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Abstract
We present methods to estimate systematic uncertainties in unbinned large hadron collider (LHC)
data analyses, focusing on constraining Wilson coefficients in the standard model effective field
theory (SMEFT). Our approach also applies to broader parametric models of non-resonant
phenomena beyond the standard model. By using machine-learned surrogates of the likelihood
ratio, we extend well-established procedures from binned Poisson counting experiments to the
unbinned case. This framework handles various theoretical, modeling, and experimental
uncertainties, laying the foundation for future unbinned analyses at the LHC. We also introduce a
tree-boosting algorithm that learns precise parametrizations of systematic effects, providing a
robust, flexible alternative to neural networks for modeling systematics. We demonstrate this
approach with an SMEFT analysis of highly energetic top quark pair production in proton–proton
collisions.
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1. Introduction

The large hadron collider (LHC) generates vast amounts of data from particle decays in high-energy
interactions, offering a unique opportunity to explore fundamental physics. Recent advances in machine
learning (ML) provide powerful tools not only for reconstruction and object-tagging but also for novel
analysis techniques. High-dimensional unbinned analyses, where dozens of features probe a large number of
model parameters, are now feasible with machine-learned surrogates optimized for hypothesis testing.

In the theoretical domain, the lack of new resonance signals has led to the adoption of the standard
model effective field theory (SMEFT) [1–5] as the main framework for describing phenomena below an
assumed energy scale, conventionally set at ΛSMEFT = 1 TeV. This framework extends the standard model
(SM) Lagrangian with field monomials, where the Wilson coefficients serve as the parameters of interest
(POIs). The SMEFT enables experimentalists to test a range of high-scale models without dealing with their
fundamental parameters.

The SMEFT is organized by the mass dimension of operators, beginning with dimension six for relevant
new physics scenarios at the LHC [6]. Since the lowest-order matrix-element (ME) modifications to Wilson
coefficients are linear, cross-section deviations can be described by quadratic polynomials within the
SMEFT’s validity range [7]. This analytic structure supports simulation-based inference (SBI) methods that
improve performance, especially when probing multiple Wilson coefficients simultaneously [8–19]. These
methods offer statistically optimal observables at the detector level, with fast evaluation after an initial
training stage.

Nevertheless, most current LHC measurements are straightforward Poisson counting experiments,
partially because these reduce the computational demand. Large-scale computing infrastructure has become
more accessible, but the application of unbinned techniques is still hampered by the absence of a
comprehensive set of tools that bring decades of experience with treating systematic effects in binned Poisson
measurements on par with the unbinned case. The available methodology for treating systematic
uncertainties in unbinned SBI techniques, such as ML optimal observables, is sparse. While optimal ML
observables have a sound footing in well-developed statistical methodology, the otherwise finely honed
procedures for treating systematic uncertainties are rarely seen in this light. The present work aims to change
that situation through a comprehensive statistical interpretation of procedures for treating systematic effects
in SBI. We explain how the factorization of individual systematic effects facilitates the training of
multi-variate parametrized regressors and how to address uncertainties in the normalization of processes.
The most significant advantage of this approach is its stage-wise nature. Adding new processes or systematic
uncertainties does not invalidate partially available training.

The conceptual cornerstone of the modeling of collider phenomena underpinning SBI relies on a
hierarchical separation of processes by energy scale, starting from hypothetical UV phenomena and their
SMEFT parametrization at ΛSMEFT. The SMEFT Wilson coefficients, our POIs, are denoted by θ, and we aim
at parameter inference through frequentist confidence intervals [21]. Those parameters are, therefore, not
stochastic. However, we note that there is no conceptual limitation to Bayesian SMEFT analysis.
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Figure 1. A hierarchy of scales governs our assumed understanding of physical phenomena and the modeling of collider physics.
Staged event simulation proceeds in the ‘forward mode’ from right to left, while data analyses proceed in the reverse direction,
aimed at constraining models of UV phenomena or the SMEFT POIs from the detector-level measurements. Reproduced from
[20]. CC BY 4.0.

Figure 1 reflects this hierarchy, from right to left, by grouping unobserved (latent) variables and
systematic effects at the parton, particle, and detector levels. This division balances sufficient detail with
manageable notation complexity; more levels could be added but would obscure the core concepts. Collider
event simulation mirrors this staging: at the parton level, ME generators sample SMEFT ME-squared terms.
Key systematic uncertainties here include unphysical effects from technically unavoidable energy scales
linked to the perturbative renormalization of fixed-order predictions and the factorization of collinear and
infrared radiation. Uncertainties in the parton distribution functions (PDFs) cover our lack of knowledge in
the composition of the pp initial state. At the scale of ΛQCD, particle-level simulations handle parton shower
(PS) effects, fragmentation, hadronization, decay, and underlying event modeling. Tuning these models
introduces systematic uncertainties, and modeling generator differences as a ‘two-point’ systematic
uncertainty can be effective. At the detector level, simulations include particle interactions with detector
material, digitization, trigger logic, and event reconstruction.

Our approach provides a general method to obtain ML-based parametrizations of all these effects by
grouping them into classes of systematic variations addressed individually. With these procedures in place,
we can build unbinned models that can be iteratively refined. Adding new effects or background
contributions does not invalidate surrogates trained on the initial model.

On the technical side, we fill a gap in the methodology by developing a tree-boosting algorithm that can
learn arbitrarily accurate parametrizations of systematic effects. This is done by extending tree algorithms to
produce regressors that are parametric in externally provided data; in our case, the nuisance parameters (ν)
linked to systematic effects. The resulting ‘Boosted Parametric Tree’ (BPT) offers a robust and flexible
alternative to neural networks for this purpose, with the training procedure fully grounded in unbinned
model building. Therefore, it enables a full understanding of tree-boosting within the context of unbinned
hypothesis tests. The terminal nodes of the trees act as measurement bins, allowing for an analytic
dependence on nuisance parameters similar to the binned case. The BPT thus learns an expressive surrogate
for differential cross-section ratios (DCRs), accommodating a potentially high-dimensional set of model
parameters.

We use unbinned SMEFT analyses as our motivating case, assuming that the dependence on the POIs is
learned by an algorithm from the literature [8–17]. We demonstrate our tools for modeling systematic effects
through a semi-realistic SMEFT case study in top quark pair production. However, this methodology is
broadly applicable and could enhance the inference of any SM parameter with a non-resonant impact on
collider data. In addition to extracting parameters like αs, electro-weak precision observables, or sin

2θW,
inclusive cross-section measurements could benefit from an unbinned treatment of the signal process.

The rest of the paper is structured as follows. We discuss the relation to existing works for unbinned
SMEFT analyses in section 2. The statistical setup for unbinned hypothesis tests is provided in section 3, and
we use it to outline the key concepts of refinable modeling. A comprehensive review of the statistical
interpretation of event simulation, suitable for developing ML tools, is given in section 4. This part also
defines the terminology for section 5, which explains how to train generic regressors for suitable
parametrizations of the various model-parameter dependencies and introduces the BPT algorithm. In
section 6, we use the enw tools as building blocks for constructing refinable unbinned models. Those are
applied in section 7, where we demonstrate the application of the procedures for SMEFT analyses of top
quark pair production in the two-lepton channel. We provide conclusions in section 8.

2. Relation to other works

Several approaches in the literature suggest ML optimal test statistics, and we incorporate aspects of the
statistical methodology and ML techniques.
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TheML4EFT framework [8] advocates unbinned SMEFT hypothesis tests using a similar statistical
setting as this work and presents sensitivity studies obtained without detector simulation or systematic
uncertainties. The present work takes the next step, focussing on treating systematic uncertainties, and
provides the tools for capitalizing on simulated data sets, encapsulating the systematic effects from all stages
of LHC event simulation. A less significant difference is that SMEFT effects in [8] are learned by using
networks, while we use the following tree-based method for this purpose.

The Boosted information tree (BIT) [9, 10] is a tree-based algorithm for learning SMEFT effects. In this
work, we adopt it for the SMEFT signal modeling and extend it toward predicting the full positive quadratic
SMEFT polynomial. The BIT algorithm learns the quadratic SMEFT polynomial using the same statistical
foundation as the present work. The ‘Parametric Regression Tree’ in section 5.4 has a different goal, but the
technical implementation and the statistical interpretation of the boosting are closely related.

In Parametrized classifiers for optimal EFT sensitivity [11], the authors develop a
neural-network-based approach for learning optimal SMEFT classifiers up to next-to-leading (NLO)
perturbative accuracy. Chen et al [12] provides a reweighting-based extension. Our approach to learning the
SMEFT signal dependence is a tree-based alternative, and our focus in this work is on systematic
uncertainties. The idea of learning generic coefficient functions for parametric regressors, as discussed in
section 5, is partly motivated by the corresponding SMEFT construction in [11].

The authors of theMADMINER framework [13–18] developed the understanding of event simulation for
likelihood-free inference that is also an essential basis for this work. On the technological side, MADMINER

provides various techniques for general parameter inference and, specifically, also for unbinned SMEFT
analyses. Beyond these motivating examples, MADMINER arguably established the SBI methods as a subfield in
high-energy physics, to which the present work contributes. While MADMINER can also model systematic
uncertainties, we use a more general and incrementally refinable statistical model for this purpose.

The authors of Learning new physics from an imperfect machine [22] use an entirely different
(neural-network-based) model of the phenomena beyond the SM, which is at variance with the SMEFT case
presented here. Nevertheless, the statistical setup (section 3), in particular, the definition of the nuisance
parameters and the parametrization of systematic effects, are similar to this work.

In the INFERNO approach [23], a non-linear summary statistic is constructed by minimizing
inference-motivated losses via stochastic gradient descent. The algorithm uses Fisher’s information on the
POIs and accounts for nuisance parameters, but it is not specific to SMEFT. In [24], the method is used to
reduce the systematic uncertainties in the measurement of the top quark pair production in the τ+jets
channel.

3. Unbinned likelihood ratio tests

Given a data setD, confidence level (CL) intervals for the POIs θ are determined from the profiled likelihood
ratio test statistic. In this section, we relate it to quantities that a machine can learn. Splitting the data in a
primary setD and an auxiliary setA, we have

qθ (D) =−2 log
maxν L(D,A|θ,ν)
maxν,θ L(D,A|θ,ν)

=−2 log L(D,A|θ, ν̂θ)

L
(
D,A|θ̂, ν̂

) . (1)

The auxiliary data set has components to constrain systematic uncertainties, such as in the integrated
luminosity or the jet energy scale calibration. The maximum-likelihood estimate (MLE) of the nuisance
parameters for a given θ is ν̂θ , while (θ̂, ν̂) represents the MLE or all model parameters simultaenously.

By design, qθ(D) is always non-negative for any θ, with larger values indicating greater incompatibility
between the model defined by θ and the dataD. Without nuisance parameters, the Neyman–Pearson lemma
states that a hypothesis test of fixed size α based on qθ(D) has maximum power, meaning it is most likely to
correctly reject the null hypothesis when the alternative is true [25].

Technically,A should be an argument of qθ(D), but we omit it in the notation, as an analytic
approximation of the corresponding likelihood factor, described below, will capture all its effects. We assume
thatA andD do not overlap and that SMEFT effects, parametrized by θ, are negligible inA. Under this
assumption, the auxiliary data set produces a multiplicative term L(A|ν) in the likelihood,

L(D,A|ν,θ) = L(D|ν,θ)L(A|ν) . (2)

According to Wilks’ theorem [26], ifD is distributed under θ, then qθ(D) is asymptotically distributed as
a χ2Nθ

distribution, where Nθ is the number of independent degrees of freedom in θ. This asymptotic
distribution is independent of the nuisance parameters, which simplifies the limit-setting procedure and is a

4



Mach. Learn.: Sci. Technol. 6 (2025) 015007 R Schöfbeck

primary reason why LHC data analyses commonly use the profiled likelihood ratio test statistic. The CLs at a
CL of, e.g. 1−α= 95%, are given by solving

qθ = F−1
χ2Nθ

(1−α) , (3)

where Fχ2Nθ
is the cumulative distribution function of the χ2Nθ

distribution.

To obtain confidence intervals with some POIs profiled, these parameters are treated as nuisance
parameters in qθ , reducing Nθ accordingly. However, large quadratic terms in the SMEFT expansion can
invalidate Wilks’ theorem [27]. In such cases, the distribution must be determined by other means, such as
toy experiments, to ensure the desired CL.

The likelihood functions in equation (1) are ‘extended’ likelihoods: a Poisson-distributed counting
variable describes the random fluctuation in the total number of observed events. The remaining
discriminating information is encoded in the fiducial detector-level probability density function (pdf)
p(x|θ,ν), which relates to the fiducial differential cross-section as

dΣ(x|θ,ν) = σ (θ,ν) p(x|θ,ν) dx. (4)

We denote the inclusive fiducial cross-section by σ(θ,ν). In general, dΣ(x|θ,ν) includes contributions from
multiple processes. With the integrated luminosity L(ν), subject to systematic uncertainties whose effects we
parametrize by nuisance parameters, the likelihood to observe a data setD of size N can, in general, be
written in terms of the differential cross-section as

L(D|θ,ν) = PL(ν)σ(θ,ν) (N)
N∏

i=1

p(xi|θ,ν) = PL(ν)σ(θ,ν) (N)
N∏

i=1

1

σ (θ,ν)

dΣ(xi|θ,ν)
dx

, (5)

where Pλ denotes the Poisson distribution with mean λ. The extended log-likelihood ratio for two sets of
model parameters becomes

log
L(D|θ1,ν1)
L(D|θ0,ν0)

=−L(ν1)σ (θ1,ν1)+L(ν0)σ (θ0,ν0)+
N∑

i=1

log

(
L(ν1)
L(ν0)

dΣ(xi|θ1,ν1)
dΣ(xi|θ0,ν0)

)
(6)

each of the K sources of systematic uncertainty is associated with a nuisance parameter νk, collectively
denoted by ν. Systematic effects related to detector calibration, the measurement of the integrated
luminosity, theoretical calculations, and more are modeled with these nuisance parameters. Measurements
can constrain some of these uncertainties through the observed auxiliary data setA0, which is the specific
instance ofA found in real data and, therefore, not a random quantity [22]. We set ν = 0 to correspond to
the maximum of L(A0|ν), so that by definition,

max
ν

L(A0|ν) = L(A0|0) (7)

the central value ν = 0 represents the best available calibrations across all modeling aspects before
consideringD. The nuisance parameters then parametrize deviations from this hypothesis. Combined with
θ = 0, this choice defines an SM reference hypothesis with likelihood

L(D,A|SM)≡ L(D|0,0)L(A|0) (8)

which describes the SM without any SMEFT effects and includes the best available calibrations. We can
parametrize the systematic effects to make the νk as uncorrelated as possible and scale them so that the
auxiliary log-likelihood ratio becomes a simple analytic expression in terms of ν. In the Gaussian
approximation, this is achieved by diagonalizing the Hessian of the auxiliary likelihood function at ν = 0,
resulting in a penalty of the form

−2 log L(A|ν)
L(A|0)

=
K∑

k=1

ν2k (9)

though generalizations to other probability distributions are possible.
If a specific nuisance parameter is only constrained by the primary data set and not byA0, it is excluded

from the penalty term in equation (9) and referred to as ‘floating’. While some uncertainties, such as those
related to PDFs, are clearly interpretable in terms of SM parameters, this is not always the case. For example,
uncertainties from renormalization or factorization scales address limitations in perturbative accuracy but
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do not guarantee statistical coverage when these scales vary in the simulation. With this caveat in mind, we
treat all systematic uncertainties heuristically in the same way.

We normalize the likelihoods in equation (1) by dividing both the numerator and denominator by the
SM reference likelihood in equation (8). This yields

qθ (D) =min
ν

u(D,A|ν,θ)−min
ν,θ

u(D,A|ν,θ) , (10)

where

−1
2
u(D,A|ν,θ) =−L(ν) σ (θ,ν)+L0σ (SM)+

N(D)∑
i=1

log

(
L(ν)
L0

dΣ(xi|θ,ν)
dΣ(xi|SM)

)
− 1
2

K∑
k=1

ν2k . (11)

And L0 denotes the central value of the auxiliary luminosity measurement.
The main drawback of the unbinned likelihood ratio test statistic in equation (11) is the need to evaluate

the DCR, inclusive cross-section, and integrated luminosity as functions of the model parameters. While
log-normal (multiplicative) nuisances effectively model the integrated luminosity dependence around the
central value [28, 29], we also require estimates for the DCR and inclusive cross-section. Event generators
cannot provide these estimates parametrically in terms of model parameters, as they operate in ‘forward’
mode through sequential stochastic processes. However, for inference, the minimization in equation (1)
requires to evaluate the DCR for externally provided simulated or real events.

4. Simulation for inference

Although computationally intensive, robust predictions from Monte Carlo (MC) simulations are invaluable
for modeling highly energetic scattering processes [30]. Our strategy is to provide the necessary parametric
estimates by breaking down the primary task of modeling the DCR into smaller, manageable
machine-learning tasks. The tasks are based on simulation and capitalize on the high quality of the MC
methods. As illustrated in figure 2, we proceed in the backward mode, from left to right, and separate the
training into distinct parton-level processes that are simulated separately. For each process, we learn
parametrizations of systematic effects and POI dependencies with the help of efficiently generated ‘synthetic’
data sets that correspond to the systematic variations in the binned approach. Inheriting these procedures,
we leverage the extensive experience from over a decade of binned LHC data analyses.

Training tasks for systematics can be divided into uncorrelated groups of nuisance parameters which then
separately estimate these effects. A high granularity allows a gradual refinement of each aspect of the final
model without invalidating unrelated tasks. In the following sections, we describe how the results of ML
training tasks combine into a refinable surrogate model dΣ(x|θ,ν) that provides the needed DCR in
equation (11).

4.1. Hierarchical data representations and staged event simulation
Systematic effects can modify predictions at any energy scale. As shown in figure 1, we broadly categorize
these into parton level (p), particle level (ptl), detector reconstruction level (reco), and observed features
derived from reconstruction, denoted by x. By definition, the observables x are the quantities used in
equations (4)–(11). All other quantities, including zreco (e.g. low-level hit patterns in sub-detectors accessible
in real data), are denoted by z.

This grouping strikes a balance between detail and notational simplicity. It also reflects the approximate
separation of systematic effects from UV and SMEFT energy scales to those relevant to QCD and detector
signals. This staging is flexible; additional stages can be introduced as long as an event representation can be
defined.

Event simulation for LHC proton-proton (pp) collisions is divided among several computer codes, each
addressing modeling at a specific energy scale with specialized techniques. At the parton level, ME generators
like MG5_AMC@NLO [31, 32], SHERPA [33], and POWHEG [34–38] provide a sampling of purely perturbative
ME-squared predictions for the hard-scatter interaction. The dynamics of fundamental particles from the
hard scatter and subsequent decays of heavy SM particles are represented by zp. The PS evolves zp down to
energies where perturbative methods are no longer valid. Together with color reconnection, hadronization,
decays of unstable hadrons, underlying event, particles from multiple-parton interactions, and both initial-
and final-state radiation, it defines the particle level. This is simulated with general-purpose tools like
PYTHIA [39] or HERWIG[40], which require tuning of phenomenological parameters to reliably describe data.
The resulting particle-level event is represented by zptl. The parton and particle levels are latent and cannot be
directly observed in real data.
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Figure 2. Overview of refinable modeling in SBI, proceeding in the backward mode, from left to right. For each process, we
machine-learn the dependence on the SMEFT POIs and on the nuisance parameters and combine these elements into a refinable
surrogate model for the global DCR in the measurement region, suitable for inference.

Particle-level events are processed with detector-specific simulation tools like GEANT [41], using
conditions for each data-taking period and mixed with simulations of separate hard-scatter events to model
pile-up. After simulating detector hits, event reconstruction proceeds to the particle candidate level, using,
e.g. a version of the PARTICLEFLOW algorithm [42, 43]. Together with jet clustering, lepton identification, and
disambiguation, this process is similar in both real and simulated data. The result is the reconstruction-level
event, with features denoted by zreco. Simplified event reconstruction is available from, e.g. DELPHES [44].

Most data analyses derive high-level observables x from zreco. These observables capture all event features
included in the hypothesis test. In principle, x can represent the entire reconstruction level, including the
variable-length list of all reconstructed particle candidates in an event [45]. Such approaches have been used
to constrain SMEFT effects [46]; here, we focus on high-level event features. Any real-data event features not
already included in x belong to zreco and are latent in the hypothesis test.

For bookkeeping, we group the nuisance parameters into νp, νptl, and νreco, collectively denoted by ν
when simplifying notation. The differential cross-section in the fiducial phase space from equation (4) then
becomes

dσ
(
x|θ,νreco,νptl,νp

)
= σ

(
θ,νreco,νptl,νp

)ˆ
dzreco

ˆ
dzptl

ˆ
dzp p

(
x,zreco,zptl,zp|θ,νreco,νptl,νp

)
dx.

(12)

The hierarchical event representation enables a natural factorization of the pdf as

p
(
x,zreco,zptl,zp|θ,νreco,νptl,νp

)
= p(x|zreco) p

(
zreco|zptl,νreco

)
p
(
zptl|zp,νptl

)
p
(
zp|θ,νp

)
. (13)

This pdf depends on both latent and observable features [14]. In ratios, the conditional factors1 can partially
or entirely cancel, enabling efficient generation of synthetic data sets for trainng ML surrogates [17].

4.2. Semi-analytic modeling at the parton level
At the parton level, the ME generators provide a (possibly weighted) sampling of the ME-squared SMEFT
terms. The generic parton-level DCR for a single process is

dσSMEFT
(
zp|θ,νR,νF,νPDF

)
∝

∑
f1,f2,h

∣∣MSMEFT

(
zp,h|θ,µR (νR) ,µF (νF)

)∣∣2
×PDF

(
f1,xBjorken,1,µF (νF) ,νPDF

)
PDF

(
f2,xBjorken,2,µF (νF) ,νPDF

)
dzp, (14)

where µR and µF are the renormalization and factorization scales, respectively. For single-operator
insertions, the dependence on the SMEFT Wilson coefficients θ is accurately described by a quadratic
polynomial. The flavors of the incoming partons are denoted by f1/2 and take values in

{u,u,d,d,c,c, s, s,b,b,g}. Furthermore, we denote the Bjorken scaling variables by xBjorken,1/2. The relevant
latent parton-level configuration, sufficient for evaluating the parton distribution functions (PDFs) [47], is
then given by {f1, f2,xBjorken,1,xBjorken,2}. Equation (14) also sums over the initial and final-state helicity
configurations, denoted by h. This choice removes the helicity configuration from the parton-level

1 The factor p(x|zreco) could also be conditional on nuisance parameters related to uncertainties in analysis-dependent parameters that
may be involved when computing x from zreco. This extension is straightforward.
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latent-space event representation zp and is called ‘helicity-ignorant’2 in the context of reweighted
predictions [48]. A list of four-momenta then represents the final state parton-level dynamics, and we arrive
at the parton-level representation

zp =
{
f1, f2,xBjorken,1,xBjorken,2,p

µ
1 ,p

µ
2 , . . .

}
(15)

if the helicity configuration is kept (‘helicity-aware’ [48]) and enters the particle-level simulation, h is also

included. The only required change in equation (14) in that case is to use a separate differential dz(h)p for each
helicity configuration [7].

Uncertainties in the PDFs can be expressed as variations along Hessian eigen-directions of an underlying
parametrization [47], with the corresponding nuisance parameters denoted by νPDF. These PDF variations
represent different hypotheses about proton parton dynamics and have a clear physical interpretation. In
contrast, the dependence on µR and µF arises from technical artifacts, namely the finite perturbative order
and the separation of collinear radiation between the ME and the PDF. Despite this, we treat scale
uncertainties with standard nuisance parameters νR and νF, corresponding to up and down variations
around the central values µR,0 and µF,0. If values of±1 correspond to variation factors of 2, then

µR (νR) = 2
νRµR,0 and µF (νF) = 2

νFµF,0. (16)

We account for uncertainties in the overall normalization of the process with log-normal nuisances in
section 6 and will not discuss them here. However, we include a general parton-level ad-hoc reweighting
function αrw(zp,νrw), useful when higher-order perturbative corrections significantly depend on the
parton-level configuration and we want to adjust the parton-level distribution with an ad-hoc modification.
The total parton-level prediction is then written as

dσ
(
zp|θ,νp

)
= αrw

(
zp,νrw

)
dσSMEFT

(
zp|θ,νR,νF,νPDF

)
. (17)

An example of this type is the modeling of the transverse top quark momenta in the t̄t process, which is well
understood from higher-order pertubation theory [49], but is not yet available from SMEFT ME generators.
The nuisances νrw modify parameters in the reweighting function αrw(zp,νrw) within their uncertainties.
Since such procedures are highly application-dependent, we do not elaborate further, except to note that
αrw(zp,νrw)must always be positive. The parton-level nuisance parameters considered so far are

νp = {νR,νF,νPDF,νrw} (18)

and are associated with systematic effects that can be modeled semi-analytically, allowing for efficient
computation.

We use equation (17) to define a parton-level pdf and the inclusive parton-level cross-section generically
as

dσ
(
zp|θ,νp

)
= σ̄

(
θ,νp

)
p
(
zp|θ,νp

)
dzp. (19)

The bar on σ̄(θ,νp) indicates that the inclusive cross-section pertains to the entire kinematic phase-space,
unaffected, e.g. by the finite detector acceptance. By definition, we have

ˆ
dσ

(
zp|θ,νp

)
= σ̄

(
θ,νp

)
and

ˆ
dzp p

(
zp|θ,νp

)
= 1, (20)

which differs from the fiducial cross-section σ(θ,ν) in equation (4) by the acceptance effects and the event
selection from the subsequent modeling stages, in particular at the detector level. With an ME generator, we
obtain a possibly weighted sample of identically and independently distributed events from equation (17) as{

wi,zp,i
} i.i.d.∼ σ̄

(
θ,νp

)
p
(
zp|νp

)
. (21)

The overall normalization of weights wi can be set to
∑

wi = σ̄(θ,ν).
These parton-level systematic effects enable tractable simulation, allowing an inexpensive way to modify

an existing sample, such as by reweighting, to approximate model parameters beyond the nominal values.
Many other effects, such as the choice of different ME generators, do not allow for tractable simulation. If we
model differences between such ‘two point alternatives’ with nuisance parameters, it becomes impossible to

2 Helicity-aware and helicity-ignorant SMEFT predictions are compared in [7].
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compute the likelihood ratio for one generator choice while sampling from another. However, in section 5,
we show how to use ML to create parametrizations that interpolate between two point modeling alternatives
using a nuisance parameter. This approach is crucial in practice, as uncertainties, especially those in
modeling nonperturbative aspects of QCD, are often of this type.

4.3. Forward-mode event generation at particle and reconstruction level
Particle-level simulation, staged as described in section 4.1, includes the PS, initial- and final-state radiation,
multiple-parton interactions, color reconnection, hadronization, the underlying event, and hadron decay.
The subsequent reconstruction-level simulation models the detector interaction and event reconstruction.
For each parton-level event {wi,zp,i}, the particle and detector-level simulations, along with observable
reconstruction, produce an event representation of the form{

wi,xi,zreco,i,zptl,i,zp,i
}
. (22)

Due to finite detector acceptance, some events will not pass the event selection. Poor reconstruction
performance near reconstruction thresholds motivates defining a fiducial region, denoted by X .
Analysis-specific selections, including reliable object-level calibrations, background reduction, and prior
knowledge of SMEFT sensitivity, are incorporated into the definition of X . We only require that for a real
event, it is possible to determine if it belongs in X . In particular, X can include requirements on latent
variables like zreco: online selection acceptance, thresholds on reconstructed object properties, and various
data-cleaning event vetoes are part of the definition of X , even if these variables are typically not in x.

In contrast to the parton level, the particle and reconstruction-level simulation is computationally
expensive, and most effects at these stages can not be simulated tractably. Event samples are, therefore, only
available for a limited set of model parameters for different νptl and νreco. For each such configuration, the
event sample is written as

D (θ,ν) =
{
wi,xi,zreco,i,zptl,i,zp,i

} i.i.d.∼ σ (θ,ν) p(x,z|θ,ν) if {xi,zreco,i} ∈ X , (23)

where the total fiducial cross-section in equation (23) is

σ (θ,ν) =
∑

xi,zreco,i∈X
wi. (24)

There is a conceptual difference between equations (21) and (23). While the parton-level distribution in
equation (21) on the r.h.s. is analytically known and used in the MC sampling, equation (23) should be
understood in the reverse direction. The simulated sample approximates the joint pdf in the fiducial region
on the r.h.s., which is unavailable otherwise. Concretely, the formal approximation of the joint pdf is

σ (θ,ν) p(x,z|θ,ν)≈
∑

D(θ,ν)

wiδ (x− xi)δ (z− zi) , (25)

and we can interpret the event weights as

wi = σ (θ,ν)p(xi,zi|θ,ν) . (26)

At NLO, the generated samples are necessarily weighted at the ME stage, and the weights can partly be
negative [50]. Negative weights, in principle, invalidate the interpretation in equation (26), but equation (25)
still holds, provided the large sample limit is respected.

To connect to the binned analyses, the expected yield in a given bin∆x⊂X is given by
λ∆x(θ,ν) = L(ν)σ∆x(θ,ν) with

σ∆x (θ,ν) =

ˆ
∆x
dx
dσ (x|θ,ν)

dx
= σ (θ,ν)

ˆ
∆x
dxp(x|θ,ν)

= σ (θ,ν)

ˆ
∆x
dx

ˆ
dzp(x,z|θ,ν)≈

∑
xi∈D(θ,ν)∩∆x

wi, (27)

where the sum extends over all events withinD(ν,θ) that fall in the volume∆x. We denote this selection by
D(θ,ν)∩∆x. Cross-section weighted expectation values, used to define the loss functions in section 5, are
approximated as

⟨O (x,z)⟩x,z|θ,ν ≡
ˆ
dxdzσ (θ,ν) p(x,z|θ,ν)O (x,z)≈

∑
D(θ,ν)

wiO (xi,zi) . (28)

9
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Figure 3. Illustration of the modeling of systematic effects. Left: a reweighting function, depending on x and z, modifies the event
weight and, thereby, tractably changes the distributions of both the latent and observed event features. Events in the region ‘NA’
fail acceptance, and the region ‘OF’ depicts an overflow bin. Middle: a function Jν(x,z) provides variations of observed features,
for example, related to uncertainties in the calibration of the underlying reconstructed objects. The white, blue, and magenta
markers correspond to the nominal simulation and the up and down variations, respectively. The simulation is tractable in this
case. Right: non-tractable systematic effect can only be modeled by independent sampling at different parameter points.

We emphasize that the per-event weights wi in equation (28) are typically only known for a small set of
model parameter configurations.

4.4. Synthetic data sets and tractable simulation
Simulated samples are computationally expensive. While it is always possible to obtain a simulation based on
equation (23) for a specific model parameter configuration (θ0,ν0), it is practically important to know
whether we can efficiently generate a new simulated (synthetic) data set from an existing one when θ ̸= θ0 or
ν ̸= ν0 for some model parameters. In such cases, the simulation is called ‘tractable’ for these parameters.

We discuss two tractable cases: likelihood-based reweighting and variations in the calibration of the
reconstructed objects. Since SMEFT effects can also be modeled tractably, we address this separately. If a
simulation is non-tractable for a model parameter, we must use equation (23) to obtain systematically varied
data sets. A visualization of these approaches is shown in figure 3.

4.4.1. Uncertainties in the calibration of reconstructed objects
An important type of tractable simulation addresses uncertainties in the calibration of underlying object
properties, such as jet and lepton momenta or the discriminator value of a b-tagging algorithm. Variations of
x from these uncertainties are obtained by recomputing it based on modified event properties, defining a
function xν = Jν(x,z). This function provides adjusted values of x that depend on latent object-level and
event properties, so Jν also depends on z.

Evaluating Jν provides information on how the observation changes as a function of the model
parameters, but it does not give the likelihood or cross-section ratio as a function of the model parameters
for a fixed observation, which is needed for equation (11). For simulated data at a reference parameter point

{wi,xi,zi}
iid∼ p(x,z|θ0,ν0), applying Jν instead implies

p(xi,zi|θ0,ν0) = p(Jν (xi,zi) ,zi|θ0,ν) , (29)

meaning the joint likelihood remains unchanged with ν when we simultaneously modify the observation to
xν,i = Jν(xi,zi). Synthetic data samples can be efficiently generated as

D (θ0,ν) = {wi,xν,i = Jν (xi,zi) ,zi}Nsimi=1 for all {wi,xi,zi} ∈ D (θ0,ν0) , (30)

and are enough to learn a DCR surrogate as a function of ν, as discussed in section 5. We assume that
calibration-type uncertainties are independent of the POIs, so θ0 appears on both sides of equation (29).

4.4.2. Synthetic data from event-reweighting
When the change in the likelihood of observing an event as a function of a specific model parameter can be
computed without resampling the pdf, we can generate reweighted synthetic data sets as

D (θ,ν) = {wi × r(xi,zi|θ,ν,θ0,ν0) ,xi,zi}Nsimi=1 for all {wi,xi,zi} ∈ D (θ0,ν0) . (31)
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A reweighting function r(xi,zi|θ,ν,θ0,ν0)must be available for the corresponding model parameter and
can depend on both observables and latent features. Important tractable cases occur at the parton level,
where access to the analytic form of ME-squared terms allows computation of the joint likelihood ratio. In
addition to parton-level parametrizations of the form

r(xi,zi|θ0,ν) = αrw
(
zi,p,νrw

)
(32)

designed to approximate higher-order perturbative corrections as in equation (17), it is useful to describe
uncertainties related to other theoretical inaccuracies with nuisance parameters. For example, the predicted
rates of events with high particle-level jet multiplicity (Ngen-jet) depend on the specifics of matching between
the ME calculation and the PS [51], often with significant uncertainties. To address this, we can introduce
ad-hoc uncertainties for events with different particle-level jet multiplicities through the variation

r(xi,zi|θ0,ν) = 1+α
νgen-jet
1 δ1,Ngen-jet +α

νgen-jet
2 δ2,Ngen-jet + · · · (33)

where α1, α2, etc are constants, and νgen-jet is the associated nuisance parameter.
A special case is reweighting functions that depend solely on x. In this case, we can access the DCR as a

function of the observed features without requiring any learning. For example, consider a selection with a
fixed lepton multiplicity Nℓ, where the reconstruction efficiency has a relative uncertainty∆SF(ℓ)/SF(ℓ),
and a corrective scale factor SF(ℓ) is already included in the nominal simulation. We treat the uncertainty
∆SF(ℓ) with a nuisance parameter νℓ. If x includes the properties of the leptons, allowing∆SF(ℓ) to be
computed solely from x, we have

r(xi|νℓ) =
Nℓ∏
i=1

(
1+

∆SF(ℓi)

SF(ℓi)

)νℓ

, (34)

which provides the DCR as a function of νℓ without needing a surrogate. However, if x alone is insufficient
to compute the scale factors, the right-hand side of equation (34) represents r(xi,zi|ν) rather than r(xi|ν),
and a surrogate is required.

4.4.3. SMEFT modeling
SMEFT effects can be modeled with synthetic data, which initially motivated the development of optimal
SMEFT observables [13–18]. The ME in equation (14) can be efficiently recomputed as a function of the
POIs θ. The SMEFT dependence of the DCR is

r(xi,zi|θ,θ0) (35)

=
σ (θ)

σ (SM)

p
(
xi,zreco,i,zptl,i,zp,i|θ

)
p
(
xi,zreco,i,zptl,i,zp,i|SM

) =
σ (θ)

σ (SM)

p(x|zreco)
p(x|zreco)

p
(
zreco|zptl

)
p
(
zreco|zptl

) p(zptl|zp)
p
(
zptl|zp

) p(zp|θ)
p
(
zp|SM

)
=

σ (θ)

σ (SM)

p
(
zp,i|θ

)
p
(
zp,i|SM

) =

∣∣M(
zp,i,θ

)∣∣2∣∣M(
zp,i,SM

)∣∣2 = 1+ θmr
(m)

(
zp,i

)
+ θmθnr

(mn)
(
zp,i

)
, (36)

where we have omitted the nuisance parameter dependence, as the numerator and denominator are
evaluated for the same ν0. The conditional probabilities in the third term, which are not tractable, cancel in
the ratio with excellent accuracy. The remainder is the parton-level DCR, which is available at the level of the
ME generator. Thus, r(xi,zi|θ,θ0) does not depend on xi. By calculating the per-event polynomial
coefficients r(m)(zp,i) and r(mn)(zp,i) withm,n= 1, . . . ,Nθ from the ME-squared terms at various θ values,
we can construct a parametrization of r(xi,zi|θ,θ0) valid across the entire SMEFT parameter space, making
synthetic data setsD(θ,ν0) readily available. We provide further details in appendix A. Note that the SM
point in the denominator is not unique; equation (36) can be applied for any θ0, allowing for simulation at
EFT parameter points other than the SM.

4.5. Large sample limit and overflow bins
Learning surrogates of the likelihood ratio requires sufficient simulated data, and in the following sections,
we assume the large sample limit when minimizing loss functions. For any finite simulated data set,
observables with energy units often imply a threshold beyond which simulation becomes too sparse. Since
SMEFT effects can increase with energy, removing events in the tails of energetic variable distributions is
generally counterproductive. Instead, for each such variable in x, we can define a threshold beyond which we
do not fully trust the modeling of the differential cross-section but still find acceptable uncertainties in the
cumulative yield.
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We accumulate all events with features above certain thresholds in several ‘overflow bins’ (OF) and treat
these bins using standard Poisson likelihoods. Suppose xn is a feature in the vector of observables x ′

representing the event before introducing overflow. In that case, we must address the fact that synthetic data
insufficiently samples p(x ′|xn > xn,0,θ,ν). The simplest solution is to drop all event features for xn > xn,0
and represent the event only by its presence in the overflow of xn, i.e.

x ′ =

{
x xn < xn,0

OFn otherwise.
(37)

For a number of overflow bins (NOF), one for each required observable, we reduce the observation to the
counting variable N(OFn) instead of using fully unbinned information. The number NOF characterizes the
measurement, while the observed number of events in the n-th overflow bin N(OFn) characterizes the
observation. Explicitly,D ′ =D∪{N(OFn)}NOFn=1. The likelihood for the overflow bin observation follows
from equation (5) as a Poisson factor for each overflow bin as

L(D ′|θ,ν) = L(D|θ,ν)×
NOF∏
n=1

P(N(OFn) |λ(OFn|θ,ν)) . (38)

As assumed, the predicted yield in each overflow bin as a function of the POIs and nuisances, denoted by
λ(OFn|θ,ν), is available from simulation with sufficient precision. This additional factor is a standard
binned likelihood term and should be handled as in traditional binned SMEFT analyses. To simplify the
formulas in the following sections, we assume that this factor is included in equation (5) and that x ∈ X
implies the event is not in any overflow bin.

5. Learning from simulation

With procedures in place for obtaining simulated and synthetic data sets, we now outline how
parametrizations can be learned using common loss functions, such as cross-entropy loss. We consider a
general expressive function f̂(x), without specifying its implementation; it could be a neural network, the
BPT from section 5.4, or any other trainable multivariate predictive function.

5.1. Likelihood-ratio trick and cross-entropy loss
We begin with the well-known ‘likelihood-ratio trick,’ which underpins the learning tasks in this work: a
sufficiently expressive machine trained on a classification task learns a (monotonic function of) the
likelihood ratio. If the training data is normalized by the differential cross-section, the classifier learns the
DCR. This fact is at the heart of learning techniques for parametric surrogates. Let us take two fixed
hypotheses (θ0, ν0) and (θ1,ν1), obtained either by independent simulation or produced synthetically as
described in section 4.4, and minimize the cross-entropy loss function

LCE
[̂
f
]
=−⟨log f̂(x)⟩x,z|θ0,ν0 −⟨log

(
1− f̂(x)

)
⟩x,z|θ1,ν1 . (39)

The minimum of equation (39) for f̂(x) is attained where the function derivative vanishes,

δLCE
[̂
f
]

δ̂f(x)
= 0. (40)

Because f̂(x) does not depend on z by construction, we can formally integrate over the latent configuration
using

´
dzp(x,z|θ,ν) = p(x|θ,ν), separately for the summands in equation (39). The solution is then

expressed in terms of latent-space integrals as

f ∗CE (x)≡ argmin̂fLCE
[̂
f
]
=

(
1+

σ (θ1,ν1)
´
dzp(x,z|θ1,ν1)

σ (θ0,ν0)
´
dzp(x,z|θ0,ν0)

)−1

=

(
1+

dσ (x|θ1,ν1)
dσ (x|θ0,ν0)

)−1

. (41)

This expression is a monotonous function of the DCR for two fixed choices of the model parameters and can
be rearranged to

dσ (x|θ1,ν1)
dσ (x|θ0,ν0)

=
1

f ∗CE (x)
− 1. (42)

12



Mach. Learn.: Sci. Technol. 6 (2025) 015007 R Schöfbeck

Alternative loss functions and their minima are discussed in appendix B. The simulation-based
approximation of equation (39), suitable for a concrete implementation in computer code, is

LCE
[̂
f
]
≈−

∑
D(θ0,ν0)

wi log f̂(xi)−
∑

D(θ1,ν1)

wi log
(
1− f̂(xi)

)
, (43)

and explicitly uses two different samples in the two terms. For the reweighting-based tractable effects in
sections 4.4.2 and 4.4.3, the per-event joint likelihood is available, and we can use equation (31) to rewrite
the cross-entropy loss with a single pdf as

LCE
[̂
f
]
=−
ˆ
dxdzσ (θ0,ν0) p(x,z|θ0,ν0)

(
log f̂(x)+ r(x,z|θ1,ν1,θ0,ν0) log

(
1− f̂(x)

))
. (44)

The two terms in equation (44) separately agree with the two expectations in equation (39). The
approximation of equation (44) for a synthetic data set is

LCE
[̂
f
]
≈−

∑
D(θ0,ν0)

wi

(
log f̂(xi)+ r(xi,zi|θ1,ν1,θ0,ν0) log

(
1− f̂(xi)

))
. (45)

The main difference to equation (43) is the absence of independent stochastic fluctuations in the two terms.
In both cases, f̂(x) is implemented as a finitely but sufficiently expressive ML algorithm, approximating the
exact solution. We denote this approximation by

f̂ (x)≃
(
1+

dσ (x|θ1,ν1)
dσ (x|θ0,ν0)

)−1

. (46)

5.2. Machine-learning systematic parametrizations
To learn parametrizations, we replace f̂ with a suitable parametric ansatz that captures the ν dependence. The
loss function is summed over a set of model parameter points (base points), denoted by V . The
parametrization can be determined using synthetic data from a sufficient number of base points. We omit θ
in the formulas, as we will factorize this dependence in section 6. The fully calibrated SM parameter point
serves as the reference, ν0 = 0. The ansatz

f̂(x) =
1

1+ exp
(
T̂(x|ν)

) (47)

eliminates the monotonous dependence from equation (41). The ML estimate of the DCR is then
Ŝ(x|ν) = exp(T̂(x|ν)). The exponential function removes the necessity of ensuring that Ŝ(x|ν)must be
positive. Inserting equation (47) into equation (39), leads to

LCE
[
T̂(x|ν)

]
=
〈
Soft+

(
T̂(x|ν)

)〉
x,z|0

+
〈
Soft+

(
−T̂(x|ν)

)〉
x,z|ν

(48)

where Soft+(x) = log(1+ exp(x)). Next, we approximate the logarithm of the DCR with a polynomial ansatz
in ν in terms of coefficient functions as

T̂(x|ν) = νa∆̂a (x)+ νaνb∆̂a,b (x)+ . . . . (49)

The ellipsis indicates that cubic or higher terms can be added as needed, allowing to parametrize the
systematic effects, in principle, with arbitrary precision. The functional form is equivalent to the ansatz in
[17, 22]. Notably, we include the possibility that some of the coefficient functions are chosen to be absent.

To determine ∆̂a(x), ∆̂ab(x), etc via a suitable loss function, we note that equation (49) is a linear
equation; only the coefficients in this system are polynomial in ν. Without loss of generality, we assume
triangular coefficient functions ∆̂abc···(x), i.e. ∆̂abc(x) = 0 unless a⩽ b⩽ c, etc and we denote their total
number byN∆. To reduce the notational clutter, we next introduce a multi-index3 A= 1, . . . ,N∆. In the most
general case, A labels the set {a,(ab),(abc), . . .} where a labels the Nν linear terms, (ab) the Nν(Nν + 1)/2
quadratic terms, etc. For a given nuisance-parameter point ν, we similarly write νA = {νa,νaνb,νaνbνc, . . .}A,
where each element corresponds to one of the coefficient functions. This notation simplifies equation (49) to

T̂(x|ν) = νA∆̂A (x) . (50)

3We use the Einstein sum convention for the nuisance parameter index, labeled by a, b, . . ., as well as for the multi-index labeled by
A, B, . . ..
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With a sufficiently large number of base points and the corresponding, possibly synthetic, data sets, we
add up copies of the loss function in equation (48), one for each ν ∈ V ,

L
[
∆̂A (x)

]
=

∑
ν∈V

LCE
[
νA∆̂A (x)

]
(51)

=
∑
ν∈V

(〈
Soft+

(
νA∆̂A (x)

)〉
x,z|0

+
〈
Soft+

(
−νA∆̂A (x)

)〉
x,z|ν

)
(52)

It is straightforward to show that the minimum approximates the DCR as

Ŝ(x|ν) = exp
(
νA∆̂A (x)

)
≃ dσ (x|ν)
dσ (x|0)

, (53)

if the base points V span the space of the nuisance parameters, i.e. the Nν ×N∆-dimensional matrix of the
base-point coordinates {νA}ν∈V has at least rank N∆. This implies, in particular, that we need at least as
many base points and synthetic training data sets as there are independent coefficient functions.

Each term in the sum in equation (52) contains two expectations; note that the first expectation in each
term corresponds to the SM. The coefficient functions ∆̂A(x) can be implemented as neural networks or any
other trainable regressor. In most cases, the factorization of systematic effects is a reliable simplification, so
the number of coefficient functions that need to be learned simultaneously remains small. For a single
nuisance, one or two coefficient functions are enough to achieve linear or quadratic accuracy in
equation (53), which is usually sufficient. Higher-order terms can be added as needed.

5.3. Two-point alternatives
For some systematic effects, like binary generator choices, no tractable simulation exists–only two alternate
simulations. In this case, the sum over V in equation (52) becomes trivial, simplifying the learning task. A
single nuisance parameter ν2P interpolates between the nominal choice (ν2P = 0) and the alternative
(ν2P = 1). Without predictions for more values, we can only learn a linear approximation. With ν2P = 1 as
the sole value in V , we get

L
[
∆̂
]
=⟨Soft+

(
∆̂(x)

)
⟩x,z|0+

〈
Soft+

(
−∆̂(x)

)〉
x,z|1

(54)

where ∆̂(x) is a single-valued coefficient function. Minimization provides an estimate

Ŝ2P (x|ν2P) = exp
(
ν2P∆̂(x)

)
≃
(
dσ1 (x)

dσ0 (x)

)ν2P

, (55)

which is an x-dependent linear interpolation of the logarithm of the DCR.
When profiling the nuisance parameter ν2P, it takes values other than 0 and 1, even though predictions

are only well-defined at these points. Is the interpolation meaningful during profiling? This is a modeling
question and cannot be resolved by statistical or ML methodology. As in the binned case, we generally
recommend avoiding two-point alternatives and instead using a single model with meaningful and flexible
parameters. Two-point alternatives, such as using alternative generators, are beneficial as cross-checks. When
profiling the effects of Ŝ2P(x|ν2P), it should be ensured that its impact is not substantial or dominant;
otherwise, the validity of the measurement could be in doubt. Regardless of the modeling decision,
two-point alternatives are accounted for by equation (55).

5.4. The BPT algorithm
The coefficient functions in equation (50) could be implemented using standard neural networks. However,
with hundreds of nuisance parameters in a realistic analysis, it is advantageous to develop a
low-maintenance, flexible algorithm to separately learn the numerous systematic dependencies. In the
following, we describe a tree-boosting regressor, the BPT, designed for learning systematic effects. Its
complete derivation is provided in appendix C.

Boosted tree algorithms have a strong track record in classification and regression tasks and were recently
applied to novel searches for resonant phenomena [52]. They use an additive sequence of weak learners, each
generating a coarsely binned prediction based on hierarchical phase-space partitioning, which is
computationally efficient. Each tree’s terminal nodes are linked to a predictive function that varies
non-linearly across the phase-space boundaries of these nodes. Here, we extend standard tree-based
regression algorithms, such as those in TMVA [53], by introducing a more flexible terminal-node predictor
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that provides the DCR to arbitrary order in the expansion in ν. The summed prediction from these weak
learners, trained iteratively through boosting, is both smooth and arbitrarily expressive.

The simplicity of the weak learner leads to relatively mild failure modes. For instance, if a tree is trained
with insufficient data, it cannot extrapolate incorrectly to phase-space regions beyond the training data; it
will simply predict the value of the highest populated bin it finds, respecting regularization requirements,
such as a minimum number of events per terminal node.

Additionally, a tree algorithm with axis-linear node splits, like the ‘Classification and Regression
Tree’ (CART) [54] algorithm, does not interpolate stepwise features in the training data. If features take only
discrete values, the algorithm will partition phase space based on selections at these discrete values.
Therefore, features related to object multiplicity need no special handling. Replacing nominal training data
with digitized values according to a chosen binning can serve as validation, allowing sensitivity comparisons
between unbinned and binned reference results.

The trees’ terminal nodes can be associated with more complex quantities than simple class probabilities
or regression values, as shown in applications learning polynomial SMEFT dependence [9, 10]. We exploit
this flexibility for developing a boosted tree algorithm where terminal nodes of the weak learner are linked to
parametrizations of systematic effects of the training data in the nodes. With the tools from section 5.2, the
BPT provides a tree-based estimate T̂(x|ν) of the logarithm of the DCR in the polynomial expansion

T̂(x|ν) = νA∆̂A (x)≃ log
dσ (x|ν)
dσ (x|SM)

. (56)

So that Ŝ(x|ν) = exp(T̂(x|ν)). The free parameters in ∆̂A(x) are trained with the CE loss function in
equation (52) by an iterative boosting algorithm. It fits the weak learners of an additive expansion, one at a
time, to the pseudo-residuals of the preceding boosting iteration. The complete construction is discussed in
appendix C. Here, we describe the resulting algorithm.

During training, each weak learner captures only part of the total parameter dependence in each terminal
node, with this fraction controlled by the algorithm’s learning rate. We set a number B of boosting iterations
and choose learning rates 0< η(b) < 1 for b= 1, . . . ,B to form an additive expansion of T̂(x) in terms of the
weak learners. The η(b) can be chosen constant, and values between 10−3 and 3 · 10−1 for this universal
learning rate have proven efficient. At each iteration b, the weak learner is a tree with terminal nodes
corresponding to phase-space partitioning-a set of non-overlapping regions J (b) that together cover X . This
leads to

∆̂A (x) =
B∑

b=1

η(b)
∑

j∈J (b)

1j (x)∆̂
(b)
A,j (57)

where the indicator function 1j(x) equals one if x is in the phase-space region of terminal node j and zero
otherwise. Training iteration b involves finding the partitioning J (b) whose terminal-node predictions

minimize the loss. Each terminal node prediction is based on constants ∆̂(b)
A,j , which are best-fit polynomial

coefficients approximating the nuisance parameter dependence in terminal node j. These coefficients, labeled

by the multi-index A, are determined from the training setsD0 andD(b)
ν , where we have oneD(b)

ν for each

ν ∈ V . We initialize with ∆̂(0)
A,j = 0.

To proceed from iteration b− 1 to b, we remove a fraction η(b) of the previous iteration’s fit result from
the training data. Since we estimate the logarithm of the DCR, the reweighting

D(b)
ν =

{
exp

(
−η(b−1)t(b−1)∗ (xi|ν)

)
w(b−1)
i ,xi,zi

}
for all

{
w(b−1),xi,zi

}
∈ D(b−1)

ν for all ν ∈ V (58)

Produces the correspondingD(b)
ν . The nominal SM training sampleD0 is unchanged.

The quantity in the exponent is the best fit at iteration b− 1,

t(b−1)∗ (x|ν) = νA
∑

j∈J (b−1)

1j (x)∆̂
(b−1)
A,j . (59)

Whose polynomial coefficients also appear on the r.h.s. of equation (57). To obtain ∆̂(b)
A,j , we use the new

training data to predict per-node cross-section values

σ
(b)
j,0 =

∑
(xi,wi)∈D(b)

0 ∩∆xj

wi and σ
(b)
j,ν =

∑
(xi,wi)∈D(b)

ν ∩∆xj

wi. (60)
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Algorithm 1. Boosted Parametric Tree (BPT) for learning of systematic uncertainties.

Require: base points ν ∈ V , sampleD0 andDν for all ν ∈ V ,
boosting iterations B, learning rates 0⩽ η(b) ⩽ 1 for b= 1, . . .,B.

Ensure:
∑

ν∈V νAνB has full rank

t(0)∗ν (x)← 0

T̂(0)
ν (x)← 0

D(0)
ν ←Dν for all ν ∈ V

for b= 1, . . . ,B do

D(b)
ν ←

{
w(b)
i ← exp(−η(b−1)t(b−1)∗ν (xi))w

(b−1)
i ,xi,zi

}
for all {w(b−1),xi,zi} ∈ D(b−1)

ν

J (b)← argminJ L[J ] withD(b)
0 andD(b)

ν using CART or TAO
for all j ∈ J (b) do

σj,0←
∑

(xi,wi)∈D0∩jwi

σj,ν ←
∑

(xi,wi)∈D(b)
ν ∩j

wi for all ν ∈ V

∆̂
(b)
A,j ←

[ ∑
ν∈V ννT

]−1
AB

[∑
ν∈V ν log

σj,ν

σj,0

]
B

end for

t(b)∗ν (x)←
∑

j∈J (b) 1j(x)
(
νA∆̂

(b)
A,j

)
T̂(b)
ν (x)← T̂(b−1)(x)+ η(b)t(b)∗(x)

end for

return T̂(x|ν) =
∑B

b=1 η
(b)∑

j∈J (b) 1j(x)νA∆̂
(b)
A,j

For the nominal 0 and each ν ∈ V . The notationD(b)
ν ∩∆xj indicates summing over events fromD(b)

ν that
fall within the phase-space region∆xj of terminal node j. These estimates, valid for ν = 0 and ν ∈ V , yield
the new polynomial interpolation at iteration b, with coefficients

∆̂
(b)
A,j =

[ ∑
ν∈V

ννT

]−1

AB

[∑
ν∈V

ν log
σ
(b)
j,ν

σ
(b)
j,0

]
B

. (61)

The inverse matrix in the first factor exists if V has a full-rank coordinate matrix, so we need at least as many
training samples ν ∈ V as there are coefficient functions ∆̂A(x). This linear relation of log-ratios makes
equation (61) highly efficient to evaluate. We can then use the CART or ‘Tree Alternate Optimization’
(TAO) [55–58] algorithms to determine the optimal phase-space partitioning J (b), completing iteration b.
After B boosting iterations, all constants in equation (57) are determined, giving the final DCR estimate

Ŝ(x|ν) = exp
(
νA∆̂A (x)

)
≃ dσ (x|ν)
dσ (x|SM)

. (62)

It is fast to evaluate, parametric in ν, satisfies Ŝ(x|0) = 1, and is continuous in both x and ν. Algorithm 1
provides a pseudo-code summary of the steps, defining the BPT algorithm. Appendix C contains a detailed
derivation and a simple analytic toy example.

6. Gradually refinable modeling

With the setup for the training of parametric regressors in place, we discuss gradually refinable modeling as a
flexible approach to unbinned analyses, incorporating incremental improvements while preserving existing
results. Based on procedures commonly employed in binned analyses, we discuss the factorization of POI
and nuisance parameter dependencies in the unbinned case. Uncorrelated groups of systematic effect are
isolated and subsequently learned independently. With the help of an additive model, summing over the
various contributing processes, we can incrementally extend and refine an existing model without
invalidating existing components. In this way, gradually refinable modeling aligns with established practices
for systematic uncertainty management in binned analyses, extending these strategies to unbinned data while
allowing the analysis to evolve with growing data and improved modeling techniques.

6.1. The binned Poisson likelihood
We begin with the binned Poisson likelihood for several observations (Nbin) in disjoint phase-space regions
(bins), a setup described in detail in [59, 60]. Multiple processes, labeled by p= 1, . . . ,Np, contribute to the
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cross-section component σn,p(SM) in bin n. The dependence on SMEFT POIs is assumed to factorize from
the systematic effects. Since SMEFT ME-squared terms are polynomial or can be truncated to polynomial
form, a small set of non-zero values of θ suffices to determine the coefficients in the SMEFT parametrization
σn,p(θ) = Rn,p(θ)σn,p(SM) [7]. Here, Rn,p(θ) satisfies Rn,p(SM) = 1 and fully encodes the SMEFT
dependence in each bin. If Rn,p(θ) = 1 holds to a good approximation for all n, we call the process p a
background.

The Poisson expectation of the yield in bin n can then be expressed as

λn (θ,ν) = L(ν)
Np∑
p=1

Rn,p (θ) exp
(
ν⊺∆n,p,1+ ν⊺∆n,p,2ν

)
σn,p (SM) , (63)

where the exponential is a second-order interpolation4 of the systematic effects in terms of K-dimensional
vectors∆n,p,1 and K ×K matrices∆n,p,2. The nuisances ν are conventionally chosen to minimize their linear
correlation. In the uncorrelated case, off-diagonal entries in∆n,p,2 vanish. Small linear nuisance parameter
correlations can be accounted for in the penalty [59].

The binned ansatz in equation (63) reflects inductive bias. First, systematic effects are modeled in a
factorized form, meaning the constants∆n,p,1/2 are assumed to be accurately determined by individually
varied simulations, with all other model parameters held fixed. Second, the model is additive. This
inconspicuous fact, combined with the factorization of systematic effects, is key to enabling gradual model
refinement, an implicit feature in the binned case. Once the per-process expectations and systematic
parametrizations in equation (63) are established, most of these values can remain unchanged even if the
model is refined to include a new process or nuisance parameter. Although this computational saving is
modest in the binned case, the unbinned analysis replaces the bin-by-bin constants in equation (63) with
x-dependent ML parametrizations. Selecting a flexible additive model minimizes the need for re-training
when refining the model, offering potentially significant gains in computational efficiency.

The additivity in equation (63) naturally accommodates per-process nuisances related to normalization
uncertainties with two key applications. First, higher-order perturbative corrections (‘k-factors’), derived
from theoretical predictions, enhance the accuracy of inclusive parton-level predictions. These k-factors
generally apply to a single process, with reduced uncertainties best captured by nuisances that scale only this
component. Second, normalization nuisances are useful for small backgrounds where the pdf inD can be
estimated fromA, but normalization uncertainties remain significant. In this case, a normalization nuisance
allows for in-situ constraints fromD. Specifically, setting∆n,p,1 = logαnorm,p and∆n,p,2 = 0 for all n results
in a scaling of process p, where αnorm,p is a positive constant that normalizes the impact of the nuisance
νnorm,p. Additionally, we can omit νnorm,p from the penalty, allowing the process’s normalization to float
during profiling.

6.2. Approximate factorization of systematic effects
We now substitute the DCR in equation (6) with an ML surrogate model. ‘Likelihood-free’ inference refers to
techniques that rely on parametrically evaluating ratios of the extended likelihood, and thus ratios of the
differential cross-section dΣ(θ,ν). These alone are enough to evaluate equation (10).

Constructing a generic ML surrogate starts by expressing the unbinned model dΣ(θ,ν) as a sum over
weighted sub-processes, with normalization uncertainties treated separately5. Nuisance parameters νp,norm
are introduced for this purpose. We have

dΣ(x|θ,ν) =
∑
p

α
νnorm, p
norm,p dσp (x|θ,ν) , (64)

where event samples for each component dσp(x|θ,ν) can be obtained from equations (23), (30), or (31).
Next, we factorize systematic effects and POI dependence. The SM point is at θ = ν = 0, and for each
dσp(x|θ,ν) we have

4 A detailed account of the options for interpolating binned yields is provided in [21].
5 The reason for the separate treatment of normalization nuisances is best seen in comparing the Taylor expansion in ν with the corres-
ponding expansion of the purely multiplicative model in [17] where nuisances are modeled relative to the total differential cross-section
instead of per-process. For arbitrary values of normalization nuisances, a polynomial expansion of the logarithm of the total differential
cross-section requires arbitrarily many terms that would have to be learned individually. The ansatz in equation (64) will reduce the
ensuing ML task to a straightforward classification problem, one for each process.
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dσp (x|θ,ν)
dσp (x|0,0)

=
dσp (x|θ,ν)
dσp (x|0,ν)

dσp (x|0,ν)
dσp (x|0,0)

≈
dσp (x|θ,0)
dσp (x|0,0)

dσp (x|0,ν)
dσp (x|0,0)

≡
dσp (x|θ,0)
dσp (x|SM)︸ ︷︷ ︸

R̂p(x|θ)

dσp (x|0,ν)
dσp (x|SM)︸ ︷︷ ︸

Ŝp(x|ν)

. (65)

This factorization works if SMEFT effects are independent of systematic effects, i.e.

dσp (x|θ,ν)
dσp (x|0,ν)

≈
dσp (x|θ,0)
dσp (x|0,0)

. (66)

The factor

R̂p (x|θ)≃
dσp (x|θ,0)
dσp (x|SM)

. (67)

Approximates SMEFT variations as a polynomial in θ and can be obtained from methods in [8–17].
Systematic effects are parametrized by

Ŝp (x|ν)≃
dσp (x|0,ν)
dσp (x|SM)

. (68)

We can learn this parametric dependence, one effect at a time, using the strategy in section 5. The ML model
can be a neural network or the tree-based algorithm from section 5.4.

The validity of equation (66) must be established on a case-by-case basis and can be verified through
simulation. The separation of particle and detector-level effects from SMEFT effects is generally accurate due
to the different energy scales involved; the POIs typically do not influence low-energy detector interactions.
At the parton level, we need to verify the independence of POIs from systematic effects. PDFs, for example,
may depend on SMEFT POIs [61], so this correlation should not be neglected without careful consideration.
Similarly, the linear and quadratic SMEFT terms may have scale uncertainties differing from the SM
prediction. In this case, Ŝp(x|νR,νF) should be trained with synthetic scale variations that cover scale
variations for non-zero POIs. A suitably flexible model should accommodate these subtle analysis-dependent
effects, which we leave to future treatment. From now on, we assume the factorization

R̂p (x|θ) Ŝp (x|ν)≃
dσp (x|θ,ν)
dσp (x|SM)

. (69)

Holds accurately. Following the same steps, we factorize Ŝp(x|ν) into uncorrelated groups of systematic
uncertainties and train each factor with equation (53). For instance, uncorrelated one-parameter systematic
uncertainties with quadratic accuracy simplify the surrogate to

Ŝp (x|ν) =
K∏

k=1

exp
(
νk∆̂p,k,1 (x)+ ν2k ∆̂p,k,2 (x)

)
. (70)

With 2K real-valued functions ∆̂p,k,1(x) and ∆̂p,k,2(x) for each p. In most cases, first or second-degree
polynomials are sufficient, though the method allows higher degrees.

6.3. A general unbinned surrogate model
In analogy to equation (63), we define a general model for the fiducial differential cross-section,

dΣ(x|θ,ν) =
Np∑
p=1

R̂p (x|θ) α
νnorm, p
norm,p Ŝp (x|ν) dσp (x|SM) . (71)

Next, we create a likelihood-free ML surrogate, relying only on differential DCRs. Dividing by

dΣ(x|SM) =
∑
p

dσp (x|SM) . (72)
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Gives per-process DCRs that we replace with surrogates. The simplest approach divides each dσp(x|SM) in
equation (71) by equation (72),

dΣ(x|θ,ν)
dΣ(x|SM)

=

Np∑
p=1

R̂p (x|θ) α
νnorm, p
norm,p Ŝp (x|ν) ĝp (x) where ĝp (x)≃

dσp (x|SM)∑
q dσq (x|SM)

. (73)

Estimates the DCR of each process relative to the SM total.
A classifier trained to distinguish process p from the total SM simulation can learn ĝp(x) using the

likelihood ratio trick. The DCR for arbitrary denominators, as required for profiling in equation (1), can
then be obtained from double ratios, allowing dΣp(x|SM) to cancel out.

Equation (73) provides significant modeling flexibility, as the quotient of equations (71) and (72) can be
represented in various ways using the surrogates ĝp(x). We present two examples demonstrating how this
flexibility can solve common challenges in analysis development.

6.4. Refining an existing model
New systematic effects can be gradually incorporated, as expanding the dimension of the nuisance vector ν
in, for example, equation (70) does not invalidate existing surrogates ∆̂p,1/2. Only the new components
require training.

Similarly, additional background sources can be seamlessly included. With the additive structure of
equation (71), a new process can be added by adjusting the steps leading to equation (73). For instance, if a
missing background dσBKG(x), with Rp(x|θ) = 1, is identified, we can extend dΣ(x|θ,ν) by adding a term,

dΣ ′ (x|ν,θ) = dΣ(x|ν,θ)+ dσBKG (x) . (74)

We can express the DCR in terms of the existing model as

dΣ ′ (x|θ,ν)
dΣ ′ (x|SM)

=
dΣ(x|θ,ν)+ dσBKG (x)
dΣ(x|SM)+ dσBKG (x)

=

dΣ(x|θ,ν)
dΣ(x|SM) + dσBKG(x)

dΣ(x|SM)

1+ dσBKG(x)
dΣ(x|SM)

≃
∑Np

p=1 R̂p (x|θ) α
νnorm, p
norm,p Ŝp (x|ν) ĝp (x)+ ĝ ′ (x)

1+ ĝ ′ (x)
(75)

where

ĝ ′p (x)≃
dσBKG (x)∑
q dσq (x|SM)

. (76)

The only new component is ĝ ′(x), a classifier that gives the DCR for the new process relative to the previous
total. The new process adds to both the numerator and denominator, with no change to the rest of the
model. If the new background has uncertainties, we replace dσBKG(x) with dσBKG(x|ν) in equation (74) and
repeat the derivation, yielding

dΣ ′ (x|θ,ν)
dΣ ′ (x|SM)

≃
∑Np

p=1 R̂p (x|θ) α
νnorm, p
norm,p Ŝp (x|ν) ĝp (x)+ ŜBKG (x|ν) ĝ ′ (x)

1+ ĝ ′ (x)
, (77)

where g ′(x) from equation (76) remains, and we only need to learn one extra factor, ŜBKG(x|ν), to model the
background’s systematic effects,

ŜBKG (x|ν)≃
dσBKG (x|0,ν)
dσBKG (x|SM)

. (78)

Similar to equation (68). Refinable modeling thus avoids retraining existing regressors and enables
incremental analysis development. Because an event sample for dσBKG is the only ingredient for obtaining
ĝ ′(x), it could alternatively be measured in real-data side bands, supporting the development of data-driven
unbinned estimation strategies.
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6.5. Refinement for a high-purity process
Now, consider a single SMEFT-dependent signal process dσSMEFT(x|θ,ν) and multiple θ-independent
backgrounds, dσp(x|ν). To form the DCR, we divide each term in the sums of both sides of equation (73) by
dσSMEFT(x|SM), which leaves the result unchanged but modifies the parametrization to

dΣ(x|θ,ν)
dΣ(x|SM)

≃
ανnorm
norm R̂(x|θ) Ŝ(x|ν)+

∑Np

p=1 α
νnorm, p
norm,p Ŝp (x|ν) ĝ ′ ′p (x)

1+
∑

p ĝ
′ ′
p (x)

(79)

where

g ′ ′p (x)≃
dσp (x|SM)

dσSMEFT (x|SM)
. (80)

And signal quantities have no process index. The classifier ĝ ′ ′(x) is trained to distinguish each background
from the SMEFT signal at the SM point. Adding a new background process only requires training one
additional classifier, as expanding the sum over p leaves the rest of the model unaffected.

The steps in this and the previous section can be combined and repeated as modeling is refined.
Equation (71) thus supports incremental refinements, similar to the binned model in equation (63). Once a
new effect prediction is available, it can be incorporated. Unlike in the binned case, expectations here come
from separately trained surrogates rather than binned yields.

7. Top quark pair production in the 2ℓ channel

As an example, we study dileptonic top quark pair production in pp collisions at
√
s= 13TeV,

pp→ t̄t→ bℓ+νℓbℓ−νℓ, or t̄t(2ℓ) for short. The event simulators provide all necessary quantities at the
parton and particle levels. For calibration of reconstructed objects (jets, missing transverse momentum, and
leptons), ATLAS and CMS open data projects [62, 63] supply uncertainty information. This is enough to
demonstrate the tools’ application. A fully realistic detector simulation with all data-dependent systematic
effects is neither feasible nor needed. We focus on a heuristic treatment of the main uncertainties in the
differential cross-section. A detailed binned measurement of t̄t(2ℓ), including a full account of systematic
uncertainties, is available from ATLAS [64] and CMS [65]. We focus on a heuristic treatment of the main
uncertainties in the differential cross-section. A detailed binned measurement of t̄t(2ℓ), including a full
account of systematic uncertainties, is available from ATLAS [64] and CMS [65].

7.1. Event simulation
We generate the t̄t(2ℓ) signal process with MADGRAPH5_aMC@NLO v2.6.5 [31] at leading order and use the
NNPDF PDFs v3.1 [66]. We simulate the top quark pairs at

√
s= 13TeV, followed by leptonic decays of the

W bosons (ℓ= e,µ,τ ), and employ the SMEFTSIM v3.0 model [67] for simulating the parton-level SMEFT
effects. The ME simulation is interfaced to PYTHIA v8.226 [68] using the CP5 tune [69, 70] for
fragmentation, PS, and hadronization of partons in the initial and final states, along with the underlying
event and multiparton interactions. The ME for the t̄t signal includes up to one extra parton. Double
counting of the partons generated with MADGRAPH5_aMC@NLO and PYTHIA is removed using the MLM [71]
scheme. The events are subsequently processed with a DELPHES-based simulation model of the CMS
detector [44]. Kinematic requirements are placed on jets, electrons, and muons. Jets are reconstructed with
anti-kT algorithm [72] using a distance parameter of 0.4 in the FASTJET software package [73]. The nominal
b tagging of jets in DELPHES is based on parton-matching and a parametrization of the nominal CMS
b-tagging efficiency. Electrons and muons must be isolated from jets, satisfy pT > 20GeV, and be
reconstructed within absolute pseudorapidity |η|< 2.5. If there are two same-flavor lepton candidates of
opposite electric charge within a 10GeV window around the Z boson mass, |m(ℓ+ℓ−)−mZ|< 10GeV, the
event is rejected. According to [65], the purity after the Z boson mass veto is 95%, with a small background
from the Drell–Yan process. We ignore the contribution from Drell–Yan in the following. Jets must satisfy
pT > 30GeV and |η|< 2.4, and there must be more than two jets, among which at least two must be b tagged.

Using the DELPHES objects, we reconstruct the top quark kinematic quantities described in [65]. This
provides access to SMEFT-sensitive observables, including the top quarks’ invariant masses, angles, and
transverse momenta. To reduce the computational demand while keeping sensitivity to SMEFT effects, we
requirem(t̄t)> 750GeV, corresponding to an inclusive fiducial cross-section of 0.31 pb [65]. We normalize
the DELPHES simulation of a total of 1.2× 106 events to this value and use a central value for the integrated
luminosity L0 = 137fb−1 with a conservative 5% log-normal uncertainty,

L(ν) = L0ανlumi
lumi . (81)
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We simulate the effects from the real and imaginary part of the Wilson coefficient CtG, and the

four-fermion operators C(1,8)
Qq , C(3,8)

Qq , and C(8)
qt . Our five POIs are, therefore, the Wilson coefficients ctGRe,

ctGIm, cQj18, cQj38, and ctj8 in the conventions of [67], multiplying the operators

OtG = (Q̄σµνTat)H̃Ga
µν ,

O(1,8)
Qq = (Q̄TaγµQ)(q̄T

aγµq) ,

O(3,8)
Qq =

(
Q̄σiTaγµQ

)(
q̄σiTaγµq

)
,

O(8)
tj = (̄tTaγµt)(ūT

aγµu) ,

where the left and right-chiral lower-case quark fields q and u belong to the first and second generation. The
third-generation left-chiral quark doublet is denoted by Q. A non-zero value of CtG provides CP-even and
CP-odd modifications to the top-gluon interaction. The four fermion operators add contact interactions of
the first and second with the third-generation quark currents. For obtaining the SMEFT predictions, we use
the reweighting technique discussed in section 4.4.3 and [7]. The dominant effect of these operators on the
t̄t(2ℓ) cross-section is linear with the Wilson coefficients [74] so that complications from dominantly
quadratic predictions that violate Wilk’s theorem when computing the distribution of the profile likelihood
test statistic can be neglected [27].

The following event-level features define the observation x. From the reconstructed top quark momenta,
we compute the invariant massm(t̄t), the transverse momentum pT(t̄t), the rapidity difference∆η(t̄t) =
η(t)− η(t) and the difference of absolute rapidities of the top and anti-top quark,∆|η|(t̄t) = |η(t)| − |η(t)|.
The quantitiesm(t̄t) and pT(t̄t) are sensitive to SMEFT effects with energy-growth while∆|η|(t̄t) is sensitive
to the effects of the charge-asymmetry [75, 76], modified, e.g. by C(8)

tj . Furthermore, we include the
transverse momentum and the pseudo-rapidity of the top and anti-top quark. Because leptons are clean
probes of the possible SMEFT effects, independent of the hadronic activity, we also include the invariant
massm(ℓ+ℓ−), the transverse momentum pT(ℓ+ℓ−), the rapidity difference∆η(ℓ+ℓ−), and the difference
of absolute rapidities∆|η|(ℓ+ℓ−) of the dilepton system. Finally, we include the absolute value of the
difference of the azimuthal lepton angles |∆φlab|(ℓ+ℓ−) and the cosine of the spatial angle between the
leptons cos(ϕlab(ℓ+ℓ−)) as measured in the lab frame. The distributions of these observables for the SM and
non-zero values for the Wilson coefficients are shown in figure 4. We find good agreement with the study in
[8]. The CMS measurement of the spin-correlation in t̄t [77] found constraining power for CtG in the
distribution of products of angular observables of the leptons, measured in a specific reference frame
spanned by the top quark momentum and the beam plane [78]. These variables characterize the spin-density
matrix of the t̄t(2ℓ) system, and we present a brief description and their distributions in appendix D. The
resulting distributions for non-zero values of the Wilson coefficients are shown in figure 4.

The estimate of the detector-level SMEFT dependence of the signal process R̂(x|θ) can be learned by one
of the tools in [8–17]. We use the BIT technique [9, 10] to learn the polynomial dependence up to the
quadratic order. Concretely, we train trees with a maximum depth of four in B= 300 boosting iterations with
a learning rate of η= 0.2. We regularize each tree by requiring at least 50 events in each node.

We use the parametric tree from section 5.4 to estimate the systematic effects discussed in the following
sections. Similar settings turn out to be almost universally applicable. We keep the maximum tree depth at
four in all cases and use B= 300 boosting iterations and a learning rate of η= 0.2. When we obtain the
synthetic data from reweighting, such that there are no independent stochastic fluctuations in the various
terms in the loss function, a minimum node size requirement of 50 events proves sufficient to regularize the
trees. For systematic variations where x changes with ν, we raise this regulator requirement to 500.

In the subsequent sections, we discuss uncertainties in the renormalization and factorization
scales (scale), the difference between the MADGRAPH5_aMC@NLO and the POWHEG event generator (POW), the
normalization of the signal process (norm), the jet momentum calibration (JES), the b-tagging
efficiency (HF) and light-quark mis-tagging probability (LF), and the lepton efficiency calibration (ℓ). The
model, therefore, is given in terms of the DCR

R(x|θ,ν)≡ dΣ(x|θ,ν)
dΣ(x|SM)

= ανnorm
norm R̂(x|θ) Ŝscale (x|νR,νF) ŜPOW (x|νPOW) ŜJES (x|νJES)

× ŜLF (x|νLF) ŜHF (x|νHF) Ŝℓ (x|νℓ) . (82)

With the individual factors defined in the following.

7.2. Parton-level uncertainties
Among the largest systematic effects are uncertainties in the factorization and renormalization scales, as
detailed in section 4.2. Following equation (16), setting νR =±1 and νF =±1 varies the scales µR and µF by
a factor of 2. From simulation, we obtain event weights for all eight scale combinations,
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Figure 4. Kinematic features of the t̄t(2ℓ) SMEFT simulation for different values of the Wilson coefficients as described in the text.

(νR,νF) ∈ V = {(−1,−1) , (−1,0) , (−1,1) , (0,−1) , (0,1) ,(1,−1) , (1,0) , (1,1)} . (83)

With the nominal SM simulation at νR = νF = 0. We model the scale uncertainties up to quadratic accuracy
in the nuisance parameters with the ansatz

Ŝscale (x|νR,νF) = exp
(
νR∆̂R (x)+ νF∆̂F (x)+ ν2R∆̂RR (x)(x)+ ν2F∆̂FF (x)+ νRνF∆̂RF (x)

)
. (84)
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Figure 5. Variations of the simulation of the t̄t(2ℓ) simulation with the nuisance parameters νR and νF, modifying the
renormalization and factorization scales, respectively. The dashed lines show the training data, and the solid lines show the
prediction from Ŝscale(x|νR,νF) as obtained from the BPT. All shapes are normalized to the simulation at the SM parameter point,
corresponding to νR = νF = 0.

The five independent terms, labeled by A= R,F,RR,FF,RF, cover the two linear, two quadratic, and one
mixed term. The eight variations in V thus overconstrain these five functions.

We fit the BPT from section 5.4 in the standard configuration from section 7.1. The result is shown in
figure 5 with one-dimensional projections for the observables most sensitive to variations in νR and νF.
Correlated scale variations by a factor of 2 for µR and µF, corresponding to νR = νF =±1 reach 8%–10%.
The exception is pT, where the tail shows variations exceeding 20%. In this range, the fit has a small deficit of
1%–2% relative to true variations, likely due to residual inflexibility in the quadratic model. Since µR and µF
capture uncertainties from limited perturbative control, we ignore this slight mismatch for now. Other
kinematic features show less shape dependence.

We also simulate events at the SM parameter point using the alternative POWHEG generator, producing a
similarly sized event sample for the t̄t(2ℓ) process at NLO accuracy in the strong coupling constant. As
outlined in section 5.3, and with the caveats noted there, we assign a nuisance parameter νPOW, with
νPOW = 0 representing MADGRAPH5_aMC@NLO and νPOW = 1 representing POWHEG. Here, V = {1} allows us
to train a single-parameter linear surrogate for the (log-) DCR, denoted ŜPOW(x|νPOW). Figure 6 shows
one-dimensional projections of the features, revealing shape differences. Minor statistical fluctuations appear
in the data tails due to the stochastic independence of the samples, but the BPT averages them out.

Uncertainties in the PDFs, which would require around 100 nuisance parameters for variations along the
PDF eigendirections [79], are deferred for future treatment. Instead, and to account for uncertainties in the
m(t̄t) selection efficiency, we include a normalization uncertainty of 15%, setting αnorm = 1.15.
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Figure 6. A comparison of MADGRAPH5_aMC@NLO event simulation (black) and POWHEG event simulation (green, dashed) at the
SM parameter point. The solid green line shows the prediction from ŜPOW(x|νPOW) for the two-point nuisance parameter νPOW.

Figure 7. Variations of the nominal simulation with the nuisance parameter for JES uncertainties ν JES. The dashed lines show the
training data and the solid lines show the result from the surrogate ŜJES(x|νJES).

7.3. Jet energy calibration uncertainties
To evaluate the impact of uncertainties in the reconstructed transverse jet momenta, we vary the
DELPHES-predicted values according to the ‘total’ CMS JES uncertainty provided in [62]. These variations
affect the event selection, missing energy, top quark kinematic reconstruction, and other event features in x.
Since the per-jet variations depend on the nominal pT and pseudo-rapidity, which are latent (not in x), the
resulting function JνJES(x,z) is also dependent on the latent event configuration.

Using the method in section 4.4.1, we define synthetic data sets and set V = {−1,−0.5,0.5,1} for the JES
nuisance parameter νJES, parameterizing the per-jet variation effects on x in units of the JES uncertainty
standard deviations. The half-integer values for νJES provide more granularity than the typical±1σ
variations used in binned LHC analyses. We then fit a log-linear surrogate,

ŜJES (x|νJES) = exp
(
νJES∆̂JES (x)

)
. (85)

To model the JES dependence. Figure 7 shows an excellent fit of the surrogate to the variations in the training
data. Most observables show a flat variation, except for pT(t̄t), which rises from 2%–5%. In the tails ofm(t̄t),
slight asymmetries in the training data variations are not captured by the linear model, as it approximately
symmetrizes the total uncertainty. Refinement with a higher-degree surrogate is left for future work.
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7.4. Uncertainties in tagging efficiencies
Uncertainties in the b-tagging efficiency for jets, along with their application, are provided in [62]. This
approach relies on pT, pseudo-rapidity, and a nominal binary b-tag label from DELPHES. To apply variations,
we also need the generator-level jet flavor f within {udsg,c,b}. Using the nominal DELPHES simulation, we
parametrize the pT and η-dependent b-tagging efficiencies εf(pT,η) for each flavor. Two systematic
uncertainties are considered with scale factors SFf(pT,η) and variations∆SFf(pT,η). The HF tagging
uncertainty covers the b and c-quark tagging rates, modified in a correlated way for non-zero νHF. The
light-flavor (LF) mistagging uncertainty addresses tagging rates for light-quark and gluon jets, associated
with νLF. The reweighting function for synthetic data in equation (31) is given by

r(xi,zi|νk,0) =
F(νk, jets in event i)

F(0, jets in event i)
(86)

where

F(νk, jets) =
∏

tagged jets

εf (pT,η)
(
SFf (pT,η)+ νk∆SFf,k (pT,η)

)
×

∏
untagged jets

(
1− εf (pT,η)

(
SFf (pT,η)+ νk∆SFf,k (pT,η)

))
. (87)

For k=HF, we vary b and c-jet efficiencies, and for k= LF, we vary the efficiencies for light-quark and gluon
jets. Using νk =±1, we construct synthetic data sets and fit linear surrogates

ŜHF (x|νHF) = exp
(
νHF∆̂HF (x)

)
and ŜLF (x|νLF) = exp

(
νLF∆̂LF (x)

)
. (88)

The resulting parametrization is shown in figure 8. The HF and LF uncertainties exhibit similar shapes.
HF variations range from 2% to 5%, while LF variations show a slightly larger impact, ranging from 4% to
8%. This greater effect of the LF variations is due to the higher light-jet multiplicity following the the
m(t̄t)⩾ 750 GeV selection.

7.5. Uncertainties in lepton efficiencies
Uncertainties in lepton efficiencies are detailed in [80–82] and are handled using the weighting function in
equation (34). Since the efficiency scale factors and uncertainties depend on the candidate’s pseudo-rapidity,
which is not included in x, we retain the z dependence in

r(xi,zi|νℓ) =
2∏

ℓ=1

(
1+

∆ℓSF(ℓ)

SF(ℓ)

)νℓ

, (89)

used to define two surrogate data sets corresponding to±1σ variations. Here, V = {−1,1}, and we learn a
surrogate

Ŝℓ (x|νℓ) = exp
(
νℓ∆̂ℓ (x)

)
. (90)

Variations are under 1% in all cases, with minimal x-dependence, as shown in figure 9.

7.6. Testing the tree-based estimates with neural networks
The comparisons in previous sections are one-dimensional projections. For a more general check of whether
the BPT is fully expressive in the high-dimensional x space, we can apply a ‘Classifier two-sample
test’ (C2ST) [83, 84].

The C2ST is a non-parametric method for assessing if two samples originate from the same distribution.
It trains a binary classifier on a combined dataset of the two samples, using labels to indicate sample origin.
The classifier’s accuracy reveals distribution similarity; accuracy above chance suggests different
distributions.

Given a specific nuisance parameter ν and a pair of synthetic data sets,DSM andDν with ν ̸= 0, if a
candidate estimate Ŝ(x|ν) is accurate and fully expressive, then

Ŝ(x|ν) = dσ (x|ν)
dσ (x|SM)

. (91)
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Figure 8. Variations of the nominal simulation with the nuisance parameter for the b-tagging uncertainties νHF and νHF. The
dashed lines show the training data and the solid lines show the result from the surrogate ŜHF(x|νHF) and ŜLF(x|νLF).

Figure 9. Variations of the nominal simulation with the nuisance parameter for the lepton scale factor uncertainty νℓ. The dashed
lines show the training data, and the solid lines show the result from the surrogate Ŝℓ(x|νℓ).
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Figure 10. A neural-network classifier tests the surrogate ŜHF(x|νHF) for νHF = 1. The black contour shows the distribution of the
classifier when the two samples are from the same distribution at νHF = 0. The solid orange line indicates the accuracy of a
classifier trained with an SM event sample and a sample with νHF = 1 that is reweighted back to the SM using the surrogate
under test, suggesting no flaw in the performance. The dashed orange line indicates the accuracy of the test trained with two
unequal samples at νHF = 0 and νHF = 1.

For all x and ν. Thus, reweightingDν to form

Dreweighted =
{
w ′
i = Ŝ(x|ν)−1wi,xi for all wi,xi ∈ Dν

}
(92)

Should makeDreweighted indistinguishable fromDSM. To test this, a classifier’s accuracy in distinguishing
Dreweighted fromDSM is used, with a p-value based on the null distribution of the accuracy. We train a
classifier using HF b-tagging with ν = νHF = 1 to test ŜHF(x|νHF = 1). The classifier, a neural network in
pytorch with sigmoid activation and three hidden layers (512, 512, 256 units), is optimized with Adam on
half of the data. Its accuracy is 0.5001, suggesting near-perfect agreement. To evaluate this result, we merge
Dreweighted andDSM, randomize labels, and train 1000 classifiers on pairs of identical subsets. The null
distribution peaks at 0.5, as shown in figure 10. For comparison, distinguishingDνHF=1 fromDSM yields
0.504, a significant deviation (figure 10). This deviation is small due to the mild x-dependence of the DCR,
yet the neural network accurately detects the difference. In summary, removing νHF-dependence with our
surrogate makes it impossible for a high-sensitivity neural network to distinguish from the SM, indicating
strong performance across the feature space.

7.7. Expected Limits from unbinned Asimov data
The Asimov dataset [85] is commonly used to derive expected exclusion limits from binned Poisson
likelihoods [59]. Gomez Ambrosi et al [8] extends this to the unbinned case, enabling sampling-free
exclusions within continuous parametric models. Here, we consider composite hypotheses involving two
Wilson coefficients, which we denote by θ. Under the exclusion scenario, θ represents the null hypothesis
with Nθ = 2, while other Wilson coefficients are profiled as nuisance parameters. The alternative hypothesis
assumes θ = 0.

Wilks’ theorem states that if the data are distributed under the null hypothesis θ, the test statistic
p(qθ|θ,ν) asymptotically follows a central χ2 distribution with Nθ degrees of freedom. This distribution is
independent of the true values of the nuisance parameters. Given that our POIs primarily influence the
predictions linearly [74], we assume any minor quadratic terms do not invalidate Wilks’ theorem [27].
However, in practical applications, this assumption should be verified, as shown in [8], where good
agreement was observed. Since qθ is monotonic with the p-value, it can define acceptance regions for θ at
CLs of 68% (α= 32%) or 95% (α= 5%). We anticipate excluding a hypothesis θ at a given CL if there’s a
50% or greater probability for qθ to fall outside the corresponding acceptance region when the alternate
hypothesis θ = 0 is true. Therefore, we must solve

ˆ ∞

qθ,med

p(qθ|θ)dqθ = α and qθ,med =Med(qθ|θ = 0) . (93)
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The final ingredient is Wald’s theorem [86], which implies that the distribution p(qθ|0) asymptotically
follows a non-central χ2 distribution with Nθ degrees of freedom and non-centrality parameter Λ. This
parameter can be computed (see [8] for details) for the unbinned likelihood ratio. As in the binned case, it
corresponds to the Asimov expectation of equation (11) for the alternate hypothesis, multiplied by−2. In
our notation, the result is

−1
2
Λ =−L(ν) σ (θ,ν)+L0σ (SM)+L0 ⟨log(L(ν)R(xi|θ,ν)/L0)⟩SM−

1

2

K∑
k=1

ν2k

=
∑

xi,wi∈D0∩X
wi (−L(ν)R(xi|θ,ν)+L0+L0 log(L(ν)R(xi|θ,ν)/L0))−

1

2

K∑
k=1

ν2k . (94)

With the integrated luminosity from equation (81) and the model’s DCRR(x|θ,ν) from equation (82). The
sum is over all events in the nominal t̄t(2ℓ) sample passing the event selection. The ratioR(x|θ,ν) appears
in both the logarithm and the ‘extended’ term for the total fiducial cross-section. This expression provides
the test statistic under the alternate hypothesis, allowing us to obtain the expected exclusion contour from
the profiled likelihood test statistic. The minimization is performed with the IMINUIT package [87].

7.8. Results
Figure 11 shows the Asimov expected exclusion contours at 68% CL (dashed) and 95% CL (solid). The
SMEFT effects are simulated up to quadratic order in the POIs. For the blue contours, the other three Wilson
coefficients are profiled, while nuisance parameters are set to zero. For the black contours, nuisance
parameters are also profiled. Systematic uncertainties significantly impact Re[CtG], which strongly affects the
total yield and is sensitive to integrated luminosity, renormalization and factorization scales, and
normalization uncertainties. For non-zero Im[CtG] and Re[CtG]≈ 0, effects from the three remaining
four-fermion operators outweigh those of systematic uncertainties, explaining why the contours degrade
only slightly when including systematics. A comprehensive t̄t(2ℓ) sensitivity analysis would require analyzing
all uncertainties, some of which are not publicly available. This study, however, shows how systematic effects
can be captured in machine-learned surrogates and applied in limit setting.

8. Conclusion

This paper presents a comprehensive, scalable framework for modeling the effects of systematic uncertainties
in unbinned analyses of collider data. By factorizing systematic effects across parton, particle, and detector
levels, we make them accessible for ML. With a highly granular factorization of the various dependencies, we
leverage the extensive knowledge gained from binned LHC data analyses and fully capitalize on high-quality
MC simulation. A flexible approach facilitates the progressive refinement of unbinned models, including but
not restricted to applications in SMEFT. It accommodates new systematic effects or background
contributions without invalidating previously trained surrogates.

A significant technical innovation introduced is the BPT, an extension of tree-boosting algorithms
designed to learn accurate parametrizations of systematic dependencies. BPTs offer a robust and efficient
alternative to neural networks for modeling systematic effects, providing reliable surrogate models for
complex, high-dimensional parameter spaces in unbinned hypothesis testing.

Our work thus bridges a critical gap in the methodological toolbox for SMEFT analyses, searches for
other non-resonant effects beyond the SM, and similar inference problems. We demonstrate the practical
application through a semi-realistic case study of top quark pair production in the dilepton channel, which
underscores the effectiveness of our approach in learning and incorporating systematic effects. Overall, the
new techniques pave the way for more refined and adaptable unbinned hypothesis tests, enhancing the
accuracy and reliability of SMEFT analyses. We anticipate these advancements will be instrumental in
exploiting the data from future collider experiments. Finally, we believe that publicly available refined models
would be useful for future SMEFT combinations and for providing legacy LHC results.
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Figure 11. Asimov expected exclusion contours at 68% CL (dashed) and at 95% CL (solid). The three other Wilson coefficients
are profiled for the blue contours, and all nuisance parameters are frozen at zero. For the black contours, the three other Wilson
coefficients and all the nuisance parameters are profiled.
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Appendix A. Per-event SMEFT weights

We show how to efficiently obtain a polynomial per-event SMEFT parametrization from generator weights
obtained at a sufficient number of different values θ with dimension Nθ . The procedure can be extended to
arbitrary fixed polynomial order, but for simplicity, we truncate after the quadratic term,

wi (θ) = ωi,0+ωi,mθm +ωi,mnθmθn. (A.1)
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We can take the quadratic coefficients for each event as an upper triangular matrix, ωi,mn = 0 for n<m for
all events i. From the generator, we can obtain the r.h.s. of equation (A.1) as

wi (θ)∝ |MSMEFT

(
zp,i|θ

)
|2 (A.2)

Which we evaluate forM= 1, . . . , |M| base points. We denote those parameter values by θM and the resulting
base point weights by wi

M = wi(θ
M). We chose |M| to correspond to the maximum number of independent

per-event coefficients so that we have exactly enough base point weights to specify the general polynomial
dependence. Therefore,

|M|= 1+Nθ +
1

2
Nθ (Nθ + 1) , (A.3)

where the three terms in the sum correspond to the number of independent coefficients corresponding to the
constant, the linear, and the quadratic per-event SMEFT dependence. To be explicit, θM,m is the value of the
mth Wilson coefficient at theMth base point. For each event i, this gives us the |M| equations

wi
M = ωi,0+ωi,mθ

M
m +ωi,mnθ

M
m θ

M
n (A.4)

where we use Einstein summation form and n. This is an |M| × |M| linear equation in ωi,0, ωi,m, and ωi,mn

with coefficients 1, θMm , and θ
M
m θ

M
n . Equation (A.4) suggests to relabel the indices {(1),(m),(mn)} by a

multi-index K= 1, . . . , |M| where the 1 represents the constant piece,m the Nθ linear terms, and the ordered
pair (mn) the 1/2Nθ(Nθ + 1) different quadratic terms. Any value of θ can then also be represented as an
|M|-component vector θK = {1,θm,θmθn}K and the |M| base points θM provide the |M| × |M|matrix

CM
K =

{
1,θMm ,θ

M
m θ

M
n

}
K
. (A.5)

Concretely, when Nθ = 15, we have 136 values that the indicesM and K can take. Equation (A.4) then reads

wi
M = CM

Kωi
K. (A.6)

The matrix C and its inverse do not depend on the event as long as the base points are kept when running the
generator. The base points must be chosen such that C−1 exists. We can now compute the per-event
polynomial weight coefficients as

ωi
K = C−1K

Mwi
M. (A.7)

From the per-event base-point weights wi
M. With these coefficients, we can now evaluate equation (A.1) for

variable θ as

wi (θ) = θKC
−1K

Mwi
M. (A.8)

Finally, we can break up the index K again, i.e. K = 1 will give us the constant coefficient, the Nθ terms
K =m will give us the linear event-weight dependence, and the 1/2Nθ(Nθ + 1) terms K= (mn) provide the
quadratic coefficients. For the SMEFT coefficients in equation (36) we find from equation (A.7)

r(m)
(
zp,i

)
= ωi

(m)/ωi,0,

r(mn)
(
zp,i

)
= ωi

(mn)/ωi,0. (A.9)

Appendix B. Alternative loss functions

The solution in equation (42) can be obtained from other loss functions that differ in behavior away from
the minimum. An example is the quadratic loss

LQ
[̂
f
]
=
〈̂
f(x)2

〉
x,z|θ1,ν1

+

〈(
1− f̂(x)

)2〉
x,z|θ0,ν0

(B.1)
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Which can be used with synthetic data sets, either with or without reweighting, by following the same steps
as in section 5.1. For the latter case, the result is

LQ
[̂
f
]
=

ˆ
dxdz p(x,z|θ0,ν0)

(
r(x,z|θ1,ν1,θ0,ν0) f̂(x)2+

(
1− f̂(x)

)2)
. (B.2)

The same is true for the mean-squared-error loss function

LMSE
[̂
f
]
=

〈(̂
f(x)− r(x,z|θ1,ν1,θ0,ν0)

)2〉
x,z|θ0,ν0

. (B.3)

Its minimum satisfies

dσ (x|θ1,ν1)
dσ (x|θ0,ν0)

= f ∗MSE (x) . (B.4)

If needed, a version with separate samples is obtained by expanding the square and keeping the f̂-dependent
terms. The result is

LMSE
[̂
f
]
=
〈̂
f(x)2

〉
x,z|θ1,ν1

− 2
〈̂
f(x)

〉
x,z|ν0,ν0

. (B.5)

More loss functions can be obtained from the general ansatz

L
[̂
f
]
=
〈
L1

[̂
f(x)

]〉
x,z|θ1,ν1

+
〈
L2

[̂
f(x)

]〉
x,z|θ0,ν0

, (B.6)

where L1 and L2, typically, are simple functions of f̂. Because it is a sum of expectations over the joint space,
this general form allows using the joint-likelihood-ratio in the same way as done for equation (44).
Moreover, because f̂(x) does not depend on z, it is minimized by a function of the ratio of two
z-integrals (equation (12)) and, therefore, is in one-to-one correspondence with the regression target6. If we
view the two terms L1 and L2 as (standard) functions of f̂ and denote the (standard) derivative by L′, it is
straightforward to show that the conditions

−L ′
2

L ′
1

=
1

f̂
− 1 and − L ′

2

L ′
1

= f̂. (B.7)

Lead to loss functions minimized by equation (42) and equation (B.4), respectively. The loss functions
discussed so far are special cases of equation (B.7). To control the loss behavior away from the minimum, one
can choose, therefore, an appropriate L1 [̂f] or L2 [̂f] and compute the other term from equation (B.7).

Appendix C. Construction of the BPT algorithm

This section provides a step-by-step derivation of the BPT algorithm. A summary of the resulting procedures
is described in section 5.4.

C.1. Tree-boosting of parametric regressors
It is instructive to discuss boosting for generic non-parametric estimators based on the cross-entropy loss
function LCE [̂f] in equation (39). After the replacement in equation (47), we have

L
[
T̂
]
=
〈
Soft+

(
T̂(x)

)〉
x,z|0

+
〈
Soft+

(
−T̂(x)

)〉
x,z|ν

, (C.1)

where we do not yet specify the implementation of T̂(x). The loss would attain its minimum at

T∗ (x) = log
dσ (x|ν)
dσ (x|0)

(C.2)

6 I thank Giuliano Panico for pointing this out.
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But instead of obtaining this result in a single fit, we chose a number B of boosting iterations and
corresponding learning rates 0< η(b) < 1 for b= 1, . . . ,B. We use an additive expansion of T̂(x) in terms of
the weak learners t̂(b)(x). To this end, we iterate the boosting relations

t(b)∗ (x) = argmin̂t(b)L
[̂
t(b) (x)+ T̂(b−1) (x)

]
, (C.3)

T̂(b) (x) = T̂(b−1) (x)+ η(b)̂t(b)∗ (x) . (C.4)

A number of B times, starting with the initial choice T̂(0)(x) = 0. Equation (C.3) obtains the weak learner
t̂(b)(x) when the result of the preceding iteration T̂(b−1)(x) is known. Equation (C.4) updates the additive
model with a fraction η(b) of this weak learner’s prediction. After B iterations, the boosted prediction T̂(B)

can be expressed as

T̂(B) (x) =
B∑

b=1

η(b)t(b)∗ (x) . (C.5)

An important practicality for boosting learners that are fit to synthetic data sets follows from the minimum
condition in equation (C.3). It implies that the minimum at iteration b satisfies

t(b)∗ (x)+ T̂(b−1) (x)≃ log dσ (x|ν)
dσ (x|0)

= log
σ (ν)

σ (0)

´
dzp(x,z|ν)´
dzp(x,z|0)

. (C.6)

Which we rearrange to

t(b)∗ (x)≃ log σ (ν)
σ (0)

´
dzp(x,z|ν)× exp

(
−T̂(b−1) (x)

)
´
dzp(x,z|0)

. (C.7)

By reading this equation as an x-dependent scaling of the joint-space integration measure dσ(x,z|ν) =
σ(ν)p(x,z|ν)dxdz by the reciprocal of the estimate of the preceding boosting iteration, we find that t(b)∗ can
also be obtained if, instead of using the additive expansion, we replace σ(ν)p(x,z|ν)→ exp

(
−T̂(b−1)(x)

)
σ(ν)p(x,z|ν). Because equation (C.4) provides the exponent T̂ iteratively, we only have to multiply the
cross-section by exp(−η(b−1)t(b−1)∗(x)) when moving from iteration b− 1 to iteration b. This way, the
boosting equations read

σ (ν)p(b) (x,z|ν) = exp
(
−η(b−1)t(b−1)∗ (x)

)
σ (ν)p(b−1) (x,z|ν) (C.8)

t(b)∗ (x) = argmin̂t(b)L
[̂
t(b) (x)

]
, (C.9)

T̂(b) (x) = T̂(b−1) (x)+ η(b)̂t(b)∗ (x) (C.10)

Initialized by T̂(0)(x) = t(0)∗(x) = 0. The advantage of this formulation is that equation (C.9) is a standard
loss function minimization without the additive model appearing in the argument as in equation (C.3). The

update of the synthetic data setD(b)
ν = {w(b)

i ,xν,i,zi}, now also defined for each iteration b, follows from
equation (C.8) as

w(b)
i = exp

(
−η(b−1)t(b−1)∗ (xi)

)
w(b−1)
i . (C.11)

This prescription can be interpreted as a recursive weighting of the differential cross-section ofDν in the
second term in equation (C.1) towardsD0 in the first term. The boosting algorithm removes the learned
approximation from the training data as the regressor learns to approximate the DCR more accurately. It is
customary to chose η(b) independently of b, and values between 10−3 and 3 · 10−1 for this universal learning
rate have proven efficient.

The sampleD0 stays unchanged in the boosting procedure because we decided to write the x-dependent
scaling in equation (C.8) in the numerator. The choice of only reweighting the sampleDν is a critical detail.
It holds the key to a boosting algorithm that works for the fully parametric regressor, including the ν
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dependence. We can construct the loss for a parametric tree-based algorithm from the general parametric
loss function in equation (51), which is a sum of equally structured terms

L=
∑
ν∈V

LCE
[
T̂(x|ν)

]
=

∑
ν∈V

(〈
Soft+

(
T̂(x|ν)

)〉
x,z|0

+
〈
Soft+

(
−T̂(x|ν)

)〉
x,z|ν

)
. (C.12)

The synthetic data set in the first expectation value in each sum term is alwaysD0, irrespective of the value of
ν. The synthetic data set in the second expectation isDν and is different for each ν ∈ V . It is this term whose
synthetic data set changes during the boosting algorithm, and because there is one such set for each ν ∈ V ,
the reweighting can be done simultaneously for each ν in the sum over V in equation (C.12). Repeating the
steps starting at equation (C.1) with a sufficiently expressive ν-dependent function T̂(x|ν), it is
straightforward to show that aside from the extra ν-dependence in the notation nothing else changes.
Concretely, we only need to modify equation (C.5) to notate the ν-dependence in the weak learner t̂(x|ν).
The other steps follow analogously, and equation (C.11) generalizes to

D(b)
ν =

{
exp

(
−η(b−1)t(b−1)∗ (xi|ν)

)
w(b−1)
i ,xi,zi

}
for all

{
w(b−1),xi,zi

}
∈ D(b−1)

ν for all ν ∈ V (C.13)

Which is the same as equation (C.11) except for that it is carried out simultaneously for each ν ∈ V . This
completes the boosting algorithm for generic weak learners, and we can proceed with constructing the
tree-based implementation.

C.2. Learning the phase-space partitioning
We construct the parametric weak learner t̂(b)(x|ν) in two steps. Because the procedure is identical at each
boosting iteration, we drop the superscript (b) in this section in favor of readability and write t̂(x|ν) in place
of t̂(b)(x|ν). We first specify the non-linearity in x while keeping a parametric ν-dependence fully general.

We decompose the phase space X into non-overlapping regions∆xj, collectively denoted by J . Such a
phase-space partitioning satisfies

X =
⋃
j∈J

∆xj and ∆xj ∩∆xj′ = ∅ ←→ j ̸= j ′. (C.14)

The nonlinearity in a tree ansatz can always be expressed via the index function

1j (x) =

{
1 if x ∈∆xj

0 otherwise.
(C.15)

In terms of, for now, arbitrary functions t̂j(ν) that have no x-dependence,

t̂(x|ν) =
∑
j∈J

1j (x) t̂j (ν) . (C.16)

The function t̂j(ν) should describe the DCR in bin j.
Because the x-dependence is only in the index function, we can insert equation (C.16) into

equation (C.12) and use equation (43) to carry out the event sums over the synthetic data sets. The result is

L
[
J , t̂j

]
=
∑
j∈J

Lj
[̂
tj
]
=
∑
j∈J

∑
ν∈V

[
σj,0 Soft

+ (̂
tj (ν)

)
+σj,ν Soft

+ (
−t̂j (ν)

)]
. (C.17)

The σj,0 and σj,ν are given in terms of the training data as

σj,0 =
∑

(xi,wi)∈D0∩∆xj

wi and σj,ν =
∑

(xi,wi)∈Dν∩∆xj

wi. (C.18)

And can be understood as the synthetic predictions for the cross-section in bin j ∈ J for nuisance
parameters 0 and ν, respectively. We have now decomposed our problem into two related problems that each
pertain to different trainable parameters: the phase space partitioning J and, independently in each region
of the partitioning, a function t̂j(ν) whose ν-dependence we still have to specify.
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Before we tackle these problems, it is instructive to develop an intuition for the loss function in
equation (C.17). We assume an infinitely expressive t̂j(ν) and functionally differentiate Equation (C.17) to
arrive at

0=
δLj
δt̂j

=
∑
ν∈V

[
σj,0

1+ exp
(
−t̂j (ν)

) − σj,ν

1+ exp
(̂
tj (ν)

)] . (C.19)

This equation is satisfied exactly if

t̂j (ν) = log
σj,ν

σj,0
for all ν ∈ V. (C.20)

Which we can always fulfill for sufficiently expressive t̂j(ν); a perfect representation of the ν-dependence in
each tree node j ∈ J reproduces the logarithm of the DCR for those values of ν whose synthetic data sets we
included in the loss function. The predictive function of a tree is finitely expressive. Hence, we will seek an
approximation for equation (C.20) in the next section. But we can meanwhile use the result to shed light on
the loss function equation (C.17). Formally eliminating t̂j(ν) in favor of its predictions at the points ν ∈ V ,
we express the loss solely in terms of the per-bin cross-sections σj,0 and σj,ν ,

L [J ] =
∑
j∈J

∑
ν∈V

[
σj,0 log

(
1+

σj,ν

σj,0

)
+σj,ν log

(
1+

σj,0

σj,ν

)]
. (C.21)

This equation would provide a loss function for finding the optimal phase space partitioning if we did not
need to use finitely expressive t̂j(ν). If we assume small ν such that a Taylor expansion of σj,ν around ν = 0
is a good approximation, we get

L [J ] =−1
4

∑
j∈J

∑
ν∈V

νaνbI(ab),j + . . . (C.22)

where the ellipsis compriseO(ν3) terms and J -independent contributions. The quantity

I(ab),j =
1

σj,0

∂σj,ν

∂νa

∂σj,ν

∂νa

∣∣∣∣∣
ν=0

(C.23)

is the leading contribution in L[J ] and represents the Fisher information matrix of a Poisson measurement in
bin j regarding the model parameters. We thus show that our loss function will guide the algorithm towards
finding a partitioning J that maximizes the sum of the Fisher information over all terminal tree nodes.

C.3. Terminal node predictions
The second and final constructive step is to curtail the ν-dependence of t̂j for each node in the weak learner.
We can choose it in analogy to the binned case as it will turn out. We use the ansatz

t̂j (ν) = νa∆̂a,j + νaνb∆̂ab,j + νaνbνc∆̂abc,j + · · ·= νA∆̂A,j (C.24)

with the multi-index notation as explained in section 5.2. The polynomial order and the coefficients at each
polynomial order are truncated to the application’s required accuracy. We also allow for its fine-tuning by
excluding some of the terms in the polynomial for application-specific reasons. If the node j is small enough
that the DCR does not significantly vary with x, we get for the first term

∆̂j,a ≈
∂

∂νa
tj (ν)

∣∣∣∣∣
ν=0

=
∂

∂νa
log
dσ (x|ν)
dσ (x|0)

∣∣∣∣∣
ν=0

= sa +
∂

∂νa
logσ (ν)

∣∣∣∣∣
ν=0

for x ∈∆xj. (C.25)

The last expression relates ∆̂j,a to the well-known score vector sa, a sufficient statistic for small ν and,
therefore, an optimal observable. The log-derivative of the inclusive cross-section in the last term does not
depend on the phase-space partitioning and, thus, is irrelevant to the optimization. The algorithm will,
therefore, aim to reduce the expectation of the variance of the score in the training sample. This is, by
definition, the negative value of the Fisher information matrix, consistent with the interpretation in the
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preceding section. Depending on the concrete problem and the desired accuracy, the higher-order terms in
equation (C.25) can improve the parametrization for larger values of ν.

We now determine the terminal node predictions of a weak learner up to a fixed arbitrary polynomial
ordering ν by computing ∆̂A,j. The parametric tree ansatz is

t̂(x|ν) =
∑
j∈J

1j (x)
(
νA∆̂A,j

)
. (C.26)

An exact solution cannot be obtained for the optimal values of ∆̂ in the general case because the resulting
equations

νA∆̂A,j = log
σj,ν

σj,0
for all ν ∈ V (C.27)

are overdetermined if |V|> N∆. We note that equation (C.27) has the same form as equation (C.20) except
for the finite expressivity on the l.h.s. We are content with an approximate solution of the per-node
parametrization because boosting the weak learner will iteratively reduce the shortcomings either way. Any
deficiency of a concrete weak learner will be reduced in the subsequent boosting iteration. For |V|< N∆, the
training data cannot provide a unique estimate, and more data sets must be obtained.

The simplest approach for approximately solving equation (C.27) is by minimizing the mean-squared
error separately for each node j ∈ J ,

Lj,MSE
[
∆̂
]
=

∑
ν∈V

(
νA∆̂A,j− log

σj,ν

σj,0

)2
. (C.28)

It is solved by

∆̂A,j =

[ ∑
ν∈V

ννT

]−1

AB

[∑
ν∈V

ν log
σj,ν

σj,0

]
B

. (C.29)

The matrix

VAB =

[∑
ν∈V

ννT

]
AB

, (C.30)

appearing in the approximate solution, is invertible if the base point coordinate matrix has full rank, as we
have assumed in section 5.2.

It is instructive to check that the weak learner appropriately responds to training data that is perfectly,
not just approximately, consistent with the polynomial ansatz. If we take constants δA and consider a model
that predicts σj,ν = exp(νAδA)σj,0 in a given region, we can insert into equation (C.29) and find ∆̂A = δA,
confirming that the algorithm learns the exact solution if it has the chance.

To complete the construction of the weak learner, we insert the ansatz equation (C.26) into
equation (C.17) and get

L [J ] =
∑
j∈J

∑
ν∈V

[
σj,0 Soft

+
(
νA∆̂j,A

)
+σj,ν Soft

+
(
−νA∆̂j,A

)]
, (C.31)

where ∆̂A,j are obtained from equation (C.29) and σj,0 and σj,ν from equation (C.18). The data samplesD0,
used for the prediction of σj,0 in the first term, can either taken to be the same or statistically independent
samples. This loss function is amenable to standard tree algorithms, for example, the CART algorithm or the
TAO [55–58] algorithm, both providing tree structures with a hierarchical selection using the features x and
that satisfy the requirements in equation (C.14). These algorithms proceed by recursively splitting the
training data along either axis-aligned (for CART) or linear combinations of the input features (for TAO),
reducing the loss at each iteration. The maximum iteration depth and the minimum number of events in
each node are hyperparameters that regularize the fit. If no more splits can be performed, the terminal
selections (nodes) represent a phase space partitioning J of the form in equation (C.14) and the quantities
∆̂j can be computed from equation (C.29). The tree then estimates the (log-)DCR as in equation (C.26). As a
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function of x, the prediction of a single tree changes discontinuously if x traverses a boundary between
nodes, and the possibly poor approximation close to the boundaries weakens the learner. Utilizing boosting,
i.e. using a sequence of trees in equation (C.3) and equation (C.4), we recover the smooth behavior in x of an
arbitrarily expressive regressor. Because each tree in the boosted result in equation (C.5) is parametric in ν,
so is the final parametric regression tree.

C.4. Algorithm summary
We can combine the steps in sections C.1–C.3 to summarize the BPT algorithm. It is an iterative fit of a
tree-based weak learner with the loss in equation (C.31) to the residuals of the preceding boosting iteration
whose predictions are obtained from equations (C.8–C.11). Concretely, we start with training dataD0 at a
reference point and several synthetic data sets associated with model parameters ν ∈ V . We must have
enough data so VAB has full rank. We fit a weak learner using the CART algorithm. At each iteration, the
CART algorithm recursively divides the feature space by greedily selecting the dimension and cut value
combination that minimizes the loss function. Overfitting is mitigated by enforcing a maximum tree depth
and a minimum number of events in each terminal node. We construct new synthetic data from the weak
learner’s prediction using equation (C.11) to replaceDν . This reweighting procedure brings the samplesDν

closer toD0 by an amount controlled by the learning rate η. We iterate the whole procedure B times and
obtain the final result from equation (C.5) as

T̂(x|ν) = log Ŝ(x|ν) =
B∑

b=1

η(b)
∑

j∈J (b)

1j (x)νA∆̂
(b)
A,j , (C.32)

where ν is the model parameter we like to predict for and J (b) is the phase-space partitioning obtained from

the CART algorithm. The ∆̂(b)
A,j are the polynomial coefficients of the DCR parametrization in the terminal

node j at boosting iteration b. Algorithm 1 is a pseudo-code summary of these steps and defines the
parametric regression tree algorithm. It is efficiently implemented using the Numpy package [88] and
available at [89].

C.5. An analytic toy example
To illustrate the BPT, we consider an arbitrarily chosen one-dimensional two-parameter model

dσ (x|ν1,ν2) = Nexp
(
0.25(ν1 sin(x)+ ν2 cos(0.5x))

2
)
dx (C.33)

with support x ∈ [−π,π]. The logarithm of the cross-section is a quadratic polynomial in ν for all x,
suggesting a perfect fit with a two-parameter parametric tree at quadratic accuracy. For the training, we
chose five base points V = {(0.5,0), (0,0.5), (1,0), (0,1), (0.5,0.5)} that lead to a full-rank matrix V in
equation (C.30). With a nominal data set at (ν1,ν2) = (0,0), we have six synthetic data sets, each with 5 · 105
events, sufficient to train the algorithm. We fit B= 100 boosting iterations and require a maximum tree
depth of 4 and a minimum requirement for the number of events in each terminal node, which is 50 events.
The learning rate is set to 0.2 for all boosting iterations.

In figure 12, we compare the true and predicted values for the DCR for various model parameters. The
model parameter configurations include the training and new synthetic data, which are absent during
training. After only five iterations, the prediction begins to resemble the true DCRs. After 100 iterations, the
fit is nearly perfect; dashed lines show the true DCR from the training data and are not separately visible
because of the fit’s quality, including the parameter configurations not used during training. In realistic
applications, the logarithms of the true DCRs will not be exactly polynomial, mandating some degree of
validation of the fit quality on unseen data.
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Figure 12. The DCR for various model parameters for the toy study described in the text. Dashed lines show the true DCR from
the training data; solid lines show the prediction obtained from the BPT algorithm. The top (bottom) panel compares after
B= 5 (B= 100) boosting iterations. The bottom panel also includes new model parameter points not present during training. In
this panel, the prediction is drawn after the truth, and the dashed histograms are not separately visible because of the good quality
of the fit with B= 100.

Appendix D. Additional angular observables in the t̄t(2ℓ) final state

We briefly describe the angular observables introduced in [78]. A measurement of these quantities is
performed in [77]. After reconstructing the top-quark momenta, the event is boosted into the t̄t rest frame,
and the following axes are defined. The axis k̂ points toward the positively charged top quark. The axis r̂ is
orthogonal to k̂ and must lie within the beam plane, spanned by the k̂ and the momentum of the incoming
parton in the t̄t rest frame. The axis n̂ is orthogonal to the beam plane, and {r̂, k̂, n̂}must form a
right-handed orthonormal basis. The lepton directions of flight, denoted by ℓ̂+ and ℓ̂−, are measured in the
corresponding top quark center-of-mass frame, which is reached from the t̄t frame by a rotation-free Lorentz
transformation. Then, the quantities ξab = cosθ+a cosθ

−
b are defined where cosθ

+
a = ℓ̂+ · â and

cosθ−b = ℓ̂− · â and the axis a and b can each be one of {r̂, k̂, n̂}. For a ̸= b, sums and differences of these are

considered, e.g. ξ±nr = ξnr± ξrn and analogously for the other combinations. Two more axes r̂∗ and k̂∗ are
defined by flipping the direction of r̂ and k̂ depending on the sign of the top quarks’ rapidity difference in the
laboratory frame while keeping the system orthonormal. The resulting 12 independent quantities
characterize the spin-density matrix of the t̄t(2ℓ) system. More details, including the behavior of these
quantities under the discrete SM symmetries, are provided in [78]. We show the distribution of the 12
quantities in figure 13.
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Figure 13. Same as figure 4 for the distribution of the products of leptonic observables described in the text.
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[56] Gabidolla M and Carreira-Perpiñán M A 2022 Pushing the envelope of gradient boosting forests via globally-optimized oblique
trees 2022 IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR) p 285
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