the validation loss decreases at the beginning of the
training but increases again after a specific training duration. During the training process,
the trainable parameters are stored after each epoch. This allows to restore the model with
the best validation loss after the training, resulting in a model with the optimal general-
ization. Since the validation loss is expected to have a U-shape the training is stopped if
the validation loss has not improved for a fixed number of epochs, called patience. This
approach of stopping the training before the training loss has converged and restoring the
best-performing state is referred to as early stopping.

Early stopping is one of the most commonly used forms of regularization to reduce over-
training. Besides its simplicity and effectiveness, it can be implemented without affecting the
architecture of the model or the training procedure. With early stopping the effective capac-
ity of the model is adapted by restraining the training parameter space to the neighborhood
of their initialization [63].
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Figure 5.4: Training and validation loss of a network trained to separate Higgs (H —
727 — lg'lo_lfll_) and background events with four leptons in the final state. The training
data was provided by the ATLAS Open Data [70]

Dropout

Another approach to avoid overtraining is to train several models of different architecture or
on different training datasets and average over their predictions. Unfortunately, this is very
computationally intensive since they all have to be trained and evaluated on the validation
data and require well-performing hyperparameters. A more efficient approach to introduce
this averaging is dropout [71]. During the training, neurons get randomly dropped leading
to thinned sub-networks. For the application on data not used for training, all neurons are
active. Thus, a model with n neurons can be interpreted as a combination of 2™ potential
sub-networks. By defining a dropout rate pqrop, the activation of a neuron in the k-th layer
during the training is given by

N(k)
*) _ (k) 1 (), (k) (k=1) | p(k)
y; =a T paron Z w;; ;" (Pdrop )Y, +0;7 ] (5.17)

The Bernoulli random variable Tgk)(pdrop) € {0,1} has the probability parop of being 0 and
gets evaluated once per minibatch. Since this would reduce the mean neuron input during
the training by (1 — parop) the correction factor 1/(1 — parop) is applied [71]. This ensures
that the expected output of a neuron is the same for the training with dropout and the later
application without dropout.

Dropout introduces some noise into the neural network while training. Each neuron in a
network trained with dropout is expected to work with a randomly chosen set of connected
neurons and cannot rely only on the connection to one specific neuron. Therefore, this neuron
has to learn a feature of all the incoming neurons and thus becomes more robust.

The exact rate of dropout that is helpful depends heavily on the amount of training data
and the network size. However, it was shown in Ref. [71] that a higher number of neurons is
favored for networks trained with dropout than for training without dropout.
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Batch Normalization

During training, all trainable parameters get updated simultaneously according to their cor-
responding gradient descent. Thus, the parameters of a neuron in the k-th layer get updated
according to the current input to this neuron. However, the input of the neuron is also
changed due to the updating of the parameters in the previous layers. This change in the
input distribution of the neurons during training is referred to as an internal covariate shift.
In Ref. [72], batch normalization is introduced to solve this problem. Batch normalization is
the approach to gain a stable neuron input distribution by normalizing its mean and variance.
For each minibatch B the inner activation

N
Z wiPy*D 4 g (5.18)

of the neuron is evaluated to calculate its corresponding mean

plBH) = Zm (5.19)

and variance
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Thus, a normalized inner activation

(k) (B, k)
Ty — W
) _ Y TH

)

can be calculated for the corresponding minibatch. The parameter € is used to ensure numer-
ical stability. To account for this restriction of the inner neuron activation two new trainable

(5.21)

parameters ’y](-k) and ﬁj(-k) are introduced in the calculation of the neuron output:
y M = o®) ( (k) _|_ﬁ(k)> (5.22)

With these new trainable parameters, the network is able to represent the same functions as
without batch normalization but with improved training behavior. The mean and variance
of the inner neuron activation can be modified directly during the training instead of being a
complicated result of the trainable parameters of all previous layers. Since the impact of the
bias Hj(-k) in equation (5.18) becomes negligible due to the batch normalization this training
parameter can be dropped [63]. The purpose of the bias can be fully covered by the trainable
bias ﬁj(k) of the batch normalization.

The use of batch normalization improves the training process and enables higher step
sizes speeding up the training. Since the problem of internal covariate shift is significantly
reduced the training of deeper networks becomes more stable [72].

During the training, the moving averages

(k) (B,k)

— m,u; ) + (1 —m)p; (5.23)
and
0’§k) +— moj(-k) +(1- m)oéB’k) (5.24)

get updated after each training step with the moving average momentum m.

5.7 Model Evaluation by the ROC-AUC

The networks trained in this thesis focus on binary classification. A metric for the network
performance has to be chosen to optimize the hyperparameters of the classifier. If the goal is
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to separate two datasets, e.g., signal and background events, the receiver operating charac-
teristic (ROC) [73] is often used. Assuming two categories in the data labeled p € {0,1}, the
classifier is trained to assign a score y between 0 and 1 to each sample. To receive a purely
binary classification from this score a threshold mp,esp, can be chosen to split the data at
Y = Mynresh- FOr this split, a true-positive rate

N(p =1A Y > mthresh)
N(p=1)

tp(mthresh) = (525)

can be derived. The true-positive rate gives the proportion of samples with p = 1 that are
correctly assigned to this category by y > mpresn- The false-positive rate

N(p =0A Yy > mthresh)
N(p=0) ’

fp(mthresh) - (526)

on the other hand, represents the proportion of samples with p = 0 that are falsely sorted into
this category. A successful classification is characterized by a high true-positive rate tp and a
small false-positive rate fp. Varying the threshold myp,..sn can lead to different values for fp
and tp representing the ROC graph (fp, tp). The point ROC = (0, 1) corresponds to a perfect
classifier classifying all samples correctly. By setting m¢presn €.8. to 0 all samples end up in
the category y > mpresn resulting in ROC = (1,1). ROC = (0,0) can be reached by setting
Menresh higher than all scores y seen in the dataset. By varying the threshold between 0 and
1 the ROC can be displayed as function ¢p(fp). In figure 5.5, the ROC curves for different
classification score distributions are shown. The shown score distributions were sampled only
for illustration purposes and were not produced by actual networks. The straight line from
(0,0) to (1,1) represents the ROC curve of a random classifier that is expected to produce
the same value for the true-positive and false-positive rate for a given mypresn. Thus, the
ROC curve of a useful classifier with ¢tp > fp tends towards the upper left corner of the
perfect classification ROC = (0, 1). The area under the curve (AUC) is used to compare the
ROC curve of multiple networks. The maximal ROC AUC of a classifier is one, representing
a perfect classifier. The lower bound for a meaningful classifier is given by a ROC AUC
of 0.5, indicating on average random classification. The ROC AUC can be interpreted as
the probability that the classifier correctly ranks two randomly chosen samples of the two
categories p =0 and p = 1.

One can argue whether comparing networks by the ROC AUC gives an advantage over
comparing their BCE losses. If the purpose of the classification is merely to separate two
categories, the ROC AUC is the better metric. In figure 5.5, three example distributions are
shown with their corresponding binary cross-entropy (BCE) and ROC AUC. The separation
between the two data classes improves from example 1 to example 3 but the BCE worsens.
This can be explained by the BCE in equation (5.5) depending primarily on the difference
between the output score y and the true label p for each sample. However, the ROC curve
indicates the models ability to correctly rank the samples in the output score independently
of their exact value. Thus, the ROC AUC is a more direct metric of how well the two
distributions are separated from each other.

5.8 k-Fold Method

In this thesis, the evaluation of the network performance and the subsequent network ap-
plication are done via the so-called k-fold method. This method is based on the choice of
distinct datasets:

o Training dataset
The data used to adapt the trainable parameters of the network

e Validation dataset
The data not used for training but to evaluate the network performance

o Test dataset
The data used neither for the training nor for the evaluation of the model
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Figure 5.5: Three exemplary distributions of classifier scores separating two datasets.
For each of the examples, the binary cross-entropy and the ROC-AUC are calculated. The
ROC curves are shown below the distributions.

In this thesis, the available data is split into 60% training, 20% validation, and 20% test
data. The distribution of the data is achieved by an initial split into five sets (folds) of equal
size. The definition of a fold is based on the event number assigned to each measured or
simulated event. The event number serves as an index and is independent of the physical
properties of the event. Therefore, splitting the data by ((EventNumber —ip,q) mod 5) =0
with the fold index igo1q € [0, 1,2, 3, 4] leads to five uniform and reproducible folds. Three of
these folds are used for training, one for validation and one as test dataset.

The performance of the model is evaluated on the validation dataset to find suitable
hyperparameters. However, the evaluation of the network performance is limited by the size
of the validation dataset. A common approach to better estimate the network performance
is the k-fold cross-validation. As described above the available data is split into five folds.
In the k-fold method, five networks are trained with overlapping training folds and non-
overlapping validation datasets. Thus, each of the networks is evaluated on statistically
independent validation data. This allows the calculation of a mean network performance and
the estimation of the corresponding statistical uncertainty of the performance. Therefore,
k-fold cross-validation will be used for the hyperparameter optimization in chapter 9.

Besides the network performance evaluation, the k-fold method is crucial in this analysis
to avoid biases in the model application. When applying DNN algorithms, the different
performances on training and unseen data must be considered. Even if overtraining has
been avoided, classification on training data is expected to perform slightly better than on
unseen data. Thus, if the DNN predictions on the training dataset are used to compare to
predictions on measured data, an additional systematic mismodeling is expected. In order to
avoid this mismodeling, the k-fold method is used in this analysis with five folds. As shown
in figure 5.6 and described above, the data is split into five sets: three used for training, one
used for validation, and one test set. By iterating these sets, the DNN algorithm is trained
five times with non-overlapping validation and test sets. The test dataset is neither used for
training nor evaluating the training performance and is therefore not involved in any part
of the training or hyperparameter optimization. Thus, the DNN predictions obtained using
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testing datasets can be assumed to be identically distributed as the predictions on measured
data. To get predictions for all events in the dataset, the prediction is calculated using the
DNN where the respective events were part of the testing dataset. Thus, predictions are made
only on events not used for the respective training or optimization. This method will be used
to apply a multivariate correction in section 8.1 and for the application of the polarization
discriminators trained in chapter 9. The consistency of DNNs trained on different folds is
investigated for the polarization discriminators in section 10.1.

The k-fold application method is an established strategy for multivariate ATLAS analyses.
For example, the W*Z polarization analysis in Ref. [4] uses a 2-fold method to apply the
discriminator networks. This thesis chooses 5 instead of 2 folds to increase the fraction of
data used for training.

Fold 0 Fold 1 Fold 2 Fold 3 Fold 4

‘DNNOHFOIGO |Fo|d1HFoIdZHFoIdSHFoId4]

(w1 | [Fomo | [raat | [Fouz] [Faas| [Foms| [ va

‘ DNN 2 ] ] Fold 0 ‘ fFo|d1 ] ‘ Fold 2 } ‘Folds l | Fold4J ] Test ]

@ | Foldo | ' Fold 1 | | Foldﬂ {Fo?d;.] [m
@ ] Fowﬂ ’ Fold 1 | [ Foldz} [Folda ] | Fold4J

Application: ' Fold 0 ‘ | Fol‘d1 \ | Fold 2 ’ ‘ Fold 3 ’ | Fold 4 [

| |
| DNNO ’ DNN 1 H DNN 2 H DNN 3 H DNN 4 l

Figure 5.6: The concept of the k-fold method with & = 5 folds and the split intro training,
validation and test data. The final DNNs are applied to their corresponding test dataset.

5.9 Access Feature Importance via SHAP

Neural networks are so-called black boxes since their number of trainable parameters is
too large to understand the decisions they make in detail. Nevertheless, understanding the
behavior of these black boxes can further validate their functionality and enable conclusions to
be drawn about the concepts learned during training. Drawing a direct connection between
the model input and its corresponding decision becomes possible with SHapley Additive
exPlanations (SHAP) published in Ref. [74]. The following explanation of SHAP values is
based on this publication.

A much simpler explanation model g, is used to better understand the decision made by
a complex model f. This explanation model g, explains the complex decision f(x) locally for
one specific vector x. For the explanation model, simplified inputs x’ are defined which are
connected to the original input via a mapping function « = h,(x’). For N input features the
simplified input ' € {0,1}" indicates whether a feature in z is included in the model. The
explanation model for an input « tries to model g, (z') = f(h,(2")) close to the corresponding
input value with 2z’ =~ x’. To have an explanation model with interpretable parameters, an
additive feature attribution model

N
9:(2) = o+ Y _ iz} (5.27)
i=1

is used with the trainable impact parameters ¢; € R. Figure 5.7 shows for one individual
network application how these parameters ¢; add up to the final decision of the SHAP
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model. The shown model, DNNyy + -+, is trained in chapter 9 to distinguish W*W*j-EW
processes from background contributions. The concept of this SHAP model is explained in
the following.

fix) =0.793

151.275 = leps_sumPt
0.742 = lepjet_ratioPtProd
0.06 = lep0_zep
33.471 = met_pt
~0.483 = lepl_eta
1.212 = jets_dPhi
8 = lepl_type
52.561 = lep0_m_T
8 = lep0_type - +0.03

173.589 = lep0_pt oo
0.387 = lepl_zep ~ —0.02 .
0.739 = lepjet_minDR —0.02 .
55.055 = lepl_m_T oo
1.239 = lep0_eta -0.01 ‘
~0.918 = jet]_eta p +o01
182.8 = leps_m_ol } +0.01
93.752 = jet1_pt } +0
3.843 = jets_dY | +o
127.702 = jet0_pt }+o

045 050 055 060 065 070 075 0.80
E[fiX)] =0.512

Figure 5.7: The SHAP values of DNNy;+,+ trained in chapter 9 are calculated for an
exemplary event. The input features are listed with their value for the specific event and
are ranked according to their impact on the specific network decision. The output value
E[f(X)] is the expectation value of the network output.

Since multiple definitions of g, are possible, three additional requirements are chosen for

this additive explanation model:

60

e Local accuracy

The output of the explanation model g, for the corresponding input x has to match
the decision of the complex model:

f(@) = g:(2) (5.28)

Missingness

The simplified input =’ indicates the feature presence and the parameter ¢; the feature
impact on the decision. The property of missingness requires missing feature presence
with 2} = 0 to have a vanishing impact ¢; = 0:

;=0=¢; =0 (5.29)

Consistency
If a model f(x) is slightly changed to a model f’(x) and the impact of a specific feature
increases independently of the other features, the feature impact ¢; should not decrease
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for f'(x). With 2’ \ 7 denoting z; = 0 this property can be written as:

Pl ()= 2\ 1) 2 S(ha() = e \0) e O
= ¢i(f' ) > ¢i(f, ) .
These three conditions are only fulfilled for Shapley values [75] developed for game the-
ory. The Shapley regression values can be used to calculate the impact parameters ¢; of
the additive model in equation (5.27) to describe a complex model f while fulfilling the re-
quirements in equations (5.28) to (5.30). The Shapley regression model requires a retraining
of the model f on the subsets S C F of the original set of training features F'. To get the
impact of the feature z;, a model fgyy;) trained on a set including this feature is compared
to a model fg not trained on this feature. Due to the interplay of various features for the
model prediction, this comparison has to be done for all possible feature subsets S C F'\ {i}.
The final Shapley regression value is the weighted sum of the differences in the output of the
retrained models:

S|! — 15| —1)!
¢i = Z | |(|F||F||, k) (fsugir(@sugy) — fs(xs)) (5.31)
SCP\{i} :

However, most models use a fixed set of input features, which cannot be reduced without
changing the network. Therefore, a conditional approximation function E[f(z)|zg] is in-
troduced that approximates the original model f(z) for a reduced set of input features zg.
The Shapley values of this approximation function are called SHAP values and follow the
principles of local accuracy, missingness, and consistency. They are used in section 10.3 to
investigate the decision-making of the classifier networks trained in this thesis.
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Part 11

Polarization Analysis
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Figure 5.8: Visualization of the analysis strategy

The strategy of the polarization analysis is visualized in figure 5.8. The actual order of the
associated chapters partially deviates from this visualization to account for the connections
between the analysis steps. This second part of the thesis starts with chapter 6, which intro-
duces the selection criteria for objects and events measured at the ATLAS detector. These
selection criteria are chosen according to the differential W*W¥5j analysis in Ref. [8] and
lead to three distinct phase spaces: the signal region, the Low-m;; control region, and the
W#*Z control region. The Standard Model prediction in these phase spaces is summarized
in chapter 7. Due to the matching phase space definitions, the estimation of the background
contributions is consistent with the differential W W= jj analysis in Ref. [8]. The polarized
W*W=;j-EW predictions, on the other hand, have not been studied in ATLAS experi-
ments so far. The use of these polarized predictions requires a correction for higher-order
calculations. The corresponding corrections for higher-order electroweak and QCD effects
are extracted and applied in chapter 8. After correcting the prediction of the Standard
Model, multivariate analysis techniques are used to access the polarization information of
the events measured in the signal region. The optimization and training of the neural net-
works is described in chapter 9, followed by a validation of the network output and a study
of the decision-making in chapter 10. The uncertainties relevant to the polarization analysis
are summarized in chapter 11. Since the uncertainties of the background contributions are
already known from Ref. [8], the chapter focuses on the theory uncertainties of the polarized
prediction. The neural network scores are combined in the signal region to evaluate the mea-
sured data in chapter 12. This combined application produces a two-dimensional histogram
separating backgrounds, transverse polarization, and longitudinal polarization. A bias from
the training process of the networks is avoided by the k-fold application method. In order
to constrain the background contributions, the total number of events in the Low-m;; and
W= Z control region enter the profile likelihood fit in addition to the distribution in the signal
region. The likelihood fit extracts the normalization of the longitudinal polarization together
with the normalization of the transverse polarization state and the W*Z-QCD background.
The measurement is performed for the single boson polarization LX and the double boson
polarization LL.
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Chapter 6

Object and Event Selection

The amount of data generated at the ATLAS detector goes far beyond the statistical power
of other experiments. Since only a fraction of this data is expected to contain events of
scientific interest, a sophisticated chain of selection criteria has been established. This chapter
highlights the selection criteria for the W* W *;j-EW polarization measurement. The chosen
selections are identical to those used in the published unpolarized W*W=*j;j-EW analysis [8].
This paper has already shown that the chosen criteria are very well suited for the W+W= ;-
EW measurement and thus provide a solid basis for the polarization measurement.

6.1 Pre-selection

Since the measured collisions originate from the crossing of proton bunches at the LHC, mul-
tiple proton collisions can happen simultaneously. This results in multiple collision vertices
for each bunch crossing. Thus, a choice has to be made which is the primary vertex of a
collision event used for analysis. This decision is made in favor of the vertex with the highest
sum of transverse track momenta squared. The remaining vertices are the so-called pileup
and are handled as the background of the primary measurement. A primary vertex is only
considered for the analysis if it has at least three associated tracks.

The choice of a primary vertex is followed by the object reconstruction explained in
section 2.2.3 and the trigger chain described in section 2.2.4. Different trigger criteria are
used for electrons and muons, whereby the requirements for object quality increase with
decreasing transverse momentum. The triggers used during the individual years of Run 2
are listed in table 6.1 and further described in Ref. [76] and [77]. If at least one electron or
muon originating from the primary vertex passes one of these triggers, the event is recorded
for potential analyses.

Table 6.1: Electron and muon trigger used during Run 2 of the ATLAS detector [76][77].

Time period electron trigger muon trigger

HLT e24 lhmedium L1EM20VH

2015 HLT_e60_1lhmedium
HLT_e120_1hloose

HLT e26_lhtight nod0O_ivarloose

2016 - 2018 HLT_e60_1lhmedium_nod0O

HLT_e140_1hloose_nodO

HLT mu20_iloose_L1MU15
HLT _mub0

HLT mu26_ivarmedium
HLT _mub0

6.2 Object Selection

A collision at the ATLAS detector can lead to many particles emitted into the detector. These
particles are measured within the ATLAS detector and reconstructed into object candidates.
The object selection defines which of these reconstructed objects, which can be electrons,
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muons, or jets, are taken into account for the analysis.! The general reconstruction of these
objects within the ATLAS detector is described in section 2.2.3. The object selection is
divided into so-called baseline and signal objects (electrons, muons, or jets). As the name
indicates signal objects fulfill the tight selection criteria to be studied in the signal region of
the analysis. Baseline objects, on the other hand, are defined by looser requirements and are
used to check for additional leptons or jets in the event. In addition to the directly measured
objects, the missing transverse momentum p7*** (MET) is defined to enable sensitivity to
the occurrence of neutrinos. In the final step, an overlap removal is performed to avoid the
possibility of multiple reconstructions of the same physical object.

6.2.1 Electron Selection

Electrons originating from a collision in the ATLAS detector first pass through the inner
detector and leave a track due to their charge. Subsequently, the electron is stopped in
the adjacent electromagnetic calorimeter by forming an energy cluster. Thus, such a cluster
associated with a track in the inner detector indicates an electron and further selection
criteria can be applied. The summary of the applied selection criteria for baseline and signal
electrons is listed in table 6.2.

First, it must be ensured that the electron track originates from the collision. For this
purpose, the point pca of the track closest to the proton beam is determined. The transver-
sal and longitudinal impact parameters are measured for this point pca. The transversal
parameter dy corresponds to the transversal distance between pca and the beam, and the
longitudinal impact parameter zy is the distance along the z-axis between pca and the pri-
mary vertex. The resulting selection of |dy/04,| < 5 and |z¢ X sin §] < 0.5 mm ensures a high
probability that the electron track originates from the collision at the primary vertex.

The quality of the electron reconstruction is determined by a likelihood-based identifi-
cation using measurements from the tracking and calorimeter system. The analysis of the
shower shape and the matching between track and shower leads to the four operating points
VeryLooseLH, LooseLH, MediumLH, and TightLH, which are described in detail in Ref. [25].
The LooseLH identification is required for baseline electrons, while signal electrons have to
fulfill the more stringent requirements of the TightLH identification.

For geometrical acceptance, electrons are expected to hit the detector in the |n| < 2.47
range. The detector crack at 1.37 < |n| < 1.52 is excluded for signal electrons. Since the
signal electrons are expected to originate from a W boson decay, a transverse momentum
higher than 27 GeV is required. In contrast, baseline electrons are selected with pp > 4.5 GeV.

To enforce a high object quality and reduce potential backgrounds the selection of signal
electrons is expended by three additional requirements. The first one is the isolation which is
defined by the activity in the cone AR = /(An)? + (A¢)? around the track of the electron
candidate. The resulting electron-isolation working points are described in Ref. [25], with
the Gradient working point being applied for the signal electrons in this analysis.

For a further distinction from photons, the Author quantity is used. This quantity is based
on the presence of pixel hits, the ratio of energy and momentum, the transverse momentum
of the track, and secondary vertex information. The resulting Author value corresponds
to the degree of unambiguity in deciding whether the reconstructed object corresponds to
an electron or a photon. Author = 1 is required for signal electrons, corresponding to a
reconstruction exclusively as an electron.

The last requirement for signal electrons is motivated by the existence of the charge-flip
background described in section 7.2.3. Since no single kinematic variable of the measurement
is sufficient to distinguish between charge-flip electrons and electrons originating directly from
the collision, a boosted decision tree is trained in Ref. [78]. The resulting Electron Charge ID
Selector (ECIDS) was trained to distinguish between these electron types. Thus, a threshold
on the ECIDS output for signal electrons significantly reduces the charge-flip background.

1Photons are not used in this analysis
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Table 6.2: The selection criteria for baseline and signal electrons as described in Ref. [8].

baseline signal
Identification: LooseLH TightLH
Kinematic acceptance: pr > 4.5 GeV pr > 27 GeV
Geometrical acceptance: In| < 2.47 excclu din‘g;n|1.§72;17|;7| <152
Longitudinal impact parameter: |zp X sinf| < 0.5 mm |zo % sin @] < 0.5 mm
Transverse impact parameter: |do] <5 |- L] <5

dg Odg

Isolation requirement: - Gradient
Author requirement: - 1
Charge-flip rejection: - ECIDS

6.2.2 Muon Selection

In contrast to electrons, muons penetrate all layers of the ATLAS detector. Thus, the
muon reconstruction [27] requires information from the track in the inner detector, hits in
the electromagnetic and hadronic calorimeter, and their trace in the muon chamber. This
information is combined into an identification criterion to distinguish muons originating
directly from the collision and from hadron decay. The identification working point for
signal muons is Medium, which has suitable identification efficiency and purity while the
corresponding systematic uncertainties remain small. For the baseline muons, the Loose
working point is used, which has a higher efficiency but is also affected by higher systematic
uncertainties.

With |29 x sinf| < 0.5mm and |Ud700\ < 3 the selection of signal muons is significantly

stricter than for baseline muons that only have to fulfill |z x sin 6| < 1.5 mm and |;1700\ < 15.
This stricter selection based on the impact parameters leads to a higher probability that a
signal muon originates from the collision at the primary vertex than in the case of baseline
muons.

The kinematic acceptance of signal muons is with pr > 27 GeV identical to signal elec-
trons. The baseline muons, on the other hand, are accepted with a lower transverse mo-
mentum of pr > 3 GeV than baseline electrons. The geometric acceptance of || < 2.7 for
baseline muons is also greater than for electrons. Signal muons must be measured within
In| < 2.5.

The last difference between signal and baseline muons is their isolation. Signal muons are
required to fulfill the FixedCutPflowTight isolation criteria. This isolation decreases the
activity around the signal muon track compared to the objects selected as baseline muons.

A summary of all the object selections applied for muons is listed in table 6.3.

Table 6.3: The selection criteria for baseline and signal muons as described in Ref. [8].

baseline signal
Identification: Loose Medium
Kinematic acceptance: pr > 3GeV pr > 27 GeV
Geometrical acceptance: In| < 2.7 In| < 2.5
Longitudinal impact parameter: |zp X sinf| < 1.5mm |z X sinf| < 0.5 mm
Transverse impact parameter: \(i—;’o| <15 |U%| <3
Isolation requirement: - FixedCutPflowTight

6.2.3 Jet Selection

The jets are reconstructed by the anti-k; [28] and Pflow algorithm [29] based on information
from the calorimeters and the inner detector. To increase the signal purity additional re-
quirements are chosen for the jets summarized in table 6.4. Analog to electrons and muons,
jets must also be verified whether they originate from the primary collision. Therefore, the
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jet vertex tagging (JVT) [79] is used for signal jets with pr < 60 GeV and || < 2.4 to check
whether they can be matched to the primary vertex of the collision.

As described in section 3.3.3, the two jets resulting from the W*W*jj scattering are
expected to be in the forward regions of the detector. Thus, the jets have a significantly larger
geometrical acceptance with |n| < 4.5 than the selected leptons. A transverse momentum of
pr > 20 GeV is required for baseline jets, and signal jets are selected with pr > 25 GeV.

Table 6.4: The selection criteria for baseline and signal jets as described in Ref. [8].

baseline signal
. anti-k; algorithm [28]  anti-k; algorithm [28]
Clustering; with R = 0.4 with R = 0.4
Kinematic acceptance: pr > 20 GeV pr > 25GeV
Geometrical acceptance: In| < 4.5 In| < 4.5
I JVT for pr < 60GeV
Vertex matching: - and || < 2.4

6.2.4 Reconstruction of the Missing Transverse Momentum

Since the leptonic decay of W bosons is studied, sensitivity to neutrino occurrence is cru-
cial for this analysis. Before the two protons collide their transverse momentum is exactly
zero. Due to momentum conservation the transverse momenta of all emitted particles should
cancel out, but neutrinos can not be measured within the ATLAS detector. Therefore, if a
significant transverse momentum is missing for complete cancellation, this is a clear indica-
tion of neutrino activity. This missing transverse momentum p7**** [80] is calculated by the
transverse momenta of the baseline leptons and jets combined with soft-hadronic activity.
An internal overlap removal procedure avoids the double-counting of deposits.

6.2.5 Overlap Removal

The presented lepton and jet selection can lead to double-counting of objects measured in the
ATLAS detector. An overlap removal is performed to prevent an object from being recon-
structed multiple times. This overlap removal is based on Ref. [81] and updated according
to Ref. [82]. This procedure removes reconstructed objects in the following order:

¢ Electron vs. electron
If two reconstructed electrons share the same track in the inner detector or have over-
lapping clusters in the electromagnetic calorimeter the electron with the higher pr is
kept.

e Electron vs. muon
If a muon and an electron share the same track in the inner detector and the muon is
tagged in the muon chamber the electron is removed. If the muon is not tagged in the
muon chamber it is removed and the electron is kept.

e Electron vs. jet
The jet is removed if an electron overlaps a jet within AR < 0.2. In the case of a
AR greater than 0.2 but smaller than min(0.4, 0.04 + 1()1)@) the jet is kept and the
T

electron is removed.
e Muon vs. jet
For overlapping jets and muons, the jet is removed in each of the following cases:
— The AR between the two objects is smaller than 0.2.
— The jet has less than three associated tracks with pr > 500 MeV.

"
— The ratio of transverse momenta z—-T is larger than 0.5 and the ratio of the trans-

J

T
verse muon momentum and the jet tracks with pr > 500MeV is greater than
0.7.
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If none of these criteria is satisfied and AR is smaller than min(0.4, 0.04 + 101)@) the
T

jet is kept and the muon is removed.

6.3 Event Selection

Based on the object selection described in the previous section, specific events can be selected
for the polarization analysis. This event selection is done by defining kinematic regions for
the measurement. The main region for the polarization measurement is the so-called signal
region. To constrain background contributions for the statistical fit a Low-m;; and w*Zz
control region is used.

6.3.1 Signal Region

This polarization analysis of W*W*;j-EW scattering focuses on the leptonic decays of
the W¥ bosons. Thus, two signal leptons with identical charges are required in the signal
region. To minimize the contamination from W*Z and ZZ events the event is discarded if
an additional baseline lepton is reconstructed. For the case of two electrons, the background
originating from Drell-Yan processes is suppressed by a Z-peak veto at |me. —mz| > 15 GeV
and a tighter geometry selection with || < 1.37. The impact of low-mass Drell-Yan processes
is reduced by an invariant mass requirement my > 20 GeV on the leptons.

Due to the neutrinos expected from the leptonic W* boson decay, a minimal missing
transverse momentum of p**s > 30 GeV is required.

As already discussed in section 3.3.3, two highly energetic jets in the forward regions
of the detector are expected for the W*Wjj-EW scattering. Thus, at least two signal
jets are required in the signal region and have to satisfy a high invariant mass requirement
with m;; > 500 GeV and a geometrical separation criteria with |Ay;;| > 2. In addition, the
highest jet pr has to be greater than 65 GeV and the second highest pr jet has to fulfill
pr > 35GeV.

To reduce the contamination of top quark processes with ¢t — Wb b-tagging is used. The
neural network method described in Ref. [83] is applied. In particular, the neural network
DL1r of the 85% efficiency working point is used in this analysis. If any baseline jet with
[n| < 2.5 and matched by JVT is b-tagged by this neural network the event is dropped.

The event selection for the W*W*;j-EW signal region is summarized in table 6.5. Since
the signal purity of this region was optimized in the unpolarized W*W*;j-EW analysis [8]
it offers an excellent baseline for the polarization measurement in this signal.

Table 6.5: The event selection defining the signal region used in Ref. [8].

Exactly two signal leptons with the same electrical charge
No additional baseline leptons

In the case of two electrons they have to fulfill || < 1.37 and |mee — mz| > 15 GeV
my > 20 GeV
piss > 30 GeV

At least two signal jets
The highest pr jet has to satisfy pr > 65 GeV.
The second highest pr jet has to fulfill p;r > 35 GeV.

mjj 2 500 GeV
[ Ayj;| > 2

No jet is b-tagged using the DL1r tagger with the 85% efficiency working point
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6.3.2 Low-mj; Control Region

The signal region is a region of high signal purity and is, therefore, the most suitable kinematic
region to extract the polarization. However, the statistical fit of the polarization is limited
by various backgrounds that are introduced in section 7.2. The Low-m;; control region
is constructed to constrain these backgrounds in the fit. The definition of this region is
consistent with the signal region definition in table 6.5 but with a lower m;; selection of
200 GeV < mj; < 500 GeV. The invariant di-jet mass m;; is the most discriminant variable
for the WEW=;j-EW signal against the corresponding backgrounds. The resulting Low-m;
control region is thus kinematically very similar to the signal region but with a significantly
lower W*W#;j-EW contribution. Thus, including this region in the fit constrains the
normalization of the backgrounds.

6.3.3 W*Z Control Region

The fully leptonic decay of W*Z results in the dominant background in the signal region.
Unfortunately, its simulation by Monte Carlo event generators is known from Ref. [8] to have
poor modeling. Therefore, the shape and normalization of the corresponding background
simulation are corrected using data measured in the ATLAS experiment. For this purpose,
the W*Z control region is kinematically close to the signal region but with a third signal
lepton with ppr > 15GeV. To reduce the contribution from Z + jets and Z+v a tri-lepton
invariant mass of my; > 106 GeV is required. The remaining selection criteria listed in
table 6.6 are consistent with the merged Low-m; control and signal region definition. Thus,
the resulting W= Z region offers the opportunity to determine the W*Z background with a
kinematic very similar to the W+ Z background expected for the other regions.

Table 6.6: The event selection defining the W*Z control region used in Ref. [§].

Two signal leptons and an additional third signal lepton with ppr > 15 GeV

In the case of two electrons they have to fulfill |n| < 1.37 and |m.. — mz| > 15 GeV

At least two leptons satisfy my > 20 GeV
myy 2 106 GeV
p’f?iss > 30 GeV

At least two signal jets
The highest pr jet has to satisfy pp > 65 GeV.
The second highest pr jet has to fulfill p;r > 35 GeV.

mjj > 200 GeV
|Ay;;| > 2

No jet is b-tagged using the DL1r tagger with the 85% efficiency working point

6.3.4 Fiducial Signal Region

The selections described so far are applied to objects and events reconstructed by the ATLAS
detector. Predicting these regions requires a simulation of the reconstruction by the ATLAS
detector and its corresponding acceptance. The introduction of a fiducial signal region at the
particle-level simplifies the theoretical investigation of the analysis. The particle-level fiducial
signal region is kinematically close to the reconstruction-level signal region in table 6.5. The
main selection criteria are listed in table 6.7. The leptons are selected with pp > 27 GeV
and |n| < 2.5 and dressed with prompt photons within AR < 0.1. The jets are reconstructed
by the anti-k; algorithm with R = 0.4. If the resulting jet overlaps with an electron within
AR < 0.4, the electron is removed for pre/prjer < 0.5. The jet is removed if the electron
carries more than 50% of the transverse jet momentum.
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The resulting reference signal region makes it easier for theorists to contribute to and
interpret the analysis results. In section 8.2, the fiducial signal region definition is used by
the authors of Ref. [50] to provide higher-order electroweak calculations of the polarized
W*W=*;j-EW signal. For the final statistical evaluation in sections 12.5 and 12.6, the
fiducial signal region defines the fiducial cross-sections which are one of the main results of
the polarization analysis: The signal strength of the polarized W*W=;jj-EW processes is
extracted from the reconstruction-level signal region. The resulting signal strength is applied
on the fiducial cross-section expected in the fiducial signal region. The particle-level definition
of this region makes it easier for theorists to compare the predictions of their models with
the measurement results.

Table 6.7: The particle-level event selection of the fiducial signal region.

Exactly two same-charged leptons with pr > 27 GeV and |n| < 2.5
Veto on events with taus from W=+ in ME calculation

my > 20 GeV

|mee —mz| > 15 GeV in the ee-channel

pritss > 30 GeV

Two jets with |n| < 4.5

leading and subleading jets satisfying pr > 65 GeV and pr > 35 GeV
Veto on b-jets

mj, Z 500 GeV

ijj > 2
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Chapter 7

Standard Model prediction

The analysis in this thesis aims to probe whether a longitudinal polarization predicted by
the Standard Model exists. This goal is only achievable by directly comparing the Standard
Model prediction and measured data. Thus, correct modeling of the prediction is crucial
for the analysis. The background predictions in section 7.2 are already known from the
unpolarized W*W=*;j-EW analysis [8]. The only updated background is the W*Z-QCD
contribution. For the W*W=jj-EW signal in section 7.1, on the other hand, new polarized
templates are required. Details about the Monte Carlo generated samples not used in Ref. [8]
are listed in table A.1.

7.1 W*W=jj Signal Simulation

The W*W=;jj process is simulated by Monte Carlo event generators. The list of simulated
samples is given in table A.2. Two event generators, MADGRAPH [46] and SHERPA [54],
are used to simulate the polarized W*W = j;j-EW signal. The additional contribution from
polarization interference is estimated separately for these two simulation approaches. The
QCD-induced contribution W*W=*;j-QCD and the interference between electroweak and
QCD-induced production W+W=jj-INT result in a significant background to the W*W= j -
EW polarization signal.

7.1.1 W*W*;j-EW Polarization by MadGraph

The MADGRAPH event generator can simulate polarized vector boson scattering at leading-
order accuracy. The PDF set NNPDF3.0nlo is used for the generation of distinct polarization
templates. One unpolarized sample, the LL, TL, and TT polarization states in the W*W=*
center-of-mass system and the LL, TL, and TT polarization states in the partonic center-of-
mass system are produced. The polarization samples are validated to follow the expected W+
boson decay distribution in equation (3.93) and the sum of the polarizations is consistent
with the unpolarized W*W*jj-EW cross-section. Since the simulation has leading-order
accuracy, the samples will be reweighted for higher-order effects in chapter 8.

7.1.2 W*W*jj-EW Polarization by Sherpa

With the SHERPA 3.0 version, the simulation of cross-sections with polarized intermediate
particles becomes available [45]. The PDF4LHC21_40_pdfas PDF set is used to generate
polarized SHERPA samples (DSID 700965-700969, and 701228-701231). In contrast to the
polarization simulation by MADGRAPH, the SHERPA simulations are not distinct polarization
samples. The polarization information is provided eventwise by additional weights, allowing
the simulation of all polarization states studied in the analysis to be performed in just one
run. The advantage of the SHERPA polarization simulation is the availability of jet-merging
described in section 4.3 to introduce higher-order QCD effects. Thus, a WEW=*jj + 0, 1j-
EW sample is generated that merges the leading-order W*W*;j-EW simulation with the
WEW=*4jj-EW contribution which has one additional jet. To enable the simulation of
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polarization the narrow-width approximation is applied. This narrow-width approximation
requires dropping the s-channel-like diagrams to avoid divergences at higher-order QCD. In
section 8.1, this approximation is described in more detail and the corresponding correction
for the missing s-channels is derived. A NLO-EW correction is implemented in section 8.2.
The validation of the polarization modeled by SHERPA is done in section 8.1.1 against the
simulation by the MADGRAPH event generator.

7.1.3 Polarization Interference

The impact of the interference ), Y Mf\*/\/lf\, between the different polarization states is
expected to be small. The estimation of this background depends on the event generator
used for the polarization simulation. For MADGRAPH, the interference is calculated by the
difference

Nint = Nunpol - Z Npol (71)

pol

between the unpolarized sample (DSID 506202) and the sum of the polarized contributions.

For the polarization simulation by the SHERPA event generator, the interference contri-
bution is directly provided by an event weight as for the individual polarization states. Thus,
SHERPA directly models the polarization interference.

7.1.4 W*W*jj-INT and W*W*;j-QCD Background

The WEW=*jj-INT (O(a%y)) and WEW£55-QCD (O(aky,)) contribution is modelled by
the MADGRAPH event generator. These simulated samples were already used and validated
in the unpolarized W*W=;j-EW measurement in Ref. [8]. The theoretical background of
these distributions is described in detail in section 3.3.3, and the sample details are listed in
table A.2.

7.2 Background Estimation

Several processes contribute to the background in the signal region defined in section 6.3.1.
Their shape and number of events are modeled using event generator simulations and kine-
matic information extracted from measured data. The different background contributions
are described in the following sections and sorted in decreasing order based on the number
of events resulting from the background. Since these backgrounds were already studied in
the unpolarized W*W*;j-EW analysis [8] only a brief overview is given in the following.

7.2.1 W#=*Z Background

The events originating from W=*Zjj — [*vi*1¥jj are the most dominant background in the
signal region. This background is not entirely avoided by the two-lepton requirement of the
signal region since one of the leptons originating from the Z boson can be outside the detector
acceptance. If one of the leptons is not reconstructed or fails the baseline lepton selection,
the W*Zjj — 1Fvi*1Tjj process can fulfill the signal requirements of two same-charged
leptons, two jets, and a missing transverse momentum.

The W*Z background comprises the electroweak scattering W+Z-EW and the strong
scattering W*Z-QCD. In table A.3, the event generator samples are listed that are used
to model this background. While the W*Z-EW MADGRAPH sample offers a good predic-
tion for the W*Z-EW contribution, the W*Z-QCD is known from Ref. [8] to be poorly
modeled by Monte Carlo simulations. By moving from the W+ Z-QCD SHERPA2.2.2 sample
used in the unpolarized W*W*;j-EW analysis [8] to the newer W*Z-QCD SHERPA2.2.12
sample, the mismodeling has slightly improved. However, the prediction by the W*Z-QCD
SHERPA2.2.12 sample still needs to be corrected using the same data-driven approach as in
Ref. [8]. The implementation and shape correction of the SHERPA2.2.12 sample are discussed
in Ref. [84].
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To improve the prediction of the W+ Z-QCD background, the W*Z control region intro-
duced in section 6.3.3 is used. Since the m;-distribution is known to be most affected by the
mismodeling but is crucial for the separation of W*W=j-EW and backgrounds, the event
generator prediction is corrected by measured data in this kinematic variable. The non-
W*Z-QCD processes are subtracted from the measured data in the m;-histogram for the
shape correction. The remaining data distribution is normalized to unity and divided by the
normalized W#*Z-QCD prediction. The resulting ratio represents the m; shape difference
between prediction and data. The shape of the correction is smoothed by an exponential func-
tion f(z) = ae~®®. This function is fit to the ratio of (data — non-W*Z-QCD)/W*Z-QCD
in the range of 200 GeV < mj; < 2500 GeV. This analytic fit is applied on the W*Z-QCD
background in the signal and Low-m; control region to correct the shape of the prediction.
For this shape correction three different uncertainties are considered®:

e PDF and «g choice:
The reweighting function is derived for different PDF and ag variations. The envelope
of the resulting fits is chosen as uncertainty.

e Higher order effects:
The impact of higher-order effects is estimated by the envelope of fit functions for
different scale variations.

o Statistic:
The statistical uncertainty of the measured data in the W*Z control region and the
limited number of Monte Carlo events generated for the prediction.

In addition to the shape, the normalization of the W*Z-QCD background has to be
improved. The normalization correction is done by including the W Z control region in the
final fitting procedure in section 12.1 with a free fit parameter pwz-qcp on the normalization
of the W*Z-QCD background. For this fit, only the total number of events in the W*Z
control region is considered since the exponential reweighting function already extracts the
shape information.

7.2.2 Non-Prompt Background

Another essential but poorly modeled background originates from so-called non-prompt lep-
tons. Non-prompt leptons do not originate directly from the primary collision but are the
product of hadron decays or jets misidentified as leptons. Since the modeling by Monte
Carlo simulations is very poor, the data-driven fake factor method is used to extract this
prediction. The fake factor method for the W*W=*;j-EW analysis is developed in Ref. [85]
and summarized in the following.

A new lepton selection Anti-ID is introduced for the fake factor method, which has looser
object quality requirements than the signal leptons described in section 6.2. Anti-ID selected
electrons must pass only the MediumLH identification and have no isolation requirement. The
Anti-ID muon selection requires the FixedCutPflowLoose isolation and a transverse impact
parameter of |<de00| < 10. To avoid an overlap between the Anti-ID and signal object selection
the Anti-ID leptons must also fail at least one of the tighter signal object selection criteria.
Leptons passing this Anti-ID selection criteria are significantly more likely to be non-prompt
than leptons passing the signal object selection.

By this additional object selection, the fake factor

_
F=5 (7.2)

can be defined with the probability f of a non-prompt lepton passing the signal selection
and the probability f of a non-prompt lepton being Anti-ID selected. The fake factor F is
measured in a single lepton control region enriched with non-prompt leptons. Exactly one
signal or Anti-ID selected lepton is required in this region with a transverse momentum of

IMore details about PDF, ag, and scale variations are given in section 11.2
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pr > 27GeV. The events also have to have at least one signal jet with ppr > 25(30) GeV
for |n < 2.5|(2.5 < n < 4.5). The tagging jet must be back-to-back with the lepton with
|A¢y;] > 2.8. To suppress non-prompt W*+jets events, the sum of the missing transverse
momentum p7**¢ and the transverse mass of the lepton and pJ'** system is required to
be smaller than 50 GeV. The fake factor is averaged over non-prompt control regions with
and without a veto on b-tagged jets. However, the systematic uncertainties of the fake
factor method are derived from the non-prompt control region with a b-jet veto to be more
consistent with the signal region selection.

In this control region, the number of events with signal-selected leptons Ngjgna1 and Anti-
ID selected leptons Napnti1p are extracted from data. By subtracting the number of prompt
events N:;;r;pt and NY'O"PY predicted by event generators, the actual number of non-prompt

events in this control region can be calculated. This enables a direct extraction of the fake
factor

prompt
F Nsignal B Nsignal
(pT) - N prompt (73)
Anti-ID 7 4V Anti-ID

dependent on the lepton pr. Since the non-prompt rates of electrons and muons differ
significantly, two distinct fake factor Fi, and F), are extracted from the non-prompt control
region.

Another region is defined as the transfer of non-prompt rates to the signal region. This
region has the same selection criteria as the signal region, but one of the two leptons must
be Anti-ID selected. As in the non-prompt control region, the number of prompt events
is subtracted using samples produced by event generators. The resulting difference is the
expected non-prompt contribution with one signal and one Anti-ID lepton. By applying the
fake factor, this contribution can be projected to the non-prompt background

non-prompt __ . . . prompt
Nsignal; signal — F@ (pT) (Ns1gnal e; Anti-ID e Nsignal e; Anti-ID e)

prompt

+ Fe(pT) (Nsignal wu; Anti-IDe — Nsignalu; Anti—IDe)
prompt

+ FH (pT) (Nsignal e; Anti-ID pp ™ Nsignal e; Anti-ID p,)

X . _ prompt
+ Fl‘« (pT) (N51gna1 w3 Anti-ID p Nsignal w; Anti-ID ,u)

in the signal region with two signal-selected leptons. For the fake factor application, the pp
of the Anti-ID selected lepton is used.
For the calculation of the fake factor, a variety of experimental uncertainties is considered:

e Prompt subtraction:
The prompt subtraction is varied by 5% to estimate a modeling uncertainty on the fake
factor.

e Jet flavor composition:
The fake factor is extracted separately from the non-prompt control region once with
N jet = 0 and Np_jet > 0. The mean fake factor is chosen as the nominal strategy, while
the two individual fake factors represent the uncertainty for the jet flavor composition
in the non-prompt control region.

o PSS reconstruction:
To account for uncertainties in the missing momentum reconstruction the p%”ss +mr
selection of the control region is varied by 5 GeV.

o Trigger bias:
The fake factor is re-estimated for trigger selections with different identification and
isolation working points.

e Statistical uncertainty of the fake factor: The statistical uncertainty of the non-prompt
control region is propagated to the fake factor calculation.
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7.2.3 Charge-Flip Background

A major contribution of events with two leptons measured in the ATLAS detector originates
from the Z — ete™ decay. Most of these events are rejected by the same-charge requirement
of the signal region, but some Z — e*e™ events pass this selection due to charge-flip. Charge-
flip is a process causing electrons to be reconstructed with an opposite charge. For highly
energetic electrons, charge misidentification can occur due to an indeterminable curvature of
the track. However, in most cases, charge-flip results from bremsstrahlung emitted by the
electron. As shown in figure 7.1 the electron (positron) emits a hard photon that carries most
of the momentum of the initial electron (positron). This photon produces a high energetic
positron (electron) and a low energetic electron (positron) via pair production. The two
soft electrons (positrons) get lost in the detector, and only the opposite-charged positron
(electron) is measured in the detector.

Yhard

+ +
esofif 6soft
Figure 7.1: Feynman diagram of an electron charge-flip

The data-driven estimation of the charge-flip background used for this analysis was devel-
oped in Ref. [86]. A modified signal region with oppositely charged leptons is used to model
this background. The data in this opposite-charged signal region is multiplied by a factor

i1 (1 —e2) +ea(l —€n)

w = 7.5
(1 —e1)(1 —e2) + e (7.5)

dependent on the charge-flip probabilities € of the individual leptons. The probabilities are
derived by a MADGRAPH simulation of Z — ee in a dedicated charge-flip control region
and corrected by additional scale factors derived by the Egamma Combined Performance
(CP) group in Ref. [87]. In this Z — ee charge-flip control region, an invariant mass of
my > 20GeV is required, and events have to pass the ECIDS charge-flip rejection. The
electrons have to have TightLH isolation, Gradient isolation, a transverse momentum of
pr > 20 GeV and geometrical acceptance of |n| < 2.47 excluding 1.37 < |n| < 1.52. In this
region, the charge-flip probabilities e(pr,n) are calculated as a function of the electron pr
and 7. For muons, the charge-flip probability is set to exactly 0.

By multiplying the data in the opposite-charged signal region by the charge-flip factor
w, a very good estimation of charge-flip events in the signal region is provided. However, an
additional energy correction is required since the charge-flip process leads to energy losses.
Thus, the transverse momentum of the electrons is corrected by

p%)rrcctcd — % + dE. (76)

The momentum is scaled by the correction factor o and a Gaussian smearing is applied by
the random value dE. The value of o and the Gaussian distribution for dE are calculated
using the MADGRAPH simulation for Z — ee in different bins of |n|.

The uncertainty of the charge-flip background originate from the statistical uncertainty
in the opposite-charged signal region and the systematic uncertainty of the scale factors
provided by the Egamma Combined Performance (CP) group. The uncertainties of the scale
factors are explained in Ref. [87] and [78].
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724 Vv, ZZ, Z+jets, Top, and Tri-boson Background

The remaining background consists of contributions of Vv, ZZ, Z+jets, top, and tri-boson
events. These backgrounds are known from the unpolarized W*W*;j-EW analysis [8] to
have a minor impact compared to the backgrounds described in the previous sections. The
event generator samples used to model these backgrounds are listed in tables A.4 to A.7. To
avoid an overlap with the data-driven estimates of non-prompt and charge-flip contributions,
only prompt and non-charge-flip events are considered in the signal region.

The uncertainties of these backgrounds are estimated by conservative normalization un-
certainties implemented in Ref. [8].
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Chapter 8

Higher-Order Corrections on
WEW=;j-EW

The polarized templates are simulated by MADGRAPH with leading-order accuracy with
subsequent parton shower (LO+PS). The SHERPA event generator also includes higher-order
QCD effects via multi-jet merging. However, the multi-jet merging required additional ap-
proximation to model the polarization states. Thus, both samples require additional cor-
rections to model the effects at higher-order QCD (a%afy, — adagy,) correctly. These
effects are studied on particle-level by comparing different SHERPA samples and deriving a
multivariate higher-order correction.

For higher-order electroweak effects (a%afy, — a%a%y), the authors of Ref. [50] pro-
vided a calculation on parton-level. These calculation results can directly introduce the
next-to-leading-order electroweak (NLO-EW) correction into the analysis.

8.1 Approximate NLO-QCD Correction

The recent SHERPA version 3.0 enables the simulation of the cross-section of polarized in-
termediate vector bosons [45]. As described in section 4.3, the SHERPA event generator
provides multi-jet merging including the radiation of additional jets in the matrix element
calculation. The multi-jet merging is used for a study of the higher-order QCD effects of real
emissions on the polarized W*W=*;j-EW scattering. In Ref. [45], the multi-jet merging with
one additional QCD radiation in the matrix element is shown to cover the dominant NLO-
QCD effects and is therefore referred to as approximate NLO-QCD+PS. The approximate
NLO-QCD+PS study is performed on particle-level samples without detector simulation to
reduce the computational effort. The correction procedure is explained in section 8.1.2 and
requires multiple samples listed in table 8.1. The resulting higher-order QCD corrections
are applied to the nominal reconstruction-level polarization samples generated with detector
simulation. For the application of the correction, the event-wise particle-level information is
used, which is additionally stored in the reconstruction-level polarization samples. Therefore,
the event kinematic of the correction application is consistent with the kinematic used for
the extraction.

8.1.1 Comparison of Simulation by Sherpa and MadGraph

The polarization simulation by the SHERPA event generator became available after the sam-
ples generated by MADGRAPH were validated and established in the WE*W=*;j-EW po-
larization analysis. Therefore, the SHERPA prediction is introduced into the analysis by
a validation against the MADGRAPH prediction. This comparison has to be done at LO-
QCD+PS since MADGRAPH cannot perform multi-jet merging for vector boson scattering.
As in the rest of this chapter, this comparison is performed for particle-level samples to avoid
the computational effort of the detector simulation.
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Table 8.1: SHERPA WEW*;j-EW samples to study the approximate NLO-QCD+PS
effects.

DSID  sample name
SHERPA WEW
700961  Sh_300b1_WIlvWlvjj_mm_LO_pol
700962  Sh_-300b1_-WIvWlvjj_pp-LO_pol
SHERPA WEW*jj (t-ch.)

700963  Sh_300b1_WI1vWlvjj mm_LO_MinTChannel _pol
700964 Sh_300b1_WlvWlvjj_pp-LO_MinTChannel_pol

SHERPA WEW*jj + 0,15 (t-ch.)

700965 Sh_300b1_WIlvWlvjj.mm_MinTChannel_pol_highMjj
700966 Sh_300b1_WIvWIlvjj_pp-MinTChannel_pol_highMjj
700968 Sh_300b1_WIlvWlvjj.mm_MinTChannel_pol_lowMjj
700969  Sh_300b1_WIvWlvjj_pp-MinT Channel_pol_lowMjj

SHERPA [*vl*vjj + 0,15 (t-ch.)
700971  Sh_300b1_llvvjj_ss_MinTChannel
SHERPA [Tvi*vjj+0,1j
700970 Sh_300b1.llvvjj_ss

The comparison is made in the particle-level phase space defined in table 8.2. This phase
space is equivalent to the signal region definition merged with the Low-m;; control region
and covers the kinematic region relevant to the polarization measurement. The number
of events predicted by MADGRAPH and SHERPA at LO-QCD+PS are listed in table 8.3.
The simulation with MADGRAPH predicts slightly lower cross-sections than SHERPA. The
predicted TL fraction by SHERPA is a bit higher and the TT fraction is a bit lower than
in the prediction by MADGRAPH. The fractions are calculated relative to the sum of the
longitudinal and transverse polarization states.

Table 8.2: Particle-level selection corresponding to the SR and Low-m; region selection.

Exactly two signal leptons with pp > 27 GeV and the same electrical charge
with |n| < 2.5 for muons and

with |n| < 2.47 excluding 1.37 < |n| < 1.52 for electrons

with || < 1.37 in the ee channel

my > 20 GeV

|mee —myz| > 15 GeV in the ee-channel
Emiss > 30 GeV
mjg Z 200 GeV

at least two jets
leading and subleading jets satisfying pr > 65 GeV and ppr > 35 GeV

Ayjj > 2

The most prominent shape differences between the predictions emerge in the subleading
jet pr, the di-jet invariant mass mj;, and the jet separation AR;;. Figure 8.1 shows the
comparison in these variables for the polarization in the W*W# and partonic center-of-
mass frame. The overall shapes agree but differ in the kinematic tails. This difference in the
jet kinematic can be explained by the different showering algorithms used in the simulations.
However, the general agreement between the SHERPA and the MADGRAPH generated sample
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8.1 Approximate NLO-QCD Correction

Table 8.3: Comparison of the cross-sections, polarization fractions, and number of gener-
ated Monte Carlo events for different MADGRAPH and SHERPA samples. The shown events
are selected by the particle-level phase space defined in table 8.2.

‘ WW-cmf pp-cmf
MC events total o LL LT+TL TT LL LT+TL TT
MG unpol 73261 2.880fb - - - - - _
MG pp-cmf 149321 2.995 fb ) ) . 0.177fb  1.030fb 1.718fb

6.07%  35.20% 58.73%
0.277fb  0.874fb 1.744fb
MG WW-cmf | 1426669  2.896fb 0.58%  30.18%  60.24% - - -

0.285fb  0.909fb 1.778fb | 0.182fb 1.072fb 1.732fb

ShW=W=jj | 1269306 2.933b [ g oo 3050%  59.81% | 6.09%  35.91%  58.00%

is sufficient considering the expected number of events in the signal region. Thus, for the
application in this thesis, the polarization simulation in SHERPA is successfully validated
against the MADGRAPH simulation.

8.1.2 Correction Procedure

The WEW=;j-EW scattering is already described in detail in section 3.3.3. However, it is
worth revisiting the most essential points to clarify the principle of the higher-order QCD
corrections better. For the vector boson polarization simulation, the SHERPA event gener-
ator uses a narrow-width approximation (NWA) to suppress the contribution of the single-
resonant diagrams (figures 3.4h and 3.4i) and non-resonant diagrams (figure 3.4j). This
approximation lead to on-shell W* bosons and thus divergences for the hadronically de-
caying W* boson in s-channel-like diagrams (figures 3.4d to 3.4g) for m;; — myy+. This
divergence is avoided at LO by the m;; > 200 GeV selection in the signal region and Low-m ;
control region. However, when including additional QCD emissions in the matrix element
calculation, divergences reappear if the two leading jets do not originate from the same W+
boson as shown in figure 8.2. In order to avoid this divergence, the s-channel-like Feynman
diagrams are dropped for the polarization simulation at approximate NLO-QCD+PS. This
results in an additional correction factor at approximate NLO-QCD+PS to correct for the
missing s-channel diagrams. In this paper, dropping the s-channels is referred to as t-channel
approximation, but this also includes the remaining u-channel-like Feynman diagrams.

To ensure a valid correction for approximate NLO-QCD+PS effects several SHERPA sim-
ulations of W*W=;;-EW listed in table 8.1 are compared on particle-level in the following
section:

o« WEW=*jj vs. WEWEjj (t-ch.):
Effects of the t-channel approximation on the polarization states at LO-QCD+PS

o WEWEjj (t-ch.) vs. WEW*55 + 0,15 (t-ch.):
Impact of including one additional QCD emission in the matrix element calculation
while the t-channel approximation is applied

o« WEW=*jj+ 0,15 (t-ch.) vs. I*vi*vjj + 0,15 (t-ch.):
Impact of the NWA at approximate NLO-QCD+PS. This comparison can only be done
for the unpolarized contribution

o I*ultvjj+0,15 (t-ch.) vs. ITvitvjj +0,15:
Unpolarized contribution of s-channel-like diagrams for the simulation with multi-jet
merging

The resulting correction factor for a polarized sample at LO-QCD+PS

corr (WiWiJ’j +0,1j (t-ch~)> ( EEvwjj+ 0,1 ) .
jet-merged — - . v . |
jet-merg WEW=j; poi \WEW=Ejj+0,1j (t-ch.) /000
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Figure 8.1: Comparison of the differential polarized cross-sections simulated by SHERPA
WEW®jj and MADGRAPH at particle-level in the phase space defined in table 8.2. The
polarizations are defined in the WW-cmf for figures 8.1a, 8.1c and 8.1e and in the pp-cmf
for figures 8.1b, 8.1d and 8.1f.



8.1 Approximate NLO-QCD Correction

corrects for the additional QCD radiation and the approximations necessary for the polarized
simulation. The product in equation (8.1) already includes the correction

(w0 ®.2)
s-ch. = WEW=*jj+0,1j5 (t-ch.) unpol |

for the NWA and the missing s-channel diagrams at approximate NLO-QCD+PS. The va-
lidity of these two corrections will be studied in the subsequent sections.

qs

W:t

()

Figure 8.2: A s-channel-like Feynman diagram for WW=*;j-EW at NLO-QCD.

8.1.3 Comparison of the Sherpa Simulation Setups

Since the measurement by the detector can cause kinematic migrations, the set of events
passing the particle-level selection is not entirely equivalent to the set of events passing
the reconstruction-level selection. These migrations can be considered by a multivariate
correction which is extracted from a significantly looser particle-level phase space. The
selection on particle-level in table 8.4 covers almost all events expected to potentially migrate
into the reconstruction-level signal region and Low-m; region. The 7 selection of leptons is
kept tight since it is applied in the object selection. A looser 7 selection on leptons could lead
to a different set of leptons used for the subsequent event selection, and therefore, the lepton
7 is kept tight. The pr selection of the leptons is also applied as object selection, but as the
leptons are sorted by pr, a higher pr requirement can be introduced by a subsequent event
selection. Therefore, a loose pr selection can be used as a baseline and later tightened by an
additional event selection. The resulting cross-sections for the different SHERPA samples are
listed in table 8.5. While the cross-section differs between the different SHERPA simulations,
the polarization fractions are not affected.

Table 8.4: Loose particle selection used to derive the higher-order QCD correction.

Exactly two signal leptons with pr > 20 GeV and the same electrical charge
with |n] < 2.5 for muons and
with |n| < 2.47 excluding 1.37 < || < 1.52 for electrons

my > 15 GeV

at least two jets
leading and subleading jets satisfying pr > 40 GeV and pr > 20 GeV

Since the polarization analysis follows a multivariate approach to use the full phase space
information for signal discrimination, the SHERPA sample comparison has to be done in a
variety of kinematic variables. The lepton and jet rapidity 7, transverse momentum pr and
azimuthal angle relative to the leading lepton (¢— ') and the missing transverse momentum

piss are studied to check the kinematic of individual objects. In addition, also high-level

ILMET _ 12,MET IL,MET
d my )

variables like the transverse masses (mg , My , an , angle separations
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8 Higher-Order Corrections on W*Wjj-EW

Table 8.5: Comparison of the cross-sections, polarization fractions, and number of gen-
erated Monte Carlo events for different SHERPA samples. The shown events are selected
by the loose particle-level event selection given in table 8.4.

‘ WW-cmf pp-cmf
MC events total o LL LT+TL TT LL LT+TL TT
- 0.650fb 1.950fb 3.669fb | 0.416fb 2.302fb  3.556 b
+ +
Sh W= 2708209 6.261fb | o aser  9110%  58.58% | 6.64%  36.69%  56.67%
y 0.644fb 1.935fb 3.638fb | 0.413fb 2.286fb 3.524b
e ST
Sh WEW=jj t-ch. 2714037 6.207Hb | a6 3113%  58.52% | 6.63%  36.74%  56.63%

. ) 0.625fb  1.849fb 3.465fb | 0.402fb 2.197fb 3.345fb
+y7+ _

ShW=W=jj+0,1j t-ch. | 2682067 5.9350b | aer 51 1300 58.34% | 6.76%  36.96%  56.28%
Sh I*vi*vjj + 0,15 t-ch. 2706926  6.051 fb - - - - - -
Sh I*vitvjj + 0,15 1278108  7.706 fb - - - - - -

(AR, Ay, A¢), the invariant di-lepton and di-jet mass, and transverse momentum of the
di-lepton system are investigated. Therefore, the following comparison covers almost all
kinematic variables considered for the neural network training in section 9.1. A more detailed
explanation of the kinematic variables is provided in section 9.1. The following comparison
of the differential cross-sections focuses on the polarization defined in the WW-cmf as the
polarization in the pp-cmf leads to the same conclusions.

As shown in figure 8.3a, dropping the s-channel diagrams at LO slightly reduces the
number of events with m;; < 200GeV. In s-channel-like diagrams, the two jets originate
from the decay of a W* boson. Their invariant mass m;; and their separation into Ay;; and
ARj; is therefore significantly lower than for the two tagging jets in t-channel-like diagrams.
The differential cross-sections in mj;, Ay;;, and AR;; for the polarizations in both reference
frames are given in figure B.1 in the appendix. For other kinematic variables, almost no
impact is seen from dropping the s-channels at LO.
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Figure 8.3: Comparison of the differential cross-sections simulated by Sherpa W*W*j;
vs. WEW®jj (t-ch.) in figure 8.3a and WEW*j; (t-ch.) vs. WEW*jj 4+ 0,15 (t-ch.) in
figure 8.3b on particle-level in the phase space defined in table 8.4

A much more dominant effect results from the consideration of an additional jet. The
comparison of LO-QCD+PS and approximate NLO-QCD+PS, both with t-channel approx-
imation, is shown in figure 8.3b. The cross-section of events with m;; < 100 GeV is dras-
tically suppressed by the additional jet emission. This cross-section drop originates from
the m;; > 100 GeV selection at SHERPA generator-level. This selection criterion is applied
after the matrix element calculation. Due to smearing effects from the parton shower, events
with m;; below 100 GeV are possible in the generated sample. By multi-jet merging, an
additional jet is included in the matrix element calculation. In this case, the generator-level
m;; selection is applied on the two jets with the highest pr and thus considers also the
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8.1 Approximate NLO-QCD Correction

third jet. The additional jet can easily have a higher pr value but is expected to have an
overall smaller Ay;; separation and therefore a smaller m;; than expected from the two jets
produced at LO-QCD++PS. Thus, the jet-merged sample is expected to be more affected by
the generator-level m;; selection.

Since the approximate NLO-QCD+PS effects have a significantly higher impact on the
process kinematic than the t-channel approximation at LO-QCD+PS, combining both effects
into one common correction. The shape differences between W*W=*jj and WE+W*jj +
0, 15 (t-ch.) are summarized by the Kolmogorov Smirnov values in figure 8.5a. As expected by
the previous comparison steps, the main difference arises in the di-jet kinematics of m;, A¢;;
and AR;; shown in figure 8.4. The differences between WEW= jj and W*W*5;j+0, 15 (t-ch.)
will be corrected by the first factor of the corrjet-merged correction factor in equation (8.1).
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Figure 8.4: Comparison of the differential cross-sections simulated by SHERPA W W55
and WiWijj + 0,15 (t-ch.) on particle-level in the phase space defined in table 8.4

A correction for higher-order QCD effects on the different polarizations has to be com-
bined with a correction for the used approximations at approximate NLO-QCD-+PS. The
impact of the NWA at approximate NLO-QCD+PS is negligible with the t-channel approx-
imation as indicated by the small Kolmogorov Smirnov values in figure 8.5b. The direct
comparison of W*W*5j 4 0,15 (t-ch.) and [*vi*vjj 4+ 0,15 in figure 8.5¢ shows significant
differences in the jet-kinematics. As shown in figure 8.6, events with low m;; and low Ay;;
are dropped by excluding the s-channels. At approximate NLO-QCD++PS, the leading jets
in s-channel-like diagrams do not necessarily originate directly from the colliding hadrons.
Thus, their m;; and Ay;; can have significantly lower values than for t-channel-like contri-
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(c) SHERPA WEW T35 + 0,15 (t-ch.) and IFi*vvjj+ 0,15

Figure 8.5: The Kolmogorov Smirnov values for SHERPA WEW T 55 vs WEW T4 (t-ch.),
WEW*55 + 0,15 (t-ch.) vs IF1Fvwjj + 0,15 (t-ch.), and WEW=*jj 4+ 0,15 (t-ch.) and
1T1*vvjj + 0,15 on particle-level in the phase space defined in table 8.4. The polar-
ization is defined in the WWW-cmf.



8.1 Approximate NLO-QCD Correction

butions. However, it is less obvious why a peak-like structure arises for AR;; in figure 8.6b.
Therefore, a short study will be done in the following to show that no deeper physical cor-
relation is required to produce this peak.

= Nominal: Sh /* v/ *vjj + 0, 1j Y/ Stat. uncert. ~ Nominal: Sh /*v/*vjj +0,1j 777 Stat. uncert.
0.60 1 | inal: sh WEW=jj+0, 1] t-ch, 0.60 | —— Nominal: Sh W*W=jj + 0, 1j t-ch.
0.50 0.50 A
_ 0.40 1 —. 0.40
g )
o 0.30 © 0.30 4
0.20 A 0.20 A
0.10 0.10
_90-103 7] KW3 .QOiOg J/KStest: 0.109 &
210 —_— ] 2 1.0 ¢
o 0.7 o 0.7 A
T T T T T T T T T T T
0 500 1000 1500 2000 2500 3000 3500 4000 0 2 4 6 8 10
m; [GeV] ARJ
(a) my; (b) ARj;
0-50 ' Nominal: Sh 1= v ujj +0,1; s Stat. uncert.
= Nominal: Sh W*W *jj + 0, 1j t-ch.
0.40
— 0.30 A
)
=
S)
0.20
0.10
RS fest 0407
210 =}
© . -
o 0.7 A
T T T T
0 2 4 6 8 10
Ay/i
(c) Ay,

Figure 8.6: Comparison of the differential cross-sections simulated by SHERPA
WiWijj + 0,15 (t-ch.) and lilil/ujj + 0, 15 on particle-level in the phase space defined
in table 8.4.

AR;; Peak for s-Channel Contributions at Higher-Order QCD

The difference between W*W=jj (t-ch.) and [Fvi*vjj + 0,15 in the Ay;; and Ag;; dis-
tribution is investigated to study the additional s-channel-like contribution. 100000 tu-
ples of Ay;; and A¢;; values are sampled following these differential differences between
WEW=*5j + 0,15 (t-ch.) and [Fi*vvjj + 0,15. The resulting distributions are shown in
figure 8.7. The random values are created without any correlation between Ay;; and A¢;;.

The tuples can be used to calculate the resulting AR;; = /(Ay;;)? + (Ag;;)? distri-
bution. The scatter plot figure 8.8a shows the origin of the peak-like structure in AR;;.
The increasing probability of s-channel-type contributions for high separation in A¢;; leads
to the increase for AR;; until AR;; ~ m. For values higher than AR;; ~ m, a stronger
separation in Ay;; is required. However, a strong separation in Ay;; is not very likely for
s-channel-like diagrams. The preferred small separation in Ay;; causes the rapid probability
decrease for events with AR;; £ 7 and thus the resulting peak structure. The sampled
distribution in figure 8.8b is in an excellent agreement with the actual difference between
WEW*4j (t-ch.) and ¥l vjj+0,15. The difference between the sampled distribution and
the actual additional s-channel-type contributions at AR;; close to 0 arises from the required
minimal separation of two jets, which was not considered when generating the tuples. Thus,
it is confirmed that no additional correlation is required to explain the peak in AR;;.
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Figure 8.7: The difference between WEW*jj (t-ch.) and I*vi*vjj 4+ 0,15 in the Ay;;
and Ag;; distribution in the kinematic region defined in table 8.4 at particle-level. These
simulations differences are sampled by 100000 tuples of Ay;; and Agj;.
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Figure 8.8: The difference between W W= jj (t-ch.) and I*v1*15540, 15 in the Ay;; and
Ag¢j; distributions is sampled by 100000 tuples of Ay;; and A¢;;. Figure 8.8a shows the
resulting two-dimensional distribution in Ay;; and AR;;. In figure 8.8b, the sampled AR}
distribution is compared to the difference between W W= j; (t-ch.) and IFul*vjj+0,15.

8.1.4 Multivariate Correction

Since the polarization measurement is a multivariate analysis, a reweighting in the full phase
space for the approximate NLO-QCD+PS effects represents the most accurate solution.
Another advantage of a multivariate correction is the ability to cover migrations on particle-
level into the reconstruction-level fit region.

As described in Ref. [88], a binary classifier trained with binary cross-entropy can be used
for reweighting in the entire phase space. To apply this method both categories must have
the same support in the phase space. This is already confirmed by the sample comparison in
section 8.1.3: All the simulations listed in table 8.1 cover the same kinematic ranges in the
phase space given by the loose particle-level event selection in table 8.4.
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The simulations by the Monte Carlo event generator provide a probability density p(x)
for polarized W*W=;j-EW events for given phase space points z. The required correction
is multiplied by the initial distribution in order to reweight the probability pinitial(z) to the
target probability prarget(z) for each point . The multivariate correction approximates the
ratio of the probabilities pinitial(x) and prarges () given by the two simulations for an event
z. The resulting ratio

ptarget(z) ~ DNN(SC)
Pinitial(r) 1 — DNN(x)

(8.3)

can be directly derived by the output of the classifier trained to separate these two samples.
The DNN is trained for the binary classification with the training labels yinitia1 = 0 and
Ytarget = 1. If an event can be assigned to both distributions with equal probability, the
DNN output is 0.5, resulting in a reweighting factor of 1. Events that can be assigned
more to the initial distribution with DNN(z) < 0.5 are weighted down, and events with
DNN(z) > 0.5 are weighted up.

To derive both correction factors in equation (8.1) sets of classifiers are trained. The
classifier DNNg?llj is trained to separate SHERPA WEW*5j and WEW*5;j 40,15 (t-ch.) for
each of the polarization states in the W W-cmf and pp-cmf. For the correction of W*W*5j+
0,15 (t-ch.) to I*1*vwjj+0,1; the neural network DNNg_g,. is trained on unpolarized events.
In contrast to the classifiers trained in chapter 9, the event weights are applied during the
training without normalizing the two categories to the same sum of weights. Thus, the DNNs
are also expected to learn the overall cross-section differences of the compared samples. With
these networks the correction corrjes-merged in equation (8.1) can be written as

pol
Corrmulti—var _ DNNOJJ . DNNg ch, (8.4)
jet-merged 1— DNNgollj 1— DNNs-ch. )

and the correction for the missing s-channels in equation (8.2) is given by

multi-var DNNS—Ch.
COI‘I‘S_E}}: ar — m (85)

Train the Correction Networks

The particle-level training data was created without 7 lepton channels. Thus, the lepton
kinematics are not used for the training to avoid a bias due to the missing 7 lepton decays.
However, the correction quality is not expected to decrease significantly since the dominant
effects investigated in section 8.1.3 are found in the jet phase space. Despite this limitation
of the phase space, the multivariate correction still provides very good agreement, as shown
in section 8.1.5.

The DNNs are trained on the particle-level kinematics listed in table 8.6 together with
their non-linear scaling to result in Gaussian-like distributions. The number of available
training events is listed in table 8.5. The hyperparameters of the networks are chosen by
the OPTUNA optimization procedure described in section 9.3.1. As this algorithm was
developed in Ref. [89] specifically for the polarization discrimination in this analysis, it is
described in detail in chapter 9 for the discriminator networks. This algorithm is reused
to select suitable hyperparameters for the multivariate higher-order QCD correction. The
hyperparameter space used for the optimization is listed in table 8.7. The optimization is
performed by searching for a set of hyperparameters that maximizes or minimizes a chosen
optimization metric. Since the approximation of the probability fraction in equation (8.3)
relies on the training on the binary cross-entropy, the validation loss is also chosen as the
optimization metric.

Training a network on a given dataset always introduces a bias towards this training
dataset. As described in section 5.8, the k-fold method can be used to avoid this bias
by using an iterating split into training, validation, and test data. Since the DNNgfllj is
trained on SHERPA samples and will only be applied to the MADGRAPH samples, no bias is
introduced. Thus, no test dataset is required for training and hyperparameter optimization
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8 Higher-Order Corrections on W+W=*jj-EW

Table 8.6: Variables used to optimize and train the DNNs for the higher-order QCD
correction. The variables were scaled for the training and application.

Kinematics Descriptions scaling
pJT1 pr of the leading jet log;o(2)
7t n of the leading jet x
pJTz pr of the subleading jet log;o(2)
ik n of the subleading jet T
ARj; AR between the two leading jets x
Ayjj Ay between the two leading jets x
Adjj A¢ between the two leading jets T
m;j Invariant mass of the two leading jets | log;,(z)

Table 8.7: DNN hyperparameters for the multivariate higher-order QCD correction. For
the tunable hyperparameters, the search space and the sampling distribution are listed.

Fixed hyperparameters

Hyperparameter Value
Optimizer Adam
Loss function binary cross-entropy
Activation function swish

Optimized hyperparameters
Hyperparameter Seach space Parameter sampling
Number of layers 2, 6] Uniform
Neurons per layer [32,128] Uniform
Dropout rate [0.0,0.5] Uniform
Batch size [32,512] Logarithmic
Learning rate [1075,1072] Logarithmic
Adam £ [107%,0.99] Logarithmic
Adam 1 — 3, [1072,0.9999] Logarithmic
Adam € [10710,1.0] Logarithmic

and the resulting networks can be applied on MADGRAPH without the need for a k-fold
application.

In contrast, the DNN_g,. is also applied to the SHERPA WEW 5 + 0,15 (t-ch.) sample
for the polarization measurement. Therefore, the 5-fold method (k-fold method with k = 5)
is required for the reweighting with DNNg_ ... For the polarization discriminator DNNs in
chapter 9, a split into a training, validation, and test dataset will be used. However, for the
reweighting DNNg .y, , a training and validation set without an additional test set is sufficient.
The main bias toward the one validation set used for the hyperparameter optimization is
prevented by retraining the best network with a different seed after the optimization. The
remaining bias is negligible since this network is only used for the reweighting of the Standard
Model prediction and not applied on measured data. Consequently, the networks are trained
on 80% of the data and the remaining 20% are used for validation. For the application to
MADGRAPH, using only one of the five trained networks is sufficient. For application on the
SHERPA polarization sample, the 5-fold method has to be used to avoid bias.

Since the DNNg?ll ; networks are expected to be quite similar for all polarizations, their
optimization is only done for LL in WW-cmf. The same hyperparameters are used to train
networks for the other polarization states and only the number of training epochs is updated.
The optimization results are given in table 8.8. The corresponding training progress and the
fits to the validation loss during the optimization are given in figures B.2 and B.3.

The output distribution of DNN{;E;NW'C"’f and DNNjg_.,. are shown in figure 8.9. As shown

in the appendix in figure B.4, the output distribution of DNN(IiI{;NW'Cmf is consistent with the

output of DNNg?ll ; trained for the other polarization states. The classification by DNNg’Oll f

peaks slightly below 0.5 since the SHERPA WEW*jj and WEW*5j + 0,15 (t-ch.) sample

have very similar kinematic and W*W=; has a slightly higher cross-section in table 8.5.

Therefore, the correction factors given by DNNgfllj /(1 —DNNgf’ll ;) is expected to be marginally
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8.1 Approximate NLO-QCD Correction

Table 8.8: Hyperparameters chosen for the neural network training. The shown hyper-
parameters were chosen in the final step of the hyperparameter optimization.

Hyperparameter DNNgoll ; DNNg o
Number of layers 6 4
Neurons per layer 45 74
Dropout 0.0536796 0.0650895
Activation function swish swish
Batch size 996 840
Learning rate 9.56887¢-05 0.000273763
Adam beta_1 0.680364 0.980238
1 — Adam beta_2 0.000155779 0.00256898
Adam e 2.2657e-05 1.83744e-06
epochs LL in WW-cmf: 77 96

TL in WW-cmf: 49

TT in WW-cmf: 83

LL in pp-cmf: 39

TL in pp-cmf: 35

TT in pp-cmf: 56

less than 1. This is expected from the comparison of W+W#*;j and W*W ;540,15 (t-ch.)
in figure 8.4, which showed good agreement in most of the phase space except for the lower
values at m;; < 200 GeV.

The DNNg .. provides a significantly stronger separation. For most of the events, the
classification peaks at 0.5. For the phase space region with significant s-channel contributions,
the network prefers the classification as I*v1*vjj +0,1j. This higher network score leads to
upward correction that covers the missing s-channels in W*W*35 +0, 15 (t-ch.) at low m;
and low ijj-

— WEWEjj (val.) W=W=jj+0,1j t-ch. (val.) 5 | — WEW*jj+0,1jt-ch. (val.) 1£ vl vjj +0, 1/ (val.)
0.6 & WEw=jj (train.) & W=W=jj+0,1jt-ch. (train.) & W=W=jj+0,1jtch. (train.) & [=vI=vjj+0,1j (train.)
777 Stat. uncert. “// Stat. uncert.
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(a) DNNg,1; for LL in WW-cm (b) DNNg_ch.

Figure 8.9: The classification output of DNNIJH;NW'Cmf and DNNg_ ¢, evaluated on their
training and validation data.

8.1.5 Technical Validation of the Multivariate Correction

The multivariate higher-order QCD corrections are tested in the loose kinematic region given
in table 8.4. To avoid a bias the networks are applied using the k-fold method on the
corresponding validation data used during training. An overview of the shape effects of
the multivariate correction is given by the Kolmogorov Smirnov values in figure 8.11 before
(dots) and after (crosses) the correction. As indicated by the Kolmogorov-Smirnov values
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8 Higher-Order Corrections on W*Wjj-EW

before and after the correction, the closure is improved in the full phase space which would
not be possible with a correction in only one variable. The closure in individual kinematic
variables in the jet phase space after the multivariate correction is given in figures B.5 to B.7.
After correcting W*W=*5; 4 0,15 (t-ch.) for missing s-channels, only the min(AR /12,51 /52)
distribution in figure 8.10a shows significant differences to the [*1*vvjj + 0,15 distribution.
However, the next step of the closure test will show that this discrepancy mostly vanishes
when using a tighter event selection.

0.60 Nominal: Sh /*vl*vjj+ 0, 1j “/# Stat. uncert. 0.25 1 Nominal: Sh /*v/*vjj+ 0, 1j “/# Stat. uncert.
= Nominal: Sh W*W=*jj + 0, 1j t-ch. = Nominal: Sh W*W *jj + 0, 1j t-ch.
0.50
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= 030 1 =
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%28 T Kstest: 0.013 %0 T Kstest 0.004 v
B 1.0+ R I e o
& 07 A 1 & 071 617
T T T T T T T T
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minAR2, 12 minAR 2, 12
(a) Loose event selection defined in table 8.4 (b) Tight event selection defined in table 8.2

Figure 8.10: Comparison of the differential cross-sections simulated by SHERPA
WEW*35 40,15 (t-ch.) and [FIFvrjj +0,15 in min(ARy /i2,51/52) on particle-level. The
SHERPA WEW*jj 40,1 (t-ch.) is corrected by the DNNg ch.. The networks are applied
in the k-fold method to the corresponding validation data used during their training to
avoid a bias toward the training data. The comparison is performed for the two event
selections defined in table 8.4 and table 8.2.

Since the shown phase space is much broader than the one used for the polarization
measurement, a second validation is done in the phase space defined in table 8.2 corresponding
to the particle-level selection of the signal and Low-m ; region. Closure in this region would
imply that the multivariate corrections work sufficiently well in the phase spaces relevant to
the polarization measurement. The shape improvement from the correction by DNNgf’ll ; in
the WW-cmf is shown in figure 8.12. The results in the pp-cmf are equivalent and therefore
given in the appendix in figure B.8. The agreement between the W*W=*jj 4 0,15 (t-ch.)
and the reweighted W*W=jj sample is excellent in the entire phase space. The comparison
plots in individual variables of the lepton and jet phase space are given in figures B.9 to B.12.
The effects of the correction by DNNg ., are shown in figure 8.13. The low Kolmogorov-
Smirnov values indicate an excellent shape agreement in the entire kinematic phase space.
This closure is confirmed by the plots of individual kinematic variables given in figures B.13
and B.14. As shown in figure 8.10b, the agreement in min(AR; 2, j1/52) is significantly
improved by the tighter event selection.

Therefore, the multivariate correction corrects the shapes in the entire phase space. The
agreement with the expected distributions is almost perfect in the signal and Low-m ;; region.
The remaining differences are tiny and thus not expected to impact the statistically limited
polarization analysis. Thus, the closure test validates the multivariate correction procedure
to correctly introduce the effects of an additional real QCD emission in the matrix element
and the contribution from missing s-channels.
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Figure 8.11:

(¢) KS values for SHERPA WEWEjj + 0,15 (t-ch.) and (¥IFvvjj + 0,15

Comparison of the differential cross-sections simulated by SHERPA

WEW*j5, WEWEjj (t-ch.), and [TITvwrjj + 0,15 on particle-level in the loose re-
gion defined in table 8.4 before (dots) and after (crosses) the mutlivariate correction.

In figures 8.11a and 8.11b W*W=jj is corrected by the DNN5%,

and in figure 8.11c

WEWjj (t-ch.) is corrected by DNNy q,.. To avoid a bias the networks are applied in
the k-fold method to the corresponding validation data used during their training.
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Figure 8.12: Comparison of W*W ;5 and W*W=j;j (t-ch.) with polarization defined in
the WW-cmf simulated by SHERPA on particle-level in the combined signal and Low-m;
region defined in table 8.2. The SHERPA WiWijj is corrected by the DNNgf’llj. To avoid
a bias the networks are applied in the k-fold method to the corresponding validation data
used during their training. The Kolmogorov-Smirnov values give an overview of the shape
improvements in the tested variables.
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Figure 8.13: Comparison of the differential cross-sections simulated by SHERPA
WEW*j5 + 0,15 (t-ch.) and IF1*vrjj + 0,15 on particle-level in the combined signal
and Low-my;; region defined in table 8.2. The SHERPA WEWEjj + 0,15 (t-ch.) is cor-
rected by the DNNg.ch.. To avoid a bias the networks are applied in the k-fold method to
the corresponding validation data used during their training. The Kolmogorov-Smirnov
values give an overview of the shape improvements in the tested variables.
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8.1.6 Validation of the Multivariate Correction with MadGraph

In the previous section, the validity of the multivariate correction for SHERPA simulations is
validated. However, the higher-order correction is also applied to the polarization predictions
generated by MADGRAPH. Therefore, a second test is done to validate that the multivariate
correction can be applied independently of the generator of the polarization sample. The
kinematic region in table 8.2 equivalent to the signal and Low-m; region selection is used
for this validation on particle-level.

The target distribution of this closure test is the SHERPA WEW*55j 40,15 (t-ch.) sample
corrected by the corr™4%var  The corr™3ltivar correction in equation (8.5) corrects the miss-
ing s-channels in SHERPA W*W*jj + 0,15 (t-ch.) as validated in section 8.1.5. Since the
MADGRAPH event generator simulates the polarization at LO-QCD+PS, the combined mul-
tivariate correction corrggﬁ_ﬁ;}‘r’ggd is applied. The closure between the corrected MADGRAPH
and SHERPA predictions is shown in figure 8.14. The agreement between the resulting distri-
butions is as good as for the LO-QCD+PS simulation in section 8.1.1. Thus, the corrections

extracted from SHERPA can be applied to MADGRAPH without any significant bias.
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Figure 8.14: Comparison of the differential polarized cross-sections simulated by SHERPA
WEW*jj 4+ 0,15 (t-ch.) and MADGRAPH at particle-level in the combined signal and
Low-m,; region defined in table 8.2. The SHERPA sample is corrected by corr®uti-ver
and the event weights of the MADGRAPH sample are multiplied with corr}‘gt“_l,'ﬁ;‘;ggd. The

polarizations are defined in the WW-cmf for figures 8.14a and 8.14c and in the pp-cmf for
figures 8.14b and 8.14d.
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8.1 Approximate NLO-QCD Correction

8.1.7 One-dimensional Correction

The multivariate correction is expected to correct the entire jet phase space and is, there-
fore, taken as the nominal correction. To assign uncertainty to the multivariate correction
procedure an alternative one-dimensional correction in only one kinematic variable is per-
formed. The resulting difference to the multivariate correction provides an uncertainty for
the correction procedure.

Choice of the Correction Variable

The corrections in different variables are compared to find the best candidate for the one-
dimensional correction. Since a one-dimensional correction cannot handle multivariate mi-
grations from outside the particle-level phase space into the reconstruction-level phase space,
the kinematic phase space in table 8.2 is investigated to test the corrections. This particle-
level selection is equivalent to the signal and Low-m; region used for the polarization mea-
surement. To simplify the one-dimensional correction, the corrections for higher-order QCD
effects and missing s-channels at approximate NLO-QCD+PS are done using the same kine-
matic variable. As already shown in figure 8.11, the main shape difference is seen in the mj;,
Ay;j;, and AR;; distributions due to the missing s-channels at approximate NLO-QCD+PS.
Since the difference between W*W=*jj and W*W*5j + 0,15 (t-ch.) is significantly smaller
than between W*W*5j + 0,15 (t-ch.) and [*1*vvjj 4+ 0,15, the focus of this section is on
finding the most suitable variable for the correction for the missing s-channels. The resulting
binned corrections for missing s-channel contributions are shown in figure 8.15.
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Figure 8.15: The missing s-channel correction in equation (8.2) derived in mjj;, Ay;j,
and ARj;. The corrections are extracted in the combined signal and Low-mj; region
defined in table 8.2.
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8 Higher-Order Corrections on W+W=*jj-EW

The effects of bin-wise corrections in mj;, Ay;;, and AR;; are summarized in figure 8.16.
All the shown corrections significantly improve the agreement in the di-jet kinematic. In
contrast to the multivariate correction, however, the one-dimensional corrections also worsen
the agreement in some kinematics. The biggest differences are in the jet pr and m;; dis-
tributions after the correction in Ay;;. The correction in m;; and AR;; lead to a similar
agreement in the phase space and are therefore both valid options for the one-dimensional
correction. Since the electroweak NLO correction in section 8.2 is implemented in m;, the
technical implementation of the one-dimensional higher-order QCD correction in m; is more
straightforward and therefore preferable.

Extraction of the One-dimensional Correction

To extract the one-dimensional correction, the particle-level phase space in table 8.2 cor-
responding to the signal and Low-m;; region is used, except for the m;; criteria to cover
potential migrations. The correction corrjet-merged in equation (8.1) and corrsch. in equa-
tion (8.2) as function of m;; are derived by the fraction of the corresponding histograms.
The corrections are smoothed using a fit function to avoid jumps at the bin edges. The fit
functions considered all have the term ae™*" to describe the behavior at high m;; values and
an additional term to describe low m;; range. The fit functions considered are:

™mij b
f1 (m]j) = qge ¥Tev —+ TR c| (86)
GeV
ol b
My b
fs(mj;) = ae™ o + (8.8)

™y
c+ eﬁ GeV

The fit is done by minimizing the x? value between the binned correction factors and the
bin-wise integrals of the fit function:

. right 2
bin}'#

Nbins 1 binler f(x)d;p

2
= —— | corr; - —————— 8.9
Xfit ZZ: Acorr; ' bint &M _ pinleft (®.9)

Acorr; is the statistical uncertainty of the correction in the corresponding bin. The fit results
for the correction in mj; are shown in figure 8.17. Since there is no significant difference
between the higher-order QCD corrections for different polarization states, only the result
for LL in WW-cmf is shown in figure 8.17. The higher-order corrections for the other
polarization states are given in the appendix in figure B.15. For the total higher-order QCD
correction COITjet-merged, the function fi(m;;) results in excellent fit for all polarizations. For
the missing s-channel correction at higher-order QCD corrg.ch, the function f3(m;;) covers
the correction shape over the full m,; range very well. The p-value of only 5% originates
from fluctuations in some bins and cannot be covered by the choice of a different fit function.
Therefore, the fit function fi(m;;) is used for the total higher-order QCD correction of all
polarizations and the fit function f3(m;;) is used for the missing s-channel correction at
approximate NLO-QCD+PS. The resulting nominal fit parameters for the corrections are
given in tables 8.9 and 8.10.

The corrections in m;; represent a much simpler higher-order QCD correction than the
multivariate approach in section 8.1.4. Therefore, the multivariate correction is used as the
nominal correction. To estimate potential shape effects in the jet phase space not covered by
the multivariate correction the multivariate correction is compared with the one-dimensional
correction in m;;. This one-dimensional correction covers only shape effects in m;; and is
extracted from a significantly tighter phase space than the multivariate correction. Therefore,
the difference between the two corrections gives an estimate of missing shape effects not
covered by the nominal multivariate correction and is applied as symmetrized uncertainty.
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Figure 8.16:

(c) KS values for correction in ARj;

The Kolmogorov-Smirnov values for the comparison of WEW=*jj +

0,15 (t-ch.) and [¥I*vvjj + 0,15 in the combined signal and Low-m;; region defined in
table 8.2. The W¥W¥*55 + 0,15 (t-ch.) distribution is corrected by a correction factor in
m;; (figure 8.16a), Ay;; (figure 8.16b), and AR;; (figure 8.16c). The correction factors
are shown in figure 8.15.
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8 Higher-Order Corrections on W+W=*jj-EW

Table 8.9: Fit parameters of f1(m;;) defined in equation (8.6) for the total higher-order
QCD correction in mg;.

polarization X%t /dof  p-value a « b c

LL WW-cmf 1.12 0.23 0.9852 6.07-107% 74.37 99.11
LT+TL WW-cmf 0.77 0.93 0.9777 4.61-10"6 72.01 93.78
TT WW-cmf 0.70 0.98 0.9805 6.864-10"¢ 69.90 91.23
LL pp-cmf 1.13 0.21 0.9765 2.275-10~7 81.50 75.87
LT+TL pp-cmf 0.70 0.98 0.9861 8.887-1076 73.75 91.29
TT pp-cmf 0.67 0.99 0.9731 3.079-107% 69.32 94.20

Table 8.10: Fit parameters of fs(m;;) defined in equation (8.8) for the correction of
missing s-channels at higher-order QCD.

| X/dof p-value | @ a b c B |
| 1.28 0.05 | 1.101 6.304-10°° 0.7253 —1.52 4.905-10"7 |

2.5 1 I Correction 2.5 1 ‘ I Correction
\g — fimy)  (x¥dof=1.30, p=0.042) — film;) ((¥dof=1.67, p=2.6-10")
" falmy)  (x*/dof=1.13, p=0.21) | falmy)  (x*/dof=1.28, p=0.051)
2.0 1 f(my)  ((dof=1.12, p=0.23) 2017 ] fs(m;)  (x*/dof=9.26, p=0)
i 7//2 Stat. uncert. /77, Stat. uncert.
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Figure 8.17: Comparison of different fit functions for the higher-order QCD correction
factor corrjes-merged(m;;) for the LL polarization state in WW-cmf and the missing s-
channel correction corrg.cn. (m;;). The fit functions are defined in equations (8.6) to (8.8).

8.1.8 Discussion of Theory Uncertainties

The prediction by SHERPA event generator provide a variety of theory uncertainties. As
described in chapter 4, the simulation depends on the choice of the PDF, the value of the
strong coupling g, the renormalization and factorization scale, the resummation scale, and
the merging scale.! The extraction of a generally applicable higher-order QCD correction
would require considering these uncertainties. However, the same uncertainties also affect
the polarization predictions to which the higher-order correction is applied. Therefore, con-
sidering the theory uncertainties for the polarization prediction and the higher-order QCD
correction leads to a double-counting of the uncertainty. Thus, one must decide at which
point the theory uncertainties are introduced.

The particle-level SHERPA samples listed in table 8.1 provide PDF, ag, and renormal-
ization and factorization scale variations via on-the-fly-weights to calculate the systematic
uncertainties. In section 11.2 it is shown that the scale variations represent the dominant
uncertainty. Thus, the strategy to apply the theory uncertainty has to give the best es-
timation of the scale uncertainty. A comparison of the renormalization and factorization
scale variations on LO-QCD+PS and approximate NLO-QCD++PS is shown in figure 8.18.
The scale variations at LO-QCD+PS do not represent a meaningful estimate of the miss-
ing higher-orders in the matrix element calculation. Therefore, the renormalization and

1A detailed study of the theory uncertainties will follow in section 11.2

102



8.2 NLO-EW Correction

factorization scale uncertainty is underestimated at LO-QCD+PS and has to be extracted
from the approximate NLO-QCD+PS simulation. The theory uncertainties of the SHERPA
IF1*vvjj+0, 15 sample are extracted in section 11.2. Since the theory uncertainties are taken
from the target distribution of the higher-order QCD correction they are not additionally
studied for the higher-order QCD correction.

scale variations for Sh W= W = jj scale variations for Sh /* vl *vjj + 0, 1
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Figure 8.18: The renormalization and factorization scale variations for the SHERPA
WEW=*jj and 1£1Tvrjj + 0,15 simulation on particle-level. The events are selected by
the combined signal and Low-m;; region as defined in table 8.2.

8.2 NLO-EW Correction

A calculation for higher-order electroweak effects was already available for the unpolarized
differential W*W¥ jj-EW analysis. The authors of Ref. [90] performed a comparison of the
m;;-dependent differential cross-section of WEW=;j-EW at Born level (O(a%y,)) and at
NLO-EW (up to O(aky,)). However, this calculation was not done for individual polariza-
tion states. Already existing calculations for inclusive W W~ [91] and ZZ [92] production
show that the NLO-EW corrections can significantly differ between the polarizations. With
Ref. [50], the first polarization-dependent higher-order calculation for same-charged W W+
scattering was performed. The authors of Ref. [50] repeated this calculation in the parton-
level phase space given in table 8.11. The calculation focuses on the W+W™j; scattering
with a subsequent decay into one positron, one anti-muon, and the corresponding neutri-
nos. The resulting phase space is consistent with the fiducial W*W*;j-EW signal region
in section 6.3.4 merged with the Low-m; control region definition. The calculations were
done with MOCANLO and validated by a second calculation using BBMC. Both tools are
known to simulate intermediate boson polarization correctly and are based on the RECOLA
library [93]. The provided differential cross-section dependent on the invariant di-jet mass
and the transverse momentum of the leading jet are shown in figure 8.19. This thesis uses
the NLO-EW correction in m;; as the nominal correction. The difference to the alternative
correction in p%} is used as systematic uncertainty of the application method to account for
the multivariate approach of the polarization analysis. The NLO-EW correction is applied
according to the particle-level event kinematic of the polarized reconstruction-level predic-
tion. Therefore, the application of the NLO-EW correction is consistent with the application
strategy of the higher-order QCD correction.
To extract a smooth NLO-EW correction, an analytic fit is performed to the ratio

(dag‘go-l«:w>
pol (0)= —+ % (8.10)

COrr o
NLO-EW ool
LO
do
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8 Higher-Order Corrections on W*Wjj-EW

Table 8.11: Parton-level selection for the NLO-EW calculation provided by the authors
of Ref. [50].

Exactly one positron and one antimuon with pr > 27 GeV and || < 2.5
my > 20 GeV
Emiss > 30 GeV

Two jets with |n] < 4.5
leading and subleading jets satisfying pr > 65 GeV and pr > 35 GeV, respectively

mjj Z 200 GeV
Ayjj > 2

Separation between electron and jets has to fulfill AR.; > 0.4
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Figure 8.19: LO and NLO-EW differential cross-sections in m;; and pg} provided by
the authors of Ref. [50]. The calculation is done in the phase space listed in table 8.11
for polarization in the W= W*-cmf (solid line) and partonic center-of-mass frame (dotted
line).

for each of the polarization combinations pol and the two kinematic observables 0 = m; and
0= pJTl. For the fit in m;;, the same analytic formula

mjj

12m_
GeV+p2n

f(mj;) =po+piln oV (8.11)
as for the unpolarized NLO-EW correction in Ref. [8] is used. The NLO-EW correction in

pg} is well described by the linear function

51

J1y _ br
Flor) =po+ P15 (8.12)

The resulting fits are shown in figure 8.20 and the corresponding fit parameters are
listed in table 8.12 for m; and table 8.13 for pJ'. The linear fit describes the shape in p’'
very well and also the corrections in mj; are correctly modeled by the analytic function in
equation (8.11). Only in the case of the correction for TL polarization in m;, the xZ,/dof is
not close to 1, but the shape of the correction in figures 8.20a and 8.20b is nevertheless very
well covered.
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8.3 Combination of the NLO Corrections

The fit uncertainties are also plotted in figure 8.20 but barely visible. Due to the low
number of fit parameters and the excellent agreement in the full range, the uncertainty on
the fit is minimal and is thus not propagated to the analysis.

The availability of the shown NLO-EW corrections significantly impacts the polariza-
tion analysis. Before the publication of Ref. [50], the unpolarized NLO-EW correction from
Ref. [8] would have been used. Since there was no knowledge of how higher-order electroweak
effects would affect the different polarization states in W*W= jj-EW, the unpolarized correc-
tion would have been applied to each polarization with a 100% uncertainty. Thus, polarized
NLO-EW corrections avoid one of the most dominant systematic uncertainties. In addition
to a vanishing uncertainty, the polarized NLO-EW correction further affects the expected
significance. The NLO-EW correction for LL is significantly smaller than the unpolarized
NLO-EW correction, while the correction is larger for TT. This difference in the NLO-EW
correction improves the ratio of longitudinal over transverse polarization and therefore the
expected significance compared to a potential application of an unpolarized NLO-EW cor-
rection.

Since the polarized NLO-EW corrections were published during the finalization of this
analysis, they are only applied for the final statistical evaluation in sections 12.5 and 12.6.
They are not included in the training of the neural networks in section 9.1 and the bin
optimization in section 12.3. For the training data the unpolarized NLO-EW correction
from the WE*W¥;j-EW analysis in Ref. [8] with the fit parameters py = 0.511, p; = 0.176,
and po, = —0.0181 is used. This correction is also applied for the bin optimization. Since the
bin optimization in section 12.3 optimizes the expected significance, a 100% uncertainty on
dgw for each polarization was considered.

Table 8.12: Fit parameters of equation (8.11) for the NLO-EW correction in m;.

Polarization Xﬁt /dof  p-value Do D1 D2
Unpolarized 1.6184 0.011 0.65605  0.12671 —0.013974
LL in WW-cmf | 0.9559 0.54 0.73713  0.10904 —0.01226
TL in WW-cmf | 2.2844 1.8-107° | 0.75425 0.10076 —0.012169
TT in WW-cmf | 1.1005 0.31 0.69365  0.11283 —0.01303
LL in pp-cmf 0.9522 0.55 0.77496  0.096275 —0.01117
TL in pp-cmf 1.7142  4.8-1073 | 0.91299 0.050347 —8.1952-103
TT in pp-cmf 1.0630 0.37 0.80717 0.081635 —0.010942

Table 8.13: Fit parameters of equation (8.12) for the NLO-EW correction in p?FI.

Polarization X%t /dof | p-value Do D1

Unpolarized in WW-cmf | 0.7122 0.98 0.94285 | —4.195-10%
LL in WW-cmf 0.8875 0.76 0.97074 | —4.063-10~*
TL in WW-cmf 1.1325 0.19 0.95494 | —4.3927-1074
TT in WW-cmf 0.7859 0.93 0.92815 | —4.0401 - 10~4
LL in pp-cmf 0.9387 0.64 0.96366 | —3.8534-10~4
TL in pp-cmf 1.0252 0.42 0.95555 | —4.6191 -10~*
TT in pp-cmf 1.1160 0.22 0.92744 | —3.9677-10~4

8.3 Combination of the NLO Corrections

To combine the corrections for higher-order QCD and EW effects, the approach of Ref. [92]
is followed. The relative changes in the differential cross-section can be expressed as

dAO’QCD

opw = , and dqcp = (8.13)

dovro
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8 Higher-Order Corrections on W*W+jj-EW
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Figure 8.20: The ratio of the NLO-EW and LO differential cross-sections in the phase
space listed in table 8.11 provided by the authors of Ref. [50]. An analytic fit of equa-
tion (8.11) for mj; and equation (8.12) for p)' is performed for each of the resulting
NLO-EW corrections in the W W*-cmf and pp-cmf.

For the combination of these two relative corrections, additive and multiplicative approaches
are possible:
doxrLo, = doro(1+ dqep + dew) (8.14)

donvLo, = dovLo(1 + dqep)(1 + dew) (8.15)

At high lepton energies, the dominant EW corrections are expected to factorize with
respect to the QCD corrections [92]. Thus, the multiplicative combination donpo, is the
nominal correction. The difference between donro, and donpo, is used as an estimate
for the difference to the mixed QCD-EW correction. It is symmetrized and used as the
uncertainty of the combination method.
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Chapter 9

Training of Discriminator DNNs

The signal region described in section 6.3.1 has been optimized to reach a sufficient purity
in WH*W=;j-EW events. To enable a more extensive evaluation of this signal with respect
to the W boson polarization additional analysis strategies must be used. Since the W+
boson decays into a lepton and a neutrino and only the lepton can be reconstructed, much
information regarding the original polarization is not accessible in the measurement. Thus,
no single discriminant observable can separate the polarizations and multivariate analysis
techniques must be used. For this, deep neural networks (DNN) implemented in Keras [94]
extract sensitive variables for the polarization measurement from the entire event kinematic.
The longitudinal W*W=jj-EW polarization is separated from the transverse polarization
state and the other backgrounds by combining two networks. The DNNy +y-+ is trained
to distinguish the W*W*jj-EW contribution from the Standard Model backgrounds. The
DNN,; enables the investigation of the polarization states. The polarization networks are
trained to separate longitudinal single-boson polarization (LX) or double-boson polarization
(LL) from the remaining transverse polarization states. Since the polarization is investigated
in the partonic and W*W= center-of-mass frame, four distinct DNN,; are trained for the
polarization analysis.

The motivation behind combining the output of two networks, DNNy+y+ and DNN,,,
results from the strategy of the statistical analysis and is explained further in section 12.2.

9.1 Training Input

Since only supervised learning strategies are applied in this analysis, the training is done
on the Standard Model predictions described in chapter 7. The MADGRAPH polarization
samples are used for the polarization modeling. Since the main target of the analysis is the
polarization measurement in the WW-cmf, 10 times more training events are generated in
this reference frame to further improve the separation power of the trained networks.
When the training input was extracted, the particle-level kinematics were not available
in the reconstruction-level polarization samples. Thus, a workaround is used to apply the
higher-order corrections of chapter 8 that are derived for particle-level kinematics. For the
higher-order QCD correction the one-dimensional higher-order QCD correction in m; is used
which is extracted in section 8.1.7. This reweighting procedure is based on the particle-level
invariant di-jet mass m;; of the event. Since this particle-level information was not available
in the training sample, the reconstruction-level m;; kinematics is used. Since the higher-
order correction does not affect the individual event kinematics and only corrects the event
weight, this approximation is sufficient for the training data. For the higher-order electroweak
correction of the training data the very recent theoretical calculations used in section 8.2 was
not available. Therefore, the unpolarized NLO-EW correction of the differential W+W= -
EW analysis in Ref. [8] is used. This NLO-EW correction on particle-level was provided by
the authors of Ref. [90] for the phase space that is still used by the polarization analysis.
The correction is described by the analytic function
LI 0,0181In® 24

GeV GeV'

f(mjj) =0.51140.176In (91)
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9 Training of Discriminator DNNs

As for the higher-order QCD correction, this correction is applied to the reconstruction-level
m;; kinematics of the training data.

The data-driven approach in section 7.2.3 is used to create the training data for the
charge-flip background. For the non-prompt background, the data-driven approach of sec-
tion 7.2.2 uses a looser object selection and a significant subtraction of prompt events. The
prompt subtraction would introduce a significant amount of negative event weights. The net-
work will assign the events with negative weights to their opposite WEW=jj-EW category
in order to reduce the loss. The measured data with positive weights, on the other hand,
reduce the loss if they are assigned to the background category. In this way, the network
does not consistently learn to sort non-prompt events to the background category, but learns
the difference between the measured data and prompt subtraction of the data-driven back-
ground estimation. Therefore, the data-driven estimation of non-prompt background is not
used for training. However, the non-prompt background could also be modelled by MAD-
GRAPH+Pythia8 Wjets samples (DSID: 363600-363671) and a non-all-hadronic ¢t sample
(DSID:410470) as described in the W*W*;j-EW analysis in Ref. [8]. Since this prediction
would only contribute 170 simulated Monte Carlo events, which are also known to poorly
model the non-prompt contribution, no major positive effect is expected from including them
in the training. As such, the non-prompt background is not included in the DNN training.

Two Monte Carlo event-generated samples are available for the W*Z-QCD background.
As described in section 7.2.1, the W*Z-QCD SHERPA2.2.2 sample used in the unpolarized
WEW=;j-EW analysis [8] is replaced by a W+ Z-QCD SHERPA2.2.12 sample for the statis-
tical analysis. Since the W*Z-QCD is the dominant background in the signal region, both
samples are used to increase the amount of training information available for this background.
The respective event weights must be reduced to avoid doubling the predicted W+ Z-QCD
contribution in the training data. Updating the event weights can be directly combined with
an overall correction of the expected W+ Z-QCD contribution known from Ref. [8] to be over-
estimated. From the fit in the W*Z control region in Ref. [8] one expects 543 W*Z-QCD
events in the W*Z control region. Both, WZQCD_Sherpa222 and WZQCD_Sherpa2212,
are scaled to have the same number of events in the signal region and their sum meets this
expectation in the W*Z control region.

The V'~ samples are not used for the training due to the poor modeling shown in the
WEW=*;j-EW analysis [8]. Training on a sample with very poor modeling while using it
to predict the distribution of unseen data could introduce an additional bias between the
classification of measured data and the Standard Model prediction. A complete list of all
processes included in the DNN training as well as the number of Monte Carlo events used to
model them and the respective predicted number of events is given in table 9.1.

The total event weights are considered in the loss calculation to meet the expected ratios
while training. As usual for binary classification, the weights within the two categories
are normalized to the same sum to enable an even separation. Table 9.1 shows that the
event weights of different processes can differ by several orders of magnitude. To avoid
significant fluctuations between the training batches all events with a weight ten times higher
than the medium weight are duplicated and their event weight is reduced by the number of
duplications. This procedure was established in Ref. [89] to distribute events with high
weights over multiple training batches instead of dominating one batch.

The DNN hyperparameters are optimized while initially using all variables listed in ta-
ble 9.2. Some variables are pre-scaled for the training and application to get a more Gaussian-
distributed input for the neural networks. This scaling improves the training process for the
DNN algorithms. The distributions of the training input variables are shown in the appendix
in figures C.1 to C.8. The angle ¢ is redefined with respect to the direction of the leading
lepton to account for the rotational symmetry of the detector and the leading lepton ¢ is
dropped. Thus, the DNN becomes independent of the exact event orientation in ¢ to reduce
redundancies in the training input.

The training input can be divided into low-level and high-level variables. Low-level vari-
ables represent the kinematics of leptons or jets, and are measured directly by the ATLAS
detector. From these low-level variables, more complex high-level variables can be derived.
Generally, a neural network can reconstruct these high-level variables from the low-level
variables by itself. However, the high-level variables offer an opportunity to introduce prior
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9.1 Training Input

Table 9.1: Processes used for training of the DNN classifiers with number of generated
events and the number of events they predict for the signal region. For W*Z-QCD, an
additional scale factor was applied to achieve a better agreement with the expected data.

Process Generated Events Predicted Events
WEW*5j-EW LL WW-cmf 215008 18.29
WEW*5j-EW TL WW-cmf 170387 58.88
WEW=*;j-EW TT WW-cmf 456456 124.50
WEW*5j-EW LL pp-cmf 19673 11.49
W*W=*5j-EW TL pp-cmf 21471 67.84
WEW=*;j-EW TT pp-cmf 46320 123.07
WEW=*,-EW MGH7 201488 206.52
WEW=*;;-QCD 25375 24.05
WEW*j-Int 79805 7.57
W*Z-EW 8273 14.95

W+ Z-QCD Sherpa222 27800 82.75/2 = 41.38 — 28.50
W+Z-QCD Sherpa2212 22199 76.79/2 = 38.40 — 28.50
top 2192 5.02

A 2880 2.51
charge-flip 8231 10.10

physics knowledge about event kinematics into the training. Thus, the angular separations
in Ay, A¢, and AR between different objects are provided. The 7 values of leptons and jets
can be used to define the lepton Zeppenfeld variable

m— 5N — ns2)
M1 — Nj2

Zr = : (9.2)

For the di-lepton and di-jet systems, the invariant masses are calculated. In addition to the
invariant masses, transverse mass projections are also taken into account. The definition of
the massless early-projected transverse mass,

u,M i '
miET = [l e — (5 4 R PR, (93

and the mass-preserving transverse mass,

u ; ;
mip M = (R ppise)? — (8 + P 4+ ), (04)
with Bl = (m”)2 + (p%)2 are described in Ref. [95]. The transverse mass is also calculated
for the individual leptons, mlTl’MET and msz MET

In order to improve the sensitivity to the polarization, Ref. [84] aims to reconstruct the
decay angles of the two W bosons using regression models. Two different training setups are
studied for the regression models, and both are investigated in the following. The regression
models are trained on the leptons, jets, and missing transverse momentum kinematics. Since
the regression models are trained to regress the true W= decay angles, they can potentially
contain information not directly available in the reconstruction-level phase space kinematic.
Thus, the regression model output is considered as a potential training input for the classifiers.
A more detailed discussion of the regression networks is omitted for this thesis, as they are
removed from the training data by the following optimization.

The training data is split into train, validation, and test sets according to the event
number in a ratio of 3:1:1. The test set is given by ((EventNumber — ipoq) mod 5) = 0,
events with ((EventNumber — ipoiq + 1) mod 5) = 0 belong to the validation set and the
remaining events are used for training. The index ig,q defines the different splits used for
cross-validation in the hyperparameter optimization and for the 5-Fold method described in
section 5.8.
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9 Training of Discriminator DNNs

Table 9.2: Variables used to optimize and train the binary classifier. The variables were
pre-scaled for the training and application to have a more Gaussian-like distribution.

Kinematics [ Descriptions [ scaling
Low-level variables
P pr of the leading lepton log,o(z)
nH n of the leading lepton x
1 type flavor of the leading lepton x
P2 pr of the subleading lepton log, ()
n'? 7n of the subleading lepton x
o2 — Redefined ¢ of the subleading lepton T
12 type flavor of the subleading lepton T
p]fl pr of the leading jet logo(x)
7t 7 of the leading jet x
¢t — Pt Redefined ¢ of the leading jet T
Py pr of the subleading jet log,o(z)
72 7 of the subleading jet x
@2 — Pt Redefined ¢ of the subleading jet x
pipiss Missing transverse momentum log,o(z)
d(pipiss) — o Redefined ¢ of the missing transverse energy T
High-level variables

Zy4 Zeppenfeld variable of the leading lepton NG
Zf Zeppenfeld variable of the subleading lepton N2

?’MET Transverse mass of the leading lepton and pis® N
m?’MET Transverse mass of the subleading lepton and ps VT
ARy AR between the two leading leptons T
Any An between the two leading leptons N
my Invariant mass of the two leading leptons log,o(z)
p% pr of the dilepton system A
miAMET Transverse mass of the dilepton system NZa

I,MET Early-projected massless invariant mass of dilepton system

ol and missing transverse energy v
ARj; AR between the two leading jets x
Ayjj Ay between the two leading jets x
mj; Invariant mass of the two leading jets logo(x)
Agjj A¢ between the two leading jets x

i1 2
(7 - p7)/ (o7 - Pr)
min(ARy; 12,51 j2)

pr ratio of leptons and jets
Minimal AR between the leptons and jets

log,o(z + 0.02)

X

Regression models

Regressiony, ; (11
RegressionLL;1 (12
Regressionyp 5 (11
Regressionyp, o (12
RegressionLT;l (i1
Regressiony p ; (12
Regressionpp (11
Regressiony p 5(12
Regressionp 1 (I1)
Regressionpr ; (12)
Regressionpr (1)
Regressionypr 5(12)

)
)
)
)
)
)
)
)

Regressed W=
Regressed W=
Regressed W+
Regressed W=+
Regressed W=+
Regressed W=+
Regressed W+
Regressed W=+
Regressed W=+
Regressed W=+
Regressed W+
Regressed W=

— vl decay angle trained on LL events
— vl2 decay angle trained on LL events
— vl1 decay angle trained on LL events
— vl2 decay angle trained on LL events
— vl1 decay angle trained on LT events
— vl2 decay angle trained on LT events
— vl1 decay angle trained on LT events
— vl2 decay angle trained on LT events
— vl1 decay angle trained on TT events
— vl2 decay angle trained on TT events
— vl1 decay angle trained on T'T events
— vl2 decay angle trained on TT events

88 88 88 88 8888
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9.2 Network Architecture

9.2 Network Architecture

This thesis focuses on fully-connected feed-forward neural networks. The first layer of the
networks is the normalization layer. This layer applies the scaling function corresponding to
the individual variables in table 9.2 and normalizes the mean of the resulting distribution to
0 and the variance to 1. This normalization layer modifies the input variables to have similar
distributions without losing information about the kinematic phase space.

The normalization layer is followed by a dense layer connected to a batch normalization
layer. After the output of the dense layer is normalized, the activation function is applied.
A dropout layer is connected after the activation function for further regularization during
the training. This sequence of dense, batch normalization, activation, and dropout layers
is repeated until the final dense layer, which provides the output of the network. More
information about the functionality of a neural network and the individual layers is provided
in chapter 5.

9.3 DNN Optimization Algorithm

Although focusing only on fully-connected neural networks, there is a wide variety of possible
network hyperparameters and training procedures. In order to simplify the optimization,
only networks with a constant number of neurons per layer are used, which means that
only the number of layers and neurons per layer have to be optimized for the network size.
Also, the activation function is not additionally optimized in the following but is set to the
swish function [64] for all layers. Following the recommendation for the swish function in
Ref. [96], the weights are initialized by the truncated normal distribution with a variance of
2.952 normalized by the number of input neurons of the corresponding weight tensor, and a
normal distribution with a standard deviation of 0.2 initializes the bias. The Adam optimizer
performs the weight updates, using binary cross entropy for the loss function. Besides the
neural network’s size, a wide variety of training parameters still have to be optimized to
gain a well-performing classifier. The accuracy of the training process can be optimized by
varying the batch size. To reduce overtraining, dropout in each layer is introduced. For the
Adam optimizer, the learning rate, 81, (2, and € parameters are optimized. The optimization
of the set of training variables and hyperparameters described in this chapter is implemented
in the OPTIMA tool [97] and was developed in Ref. [89]. The metric for the optimization is
the area under the ROC curve (AUC) since this metric is more directly related to the actual
separation of the different processes than the binary cross entropy. The advantages of the
AUC are described in more detail in section 5.7.

9.3.1 Optimization with OPTUNA

Due to the variety of hyperparameters to be optimized and the resulting very high number
of possible combinations, a grid search for optimization is not feasible. In order to run this
complex optimization, the open-source optimization framework OPTUNA [98] is used. This
tool can be used to optimize complex problems with an efficient sampling strategy. For the
sampling, the TPESampler [99] is used to find and test suitable hyperparameters. Using
Ray Tune [100], several neural networks can be trained simultaneously and underperforming
trials can be pruned by the ASHA-Scheduler [101] if their validation AUC is not improving
fast enough. This pruning eliminates poorly performing networks at an early stage to save
resources in the optimization. However, since in general small networks converge faster than
larger networks, pruning could prevent the choice of larger networks. Thus, a minimum
number of layers is required in the optimization. The hyperparameter search space spans
6 to 14 layers for the optimization of the neural networks trained to separate polarization
states in the WW-cmf as well as the W*W=*;jj-EW vs background models, while 3 to 8
layers were chosen for the polarization discrimination in the pp-cmf due to the smaller MC
sample. The full search space and sampling method is listed in table 9.3. When selecting new
hyperparameter combinations during the optimization, the performance of previous trials is
evaluated based on their most recent instead of their best epoch. This reduces the impact
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9 Training of Discriminator DNNs

of random fluctuations of the validation AUC. A similar problem arises when choosing the
best combination of hyperparameters at the end of the optimization. A fit to the validation
AUC is performed for each of the training runs using the fit function

A B

floss (xepoch) = (LE h)2 + - . + Cl’epoch + D({L‘epoch)Q + const. (95)
epoc epoch

For all performed trainings during the optimization, the fit function is applied in the last
two-thirds of the training process or in the last 20 epochs, whichever provides more points
for fitting. Trainings with less than 20 epochs are not considered.

The result of the optimization is the hyperparameter set of the training with the highest
AUC in the fit. The location of the maximum determines the optimal number of epochs to
train.

Table 9.3: DNN hyperparameters optimized for the discriminator DNNs. The search
space and sampling distribution are listed for the tunable hyperparameters.

Fixed hyperparameters

Hyperparameter Value
Optimizer Adam
Loss function binary cross-entropy
Activation function swish
Optimized hyperparameters
Hyperparameter Seach space Parameter sampling

[3,8] for DNN,,; in pp-cmf

Number of layers | 16 1y o0 NN, in WW-cmf and DNNy+yy = Uniform
Neurons per layer [32,512] Uniform
Dropout rate [0.0,0.5] Uniform
Batch size [32,512] Logarithmic
Learning rate [1075,1072] Logarithmic
Adam 3, [1074,0.99] Logarithmic
Adam 1 — S, [107°,0.9999] Logarithmic
Adam € [10710.1.0] Logarithmic

9.3.2 Backward Elimination of Training Variables

The method described so far allows the optimization of the hyperparameters of the neural
network in a very efficient way. However, whether all input variables used were necessary or
are dispensable for the training has not been tested so far. Reducing the set of training vari-
ables can reduce the occurrence of local minima in the training loss and, therefore, improve
the training process [102]. Before dropping training variables, an initial hyperparameter
optimization is performed on the complete set of variables to ensure well-performing hyper-
parameters. Afterward, each variable is tested for its importance in the training process. A
combination of two different approaches is used for this:

Approach 1 Shuffle the values of the variables. The shuffling is done to assign random
values for this variable while preserving the initial variable distribution.

Approach 2 Remove the variable from the dataset using the hyperparameters and number
of training epochs as given by the best fit of the initial OPTUNA optimization.

Both approaches calculate the model predictions and determine the mean validation AUC
on the five folds before and after the variable var; is dropped. When using approach 1, this
procedure is repeated 10 times to reduce the statistical uncertainty. The resulting metric
used to quantify the importance of a variable is the mean relative change of the validation
AUC with respect to the training on the full variable set:

1o AUC; (var-set \ var;)

== 1 .
o 5 = AUC; (var-set) (9:6)
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Figure 9.1: Optimization of input variables for the DNN trained to separate LL and

TX in WW-cmf with shuffling. The mean relative AUC change is plotted after shuffling a
variable of the variable set in table 9.2 10 times on each fold. The variable with the lowest
performance decrease is dropped, and in the next step, the remaining variables are tested.
This figure represents the first iteration of the variable optimization for DNN,,; trained
for LL in WW-cmf.

This first step of the variable optimization is shown in figure 9.1 for the DNN,,; separating
LL and TX in the WW-cmf. The relative change ¢; drops below 0 for several variables, but
the removal of a significant number of variable results in a relative change close to 0. The
variable with the highest J; is dropped, leading to the best performance improvement (lowest
performance decrease).

After the variable is dropped, the model is retrained on the reduced variable set. The
retraining is done with three different seeds for each of the five folds, which leads to a precise
evaluation of the performance change in each fold after dropping the variable.

At the start of the variable optimization, approach 1 (shuffling of variables) is used to
determine variable importance because it is computationally cheap and can identify vari-
ables that have no significant impact on the final decision. This approach is followed until
no improvement by dropping a variable has been achieved for five consecutive iterations. Af-
terwards, the best-performing set of variables is chosen, and the procedure is continued with
approach 2 (retraining). The retraining has significantly higher computational costs than the
shuffling but can drop discriminant but highly correlated variables. This procedure is con-
tinued until the evaluated performance change no longer overlaps with the best-performing
set within their standard deviations. For this stopping criterion, a patience of five iterations
is used.

9.3.3 Combined Optimization Strategy

The final optimization procedure is done in three steps. First, a hyperparameter optimiza-
tion is performed with 1000 networks trained on fold 0 to optimize the validation AUC of the
neural network. The resulting set of hyperparameters is used to perform the variable opti-
mization, reducing the set of training inputs. The variable optimization is followed by a final
hyperparameter optimization with 3000 trials trained on fold 0 to find the best parameters
for the reduced set of variables. However, due to the high number of trials, this validation
performance can also be a coincidence. Therefore, the selected network is retrained on the
five folds with a different seed. Due to the retraining the final networks become independent
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9 Training of Discriminator DNNs

of the explicit selection during the optimization.

9.3.4 Optimization Results

The set of hyperparameters of the initial hyperparameter optimization is given in table 9.4.
Due to the smaller training sets, the networks trained to separate the polarization in the
pp-cmf tend to be smaller and thus have fewer trainable parameters. The shown sets of
hyperparameters are then used for the variable optimization. The variable optimization
reduces the set of variables to the sets given in table 9.6. The results of the subsequent
hyperparameter optimization are listed in table 9.5. The set of chosen training variables and

hyperparameters are discussed in the following.

Table 9.4: Hyperparameters derived from the pre-optimization. The pre-optimization
was done on the full set of variables in table 9.2.

Hyperparameter WEWE;j-EW vs bkg. | LL vs TX LX vs TT LL vs TX LX vs TT
in WW-cmf | in WW-cmf | in pp-cmf in pp-cmf
Number of layers 9 10 10 7 3
Neurons per layer 192 123 204 139 426
Dropout rate 0.353334 0.204865 0.388665 0.427303 0.448612
Activation function swish swish swish swish swish
Batch size 333 283 399 226 337
Learning rate 0.00134618 0.000885491 | 0.00100069 | 0.00245006 | 0.00110225
Adam p; 0.00191544 0.565954 0.00437381 0.620739 0.896171
Adam 1 — S35 0.0274911 0.00304935 | 0.00481873 | 0.00564895 0.14664
Adam € 1.50036e-08 1.87817e-10 | 1.60614e-05 | 6.31996e-10 | 5.18648e-09
epochs 54 52 106 46 28

Table 9.5: Hyperparameters chosen for the neural network training. The shown hyper-
parameters were chosen in the final step of the hyperparameter optimization.

Hyperparameter WEW=*j-EW vs bkg. | LL vs TX LXvs TT LL vs TX LX vs TT
in WW-cmf | in WW-cmf | in pp-cmf in pp-cmf
Number of layers 8 9 7 3 4
Neurons per layer 491 296 322 211 96
Dropout rate 0.355903 0.381438 0.450564 0.472462 0.2293
Activation function swish swish swish swish swish
Batch size 288 436 342 181 417
Learning rate 0.0021943 0.00158784 | 0.000330002 | 0.00143182 | 0.00136966
Adam betay 0.0710309 0.729623 0.874392 0.67804 0.410719
Adam 1 — 2 0.0012125 0.00227713 | 0.000171442 | 0.00300309 0.261055
Adam e 6.72079¢-08 2.42132¢-09 | 1.85018e-06 | 1.0855e-09 | 1.44148e-06
epochs 24 73 162 86 62

Training Variables

For all DNNSs, a significant number of variables are dropped during the optimization. The
relative change of the AUC on validation data is shown in figure 9.2 for the DNN,,; trained for
LL in WW-cmf. The optimization plots for the remaining networks are shown in figures C.9
and C.10. Since the network performances increase, only variables harmful to the training
are dropped. The validation AUC increases until the first variables that provide information
necessary for the classification are dropped. The resulting set of variables corresponds to the
last iteration before the rapid decrease of the network performance starts. Thus, the chosen
variables are expected to provide the smallest set of training variables that contain all the
information required for the network training.

The resulting variable sets are summarized in table 9.6. The corresponding numbers of
chosen low- and high-level variables are listed in table 9.7. The polarization DNNs trained in
the WW-cmf tend more to use low-level variables than the polarization DNNs in the pp-cmf.
This difference can be explained by the bigger network size in table 9.4 and the ten times
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Table 9.6: List of variables used for the training. For each neural network, the variables
kept after the variable optimization for the training are marked with X. The index 1
or 2 for the regression variables in the lower part of the table relates to two different
hyperparameter choices for the regression DNN models.

Variable ssWW vs bkg | LL vs TX LX vs TT LL vs TXf | LX vs TT
in WW-cmf | in WW-cmf | in pp-cmf | in pp-cmf

Low-level variables

X X
X
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>
>
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3
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Regression models

Regressiony p 4 (I1)
Regressiony 1, ; (12)
Regression; ;5 (I1)
Regression; 1, 5(12)
RegressionLT;1 (11)
Regressionyr ; (12)
Regressionyp 5(I1)
Regressionyr 5(12)
Regressionr ; (1)
Regressionr ; (12)
Regressionr 5(11)
Regressionpp 4(12)
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Figure 9.2: Optimization of input variables for the DNN,; trained for LL in WW-cmf.
Plotted is the relative AUC change of the variable whose removal results in the best mean
AUC change after shuffling/retraining. If a significant performance decrease has been seen
for five iterations, the procedure is stopped and the variable set that is still consistent with
the best-performing set is chosen (marked with x).

Table 9.7: The number of low- and high-level variables chosen for the discriminator
networks. The detailed list of chosen variables is given in table 9.6.

DNN Number of Number of Total Number of
low-level variables | high-level variables variables
DNNpy«p+ 9 10 19
DNN,,,; for LL in WW-cmf 11 9 20
DNN,,; for LX in WW-cmf 11 7 18
DNN,,; for LL in pp-cmf 9 9 18
DNN,,,; for LX in pp-cmf 4 9 13

higher number of training events. The networks in the WW-cmf have a higher capacity
and more data to learn the characteristics of the polarization states from the kinematics
of individual objects. Since the networks in the pp-cmf have a significantly lower capacity
and less training data, they benefit more from the physics information stored in high-level
variables.

The two polarization networks DNN,,; classifying the polarization in the WW-cmf have
almost the same training variables. This agreement in the variable set is reasonable since the
networks only differ by the classification of the mixed state LT. Similar kinematic variables are
expected to be discriminant for the polarization classification for LL vs. TX and LX vs. TT.
Thus, the agreement between the two training variable sets in the WW-cmf further validates
the procedure for variable optimization. For the polarization networks in the pp-cmf, the
sets of chosen variables mostly overlap but are not as consistent as those in the WW-cmf.
The more prominent differences in the pp-cmf result from the choice of hyperparameters in
table 9.4. The number of layers and nodes per layer differ significantly between the LL and
LX classifiers in the pp-cmf. Due to these differences in the network size, different sets of
training variables are preferred.

The lepton flavor is the first variable dropped during optimization for all the polarization
networks. Since the lepton flavor originating from a W boson decay does not depend on
the W# polarization this information has no impact on the polarization DNNs. In addition,

116



9.3 DNN Optimization Algorithm

the output of the regression networks is dropped for all polarization networks. They don’t
provide an additional benefit to the existing low- and high-level variables and dropping them
improves the network performance.

For the DNNyy <+, the invariant di-jet mass m;; is dropped. Dropping this variable
is surprising since the m;; kinematic is one of the most discriminant variables to separate
WEW=*j-EW from backgrounds. However, the pr of the individual jets is kept together
with their angular separation in Ay;; and A¢;;. Thus, the network can reconstruct the di-jet
kinematic internally, making the external calculation of the mass superfluous.

The set of input variables of the networks represents the physics information it has learned.
A deeper understanding of the learned information is derived in section 10.3 by studying the
impact of the input values on the network decision.

Optimization results for DNN,,

The hyperparameter optimization with OPTUNA is repeated with 3000 trials for the re-
sulting reduced set of training variables. The best-performing networks are selected by the
maximum in the fit of equation (9.5) to the validation AUC. The training processes of the
best-performing polarization networks are shown in figure 9.3 and the corresponding hyper-
parameters are listed in table 9.5. As expected for the lower number of training events for the
polarization in the pp-cmf, the corresponding neural networks favor a lower number of layers,
while for the polarization in the WW-cmf deeper networks perform better. In comparison to
the initial choice of hyperparameters in table 9.4 before the variable optimization, the num-
ber of layers is reduced. Only for the LX classifier in pp-cmf, one additional layer is added
but the number of nodes per layer is reduced by more than a factor of four. Although this
has reduced the capacity of the networks, the number of training epochs has increased signif-
icantly. Thus, reducing the set of training variables leads to stabilized training convergence
allowing more training epochs.

The output distributions of the resulting networks are shown in figure 9.4. The classifi-
cation of validation data agrees well with the distribution seen for training data. The only
significant differences can be seen for longitudinal events classified close to 0. Thus, more
longitudinal events are classified as transversal as expected from the application on training
data. However, the number of longitudinally polarized events classified as transversal is very
small and the measurement of the longitudinal polarization is dominated by the DNN,; > 0.5
region. It is essential to highlight that even a more prominent difference between the distri-
butions of validation and training data would only affect the classification performance but
would not introduce a bias. Since the analysis uses the k-fold method described in section 5.8
the networks are only applied to the test dataset to predict the measured data.

For the LX in WW-cmf classification shown in figure 9.4b, an additional bump is seen,
which does not occur for the LL classification in figure 9.4a. This bump corresponds to the
mixed polarization state TL. The TL polarization state is kinematically closer to TT than
the LL polarization. Therefore, the TL contribution peaks at DNN,,; ~ 0.6 and not like the
LL contribution at DNN,,; ~ 0.9. The comparison of figure 9.4a and figure 9.4b indicates
that the separation of LL and TX is simpler than for LX vs. TT. The simpler separation of
LL and TX also explains why no TL bump is seen in figure 9.4a.

In the partonic center-of-mass frame in figures 9.4c and 9.4d, the same differences be-
tween the LL and LX classification occur. In comparison to figures 9.4a and 9.4b, the overall
separation in the pp-cmf is not as good as in the WW-cmf. The lower number of training
events and network capacity in the pp-cmf can partly explain the poorer separation. How-
ever, whether this can be resolved entirely with more data and larger networks is unknown.
Moving from a polarization definition in the WW-cmf to the pp-cmf could reduce the kine-
matic differences between the polarization states. Since the analysis mainly aims for the
polarization measurement in the WW-cmf the exact origin of the poorer separation in the
pp-cmf is not further investigated.
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Figure 9.3: The AUC during the training process of the polarization discriminator net-
works selected by the final hyperparameter optimization. The epoch with the highest AUC
in the validation AUC fit is marked with a red cross.
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Figure 9.4: The output distribution of the polarization DNNs trained on fold 0 and
applied on the corresponding training and validation data.
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9 Training of Discriminator DNNs

Optimization results for DNNy+ 1+

Throughout the analysis, all networks were optimized several times whenever newer updates
were available for the training data. However, during the previous optimization of the net-
work DNNy +y+, an error occurred that was detected too late and is therefore discussed in
this section.

Like the polarization networks, the network separating W+W=jj-EW and background is
also optimized for 3000 trials on the reduced variable set. The optimization algorithm selects
the best network according to its maximum in the fit of equation (9.5) to the validation AUC.
The fit is applied to avoid the selection of outliers. However, in this specific case, the fit to
the validation AUC has failed as can be seen in figure 9.5. The fit function does not agree
with the validation AUC and the fit maximum is above the validation AUC values. In
addition, the training epoch selected from the optimization algorithm does not correspond
to the best training epoch of the network leading to a network that is not trained to its
optimum. Unfortunately, this error was not noticed until the network was implemented
in the analysis and applied to the full Standard Model prediction, including all systematic
uncertainties. Therefore, an update of this network must be well justified, as it is associated
with a significant computational effort and leads to a delay in the analysis timeline.
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Figure 9.5: The AUC during the training process of DNNy +,+ selected by the final
hyperparameter optimization. The epoch with the highest AUC in the validation AUC fit
is marked with a red cross.

The hyperparameters of the selected network are listed in table 9.5. The number of layers,
batch size, and dropout are close to the results of the initial hyperparameter optimization
in table 9.4. The number of nodes per layer has increased but this is also the case for
most of the polarization networks. Therefore, the overall choice of the hyperparameters
is reasonable!. Only the number of training epochs is significantly smaller than the other
networks. However, the training of the chosen network was stopped after 34 epochs due
to early stopping with a patience of five epochs. Thus, the chosen number of 24 training
epochs is already close to the performance plateau and does not correspond to a significant
undertraining of the network. Since the selected training setup is not optimal but still
reasonable, the actual impact of alternative hyperparameters has to be discussed. The output
distribution of chosen DNNy -+ is shown in figure 9.6a. The optimization algorithm in
OPTIMA provides an additional set of hyperparameters which is selected according to the
highest validation AUC value and does not depend on a fit. The network with the best
AUC value is with six layers and 314 nodes per layer slightly smaller and is trained for 48
epochs until it reaches its optimal performance on validation data. The corresponding output
distribution in figure 9.6b has a very similar shape to the network chosen by the failed fit.

1The hyperparameter being so reasonable facilitated the late discovery of the error in the optimization.
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Figure 9.6: The output distribution of DNNy;, £y, + selected by the fit to the validation
AUC in figure 9.6a and selected by the best validation AUC value in figure 9.6b. The
networks are trained on fold 0 and applied to the corresponding training and validation
data.

The validation AUCpest-st = 0.8158 £ 0.0021 of the network chosen by the fit is close to the
validation AUCpest-vaiue = 0.8163 £ 0.0028 of the network chosen by the highest validation
AUC.2 Therefore, choosing different hyperparameters would not improve the separation of
WEW=;j-EW and backgrounds.

Since the network’s performance is not significantly affected by the failed fit in the opti-
mization process, updating the network and rerunning the analysis is not reasonable. This
decision is additionally supported by the expected impact of the DNNy +y+ classification
on the analysis results. The significance of the longitudinal polarization measurement de-
pends primarily on the separation from the transverse polarization states. The DNNy 4y«
is used to split the signal region in three different regions with increasing W*W=;jj-EW
purity. These polarization networks, on the other hand, are used as sensitive differential
distributions. Thus, minor changes in the DNNy, + -+ classification have no impact on the
final analysis results.

2The AUC uncertainties are derived by the training and application on the five different folds used for
the network training. Therefore, the uncertainties result from the differences of the different folds. Thus, the
uncertainties of AUCpest-it and AUChest-value are correlated.

121



9 Training of Discriminator DNNs

122



Chapter 10

Validation of DNN

Discriminators

The neural networks trained in chapter 9 provide discriminant variables for the polarization
measurement and are therefore a key element of this analysis. Three criteria on these models
are validated in the following sections:

e Validity between the training folds:
The networks trained on different folds provide a consistent output for data not used
for training.

e Consistency for measured data:
The networks behave similarly for the Standard Model prediction and measured data.

e Decision-making based on known physics:
The decision of the networks should align with the predicted kinematics they are trained
on.

The first two criteria are necessary to ensure a correct application of the networks. The last
criterion verifies that the network behaves as expected and shows where the multivariate
decision goes beyond the distributions of individual observables.

10.1 Validation of the 5-Fold Method

When applying DNN algorithms, the performance differences between training and unseen
data must be considered. The k-fold method avoids a bias originating from the training
data. The concept of this method is introduced in section 5.8. For the training of the neural
networks in chapter 9, the data are split into five sets: three used for training, one used for
validation, and one test set. The resulting neural networks are fully independent of their
test sets since they were not used for training or optimization. The final DNN application is
therefore a combination of five DNNs, each responsible for the corresponding test fold.

Since the training data overlap only partially and the training of a network is a statisti-
cal process, their classification decisions can differ. Even if the separation for the individual
networks is excellent, the sum of the classified test datasets could be significantly less discrim-
inant if the individual shapes are inconsistent. In order to ensure a consistent classification
of unseen data, the consistency of individual decisions of DNNs trained on the different folds
is tested. The DNNs are applied to common datasets, none of which are used for training,
to investigate event-wise classification differences:

o DNN,:
The polarization networks are trained on the polarized MadGraph samples. Therefore,
the networks are applied on the unpolarized MadGraph W*W*jj-EW sample and the
predictions of the individual backgrounds. Since these events are not used for training,
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10 Validation of DNN Discriminators

they can be directly used for a consistency test in the signal region without any bias
from the training process.

. DNNwiwi:
For the W*W*;j-EW and background separation only the polarization samples are
not used for training. Therefore, only the different polarization samples are used for
the closure test in the signal region. The classification for individual backgrounds is
investigated in the Low-m; region not used during training.

To illustrate the concept of the test, DNNy +y+ trained on fold 0 and fold 1 are compared
in detail. Their consistency is tested for the predicted W*W=*j-EW LL polarization state
in WW-cmf. The comparison of the event-wise application is shown in the heatmap in
figure 10.1a. Since the matrix is very diagonal, a strong correlation between the network
decisions is indicated. This consistency is also validated by the classification difference plotted
in figure 10.1b. For most events, the deviation is tiny and no systematic shift is visible. Thus,
the DNNy +y+ trained on fold 0 and fold 1 consistently classify individual longitudinal
polarized W*W = j;j-EW signal events.
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Figure 10.1: Deviation in the classification of LL polarization in WW-cmf events in the
signal region for DNNy; 4y + trained on fold 0 and fold 1. In figure 10.1a the correlation
and in figure 10.1b the deviation of the classification is shown.

Such a detailed comparison of all trained networks and all considered processes would
lead to an immense amount of correlation plots. To simplify the validation procedure, the
mean deviations and the 50%-, 75%-, and 90%-quantile of the absolute deviations are studied
in the following. For the neural networks trained for the polarization classification, the mean
deviations are shown in figure 10.2. These figures show the event-wise deviation for the
different processes passing the signal region selection. Since all mean deviations are very close
to 0, no systematic shift is expected for the polarization neural networks trained on different
folds. Therefore, their differences in the classification of individual events result from the
non-deterministic training and are not a consequence of the different physical concepts they
have learned. The 50%-, 75%-, and 90%-quantiles of the absolute deviations are shown in
figure 10.3 to further investigate the event-wise differences. The classification of the networks
trained on different folds differs only by less than 5% to 10% for most of the events. This
excellent agreement is not limited to the W*W=*;j-EW signal on which the polarization
DNNs were trained but also applies to all other backgrounds. Thus, the classification of an
unseen event is not very dependent on the neural network fold chosen for the classification.
The remaining differences for individual events are expected to be canceled in the k-fold
application.
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Figure 10.2: The deviation in the classification of different processes in the signal region
for the polarization neural networks trained on different folds. The resulting mean devia-

tion is shown together with the standard deviation of the classification differences.
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Figure 10.3: The deviation in the classification for the polarization neural networks
trained on different folds. The resulting 50%-, 75%-, and 90%-quantiles of the absolute
classification differences for different processes in the signal region is shown.
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However, the figure 10.3 indicates significant differences between the consistencies of the
different polarization DNN sets. The deviations for the polarization networks in the W -
cmf are expected to be significantly smaller than for the pp-cmf. The ten times higher
number of training events in the WW-cmf leads to less statistical differences between the
training folds. In addition, figure 10.3 also shows that the differences between the folds are
more significant for the LL vs. TX networks than for the LX vs. TT networks. The exact
reason for this is not known. One explanation could be the split of training events for the
polarization classification. The ratio of raw training events Npp/Nyx = 0.3 is significantly
smaller than for Ny x/Nprr =~ 0.8. Thus, the polarization information for the LL vs. TX
network is extracted more unevenly from the training data. The different binary split could
explain why the LX vs. TT networks are statistically more robust between the different
training folds.

For DNNyy £+, only the polarization samples were not used for the training in the
signal region. The mean deviation and the quantiles of the absolute deviation for these
events are shown in figures 10.4a and 10.4b. The DNNy +y-+ has no systematic bias in the
classification in the signal region and the individual decisions only differ by less than 5% to
10%. Since the polarization samples cover the same kinematic phase space as the Standard
Model background, this closure is representative of all events selected by the signal region.

In the Low-m;; region, the test can be done with the full range of WEW=j-EW signal
and background predictions since networks are trained in the signal region. The absolute
deviations in the Low-m; ; region shown in figure 10.4d are even smaller than in the signal
region in figure 10.4b. The closure test in figure 10.5¢ which is performed in section 10.2
shows that the DNNy +y+ score in the Low-mj; region is significantly shifted towards 0.
Thus, the overall spread of the classification values is smaller and therefore also the deviation
for individual classifications. The mean deviations shown in figure 10.4c indicate systematic
differences between the training folds. The question arises whether these systematic shifts
in the Low-mj; region could also affect the measurement in the signal region. The pulls in
figure 10.4c are consistent across the different Standard Model processes. Since no systematic
shifts for the polarized W*W=*;j-EW signal are found in the signal region, these shifts
have to be a result of moving to the Low-m;; region. This region was not included in the
training and the networks trained on different folds thus differ mainly in their handling of
the kinematic region with m;; < 500 GeV. Since the Low-m; region enters the final fit only
via its total number of events, this bias has no impact.

In summary, all the sets of networks used in the k-fold method are consistent between
their folds. Thus, the resulting distributions that are summed in the k-fold method will be as
discriminant as the individual distributions. In addition, this test shows that the networks
trained on different folds have learned the same physical concepts, leading to consistent
decisions for unseen data. The remaining differences are expected to originate from the non-
deterministic training process. A further reduction of these deviations is not required for
this analysis but could be reached by larger training datasets.
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Figure 10.4: The deviation in the classification for the neural networks trained on dif-
ferent folds to separate WEW*jj-EW signal and background. In figures 10.4a and 10.4c
the mean deviation is shown together with the standard deviation of the classification
differences. The corresponding quantiles are given in figures 10.4b and 10.4d. The events

in figures 10.4a and 10.4b pass the signal region selection and the events in figures 10.4c
and 10.4d originate from the Low-m;; control region.
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10.2 DNN Validation with Measured Data

The neural networks for the polarization measurement are primarily trained on simulated
events. Only for the charge-flip background, measured data with oppositely charged leptons
are used. For the final polarization measurement, the DNNs will be applied to the back-
ground and signal predictions, resulting in the DNN distributions predicted by the Standard
Model. These expected distributions are compared to the DNN output distributions for data
measured by the ATLAS detector. Since the DNNs are trained on the Standard Model pre-
diction, the question arises whether they behave differently on measured data. For example,
a bias of the DNNs towards a specific simulation scheme could affect the statistical fit in the
comparison with measured data.

The DNNs are applied on measured data and on Standard Model predictions not used
for the training to test for such a bias. It is essential not to test distributions that are crucial
for the final polarization measurement to avoid bias in the analysis strategy. For this reason,
the Low-m;; control region is investigated since this region is kinematically close to the
signal region but enters the final fit only by its total number of events. Since the measured
data in the signal region was already published in the differential unpolarized W*W*5;
measurement in Ref. [8], a validation with data in the signal region is also reasonable. Only
the neural network that separates W*W=*;j-EW signal and background is tested in the
signal region to avoid pre-empting the polarization measurement.

In the differential unpolarized W+ W= jj measurement [8] the normalization of the W+ Z-
QCD background and the W+W=;j-EW signal was fit to data. Since these fit results have
already been published, they provide a good baseline for the following closure with measured
data. The Sherpa2212 W+ Z-QCD is scaled by 0.69 to match the post-fit number of events
in the WZ control region of the unpolarized W*W=*j;j measurement in Ref. [8]. For the
polarization samples, the post-fit W*W+;j-EW signal normalization of 1.14 is applied as
scale factor to match the fit results in Ref. [8].

Since running over all systematic variations is computationally expensive, the following
closure test considers only statistical uncertainties of the prediction.

10.2.1 Validation in Low-mj; Control Region

Since the Low-m;; control region is not used for DNN training, the DNNs can be applied
without the k-fold method without risking a bias. Thus, each DNN trained on a different
fold can be validated on the full Standard Model prediction in the Low-m;; control region.
For all neural networks trained on fold 0, the classification of the predicted and measured
data is shown in figure 10.5. The closure tests of the remaining folds are shown in figures D.1
to D.5. An overview of all the performed closure tests is given by the stat-only x? values and
the corresponding p-values listed in table 10.1. The distributions shown in the plots and the
resulting x? values indicate good agreement between the prediction of the Standard Model
and the measured data. Since no significant shift is observed in any of the distributions,
the DNNs do not appear sensitive to differences in the kinematics of prediction and data in
the Low-mj; control region. Due to the kinematic similarities between the Low-m ;; control
region and the signal region, it can be assumed that this should also be the case in the signal
region.

In addition to the closure between prediction and data, the overall shape of the distri-
butions is reasonable. The polarization DNNs in figures 10.5a to 10.5d separate the LL and
TT polarization states in the W*W=*;;-EW signal contribution. The networks have thus
learned general concepts of polarization kinematics that also apply in the Low-m;; region,
which does not overlap with the kinematic region used for training.

For the DNNy + -+ in figure 10.5e, most of the events are classified to background. The
bias towards background classification is expected since mj; is a discriminant variable for
WEW=;j-EW against the background. Nevertheless, a separation between W*W+;j-EW
and background can still be seen in these histograms proving that the network can differ the
contributions also in a kinematic region not used during training.
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10.2 DNN Validation with Measured Data

Table 10.1: The stat-only x? values and the corresponding p-values for the DNN closure
test with measured data in the Low-m,; control region.

DNN x?/Nqgs | p-value
LL in WW-cmf (fold 0) 0.71 0.82
LL in WW-cmf (fold 1) 0.76 0.75
LL in WW-cmf (fold 2) 0.86 0.64
LL in WW-cmf (fold 3) 0.89 0.60
LL in WW-cmf (fold 4) 0.56 0.93
LL in pp-cmf (fold 0) 1.46 0.09
LL in pp-cmf (fold 1) 1.14 0.31
LL in pp-cmf (fold 2) 0.94 0.53
LL in pp-cmf (fold 3) 1.25 0.20
LL in pp-cmf (fold 4) 0.67 0.86

LX in WW-cmf (fold 0) 1.22 0.23
LX in WW-cmf (fold 1) 1.05 0.40
LX in WW-cmf (fold 2) 1.44 0.09
LX in WW-cmf (fold 3) 1.66 0.03
)

LX in WW-cmf (fold 4 1.04 0.41
LX in pp-cmf (fold 0) 1.83 0.01
LX in pp-cmf (fold 1) 1.27 0.19
LX in pp-cmf (fold 2) 1.68 0.03
LX in pp-cmf (fold 3) 0.97 0.50
LX in pp-cmf (fold 4) 1.96 0.01

WEWE5-EW vs. bkg (fold 0) | 0.75 0.76
WEW=*5j-EW vs. bkg (fold 1) 1.1 0.33
WEW=*;j-EW vs. bkg (fold 2) | 0.73 0.80
WEW=*;j-EW vs. bkg (fold 3) | 0.74 0.79
WEW=*;j-EW vs. bkg (fold 4) | 1.06 0.39

10.2.2 Validation in the Signal Region

To avoid bias in the analysis strategy none of the polarization DNNs are tested in the signal
region. The ensemble of DNNs separating W+W= jj-EW signal and background is applied in
the k-fold method, resulting in one histogram that is not affected by a bias from the training
and optimization procedure of the DNNs. The resulting distribution of the Standard Model
prediction in figure 10.6 is in excellent agreement with the data in the signal region. The
stat-only p-value of 11% supports this. Since there is no shift between the two distributions,
the information extracted from the Standard Model prediction during training is consistent
with the kinematic of the measured data.
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Figure 10.6: The DNNs trained on different folds to separate W W= jj-EW and back-
ground are applied in the signal region. Each DNN is only applied on its corresponding
fold and is not used during training and optimization. The resulting distributions are
stacked. According to the fit results from the unpolarized W*W*;j measurement [8], the
W*Z-QCD contribution is scaled by 0.69 and the W W= jj-EW signal is scaled by 1.14.

10.3 Interpretation of the Classifier Decision-Making

The neural networks DNNy, +y+ and DNN,,; are trained on the phase space kinematics
of the Standard Model prediction. Thus, the decisions of the networks are based on the
concepts of physics they have learned from the training data. The SHAP values introduced
in section 5.9 allow the investigation of the decision-making of the networks. The Kernel
SHAP method [74] is used for the event-wise calculation of the SHAP values. First, the
setup of the Kernel method is examined to make the appropriate choice of the required data
sets. This setup is then applied to the classifier networks trained in chapter 9.

10.3.1 Dataset Choice for SHAP Sampling

Due to the k-fold application introduced in section 5.8 an ensemble of networks is applied to
fill the DNN histograms. Thus, the SHAP analysis of the feature importance is evaluated for
each fold and combined afterward. Calculating the SHAP values requires a mask dataset to
sample the feature distribution and an explanation dataset containing the individual events
to be explained. The mask sample is extracted from the training dataset of the corresponding
network following the recommendation in Ref. [74]. The explanation sample is taken from
the validation dataset of the respective fold to be consistent with the unbiased test dataset
used in the statistical evaluation of the polarization analysis.

Since the trained networks are binary classifiers, the mask and explanation sample are
each equally split into the two categories used for the network training. The events in each
of the two categories are randomly chosen according to their event weight. Thus, the chosen
events are expected to follow the predicted distributions. Since the computational effort
grows with the size of the mask and explanation sample, a reasonable number of events has
to be chosen for both samples.

For the explanation dataset, 2000 events are chosen in total. This results in 1000 events
per binary category, 200 events each per fold. Due to the increasing computational effort, a
significantly larger explanation dataset is not reasonable.

The choice of the number of events in the mask data set used for Shapley sampling is
associated with a trade-off. A larger mask dataset leads to a more accurate calculation of
the individual SHAP values, but the computational effort increases significantly. Since there
is no official recommendation for the size of the mask dataset, the impact of the number
of mask events is studied. While keeping the explanation dataset fixed, the mask dataset
is randomly sampled with different numbers of mask events N,,q.sx. The mask events are
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taken from the training dataset of the corresponding fold with N,,.sx/2 events per binary
category. To keep the computational effort reasonable the number of mask events is varied
in the range Ny,qsk € {20,40,60,80,100} leading to independent mask datasets of increasing
size.

For DNNy 4+, the impact of Ny, qsk on the mean absolute SHAP values for each feature
is shown in figure 10.7. The shown uncertainties represent the statistical uncertainty of the
explanation dataset and is therefore fully correlated between the runs with different N,,qsk-
It becomes clear that already a very small mask dataset with only 20 events is sufficient
to study the overall impact of the features on the network decision. After Ny,aspx = 40
the calculation of the mean feature impact is very stable, and the difference between the
individual runs are in the same magnitude as the statistical uncertainty of the explanation
dataset. The impact of the increasing N,,,4sx for the polarization DNNs has equivalent effects
and is therefore shown in the appendix in figure E.1.
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Figure 10.7: The mean absolute SHAP values of DNNy; 411 + for different input features.
The assigned uncertainties originate from the statistical uncertainty of the explanation
dataset. The SHAP evaluation is done for independent mask datasets of different size.

In figures 10.7 and E.1 the impact of choosing a mask dataset with N,,qsx > 40 seems
negligible for estimation of the mean feature impact. However, this may also result from
individual differences in the SHAP value calculation averaging out due to the size of the
explanation dataset. Therefore, for each time N,,,s; was increased by 20 events the change
on the SHAP value calculation is evaluated for each event of the common explanation dataset.
If the calculation of the SHAP values becomes more accurate with larger Ny, qs%, the event-by-
event differences ASHAP should become smaller with each increase in N,,4s1. The quantiles
of the event-wise differences ASHAP of DNNy+y+ is shown in figure 10.8. The plots for
the polarization networks are very similar and therefore moved to the appendix in figure E.2.

With decreasing feature importance also the absolute differences between the different
SHAP runs decreases. This is reasonable and consistent with the differences seen in fig-
ures 10.7 and E.1. By comparing the quantiles in figure 10.8 for each feature used by the
DNNs, the differences in the SHAP values decrease with increasing Ni,qsk. However, for
most features, the change from N,,qsx = 60 to Nyeskx = 80 has a similar event-wise impact
as the change from N,,q5x = 80 to Nypesk = 100. Thus, the number of mask events probably
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Figure 10.8: The SHAP values of DNNy, 4+ originating from mask datasets with
increasing size are compared by calculating the event-wise difference. This is done for
each time N,.sx was increased by 20. For better visibility the individual differences are
combined into a box plot of the quantiles and whiskers covering the full range.

has to be increased into the order of N,,,sx = 200 or higher to further improve the SHAP
accuracy. Since the event-wise impact on the SHAP value calculation for Ny,.sx = 100 is
already below 0.02 for most of the events a much more computationally intensive calculation
with Ny,esk = 200 is not reasonable.

Therefore, 100 mask events are chosen for each fold. The systematic uncertainty of
per-event SHAP values arising from the limited number of mask events will not be studied
further. However, this uncertainty is expected to be below 0.02 for most events and thus
does not significantly affect the SHAP evaluation in the next section.

10.3.2 Evaluation of Feature Impact

SHAP values indicate the importance of an input feature for a specific decision of the DNN.
Therefore, analyzing the SHAP values over the entire kinematic phase space gives an indi-
cation of the physical concepts that the DNN has learned during training. Since kinematic
differences between the W*W*;j-EW signal and the backgrounds are better understood
than the kinematic differences between the polarizations, DNNy, +y+ is a good starting
point for studying the SHAP values.

Feature Impact for DNNy 4

The SHAP values evaluated for the 5-fold DNNy +y,+ ensemble are shown in figure 10.9a.
The individual feature values are encoded in the color of the corresponding SHAP values,
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taking into account the non-linear scaling in table 9.2 used for training. The difference
between the mean values in W*W*;j-EW signal Z; and background z, are listed to enable
a direct comparison with the feature distribution.

The DNN decision significantly depends on the separation of the jets in Ay;; and A¢j;.
By classifying events with a high jet separation to be more signal-like the DNNs have learned
one of the main signatures of the W*W=j-EW signal. Also, the preference for higher
missing transversal momentum is consistent with the existence of two neutrinos in the signal
definition.

In general, a clearer separation in x; — xg results in the behavior of the neuronal network
also following this distribution difference, as in the case of the Zeppenfeld variables of the
leptons. Features without a strong separation between signal and background like the 7
distributions also don’t show a clear correlation with the DNN decision-making, since they
depend more on the values of the other features.

For the lepton types, muons are more preferred to be classified as signal than electrons.
As the corresponding (Z1 — Zg)/o(x) differences indicate, the separation is stronger for the
type of the leading lepton. The relevance of the lepton type can be explained by the charge-
flip background that only affects electrons. On this point the mean absolute impact of each
feature in plotted figure 10.9b becomes relevant. While this plot confirms the behavior in
figure 10.9a again, the impacts on the decisions for different processes are also compared.
Despite the limited number of evaluated events, one can see additional attention is paid to
the 7 distribution and the type of leading lepton in the case of charge-flip background. If this
is true, the model has learned that specific kinematic regions are more likely for charge-flip
effects requiring a higher focus on the lepton type.

The overall distribution of the SHAP values shows that even if the ensemble of DNNs is
a black box the resulting decision-making seems comprehensible based on the prior physics
knowledge. Therefore, the DNNs separating W W= j;j-EW signal and background appear
to be a reasonable encoding of the kinematic phase space used for training.

Feature Impact for Polarization Classification

The SHAP values for the polarization DNNs are shown in figures 10.10 and 10.11. As
one would expect all the polarization DNNs show a quite similar behavior in the event
classification. All DNNs take a low lepton pr and a low pJi**® as an indicator for longitudinal
polarization. This is also consistent with the difference between the mean transverse momenta
listed in the figures. Due to the symmetry of the detector, the n values of individual objects
are not linearly correlated with the DNN decision-making. This is also the case for most of
the azimuth angles of the jets in respect to the leading lepton ¢/ — ¢''. However, for other
angle differences like Ag;;, Ay;;, and Ay a correlation between feature value and impact
on the decision is clearly visible. This is also reasonable, since the mean values of these angle
differences differ significantly between longitudinal and transverse polarization states.

Nevertheless, a more prominent difference in the mean feature values does not necessarily
result in a higher impact on the network decision. Although features with the highest dif-
ference (Z; — Zo)/o(x) also have the greatest impact on the decision, there are also enough
exceptions. One example is the pzfl in figure 10.10a which differs significantly between LL
and TX in the pp-cmf but has a very minor impact on the final decision of the network.
Similar effects can be seen when comparing the different DNNs. The m/>MET feature has a
significantly smaller value for longitudinal polarized events. The DNNs for the polarization
defined in WW-cmf focus on this feature in figures 10.10a and 10.10b. However, the impact
of mi"MET in figure 10.10b on the decisions of the DNN trained on LX in pp-cmf is much
less dominant, despite a similar value for (z1 — Zo)/o(x).

Another very interesting behavior can be seen for the M!? SHAP value distribution for
all DNNs. Despite the fact that M is on average a bit lower for LL/LX than for TX/TT
events the DNN takes higher M values as an important indicator for LX polarization. This

miss

counterintuitive behavior could be a result of the already favored low p? and low p*s® values
for longitudinal polarization. Since MlT2 is very correlated with plT2 and p7**® some kinematic
information is already available for the DNN allowing a more complex evaluation of this

feature.
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Figure 10.9: The SHAP values are evaluated for DNNy; 4+ p,+. In figure 10.9a the individ-
ual SHAP values are plotted with a color encoding the value of the corresponding feature.
In addition, it is also listed how much the mean values of the features in WW=*j;-EW
signal 1 and background z differ. Figure 10.9b shows the mean absolute impact of each

feature split into the 5 major contributions in the training data.
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10.3 Interpretation of the Classifier Decision-Making

The mean impact of each feature is shown in figure 10.12. The ranking indicates that
the polarization networks favor the lepton and missing momentum kinematic for the polar-
ization classification. Jet kinematics have a lower impact on the network decision. Thus, the
networks focus on the decay products of the W+ bosons rather than on the jets associated
with the initial emission of the W+ bosons.

The feature impact is quite consistent across the polarization datasets. This is expected
due to the kinematic overlap of the different polarizations. However, for some features there
are visible differences of the mean SHAP values between the polarization states. In most of
these cases the decision-making for the LL and TT contributions differs the most while the
mixed polarization is somewhere between. Thus, the DNN seem to have found kinematic
regions that are dominated by fully transversal or fully longitudinal polarization states. In
these regions the DNN potentially changes its preferences within the set of input features.

In summary, it can be concluded that the individual polarization DNNs have learned
similar concepts and their decisions can in general be explained by the physical expectations.
However, one can also see that the decision-making of the networks goes far beyond the
individual kinematic distributions and establishes complex connections between the input
features. Therefore, a complete explanation of the DNN behavior is not achievable but the
calculation of SHAP values allows justified assumptions to be made regarding the decision-
making process, that will be used in section 12.4.
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10 Validation of DNN Discriminators
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Figure 10.10: The SHAP values of the polarization DNNs trained in WW-cmf are
plotted with a color encoding the value of the corresponding feature. In addition, it is also
listed how much the mean values of the features in LL/LX-polarization z; and TX/TT-
polarization T differ.
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Figure 10.11: The SHAP values of the polarization DNNs trained in pp-cmf are plot-
ted with a color encoding the value of the corresponding feature. In addition, it is also
listed how much the mean values of the features in LL/LX-polarization Z; and TX/TT-
polarization Zo differ.
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LL, TL, and TT contributions in the corresponding reference frame.
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Chapter 11

Uncertainties

Analyses at experiments like ATLAS have to deal with a variety of different uncertainty
sources. The uncertainties can be categorized into experimental and modeling uncertainties.
Experimental uncertainties originate from the measurement and reconstruction of the data.
The modeling uncertainties, on the other hand, are the uncertainties of the Standard Model
modeling which can be improved in future theoretical calculations. The modeling uncertainty
includes the specific choices in the simulation process and the subsequent corrections to
improve the modeling. Since the polarization analysis uses the same background, and object
and event selection as the unpolarized W*+W#;j-EW analysis in Ref. [8], most uncertainties
are already derived and studied. The uncertainties new in this analysis affect the polarization
prediction. Therefore, this chapter provides a short overview of the background uncertainties
known from Ref. [8] and focuses mainly on the theory uncertainties of the polarization states.

11.1 Experimental Uncertainties

The experimental uncertainties of this polarization analysis have a variety of origins. Each
event is affected by the uncertainty of the integrated luminosity [19] of the ATLAS mea-
surement and a scale variation PRW_DATASF for the pileup reweighting [103]. For the lepton
reconstruction, the four-momentum variation EG_.SCALE_ALL [26] of the electron energy scale
and the four-momentum resolution uncertainty MUON_MS [27] from the muon system are con-
sidered. For the jet reconstruction and b-tagging described in Ref. [30] and Ref. [83], a wide
range of variations are considered. The uncertainty of the four-momentum is composed of

o JET EffectiveNP Modelling (1 to 4),
e JET Etalntercalibration Modeling,
e JET_Flavor_Composition,

e JET_Flavor_Response,

e JET_Pileup_OffsetMu,

e JET Pileup_0OffsetNPV,

e and JET_Pileup_RhoTopology.

The uncertainty of the energy resolution of the jet four-momentum is derived by eleven
JET_JER EffectiveNP variations. For the uncertainty of the b-tagging efficiency, the scale
factor variations

o FT_EFF_Eigen_ B,
e FT_EFF Eigen C,

e FT_EFF Eigen_L,
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11 Uncertainties

o FT_EFF Eigen_extrapolation,
o and FT_EFF Eigen_extrapolation_from_charm

are applied. The reconstruction of the missing transverse momentum is affected by the
MET_SoftTrk_ResoPara, MET_SoftTrk_ResoPerp, and MET_SoftTrk_Scale variation.

In addition to the reconstruction and identification process, further uncertainties arise
from the data-driven background modeling. For the data-driven estimation of the non-
prompt background, the fake factor uncertainties are listed in section 7.2.2. The uncertainty
of the charge-flip background in section 7.2.3 is provided by scale factor variations provided
by the Egamma Combined Performance (CP) group [78]. Since these two backgrounds orig-
inate from a misclassification in the ATLAS detector, their corresponding uncertainties are
classified as experimental.

11.2 Modeling Uncertainties

The dominant modeling uncertainties affect the W*W+;j-EW polarization states and the
W*Z-QCD background. For both processes, the modeling uncertainties are split into the
uncertainties of the simulation and the uncertainties of the modeling corrections. The less
significant modeling uncertainties of the prompt backgrounds described in section 7.2.4 are
estimated by normalization uncertainties derived in Ref. [8].

11.2.1 W*W=;j-EW Polarization Theory Uncertainties

The simulation of the Standard Model prediction is described in chapter 4. In order to
make reliable predictions for the proton-proton collisions at the LHC the knowledge of the
quark and gluon structure within the proton is essential. This proton structure is given by the
parton distribution functions (PDFs) for a specific energy scale. Since the PDFs are extracted
by experimental measurements in combination with Standard Model predictions, they have
a variety of uncertainties, which will be explained in this section. In addition to selecting
the PDF, the strong coupling ag and the renormalization, factorization, resummation, and
merging scale have to be chosen in the simulation steps described in chapter 4.

The application of theory uncertainties was already shortly discussed for the higher-
order QCD correction on W*W=*jj-EW in section 8.1.8. This discussion concludes that
the theory uncertainties are underestimated at leading-order QCD. Therefore, the SHERPA
I*vl*vjj + 0,15 sample (DSID 700970) is considered for this uncertainty calculation. The
SHERPA [ 111§ +0, 15 provides the target distribution for the higher-order QCD correction
in section 8.1 and thus provides a more realistic uncertainty estimation than the LO-QCD
polarization samples. The nominal PDF sets used for the SHERPA samples is provided
by the PDF4ALHCWorking Group [104]. The following uncertainties will be propagated to
the SHERPA and MADGRAPH polarization samples used for the polarization measurement.
The variations of the PDF, nominal PDF set, strong coupling, and renormalization and
factorization scale are accessible in the SHERPA [*vi*vjj + 0,15 sample via so-called on-
the-fly weights. For the resummation and merging scale variations, the alternative samples
listed in table 11.1 were produced.

The considered theory uncertainties are:

o PDF Variations
A PDF is obtained by a fit to experimental data in Ref. [104], resulting in uncertainties
in the fitting procedure. The used PDFALHC_40 set contains the nominal PDF and 40
PDFs with varied parametrization. The quadratic sum over the Hessian PDF set

(11.1)

is expected to cover the internal PDF uncertainty on the cross-section o. The index 7
indicate the different Hessian eigenvector directions with ¢ = 0 being the central PDF.
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11.2 Modeling Uncertainties

Table 11.1: SHERPA [TviTvjj 4+ 0,15 samples with resummation or merging scale varia-
tion.

DSID  sample name

SHERPA [Tvl*vjj + 0,15 resummation scale MU_Q

700998  Sh_300b1_1lvvjj_ss_MUQ20_corrected
700999  Sh_300b1l_llvvjj_ss- MUQO5_corrected

SHERPA [*vl*vjj 4 0,15 merging scale CKKW

701215  Sh_300_1lvvij_ss.CKKW30
701216  Sh_300_llvvij_ss.CKKW15

e Alternate PDF Sets

Since PDF sets differ by their parametrization and the input data used for the
fit, the choice of the PDF set can affect the resulting theory prediction. Thus,
the nominal PDF set is compared to CT18ZNNLO [105], CT18ANNLO [105],
CT18XNNLO [105], MSHT20nnlo_as118 [106], NNPDF31_nnlo_as_0118_hessian [107],
and NNPDF40_nnlo_as_01180_hessian [107]. The envelope of the differences between
the nominal PDF and the alternative central PDFs covers the uncertainty of the PDF
set choice [108].

e Strong Coupling ag
The strong coupling constant ag is measured by combining multiple datasets. The
strong coupling
as(m%) = 0.1180 + 0.0010 (11.2)

is given at the Z mass with its 68% confidence level [104]. This uncertainty is propagated
to the polarization measurement via

%o = %(a(as =0.119) — o(ag = 0.117)). (11.3)

The nominal value ag(m?%) = 0.1180 used in PDF4LHC_40 is taken as the central value
[104].

e Renormalization and factorization scale variations
Scale variations are used to estimate the uncertainty originating from missing higher-
order corrections. The renormalization scale purp and the factorization scale up
are pairwise varied. For the SHERPA sample, a pairwise 7-point variation is used
(ur,pr) € {(0.5,0.5),(0.5,1),(1,0.5),(1,1),(2,1),(1,2),(2,2)}. The scale uncertain-
ties are combined by their envelope [108].

e Resummation scale
The resummation scale defines the upper cutoff scale for the evolution of the parton
shower [108]. The MU_Q scale of SHERPA is varied between 0.5 and 2.

e Merging scale
To avoid an overlap of jets simulated in the matrix element calculation and in the
parton shower a merging scale CKKW is chosen. The hard jets are taken from the
matrix element calculation and jets below the merging scale are simulated by the parton
shower [58]. This merging scale CKKW is varied with (2071") GeV.

The listed uncertainties are extracted from unpolarized SHERPA (11 vjj + 0,15 sample
on particle-level. These uncertainties are then transferred to the polarized predictions used
for the polarization measurement. Ideally, the transfer of uncertainties should happen in the
entire phase space. Then, the uncertainties would be combined in the final distribution of the
discriminator DNNs. The transfer of individual systematic variations in the full phase space
could be achieved by the same multivariate reweighting approach used for the higher-order
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11 Uncertainties

QCD correction. However, the propagation of all systematic variations would require more
than 50 individual networks.

To avoid applying this high number of DNNs, the effects of the systematic variations
are studied in the combined signal and Low-m;; region defined in table 8.2. A multivariate
correction is unnecessary if the systematic variations only affect the shape of one specific
variable. Kolmogorov Smirnov (KS) values quantify the shape effects in the different kine-
matic variables. The KS values are calculated for the nominal [*vl*vjj + 0,15 sample and
its systematic variations on particle-level.

The renormalization and factorization scale variation in figure 11.1 has the dominant
shape impact of all the systematic variations derived by on-the-fly weights. The internal
PDF variations, the alternative PDF sets, and the ag variations have a similar KS value
distribution across the different kinematic variables but with a more minor shape impact.
Thus, their KS-value distribution is moved into the appendix in figure F.1 and the focus
remains on the renormalization and factorization scale variation. Since the variations are
derived by on-the-fly weights the two distributions compared in the KS test contain the same
events and only the event weights are varied. Thus, the KS values in figures 11.1 and F.1
are significantly lower than the expectation for two statistically independent distributions
and their resulting p-values are not meaningful and therefore not discussed. However, the
KS values indicate that the theory systematics from on-the-fly weights dominantly affect the
m;; kinematic. Thus propagating the theory uncertainties dependent on the particle-level
m;; is expected to cover their dominant effects on the entire phase space.

0.0175 MUR=0.5 MUF=0.5 s
MUR=0.5 MUF=1
0015071 @ MUR=1 MUF=0.5 ®
00125 @ MUR=1MUF=2 ° ® .
) MUR=2 MUF=1
=] _ -
S 0.0100 ® MUR=2 MUF=2 o ®
> [
0 ]
9 0.0075 ] : : 8
b4 ® ! 4 LA ] °
0.0050 1 & ® 4
. H $ 3 ? 1
0.0025 - i s o s $ [ |
[ ]
0.0000 T T T T T T ’ T T T T M T T T T T T T T T T T
AR B ORI S R R N RN R R R N S N N T U R R SR SR
N LR SR R\ <o} Q e X &0
Q«é,Q AN O/Q & ¢ \\’/QQ/Q & bQ\ b*\ O FE ‘(\\% ((\& o
N § N 3 &
QO

<

Figure 11.1: Kolmogorov Smirnov test between the nominal SHERPA [Tl vjj + 0,15
sample and the corresponding renormalization and factorization scale variations. The
kinematic distributions are derived on particle-level in the combined signal and Low-m;
region defined in table 8.2.

For the resummation and merging scale variations, alternative samples are produced.
The resulting KS values in figure 11.2 are in the same magnitude as for the renormalization
and factorization scale variations in figure 11.1. However, in contrast to figure 11.1, the
resummation and merging scale variations are derived by statistically independent samples.
Thus, the shown KS values correspond to almost no shape difference between the variations.
This is confirmed by the corresponding p-values in figure F.2. Even though the shape effects
are very small in all variables, the most affected distributions are m;;, Ay;;, and AR;;. Since
these variables are significantly correlated, the m;; distribution is chosen for the uncertainty
propagation to be consistent with the propagation of the on-the-fly weight variations.

The theory uncertainties are extracted by the reweighting factor

(IFvi*vjj +0,15)%s
(ljzyliyjj + 07 lj)nominal :

(11.4)

e (my;) =

The correction factor is extracted in combined signal and Low-m ;; region defined in table 8.2
but without the m;; selection criteria to cover potential migrations between the particle-level
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11.2 Modeling Uncertainties
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Figure 11.2: Kolmogorov Smirnov values for the comparison of the nominal SHERPA
I*u1T1jj +0, 15 sample and the corresponding resummation and merging scale variations.
The kinematic distributions are derived on particle-level in the combined signal and Low-
mj; region defined in table 8.2.

and reconstruction-level phase spaces. Calculating this factor allows an early combination
of the uncertainties reducing the necessary computational effort for the subsequent analysis.
The uncertainties propagated by rV°(m,;) are combined via:

§PDF, —

Internal PDF variations: 2?21 (0; — 09)?

Alternate PDF sets: envelope

Strong Coupling ag: 6*S0 = 1(o(ag = 0.119) — o(ag = 0.117))
Renormalization and factorization scale variations: envelope

Resummation scale: individual handling of MUQO05 and MUQ20
Merging scale: individual handling of CKKW15 and CKKW30

An analytic fit smoothes the resulting distributions. The functions

5
£ =a+ ) e (11.5)
=1
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and

3 6
Vi) =a+ cixt + G 11.6
@) =at e+ 33 (11.6)
are considered to model the shape effects of the combined theory uncertainty sets. The final
fits are shown in figure 11.3 and their corresponding performances are listed in table 11.2.
For the later application of the theory systematics only the range 150 GeV < m;; < 4000 GeV
is used and for m;; outside this range the correction factor at corresponding edge of the m;
range is applied. Thus, the fit in the first bin 100 GeV < m;; < 150 GeV does not affect the
final uncertainty calculation.

The fit function f;¥(x) is chosen for the internal PDF, resummation scale, and merging
scale variations. This function describes their shape very well and has a significantly more flat
behavior in the first bin of 100 GeV < mj; < 150 GeV. The corresponding fit parameters are
listed in table 11.3. For the alternative PDF sets, the ag variations, and the renormalization
and factorization scale variations, the function f;Y*(z) provides the best agreement and is
therefore chosen with the fit parameters listed in table 11.4.

Table 11.2: The performance of the x? fits of the functions in equations (11.5) and (11.6)
to the combined systematic variations.

Systematic TV (x) 57 ()
Xz, /dof | p-value | x3,/dof | p-value

CKKW15 1.39 0.016 1.36 0.022
CKKW30 1.10 0.26 1.12 0.23
MUQO5 1.28 0.056 1.24 0.079
MUQ20 1.08 0.30 1.08 0.30
PDF var down 0.033 1.00 0.029 1.00
PDF var up 0.033 1.00 0.029 1.00
alpha s down | 4.3-107° 1.00 | 41-1073 1.00
alpha s up 4.3-1073 1.00 4.1-1073 1.00
alt PDF down 0.019 1.00 0.019 1.00
alt PDF up 0.040 1.00 0.039 1.00
scale down 0.083 1.00 0.044 1.00
scale up 0.24 1.00 0.21 1.00

Table 11.3: Fit parameters of f;¥°(z) in equation (11.5) for the combined relative un-
certainties of the internal PDF, resummation scale, and the merging scale variations on
particle-level SHERPA [*viFvjj + 0, 15.

Systematic a 1 Co c3 cy cs
CKKW30 0.9487 | 7.258-107° 5.828-10"% | —7.661-10"11 | 2.617-10~™ | —2.878-10"18
CKKW15 1.303 | —3.13-107% | 3.991-1077 | —241-10" | 6.573-10~™ | —6.541-10"18
MUQ20 0.9106 | 1.258-10~% | —1.19-10=7 | 3.893-10~1T | —2.691-10~1° | —3.457-10~1°
MUQO5 1.141 | —4.555-10~% | 6.176-10"7 | —3.841-10° | 1.06-10"1% | —1.062-10~17
PDF var up 1.018 | 3.172-107% | —2.903-107° | 2.145-10"12 | —2.093-10"16 | —2.571-10~2!
PDF var down | 0.9817 | —3.172-107% | 2.903-107° | —2.145-10""2 [ 2.093-10"16 2.571-10=21

It is noticeable for the merging scale in figure 11.3e that both CKKW15 and CKKW30
are up-variations. This is surprising since the simulated CKKW30 sample has a lower cross-
section than the nominal sample. To better understand this effect, the systematic variation
of the merging scale is investigated in the loose particle-level region defined in table 8.4
without any di-jet selection. In this region, the distribution in Ay;; in figure 11.4 is striking.
In the range of Ay;; < 2 the CKKW30 is indeed a significant down-variation. However, the
Ay;; > 2 selection of the signal region removes this part of the distribution and only the
up-variation in the range of Ay;; > 2 is left. Therefore, the CKKW30 sample results in an
up-variation due to the shape dependency of this variation and the specific selection of the
signal region definition.
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(f) Resummation scale variations

Figure 11.3: The combinations of the relative systematics 7°V*(m;;) in equation (11.4) for
particle-level SHERPA WEW T 55 +0,15. The analytic functions given by equations (11.5)
and (11.6) are fit to the combined relative uncertainties. The kinematic distributions are
derived on particle-level in the combined signal and Low-m;; region defined in table 8.2
but without the m;; selection criteria.
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11 Uncertainties

Table 11.4: Fit parameters of f5¥°(z) in equation (11.6) for the combined relative un-
certainties of the alternative PDF sets, the ag variations, and the renormalization and
factorization scale variations on particle-level SHERPA wEWw* 773 +0,15.

Systematic a 1 Co c3 c4 cs5 cg
alpha s up 0.9811 | 1.638-107° | —4.452-10° | 4.745-10° 13 9.35 —1912 1.527-10°
alpha s down | 1.019 | —1.638-107° | 4.453-107°9 | —4.747-10" 13 | —9.352 1912 —1.527-10°
alt PDF up 0.977 | 3.827-1075 | —1.367-10° | 1.411-10 12 16.04 —3322 2.832-10°
alt PDF down | 0.9947 | —8.673-107% | 2.891-107° | —8.622-10"13 | —6.738 2313 —2.138 - 10°
scale up 1.086 | 1.077-10~% | —3.573-108 | 4.699-10~"2 | —39.44 | 1.438-10* | —1.201 - 10°
scale down 0.9333 | —2.992-107° | —1.934-10~2 | 5.139.10" 24.14 —4659 1.089 - 10°

CKK variations for Sh 1</ *vjj + 0,1

— Nomina |
—— CKKW30
0.4 CKKW15

Ayr2

Figure 11.4: The merging scale variations compared to the nominal {Tvitvjj + 0,15
distribution in Ay;; on particle-level. The events are selected by the loose particle-level
region defined in table 8.4.

The smoothed systematic uncertainties are propagated to the reconstruction-level
SHERPA and MADGRAPH samples described in section 7.1. The fit function f*¥*(m;;) is
applied according to the particle-level m;; of the corresponding event to be consistent with
the particle-level extraction of the systematic. The most dominant impact is expected from
the scale systematics shown in figures 11.3d to 11.3f. Their relative uncertainty is in the
order of 10% to 20%, which significantly limits the accuracy of the theory prediction. The
application of the scale uncertainties is further discussed in section 12.4.

11.2.2 NLO Correction Uncertainty of W*W*;jj-EW

The approximate NLO-QCD and NLO-EW correction of the W*W=;;j-EW polarization
and their corresponding uncertainties are described in chapter 8. Two different application
methods are implemented for each of the higher-order corrections. The difference between
the two correction methods is taken as symmetrized application uncertainty. The QCD and
electroweak correction combination is described in section 8.3. The difference between the
two approaches of multiplying and adding the corrections represents an additional modeling
uncertainty.

11.2.3 Theory Uncertainties of the W*Z Background

For the W*Z samples, internal PDF variations, alternative PDF sets, and renormalization
and factorization scale variations are used to estimate the theory uncertainty. These uncer-
tainties are directly provided by on-the-fly weights within the sample. Thus, the uncertainties
can be combined in the final polarization DNN score without any further study of their im-
pact on the remaining phase space. The NNPDF30_nnlo_as_0118 PDF set was used for the
sample production with 100 internal PDF variations. The combined uncertainty of this PDF
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11.2 Modeling Uncertainties

set is given by the standard deviation!

| oo
oPPF 5 — 100 4 (o, — 09). (11.7)
i=1
The resulting combined internal PDF uncertainty is combined with the alternative PDF
sets, CT14 and MMHT2014, via an envelope. For the renormalization and factorization
scale variations, the 7-point variation of (ug,pur) is used similarly as for the polarization
samples. The resulting scale variations are combined via an envelope [108].

11.2.4 Reweighting Uncertainty of W*Z Background

The m;; shape of the W*Z-QCD background is corrected by an analytic function derived
in the W Z control region. This procedure is described in section 7.2.1. The corresponding
PDF, ag, theory scale, and statistical uncertainties contribute to the modeling uncertainty
of the W#* Z-QCD background.

1This differs from the Hessian PDF set of polarization samples which is summed up quadratically without
the division by the number of variations.
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Chapter 12

Statistical Evaluation and
Results

In the previous chapters, the signal and background modeling were described, the signal was
corrected for higher-order effects, neural networks were trained as discriminating variables,
and the relevant uncertainties were estimated. Thus, all the analysis parts are ready to start
the statistical evaluation of the longitudinal polarization.

This thesis aims to measure the LL and LX polarization state in the partonic and WW
center-of-mass frame. The transverse polarizations TX and TT are considered as background
of this measurement. Since the contribution of the transverse polarization state is only known
from the same simulation as the longitudinal polarization state, its normalization is consid-
ered as an additional free parameter for the likelihood fit described in section 12.1. The
additional free parameter motivates the combined application procedure of two networks de-
scribed in section 12.2. For this application procedure, the binning of the resulting histograms
is optimized in section 12.3 to maximize the expected significance. Based on the resulting
histograms, the application of the scale uncertainties is discussed in section 12.4. The scale
uncertainties are the dominant theory uncertainties and their application strategy is crucial
for the sensitivity of the polarization measurement. Finally, the expected and observed fit
results are presented in sections 12.5 and 12.6 and further discussed in sections 12.7 to 12.9.

Based on the implementation of the higher-order corrections, discriminator networks,
and theory uncertainties presented in the previous chapters, the ATLAS W*W=*;j-EW
polarization analysis group [109] has processed the Standard Model prediction to create the
fit input and a baseline fit configuration. The set of uncertainties is pruned to consider only
uncertainties which affect the background contributions by more than 0.1%. The pruned list
of systematic uncertainties and their corresponding category and sub-category are listed in
table G.1.

12.1 Introduction of the Likelihood Fit

A profile likelihood fit extracts the significance and normalization of the longitudinal polariza-
tion state fit. The likelihood £ compares the measured data with the prediction considering
free-floating parameters and uncertainties. Since the distinction between bins in different
histograms and regions is arbitrary, the term bin in the following refers to bins across all
histograms and regions. The measurement in the ATLAS detector leads to n; measured
events in the bin 7. The number of predicted events

mi(pr, T, Bwz-Qep; Vi, 0) =prs1,i(0) + prvist,i(0) + pwz-qepsivibwz-qen (0)

- > ib() (12.1)

peB\{WZ-QCD}

depends on the number of predicted longitudinally polarized events s, (LL/LX), transversally
polarized events sy (TX/TT), and background events b,. The set of different background
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12 Statistical Evaluation and Results

processes is given by B. The number of expected events depends on the chosen normalization
ir, pr, and pwz-qep of the longitudinal WiVVijj—EVV7 transversal WjET/Vj[jj—EVV7 and
W*Z-QCD contribution. The statistical and systematic uncertainties of the prediction are
considered by the nuisance parameters v and 6.

The likelihood fit is performed via the TRExFitter [110]. This tool is a wrapper around
the HistFactory [111]. The systematic uncertainty on the nominal prediction o;, of the
process p in the bin ¢ is provided by the up and down variation, O’+ and o, . The TRExFitter
separates the normalization and shape impact of the nuisance parameter 0 to avoid negative

predictions in the fit. The shape effects aszap “* and o7 Zap ©~ are introduced by the linear
interpolation
0 shape + 0 0>0
Gipl(0) = 4 Top T oty) 620 (122)
p+9( i’p—ai’p ) 6<0

For the normalization uncertainty the exponential interpolation

O'+ 0.0 0
ml0) = {Egiﬁ(;é;@ 0= (123)

is used to avoid negative numbers of events. The resulting systematic uncertainties are
introduced into the likelihood via a Gaussian constraint fgauss(fj). Thus, the shape and
normalization of the processes can be pulled for the fit in consideration of the known con-
straints.

The statistical uncertainty of the Standard Model prediction is considered by the nui-
sance parameters . The total predicted number of events in each bin is affected by one
~ normalization factor. The ; is constrained by the relative statistical uncertainty 65 of
the combined prediction in the corresponding bin. This constraint is embedded in a Poisson
distribution of 1/(83%%*)? events to provide the correct relative uncertainty.

The resulting likelihood

Nbins
L(pr, pr, pbwz-qep, 7, 0) = H frois(ns, mi(pr, tr, pwz-QeD, Vi, 0))

’ | . (12.4)
Ji > X H fGauss (ej)
J

1
X fPois (65tat)2 | (stat 2

is a combination of the agreement with measured data within a Poisson statistic and the
constraints of the nuisance parameter. Maximizing the likelihood £ provides the expectation
values of the free floating normalizations fir,, fir, and fiwz-qcp and the nuisance parameters
6 and ~.

The likelihood fit is used to determine the significance of the longitudinal polarization
state LL and LX. The discovery significance is calculated against the null hypothesis that
the longitudinal polarization state, LL or LX, does not exist. Therefore, the unconditiongl

fit L(fr, fr, fwz-qop, Y, 6) is compared to the background-only fit £(0, fir, ﬁWZ_QCD,ﬁy, 0)
with the longitudinal signal strength fixed to g, = 0. These two likelihoods are combined in
the logarithmic likelihood ratio

ﬁ(#L»ﬁT¢ﬁWZ—QCDv'§’7é)
—21n - for iy, >0
o C(izir iwzacn40) =

(12.5)
0 for fif, <0

to define the test statistic ¢,. As described in Ref. [112], the discovery significance Zy of a
positive signal can be approximated by the asymptotic formula

Zo = /%o (12.6)
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12.2 Network Application Procedure

12.2 Network Application Procedure

In chapter 9, multiple networks are trained for specific classification purposes. Firstly, four
5-fold DNN,,,; sets are trained to provide a sensitive variable for the measurements of the
W*W=j-EW polarization states LL and LX in the partonic and WW center-of-mass frame.
Secondly, one 5-fold DNNy =y + set separates the WEW=;j-EW process from the remain-
ing backgrounds. Dividing the separation task into two outputs has a significant advantage
over only one network output, separating the longitudinal polarization state from the trans-
verse state and the other backgrounds. The two network outputs can be interpreted as
classification tuple (scorepo, scorey +y+) leading to a two-dimensional histogram. The dif-
ferent regions of the two-dimensional histogram for the LX measurement are visualized in
figure 12.1. The region close to (1,1) is the purest in the longitudinal polarization. The
region around (1,0) is dominated by the transverse polarization and significantly constrains
the free-floating normalization of the transverse state. For lower DNNy 4+ scores, the
contamination from other backgrounds increases, providing an additional constraint on their
contribution. Therefore, the chosen application procedure provides a region pure in the
longitudinal signal and additionally constrains the different backgrounds. The next section
demonstrates how the two-dimensional histogram in (scorepo, scorey +y+) can be repre-
sented by a set of one-dimensional histograms.

polarisation

bkg

639 'sA M-I MM

LX

1T

Figure 12.1: The DNN,+,+ output is combined with the output of the polarization
DNNLx to create a two-dimensional output space. The colors indicate the dominant
proportion of either background contributions (blue), the TT polarization state (green) or
the LL polarization state (green).

12.3 Optimization of the Histogram Binning

The application of the two multivariate outputs to gain a two-dimensional distribution was
already used in the CMS W*W*;j-EW polarization analysis in Ref. [3]. For the binning
of the corresponding histograms, the CMS analysis has chosen a 5x5 binning with similar
number of longitudinally polarized events. The polarization analysis in this thesis improves
this approach by choosing the binning with the best expected significance. However, the
number of possible bin edges to test is high and performing the fit by the TRExFitter requires
significant computation time. Thus, a computationally fast estimation of the significance is
introduced.
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12 Statistical Evaluation and Results

12.3.1 Significance estimation

The expected significance is calculated using the Standard Model prediction as data distri-
bution. The expected data
n; =Sr;+sri+ Z bp.i (12.7)

pEB

in the i-th bin is therefore the sum of the longitudinal polarization state s ;, the trans-
verse polarization state st ;, and the different background contributions b, ;. The resulting
distribution is called Asimov data.

In general, various nuisance parameters must be considered in the fit to calculate the
significance. Since this would result in a very complex and computationally expensive fit,
the uncertainties of the predicted contributions are highly simplified. The predicted contri-
butions are considered to have only one main normalization uncertainty each. This greatly
reduces the complexity of the fit but also distorts the estimated significance because shape
uncertainties and anti-correlations are no longer taken into account. However, since this
estimated significance is only used for bin optimization, whereby the significance has to be
calculated very frequently and thus as quickly as possible, this estimation is accepted.

The normalization uncertainties are introduced by the nuisance parameters w and their
relative uncertainties Aw; for the corresponding contribution. The significance is calcu-
lated for the longitudinal polarization strength p, with a free-floating transverse polarization
strength pr. The normalization of the W*Z-QCD is fixed to the 0.74 expected from the
W#*Z control region in section 12.5. Thus, the number of predicted events

HLWoSLLy: + pr (w1SLTyi + wasTTy) + Z;-kag wjtobj; for LL meas.
pr (WosLL; + wistryi) + prwe sty + Z;kag wjs2bj; for LX meas.

(12.8)
depends on the parameters pr,, pr, and w. The contributions of the polarization states LL,
TL, and TT in each bin ¢ are given by srr.;, sur;i, and str;;.

The significance is estimated by a logarithmic likelihood ratio fit for Ny;,s bins. The
number of events in each is expected to be Poisson distributed. For the nuisance parameters
w, also a Poisson distribution is chosen to avoid negative normalizations in the fit. In order
to gain the correct relative uncertainty for the normalization parameters, the corresponding
Poisson distributions are calculated for 1/ Aw]z. The fact that this can lead to non-integer
values for the Poisson distributions can be neglected for the time being, as the Poisson
distributions do not need to be explicitly calculated to estimate the significance. For the
significance estimation, non-zero values are assumed for Awj, n;, and m;. The non-zero
event numbers n; and m; are ensured for all bins by an initial bin merging described in
section 12.3.2.

In order to avoid the explicit calculation of the Poisson distributions® the likelihood

mi(,u/Lv U, (.U) = {

Nbins 3+ Nokg 1 w
J
L(pp, pr,w) = H Jpoisson (12:|1M;) H JPoisson 3 3
; ; AUJj ij
? J
L (12.9)
Niins n; 3+ Npkg ( W )ijz .
=11 e I e
i n;: ; ijz

is not used directly to estimate the nuisance parameters. The use of the log-likelihood

Nbins 3+ Npkg 1 Wi W
In (L (L, pr,w)) = Z (niIn(m;) —m;)+ Z ( ln( ! ) X ! 2) +c(n, Aw)

i J ij2 AOJJ‘2 W
(12.10)
simplifies the maximum likelihood fit since a constant summand containing the factorials can
be split off, which no longer needs to be explicitly calculated.

1The calculation would be possible using the gamma function but is not necessary as shown in the
following.
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12.3 Optimization of the Histogram Binning

Table 12.1: Relative normalization uncertainties for different processes.

Process Relative Normalization Uncertainty
WEW=*;j-EW LL WW-cmf 0.103
WEW=*j-EW TL WW-cmf 0.103
WEW=*5j-EW TT WW-cmf 0.045
W*W=*j-EW LL pp-cmf 0.107
W*W*5j-EW TL pp-cmf 0.105
WEW=*;j-EW TT pp-cmf 0.047
WEW=44-QCD 0.043
WEW*5j-INT 0.026
W*Z-EW 0.029
W*Z-QCD 0.315
W*Z-INT 0.399
Top and triboson 0.065
4 0.042
Vy 0.163
Non-prompt 0.203
Chargeflip 0.365

To calculate the significance, one compares the likelihood fit to the Asimov data
L(fiL, fr, &) = £(1,1,1) with the likelihood £(0, fir,&) fit for u; = 0. jr and & are
calculated by minimizing equation 12.10. The resulting likelihoods can be combined into the
likelihood ratio

22 ) ) w; a7 ‘
L (O,[LT,W> Nbins m; n; — 3+ Nbig (ij2) / Ai-2 _%
m = ’]’Lf € H 1 e~ T (1211)
’ ’ 7 v J (ij2)
By the corresponding log-likelihood ratio
L (O,ftT,(f)) Nbins e me 34+ Npkg 1
n| ———~ | = (In{ — 1-— | ; 1—w,;
T Zn(n(n)+ m_)+ S g ne) 1w
(12.12)
the test statistic
L (OaﬂTvc/b)
go,a = —2In (12.13)

£(1,1,1)

is defined. Following the asymptotic formula of Ref. [112] for Asimov fits, the median signif-
icance of a discovery can be directly derived by the test statistic go a:

median[Zo|pr = 1] = /qo,4 (12.14)

Since the number of nuisance parameters is significantly reduced, the significance esti-
mation is much faster than the nominal fitting strategy with TRExFitter. Therefore, a fast
estimate of the significance is used to optimize the bin edges. The relative normalization un-
certainties Aw listed in table 12.1 are estimated by the total uncertainties on the predicted
number of events in the signal region. These numbers are based on an intermediate status
of the polarization analysis and are therefore not entirely consistent with the uncertainties
in the final statistical evaluation in sections 12.5 and 12.6. However, the uncertainty up-
dates primarily affect the longitudinal polarization states and are of minor importance for
the significance estimation due to the free parameters py and pr.

12.3.2 Rebinning

The starting point of the bin optimization is a fine equidistant binning of the two-dimensional
histogram with 20 bins along the W*W=;j-EW vs. background classification axis and 20
bins for the polarization classification.
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Figure 12.2: Visualization of the rebinning strategy. The two-dimensional histogram is
split along the DNNy; 4.+ output into several histograms. Each resulting histogram has
specific optimized binning.

The rebinning procedure is visualized in figure 12.2. The two-dimensional histogram is
split into several one-dimensional histograms used for the polarization measurement. This
is done by splitting the histogram along the W*W=;j-EW vs. background axis at at least
one value of the DNNy, -+ classification. Each resulting histogram is merged along the
DNNpy+y+ axis to a one-dimensional histogram. This procedure leads to several histograms
of the polarization DNN classification with increasing W*W= jj-EW purity.

In order to measure the significance of the polarization, a minimal number of events per
histogram bin is required. The fine bin edges of each histogram are merged until at least ten
events originating from background or transverse polarized W*W ¥ ;j-EW contributions can
be expected in each bin. Starting on one side of each one-dimensional histogram, a new bin
edge is only accepted when the minimum number of events is reached and a further extension
of the current bin would not increase the estimated significance. This merging is done for
each histogram once from left to right and right to left, and the bin edges with the highest
estimated significance are used.

Finally, to minimize the number of bins considered in the fit, the bin edges having
the smallest effect on the expected significance are merged. This is performed for all one-
dimensional histograms until each has at least three bins and the expected overall significance
has been reduced by a maximum of 0.01 compared to the non-merged histograms.

This merging procedure is done for all possible splits along the W*W*;j-EW vs. back-
ground classification axis resulting in one-dimensional histograms with at least 50 events
originating from background or transverse polarized W*W*;j-EW processes. The number
of splits is increased until the estimated significance no longer improves.

12.3.3 Optimization Results

Different numbers of splits are listed in table 12.2 together with their estimated significance
without consideration of shape uncertainties. Since no major significance increase is seen
for using more than two splits, each two-dimensional histogram will be split into three one-
dimensional histograms. The chosen splits and bin edges for the likelihood fit are given
in table 12.3. When switching from the partonic to the WW reference frame, there are
only minor changes to the binning. Differences occur primarily between the LL and LX
measurements due to the changed impact of the TL polarization state. For all polarization
measurements, the number of bins increases with increasing DNNy + = score due to the
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higher W*W*5j-EW purity. Thus, the histogram with the highest DNNy 4+ score is
expected to have the most significant impact on the polarization measurement in sections 12.5
and 12.6.

Table 12.2: Estimated significance (without consideration of shape uncertainties) for
different number of splits into one-dimensional histograms. The optimization algorithm is
described in section 12.3

NN polarization classification | Number of splits in DNNy,+yy+ | Estimated significance
0 1.2457
1.3627
1.3766
1.3737
3.3815
4.2920
4.4050
4.3910
0.6518
0.8309
0.8399
0.8362
2.5987
3.7856
3.8435
3.8638

LL in WW-cmf

LX in WW-cmf

LL in pp-cmf

LX in pp-cmf

WNRHFHOWN R OIWN F O WN -

Table 12.3: The optimized splits in the DNNy; 4y, + classification and the corresponding
bin edges in polarization classification.

Polarization Split in DNNy 41+ | Binning in polarization classification

[0.0,0.4,0.7,1.0]

LL in WW-cmf [0.0,0.2,0.6,1.0] [0.0,0.5,0.8,1.0]

[0.0,0.4,0.6,0.7,0.8,1.0]
[0.0,0.3,0.7,1.0]

LX in WW-cmf [0.0,0.3,0.7,1.0] [0.0,0.3,0.5,0.6,0.7,0.8,1.0]
[0.0,0.15,0.35,0.45,0.55,0.7, 1.0]
[0.0,0.55,0.8,1.0]

LL in pp-cmf [0.0,0.15,0.5, 1.0] [0.0,0.7,0.8,1.0]

[0.0,0.4,0.6,0.7,0.8,1.0]
[0.0,0.45,0.6, 1.0

LX in pp-cmf [0.0,0.25,0.6, 1.0] [0.0,0.25,0.4,0.55,0.75,1.0]

[0.0,0.15,0.3,0.4,0.5,0.6,0.7,1.0]

12.4 Application of Scale Uncertainties

The dominant background of the longitudinal polarization measurement is the transverse
polarization state. Thus, the uncertainties of the polarization states can significantly im-
pact the likelihood fit. The highest uncertainties on the polarized contributions are the
renormalization and factorization, merging, and resummation scale uncertainties described
in section 11.2.1. Especially the renormalization and factorization can lead to up variations
of about 20% and down variations of about 10%. As long as these uncertainties mainly
affect the normalization of the W*W=;;-EW signal and not the shape, the effects on the
significance of the polarization measurement should be small. Variations in the signal scaling
are primarily covered by the free-floating fit parameter . However, variations in the shape
of the transverse polarization are more critical. The significance will drop if the transverse
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polarization can vary so that its shape becomes more similar to the longitudinal polariza-
tion. Unfortunately, this is the case for the systematic scale uncertainties. According to
the recommendations in Ref. [113], the theory allows every reasonable prediction within the
envelopes of the scale uncertainties. Therefore, a detailed study is done in the following to
understand the shape effects originating from the scale uncertainties. First, section 12.4.1
evaluates which shape effects from scale uncertainties can be expected in different kinemat-
ics. Then, in section 12.4.2, the expected impact on the output distributions of the neural
networks is estimated. The resulting correlation scheme of the scale uncertainties is described
in section 12.4.3.

12.4.1 Kinematic Impact of Scale Systematics

As described in chapter 4 and section 11.2.1, the scale uncertainties cover missing higher-
order QCD effects and uncertainties in the showering evolution of jets. Therefore, one can
assume that the resulting shape effects occur mainly within the jet phase space. This as-
sumption is supported by the experience gained from the higher-order QCD corrections in
section 8.1 and the study of the shape impact of theory uncertainties in section 11.2.1:

The correction for approximate NLO-QCD+PS effects studied the difference between SHERPA
WEW=*jj and I*i*vvjj + 0,15 on particle-level. The Kolmogorov Smirnov values in fig-
ure 12.3 summarizes their shape differences in the particle-level phase space of the signal
region and Low-m; control. This figure indicates that the studied higher-order QCD effects
in section 8.1 dominantly affect the jet phase space.

The renormalization and factorization scale are supposed to cover the higher-order QCD
effects that are not covered by the implemented correction. The Kolmogorov Smirnov values
of the individual 7-point variations in figure 11.1 indicate that this uncertainty also affects
dominantly the shapes in the jet phase space. Although not every possible theory form is
covered by the 7-point variation, they indicate where the shape effects have the most signifi-
cant impact. Therefore, the assumption that scale uncertainties mainly affect jet kinematics
is very reasonable.
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Figure 12.3: Comparison of SHERPA WE W% and [TITvrjj + 0, 15 at particle-level in
the phase space defined in table 8.2.

12.4.2 Maximal Shape Effects in DNN Score Distribution

Once the effects of scale uncertainties in the kinematic phase space have been specified to
be dominant in the jet kinematics, it is necessary to clarify what effects this might have
on the DNN distributions. In section 10.3, the individual decisions of the neural networks
are studied to understand their dependency on the kinematic network input. This study has
already shown that the decisions of the DNNy; + -+ rely much more on the jet kinematics than
the decisions of the polarization networks. Therefore, the polarization decision is expected
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to be less correlated with the jet kinematics. This is proven by calculating the Pearson
correlation values between the DNN scores of the W+ W= j-EW signal and the corresponding
event kinematics. The resulting Pearson correlations in figure 12.4 show that DNNy 4+
has significantly higher correlations in the jet phase space. The polarization networks are
significantly more correlated with the kinematics in the lepton phase space and the missing
transverse momentum. Nevertheless, a correlation with jet kinematics is also visible for the
polarization networks, especially for the network trained on LL vs TX in pp-cmf. Therefore,
a test is required to what extent this correlation can transfer a shape effect from the jet phase
space to the shape of the resulting DNN score distribution.

The following procedure aims to estimate the maximal shape effect on the DNN score
resulting from a shape variation in an individual jet kinematic. For a better understanding
of this study, it is advisable to take a look at figure 12.5, which results from the procedure
described in the following. The initial jet variable is split into six bins and the normalization
in each bin ¢ is multiplied by a parameter ¢;. This parameter ¢; can freely float within the
envelope of the given scale uncertainty in this bin. Thus, ¢; represents the possible theory
variations in the specific jet kinematic. This is done for the n and pr of the leading and
subleading jet, the invariant di-jet mass m;;, and the angular separations of the jets in
A¢j;, AR;;, and Ay;;. Six bins per variable, each with a corresponding parameter ¢;, are
sufficient for this test, as the main aim is to estimate the effect of general shape changes
rather than small local fluctuations. These bins have the same width and are thus equally
distributed over the kinematic range covered by the events in the signal region. The impact
of the normalization parameters ¢ can be directly transferred to the DNN distributions. A
shape parameter sgnape is defined for the DNN distributions to find the most disadvantageous
theory variation in ¢;. The parameter

DNN;Y® DNN® - DNNjom
Sshape - — < (C) - (C)) ZZ : (1215)

last bin first bin

DNN bin DNNE& bin /22 DNNF(c)
calculates the difference between the relative change in the last bin of the DNN distribution
and the relative change in the first bin. To only measure shape effects, the difference is
normalized by the change of the total number of events. For the polarization DNNs a high
Sshape Value would represent a down variation at low DNN scores and an up variation at high
DNN scores. This kind of variation would modify the transverse polarization distribution
to be more consistent with the sum of transversal and longitudinal polarized events. Thus,
the maximal sghape value for a given polarization DNN is expected to result in the lowest
significance. For the DNN trained for W+ W= j;j-EW signal vs. background separation, such
a clear connection between sghape and the significance cannot be drawn. However, the sghape
value is still a suitable indicator for the shape effects on the DNNy +/+ score.

In section 12.3, a two-dimensional binning is chosen for each of the polarization mea-
surements. To simplify the problem, only the projections on one of the two DNN scores are
studied. For the DNNy+y+ the binning [0, 0.2, 0.6, 1] and for the polarization DNNs [0,
0.2, 04, 0.6, 0.8, 1] is used. The resulting bin widths are similar to the bin optimization
results in table 12.3.

The Sehape value of the individual DNN distributions is now maximized for WEW= 77-
EW signal events by varying the normalization parameters c; for each of the jet kinematics
within the scale uncertainty envelope. The shape effects sghape for the individual neural
network distributions are shown in figure 12.6. The renormalization and factorization scale
can introduce the most significant shape impact since their envelope provides the widest
range for the floating parameter ¢;. For the DNNy, +y+ score, shape changes in m;; have
the dominant impact on the distribution of the neural network score. The corresponding
maximal shape variation is shown in figure 12.5. A down variation for m;; close to 500 GeV
and an up variation for all subsequent bins leads to a significant shape modification in the
DNN score. This effect is expected due to the high positive Pearson correlation value for
my; in figure 12.4.

As figure 12.6 indicates, the shape of the polarization DNN score distribution is unaffected
by variations in m;;. However, variations in leading jet pr and the Ay,;; can change the
shape of the polarization DNN distribution. As shown in figure 12.6, the shape effects on the
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Figure 12.5: The distribution of the DNN score separating WW*;j-EW and back-
ground and the systematic envelope of the renormalization and factorization scale sys-
tematic. The variation with the biggest shape effect sshape defined in equation (12.15)
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Figure 12.6: The maximal Sshape value defined in equation (12.15) for the different DNNs.
The Sshape value is maximized within the envelope of different scale uncertainties and jet
kinematics.

polarization DNNs in the WW-cmf are significantly smaller than for the partonic center-of-
mass frame. The maximal shape differences are shown in figure 12.7 for the leading jet pr
and in figure 12.8 for A¢;;. For the network trained for LX polarization in the WW-cmf, the
shape is almost flat in figures 12.7b and 12.8b. Thus, the DNN score for the LX measurement
in the WW-cmf is not affected by shape variations in the jet phase space. The shape
effects for LL in WW-cmf are shown in figures 12.7a and 12.8a. The shape modifications
in the jet phase space can lead to small shape effects in the DNN score of LL in WW-cmf.
However, these shape effects are negligible compared to the DNN separating W+W=jj-EW
and background. For the polarization measurement in the partonic center-of-mass system
the shape effects in figures 12.7c, 12.7d, 12.8c and 12.8d become more prominent. Especially
for the LL polarization in the pp-cmf, the shape effects become almost as prominent as for
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Figure 12.7: The distribution of the polarization DNN scores and the systematic envelope
of the renormalization and factorization scale systematic. The variation with the biggest
shape effect sghape defined in equation (12.15) originates from the shown pulls of ¢; in the
pjT1 distribution.
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12.4.3 Resulting Correlation Scheme

For the polarization measurement in the WW-cmf the shape variations in the jet phase
space have almost no effect. This is especially the case for the LX measurement, which is
also expected to have the highest significance. Thus, a variation in the jet phase space is
expected only to change the total number of events but not the shape in the LX polarization
DNN. For the LL in WW-cmf measurement, the maximal shape effects are in the order of
only a few percent. Since this is the maximal possible shape effect originating from the jet
phase space, the variation can also be assumed to be approximately flat. This flat variation
can be achieved by correlating all the bins in the individual polarization DNNs. This results
in one nuisance parameter per scale uncertainty and polarization DNN.

For LX in pp-cmf and especially LL in pp-cmf, the use of a flat variation in the DNN
score becomes arguable. However, the maximal shape effects from the jet phase space are still
smaller than for the DNN score separating W*Wj;j-EW and background. Since the overall
sensitivity in the pp-cmf is already smaller than in the WW-cmf and the results in the WIWW-
cmf represent the nominal measurement of this thesis, the same strategy as for the WW-cmf
is used. Treating the scale uncertainties in the polarization DNN bins correlated also for the
pp-cmf leads to a more straightforward analysis strategy with easier comparability with the
nominal results in the WW-cmf.

The scale variations in the DNNy, £+ score are shown to potentially have significant
effects on the distribution shape. Therefore, the polarization histograms in table 12.3 that are
split according to the DNNy+ 1+ score are treated uncorrelated for the scale uncertainties.
The decorrelation allows independent up and down variations of the total number of events
in the different histograms. Thus, the fit can choose the most conservative systematic shape
between the histograms. In addition, also the Low-m; region is decorrelated from the signal
region to account for the shape effects in the jet phase space.

The study presented in this section allows a constraint of the theory scale uncertainties.
For the polarization analysis in this thesis, strong indicators are found to locate the main
impact of scale variations in the jet phase space. Based on this assumption, the scale uncer-
tainties are correlated between the bins within the same histogram and decorrelated between
the histograms and regions. The study designed in this section provides a new strategy for
uncertainty handling for future analyses. Reasonable assumptions on the kinematic impact
of theory uncertainties allow an estimation of the maximal shape impact. Understanding the
maximum shape impact provides an excellent basis for the decision of potential correlations
of the respective uncertainty.
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12.5 Expected Results

The analysis strategy is defined before investigating the observed data distribution in the
signal region. This procedure avoids fine-tuning the analysis to the specific characteristics in
the measured data. Therefore, the fit strategy is investigated for the expected distributions.
The prediction of the Standard Model is used as so-called Asimov data for the fitting instead
of the data measured at the ATLAS detector. Measured data is only used in the W*Z con-
trol region since this region does not affect the W*W=;j-EW normalization but provides
the correct normalization of the W*Z-QCD background. Due to the W*W+;j-EW con-
tribution in the signal and Low-m;; control region, Asimov data is used. The Asimov data
is constructed by the nominal prediction m;(ur, pr, pwz-qep, ¥, 0) with pr, =1, pup = 1,
v =1, and € = 0. The normalization pwz-qcp is set to 0.74 to provide Asimov data which
is consistent with the data observed in the W*Z control region in figure 12.9. Since the
W=*Z control region is "unblinded” with measured data and the Low-m; control region and
signal region are ”blinded” by using Asimov data, this fit procedure is referred to as partially
unblinded. The partially unblinded fit provides the expectation for the significance, fiducial
cross-section, and impact of uncertainties.

The profile likelihood fit is used as described in section 12.1. The fit considers the distri-
butions in the signal region, the Low-m; control region, and the W=*Z control region defined
in section 6.3. In the signal region, three polarization histograms are constructed with the
binning derived in section 12.3. The Low-m,; and W*Z control regions are included as 1-bin
distributions considering only the total number of events to constrain the normalization of
the backgrounds.

The main focus of the analysis is the polarization measurement in the WW-cmf. There-
fore, the results in the partonic center-of-mass system are discussed but their corresponding
figures are only shown in the appendix. All the shown results are derived for polarization
simulated by SHERPA. The results for a polarization simulation by MADGRAPH are briefly
discussed in section 12.7.

12.5.1 Expected Significance

The unblinded W*Z control region and the blinded Low-m,; control region are shown in
figure 12.9. The W* Z control region has the dominant impact on the W* Z-QCD normaliza-
tion while the Low-m; control region constrains especially the non-prompt background. The
DNN distributions used for the LL measurement in the WW-cmf are shown in figure 12.10.
The two splits at the DNNyy -+ score leads to three histograms with increasing W*W= jj-
EW purity. In each of these histograms, the polarized network separates the longitudinal
and transverse polarization. Similar distributions are used to measure the LX polarization
state and the polarizations in the pp-cmf. Since no pulls of the parameter of interest pp
and up, and the nuisance parameters v and @ are expected in the partially unblinded fit,
the detailed discussion of the individual pre-fit and post-fit distributions is moved to the
unblinded application for measured data in section 12.6. Thus, the current section focuses
on the expected significances and impact of the systematic uncertainties.

Asimov Fit Results

The significances of the partially unblinded fit are listed in table 12.4. The expected signifi-
cances are lower in the partonic center-of-mass frame. The corresponding normalizations are
shown in figure 12.11a. Due to the use of Asimov data in the signal and Low-m;; control
region, the fit parameters of the polarization states are exactly at 1. The perfect agreement
with the predicted polarization contribution is a consequence of the W+ Z-QCD contribution
in the Asimov data being consistent with the data in the W*Z control region. Accordingly,
the parameter pwz-qcp is pulled to 0.74 for all partially unblinded fits.

The uncertainty of py, is significantly lower for the single boson polarization LX measure-
ment than for the di-boson polarization LL. The lower uncertainty is a direct consequence of
the additionally expected events of the LX polarization state. This difference is also reflected
by the expected LL and LX significances in table 12.4. While the LX polarization is close
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Figure 12.9: The pre-fit distribution in the W*Z control region and Low-mj; control
region.

to discovery with 5o, the expected LL polarization is still significantly below evidence with
3o.

Table 12.4: The significances of the longitudinal polarization states extracted by the
partially unblinded fits. The fits are derived for measured data in the W* Z control region
and Asimov data in the signal and Low-m; control region. The W*Z-QCD contribution
in the Asimov data is scaled by 0.74.

WW-cmf pp-cmf
LL significance 15120 0.9370
LX significance | 4.557¢0  3.9750

The significance and the uncertainties of the normalization also indicate a systematic dif-
ference between the WW-cmf and the pp-cmf. The difference for the di-boson polarization
measurement originates dominantly from the significantly lower cross-section of LL in the
pp-cmf. However, this does not explain the difference in the LX measurement which has con-
sistent cross-sections in the two reference frames. As shown in section 9.3.4, the polarization
networks provide a better separation of the polarization states in the WW-cmf than in the
pp-cmf. The better separation directly leads to higher significance in the WW-cmf.

Discussion of Uncertainties

The main uncertainty of the polarization measurement is the low number of events expected
for the W*W=j-EW contribution. The number of events is limited by the run time of
the ATLAS experiment and will improve in the next LHC runs. On the other hand, the
systematic uncertainties are determined by the experimental setup, the analysis strategy,
and the theoretical prediction. Thus, investigating their impact on the measurement leads
to a better understanding of the analysis and shows potential for future improvements. As
described in section 12.1, the signi@cance of the likelihood fit originates from the ratio of

the likelihood £(0, fir, fiwz-qcp, 4, @) with fixed signal strength iz, = 0 and the likelihood
fit L(fr, for, fiwz-qcp, ¥, 9) with free-floating normalization of the longitudinal polarization
state. The significance drops if the data can be covered by the background-only hypothesis of
wr, = 0 without significant pulls in the Gaussian and Poisson constrain terms of the nuisance
parameters. The impact of the systematic uncertainties is investigated by two different
methods:
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Figure 12.10: The pre-fit signal region distributions for the LL in W W -cmf measurement.
The polarization states are simulated by SHERPA. As described in section 12.3 the signal
region is split according to the DNNy; + 4+ -score. The shown histograms result from the
application of the DNN,,; trained for the LL polarization state in the W W-cmf.

e Impact of nuisance parameter on signal strength
The impact of each individual nuisance parameter is investigated by fixing the param-
eter to its post-fit uncertainty +o. The likelihood fit is repeated with this particular
nuisance parameter fixed and the difference Ay to the nominal fit result of urr/prx is
calculated. The calculation of Ap allows the ranking of the nuisance parameter impact
on the signal strength. The resulting ranking plot for the LL and LX measurement in
the WW-cmf is shown in figure 12.12.

e Background-only fit pulls

The pulls of the nuisance parameters in E(O,ﬁT,ﬁWZ_QCD,ﬁy,@) is evaluated in a
background-only fit with purr/prx fixed to 0. The normalization of the transverse
polarization state and the W* Z-QCD background is shown in figure 12.11b. The pulls
of the nuisance parameters for the LL and LX fit in the WW-cmf can be found in
figure 12.13.

Since the impact of the systematic uncertainties is similar between the two reference

frames, the ranking and background-only pull plots for polarization in the pp-cmf are moved
into the appendix in figures G.1 and G.2. The following discussion of the uncertainties of
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Figure 12.11: The prr/prx, prx/prr, and pwz-qep normalization resulting from the
partially unblinded significance fits. In figure 12.11a, the normalization of the longitudinal
polarization is free-floating while in figure 12.11b it is fixed to 0. The fit is derived for
measured data in the W*Z control region and Asimov data in the signal and Low-m;
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Figure 12.12: The ranking plots for the partially unblinded significance fits in the WW-
cmf. The fit is derived for measured data in the W*Z control region and Asimov data in
the signal and Low-m; control region. The W*Z-QCD contribution in the Asimov data
is scaled by 0.74.

the measurement in the WW-cmf also applies to the pp-cmf.

The background-only fit of the LX measurement results in significantly stronger pulls of
the nuisance parameters than for the LL measurement. The stronger pulls lead to lower
likelihood values in the constraint terms and therefore the higher significance of the LX
measurement. The deviation from the nominal 8 = 0 is distributed over several nuisance
parameter pulls for both measurements. The following paragraphs discus the impact of
individual systematic uncertainties in more detail.
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Figure 12.13: The pulls of 8 and ~ for the partially unblinded background-only signif-
icance fits in the WW-cmf. The fit parameter prr/urx is fixed to 0. The fit is derived
for measured data in the W*Z control region and Asimov data in the signal and Low-m;
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12 Statistical Evaluation and Results

Theory uncertainties: In figure 12.12, the nuisance parameters of the merging, and renor-
malization and factorization scale have the highest ranking. As shown in section 11.2.1, these
two theory uncertainties have the dominant normalization uncertainty on the W*W=*jj-EW
signal. An up variation of these systematic uncertainties has to be compensated by decreas-
ing the longitudinal signal strength. The one-sided impact of the merging scale is discussed in
section 11.2.1. Since the merging, and renormalization and factorization scale directly affect
the longitudinal signal strength, their impact in figure 12.12 does not necessarily represent
their impact on the significance. Their relative uncertainty within the individual polariza-
tion histograms is flat. Since the theory scale uncertainties do not affect the shape of the
WEW*j-EW contribution within the individual histograms, their impact is already covered
by the free-floating normalization on the transverse polarization. The minor impact of the
theory scale uncertainties on the significance is proven by the pulls in the background-only fit
in figures 12.13a and 12.13b where the corresponding post-fit parameters remain close to 0.
The vanishing impact on the expected significance is a direct consequence of the correlation
scheme derived in section 12.4. If the scale uncertainties were uncorrelated across the bins
of the individual histograms, they would allow significant shape effects. These shape effects
would result in a better agreement in the background-only fit and thus a lower significance
of the longitudinal signal.

The same argumentation holds also for the remaining theory uncertainties of the W+W= -
EW contribution. They partially occur in the ranking in figure 12.12 but are not pulled in
figures 12.13a and 12.13b. Therefore, the theory uncertainties on the W*W*;j-EW signal
do not affect the significance measurement.

Fake factor method: The highest ranked nuisance parameters in figure 12.12, which are
not WEW=;j-EW theory uncertainties, correspond to the b-tagging and the prompt sub-
traction in the fake factor method. Their impact is confirmed by the pulls in figures 12.13a
and 12.13b. To explain the preference for non-prompt background uncertainties, the shape
of the longitudinal signal is compared to the background shapes. The ratio of the normal-
ized shapes is shown in figure 12.14 for the histogram with the highest DNNy+y,+ score
which dominates the polarization measurement. The ratios indicate the potential of each
background to cover the longitudinal signal distribution. The non-prompt contribution in
the first bin is significantly closer to the shape of the longitudinal polarization than the other
non-W=W=;j-EW backgrounds. Thus, a higher scaling of the non-prompt background im-
proves the agreement with the Asimov data for the background-only fit. Therefore, the
impact of systematic uncertainties could be improved by smaller non-prompt background
uncertainties or a better separation between the non-prompt background and the longitu-
dinal polarization. As explained in section 9.1, the non-prompt background is not used for
the training of the discriminator networks due to the prompt subtraction in the fake factor
method and the low number of generated events provided by Monte Carlo generators. If
a future analysis can solve one of the two issues, the impact of the systematic non-prompt
uncertainties will be reduced.

NLO correction: The ranking plot in figure 12.12a and both background-only pull plots in
figures 12.13a and 12.13b indicate an impact from the systematic uncertainty of the NLO-EW
correction. The NLO-EW correction is derived in section 8.2 for each individual polarization
state. The NLO-EW uncertainty is given by the difference between the nominal reweighting
in m;; and an alternative reweighting in the leading lepton pr. The correlation between
discriminator networks and individual kinematics was studied in figure 12.4 in the previous
section. The polarization networks show no correlation with m;; but a significant correlation
with the leading lepton pp. Thus, using the leading lepton pr for the NLO-EW correction
instead of m;; causes significant shape differences in the polarization DNN distribution shown
in figures 12.15a and 12.15b. A multivariate NLO-EW correction in the full phase space is
required to reduce this uncertainty in future analyses.

Reweighting of W*Z background: The last relevant pull for the LX background-only
fit in figure 12.13b occurs for the statistical uncertainty of the m;; shape reweighting of
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12.5 Expected Results

the W*Z-QCD background. The limited number of events is the leading uncertainty of
the W+ Z-QCD shape uncertainty. As shown in figures 12.15c¢ and 12.15d, this uncertainty
is flat within the polarization DNN score since these DNNs are not correlated with mj;.
However, the uncertainty leads to a significant shape effect across the phase space regions
and histograms. The variation in the signal region and the Low-m; control region are anti-
correlated and the impact of the variation increases with the DNNy +y+ score. Therefore,
the statistical uncertainty of the m; reweighting offers the possibility to increase the W*Zz-
QCD contribution in the histograms with high W*W*;j-EW purity with less impact on the
phase spaces and histograms dominated by background. For future analyses, this uncertainty
will be reduced by the higher integrated luminosity in the next LHC runs and potentially
better shape modeling by Monte Carlo generators.

Bin-by-bin v parameters: In addition to the pulls of the systematic nuisance parameters
0, the statistical bin-by-bin nuisance parameters -« in figures 12.13c and 12.13d are studied
for the background-only fit. The ~ parameters are pulled down for low polarization DNN
scores and up for high polarization DNN scores to cover the longitudinal contribution. The
impact of the bin-wise statistical modeling uncertainty can be reduced by higher number of
events in the generated samples and the data-driven backgrounds.

In conclusion, several systematic uncertainties affect the significance of the longitudinal
measurement. However, the current polarization analysis is limited by the number of events
in the measured data as the uncertainty breakdown in the subsequent section will show.
The next runs of the LHC are expected to significantly increase the amount of available
data, increasing the impact of the systematic uncertainties. The current section has shown
the origin of the dominant systematic uncertainties, which could be improved for future
analyses.
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Figure 12.14: The shape of the WiWijj—QCD, W*Z-QCD, charge-flip, and non-
prompt background compared to the LL/LX signal of the polarization measurement in
the WW-cmf. The shape differences are evaluated in the signal region histogram with the
highest DNNy; +;,+ score.
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Figure 12.15: The systematic uncertainty of the NLO-EW correction on the TT po-
larization state and the statistical uncertainty of the mj; reweighting of the W=*Z-
QCD background. The variations are shown in the signal region histogram with 0.6 <
DNNyy +y+-score < 1 for the LL measurement and 0.7 < DNNy, 4y +-score < 1 for the
LX measurement.

12.5.2 Expected Fiducial Cross-section

The fitting strategy presented so far aims to determine the significance of the longitudinal
polarization. The same profile likelihood strategy can be used to calculate the fiducial cross-
section o7 in the particle-level signal region defined in section 6.3.4. The measured fiducial
cross-section
fid _ ~ _fid
Oobs = M Upred

(12.16)

the corresponding fit result for the normalization . ’f‘he predicted fiducial cross-sections are
listed in table 12.5. The fiducial cross-section fit of the normalization p; differs from the
significance fit by the treatment of the theory signal uncertainties. An up variation of a pure
normalization uncertainty in agf_z 4 leads to an equivalent down variation in the corresponding
fitted signal strength fiy. Thus, the normalization effect of theory uncertainties cancels out in
calculating the observed fiducial cross-section UZ;‘;. Therefore, the signal theory uncertainties
are normalized for the fiducial cross-section measurement on particle-level and only their

shape impact is considered.

is calculated by the predicted fiducial cross-section O’I{i_(id of the longitudinal polarization and

Asimov Fit Results

The expected normalizations [iy, of the partially unblinded fit are listed in table 12.6 and the
corresponding fiducial cross-sections are presented in table 12.7. The uncertainties are split
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Table 12.5: The fiducial cross-sections of the longitudinal polarization states extracted
by the partially unblinded fits. The fits are derived from measured data in the W*Z
control region and Asimov data in the signal and Low-m;; control region. The w*z-
QCD contribution in the Asimov data is scaled by 0.74.

fiducial cross-section
LL in WW-cmf 0.330fb
LX in WW-cmf 1.354tb
LL in pp-cmf 0.212fb
LX in pp-cmf 1.420fb

into their origin. The impact of the statistical uncertainty of the measured and Asimov data
is derived by an additional fit considering only the statistical uncertainty of the prediction
and data. The breakdown into the statistical modeling uncertainty, the systematic modeling
uncertainty, the experimental uncertainty, and the luminosity uncertainty is directly provided
by the TRExFitter. The TRExFitter estimates the impact of a group of uncertainties by
dropping all nuisance parameters of the remaining uncertainty groups and reevaluating the
fit. The allocation of nuisance parameters to these uncertainty groups and subgroups is shown
in table G.1. The more detailed version of the uncertainty breakdown is given in table 12.8.
The statistical uncertainty of the measured and Asimov data dominates the uncertainties
and will decrease with the subsequent runs of the LHC.

Table 12.6: The expected normalization of the LL/LX polarization in the WW-cmf and
pp-cmf. The uncertainties are split into the statistical uncertainty of the data, statistical
modeling uncertainty, systematic modeling uncertainty, and luminosity uncertainty. The
fit is derived for measured data in the W*Z control region and Asimov data in the signal
and Low-m;; control region. The W*Z-QCD contribution in the Asimov data is scaled

by 0.74.
‘ Signal strength | Uncertainty breakdown
stat. mod. stat. mod. syst. exp. syst. lumi.
LL in WW-cmf | 1.000 £ 0.695 (tot.) | £0.681 +0.142 +0.041 +0.079 +0.011
LX in WW-cmf | 1.000 £ 0.251 (tot.) | +0.240 +0.052 +0.019 +0.048 +0.011
LL in pp-cmf | 1.000 +1.103 (tot.) | £1.065 +0.221 +0.104 +0.148  £0.013
LX in pp-cmf | 1.000 £ 0.276 (tot.) | £0.263 +0.056 +0.033 +0.053  +0.011

Table 12.7: The expected fiducial cross-section of the LL/LX polarization in the WW-
cmf and pp-cmf. The uncertainties are split into the statistical uncertainty of the data,
statistical modeling uncertainty, systematic modeling uncertainty, and luminosity uncer-
tainty. The fit is derived for measured data in the W Z control region and Asimov data
in the signal and Low-mj; control region. The W*Z-QCD contribution in the Asimov
data is scaled by 0.74.

| Fid. cross-section [fb] | Uncertainty breakdown [fb]
stat.  mod. stat. mod. syst. exp. syst. lumi.
LL in WW-cmf | 0.330 &+ 0.229 (tot.) +0.225 +0.047 +0.013 +0.026 +0.004
LX in WW-cmf | 1.354 £ 0.340 (tot.) +0.325 +0.071 +0.025 +0.065 +0.015
LL in pp-cmf 0.212 £ 0.234 (tot.) +0.226 +0.047 +0.022 +0.031 +0.003
LX in pp-cmf 1.420 + 0.392 (tot.) +0.373 +0.079 +0.047 +0.075 £0.015

Discussion of Uncertainties

The discussion of the uncertainties on the fiducial cross-section is split into the uncertainty
breakdown in tables 12.6 and 12.8 and the ranking plot in figure 12.16.
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12 Statistical Evaluation and Results

Uncertainty breakdown: The leading experimental uncertainty originates from the fake
factor method used to model the non-prompt background. This experimental uncertainty
will partially improve during the subsequent runs of the LHC due to the higher number of
events in the control region used for the fake factor extraction.

The modeling uncertainty is dominated by the limited statistic. This uncertainty is derived
by the « nuisance parameters which are constrained by the number of simulated and data-
driven events of the Standard Model prediction. More events can be requested for processes
simulated by event generators to decrease this uncertainty. However, the statistical modeling
uncertainty is dominated by the number of measured events scaled by the fake factor method.
Therefore, also the modeling uncertainty is limited by the integrated luminosity of the LHC
Run 2 dataset. In future analyses with more data, the importance of the polarized NLO
correction uncertainties of the W+W=;j-EW contribution will increase.

The uncertainties of the normalization pj are higher in the partonic center-of-mass frame.
The lower relative uncertainty in the WW-cmf results from the higher cross-section of the
LL polarization state and the better separation by the polarization DNN. These differences
are already discussed for the expected significances in the previous section.

Table 12.8: The impact of uncertainty sources on the expected fiducial cross-section of
the LL/LX polarization in the WW-cmf and pp-cmf. The fit is derived for measured data
in the W*Z control region and Asimov data in the signal and Low-mj; control region.
The W*Z-QCD contribution in the Asimov data is scaled by 0.74.

Source Impact [%]
LL in LX in LL in LX in

WW-cmf WW-cmf pp-cmf pp-cmf
Experimental
Electron reconstruction 0.32 0.15 0.38 0.37
Muon reconstruction 0.12 0.08 0.60 0.03
Jet reconstruction 1.93 2.92 3.91 3.12
p?iss reconstruction 0.64 0.14 2.23 0.24
Pileup modeling 1.96 0.90 2.74 0.92
Fake factor method 7.52 3.61 13.79 4.09
Charge-flip scale factor 1.00 0.08 1.26 0.11
Luminosity 1.18 1.11 1.33 1.08
Modeling
Theory uncertainties of WEWT jj-EW 0.31 0.40 0.77 0.44
Approx. NLO correction unc. of WEW+;j-EW 3.87 0.71 8.44 2.43
Theory uncertainty of W*Z-QCD 1.36 0.38 4.14 0.52
Reweighting uncertainty of W+ Z-QCD 0.80 1.65 4.58 2.13
Modeling statistic 14.51 5.23 22.09 5.60
Data statistic 68.13 24.01 106.52 26.27
Total 70.29 25.14 110.33  27.60

Ranking plot: The impact of the systematic uncertainties shown in table 12.8 is supported
by the ranking plot in figure 12.16 for the measurement in the WW-cmf. Compared to
the ranking in figure 12.12, the theory uncertainties are not listed on top. Since these
uncertainties are normalized for the fiducial cross-section measurement, only their shape
variation is considered. Due to their overall flat shape, the impact on the cross-section
measurement is negligible. The remaining ranking is consistent with the results for the
significance fit: The systematic uncertainty is dominated by the fake factor method followed
by the application of the higher-order corrections and the statistical uncertainty of the W=+ Z-
QCD shape reweighting. The impact of these individual uncertainties is already explained in
detail for the significance fit in section 12.5.1. The only significant change to the ranking for
the significance fit is the increased impact of the jet reconstruction. The jet reconstruction is
also the second most important experimental uncertainty in table 12.8 after the fake factor
method. Therefore, as more data becomes available in the next LHC runs, an enhanced jet
reconstruction could lead to improved sensitivity of future VBS polarization analyses.
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Figure 12.16: The ranking plots of the partially unblinded fiducial cross-section fits
in the WW-cmf. The fit is derived for measured data in the W*Z control region and
Asimov data in the signal and Low-m; control region. The W*Z-QCD contribution in
the Asimov data is scaled by 0.74.

Upper Limit on

LL

Since the uncertainty of the di-boson polarization state LL is in the same magnitude as the
expected cross-section, an upper limit is calculated. The upper limit represents the maximum
value of the one-sided 95% confidence level interval (CL) of the fiducial cross-section. This
confidence interval is derived for the test statistic ¢, in equation (12.5). The resulting upper
limits for the partially unblinded fit are listed in table 12.9. These upper limits exclude
fiducial cross-sections of LL which are two to three times higher than the Standard Model

prediction in table

12.5.

Table 12.9: The expected 95% CL upper limit of the LL polarization in the WW-cmf and
pp-cmf. The fit is derived for measured data in the W*Z control region and Asimov data
in the signal and Low-m;; control region. The W=*Z-QCD contribution in the Asimov
data is scaled by 0.74.

‘ Fiducial cross-section upper limit [fb]

LL in WW-cmf

LL pp-cmf

0.750
0.660
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12.6 Observed Results

The final step of this analysis is the application on measured data. The same fitting strategy
is applied as in the previous sections but with the signal and Low-m;; control region being
unblinded. The fit results in the WW-cmf are analyzed in detail. For the polarization
measurement in the pp-cmf, the significances and fiducial cross-sections are presented in this
section, but the corresponding plots are moved to appendix G. Furthermore, the pre-fit event
yields are listed in tables G.2 to G.5 and the post-fit event yields are listed in tables G.6
to G.9.
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Figure 12.17: The post-fit distribution for the LL in WW-cmf measurement in the W*Z
control region and Low-m;; control region.

12.6.1 Observed Significance

The W*Z and Low-m;; control regions are included in the fit to constrain the background
contributions. The corresponding number of events after the fit of the LL in WW-cmf
significance is shown in figure 12.17. The likelihood fit results in an excellent agreement with
the measured data in the control regions. The control region distributions for the remaining
polarization measurements are equivalent and therefore given in figures G.3 to G.5 in the
appendix. The polarization measurement is dominated by the signal region due to the high
purity in W*W=*;j-EW events and the application of the discriminator DNNs.

The observed significances (from a fully unblinded fit) and their expectations (from the
partially unblinded fit in section 12.5) are listed in table 12.10. The observed significances
are lower than expected. The significance for the LL polarization in the WW-cmf drops
to almost 0. Only for the LX polarization in the WW-cmf, the measurement exceeds the
3o threshold which are necessary to claim evidence. The observed normalizations of the
longitudinal polarization states in figure 12.18 are consistent with the corresponding low
significances. While the observed normalization of the transverse polarization is higher than
expected, the longitudinal polarization states are scaled down by the fit. In the following
paragraph, the observed normalizations and the low observed significance are explained by
the differential data distributions measured in the signal region. This explanation is followed
by a paragraph about the observed pulls of the nuisance parameters.

Explanation of the Observed Significances

The pre-fit and post-fit distributions for the LL in WW-cmf measurement are shown in
figure 12.19. The total number of observed events exceeds the prediction in each histogram.
The difference between the observed and expected number of events differs the most for
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Table 12.10: The observed significances of the longitudinal polarization states. The
signficances in brackets result from the partially unblinded fit in table 12.4.

WW-cmf pp-cmf
LL significance | 0.0825¢0 (1.512¢0) 0.7420 (0.937 o)
LX significance | 3.4090 (4.5570) 2.4760 (3.9750)
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Figure 12.18: The urr/prx, prx/pwrr, and pwz-qep normalization resulting from the
unblinded significance fits.

the histograms with the lowest and highest DNNy 41+ score. An equivalent difference is
also seen for the other polarization measurements since they use a similar splitting at the
DNNyp £+ score. The dominant impact on the polarization measurement originates from
the histogram in figure 12.19¢ with DNNy 4y +-score > 0.6 which has the highest purity in
W*W=j-EW events. This histogram shows a clear trend in the ratio of data over Standard
Model prediction. More data than predicted is measured for low DN N, values and less
than predicted for high DN N, values. Thus, the TX polarization state is scaled up and the
LL state is scaled down to match the observed data in the post-fit plot in figure 12.19f. This
trend in the observed data explains the almost vanishing LL significance in the likelihood fit.
Since the trend follows a smooth curve over the entire histogram, the question arises whether
this is just a fluctuation in data or an actual mismodeling. As derived in the study of the
network decision-making in section 10.3.2, the decisions by the polarization networks in the
WEW*-cmf highly depend on the mloll’MET kinematic. Furthermore, figure 12.4 shows that

the mgl’MET kinematic has one of the most dominant correlations with output score of the

polarization networks. The pre-fit distribution of mffl’MET in the signal region is shown in
figure 12.20a. This observable has one of the most significant shape differences between the
data and the Standard Model prediction, which also seems to be directly transferred to the

distributions of the polarization DNNs. However, this trend is not observed in the Low-m ;

control region in figure 12.20b. Thus, a general mismodeling of mloll’MET is unlikely.

Furthermore, a general mismodeling is contradicted by the validation of the polarization
DNNs against measured data in the Low-mj; in section 10.2. In this control region, no
significant deviation between observation and measurement is seen. Furthermore, for the
signal region histograms figures 12.19a and 12.19c¢ with DNNy 4y +-score < 0.6, the trend
in the ratio of data to prediction is not visible and the number of measured events with a
high polarization DNN score is even above the Standard Model prediction. Since the trend is
only observed in histogram figure 12.19¢e DNNyy £ y,+-score > 0.6, a general mismodeling by
polarization DNN can essentially be ruled out. Two options remain to explain the difference
between data and Standard Model prediction:
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Figure 12.19: The pre- and post-fit signal region distributions for the LL in WW-
cmf measurement. The polarization states are simulated by SHERPA. As described in
section 12.3 the signal region is split according to the DNNy,+y,+ score. The shown
histograms result from the application of the DNN,; trained for the LL polarization state

in the WW-cmf.
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Figure 12.20: Pre-fit comparison of the predicted and measured distribution in m” MET
in the signal and Low-m;; control region.
1. A statistical fluctuation of the measured data caused a trend in the m” MET qigtribu-

tion. The fact that this is the observable that correlates most strongly with polarization
state is merely coincidence.

2. The Standard Model prediction overestimates the longitudinal polarization fraction.
As a result, the difference between prediction and data only appears in the phase space
region, which is dominated by the W*W*;j-EW contribution.

More data is required to make a justified decision between these two options. However, the
following discussion of the measured significances and cross-sections remains valid for both
cases.

The observed signal region distributions of the LX measurement in the WW-cmf are
shown in figure 12.22 and are similar to the histograms of the LL measurement in figure 12.19.
The similarities originate from the correlation between the network decisions shown in fig-
ure 12.21. Especially the networks trained in the same reference frame give similar scores.
Due to the correlation between the two measurements in the WW-cmf, the same trend of the
observed data appears in the histogram of the LX measurement with the highest W+W= -
EW purity. To cover this trend in figure 12.22e the TT polarization state is scaled up and
the LX contribution is reduced by the likelihood fit.

The histograms in the partonic center-of-mass frame are shown in figures G.6 and G.7
in the appendix. The LX in pp-cmf measurement shows a trend in the observed data for
DNNyy £y+-score > 0.6 which is comparable to the polarization measurement in the WW-
cmf. Therefore, the observed significance is also lower than expected. However, for the LL
measurement in the pp-cmf, the ratio of data to prediction is relatively flat in the histogram
with the highest DNNy,+ 2 score. Therefore, the 0.742 ¢ significance of the LL in pp-cmf
is close to the expectation of 0.937¢. Since the correlation between the network decisions
decreases for different reference frames, the difference in the data distribution is reasonable.
In addition, the LL in pp-cmf measurement also stands out in the DNNy + = output val-
ues, which are used to split the signal region into histograms: The histogram with highest
WEW=j-EW purity starts for LL in pp-cmf at DNNyy+y+-score = 0.5. This is a looser
selection than for the other polarization measurements leading to a higher number of events
in this signal region histogram. The higher number of events could reduce the impact of
statistical fluctuations.
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Figure 12.21: The correlation of the polarization DNN scores evaluated for W W ;-
EW events in the signal region.

Pull of Nuisance Parameters

The unblinding of the signal region and Low-m;; results in a pull of nuisance parameters.
The pulls for the WW-cmf are shown in figure 12.23. The pulls in the pp-cmf are almost
identical and therefore moved to the appendix in figure G.8. As observed in the background-
only fit in section 12.5.1, the non-prompt background is pulled to a higher cross-section to
cover the measured data. Besides the uncertainties of the fake factor method, the pulls in
6 are dominated by the theory scale nuisance parameters of the histogram with the lowest
DNNyp +w+ score. The Standard Model prediction in this histogram is below the measured
number of events. Since the W*W*;j-EW contribution in this histogram is low, an
additional up variation is required to narrow the gap to the measured data. The theory scale
uncertainties have a significant normalization effect on the W*W*5j-EW contribution and
are uncorrelated between the histograms. Therefore, the theory scale nuisance parameters
are pulled up to further increase the W*W+;j-EW contribution in the histogram with the
lowest DNNy, + /¢ score.

In summary, the measured significances are lower than expected. A statistical fluctuation
in the measured data causes the drop of the significances. However, a significance of 3o
is observed for the single boson polarization LX in the center-of-mass frame of the two
W bosons. Thus, for the first time, this analysis can claim evidence for the existence of
longitudinal polarization in same-charged electroweak W*W# scattering.
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Figure 12.22: The pre- and post-fit signal region distributions for the LX in WW-
cmf measurement. The polarization states are simulated by SHERPA. As described in

section 12.3 the signal region is split according to the DNNy, £y + score.

The shown

histograms result from the application of the DNN,,; trained for the LX polarization state

in the WW-cmf.
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Figure 12.23: The pulls of 8 and « for the partially unblinded background-only signif-
icance fits in the WW-cmf. The fit parameter purr/urx is fixed to 0. The fit is derived
for measured data in the W*Z control region and Asimov data in the signal and Low-m;
control region. The W* Z-QCD contribution in the Asimov data is scaled by 0.74.
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12.6.2 Observed Fiducial Cross-Section

As described in section 12.5.2, only the shape impact of the signal theory uncertainties are
considered for the fiducial cross-section measurement. The normalizations derived by the
likelihood fit to measured data are listed in table 12.11. The measured normalizations are
below the expected p = 1 normalization. The small normalizations are consistent with
the low observed significances discussed in the previous section. However, considering the
uncertainties, the observed normalizations still agree with the Standard Model prediction.
The breakdown of the uncertainties is consistent with the fit of the expected normalization
in table 12.6. The same applies to the ranking of the systematic uncertainties in figures 12.24
and G.9.

Table 12.11: The observed normalization of the LL/LX polarization in the WW-cmf and
pp-cmf. The uncertainties are split into the statistical uncertainty of the data, statistical
modeling uncertainty, systematic modeling uncertainty, and luminosity uncertainty.

‘ Signal strength | Uncertainty breakdown
stat. mod. stat. mod. syst. exp. syst. lumi.
LL in WW-cmf | 0.032 +0.699 (tot.) | £0.688 +0.143 +0.050 +0.103 +0.005
LX in WW-emf | 0.771 £ 0.255 (tot.) +0.246 +0.054 +0.019 +0.051 +0.010
LL in pp-cmf 0.848 +£1.178 (tot.) | £1.146 +0.251 +0.119 +0.169 +0.012
LX in pp-cmf | 0.679 £ 0.296 (tot.) | £0.285 +0.064 +0.042 +0.059 +0.008
Pre-fit impact on p: Ap Pre-fit impact on p: Ap
[16=8+A0 | 0=0-40 05 004-002 0 0.02 0.04 0.06 | 10=8+A8 [ 10=8-A8 004003002001 0 0.010.020.030.04
Post-fit impact on p: AR R Post-fit impact on p: AR A AR M A
Mo =0+A8 mo=048 Mo =0+A0 mo=048
—e— Nuis. Param. Pull Is=13TeV, 140 fb” —e— Nuis. Param. Pull Is =13 TeV, 140 fb”
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FF(el) stat. 2015_2018_3_1
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Figure 12.24: The ranking plots for the measured fiducial cross-section fits in the WW-
cmf.

The measured fiducial cross-section and the corresponding upper limit for LL are listed
in table 12.12 and table 12.13. Due to the statistical fluctuation in the measured data, the
measured upper limit of LL in WW-cmf is even lower than expected. This tight upper limit
covers the Standard Model prediction of agﬁgd(LL) = 0.33fb and rejects alternative theories
with szgd(LL) > 0.50fb. Therefore, in addition to the evidence of the longitudinal polar-
ization in W*W+;j-EW scattering, this analysis provides further constraints for theories
beyond the Standard Model.
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Table 12.12: The observed fiducial cross-section of the LL/LX polarization in the WW-
cmf and pp-cmf. The uncertainties are split into the statistical uncertainty of the data,
statistical modeling uncertainty, systematic modeling uncertainty, and the luminosity un-

certainty.
| Fid. cross-section [fb] | Uncertainty breakdown [fb]
stat. mod. stat. mod. syst. exp. syst. lumi.
LL in WW-cmf 0.011 £ 0.231 (tot.) +0.227 +0.047 +0.017 +0.034 +0.002
LX in WW-cmf 1.044 + 0.345 (tot.) +0.333 +0.073 +0.026 +0.069 +0.013
LL in pp-cmf 0.180 £ 0.250 (tot.) +0.243 +0.053 +0.025 +0.036 +0.003
LX in pp-cmf 0.964 £ 0.420 (tot.) +0.405 +0.091 +0.060 +0.083 +0.012

Table 12.13: The measured 95% CL upper limit of the LL polarization in the WW-cmf
and pp-cmf.

| Fiducial cross-section upper limit [fb]

LL in WW-cmf 0.501
LL in pp-cmf 0.669

12.7 Results with Polarization Modeling by MadGraph

The results in the previous section are derived with the polarization prediction simulated by
SHERPA. To ensure the validity of the given results, the likelihood fit is performed also for
the polarization prediction by MADGRAPH. The observed and expected significances and
fiducial cross-sections are listed in tables 12.14 and 12.15. The expected significances are very
consistent between the two generators. The expected significance of LX is slightly higher for
SHERPA due to the higher TL cross-section discussed in section 8.1.1. This difference is also
seen in the expected fiducial cross-sections in table 12.15.

A simulation by MADGRAPH leads to higher significances and fiducial cross-sections in the
measured data. The MADGRAPH polarization prediction differs slightly from the polarization
simulated by SHERPA. Thus, using different generators leads to a systematic difference in
the fit results. However, the observed significances are similar. The nominal results of this
thesis are provided by SHERPA which provides the lower significances. A similar difference
can be seen for the fiducial cross-section. However, the cross-section uncertainties are almost
identical and therefore not generator-dependent.

Since the simulation by SHERPA can perform jet-merging and therefore include higher-
order QCD effects, SHERPA is chosen to produce the nominal results of this analysis. Future
analyses could benefit from a more detailed comparison of the polarization modeling by
SHERPA and MADGRAPH.

Table 12.14: The observed (expected) significances derived with polarization modeling
by SHERPA and MADGRAPH.

SHERPA MADGRAPH
LL in WW-cmf | 0.085 (1.512) 0.301 (1.503)
LX in WW-cmf | 3.408 (4.557) 3.469 (4.349)
LL in pp-cmf 0.741 (0.938) 1.051 (0.904)
LX in pp-cmf 2.475 (3.975)  2.760 (3.780)
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Table 12.15: The observed (expected) cross-section derived by polarization modeling by
SHERPA and MADGRAPH.

SHERPA MADGRAPH

LL in WW-cmf | 0.011 £0.231 (0.330 £0.232) 0.072 4 0.231 (0.320 4 0.228
LX in WW-cmf | 1.044 £0.345 (1.354 £0.340) 1.129 + 0.350 (1.296 + 0.340
LL in pp-cmf 0.180 £ 0.250 (0.212 +0.234)  0.268 + 0.259 (0.204 + 0.234
LX in pp-cmf 0.964 + 0.421 (1.420 + 0.392) 1.156 £0.434 (1.348 + 0.391

~— — —

12.8 Comparison with CMS Results

In 2021, the CMS experiment published its W*W# polarization analysis based on Run 2
LHC data in Ref. [3]. The object and event selection of the CMS analysis is similar to the
ATLAS analysis. Thus, the expected 190 W*W*;j-EW events are close to the expected
number of events presented in this thesis. The expected and observed ATLAS and CMS
results are compared in table 12.16. The comparison of the expected results shows higher
significances and more stringent 95% CL limits for the ATLAS experiment. The better
expected performance of the ATLAS analysis can have multiple reasons. The modeling
of the polarization interference, the two-dimensional bin optimization, the consideration of
resummation and merging scale uncertainties, and especially the application of polarized
higher-order corrections were not included in the CMS analysis. Another important difference
between the two analyses is the rejection of non-prompt events. The predicted data in the
signal region of the CMS analysis are only 36% W*W*jj-EW events but 40% non-prompt
events with high uncertainty. Due to the better non-prompt rejection, the signal region of
the ATLAS analysis has a W*W=*;j-EW purity of 53% and non-prompt fraction of 13%
resulting in a more minor total uncertainty. Therefore, the quality of the results presented
in this thesis is not solely based on the new analysis techniques but is the result of the joint
work within the ATLAS experiment.

Table 12.16: Comparison of the observed (expected) results of the longitudinally polar-
ized WEW®*jj-EW scattering measured at the ATLAS and CMS experiment.

ATLAS CMS
Significance LL in WW-cmf 0.0820 (1.50) not published
Significance LX in WW-cmf 3.40 (4.60) 230 (3.10)
95% CL upper limit of LL in WW-cmf | 0.50fb (0.75fb) | 1.17fb (0.881{b)
Significance LL in pp-cmf 0.740 (0.940) not published
Significance LX in pp-cmf 250 (4.00) 2.60 (2.90)
95% CL upper limit of LL in pp-cmf 0.67fb (0.66fb) | 1.06fb (0.851fb)

12.9 Projection for Future LHC Runs

Although this thesis represents significant progress in the study of longitudinal W* boson
scattering, the observation of this process with more than 5o is not achieved yet. Since the
analysis is dominated by the statistical uncertainty of the measured data, the precision of
polarization analyses will improve in the next LHC runs. The plan of the LHC project is
summarized in figure 12.25. Parallel to the finalization of this thesis, Run 3 of the LHC is
ongoing, and the first analyses were published with Run 3 data. Run 3 is already expected
to provide a higher number of produced events than Run 2, but the subsequent High-Lumi-
LHC (HL-LHC) phase will far exceed the current amount of measured data. The exact
runtime of the HL-LHC has not yet been decided, but it could deliver a luminosity of up
to 4000fb~!. Since measuring longitudinal vector boson scattering is a potential goal of
the HL-LHC experiments, this thesis can provide valuable input for the HL-LHC planning
discussions. The expected result of the partially unblinded fit in section 12.5 are projected
onto measurements with luminosities of up to 4000 fb . The measured and Asimov data are
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scaled up to the expected luminosities. The relative impact of the modeling, experimental,
and luminosity uncertainties are kept constant, even though they result partially from the
low measured number of events discussed in section 12.5.2. Thus, the following projection
represents the lower limit of the expected significance.

LHC / HL-LHC Plan

( HilLumi Y
) LARGE HADRON CD}UD[R

LHC HL-LHC
Run1 ‘ | Run 2 ‘ ‘ Run3
13 7oy AL 13.6 TeV LS3 136-14TeV
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Figure 12.25: Timeline of the LHC and the plan for the HL-LHC project presented in
Ref. [114]

The expected significances for higher luminosities are shown in figure 12.26. With
500fb ™!, the observation of the single boson polarization LX with more than 5 ¢ is expected.
Thus, the Run 3 of the LHC could deliver new results for the polarization measurement. For
the LL measurement in the WW-cmf, the Run 3 could provide evidence with 3 ¢ but for a
50 observation the HL-LHC with about 3000 fb™! to 4000 b~ is required. Therefore, the
potential discovery of the fully longitudinal vector boson scattering must be considered for
the planning of the HL-LHC phase.

The expected uncertainties of the signal strength are shown in figure 12.26b. As soon as
500fb~! data is available, the uncertainties are expected to drop by almost a factor of two.
As the Apgys/Ap subplot of figure 12.26b indicates, the systematic uncertainties dominate
the projected fit for a luminosity higher than 1000fb~'. Therefore, the total uncertainties
of the signal strength are converging towards the systematic uncertainty. The dominance of
systematic uncertainties results from the constant relative systematic uncertainty chosen for
the projection. However, the statistical uncertainty of the data-driven backgrounds and the
data-driven reweighting of the W* Z background will improve with more statistics. There-
fore, the significance and relative uncertainties are only conservative estimates, and future
analyses are expected to exceed the projections.
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Figure 12.26: The projection of the expected significances and signal strength uncertain-
ties of section 12.5.1 for LHC runs with higher luminosity. In figure 12.26b, the contribution
of the systematic uncertainties is shown in the lower subplot.
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Chapter 13

Conclusion

The longitudinally polarized W*W*;j-EW scattering is one of the most interesting pro-
cesses to study electroweak symmetry breaking at the LHC. The longitudinal polarization
states of the W* and Z boson arise from the components of the Higgs field, which would
result in massless Goldstone bosons in an unbroken symmetry. Furthermore, a Standard
Model without the Higgs boson predicts unphysical probabilities for the longitudinally po-
larized W*W*5j-EW scattering of more than 100%. The Higgs boson exchange leads to
the necessary cancelation of Feynman diagrams to solve this unitarity violation. Therefore,
experimental results for the polarized vector boson scattering (VBS) can confirm important
Standard Model predictions and probe theories beyond the Standard Model.

This thesis is a major contribution to the first ATLAS analysis of the polarization in VBS.
The investigated data originates from Run 2 proton-proton-collisions with an integrated lu-
minosity of 140fb~" and a center-of-mass energy of 13TeV. The measurement employs
state-of-the-art calculations of polarized cross-sections that only became available recently.
For the first time, these predictions include approximate NLO-QCD and -EWK effects for
the individual W*W=;j-EW polarization states. Based on the Standard Model prediction,
neural networks are trained to use the kinematics of the entire phase space to extract the
polarization information. Two sets of neural networks are optimized for a phase space en-
riched with W*W=;j-EW events. The first set separates the W*W*;j-EW contribution
from the remaining backgrounds, and the second set is trained to distinguish the longitu-
dinal and transverse polarization states. The resulting networks are extensively studied to
prevent any application bias and provide state-of-the-art insights into the decision-making
process. The two sets of networks are combined into a two-dimensional classification space
that separates the longitudinal polarization state, the transverse polarization state, and the
non-W*W=;j-EW backgrounds. A two-dimensional bin optimization algorithm is devel-
oped which maximizes the expected significance. Furthermore, this thesis presents a new
approach to investigate and constrain the impact of theoretical uncertainties originating
from missing higher-order calculations. This approach significantly increased the sensitivity
of the polarization measurement.

A profile likelihood fit is performed to extract the longitudinally polarized W*W*;j-
EW contribution in the measured data. Two separate fits are performed to measure the fully
longitudinally polarized scattering (LL) and the scattering with at least one longitudinal
polarized W* boson (LX). The polarization is defined in the W*W* center-of-mass frame.
This reference frame leads to the maximal unitarity cancelation in tree-level calculations and
is thus of the highest interest [50]. The longitudinal polarization states are measured with
an observation significance of 0.082¢ for LL and 3.40 for LX. The observed cross-sections
and significances are below the expectations due to a statistical fluctuation in the data in the
signal region. However, the results are still consistent with the prediction by the Standard
Model. For the LX polarization state of the WEWj-EW scattering, a fiducial cross-section
of O'ggg(LX) = 1.04 £ 0.351b is observed that is in agreement with the Standard Model
prediction of O’;:;id(LX) = 1.35fb. This analysis provides evidence for the LX polarization
state of the WEW*j-EW process for the first time. The cross-section of the LL polarization
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state is found to be smaller than 0.50 fb at 95% confidence level. This upper limit covers the
Standard Model prediction of Jgigd(LL) = 0.33fb and puts stringent constraints on theories
beyond the Standard-Model that predict higher fiducial cross-sections than 0.50 fb.

The measurements presented in this thesis improve the experimental sensitivity to po-
larized same-charged W* boson scattering compared to the earlier publication by the CMS
collaboration [3]. The observed and especially the expected significances and cross-sections
exceed the ones published by CMS. Thus, the diligent implementation of the theory predic-
tion, the detailed study of the theory uncertainties, and the application of state-of-the-art
machine learning techniques presented throughout this thesis could improve the experimental
sensitivity to polarized VBS and put ATLAS in a leading position in searches for this rare
process.

Based on the presented analysis strategy, future analyses have to deal with challenges
beyond the scope of this thesis. Simulating polarized VBS at higher-order would further
improve the Standard Model prediction. Polarized predictions at higher-order would replace
the used higher-order corrections and reduce the scale uncertainties that dominate the theo-
retical uncertainties. The recent version 3 of SHERPA is an important step in this direction,
but a simulation of polarized VBS at NLO is not yet possible for any of the existing event
generators. The reconstruction of the polarization information requires the use of multivari-
ate techniques. In this thesis, neural networks are trained as binary classifiers to separate
the polarization states. In the future, this could be replaced by polarization taggers trained
on polarization fractions instead of binary categories. The concept of polarization taggers is
recently studied in Ref. [115].

However, the main restriction for polarization analysis in VBS is the measured number
of events. The analysis strategy presented in this thesis will allow the observation of the LX
polarization state in the Run 3 of the LHC. The Run 3 is expected to deliver an additional
250fb ™! of proton-proton collisions to the ATLAS experiment by the summer of 2026. Fur-
thermore, the projection of the polarization analysis onto the planned High-Lumi-LHC phase
shows the potential for the 50 observation of fully longitudinally polarized W*W=*jj-EW
scattering. Therefore, this thesis represents an important step towards a bright future of
polarization analyses that will potentially revolutionize our understanding of physics.

190



Part 111

Appendix

191






Appendix A

Monte Carlo Event Generator
Samples

Table A.1: Information about Monte Carlo generated samples used in this thesis which
were not used in Ref. [8]

DSID | Generator Cross-section [pb] Filter efficiency
Polarized MADGRAPH sample for WEW*5-EW
506202 | MadGraph(v.2.9.5.atlas2)+Pythia8(v.245p3.1hcb7)+EvtGen(v.1.7.0) 0.031062 1.0
506207 | MadGraph(v.2.9.5.atlas2)+ Pythia8(v.245p3.lhcb7)+ EvtGen(v.1.7.0) 0.018046 1.0
506201 | MadGraph(v.2.9.5.atlas2)+Pythia8(v.245p3.1hcb7)+EvtGen(v.1.7.0) 0.018454 1.0
506203 | MadGraph(v.2.9.5.atlas2)+Pythia8(v.245p3.1hcb7)+EvtGen(v.1.7.0) 0.0019852 1.0
506204 | MadGraph(v.2.9.5.atlas2)+Pythia8(v.245p3.1hcb7)+EvtGen(v.1.7.0) 0.0028838 1.0
506205 | MadGraph(v.2.9.5.atlas2)+Pythia8(v.245p3.lhcb7)+EvtGen(v.1.7.0) 0.010732 1.0
506206 | MadGraph(v.2.9.5.atlas2)+Pythia8(v.245p3.lhcb7)+EvtGen(v.1.7.0) 0.0093687 1.0
Polarized SHERPA sample for WEW=*;;-EW
700965 Sherpa(v.3.0.0betal) 0.0023792 1.0
700966 Sherpa(v.3.0.0betal) 0.0069042 1.0
700968 Sherpa(v.3.0.0betal) 0.00079496 1.0
700969 Sherpa(v.3.0.0betal) 0.0015661 1.0
701228 Sherpa(v.3.0.0betal) 0.0053504 0.2226257
701229 Sherpa(v.3.0.0betal) 0.015565 0.2216626
701230 Sherpa(v.3.0.0betal) 0.0017874 0.2227125
701231 Sherpa(v.3.0.0betal) 0.0035172 0.2230805
Polarized SHERPA for approximate NLO-QCD correction of WEW*jj-EW
700961 Sherpa(v.3.0.0betal) 0.003305 1.0
700962 Sherpa(v.3.0.0betal) 0.0089404 1.0
700963 Sherpa(v.3.0.0betal) 0.0032598 1.0
700964 Sherpa(v.3.0.0betal) 0.0088539 1.0
700971 Sherpa(v.3.0.0betal) 0.011628 1.0
700970 Sherpa(v.3.0.0betal) 0.014854 1.0
Scale variations of polarized SHERPA sample for WEW*;-EW
700998 Sherpa(v.3.0.0betal) 0.014881 1.0
700999 Sherpa(v.3.0.0betal) 0.01547 1.0
SHERPA for WF Z-QCD background
700601 | Sherpa(v.2.2.12.£200b9) 1.661 1.0

Table A.7: The DSID, physics name, and p-tag of the Monte Carlo generator samples
used to model the Z+jets background.

DSID sample name p-tag
Zee MGPy8EG

363147 MGPy8EG_N30NLO _Zee Ht0_70_CVetoBVeto p3975
363148 MGPy8EG_N30NLO_Zee_Ht0_70_CFilterBVeto p3975
363149 MGPyS8EG_N30NLO_Zee_Ht0_70_BFilter p3975
363150 MGPy8EG_N30NLO_Zee_Ht70-140_-CVetoBVeto p3975
363151 MGPy8EG_N30NLO_Zee_Ht70-140_CFilterBVeto p3975
363152 MGPy8EG_N30NLO_Zee_Ht70.140_BFilter p3975
363153 MGPy8EG_N30NLO_Zee_Ht140_280_CVetoBVeto p3975
363154 MGPy8EG_N30NLO_Zee_Ht140_280_CFilterBVeto p3975
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363155 MGPy8EG_N30NLO_Zee_Ht140_280_BFilter p3975
363156 MGPy8EG_N30NLO_Zee_Ht280_500_-CVetoBVeto p3975
363157 MGPy8EG_N30NLO _Zee_Ht280_500_CFilterBVeto p3975
363158 MGPy8EG_N30NLO_Zee_Ht280_500_BFilter p3975
363159 MGPy8EG_N30NLO_Zee_Ht500_700_-CVetoBVeto p3975
363160 MGPy8EG_-N30NLO_Zee_Ht500_700_CFilterBVeto p3975
363161 MGPy8EG_N30NLO_Zee_Ht500_700_BFilter p3975
363162 MGPy8EG_N30NLO_Zee_Ht700-1000_CVetoBVeto p3975
363163 MGPy8EG_N30NLO_Zee_Ht700-1000_CFilterBVeto p3975
363164 MGPy8EG_N30NLO_Zee_Ht700-1000_BFilter p3975
363165 MGPy8EG_N30NLO_Zee_Ht1000-2000-CVetoBVeto p3975
363166 MGPy8EG_N30NLO_Zee_Ht1000-2000_CFilterBVeto p3975
363167 MGPyS8EG_N30NLO_Zee_Ht1000-2000_BFilter p3975
363168 MGPy8EG_N30NLO_Zee_Ht2000_.E_CMS_CVetoBVeto p3975
363169 MGPy8EG_N30NLO_Zee_Ht2000_.E_CMS_CFilterBVeto p3975
363170 MGPy8EG_N30NLO_Zee_Ht2000_-E_CMS_BFilter p3975
ZmumuMGPy8EG
363123 MGPy8EG_N30NLO_Zmumu_Ht0_-70_-CVetoBVeto p3975
363124 MGPy8EG_N30NLO_Zmumu_Ht0_70_CFilterBVeto p3975
363125 MGPy8EG_N30NLO_Zmumu_Ht0_70_BFilter p3975
363126 MGPy8EG_N30NLO_Zmumu_Ht70-140_CVetoBVeto p3975
363127 MGPy8EG_N30NLO_Zmumu_Ht70_140_CFilterBVeto p3975
363128 MGPy8EG_N30NLO_Zmumu_Ht70-140_BFilter p3975
363129 MGPy8EG_N30NLO_Zmumu_Ht140-280_CVetoBVeto p3975
363130 MGPy8EG_N30NLO_Zmumu_-Ht140_280_CFilterBVeto p3975
363131 MGPy8EG_N30NLO_Zmumu_Ht140_280_BFilter p3975
363132 MGPy8EG_N30NLO_Zmumu_Ht280-500_CVetoBVeto p3975
363133 MGPy8EG_N30NLO_Zmumu_Ht280_500_CFilterBVeto p3975
363134 MGPy8EG_N30NLO_Zmumu_Ht280_500_BFilter p3975
363135 MGPy8EG_N30NLO_Zmumu_Ht500-700_CVetoBVeto p3975
363136 MGPy8EG_-N30NLO_Zmumu_-Ht500-700_CFilterBVeto p3975
363137 MGPy8EG_N30NLO_Zmumu_Ht500-700_BFilter p3975
363138 MGPy8EG_N30NLO_Zmumu_Ht700-1000_-CVetoBVeto p3975
363139 MGPy8EG_N30NLO_Zmumu_Ht700-1000_CFilterBVeto p3975
363140 MGPy8EG_N30NLO_Zmumu_Ht700-1000_BFilter p3975
363141 MGPy8EG_N30NLO_Zmumu_-Ht1000-2000-CVetoBVeto p3975
363142 MGPy8EG_N30NLO_Zmumu_Ht1000-2000_CFilterBVeto p3975
363143 MGPy8EG_N30NLO_Zmumu_-Ht1000-2000_BFilter p3975
363144 MGPy8EG_N30NLO_Zmumu_Ht2000_E_CMS_CVetoBVeto p3975
363145 MGPy8EG_N30NLO_Zmumu_-Ht2000_E_CMS_CFilterBVeto p3975
363146 MGPy8EG_N30NLO_Zmumu_-Ht2000_.E_CMS_BFilter p3975
ZtautauMadGraphPythia8
361638 MadGraphPythia8EvtGen-A14NNPDF23LO_Ztautau_lowMIl_Np0  p3975
361639 MadGraphPythia8EvtGen_ A14NNPDF23LO_Ztautau_lowMIll_Npl  p3975
361640 MadGraphPythia8EvtGen_ A14NNPDF23LO_Ztautau_lowMIl_Np2  p3975
361641 MadGraphPythia8EvtGen_A14NNPDF23LO_Ztautau_lowMIl_Np3  p3975
361642 MadGraphPythia8EvtGen_ A14NNPDF23LO_Ztautau_lowMIll_Np4  p3975
361510 MadGraphPythia8EvtGen_ A14NNPDF23LO_Ztautau_Np0O p3975
361511 MadGraphPythia8EvtGen_ A14NNPDF23LO_Ztautau_-Npl p3975
361512 MadGraphPythia8EvtGen_ A14NNPDF23LO_Ztautau_Np2 p3975
361513 MadGraphPythia8EvtGen_A14NNPDF23LO_Ztautau_Np3 p3975
361514 MadGraphPythia8EvtGen_ A14NNPDF23LO_Ztautau_-Np4 p3975
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Table A.2: The DSID, physics name, and p-tag of the Monte Carlo generator samples
used to model the polarized WiWijj—EW signal and the WiWijj—INT and WiWijj—

QCD contributions.

DSID sample name p-tag
EWSigPolMGPy8EG_LO
506202 MGPy8_ssWWijj_lep. EW6_LO (unpolarized) p4252
506207 MGPy8_ssWWijj_lep-TT_EW6_LO (TT in pp-cmf) p4252
506201 MGPy8_ssWWijj_lep_. TT_.EW6_WWemf_LO (TT in WW-cmf) p4252
506203 MGPy8_ssWWijj_lep_.LL_LEW6_LO (LL in pp-cmf) p4252
506204 MGPy8_ssWWijj_lep_.LL_.EW6_WWemf_LO (LL in WW-cmf) p4252
506205 MGPy8_ssWWijj_lep_.TL_.EW6_LO (TL in pp-cmf) p4252
506206 MGPy8_ssWWijj_lep-TL.EW6_WWemf_LO (TL in WW-cmf)  p4252
Sh_300b1_-WIvWlvjj
700965 Sh_300b1_-WIvWlvjj_-mm_MinTChannel_pol_highMjj p4252
700966 Sh_300b1_-WIlvWlvjj_pp-MinTChannel_pol_highMjj p4252
700968 Sh_300b1_WIvWlvjj-mm_MinT Channel_pol_lowMjj p4252
700969 Sh_300b1_WI1vWlvjj_pp-MinT Channel_pol_lowMjj p4252
701228 Sh_300b1_W1lvWlvjj_mm_TChannel_pol_highMjj-minlTau p4252
701229 Sh_300b1-WIlvWlvjj_pp-TChannel_pol_highMjj_-min1Tau p4252
701230 Sh_300b1_WI1vWlvjj_mm_TChannel_pol_lowMjj_-minlTau p4252
701231 Sh_300b1_WIvWlvjj_pp-TChannel_pol_lowMjj_-minlTau p4252
INTSigMGHTEG_LO
500991 MGH7EG_LO_INT_ssWWjj p4252
QCDSigMGH7EG_LO
500990 MGH7EG_LO_-EW4_ssWWjj p4252

Table A.3: The DSID, physics name, and p-tag of the Monte Carlo generator samples
used to model the W* Z background.

DSID sample name p-tag
WZEW _MGPy8EG

364741 MGPy8EG_NNPDF30NLO_A14NNPDF23LO_IvlljjJEW6_SFMinus  p4097
364742 MGPyS8EG_NNPDF30NLO_A14NNPDF23LO_1vlljjEW6_SFPlus p4097
364740 MGPy8EG_NNPDF30NLO_A14NNPDF23LO_IvlljjEW6_OFPlus p4097
364739 MGPy8EG_NNPDF30NLO_A14NNPDF23LO_IvlljjEW6_OFMinus  p4097

WZQCD_Sherpa222
364253 Sherpa_222_NNPDF30NNLO_ v p4097

WZQCD_Sherpa2212
700601 Sh_2212_1llv p4250

Table A.4: The DSID, physics name, and p-tag of the Monte Carlo generator samples
used to model the top and tri-boson backgrounds.

DSID sample name p-tag
singletop_tV

410658 PhPy8EG_A14_tchan_ BW50_lept_top p3975

410659 PhPy8EG_A14_tchan_ BW50_lept_antitop p3975

410644 PowhegPythia8EvtGen_A14 singletop_schan_lept_top p3975

410645 PowhegPythia8EvtGen_A14_singletop_schan_lept_antitop p3975

410648 PowhegPythia8EvtGen_A14_Wt_DR_dilepton_top p3975

410649 PowhegPythia8EvtGen_A14_Wt_DR_dilepton_antitop p3975

410560 MadGraphPythia8EvtGen_A14_tZ_4fl_tchan_noAllHad p3975
ttV_aMcAtNloPythia8

410155 aMcAtNloPythia8EvtGen MEN30ONLO_A14N23LO_ttW p3975

410218 aMcAtNloPythia8EvtGen - MEN30NLO_A14N23LO_ttee p3975

410219 aMcAtNloPythia8EvtGen-MEN30ONLO_A14N23LO_ttmumu  p3975

410220 aMcAtNloPythia8EvtGen MEN30ONLO_A14N23LO_tttautau  p3975

410081 MadGraphPythia8EvtGen_ A14NNPDF23_ttbarWWwW p3975
ttZ_aMcAtNloPythia8

410220 aMcAtNloPythia8EvtGen_ MEN30ONLO_A14N23LO_tttautau  p3975

410218 aMcAtNloPythia8EvtGen - MEN30NLO_A14N23LO_ttee p3975

410219 aMcAtNloPythia8EvtGen - MEN30NLO_A14N23LO_ttmumu  p3975
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A Monte Carlo Event Generator Samples

Table A.5: The DSID, physics name, and p-tag of the Monte Carlo generator samples
used to model the Vv backgrounds.

DSID sample name p-tag
WgammaSherpa222

364521 Sherpa_222_NNPDF30NNLO_enugamma._pty_7_15 p3975
364522 Sherpa_222_ NNPDF30NNLO _enugamma._pty_15_35 p3975
364523 Sherpa_222_ NNPDF30NNLO_enugamma._pty_35_70 p3975
364524 Sherpa-222_ NNPDF30NNLO_enugamma._pty_70-140 p3975
364525 Sherpa_222_ NNPDF30NNLO_enugamma_pty_140_E_CMS p3975
364526 Sherpa_222_ NNPDF30NNLO_munugamma_pty_7_15 p3975
364527 Sherpa_222_ NNPDF30NNLO_munugamma._pty_15_35 p3975
364528 Sherpa_222_ NNPDF30NNLO_munugamma_pty_35_70 p3975
364529 Sherpa_-222_ NNPDF30NNLO_munugamma_pty_70-140 p3975
364530 Sherpa_222_ NNPDF30NNLO_munugamma._pty_140_E_CMS p3975
364531 Sherpa_222_NNPDF30NNLO_taunugamma_pty_7_15 p3975
364532 Sherpa_222_ NNPDF30NNLO_taunugamma._pty_-15_35 p3975
364533 Sherpa_222_ NNPDF30NNLO_taunugamma_pty_35_70 p3975
364534 Sherpa_222_ NNPDF30NNLO_taunugamma_pty_70.140 p3975
364535 Sherpa_222_ NNPDF30NNLO _taunugamma._pty_140_E_CMS p3975
363507 Sherpa_222_ NNPDF30NNLO_WWZ_311v2j_ EW6 p4250
363508 Sherpa_222_ NNPDF30NNLO_WZZ_412j EW6 p4250
363509 Sherpa_222_ NNPDF30NNLO_WZZ_311v2j_ EW6 p4250

ZgammaSherpa222

364500 Sherpa_222_ NNPDF30NNLO_eegamma_pty_7_15 p3975
364501 Sherpa_222_ NNPDF30NNLO_eegamma_pty_15_35 p3975
364502 Sherpa_-222_ NNPDF30NNLO_eegamma_pty_35_70 p3975
364503 Sherpa_222_ NNPDF30NNLO_eegamma_pty_70-140 p3975
364504 Sherpa_222_NNPDF30NNLO_eegamma_pty_140_E_CMS p3975
364505 Sherpa_222_ NNPDF30NNLO_mumugamma._pty_-7-15 p3975
364506 Sherpa_222_ NNPDF30NNLO_mumugamma_pty_15_35 p3975
364507 Sherpa_222_ NNPDF30NNLO_mumugamma_pty_35_70 p3975
364508 Sherpa_222_NNPDF30NNLO_mumugamma._pty_70_140 p3975
364509 Sherpa_222_ NNPDF30NNLO_mumugamma._pty_140_.E_CMS  p3975
364510 Sherpa-222_ NNPDF30NNLO_tautaugamma_pty_7-15 p3975
364511 Sherpa_222_ NNPDF30NNLO_tautaugamma._pty_15_35 p3975
364512 Sherpa_222_ NNPDF30NNLO_tautaugamma_pty_35_70 p3975
364513 Sherpa_222_ NNPDF30NNLO_tautaugamma_pty_70_140 p3975
364514 Sherpa_222_ NNPDF30NNLO_tautaugamma_pty_140_ E_.CMS  p3975

Table A.6: The DSID, physics name, and p-tag of the Monte Carlo generator samples
used to model the ZZ background.

DSID sample name p-tag
77 _Sherpa

363356 Sherpa_221_ NNPDF30NNLO _ZqqZll p4097

364250 Sherpa_222_ NNPDF30NNLO_11 p4097

364283  Sherpa_222 NNPDF30NNLOLIIljj_LEW6  pd097
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Figure B.1: Comparison of SHERPA WEW*jj and WEW*jj (t-ch.) on particle-level
in the phase space defined in table 8.4. The comparison is done for polarization in the
WW-cmf and pp-cmf.
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used for the approximate NLO-QCD cor-
rection. The DNNs are selected from the hyperparameter optimization by the minimum
of the fit to the validation loss.
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Figure B.3: The training process of DNNg_¢n. used for the approximate NLO-QCD cor-

rection. The DNNs are selected from the hyperparameter optimization by the minimum
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Figure B.4: The classification output of the DNN

order QCD correction.
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B Approximate NLO-QCD Correction
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Figure B.5: Comparison of the polarization in WW-cmf simulated by SHERPA WEW 55
and WEWwt jj (t-ch.) on particle-level in the phase space defined in table 8.4. The SHERPA

Wﬂ:Wijj is corrected by the DNNg:’ll;,

To avoid a bias the networks are applied in the

k-fold method to the corresponding validation data used during their training.
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Figure B.6: Comparison of the polarization in pp-cmf simulated by SHERPA WEW %5
and WEw* jj (t-ch.) on particle-level in the phase space defined in table 8.4. The SHERPA

WiWijj is corrected by the DNN

poll
0,15

To avoid a bias the networks are applied in the

k-fold method to the corresponding validation data used during their training.
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Figure B.7: Comparison of SHERPA WEW™*jj + 0,15 (t-ch.) and (Fi*vrjj + 0,15 on
particle-level in the phase space defined in table 8.4. The SHERPA WEW*55 40, 15 (t-ch.)
is corrected by the DNNg_cn.. To avoid a bias the networks are applied in the k-fold method
to the corresponding validation data used during their training.
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Figure B.8: Comparison of the polarization in pp-cmf simulated by SHERPA WEW* 5
and WEW®j (t-ch.) on particle-level in the combined signal and Low-m,; region defined
in table 8.2. The SHERPA WEW* 5 is corrected by the DNNg,ollé.. To avoid a bias the net-
works are applied in the k-fold method to the corresponding validation data used during
their training. The Kolmogorov-Smirnov values give an overview of the shape improve-
ments in the tested variables.
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Figure B.9: Comparison of the polarization in WW-cmf simulated by SHERPA WEWj;
and WEW*jj (t-ch.) in lepton and p7**** kinematic on particle-level in the combined
signal and Low-m;; region defined in table 8.2. The SHERPA WEW*jj is corrected by

oll
the DNNZL,

corresponding validation data used during their training.
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Figure B.10: Comparison of the polarization in WW-cmf simulated by SHERPA
WEW*j5 and WEWTjj (t-ch.) in jet kinematic on particle-level in the combined sig-
nal and Low-m;; region defined in table 8.2. The SHERPA WiWijj is corrected by the
DNNP?L . To avoid a bias the networks are applied in the k-fold method to the correspond-

0,15°

ing validation data used during their training.
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corresponding validation data used during their training.

Comparison of the polarization in pp-cmf simulated by SHERPA WEW*jj
and WEW*jj (t-ch.) in lepton and p*** kinematic on particle-level in the combined
signal and Low-m;; region defined in table 8.2. The SHERPA WEW%jj is corrected by
To avoid a bias the networks are applied in the k-fold method to the
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Figure B.12: Comparison of the polarization in pp-cmf simulated by SHERPA WEW* 5
and WEW*;j (t-ch.) in jet kinematic on particle-level in the combined signal and Low-

mj; region defined in table 8.2. The SHERPA WEW ¥ is corrected by the DNNS?IZ;,

To

avoid a bias the networks are applied in the k-fold method to the corresponding validation
data used during their training.
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Figure B.13: Comparison of SHERPA WEW*jj 4 0,15 (t-ch.) and [TITvwjj + 0,15 in
lepton and pi*** kinematic on particle-level in the combined signal and Low-m;; region
defined in table 8.2. The SHERPA WEW* 540,15 (t-ch.) is corrected by the DNNg.cp.. To
avoid a bias the networks are applied in the k-fold method to the corresponding validation
data used during their training.
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Figure B.14: Comparison of SHERPA WEWTjj + 0,15 (t-ch.) and I¥1Fvvjj + 0,15 jet
kinematic on particle-level in the combined signal and Low-m; region defined in table 8.2.
The SHERPA WEWTjj + 0,15 (t-ch.) is corrected by the DNNg.a, . To avoid a bias the
networks are applied in the k-fold method to the corresponding validation data used during
their training.
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Figure B.15: Comparison of different fit functions for the higher-order QCD correction
factor corTjet-merged in M;j;. The correction is extracted from the combined signal and
Low-mj; region at particle-level.
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(f) sublead. lepton type

Figure C.1: Distributions of the training input in the signal region.
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Figure C.2: Distributions of the training input in the signal region.
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Figure C.3: Distributions of the training input in the signal region.
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Figure C.4: Distributions of the training input in the signal region.
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Figure C.5: Distributions of the training input in the signal region.
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Figure C.7: Distributions of the training input in the signal region.

220



Events

Data / Pred.

Events

Data / Pred.

Events

Data / Pred.

s ‘.&Pﬁwfw ‘ iwiﬁ-sw ‘ % o ‘.w;Wi-Ew ‘ iWEWf-EW R
P . TWi-EW W W"W*-EW Pol-INT 7 o . IWIW-EW W W*W*-EW Pol-INT
Vs=13TeV, 140 b u T o o Vs=13TeV, 140 fb" T e
40} Signal region =3VV+ZW|;WQCD =azwc+)cl,’|§‘)-r ] 6o Signal region =aZV\IIE\-NQCD =aZWQC"\[l)T ]
Pre-Fit ) 3 Pre-Fit i} 3
35F reH Other Prompt [/ Charge-flip 1 re-H Other Prompt [ Charge-flip
[l Non-prompt 77 Uncertainty 50F [l Non-prompt 77 Uncertainty q

°
o
o
: E
0.75 8 0.75f 1
0‘5—1 -08 06 -04 -02 0 02 04 06 08 1 0"'—1 -08 06 -04 -02 0 02 04 06 08 1
Regression LT2 out0 Regression LT2 out1
(a) Regressionyp o(I1) (b) Regressiony 5(12)
of W a8 WD R
. WiW-EW W W*W*-EW Pol-INT ki . W Wr-EW W W"W*"-EW Pol-INT
_13Tev, 14007 WiWr it =13 TeV, 140 b TN
gignal re;m WWW-QCD  EWWEINT 500 ggnal re;m EWW-QCD  EWWEINT 1
20 pre-Fi WZ-EW W WZz-QCD Pre-Fit IWZ-EW W Wz-QCD
Other Prompt [l Charge-flip Other Prompt 1 Charge-flip
[l Non-prompt 7Z-Uncertainty 40 [l Non-prompt 72 Uncertainty ]

°

j

o

1 & 1
0.75 8 075} 1
0'5—1 -08 -06 -04 -02 0 02 04 06 08 1 0",—1 -08 -06 -04 -02 0 02 04 06 08 1
Regression TT1 out0 Regression TT1 out1
(c¢) Regressionpr ; (11) (d) Regressionpr 4 (12)
T T " T §2) T T n| T
40 .&Pﬁwfw iwi&vﬁ-sw g .w;Wi-Ew iWin—EW
. TWT-EW W WW*-EW Pol-INT 3 . IWIWT-EW BW"W*-EW Pol-INT
=13 TeV, 140 o' Wy w =13 TeV, 140 o' T
35 fl nafreeior} 0" mwwhacD  EWAWSINT s0[ g na|3reeior’] 0" mwwhacD  EWAWSINT i
Piﬂ 9 EWZ-EW EWZ-QCD Pri_Fn 9 EWZ-EW mWz-Qcb
30 Other Prompt [ Charge-flip Other Prompt [ Charge-flip
[l Non-prompt 72 Uncertainty 401 [l Non-prompt 77 Uncertainty |
Y, 7

°

o

o

1 & 1

075 & o075} i
0‘5—1 -08 06 -04 -02 0 02 04 06 08 1 0"'—1 -08 06 -04 -02 0 02 04 06 08 1

Regression TT2 out0

(e) Regressionpr 5(11)

Regression TT2 out1

(f) Regressionp 5(12)

Figure C.8: Distributions of the training input in the signal region.
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Optimization of input variables for DNNy, +y,+ and DNN,y for LX in

WW-cmf. Plotted is the relative AUC change of the variable whose removal results in the

Figure C.9

has been seen for five iterations, the procedure is stopped and the variable set that is still

best mean AUC change after shuffling/retraining. If a significant performance decrease
consistent with the best-performing set is chosen (marked with x).
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Figure C.10

AUC change after shuffling/retraining. If a significant performance decrease has been seen

for five iterations, the procedure is stopped and the variable set that is still consistent with

the best-performing set is chosen (marked with x).
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Figure D.1: DNNs trained on different folds to seperate LL and TX in WW-cmf are
applied in the Low-mj; control region. According to the fit results from the unpolar-
ized WEW=jj measurement [8] the W*Z-QCD contribution is scaled by 0.69 and the
WEW*jj-EW signal is scaled by 1.14.
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Figure D.2: DNNs trained on different folds to seperate LX and TT in WW-cmf are
applied in the Low-m;j; control region. According to the fit results from the unpolar-
ized WEW=jj measurement [8] the W*Z-QCD contribution is scaled by 0.69 and the
WEW*j-EW signal is scaled by 1.14.
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Figure D.3: DNNs trained on different folds to seperate LL and TX in pp-cmf are applied
in the Low-mj; control region. According to the fit results from the unpolarized wWEWw* 77
measurement [8] the W*Z-QCD contribution is scaled by 0.69 and the W*W=*jj-EW
signal is scaled by 1.14.
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Figure D.4: DNNs trained on different folds to seperate LX and TT in pp-cmf are applied
in the Low-mj; control region. According to the fit results from the unpolarized wWEW* 77
measurement [8] the W*Z-QCD contribution is scaled by 0.69 and the W*W=*jj-EW

signal is scaled by 1.14.
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Figure D.5: DNNs trained on different folds to seperate W= W¥*;-EW and background
are applied in the Low-m;; control region. According to the fit results from the unpo-
larized WEW*jj measurement [8] the W+ Z-QCD contribution is scaled by 0.69 and the
WEWjj-EW signal is scaled by 1.14.
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E Interpretation of the Classifier Decision-Making
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Figure E.1: The mean absolute SHAP values of DNN,; for different input features. The
assigned uncertainties originate from the statistical uncertainty of the explanation-dataset.
The SHAP evaluation is done for independent mask-datasets of different size.
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Figure E.2: The SHAP values of DNN,,,; originating from mask-datasets with increasing
size are compared by calculate the event-wise difference. This is done for each time N,qsk
was increased by 20. For better visibility the individual differences are combined into a
box plot of the quantiles and whiskers covering the full range.
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Figure F.1: Kolmogorov Smirnov test between the nominal SHERPA liuliz/jj + 0,15
sample and the corresponding s, PDF set, and internal PDF variations. The kinematic
distributions are derived on particle-level in the combined signal and Low-mj; region
defined in table 8.2.
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(b) KS p-values for resummation scale variations

Figure F.2: Kolmogorov Smirnov p-values for the comparison of the nominal SHERPA

[Ful*

vjj+0,1j sample and the corresponding resummation and merging scale variations.

The kinematic distributions are derived on particle-level in the combined signal and Low-
mj; region defined in table 8.2.
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Appendix G

Statistical Evaluation

Table G.1: The pruned list of systematic variations and their corresponding category
and sub-category.

Systematic variation

Main category

Sub-category

Luminosity Lumi Lumi

WW-EW LL NLO-QCD Modeling WEWPmjj-EW NLO correction
WW-EW TL NLO-QCD Modeling WEWPmjj-EW NLO correction
WW-EW TT NLO-QCD Modeling WEWPmjj-EW NLO correction
WW-EW TL NLO-EW Modeling WEWPmjj-EW NLO correction
WW-EW LL NLO-EW Modeling WEWPmjj-EW NLO correction
WW-EW TT NLO-EW Modeling WEWPmjj-EW NLO correction
NLO-EW-QCD comb. for TL Modeling WEWPmjj-EW NLO correction
NLO-EW-QCD comb. for LL Modeling WEWPmjj-EW NLO correction
NLO-EW-QCD comb. for TT Modeling WEWPmjj-EW NLO correction
WW-EW PDF var. Modeling WEWPmjj-EW theory unc.
WW-EW alt. PDF Modeling WEWPmjj-EW theory unc.
WW-EW alpha-S Modeling WEWPmjj-EW theory unc.
WW-EW fact. & ren. scale hist 1 Modeling WEWPmjj-EW theory unc.
WW-EW merging scale hist 1 Modeling WEWPmjj-EW theory unc.
WW-EW resum. scale hist 1 Modeling WEWPmjj-EW theory unc.
WW-EW fact. & ren. scale hist 2 Modeling WEWPmjj-EW theory unc.
WW-EW merging scale hist 2 Modeling WEWPmjj-EW theory unc.
WW-EW resum. scale hist 2 Modeling WEWPmjj-EW theory unc.
WW-EW fact. & ren. scale hist 3 Modeling WEWPmjj-EW theory unc.
WW-EW merging scale hist 3 Modeling WEWPmjj-EW theory unc.
WW-EW resum. scale hist 1 Modeling WEWPmjj-EW theory unc.
WW-EW fact. & ren. scale LowMjj Modeling WEWPmjj-EW theory unc.
WW-EW merging scale LowMjj Modeling WEWPmjj-EW theory unc.
WW-EW resum. scale LowMjj Modeling WEWPmjj-EW theory unc.
WZ-QCD PDF Modeling W= Z-QCD theory unc.
WZ-QCD fact. & ren. scale Modeling W= Z-QCD theory unc.
WZ-QCD Mjj-rew. stat. Modeling W+ Z-QCD reweighting
WZ-QCD Mjj-rew. fact. & ren. scale Modeling W= Z-QCD reweighting
WZ-QCD Mjj-rew. PDF Modeling W*Z-QCD reweighting
Electron reconstruction Experimental Electron reconstruction

Jet effective NP modeling Experimental Jet reconstruction

Jet eta intercalibration modeling Experimental Jet reconstruction

Jet flavor composition Experimental Jet reconstruction

Jet flavor response Experimental Jet reconstruction

Jet pileup offset mu Experimental Jet reconstruction

Jet pileup offset NPV Experimental Jet reconstruction

Jet pileup rho topology Experimental Jet reconstruction

Jet JER effective NP PDsmear Experimental Jet reconstruction

Jet JER effective NP1 MCsmear Experimental Jet reconstruction

Jet JER effective NP4 MCsmear Experimental Jet reconstruction

Muon reconstruction Experimental Muon reconstruction
PRW data SF Experimental Pile-up

MET SoftTrk ResoPara Experimental MET reconstruction

MET SoftTrk ResoPerp Experimental MET reconstruction

MET SoftTrk Scale Experimental MET reconstruction
Charge-flip SF Experimental Charge-flip scale factor
FF(mu) stat. 2015.2018_1_1 Experimental Fake factor method
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FF(mu) stat. 2015.2018_2_1 Experimental Fake factor method
FF(mu) stat. 2015.2018_3_1 Experimental Fake factor method
FF(mu) stat. 2015_-2_1 Experimental Fake factor method
FF(mu) stat. 2015.3_1 Experimental Fake factor method
FF(mu) stat. 2016.2018_3_1 Experimental Fake factor method
FF(el) stat. 2015.2018_1_1 Experimental Fake factor method
FF(el) stat. 2015201812 Experimental Fake factor method
FF(el) stat. 2015-2018_1_3 Experimental Fake factor method
FF(el) stat. 2015201821 Experimental Fake factor method
FF(el) stat. 2015201822 Experimental Fake factor method
FF(el) stat. 2015.20182_3 Experimental Fake factor method
FF(el) stat. 2015.2018_3_1 Experimental Fake factor method
FF(el) stat. 2015-2018_3_2 Experimental Fake factor method
FF(el) stat. 2015.2018_3_3 Experimental Fake factor method
FF(el) stat. 2015.3_1 Experimental Fake factor method
FF(el) stat. 2015.3_2 Experimental Fake factor method
FF(el) stat. 2015_3_3 Experimental Fake factor method
FF(el) stat. 2016-2018_3_1 Experimental Fake factor method
FF(el) stat. 2016-2018_3_2 Experimental Fake factor method
FF(el) stat. 2016-2018_3_3 Experimental Fake factor method
FF(mu) MET Experimental Fake factor method
FF(el) MET Experimental Fake factor method
FF(mu) Prompt Experimental Fake factor method
FF(el) Prompt Experimental Fake factor method
FF(mu) BTagged Experimental Fake factor method
FF(el) BTagged Experimental Fake factor method

G.1 Expected Results

Pre-fit impact on p: Ap Pre-fit impact on p: Ap
[16=8+40 [ 0=040 454 005 0 005 O0.1 [16=0+A0 [ 6=8-A0 o4 005 0 005 O.1
Post-fit impact on p: TTTTTTTTITTTTTTTITTITTITTITTTY  Post-fit impact on IR R R R R
mo=0+A8 me=>048 Mo=0+A8 me=>08408
—e— Nuis. Param. Pull | /s =13TeV, 140 fb" —e— Nuis. Param. Pull | /s =13TeV, 140 f”
WW-EW merging scale hist 3 _—Q— WW-EW merging scale hist 3 _—Q—
FF(mu) BTagged —_] WW-EW fact. & ren. scale hist 3 _—
WW-EW fact. & ren. scale hist 3 _— WW-EW merging scale hist 2 _—
WW-EW TL NLO-EW | —— WW-EW fact. & ren. scale hist 2 ——
WZ-QCD fact. & ren. scale —.’— FF(mu) BTagged —‘—
WW-EW merging scale hist 2 1 a— WW-EW resum. scale hist 1 -
WZ-QCD Mijj-rew. stat. —-} Jet flavor composition .
FF(el) stat. 2015_2018_3_1 . — WW-EW PDF var. —e
FF(mu) stat. 2015_2018_2_1 —_— WZ-QCD Mij-rew. stat. — =
FF(mu) stat. 2015_2018_3_1 — WW-EW TL NLO-EW —
WW-EW fact. & ren. scale hist 2 —— WW-EW alt. PDF —e
norm_WZ - ——— WZ-QCD fact. & ren. scale =
Jet flavor composition —'— FF(mu) Prompt ;—.—;
WW-EW TL NLO-QCD e FF(el) stat. 2015_2018_3 3 e
MET SoftTrk ResoPara —-— WW-EW resum. scale hist 2 —’—
T R I R By BT R R
(6-0,)/A0 (0-6,)/A0

(a) Ranking of p7,;, measurement in pp-cmf (b) Ranking of 7, x measurement in pp-cmf

Figure G.1: The ranking plots for the partially unblinded significance fits in the pp-cmf.
The fit is derived for measured data in the W*Z control region and Asimov data in the
signal and Low-m;; control region. The W*Z-QCD contribution in the Asimov data is
scaled by 0.74.
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Figure G.2: The pulls of 8 and ~ for the partially unblinded background-only significance
fits in the pp-cmf. The fit parameter prr /purx is fixed to 0. The fit is derived for measured
data in the W Z control region and Asimov data in the signal and Low-mj; control region.

The W* Z-QCD contribution in the Asimov data is scaled by 0.74.
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G.2 Observed Results

Table G.2: Pre-fit number of events in the regions used for the LL measurement in the
WW-cmf. The signal region is split according to the output score of DNNy +yp+.

WiWi—EW 0.99 +0.15 58+0.8 13.3+2.1 3.7+ 0.6 7-10° + 1.4-107
Wz Wi_EW 3.3+0.5 18.7£2.7 41£7 11.1£18 6.1-10* £ 3.2.10
WTiWT -EW 52408 33+£5 90 + 14 24.1+£3.9 0.0019 & 7-10°
WEW*.EW Pol-INT 0.27 £ 0.05 1.36 £0.11 3.07+0.17 0.14+0.1 3.1-10* + 1.8-10
WEW*.QCD 7.82+0.31 125+ 0.5 3.95+0.17 24.6 £0.8 0.0057 £ 0.0025
WEWEINT 1.02+0.06 3.64 £ 0.08 2.98 £0.06 2.19 £0.07 0.0016 £ 0.0012
W*Z-EW 1.98 £0.08 5.74+0.19 7.35+0.19 4.4+£0.12 139.5 £ 3.0
W*2Z-QCD 33+£15 34+£15 10£5 120 £+ 50 730 + 340
Top, triboson 1.36 £0.16 2.24+0.19 1.07 £0.12 6.11+0.3 57.0+ 1.6

zZ 1.42 £0.07 0.79 £ 0.05 0.25 £0.027 3.76 £0.14 58.6 £0.7

Vy 55+1.1 4.9+0.9 1.0£0.43 15.6 £2.7 366
Charge-flip 51+1.7 3.6+14 1.4+£0.6 11.1£4.5 0£0
Non-prompt 20.3+4.4 23+5 1245 89+ 14 0+0

Total 88 £ 16 149 + 18 189 £+ 24 310 £ 50 1020 + 340
Data 99 162 214 306 831

Table G.3: Pre-fit number of events in the regions used for the LX measurement in the
WW-cmf. The signal region is split according to the output score of DNN 4y +.

0<DNNpw <03 03<DNNpw <0.7 0.7<DNNpw <1 LOW—TIL]’]‘ CR W*Z CR
WiWé—EW 1.95+0.29 72+1.1 109 £1.8 3.7+0.6 7-10° +1.4-10%
Wr Wi—EW 6.5 £+ 0.96 23.2+34 34+6 11.1+£18 6.1-10* +3.2-10*
W%WT -EW 104 £1.5 43+6 75+ 12 24.1+3.9 0.0019 £+ 7-10
WEW*-EW Pol-INT 0.56 +0.07 2.03+0.13 2.86 = 0.15 0.14+0.1 3.1-10* + 1.8-10*
WHW*.QCD 11.7+0.5 10.39 £+ 0.41 2.15+0.11 24.6+0.8 0.0057 £ 0.0025
WEW*INT 1.73 £0.05 3.994 £ 0.099 1.92 £0.05 2.194+0.07 0.0016 £ 0.0012
W*Z-EW 3.31+0.12 6.22 +0.17 5.54 +£0.18 4.4+0.12 139.5 £+ 3.0
W#*Z-QCD 44 420 27+13 6.0+ 3.1 120 £ 50 730 £ 340
Top, triboson 1.99+0.2 2.0+ 0.16 0.69 £0.11 6.11+0.3 57.0+ 1.6
zZ 1.71 £0.08 0.62 + 0.045 0.126 £ 0.02 3.76 £0.14 58.6 £0.7
Ve 76+£13 3.3£0.8 0.62 +0.38 156 £2.7 36+6
Charge-flip 6.5 +2.1 2.7+£1.2 0.96 + 0.42 11.1+£4.5 0£+0
Non-prompt 29+6 18.8 £4.5 9.3+3.9 89 + 14 0£0
Total 127 £ 21 151 £18 149 + 20 310 + 50 1020 + 340
Data 142 158 175 306 831
£ "e-Data ' B WWEW 2 "eData ' W WWEW
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Figure G.3: The post-fit distribution for the LX in WW-cmf measurement in the W*Z
control region and Low-m;; control region.
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G.2 Observed Results

Table G.4: Pre-fit number of events in the regions used for the LL measurement in the
pp-cmf. The signal region is split according to the output score of DNNyy+ 4.

0 <DNNyw <0.15 0.15 < DNNyw < 0.5 0.5 <DNNyyw <1 Low-m;; CR W*Z CR
WiWi—EW 0.58 £ 0.09 2.89 £ 0.43 93+1.5 2224036 5.2-10° £4.3-10°
Wr Wi-EW 2.49 +0.37 15.6 +2.3 56 + 9 134421  5.8-10%+3.3-10"
W}EWT -EW 2.91+£0.44 224+33 99 £ 16 23.3+£38 0.002 4+ 8-10*
WHW*-EW Pol-INT 0.179 + 0.042 0.58 = 0.09 1.64 +0.17 0.0134+0.1  2.5-10* +2.4-10*
WEW*.QCD 5.74+£0.22 122+0.5 6.35+0.27 24.6+£0.8 0.0057 £ 0.0025
WEWEINT 0.722 £ 0.037 2.87+0.07 4.05 £ 0.09 2.19+0.07 0.0016 £ 0.0012
WEZ-EW 1.38 +0.07 4.87+0.18 8.82+0.21 444012 139.5 £ 3.0
W+Z-QCD 27+12 34+15 16 +8 120 £ 50 730 £ 340
Top, triboson 1.01+0.13 2.07+0.19 1.6 +0.14 6.11+0.3 57.0+ 1.6
Z7 1.254+0.07 0.82 £ 0.05 0.389 £ 0.034 3.76 £0.14 58.6 £ 0.7
Vy 4.47+0.96 55+ 1.1 1.3+0.5 15.6 +£2.7 36+6
Charge-flip 42413 4.0+1.5 2.0£0.9 11.1+45 0+0
Non-prompt 17.9 £ 3.9 21+5 16+5 89+ 14 0+0
Total 70+£13 129+ 17 224 £+ 28 310 £ 50 1020 + 340
Data 81 132 262 306 831
Table G.5: Pre-fit number of events in the regions used for the LX measurement in the
pp-cmf. The signal region is split according to the output score of DNNy, +yy+.
0 <DNNyw <025 0.25 <DNNpw <0.6 0.6 <DNNyw <1 Low-m;; CR W*Z CR
WiWi—EW 1.194+0.18 3.5£0.5 8.0+1.3 2224036 5.2-10° £4.3-10°
W WI:E—EW 5.5+0.8 19.7+29 49+8 134421 5.8-10* £3.3-10*
WEWE-EW 7.0£1.0 29.8 + 4.4 88 + 14 23.3+£3.8 0.002 + 8104
WEW*-EW Pol-INT 0.39 £ 0.06 1.27+0.1 2.78 £0.16 0.013+£0.1  2.5-10* +£24-10*
WEW*-QCD 9.79+0.39 10.52 +£0.43 3.95+0.17 24.6 +£0.8 0.0057 £ 0.0025
WEWEINT 1.36 £ 0.05 3.3£0.09 2.98 £+ 0.06 2.19+£0.07 0.0016 £ 0.0012
W*Z-EW 2.61£0.11 5.11+£0.16 7.35+£0.19 4.4+0.12 139.5 + 3.0
W*Z-QCD 39+18 28 +13 10£5 120 £+ 50 730 £ 340
Top, triboson 1.7+£0.18 1.9+0.17 1.07+0.12 6.11+0.3 57.0+£1.6
77 1.58 +0.08 0.63 £0.05 0.25 £0.027 3.76 £0.14 58.6 £0.7
Vy 6.4+1.2 41409 1.02 +0.43 15.6 £2.7 36+6
Charge-flip 59+1.9 2.8+1.2 1.4+0.6 11.1+4.5 0£0
Non-prompt 26+ 5 17.3+4.1 124445 89 + 14 0+0
Total 109+ 19 128+ 16 189 + 24 310 £ 50 1020 + 340
Data 126 135 214 306 831
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Figure G.4: The post-fit distribution for the LL in pp-cmf measurement in the W*Z
control region and Low-m;; control region.
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Table G.6: Post-fit number of events in the regions used for the LL measurement in the
WW-cmf. The signal region is split according to the output score of DNNy +yy+.

0 <DNNpyw <02 02<DNNyw <0.6 0.6 <DNNyy <1 Low-m;; CR W*Z CR
W/iVVLifE\V 0.1+0.8 0.3+4.3 1+9 02+27 045107
WEWEEW 51+1.2 26.5+£3.9 55+ 6 15.6 £ 3.3 8.4-10* £2.2:10*
Y/V%I/’V'%-EVV 81+1.9 46+ 7 120 £ 12 34+7 0.00262 + 3.7-10*
W*W*.EW Pol-INT 0.275+0.013 1.364 £ 0.041 3.07 4+ 0.06 0.1425 £ 0.0032  3.1-10* £ 2.9-10°°
WEW+.QCD 8.04 £0.44 12.7+0.6 3.99£0.19 248+1.1 0.0058 £ 0.0011
WH*W*.INT 1.05 £0.07 3.66 +0.11 2.98 + 0.06 2.2+ 0.06 0.0015 + 6-10
W+Z-EW 2.03 £ 0.09 5.82+0.22 7.37£0.19 443 £0.13 140.5+ 3.3
W*Z-QCD 26.1+2.8 25.4+3.3 79+1.5 89+ 12 544 + 38
Top, triboson 1.4+0.12 2.24£0.1 1.08 £0.05 6.13 £0.22 57.3+1.6
ZZ 1.44 4+ 0.06 0.79 £ 0.023 0.253 £ 0.015 3.76 £ 0.09 58.7+0.6
Vy 59+0.9 5.14+0.5 0.99 £0.12 16.5 £2.2 38+6
Charge-flip 5.7+1.7 4.0+14 1.5+0.7 12+5 0+0
Non-prompt 22.1+£29 25.1+£3.7 13.7+3.6 95 £ 12 0+0
Total 87+5 159.3 £ 9.6 218 £15 303+ 14 838 £ 36
Data 99 162 214 306 831

Table G.7: Post-fit number of events in the regions used for the LX measurement in the
WW-cmf. The signal region is split according to the output score of DNNy, £y +.

0 <DNNyw <03 03 <DNNyw <07 0.7<DNNyw <1 Low-mj; CR W*Z CR
WEWE-EW 1.9+038 58+ 1.9 85+£28 3.0£11 6-10° £ 1.1-10™
WEWEEW 6.3+2.5 18+6 26 £8 9.1+34 5-10 £2.10
WEWE-EW 18.9+45 64.6 & 10.0 112+15 37+8 0.0029 + 5-10"
WEW=-EW Pol-INT 0.568 + 0.018 2.03 +0.05 2.87 +0.05 0.1424 +0.0032  3.1-10 +2.9-10°C
WEW*-QCD 11.9+0.6 104+0.5 2.15+£0.11 24.6+1.1 0.0057 + 7-10*
WEW=INT 1.75 +0.07 3.9940.13 1.918 + 0.042 2.19 £ 0.06 0.0016 4 5-10*
W*Z-EW 3.34+£0.13 6.2+0.19 5.52+0.18 4.4+0.12 139.2+£3.3
W*Z-QCD 34+5 20.6 £ 2.9 4.5+0.9 91416 550 + 50
Top, triboson 2.0+0.13 2.0 +0.08 0.69 + 0.05 6.12 +0.19 57.0+1.5
V4 1.71+0.06 0.617 £ 0.018 0.126 + 0.008 3.76 +0.09 58.7+ 0.6
Vy 7.6+0.6 3.28 +0.41 0.61 + 0.05 154+18 3545
Charge-flip 6.8+£2.1 2.8+1.2 1.02+0.41 1245 0+0
Non-prompt 31.6 +4.4 20.4 3.0 10.6£3.2 96 + 12 040
Total 128 +7 161 £ 10 177£13 305 + 16 840 + 50
Data 142 158 175 306 831

Table G.8: Post-fit number of events in the regions used for the LL measurement in the
pp-cmf. The signal region is split according to the output score of DNNyy £+ .

0 <DNNpw < 0.15 0.15 <DNNyw < 0.5

0.5 < DNNpw <1

Low-m;; CR

W*Z CR

WiWi-EW 0.6 +0.8 2.5+3.4 8+ 11 2.0+28 5-10° £ 7-107°
WEWiE-EW 34408 20.1+3.4 T1+8 17.7£3.9 7.6-10* +2.4-10*
WEWEEW 3.98+0.95 2945 127+ 13 3147 0.0026 + 4-10*
WEW=-EW Pol-INT 0.1875 £ 0.0097 0.578 4 0.02 1.632 £+ 0.038 0.01296 +2.9-10*  2.5-10* 4+ 2.4-10
WHW*-QCD 5.88 +0.34 12.2+0.6 6.37 +0.29 2474+ 1.0 0.006 + 0.0011
WEWHINT 0.744+0.05 2.87 4 0.09 4.05 +0.09 2.2+ 0.06 0.0017 4 6-10"*
W+Z-EW 1.41 +0.08 4.8840.2 8.85 +0.22 4.42+0.13 139.9+3.3
W=+Z-QCD 21.5+2.6 25.9+3.3 12.7+ 2.6 87+ 10 544 + 34
Top, triboson 1.02+0.1 2.1+0.12 1.59 £ 0.07 6.18 4+ 0.23 57.34+1.5

zZ7Z 1.3 4+ 0.06 0.82 4 0.024 0.387 £ 0.016 3.77 £ 0.09 58.74+0.7

Vy 4.7+0.7 5.6 4 0.7 1.3 +0.09 15.9+2.1 3746
Charge-flip 45414 42415 2.1+0.9 1245 040
Non-prompt 20.1+£2.5 234435 18.3+4.2 96 £ 12 0£0

Total 69.3+4.3 134438 263 + 16 303 £ 13 837 + 31
Data 81 132 262 306 831
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Table G.9: Post-fit number of events in the regions used for the LX measurement in the

pp-cmf. The signal region is split according to the output score of DNNy, £y +.

0 <DNNyw <0.25 0.25 < DNNyw < 0.6 0.6 < DNNyy <1 Low-m,; CR WEZ CR
WEWE-EW 1.0+0.5 25+1.1 5.6+2.4 1.6+0.8 3.8-10° £2-107
W%W%-EW 4.6+2.3 14+6 34414 10+5 4.2.10* £2.2-10*
WEWEEW 12.7+ 3.3 4649 134 420 3749 0.0031 + 6-10*
WEWE-EW Pol-INT 0.399 +0.015 1.273 +0.033 2.78 £ 0.05 0.01295 +2.9-10%  2.5-10* +2.4-10°6
WEWw+.QCD 10.1+£0.5 10.6 £ 0.5 3.99 £0.18 24.7+1.0 0.0057 + 8-10*
WEWEINT 1.39 4 0.06 3.324+0.11 2.99 +0.06 2.2 +0.06 0.0016 £ 5-10"*
W*Z-EW 2.68 +0.13 5.1440.18 7.38+0.19 4.42+0.12 140.0 + 3.1
W*2-QCD 31+5 21.6 +3.7 82+18 90+ 17 550 + 60
Top, triboson 1.75+0.13 1.907 + 0.096 1.08 + 0.05 6.14 +0.22 57.3+1.5
zZ 1.62 4 0.06 0.629 +0.02 0.252 +0.014 3.76 + 0.09 58.74 0.6
Vy 6.6 +0.8 4.13+0.36 1.03+0.14 15.8+1.8 3745
Charge-flip 6.3+£2.0 3.0+1.2 1.5+0.7 12+5 0+0
Non-prompt 29.84+4.1 19.3+2.8 14.1+3.6 98+ 12 0+0
Total 110+6 13449 21715 305+ 16 840 =+ 60
Data 126 135 214 306 831
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Figure G.5: The post-fit distribution for the LX in pp-cmf measurement in the wtz
control region and Low-mj; control region.
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Figure G.6: The pre- and post-fit signal region distributions for the LL in pp-cmf mea-
surement. The polarization states are simulated by SHERPA. As described in section 12.3
the signal region is split according to the DNNy;,+;,+ score. The shown histograms result
from the application of the DNN,,; trained for the LL polarization state in the pp-cmf.
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Figure G.7: The pre- and post-fit signal region distributions for the LX in pp-cmf mea-
surement. The polarization states are simulated by SHERPA. As described in section 12.3
the signal region is split according to the DNNy; +;,+ score. The shown histograms result
from the application of the DNN,,,; trained for the LX polarization state in the pp-cmf.
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Figure G.8: The pulls of 8 and ~ for the partially unblinded background-only significance
fits in the pp-cmf. The fit parameter prr/purx is fixed to 0. The fit is derived for measured
data in the W Z control region and Asimov data in the signal and Low-m ; control region.
The W*Z-QCD contribution in the Asimov data is scaled by 0.74.
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Observed Results
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