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Resumo

O escopo deste mestrado é de se familiarizar com a chamada correspondéncia AdS/CFT,
que tem sido um dos mais importantes desenvolvimentos na fisica tedrica nas ultimas
décadas. De acordo com essa correspondéncia, deformacoes das geometrias do lado da
gravidade (ou lado ”AdS”) devem ser mapeadas para operadores das teorias de calibre
duais (ou lado "CFT”).

Em particular, nos temos estado interessados em explorar uma entrada particular no
diciondrio AdS/CFT, a relagao entre os operadores 1/2 BPS em N = 4 super Yang-Mills,
e as chamadas geometrias bubbling no lado da gravidade.

A fim de fazer isso, apresentamos primeiramente as nocoes de N’ = 4 SYM e solucoes de
Supergravidade. Portanto, podemos expor mais claramente o sentido da correspondéncia
AdS /CFT, e depois mostrar a derivacao das geometrias 1/2 BPS duais a estados 1/2 BPS

em N =4 SYM como um exemplo.

Palavras—chave Cordas, Supersimetria, Supergravidade, AdS/CFT, geometrias bub-

bling.
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Abstract

The scope of this Master program was to get acquainted with the so-called AdS/CFT
correspondence, which has been one of the most important developments in theoretical
physics in the last decades. According to this correspondence, deformations of the ge-
ometries in the gravity side (or ”AdS” side) must be mapped to states of the dual gauge
theories (or "CFT” side).

In particular, we have been interested in exploring a particular entry in the AdS/CFT
dictionary, namely, the relation between 1/2 BPS operators in N' = 4 super Yang-Mills,
and the so-called bubbling geometries on the gravity side.

In order to do that, we first present the notions of N=4 SYM and Supergravity so-
lutions. In this way, we can expose the statement of the AdS/CFT correspondence, and
later show the derivation of 1/2 BPS geometries dual to 1/2 BPS states in N=4 SYM as

an example of this one.

Keywords Strings, Supersymmetry, Supergravity, AdS/CFT, bubbling geometries.
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Chapter 1

Introduction

In this work we expose an introductory review to the concept of bubbling geometries.
These are based fundamentally in the AdS/CFT correspondence conjectured by Maldacena
[1] which is one of the areas of biggest interest in string theory nowadays. In this way, to
introduce the correspondence we begin with the theories in which it is based as NV = 4
super Yang-Mills and supergravity.

After that we proceed to show arguments by which the conjecture of the AdS/CFT
correspondence makes sense, as solutions in type IIB string theory for different limits in
coupling constants lead to the two aforementioned theories. This together with symmetry
arguments and matching particular cases suggest that they must be related in a way that
will be clarified in tha main text.

Finally we arrive to the bubbling geometries as an important application of the AdS/CFT
correspondence. They emerge from a particular case of N' =4 SYM, called Matrix Quan-
tum Mechanics. The interesting operators in this theory are 1/2BPS, to say, they satisfy
just half of the supersymmetries, and in this context also SO(4) x SO(4) x R bosonic
symmetries. In this way, the correspondent type IIB sugra solutions are looked for, and
found, in the form of bubbling geometries with the same symmetries.

As said before, the process of obtaining this correspondent geometries serves as a way
to understand some details on how the correspondence actually works, and can be used
as an enter point to this vast area which is so promising in cases as important as non-

perturbative QCD and Quantum Gravity.



Chapter 2

Preliminaries

I start by reviewing some of the ingredients that are necessary to understand what the
AdS/CFT correspondence is all about. This will prepare the ground to introduce the

bubbling geometries.

2.1 N =4 super Yang-Mills theory

The field content of this maximally symmetric theory in 4D is given by a gauge field

A, p=0,1,2,3, four Weyl fermions 12 (with A =1,...,4 and a = 1,2), and six real

scalars ® [2]. The action (in Euclidean signature) reads

1 1 2l = _
$ = 2 / d'zTr (§FHVF“V+%FIWFW-FDHCDID“QI—H\DF“DM\I/
Y M
1 _
-5 (@', 7] [®7, @] +iWT [, U] ) . (2)

where the four fermions have been written as a single Majorana-Weyl fermion in 10D. gy,
is the Yang-Mills coupling constant and 9 is the instanton angle.

It can be checked that this action is conformally invariant at the classical level as all
its terms have dimension 4 . With Poincaré invariance these two things combine into the
conformal symmetry with SO(4,2) ~ SU(2,2) group. Additionally the combination of
this symmetry with the A/ = 4 Poincaré symmetry form the superconformal symmetry
given by the supergroup SU(2,2[4).

It is important to note that at quantum level the superconformal symmetry remains



and it is also believed that the theory is UV finite. As a consequence the coupling constant
gy is actually a non-running parameter which can be fixed to the desired value. Then
N =4 SYM is a unique theory defined only by the value of gy s and the rank of the gauge
group V.

2.2 Anti de Sitter space

The AdSs5 space is a 5-dimensional space with constant negative curvature. One way to
describe it [2] is to take it as an isometric embedding on a flat space of one more dimension,
in this case 6. Now if we take the flat space to have coordinates X; (with ¢ = —1,0,...,4)

then the AdSs space is defined by the hyperboloid in R*?
4
X2 - X3+ XpP=-R, (2.2)
k=1

where R is the radius of the space. This equation highlights that the isometry group
of AdSs is SO(4,2). Other useful description of this space comes when we change the

coordinates to:

R R
X_1+X4:;, X'u:;.f#, ,u:(),...,3, (23)
so the metric of this space (2.2) becomes
o R, 2
ds” = = (d2* + dz?) . (2.4)

This is called Poincaré patch metric with z € [0,00) being the radial coordinate of AdSs.
A different description is known making the next parametrization of the AdSs x S® space,

known as global coordinates:
X_1 = Rcoshpcost, Xy = Rcoshpsint, X = Rsinh p Qy (2.5)
with 22:1 Q2 = 1. In this way the metric reads:
ds* = R* (- cosh? pdt? + dp* + sinh? pdQ?) | (2.6)

where t € R is the global time of AdSs.



2.3 Supergravity in 10 and 11 dimensions

There are various ways to construct supergravity theories. One way is the so called Noether
method which I will present here. Later I will discuss supergravity in 11 dimension and
show how one can dimensionally reduce to get supergravity in 10 dimensions which is

important in the AdS/CFT correspondence. Here we follow [3, 4, 5].

2.3.1 The Noether method

Any non linear theory with a gauge symmetry can be constructed by a Noether procedure,
starting form the linearized theory. An example is non-Abelian Yang-Mills theory which
can be obtained from the linearized free theory. In this method, one takes the linearized
theory invariant under local abelian and rigid non-abelian transformations, and through
some steps, arrives to the non linear theory. The steps are first to convert the rigid
transformation to local (so that the linear lagrangian is no longer invariant) and then
adding successively terms to the action and to the transformation law, to get an action
which is invariant and transformations which satisfy a closed algebra.

As I have mentioned, Yang-Mills theory is a simple example. Let us consider an
invariance under a rigid and a local abelian transformations with parameters T and A, to

say
SAL = s, TIAL . §AL = 9,A . (2.7)
Clearly we have
[O0n, Or] = Qa(s, T7AL) = s, T 9, A" . (2.8)
So if we consider an action
A = / diz (—i i f“’"‘) : (2.9)
with

[l = 0,A, — 0, AL (2.10)

a



this is invariant under the above transformations. Now the procedure continues making
the rigid transformations local, so that the parameter 7' becomes space-time dependent:
T'(z). This has the consequence that the original action is no longer invariant under this

transformation but instead we have:
6A® = / Az 0,T" ()%, , (2.11)

with j9 = sijé f%% . Now in order to cancel this variation we redefine the action having

a new term

40 _ 40 _ %g/ d' (ALjo) | (2.12)

To make this action invariant up to zero order in g we also redefine the transformation
law making the initial rigid transformation now proportional to the initial abelian one

(A" = éT “(z)) so the initial separate transformation get reunited into one only:
. 1 ) o
JA, = =0, 1" (x) + sijT](x)A];(x) : (2.13)
Y

Again the given action is not invariant completely under this transformation because of

the variation under the second term of eqn. 2.13 which is:
5A, — / Al (—g(Ai Als,F) (AL6,T™s,5)) (2.14)

Because of this, we have to continue the process of adding a new term in the action and
the transformation. Interestingly in this case it is enough to add the additional term in

the action:

2
g i AT am 1 abn
A= a0 4 [ @l aatsyatars gy = 1 [ aer s, (215)

where F,,' = 0,A} — 9,A}, — gs ;' A} Ay This action is invariant under eqn. (2.13) to all
orders. We have found the action of Yang-Mills theory.

Finally we must note that the algebra of the transformations closes as
, (1
o) = 073 (0T + 9 8T8AT ) — (1 2)
g

1 . L
— EaanQ + 5, T, Al (2.16)



This is again a transformation of the type of eqn. (2.13). We have used T}, = s,/ TYT}
and the Jacobi identity of the structure constants.

This is an example of how the process works and it can be applied in the same way to
construct supergravity theories even tough the technical aspects are more complicated, but
the essential steps are the same. These steps are: establishing the linear non-interacting
theory with its corresponding action and a pair of transformations, one local abelian and
other rigid global. Then make local the rigid transformations and change the lagrangian
and the proper transformations order by order to obtain an invariant action with a closed

algebra in the transformations.

2.3.2 Swupergravity in 11 dimensions

It has been shown that supergravity (SUGRA) exists in up to 11 dimensions [6] and in

that dimension there is only one SUGRA theory [7]. It is possible to construct SUGRA

theories in dimensions less than 11 through the procedure of dimensional reduction [3].
Supergravity in 11D was constructed by Cremmer, Julia and Scherk [7] having a field

content:

gMN metric
Aynp 3-form potential
U gravitino .

Let us start with some notation. I will use M, N, P as curved indices and A, B, C' as flat

indices. The gamma matrices and the gravitino satisfy:
{FAa FB} = 277ABa EM = wﬁc_l7 C_erO = _FCE >

where the signature is (— + +...+). The spin connection is w,A? = w,*Z(e) + K,/ and

the torsion:

1 — — —A
Ky = =20 e + 40, TP 4 207 Ta?)



Having established that, the Lagangian is:

1 1 1

17 _ _ 2 1 MNPQRSTUVW X
¢ L =R(w) 5. 4!FMNPQ s <4!4!3!5 FMNPQFRSTUAVWX)

- %MMFMNPVN (% (w+ @) Yp

i (G TMNPRRS 4 19 PT QRS <1 (F n F>) , (2.17)

8- 4l 2 pORS

where F' is the field strength of A. Here we have introduced some other fields:
- 1 -
Dy P = wy P + 1_6¢NFMABNP¢P> (2.18)
. 3 _
Funpg = Funeg + §z¢[MFNP¢Q] ) (2.19)

We arrive at the following equations of motion:

N . 1 [ . 1 .
Run(@) — zgunR(@) = — | FuprqrEy " — —gun >
2 12 8
MNP\ (0)p = 0
£ 1 1 . .
V(@) FMVPR 2 (mgNPQRSTUVWXYFRSTUFVWXY) =0 (2.20)
where the supercovariant derivative is defined as
- 1
Var = Vi + 5 (10Y79" — 83 TPR) Fycpon. (2.21)

This system as we stated before has one local supersymmetry with transformation

laws:

1

3

5AMNP = _ZiEF[MN¢P]

Sihps = Var()e (2.22)

and the algebra of its transformation closes. The importance of supergravity with respect
to string theory is that supergravity can be seen as the low energy limit of string theory,

when we neglect all massive modes of the string spectrum and just keep the massless level.



2.3.3 10D Supergravity

As was explained earlier, the SUGRAs in lower dimensions than 11 can be obtained
through the process of dimensional reduction. Making a Kaluza-Klein reduction we divide

our 11D Minkowski space in this way:
My = My x S M = (2", y) (2.23)

The compactification is going to be made on a circle (S') because it is the simpler way to
work with it. We choose the fields to not depend on the internal coordinates (in this case

y). So the 11D fields can be split this way (just the bosonic part for now)

IMN —7 Guv, gull(C(l))a g1111 (2.24)
Aynp — AWp(C(s)), AW11(B(1)) (2-25)

With this fields it can be done an ansatz for the solution:

ds?, = e~ 5%ds%) + e3%(dy + C))? (2.26)

A(g) =C5+ B(g) A dy (2.27)
which can be inserted into the (bosonic) 11D Lagrangian
1 1
L1=Rx1-— §F(4) A *F(4) —+ 6F<4) N F(4) VAN A(g) (2.28)
to give
1
Lita = € |Rx1+44do A xdp — 5 He A xHe

1 1~ ~
—§F(2) A\ *F(g) — §F(4) A\ *F(4)

1
—§F(4) A *F(4) N B(g) (2.29)
for 10D Type ITA SUGRA. Here H(g) = dB(Q), F(Q) = dC(l), F(4) = dC(g) and
Fay = Fay = Cay AN H) (2.30)

Through manipulations the D = 10, V' = 1 supergravity theory can be constructed
from here but the Type IIB is quite different and cannot be obtained this way because it



is a chiral theory, i.e., its two fermions have the same chirality, and this is a characteristic
which cannot be inherited from SUGRA in 11D. Neither the Noether method can be
applied to construct this theory but a variant of it [4]. The bosonic part of the Lagrangian
for type IIB supergravity turns out to be:

1
Lip = €7 |Rx1+4do A xdg — §H(3) A xH 3

1 1~ ~ 1~ ~
—§F(1) N *F(l) — §F(3) A\ *F(g) — ZLF(5) AN *F(5)
1
—50(4) A xHzy N Fi3) (2.31)

where H(g) = dB(Q), F(l) = dC(o), F(g) = dC(g), F(5) = dC(4) and

Flg) = Fizy — Co) N Hez)

1 1
Fisy = F5) = 500 N + 5Be) A

Additionally the Fisy self duality must be imposed by hand. More explicitly the field

content of this theory is:

I metric-graviton

Coy +1P axion-dilaton
Bg) +1C(9) rank 2 antisymmetric
Cly rank 4 antisymmetric

\I/l[wé 1=12 Majorana-Weyl gravitinos

MNoT=1,2 Majorana-Weyl dilatinos (2.32)



Chapter 3

The statement of the AdS/CFT

correspondence

The AdS/CFT correspondence conjecture assumes that there is an equivalence or duality
between type IIB string theory (which has as low energy limit a SUGRA theory with
the same supersymmetries) on AdSs x S5 background and N/ =4 SYM in 4 dimensions.
The duality is to be understood as the existence of a map between states and fields on
the string side to the local gauge invariant states of the N/ = 4 SYM theory, and also
a correspondence between the correlators of the two theories [2]. In this conjecture the
quantum field theory would ”live” on the boundary of the background of the string theory.

A first way to check the validity of this conjecture is to take note of the global symme-
tries of the theories involved. To say, N'= 4 SYM have SU(2,2|4) as its transformation
group, with bosonic subgroup SO(4,2) x SO(6) which is in fact the isometry group of
AdSs x S°. We can identify specifically the SO(4,2) isometry of AdSs with the four di-
mensional conformal of N' = 4 SYM on the boundary where this theory lives, and the
SO(6) isometry of S5 corresponds to R-symmetry of N’ = 4 SYM. Additional to it both
theories obey to the discrete Montonen-Olive SL(2,Z) duality.

Another way to see where this conjecture comes from is comparing systems of D-branes
from both sides. On the side of strings these are known to be the endpoints of open strings,

and on the side of SUGRA as solitonic solutions to the equations of motion.

10



11

More explicitly let us take type IIB strings in 10D in which we have N D3-branes, in

the regime where g4V is small. The action takes the form:
S = Sbrame + Sbulk + Sint ) (31)

where the terms in the action corresponds to the two theories involved in the correspon-
dence i.€. Sprane corresponds to NV =4 SYM on four dimensions with gauge group U(N)
(thanks to the N D-branes),! Sy corresponds to type IIB supergravity and the other
term is for the interactions.

The interaction terms can be thrown away in the limit I, = v/o/ — 0 since & o o/ 2g,.
Also higher derivative terms disappear and the bulk action becomes quadratic making
the closed strings there free. Meanwhile the open string sector remain interacting since
the gauge theory cupling is ¢%,, = 47g,.> Note that the low energy limit now have two
decoupled theories N' =4 SYM on the branes and free gravity in the bulk.

Taking the another route, we can analize the system of branes in a different way (now
valid for gsN > 1 ). As we wrote before a D3-brane is also a solitonic solution to the

equations of motion:

3 6
ds® = H™'/? Z Nuwdr'da” + H'Y? Z (dy")2 : (3.2)
p,v=0 I=1
R4
H=1+2, (3.3)

where H is harmonic in the transverse coordinates, and assuming spherical symmetry on

them, r is the radial coordinate. Here
R* = 4ng,Na'? (3.4)

is the “charge” of the brane.

There are two main regions in this space: the first is when » > R so H ~ 1 and this
is basically Minkowsky space in 10D; and the second when r < R, region which is called
the throat. Here the axion Cj and the dilaton are constants (e¥ = g,), while the NS-NS
2-form B, and the R-R 2-form C5 are zero. But the self-dual five form is:

!The U(1) factor can be shown to decouple so that one is eventually left with SU(N).
2This follows from comparing the Yang-Mills action (2.1) with the D3-brane DBI action.



12

F5 = (1 + *) d(L’O N dl’l A dl‘Q AN dl‘g VAN dH_l . (35)

If we make the change of variable z = R?*/r and take the so called near horizon limit

z — 00. The metric (3.2) becomes

22

2 3
ds? = <sz + ) mudx“dx”) + R%dQ3, (3.6)

=0

which can be recognized as the AdSs x S® geometry. To complete the idea, Maldacena
[1] took the limit o/ — 0. The importance of this limit is that in it the flat part of the
D-brane decouples so just the AdSs x S° part contributes to the dynamics. To say, similar
to the former case, the system decouples in two parts: type IIB strings in the throat which
is asymptotically AdSs x S%, and free gravity in flat space.

It raises the idea that as with the two schemes presented we obtained first a system
decoupled into N/ = 4 SYM and free gravity and second a system decoupled into type IIB
strings on AdSs x S® and free gravity, then it is reasonable to postulate that the parts
decoupled of free gravity in both schemes are correspondent. The identification among

the parameters are:
Gy =Angs,  R=(dng.N)"* Vol = N (3.7)

and the rank of the gauge group N corresponds to the 5-form flux threading the S°. In
this way the statement of the conjecture is that given the identification of parameters
already mentioned, the theories are equivalent in the sence explained at the beginning of

the section.

3.1 Practical restrictions

Due to the difficulties in quantizing strings in background Ramond-Ramond fields, it has
become necessary to take certain limits in order to obtain quantitative results from the
correspondence. The first limit to be discussed will be supergravity remembering that

string theory coincides with supergravity, with the same supersymmetries, at low energy.
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This limit is obtained in a two step process, first we take g; — 0 with R constant, and
then the limit of large string tension putting R?/a’ = /47g,N — oo. This let to decouple
the high energy modes from the supergravity fields on AdSs x S°.

For Yang-Mills, the first limit (called t'Hooft limit) is to take g%,, — 0 and N — oo,
leaving A fixed (where A = ¢%,,N = g;N). And the second limit is to take to infinity the
only remaining parameter A\ — oo, which correspond to the strong coupling in the gauge
theory. Therefore the AdS/CFT correspondence is matching a theory on weak coupling
to a theory in strong coupling, which is of great interest since strong coupling very difficult

to work with.

3.2 Matching the spectra

In this section we will see how are actually related the spectrum of N'=4 SYM and type
I1B strings on AdSs x S®, showing that we have a one-to-one correspondence among states

on AdSs x S° and operators on the gauge side.

3.2.1 Gauge theory operators

On the gauge side i.e., N' = 4 SYM the spectrum is the collection of all local gauge
invariant operators O(z) which are also polynomial in the fields of the theory. As said
before these theory have a symmetry SU(2,2|4) so its operators can be organized according
to the infinite dimensional irreducible unitary representations of this group and can be
labeled upon its bosonic subgroup SO(3,1) x SO(1,1) x SU(4)g [8][9]. The labels are
respectively: a pair (sy,s_) of integers or half-integers, the conformal dimension A and
Dynkin labels of the representations of SU(4)g [r1, 72, 73] ([2]).

The conformal dimension A is the eigenvalue of the dilatation operator and can be

obtained from two-point functions
(O(2)0(0)) ~ =5 (3.8)

where A has a dependence on the 't Hooft coupling of the form A = Ag +~()), being A,

the classical dimension and v the anomalous dimension.
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For future use it is important to introduce some terms: Conformal primary opera-
tors are the ones annihilated by the generators K* of special conformal transformations,
and superconformal primary operators are annihilated by the conformal supercharges S.
Another way to define these last operators is that they have the lowest dimension among
operators in a given superconformal multiplet or representation. These operators are com-
posed just by symmetrized products of scalar fields. * Chiral primary operators (CPO) are
the superconformal primaries that are annihilated by some combination of supercharges
. These operators are very important since they are protected from quantum corrections
so, for example, its dimension A remains the same to any order.

These operators are 1/2 BPS so preserves 8 @’s and 8 S’s. More explicitly a single-trace

CPO operator with conformal dimension A can be written as:
Oa(x) = Cp,.p Tr (0 D12 (3.9)

where C7,...1, is a SO(6) symmetric traceless tensor.

3.2.2 Bulk modes

There are arguments affirming that in the supergravity limit of the Yang-Mills theory the
operators which are not protected by supersymmetry decouple from the protected ones
since their conformal dimension tend to infinity, leaving just the last in the spectrum. This
spectrum is arranged in multiplets of SU(2,2|4) and given a dimensional reduction over

S5, the chiral primary operators correspond to the KK modes:
p(r,y) =Y palr)Yaly), (3.10)
A=0

where ¢ is a supergravity field, (z,y) are the coordinates on AdSs and Sy respectively and

Ya(y) are spherical harmonics which expands S°. Due to the compactification on S5 the

3This is easy to see by analyzing the transformation properties of the AN/ = 4 fields under Poincaré

supercharges. Schematically

{Qut=F+[2,9, {Q¢}=D®, [Q=v, [QF=Dy.

Then the only fields that are not Q-exact are the ®!/. Moreover they have to enter in a symmetrized

combination because the commutator between two ®! appears in the first transformation above.
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supergravity field acquire mass. A complete account of the masses of the fields is found

in [2].

3.3 Matrix model description of half-BPS operators

In this section we will overview how we can describe the dynamics of the Half-BPS sector
of N'=4 SYM in terms of a gauged matrix quantum mechanics model as seen for example

in [10][11]. In this article the authors take A” =4 SYM on R x S* where the action reads:

2 1 1 R, 1
S = s /d4x |gltr {_ZLFM Fu — §D“¢1Du¢i — E(ﬁ? + Z[(bi, @-]2 — QZALa“Du)\A
+(01) N0 (00, Ap] = () as(A) 20?3, AP (3.10)
where z# = (¢,0,%¢,x) with u,v,... = 0,1,2,3,; x* = (0,%,x) with a,b = 1,2,3.
The gauge covariant derivative is D, = V, —1[A4,, ], and the field strength, F,, =

0,A, —0,A, —1[A,, A)]. The metric is taken as:

ds® = g datdr” = —dt* + R*(d0? + sin*0dy® + sin*0sin*dy?) (3.12)

From this point we can make the dimensional reduction and obtain the matrix model.
This is done expanding on spherical harmonics on S®.

(m+1)?

dile) =) ¢ (Y5 (x)

=0 m=1
with correspondent expansions for the spinors and the gauge field. These are not shown
because from now on we will just work with the scalar part.
Truncating this expansion just to the zero modes, which correspond to the 1/2 BPS

condition, we have:
di(z) = Xi(t), (3.13)

then the action 3.11 can be truncated consistently to (just the scalar part):

S = /tr B(Dtxi)2 . % (%)2)(3] , (3.14)
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where the mass parameter is related to the SYM coupling constant through

3 A2
(%) = e (3.15)
3 9sym

The BPS condition says that the operators are going to be composed by only one complex
scalar field Z = X + 1 X5

In this way the action becomes, as expected, a matrix quantum model in one dimension:
1
S[Z(t)] = i/dtTr (\DtZ|2 — ]Z]Q) . (3.16)

Finally, if we go to the eigenvalue basis, naming the eigenvalues as z;, ¢ = 1,..., N, and

make a gauge choice (4; = 0), the Hamiltonian can be written as:

1 N
H= L3 () 17
=1

Before the physical analysis about of the Hamiltonian, it is important to note that this
system is not directly equivalent to the matrix model as the matrices here are just complex
but not necessarily Hermitian. The match is actually achieved taking into account that
the creation operators for ZT decouple in the half-BPS sector, leaving just the creation
operators for Z, and recovering in this way the usual quantum mechanics [10]. Changing
to the eigenvalue basis have the effect to introduce a Vandermonde determinant making
that the model describes fermions in a harmonic potential [12]. In this way the description
of the system for large N can be done in terms of incompressible “droplets” of fermions

in the phase space.



Chapter 4

“Bubbling” geometries

The AdS/CFET conjecture states that deformations on the AdS geometries have correspon-
dence with operators in the dual CF'T which lies at the boundary of the AdS space-time.
As an interesting example of this was found in the form of a map for the 1/2 BPS operators
of N'=4 SYM. It can be shown that these operators form a decoupled sector in N = 4
SYM which can after certain manipulation be described by a series of harmonics oscillators
on a gauged quantum mechanics matrix model. The matrix model is well known to be
completely integrable. That this happen comes from the fact that, seen in the eigenvalue
basis, the eigenvalues behave as fermions in a harmonic potential. As explained in the last
section the 1/2 BPS states can be seen as fermions in the classical limit, so the ground
state describes a Fermi sea of eigenvalues which correspond to droplets in the phase space
of the system.

This facts have been used by Lin, Lunin and Maldacena [13] which have constructed
explicitly the full moduli space of 1/2 BPS IIB supergravity solutions.

So each configuration of droplets in the phase space of the gauged quantum mechanics
(which is obtained after dimensional reductions of N' = 4 SYM) has a correspondent
geometry on the AdS side and the other way around. Since the droplets are formed by
fermions, these are incompressible, this is matched on the gravity side by the fact that the

Ramond-Ramond five-form flux is quantized.

17
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(a) (b) (c)

Figure 4.1: (a) Droplet distribution corresponding to AdSs x S°. (b) Gravitons on AdSs5 x
S5 (ripples on the circle), “giant graviton” and “dual giant graviton” (hole and dot). (c)

Generic distribution corresponding to a “bubbling” geometry. Figure from [13].

4.1 Review of the LLM construction

This section is based mainly on the article by [13] in which are constructed 1/2 BPS
I1B supergravity backgrounds. The dual of these background on the gauge side can be
described as fermions as in [10] as we explained before, and satisfy the condition A = J,
where A is the conformal dimension and J is a particular U(1) R-charge in the R-symmetry
group. In order to obtain the geometries on the IIB side we have in consideration that
the BPS states preserve SO(4) x SO(4) x R bosonic symmetries so the solution (assuming
just the five-form field strength varies) must be of the type:

ds* = g, datde” + eTTCd02 + 9 q02
Fi5) = Flda" Ade” AdQs + F,da* A de” A dQs, (4.1)

where p, v = 0,...,3. To say, the geometry contain two spheres, but the time symmetry is
still not explicit. The two three-spheres S® and S® in the metric make the SO(4) x SO(4)
isometries manifest. The additional R isometry corresponds to the Hamiltonian A — J.
As described in the article by LLM, requiring that the geometry preserves the killing
spinor leads to reveal the form of a general half BPS IIB supergravity background (see



19

next section for a derivation):

ds* = —h72(dt + Vida")? + B2 (dy? + dx'da’) + ye®dO3 + ye “dQZ (4.2)
h™% = 2ycosh G, z= % tanh G , (4.3)
yo,Vi = €052, y(O:iV; — Vi) = €0,z (4.4)
F=dB,A(dt+ V) + BidV + dB,

F=dB, A(dt+ V) + BdV +dB, (4.5)
B, = —}ly%w, B, = —inew, (4.6)
dB:—}Ly3*3d(z;%) , déz—iyg*gd(z?}%) , (4.7)

where ¢ = 1,2, and %3 is the Hodge dual operator for the flat three-dimensional space
parametrized by x1, xo, and y. It can be seen that the variable y is equal to the product
of the radii of the two spheres in the geometry.

It is important to note that all the solution is given in terms of a single function z

which satisfies the equation:

00 + 10, (%) ~0. (4.8)

As y is equal to the product of the radii of the two spheres, there are singularities at
y = 0 unless z take some special values. In this case must be z = +1/2. For these values
of z in the plane y = 0 interestingly the radii of one of the spheres go to zero while the
other remains finite (this happens symmetrically irrespective of which sphere go to zero
and which not). The regions on the plane y = 0 with z = —1/2 and z = 1/2 correspond
to fermions and holes, and the x1, 25 plane correspond to the phase space. Knowing that,
to get the solution, the ® = z/y? replacement is made and eqn. (4.8) becomes Laplace
equation in six dimensions with spherical symmetry on four dimension being y the radial
coordinate of the last four. Here solving this equation by Green’s functions, the values of

z at the boundary y = 0 acts as charge sources and the solution reads:

2 VA I ..
Y z(}, 75, 0)da’ dy
= — : 4.9
Z(l'l,.]?g,y) T /R2 [(X—Xl>2+y2]2 ( )
and
€ z(2, xh,0)(x; — oh)daydxly, €. [ (x; — a)dzdz
V;(xl,:ca,y)z—J/ e = . (4.10)
T Jre (¢ = x')? + 3/7] ™ Jp [(x =X)? +y?]
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The energy of the solutions can be calculated as:

Pr 12 +2) 1 Px\?
p 2mh 2 h 2 \Jp 27h
Being D the region (fermion region) where z = —%. This coincides with the energy

of fermions in an harmonic oscillator potential minus the energy of the ground state N
fermions, just the same as the case of the description of BPS operators by the gauged
matrix quantum mechanics exposed before, showing the match between the gravity and
gauge part.

To obtain the flux generated by a droplet let us have the quantization rule for the area

A

=N 4.12
5 =V (4.12)

with h = 27rl;}, where N coincides with the number of fermions. The basis state of this

system is just a black circle of radius R =v/2AN. Here the S5 background can be obtained

by fibering the S sphere on a two-dimensional surface & which cover the droplet.

4.2 Derivation of the type IIB solutions

In this solution (making the ansatz 4.1)we are just assuming that the axion and the
dilaton are constant, and the two three-form field strengths (see section 2.3.3) are zero.
It is important to note that the self-duality condition in ten dimensions imply also that
there is just one independent gauge field in four dimensions:

F=¢eC%%F, F=—e3C%F F =dB, F=dB (4.13)

In order to find the solutions we don’t use the EOM but the killing spinor equations
which are the equations describing unbroken supersymmetry. These equations are known
to imply in certain cases the equations of motion. As these equations are in first order it

is preferable to work with them:

(3
VMU + mFM1M2M3M4M5F]E;BM2M3M4M5FM77 =0 (414)
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In order to separate this equation into component blocks we select a basis for the

gamma matrices:
Fp=7%®1®111, o =75®0,811 0, [i=7%®1®0,® 09 (4.15)

where the accents just distinguish position on the otherwise usual Pauli Matrices. The

chirality condition in this basis reads:
T = G3m =1 (4.16)

where the intermediate result come from:

'y = H Fu H I, H I'zg = ’75537 ’75 =o' o3
(4.17)
Now, lets consider spinors on a unit sphere, obeying the equation:
Vex = af%x, a==+1 (4.18)

2

This together with the full form of the metric (4.1) give us the following spin connection

in the sphere directions

1 1
Vo=V THOH+C),  Va=V;— I":0,(H - G) (4.19)

where V' contains the spin connection on a unit sphere. The ten dimensional spinor can
be decomposed as:

N = €abp @ Xa @ Xb (4.20)

where Y, X» 0bey equation (4.18). With the aforementioned basis the contraction of the

five form with the gamma matrices in (4.14) can be written as:

— o My MaMsMyMs 10(5)
M = @P FM1M2M3M4M5 ’

M = 4LS(e—%(H-l—G)F/LVPvuyeabcl*\abc . e—%(H—G)PuVFuVEaBEFdT)E> ’
ée_%(}”(;) (T* Fy°61 + %ew ATH By 1706

M = —}le’%(HJFG)’y“”FnyE’&I (4.21)
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where in the last step we have used ¢, A5 = 3 and the chirality condition. So

equation (4.14) can be decomposed as:

1

(1ae”2H+On 50 + 57" Ou(H + G))e +2Me =0, (4.22)
; 1

(e =Dy + 57“8H(H —G))e—2Me =0, (4.23)

Vye+My,e=0 (4.24)

In order to calculate the metric and the fields it is convenient to define some bilinears,
calculate their variation and proceed the calculation with the aid of this information. The

bilinears are:

f1 = 1€01€ fo = 1€09€ K, = —€y,e L,= E’yE”y#e Y =€ywoie  (4.25)

Now, with the aid of (4.24) and the identities:

VT = g0 gt — g — e (4.26)
b 1= (0™ = ¥ 9) Fag
= (Y + 209577 — 927*) — 7*P) Fas
= 2(FMB7/B — Fou7”)

= 4F, 57" (4.27)
The variation of these can be calculated as:

V,ufi =(V,€)d1€ + €61V €]
-3 — af A~ ~AoA o
€ 2(H+G)Faﬁ€(%757 50101 — 01017 575%)6

_3 _
e 2D F (7,0 + 4 7,7 e

_3 _1 o (6% (0% g «
e 2O F5es (9,777 + 9™ — 9,77 = 17,0
+ 0%+ 87 = 9% — €7 e — o= By
= %e—g(H-FG)gwaﬂFaﬁKU

= e H-OF K° (4.28)
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V'ufg = Z[(VME)OA'QG + €62V”e]

1 _3 _ B~ ~ A~ A a
[ b= Q «

= MO p KV (4.29)

V. K, = _[<Vu€)7u€ + E’Yu(vue)]

1 _3 — (6% A (6% ~
4 2O F st (v, v y,61 — 1Py .61 )e

1, . o
= — ¢ O g0 — 1P )r o

1 _§ 71 [0 0% (0% g «
= =3¢ 2O FE (9,50 + 9w — 9,57 % = €7, P10

— 90 = 9P+ 9 17 m7600° — a = )7 e

1 A
= _Zeig(HJrG)Fa,BE(zgagg — 29,9, + 2%, aﬁgoufy5)’7501€

I
1
= —Ze_%(H+G)€[(2FMV — 2F,,)(—163) + 216,405 F*P61)€

— —e 2 HHON(F, fy — Lo, g FOP 1)) (4.30)

V,.L, = (V,ﬁ)fm,e + 675%Vue
_ _Llswrop
1
1 A
= ¢ Ve Fagy ™ (0, + 1) + 4F67* + 4F, 57 nlore

€V A 1 ?Py,) 61

=~ 20 FogY ™ + B2, + F,7Y),] (431)
Also using Fierz identities it can be obtained:

K-L=0, L?=-K*=fl+f; (4.32)

Implications of the equations for the bilinears

With the information we have obtained from the bilinears we are going to develop further
how this affects the metric and the fields: It can be shown that the K* is a killing vector

and L,dz" is a locally exact form, since V(,K,) = 0 and dL = 0.
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In this way we can define a coordinate L = dy, with the other three coordinates taken

as orthogonal to y:
ds? = h2dy* + apdar®dz”® (4.33)
Another coordinate can be set up if we take into account K - L = 0, as L now depends

only on y, then we have

0=KYL, = K" (4.34)

therefore K just depend on the transversal coordinates. So we can choose one of these
coordinates to be in the direction of K, lets call this coordinate ¢, then we can put the
metric as:

452 = 2l + Vida' P+ WE(dg? + hyda' ) (4.35)

with ¢, 7 = 1,2. The coeficients of the g, and g,, terms of the metric were choosen in
order to be consistent with the fact K2 = —L2.
Lets now do some manipulations in order to get the B form. Taking equation 4.29 and

using the fact that K just have one component (K* =1 by convention):
Oufp = —e2 WO E, — _e3+0y B, (4.36)

where we have used the fact that due to the R isometry the B form is independent of
time.

Now, by the definition of K:
v — v 1 —
0B =F,,K"=—F,&ye= _4_16[%“ Fle (4.37)
where in the last equality we have used (4.27). If we replace (4.21) into (4.22):
1 1
56_%(H+G)F’y5516 = (rae~2Ft55, 4 S +G))e (4.38)
Multiplying by v°61 we arrive to the expression (together with its adjoint):

1 - 1 1
56’%(H+G)Fe = (1tae 2 TTE) ¢ 575,@(11[ + G)ay)e,

1 1
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Replacing this results into (4.37) gives:

1 s _ . _ .
0,B; = —Zeg(HJrG)(e%%ﬁ(H + G)oy — evsP(H + G)b17,.€)

1 3 — v v A
= =520, (H + G)e(nysn” — 157" W) re
1
— e%(H+G)§8M(H + G)gf)%a-le
1
— _€%(H+G)53N(H +G)f (4.40)
where in the last step we have used the chirality condition € = I'j1e = ~503¢. Replacing
this result in (4.36) gives:
1
Oufo = 5]“28#([{ +G) (4.41)

which has as solution:
fo = dae2 BT B, = _qHC) (4.42)
To obtain f; the process is basically the same, using (4.28) and (4.23) we get:
0.1 = 3¢ X Oely,, Fle = Lo,(H — O)f (4.43)

with solution:
fi =4Be2 -G B = _pRAH-G) 45— (4.44)
Now to find H we begin by adding (4.22) and (4.23), multiplying by &; and using the
chirality condition:
c1PHe = (—me*%(HJrG)% + beié(H*G))e (4.45)
éopPH = —E(—zae’%(}”G)’yg, + be~ 2 (H=G)) (4.46)

If we multiply (4.45) by 317, and its adjoint (4.46) by 217y,¢ and sum we get:

1
§z€61 (v + V.)€, H = 0, Hieore = 0, H f,

= %E[%, —1ae”2HHC) g be~2H=G))e

= —ae_%(HJrG)E%%e = —ae_%(HJ“G)LM (4.47)
As we already know f; (4.44), it is easy to get H:

e =—ayy=y, y=-a (4.48)
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After this we can fix o multiplying (4.45) by €y;0; to get:
- b
h™2y0,e" = —al? = —a (ff + mﬁ) (4.49)
To match the condition (4.32) we must have b = 4aa. Therefore if we choose a@ = 3, the
condition b = a must hold.

With this information we can obtain an expression for the killing spinor. If we remem-

ber that H only depends on y we can write (4.45) as:

hy
which can be simplified using (4.32), (4.42) and (4.44) and factoring e~z =% to obtain:

<\/1 + e 266178 4 are Cryg — a) e=0 (4.51)

Taking K' = 1 and the definition of K (4.25) we know that e'e = 1, also taking L, = —a

]_ 1 1
(—&1F3 +1ae” 2Ty, bez<HG>) e=0 (4.50)

and the definition of L we get €' T°T°I'3¢ = —a. As the operator ['°T'°I® is unitary and

| a |=1 then we must have:
[1+alT°T?|e=0 or  [l4+allh)e=0 (4.52)
It can be verified that a killing spinor of the form:
e = e = (cosh & 4 1asinh 67°)e, (4.53)
satisfy the two last projection formulas (4.51) and (4.52) given
I6le; = ae, sinh 26 = ae™© (4.54)
We can know the scale of €; putting (4.53) into the definition of f; obtaining
€1 = eiHHO¢. eleg =1 (4.55)
Using equation (4.13) we can separate the components of B and B which are not in
the time direction
B=B/(dt+V)+B
dB + BidV = —h*¢*” x3 dB,
B=Bdt+V)+B

dB + BdV = he %% +y dB, (4.56)
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where the x5 operator is the flat 3D hodge dual operator in the y, x1, 5 directions. Finally
to get the fields B and B we first have to calculate V. This can be done taking the

antisymmetric part of (4.30):
1 1 ~
—§d[h‘2(dt + V)] = SdK = e HAO R o~ (H=O p (4.57)
If we take just the part not depending on dt as separated in (4.56) we get:

1 . L
5h—%zv = e TOUB + BdV) — e U= (dB + B,dV)
= h2(e7H+2¢ x5 dB, — e H72C x5 dB,)

1
AV = 2hy %3 dG = = %3 dz, 2= - tanh G (4.58)
y

where we have used the results (4.42), (4.44) and based on (4.32) we also used:

h™2 = y(e® 4+ e7%) (4.59)
SO
11 4dG 1 11 /1
h*ydG M ICEr=aE y2sec GdG y2d<2tan G) (4.60)

So using this result in the components different from time of B and B as in (4.56):

dB — iez(HJrG)l w5 dz — %é oy do 1 c(H+G) h2 %5 dy
()
dB = —%gﬁ *3d(2y_2%) (4.61)
Also as dV must be closed for z:
1, 1
;81- z 4+ 0, (;@,z) =0 (4.62)

4.3 Ground state configuration

For future considerations the only droplet configurations to be dealt with will be the ones

with radial symmetry, so here we change to polar coordinates (zy,x2) — (R, ¢). With
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this prescription we have Vg = Vi cos¢ + Vasing = 0. Defining V =V = R(—Vising +
V5 cos @) equation (4.4) becomes:

1 1
yo,V = —ROgp %, —0gV = -0y 2. (4.63)
R Y
and the equations (4.9) and (4.10) are now:
/ a / /
V() = [ (RO (o R)AR (4.65)
where
2 pr2y 2
SRy R) = oty (4.66)

9 [(R2 + R? + y2)2 _ 4R2R’2]1/2 ’
—2R?’R'(R? — R"? + ¢?
(R R) = ( v) (4.67)
[(R2 + R?2 + yz)z _ 4R2R’2]3/2

where zj is the function that LLM designate to be the circular droplet (ground state),
as can be easily verified from eqn. (4.66): z(R',0) = 1/2sign(R’ — Ry), which together
with eqn. (4.64) gives z(R,y) = zo(R, y; Ro). As previously anticipated (see fig.4.1) such
a configuration gives rise to the AdSs x S® solution. This can be seen clearer after the
change of coordinates [13]:

y = Rysinh psinf, R = Rycoshpcosf, b=o¢+t, (4.68)

because one recovers the AdSs x S° metric in standard global form

ds® = Ro( — cosh? pdt* + dp? + sinh? pdQ2 + df? + cos? 0dp? + sin? Gdﬂg) : (4.69)



Conclusions

e In the process of this Master program we reviewed basic aspects of string theory,
particularly the low energy limit Supergravities correspondent to the “different”
string theories, and more especially the type IIB which is the basis to formulate the

AdS/CFT conjecture. Also the counterpart, the ' = 4 SYM theory, was introduced.

e We also reviewed some of the arguments which are used to propose the Maldacena
conjecture as the comparison of symmetries between N' = 4 SYM and Adss x S°, and
the argument of similarity of solutions in type IIB superstring theory which (with
some assumptions) for g, N << 1 give N = 4 SYM attached to the N D3-branes
and for g;N >> 1 give type IIB SUGRA on AdSs x S® each one decoupled from free

gravity on the bulk and the flat side respectively.

e In the scope of the AdS/CFT correspondence, we reviewed in detail the derivation
made by LLM of the 1/2 BPS geometries in type IIB string theory. This geometries
correspond in the CFT side to the also 1/2 BPS operators in Matrix Quantum

Mechanics, which can be described as free fermions.
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