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Bubbling geometries

in the AdS/CFT correspondence

Eiser Augusto Portilla Mosquera

Orientador: Prof. Dr. Diego Trancanelli

São Paulo, November 4, 2014



Acknowledgments

I would like ot thank my mom Aura, my sister Dahyana, and my nephew Alejandro for

their support in good and bad moments. Also my uncles Gerardo and Daniel for their

financial aid. And the people who made my staying in Sao Paulo much more meaningful,

Tania, Hugo, Miluska, Estefania, Sivia, Ana, Cedrick, and specially to Antonio whose

advices helped me a lot.

Thanks to my advisor Diego Trancanelli without whom this dissertation would not

have been possible.

Finally, I thank CNPq and FAPESP for their support under grant 2012/2489-2.

i



Resumo

O escopo deste mestrado é de se familiarizar com a chamada correspondência AdS/CFT,

que tem sido um dos mais importantes desenvolvimentos na f́ısica teórica nas últimas

décadas. De acordo com essa correspondência, deformações das geometrias do lado da

gravidade (ou lado ”AdS”) devem ser mapeadas para operadores das teorias de calibre

duais (ou lado ”CFT”).

Em particular, nos temos estado interessados em explorar uma entrada particular no

dicionário AdS/CFT, a relação entre os operadores 1/2 BPS em N = 4 super Yang-Mills,

e as chamadas geometrias bubbling no lado da gravidade.

A fim de fazer isso, apresentamos primeiramente as noções deN = 4 SYM e soluções de

Supergravidade. Portanto, podemos expor mais claramente o sentido da correspondência

AdS /CFT, e depois mostrar a derivação das geometrias 1/2 BPS duais a estados 1/2 BPS

em N = 4 SYM como um exemplo.

Palavras–chave Cordas, Supersimetria, Supergravidade, AdS/CFT, geometrias bub-

bling.
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Abstract

The scope of this Master program was to get acquainted with the so-called AdS/CFT

correspondence, which has been one of the most important developments in theoretical

physics in the last decades. According to this correspondence, deformations of the ge-

ometries in the gravity side (or ”AdS” side) must be mapped to states of the dual gauge

theories (or ”CFT” side).

In particular, we have been interested in exploring a particular entry in the AdS/CFT

dictionary, namely, the relation between 1/2 BPS operators in N = 4 super Yang-Mills,

and the so-called bubbling geometries on the gravity side.

In order to do that, we first present the notions of N=4 SYM and Supergravity so-

lutions. In this way, we can expose the statement of the AdS/CFT correspondence, and

later show the derivation of 1/2 BPS geometries dual to 1/2 BPS states in N=4 SYM as

an example of this one.

Keywords Strings, Supersymmetry, Supergravity, AdS/CFT, bubbling geometries.
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Chapter 1

Introduction

In this work we expose an introductory review to the concept of bubbling geometries.

These are based fundamentally in the AdS/CFT correspondence conjectured by Maldacena

[1] which is one of the areas of biggest interest in string theory nowadays. In this way, to

introduce the correspondence we begin with the theories in which it is based as N = 4

super Yang-Mills and supergravity.

After that we proceed to show arguments by which the conjecture of the AdS/CFT

correspondence makes sense, as solutions in type IIB string theory for different limits in

coupling constants lead to the two aforementioned theories. This together with symmetry

arguments and matching particular cases suggest that they must be related in a way that

will be clarified in tha main text.

Finally we arrive to the bubbling geometries as an important application of the AdS/CFT

correspondence. They emerge from a particular case of N = 4 SYM, called Matrix Quan-

tum Mechanics. The interesting operators in this theory are 1/2BPS, to say, they satisfy

just half of the supersymmetries, and in this context also SO(4) × SO(4) × R bosonic

symmetries. In this way, the correspondent type IIB sugra solutions are looked for, and

found, in the form of bubbling geometries with the same symmetries.

As said before, the process of obtaining this correspondent geometries serves as a way

to understand some details on how the correspondence actually works, and can be used

as an enter point to this vast area which is so promising in cases as important as non-

perturbative QCD and Quantum Gravity.

1



Chapter 2

Preliminaries

I start by reviewing some of the ingredients that are necessary to understand what the

AdS/CFT correspondence is all about. This will prepare the ground to introduce the

bubbling geometries.

2.1 N = 4 super Yang-Mills theory

The field content of this maximally symmetric theory in 4D is given by a gauge field

Aµ, µ = 0, 1, 2, 3, four Weyl fermions ψAα (with A = 1, . . . , 4 and α = 1, 2), and six real

scalars ΦI [2]. The action (in Euclidean signature) reads

S =
1

g2
YM

∫
d4xTr

(
1

2
FµνF

µν +
g2
YMϑ

8π2
FµνF̃

µν +DµΦIDµΦI + iΨ̄ΓµDµΨ

−1

2

[
ΦI ,ΦJ

] [
ΦI ,ΦJ

]
+ iΨ̄ΓI

[
ΦI ,Ψ

])
, (2.1)

where the four fermions have been written as a single Majorana-Weyl fermion in 10D. gYM

is the Yang-Mills coupling constant and ϑ is the instanton angle.

It can be checked that this action is conformally invariant at the classical level as all

its terms have dimension 4 . With Poincaré invariance these two things combine into the

conformal symmetry with SO(4, 2) ' SU(2, 2) group. Additionally the combination of

this symmetry with the N = 4 Poincaré symmetry form the superconformal symmetry

given by the supergroup SU(2, 2|4).

It is important to note that at quantum level the superconformal symmetry remains

2



3

and it is also believed that the theory is UV finite. As a consequence the coupling constant

gYM is actually a non-running parameter which can be fixed to the desired value. Then

N = 4 SYM is a unique theory defined only by the value of gYM and the rank of the gauge

group N .

2.2 Anti de Sitter space

The AdS5 space is a 5-dimensional space with constant negative curvature. One way to

describe it [2] is to take it as an isometric embedding on a flat space of one more dimension,

in this case 6. Now if we take the flat space to have coordinates Xi (with i = −1, 0, . . . , 4)

then the AdS5 space is defined by the hyperboloid in R4,2

−X2
−1 −X2

0 +
4∑

k=1

X2
k = −R2 , (2.2)

where R is the radius of the space. This equation highlights that the isometry group

of AdS5 is SO(4, 2). Other useful description of this space comes when we change the

coordinates to:

X−1 +X4 =
R

z
, Xµ =

R

z
xµ , µ = 0, . . . , 3 , (2.3)

so the metric of this space (2.2) becomes

ds2 =
R2

z2

(
dz2 + d~x 2

)
. (2.4)

This is called Poincaré patch metric with z ∈ [0,∞) being the radial coordinate of AdS5.

A different description is known making the next parametrization of the AdS5×S5 space,

known as global coordinates:

X−1 = R cosh ρ cos t , X0 = R cosh ρ sin t , Xk = R sinh ρΩk , (2.5)

with
∑4

k=1 Ω2
k = 1. In this way the metric reads:

ds2 = R2
(
− cosh2 ρ dt2 + dρ2 + sinh2 ρ dΩ2

)
, (2.6)

where t ∈ R is the global time of AdS5.
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2.3 Supergravity in 10 and 11 dimensions

There are various ways to construct supergravity theories. One way is the so called Noether

method which I will present here. Later I will discuss supergravity in 11 dimension and

show how one can dimensionally reduce to get supergravity in 10 dimensions which is

important in the AdS/CFT correspondence. Here we follow [3, 4, 5].

2.3.1 The Noether method

Any non linear theory with a gauge symmetry can be constructed by a Noether procedure,

starting form the linearized theory. An example is non-Abelian Yang-Mills theory which

can be obtained from the linearized free theory. In this method, one takes the linearized

theory invariant under local abelian and rigid non-abelian transformations, and through

some steps, arrives to the non linear theory. The steps are first to convert the rigid

transformation to local (so that the linear lagrangian is no longer invariant) and then

adding successively terms to the action and to the transformation law, to get an action

which is invariant and transformations which satisfy a closed algebra.

As I have mentioned, Yang-Mills theory is a simple example. Let us consider an

invariance under a rigid and a local abelian transformations with parameters T and Λ, to

say

δAia = sijkT
jAka , δAia = ∂aΛ

i . (2.7)

Clearly we have

[∂Λ, ∂T ] = ∂a(s
i
jkT

jAka) = sijkT
j∂aΛ

k . (2.8)

So if we consider an action

A(0) =

∫
d4x

(
−1

4
f iabf

abi

)
, (2.9)

with

f iab = ∂aA
i
b − ∂bAia , (2.10)
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this is invariant under the above transformations. Now the procedure continues making

the rigid transformations local, so that the parameter T becomes space-time dependent:

T i(x). This has the consequence that the original action is no longer invariant under this

transformation but instead we have:

δA(0) =

∫
d4x ∂aT

k(x)jak , (2.11)

with jai = s i
jlA

l
bf

abj. Now in order to cancel this variation we redefine the action having

a new term

A(1) = A(0) − 1

2
g

∫
d4x

(
Aiaj

ai
)
. (2.12)

To make this action invariant up to zero order in g we also redefine the transformation

law making the initial rigid transformation now proportional to the initial abelian one

(Λi = 1
g
T i(x)) so the initial separate transformation get reunited into one only:

δAia =
1

g
∂aT

i(x) + s i
jk T

j(x)Aka(x) , (2.13)

Again the given action is not invariant completely under this transformation because of

the variation under the second term of eqn. 2.13 which is:

δA1 =

∫
d4x

(
−g(AiaA

j
bs

k
ij )(AlbδaT

ms k
lm )
)
. (2.14)

Because of this, we have to continue the process of adding a new term in the action and

the transformation. Interestingly in this case it is enough to add the additional term in

the action:

A(2) = A(1) +

∫
d4x

g2

4
{(AiaA

j
bs

k
ij )(AblAams k

lm )} =
1

4

∫
d4xF k

ab F
abnskn (2.15)

where F i
ab = ∂aA

i
b − ∂bAia − gs i

jkA
j
aA

k
b . This action is invariant under eqn. (2.13) to all

orders. We have found the action of Yang-Mills theory.

Finally we must note that the algebra of the transformations closes as

[δT1 , δT2 ]Aia = s i
jk T

j
2

(
1

g
∂aT

k
1 + s k

lm T
l
1A

m
a

)
− (1↔ 2)

=
1

g
∂aT

i
12 + s i

jk T
j
12A

k
a (2.16)
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This is again a transformation of the type of eqn. (2.13). We have used T i12 = s i
jk T

j
2T

k
1

and the Jacobi identity of the structure constants.

This is an example of how the process works and it can be applied in the same way to

construct supergravity theories even tough the technical aspects are more complicated, but

the essential steps are the same. These steps are: establishing the linear non-interacting

theory with its corresponding action and a pair of transformations, one local abelian and

other rigid global. Then make local the rigid transformations and change the lagrangian

and the proper transformations order by order to obtain an invariant action with a closed

algebra in the transformations.

2.3.2 Supergravity in 11 dimensions

It has been shown that supergravity (SUGRA) exists in up to 11 dimensions [6] and in

that dimension there is only one SUGRA theory [7]. It is possible to construct SUGRA

theories in dimensions less than 11 through the procedure of dimensional reduction [3].

Supergravity in 11D was constructed by Cremmer, Julia and Scherk [7] having a field

content:

gMN metric

AMNP 3-form potential

ψM gravitino .

Let us start with some notation. I will use M,N,P as curved indices and A,B,C as flat

indices. The gamma matrices and the gravitino satisfy:

{ΓA,ΓB} = 2ηAB, ψM = ψTMC
−1, C−1ΓAC = −ΓTA ,

where the signature is (−+ +...+). The spin connection is ω AB
M = ω AB

M (e) +K AB
M and

the torsion:

K AB
M = − 1

16
(ψNΓ ABNP

M ψP + 4ψMΓ[AψB] + 2ψ
A

ΓMψ
B) .
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Having established that, the Lagangian is:

e−1L =R(ω)− 1

2 · 4!
F 2
MNPQ +

1

6

(
1

4!4!3!
εMNPQRSTUVWXFMNPQFRSTUAVWX

)
− 1

2
iψ̄MΓMNP∇N

(
1

2
(ω + ω̂)

)
ψP

− 1

8 · 4!
i
(
ψ̄MΓMNPQRSψN + 12ψ̄PΓQRψS

)(1

2

(
F + F̂

))
PQRS

, (2.17)

where F is the field strength of A. Here we have introduced some other fields:

ω̂ AB
M = ω AB

M +
1

16
ψ̄NΓ ABNP

M ψP , (2.18)

F̂MNPQ = FMNPQ +
3

2
iψ̄[MΓNPψQ] . (2.19)

We arrive at the following equations of motion:

RMN(ω̂)− 1

2
gMNR(ω̂) =

1

12

(
F̂MPQRF̂

PQR
N − 1

8
gMN F̂

2

)
ΓMNP ∇̂N(ω̂)ψP = 0

∇M(ω̂)F̂MNPQ +
1

2

(
1

4! · 4!
εNPQRSTUVWXY F̂RSTU F̂VWXY

)
= 0 (2.20)

where the supercovariant derivative is defined as

∇̂M = ∇M +
1

288

(
Γ NPQR
M − 8δNMΓPQR

)
FNPQR . (2.21)

This system as we stated before has one local supersymmetry with transformation

laws:

δe A
M =

1

4
iεΓAψM

δAMNP = −3

4
iεΓ

[MNψP ]

δψM = ∇̂M(ω̂)ε (2.22)

and the algebra of its transformation closes. The importance of supergravity with respect

to string theory is that supergravity can be seen as the low energy limit of string theory,

when we neglect all massive modes of the string spectrum and just keep the massless level.
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2.3.3 10D Supergravity

As was explained earlier, the SUGRAs in lower dimensions than 11 can be obtained

through the process of dimensional reduction. Making a Kaluza-Klein reduction we divide

our 11D Minkowski space in this way:

M11 = M10 × S1 xM = (xµ, y) (2.23)

The compactification is going to be made on a circle (S1) because it is the simpler way to

work with it. We choose the fields to not depend on the internal coordinates (in this case

y). So the 11D fields can be split this way (just the bosonic part for now)

gMN → gµν , gµ11(C(1)), g11 11 (2.24)

AMNP → Aµνρ(C(3)), Aµν11(B(1)) (2.25)

With this fields it can be done an ansatz for the solution:

ds2
11 = e−

2
3
φds2

10 + e
4
3
φ(dy + C(1))

2 (2.26)

A(3) = C3 +B(2) ∧ dy (2.27)

which can be inserted into the (bosonic) 11D Lagrangian

L11 = R ∗ 1− 1

2
F(4) ∧ ∗F(4) +

1

6
F(4) ∧ F(4) ∧ A(3) (2.28)

to give

LIIA = e−2φ

[
R ∗ 1 + 4dφ ∧ ∗dφ− 1

2
H(3) ∧ ∗H(3)

]
−1

2
F(2) ∧ ∗F(2) −

1

2
F̃(4) ∧ ∗F̃(4)

−1

2
F(4) ∧ ∗F(4) ∧B(2) (2.29)

for 10D Type IIA SUGRA. Here H(3) = dB(2), F(2) = dC(1), F(4) = dC(3) and

F̃(4) = F(4) − C(1) ∧H(3) (2.30)

Through manipulations the D = 10,N = 1 supergravity theory can be constructed

from here but the Type IIB is quite different and cannot be obtained this way because it
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is a chiral theory, i.e., its two fermions have the same chirality, and this is a characteristic

which cannot be inherited from SUGRA in 11D. Neither the Noether method can be

applied to construct this theory but a variant of it [4]. The bosonic part of the Lagrangian

for type IIB supergravity turns out to be:

LIIB = e−2φ

[
R ∗ 1 + 4dφ ∧ ∗dφ− 1

2
H(3) ∧ ∗H(3)

]
−1

2
F(1) ∧ ∗F(1) −

1

2
F̃(3) ∧ ∗F̃(3) −

1

4
F̃(5) ∧ ∗F̃(5)

−1

2
C(4) ∧ ∗H(3) ∧ F(3) (2.31)

where H(3) = dB(2), F(1) = dC(0), F(3) = dC(2), F(5) = dC(4) and

F̃(3) = F(3) − C(0) ∧H(3)

F̃(5) = F(5) −
1

2
C(2) ∧H(3) +

1

2
B(2) ∧ F(3)

Additionally the F(5) self duality must be imposed by hand. More explicitly the field

content of this theory is:

gµν metric-graviton

C(0) + ıΦ axion-dilaton

B(2) + ıC(2) rank 2 antisymmetric

C(4) rank 4 antisymmetric

ΨI
µα I = 1, 2 Majorana-Weyl gravitinos

λIα I = 1, 2 Majorana-Weyl dilatinos (2.32)



Chapter 3

The statement of the AdS/CFT

correspondence

The AdS/CFT correspondence conjecture assumes that there is an equivalence or duality

between type IIB string theory (which has as low energy limit a SUGRA theory with

the same supersymmetries) on AdS5 × S5 background and N = 4 SYM in 4 dimensions.

The duality is to be understood as the existence of a map between states and fields on

the string side to the local gauge invariant states of the N = 4 SYM theory, and also

a correspondence between the correlators of the two theories [2]. In this conjecture the

quantum field theory would ”live” on the boundary of the background of the string theory.

A first way to check the validity of this conjecture is to take note of the global symme-

tries of the theories involved. To say, N = 4 SYM have SU(2, 2|4) as its transformation

group, with bosonic subgroup SO(4, 2) × SO(6) which is in fact the isometry group of

AdS5 × S5. We can identify specifically the SO(4, 2) isometry of AdS5 with the four di-

mensional conformal of N = 4 SYM on the boundary where this theory lives, and the

SO(6) isometry of S5 corresponds to R-symmetry of N = 4 SYM. Additional to it both

theories obey to the discrete Montonen-Olive SL(2,Z) duality.

Another way to see where this conjecture comes from is comparing systems of D-branes

from both sides. On the side of strings these are known to be the endpoints of open strings,

and on the side of SUGRA as solitonic solutions to the equations of motion.

10
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More explicitly let us take type IIB strings in 10D in which we have N D3-branes, in

the regime where gsN is small. The action takes the form:

S = Sbrane + Sbulk + Sint , (3.1)

where the terms in the action corresponds to the two theories involved in the correspon-

dence i.e. Sbrane corresponds to N = 4 SYM on four dimensions with gauge group U(N)

(thanks to the N D-branes),1 Sbulk corresponds to type IIB supergravity and the other

term is for the interactions.

The interaction terms can be thrown away in the limit ls =
√
α′ → 0 since κ ∝ α′ 2gs.

Also higher derivative terms disappear and the bulk action becomes quadratic making

the closed strings there free. Meanwhile the open string sector remain interacting since

the gauge theory cupling is g2
YM = 4πgs.

2 Note that the low energy limit now have two

decoupled theories N = 4 SYM on the branes and free gravity in the bulk.

Taking the another route, we can analize the system of branes in a different way (now

valid for gsN � 1 ). As we wrote before a D3-brane is also a solitonic solution to the

equations of motion:

ds2 = H−1/2

3∑
µ,ν=0

ηµνdx
µdxν +H1/2

6∑
I=1

(
dyI
)2
, (3.2)

H = 1 +
R4

r4
, (3.3)

where H is harmonic in the transverse coordinates, and assuming spherical symmetry on

them, r is the radial coordinate. Here

R4 ≡ 4πgsNα
′ 2 (3.4)

is the “charge” of the brane.

There are two main regions in this space: the first is when r � R so H ' 1 and this

is basically Minkowsky space in 10D; and the second when r < R, region which is called

the throat. Here the axion C0 and the dilaton are constants (eϕ = gs), while the NS-NS

2-form B2 and the R-R 2-form C2 are zero. But the self-dual five form is:

1The U(1) factor can be shown to decouple so that one is eventually left with SU(N).
2This follows from comparing the Yang-Mills action (2.1) with the D3-brane DBI action.
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F5 = (1 + ?) dx0 ∧ dx1 ∧ dx2 ∧ dx3 ∧ dH−1 . (3.5)

If we make the change of variable z ≡ R2/r and take the so called near horizon limit

z →∞. The metric (3.2) becomes

ds2 =
R2

z2

(
dz2 +

3∑
µ,ν=0

ηµνdx
µdxν

)
+R2dΩ2

5 , (3.6)

which can be recognized as the AdS5 × S5 geometry. To complete the idea, Maldacena

[1] took the limit α′ → 0. The importance of this limit is that in it the flat part of the

D-brane decouples so just the AdS5×S5 part contributes to the dynamics. To say, similar

to the former case, the system decouples in two parts: type IIB strings in the throat which

is asymptotically AdS5 × S5, and free gravity in flat space.

It raises the idea that as with the two schemes presented we obtained first a system

decoupled into N = 4 SYM and free gravity and second a system decoupled into type IIB

strings on AdS5 × S5 and free gravity, then it is reasonable to postulate that the parts

decoupled of free gravity in both schemes are correspondent. The identification among

the parameters are:

g2
YM = 4πgs , R = (4πgsN)1/4

√
α′ = λ1/4

√
α′ , (3.7)

and the rank of the gauge group N corresponds to the 5-form flux threading the S5. In

this way the statement of the conjecture is that given the identification of parameters

already mentioned, the theories are equivalent in the sence explained at the beginning of

the section.

3.1 Practical restrictions

Due to the difficulties in quantizing strings in background Ramond-Ramond fields, it has

become necessary to take certain limits in order to obtain quantitative results from the

correspondence. The first limit to be discussed will be supergravity remembering that

string theory coincides with supergravity, with the same supersymmetries, at low energy.
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This limit is obtained in a two step process, first we take gs → 0 with R constant, and

then the limit of large string tension putting R2/α′ =
√

4πgsN →∞. This let to decouple

the high energy modes from the supergravity fields on AdS5 × S5.

For Yang-Mills, the first limit (called t’Hooft limit) is to take g2
YM → 0 and N → ∞,

leaving λ fixed (where λ ≡ g2
YMN = gsN). And the second limit is to take to infinity the

only remaining parameter λ→∞, which correspond to the strong coupling in the gauge

theory. Therefore the AdS/CFT correspondence is matching a theory on weak coupling

to a theory in strong coupling, which is of great interest since strong coupling very difficult

to work with.

3.2 Matching the spectra

In this section we will see how are actually related the spectrum of N = 4 SYM and type

IIB strings on AdS5×S5, showing that we have a one-to-one correspondence among states

on AdS5 × S5 and operators on the gauge side.

3.2.1 Gauge theory operators

On the gauge side i.e., N = 4 SYM the spectrum is the collection of all local gauge

invariant operators O(x) which are also polynomial in the fields of the theory. As said

before these theory have a symmetry SU(2, 2|4) so its operators can be organized according

to the infinite dimensional irreducible unitary representations of this group and can be

labeled upon its bosonic subgroup SO(3, 1) × SO(1, 1) × SU(4)R [8][9]. The labels are

respectively: a pair (s+, s−) of integers or half-integers, the conformal dimension ∆ and

Dynkin labels of the representations of SU(4)R [r1, r2, r3] ([2]).

The conformal dimension ∆ is the eigenvalue of the dilatation operator and can be

obtained from two-point functions

〈O(x)O(0)〉 ∼ 1

x2∆
, (3.8)

where ∆ has a dependence on the ’t Hooft coupling of the form ∆ = ∆0 + γ(λ), being ∆0

the classical dimension and γ the anomalous dimension.
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For future use it is important to introduce some terms: Conformal primary opera-

tors are the ones annihilated by the generators Kµ of special conformal transformations,

and superconformal primary operators are annihilated by the conformal supercharges S.

Another way to define these last operators is that they have the lowest dimension among

operators in a given superconformal multiplet or representation. These operators are com-

posed just by symmetrized products of scalar fields. 3 Chiral primary operators (CPO) are

the superconformal primaries that are annihilated by some combination of supercharges

Q. These operators are very important since they are protected from quantum corrections

so, for example, its dimension ∆ remains the same to any order.

These operators are 1/2 BPS so preserves 8 Q’s and 8 S’s. More explicitly a single-trace

CPO operator with conformal dimension ∆ can be written as:

O∆(x) = CI1···I∆Tr(ΦI1 . . .ΦI∆) , (3.9)

where CI1···I∆ is a SO(6) symmetric traceless tensor.

3.2.2 Bulk modes

There are arguments affirming that in the supergravity limit of the Yang-Mills theory the

operators which are not protected by supersymmetry decouple from the protected ones

since their conformal dimension tend to infinity, leaving just the last in the spectrum. This

spectrum is arranged in multiplets of SU(2, 2|4) and given a dimensional reduction over

S5, the chiral primary operators correspond to the KK modes:

ϕ(x, y) =
∞∑

∆=0

ϕ∆(x)Y∆(y) , (3.10)

where ϕ is a supergravity field, (x, y) are the coordinates on AdS5 and S5 respectively and

Y∆(y) are spherical harmonics which expands S5. Due to the compactification on S5 the

3This is easy to see by analyzing the transformation properties of the N = 4 fields under Poincaré

supercharges. Schematically

{Q,ψ} = F + [Φ,Φ] , {Q, ψ̄} = DΦ , [Q,Φ] = ψ , [Q,F ] = Dψ .

Then the only fields that are not Q-exact are the ΦI . Moreover they have to enter in a symmetrized

combination because the commutator between two ΦI appears in the first transformation above.
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supergravity field acquire mass. A complete account of the masses of the fields is found

in [2].

3.3 Matrix model description of half-BPS operators

In this section we will overview how we can describe the dynamics of the Half-BPS sector

of N = 4 SYM in terms of a gauged matrix quantum mechanics model as seen for example

in [10][11]. In this article the authors take N = 4 SYM on R×S3 where the action reads:

S =
2

g2
YM

∫
d4x
√
|g|tr

[
−1

4
F µνFµν −

1

2
DµφiDµφi −

R

12
φ2
i +

1

4
[φi, φj]

2 − 2ıλ†Aσ
µDµλ

A

+(ρi)
ABλ†Aıσ

2[φi, λ
∗
B]− (ρ†i )AB(λA)T ıσ2[φi, λ

B]
]
. (3.11)

where xµ = (t, θ, ψ, χ) with µ, ν, ... = 0, 1, 2, 3.; xa = (θ, ψ, χ) with a, b = 1, 2, 3.

The gauge covariant derivative is Dµ = ∇µ − ı[Aµ, ], and the field strength, Fµν =

∂µAν − ∂νAµ − ı[Aµ, Aν ]. The metric is taken as:

ds2 = gµνdx
µdxν = −dt2 +R2(dθ2 + sin2θdψ2 + sin2θsin2ψdχ2) (3.12)

From this point we can make the dimensional reduction and obtain the matrix model.

This is done expanding on spherical harmonics on S3.

φi(x) =
∞∑
l=0

(m+1)2∑
m=1

φlmi (t)Y lm
(0) (x)

with correspondent expansions for the spinors and the gauge field. These are not shown

because from now on we will just work with the scalar part.

Truncating this expansion just to the zero modes, which correspond to the 1/2 BPS

condition, we have:

φi(x) = Xi(t), (3.13)

then the action 3.11 can be truncated consistently to (just the scalar part):

S =

∫
tr

[
1

2
(DtXi)

2 − 1

2

(m
6

)2

X2
i

]
, (3.14)
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where the mass parameter is related to the SYM coupling constant through(m
3

)3

=
32π2

g2
SYM

, (3.15)

The BPS condition says that the operators are going to be composed by only one complex

scalar field Z = X1 + ıX2

In this way the action becomes, as expected, a matrix quantum model in one dimension:

S[Z(t)] =
1

2

∫
dtTr

(
|DtZ|2 − |Z|2

)
. (3.16)

Finally, if we go to the eigenvalue basis, naming the eigenvalues as zi, i = 1, ..., N , and

make a gauge choice (At = 0), the Hamiltonian can be written as:

H =
1

2

N∑
i=1

(
|żi|2 + |zi|2

)
. (3.17)

Before the physical analysis about of the Hamiltonian, it is important to note that this

system is not directly equivalent to the matrix model as the matrices here are just complex

but not necessarily Hermitian. The match is actually achieved taking into account that

the creation operators for Z† decouple in the half-BPS sector, leaving just the creation

operators for Z, and recovering in this way the usual quantum mechanics [10]. Changing

to the eigenvalue basis have the effect to introduce a Vandermonde determinant making

that the model describes fermions in a harmonic potential [12]. In this way the description

of the system for large N can be done in terms of incompressible “droplets” of fermions

in the phase space.



Chapter 4

“Bubbling” geometries

The AdS/CFT conjecture states that deformations on the AdS geometries have correspon-

dence with operators in the dual CFT which lies at the boundary of the AdS space-time.

As an interesting example of this was found in the form of a map for the 1/2 BPS operators

of N = 4 SYM. It can be shown that these operators form a decoupled sector in N = 4

SYM which can after certain manipulation be described by a series of harmonics oscillators

on a gauged quantum mechanics matrix model. The matrix model is well known to be

completely integrable. That this happen comes from the fact that, seen in the eigenvalue

basis, the eigenvalues behave as fermions in a harmonic potential. As explained in the last

section the 1/2 BPS states can be seen as fermions in the classical limit, so the ground

state describes a Fermi sea of eigenvalues which correspond to droplets in the phase space

of the system.

This facts have been used by Lin, Lunin and Maldacena [13] which have constructed

explicitly the full moduli space of 1/2 BPS IIB supergravity solutions.

So each configuration of droplets in the phase space of the gauged quantum mechanics

(which is obtained after dimensional reductions of N = 4 SYM) has a correspondent

geometry on the AdS side and the other way around. Since the droplets are formed by

fermions, these are incompressible, this is matched on the gravity side by the fact that the

Ramond-Ramond five-form flux is quantized.

17
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Figure 4.1: (a) Droplet distribution corresponding to AdS5×S5. (b) Gravitons on AdS5×

S5 (ripples on the circle), “giant graviton” and “dual giant graviton” (hole and dot). (c)

Generic distribution corresponding to a “bubbling” geometry. Figure from [13].

4.1 Review of the LLM construction

This section is based mainly on the article by [13] in which are constructed 1/2 BPS

IIB supergravity backgrounds. The dual of these background on the gauge side can be

described as fermions as in [10] as we explained before, and satisfy the condition ∆ = J ,

where ∆ is the conformal dimension and J is a particular U(1) R-charge in the R-symmetry

group. In order to obtain the geometries on the IIB side we have in consideration that

the BPS states preserve SO(4)×SO(4)×R bosonic symmetries so the solution (assuming

just the five-form field strength varies) must be of the type:

ds2 = gµνdx
µdxν + eH+GdΩ2

3 + eH−GdΩ̃2
3 ,

F(5) = Fµνdx
µ ∧ dxν ∧ dΩ3 + F̃µνdx

µ ∧ dxν ∧ dΩ̃3 , (4.1)

where µ, ν = 0, . . . , 3. To say, the geometry contain two spheres, but the time symmetry is

still not explicit. The two three-spheres S3 and S̃3 in the metric make the SO(4)×SO(4)

isometries manifest. The additional R isometry corresponds to the Hamiltonian ∆− J .

As described in the article by LLM, requiring that the geometry preserves the killing

spinor leads to reveal the form of a general half BPS IIB supergravity background (see
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next section for a derivation):

ds2 = −h−2(dt+ Vidx
i)2 + h2(dy2 + dxidxi) + yeGdΩ2

3 + ye−GdΩ̃2
3 , (4.2)

h−2 = 2y coshG , z =
1

2
tanhG , (4.3)

y∂yVi = εij∂jz , y(∂iVj − ∂jVi) = εij∂yz (4.4)

F = dBt ∧ (dt+ V ) +BtdV + dB̂ ,

F̃ = dB̃t ∧ (dt+ V ) + B̃tdV + d ˆ̃B , (4.5)

Bt = −1

4
y2e2G , B̃t = −1

4
y2e−2G , (4.6)

dB̂ = −1

4
y3 ∗3 d

(
z + 1

2

y2

)
, d ˆ̃B = −1

4
y3 ∗3 d

(
z − 1

2

y2

)
, (4.7)

where i = 1, 2, and ?3 is the Hodge dual operator for the flat three-dimensional space

parametrized by x1, x2, and y. It can be seen that the variable y is equal to the product

of the radii of the two spheres in the geometry.

It is important to note that all the solution is given in terms of a single function z

which satisfies the equation:

∂i∂iz + y∂y

(
∂yz

y

)
= 0 . (4.8)

As y is equal to the product of the radii of the two spheres, there are singularities at

y = 0 unless z take some special values. In this case must be z = ±1/2. For these values

of z in the plane y = 0 interestingly the radii of one of the spheres go to zero while the

other remains finite (this happens symmetrically irrespective of which sphere go to zero

and which not). The regions on the plane y = 0 with z = −1/2 and z = 1/2 correspond

to fermions and holes, and the x1, x2 plane correspond to the phase space. Knowing that,

to get the solution, the Φ = z/y2 replacement is made and eqn. (4.8) becomes Laplace

equation in six dimensions with spherical symmetry on four dimension being y the radial

coordinate of the last four. Here solving this equation by Green’s functions, the values of

z at the boundary y = 0 acts as charge sources and the solution reads:

z(x1, x2, y) =
y2

π

∫
R2

z(x′1, x
′
2, 0)dx′1dx

′
2

[(x− x′)2 + y2]2
. (4.9)

and

Vi(x1, x2, y) =
εij
π

∫
R2

z(x′1, x
′
2, 0)(xj − x′j)dx′1dx′2

[(x− x′)2 + y2]2
=
εij
π

∫
D

(xj − x′j)dx′1dx′2
[(x− x′)2 + y2]2

. (4.10)
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The energy of the solutions can be calculated as:

∆ = J =

∫
D

d2x

2π~
1

2

(x2
1 + x2

2)

~
− 1

2

(∫
D

d2x

2πh

)2

. (4.11)

Being D the region (fermion region) where z = −1
2
. This coincides with the energy

of fermions in an harmonic oscillator potential minus the energy of the ground state N

fermions, just the same as the case of the description of BPS operators by the gauged

matrix quantum mechanics exposed before, showing the match between the gravity and

gauge part.

To obtain the flux generated by a droplet let us have the quantization rule for the area

A
2π~

= N , (4.12)

with ~ = 2πl4p, where N coincides with the number of fermions. The basis state of this

system is just a black circle of radius R =
√

2~N . Here the S5 background can be obtained

by fibering the S̃3 sphere on a two-dimensional surface Σ which cover the droplet.

4.2 Derivation of the type IIB solutions

In this solution (making the ansatz 4.1)we are just assuming that the axion and the

dilaton are constant, and the two three-form field strengths (see section 2.3.3) are zero.

It is important to note that the self-duality condition in ten dimensions imply also that

there is just one independent gauge field in four dimensions:

F = e3G ∗4 F̃ , F̃ = −e−3G ∗4 F, F = dB, F̃ = dB̃ (4.13)

In order to find the solutions we don’t use the EOM but the killing spinor equations

which are the equations describing unbroken supersymmetry. These equations are known

to imply in certain cases the equations of motion. As these equations are in first order it

is preferable to work with them:

∇Mη +
ı

480
ΓM1M2M3M4M5F

(5)
M1M2M3M4M5

ΓMη = 0 (4.14)
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In order to separate this equation into component blocks we select a basis for the

gamma matrices:

Γµ = γµ ⊗ 1⊗ 1⊗ 1, Γa = γ5 ⊗ σa ⊗ 1⊗ σ̂1, Γã = γ5 ⊗ 1⊗ σ̃a ⊗ σ̂2 (4.15)

where the accents just distinguish position on the otherwise usual Pauli Matrices. The

chirality condition in this basis reads:

Γ11η = γ5σ̂3η = η (4.16)

where the intermediate result come from:

Γ11 =
∏

Γµ
∏

Γa
∏

Γã = γ5σ̂3, γ5 = ıΓ0Γ1Γ2Γ3

(4.17)

Now, lets consider spinors on a unit sphere, obeying the equation:

∇cχ = a
ı

2
γcχ, a = ±1 (4.18)

This together with the full form of the metric (4.1) give us the following spin connection

in the sphere directions

∇a = ∇′a −
1

4
Γµa∂µ(H +G), ∇ã = ∇′ã −

1

4
Γµã∂µ(H −G) (4.19)

where ∇′ contains the spin connection on a unit sphere. The ten dimensional spinor can

be decomposed as:

η = εa,b ⊗ χa ⊗ χ̃b (4.20)

where χa, χ̃b obey equation (4.18). With the aforementioned basis the contraction of the

five form with the gamma matrices in (4.14) can be written as:

M ≡ ı
480

ΓM1M2M3M4M5F
(5)
M1M2M3M4M5

,

M = ı
48

(e−
3
2

(H+G)ΓµνFµνεabcΓ
abc − e−

3
2

(H−G)ΓµνF̃µνεãb̃c̃Γ
ãb̃c̃) ,

M = ı
8
e−

3
2

(H+G)(ΓµνFµνıγ
5σ̂1 + 1

2
ε λρ
µν ΓµνFλρıγ

5σ̂2) ,

M = −1
4
e−

3
2

(H+G)γµνFµνγ
5σ̂1 (4.21)
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where in the last step we have used ε λρ
µν Γµνγ5 = 2ıΓλρ and the chirality condition. So

equation (4.14) can be decomposed as:

(ıae−
1
2

(H+G)γ5σ̂1 +
1

2
γµ∂µ(H +G))ε+ 2Mε = 0 , (4.22)

(ıbe−
1
2

(H−G)γ5σ̂2 +
1

2
γµ∂µ(H −G))ε− 2Mε = 0 , (4.23)

∇µε+Mγµε = 0 (4.24)

In order to calculate the metric and the fields it is convenient to define some bilinears,

calculate their variation and proceed the calculation with the aid of this information. The

bilinears are:

f1 = ıεσ̂1ε f2 = ıεσ̂2ε Kµ = −εγµε Lµ = εγ5γµε Yµν = εγµν σ̂1ε (4.25)

Now, with the aid of (4.24) and the identities:

γµγαγβ = gµαγβ + gαβγµ − gµβγα − ıεσµαβγσγ5 (4.26)

[γµ, 6F ] = (γµγ
αβ − γαβγµ)Fαβ

= (γαβγµ + 2(gαµγ
β − gβµγα)− γαβγµ)Fαβ

= 2(Fµβγ
β − Fαµγα)

= 4Fµβγ
β (4.27)

The variation of these can be calculated as:

∇µf1 = ı[(∇µε̄)σ̂1ε+ ε̄σ̂1∇µε]

= − ı
4
e−

3
2

(H+G)Fαβ ε̄(γµγ
5γαβσ̂1σ̂1 − σ̂1σ̂1γ

αβγ5γµ)ε

= − ı
4
e−

3
2

(H+G)Fαβ ε̄(γµγ
αβ + γαβγµ)γ5ε

= − ı
4
e−

3
2

(H+G)Fαβ ε̄
1

2
(g α
µ γβ + gαβγµ − g β

µ γ
α − ıεσ αβ

µ γσγ
5

+ gαβγµ + gβµγ
α − gαµγβ − ıεσαβµγσγ5 − α 
 β)γ5ε

=
1

2
e−

3
2

(H+G)εσµαβF
αβKσ

= −e−
3
2

(H−G)F̃µσK
σ (4.28)
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∇µf2 = ı[(∇µε̄)σ̂2ε+ ε̄σ̂2∇µε]

= − ı
4
e−

3
2

(H+G)Fαβ ε̄(γµγ
5γαβσ̂1σ̂2 − σ̂2σ̂1γ

αβγ5γµ)ε

= − ı
4
e−

3
2

(H+G)Fαβ ε̄ı(γµγ
αβ − γαβγµ)ε

= −e−
3
2

(H+G)FµνK
ν (4.29)

∇µKν = −[(∇µε̄)γµε+ ε̄γν(∇µε)]

=
1

4
e−

3
2

(H+G)Fαβ ε̄(γµγ
5γαβγν σ̂1 − γνγαβγ5γµσ̂1)ε

= −1

4
e−

3
2

(H+G)Fαβ ε̄(γµγ
αβγν − γνγαβγµ)γ5σ̂1ε

= −1

4
e−

3
2

(H+G)Fαβ ε̄
1

2
(g α
µ γβγν + gαβγµγν − g β

µ γ
αγν − ıεσ αβ

µ γσγ
5γν

− gαβγνγµ − gβµγνγα + gαµγνγ
β + ıεσαβµγνγσγ

5 − α 
 β)γ5σ̂1ε

= −1

4
e−

3
2

(H+G)Fαβ ε̄(2g
α
µg

β
ν − 2gβµg

α
ν + 2ıεσ αβ

µ gσνγ
5)γ5σ̂1ε

= −1

4
e−

3
2

(H+G)ε̄[(2Fµν − 2Fνµ)(−ıσ̂2) + 2ıενµαβF
αβσ̂1]ε

= −e−
3
2

(H+G)(Fνµf2 − 1
2
ενµαβF

αβf1) (4.30)

∇µLν = (∇µε̄)γ
5γνε+ ε̄γ5γν∇µε

= −1

4
e−

3
2

(H+G)Fαβ ε̄(γµγ
αβγν + γνγ

αβγµ)σ̂1ε

= −1

4
e−

3
2

(H+G)ε̄[Fαβγ
αβ(γµγν + γνγµ) + 4Fµβγ

βγν + 4Fνβγ
βγµ]σ̂1ε

= −e−
3
2

(H+G)[1
2
gµνFαβY

αβ + F ρ
µ Yρν + F ρ

ν Yρµ] (4.31)

Also using Fierz identities it can be obtained:

K · L = 0, L2 = −K2 = f 2
1 + f 2

2 (4.32)

Implications of the equations for the bilinears

With the information we have obtained from the bilinears we are going to develop further

how this affects the metric and the fields: It can be shown that the Kµ is a killing vector

and Lµdx
µ is a locally exact form, since ∇(µKν) = 0 and dL = 0.
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In this way we can define a coordinate L = dy, with the other three coordinates taken

as orthogonal to y:

ds2 = h2dy2 + ĝαβdx
αdxβ (4.33)

Another coordinate can be set up if we take into account K ·L = 0, as L now depends

only on y, then we have

0 = KyLy = Ky (4.34)

therefore K just depend on the transversal coordinates. So we can choose one of these

coordinates to be in the direction of K, lets call this coordinate t, then we can put the

metric as:

ds2 = −h−2(dt+ Vidx
i)2 + h2(dy2 + h̃ijdx

idxj) (4.35)

with i, j = 1, 2. The coeficients of the gtt and gyy terms of the metric were choosen in

order to be consistent with the fact K2 = −L2.

Lets now do some manipulations in order to get the B form. Taking equation 4.29 and

using the fact that K just have one component (Kt = 1 by convention):

∂µf2 = −e
3
2

(H+G)Fµt = −e
3
2

(H+G)∂µBt (4.36)

where we have used the fact that due to the R isometry the B form is independent of

time.

Now, by the definition of K:

∂µBt = FµνK
ν = −Fµν ε̄γνε = −1

4
ε̄[γµ, 6F ]ε (4.37)

where in the last equality we have used (4.27). If we replace (4.21) into (4.22):

1

2
e−

3
2

(H+G) 6Fγ5σ̂1ε = (ıae−
1
2

(H+G)γ5σ̂1 +
1

2
6 ∂(H +G))ε (4.38)

Multiplying by γ5σ̂1 we arrive to the expression (together with its adjoint):

1

2
e−

3
2

(H+G) 6Fε = (ıae−
1
2

(H+G) +
1

2
γ56 ∂(H +G)σ̂1)ε,

1

2
e−

3
2

(H+G)ε̄6F = ε̄(ıae−
1
2

(H+G) +
1

2
γ56 ∂(H +G)σ̂1) (4.39)
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Replacing this results into (4.37) gives:

∂µBt = −1

4
e

3
2

(H+G)(ε̄γµγ56 ∂(H +G)σ̂1 − ε̄γ56 ∂(H +G)σ̂1γµε)

= −1

4
e

3
2

(H+G)∂ν(H +G)ε̄(γµγ5γ
ν − γ5γ

νγµ)σ̂1ε

= e
3
2

(H+G) 1

2
∂µ(H +G)ε̄γ5σ̂1ε

= −e
3
2

(H+G) 1

2
∂µ(H +G)f2 (4.40)

where in the last step we have used the chirality condition ε = Γ11ε = γ5σ̂3ε. Replacing

this result in (4.36) gives:

∂µf2 =
1

2
f2∂µ(H +G) (4.41)

which has as solution:

f2 = 4αe
1
2

(H+G), Bt = −αe2(H+G) (4.42)

To obtain f1 the process is basically the same, using (4.28) and (4.23) we get:

∂µf1 =
1

4
e−

3
2

(H−G)ε̄[γµ, ˜6F ]ε =
1

2
∂µ(H −G)f1 (4.43)

with solution:

f1 = 4βe
1
2

(H−G), B̃t = −βe2(H−G), 4β = 1 (4.44)

Now to find H we begin by adding (4.22) and (4.23), multiplying by σ̂1 and using the

chirality condition:

σ̂16 ∂Hε = (−ıae−
1
2

(H+G)γ5 + be−
1
2

(H−G))ε (4.45)

ε̄σ̂16 ∂H = −ε̄(−ıae−
1
2

(H+G)γ5 + be−
1
2

(H−G)) (4.46)

If we multiply (4.45) by 1
2
ıε̄γµ and its adjoint (4.46) by 1

2
ıγµε and sum we get:

1

2
ıε̄σ̂1(γµγ

ν + γνγµ)ε∂νH = ∂µHıε̄σ̂1ε = ∂µHf1

=
ı

2
ε̄[γµ,−ıae−

1
2

(H+G)γ5 + be−
1
2

(H−G)]ε

= −ae−
1
2

(H+G)ε̄γ5γµε = −ae−
1
2

(H+G)Lµ (4.47)

As we already know f1 (4.44), it is easy to get H:

eH = −aγy = y, γ = −a (4.48)
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After this we can fix α multiplying (4.45) by ε̄γ5σ̂1 to get:

h−2γ∂ye
H = −aL2 = −a

(
f 2

1 +
b

4αa
f 2

2

)
(4.49)

To match the condition (4.32) we must have b = 4αa. Therefore if we choose α = β, the

condition b = a must hold.

With this information we can obtain an expression for the killing spinor. If we remem-

ber that H only depends on y we can write (4.45) as:

(
1

hy
σ̂1Γ3 + ıae−

1
2

(H+G)γ5 − be−
1
2

(H−G)

)
ε = 0 (4.50)

which can be simplified using (4.32), (4.42) and (4.44) and factoring e−
1
2

(H−G) to obtain:(√
1 + e−2Gσ̂1Γ3 + aıe−Gγ5 − a

)
ε = 0 (4.51)

Taking Kt = 1 and the definition of K (4.25) we know that ε†ε = 1, also taking Ly = −a

and the definition of L we get ε†Γ0Γ5Γ3ε = −a. As the operator Γ0Γ5Γ3 is unitary and

| a |= 1 then we must have:[
1 + aΓ0Γ5Γ3

]
ε = 0 or [1 + aıΓ1Γ2] ε = 0 (4.52)

It can be verified that a killing spinor of the form:

ε = eıδΓ
5Γ3σ̂1ε1 = (cosh δ + ıa sinh δγ5)ε1 (4.53)

satisfy the two last projection formulas (4.51) and (4.52) given

Γ3σ̂1ε1 = aε1, sinh 2δ = ae−G (4.54)

We can know the scale of ε1 putting (4.53) into the definition of f2 obtaining

ε1 = e
1
4

(H+G)ε0, ε†0ε0 = 1 (4.55)

Using equation (4.13) we can separate the components of B and B̃ which are not in

the time direction

B = Bt(dt+ V ) + B̂

dB̂ +BtdV = −h2e3G ∗3 dB̃t

B̃ = B̃t(dt+ V ) + ˆ̃B

d ˆ̃B + B̃tdV = h2e−3G ∗3 dBt (4.56)
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where the ∗3 operator is the flat 3D hodge dual operator in the y, x1, x2 directions. Finally

to get the fields B and B̃ we first have to calculate V . This can be done taking the

antisymmetric part of (4.30):

−1

2
d[h−2(dt+ V )] =

1

2
dK = e−(H+G)F + e−(H−G)F̃ (4.57)

If we take just the part not depending on dt as separated in (4.56) we get:

1

2
h−2dV = −e−(H+G)(dB̂ +BtdV )− e−(H−G)(d ˆ̃B + B̃tdV )

= h2(e−H+2G ∗3 dB̃t − e−H−2G ∗3 dBt)

dV = 2h4y ∗3 dG =
1

y
∗3 dz, z ≡ 1

2
tanhG (4.58)

where we have used the results (4.42), (4.44) and based on (4.32) we also used:

h−2 = y(eG + e−G) (4.59)

so

2h4ydG =
1

y

1

2

4dG

(eG + e−G)2
=

1

y

1

2
sech2GdG =

1

y

1

2
d

(
1

2
tanhG

)
(4.60)

So using this result in the components different from time of B and B̃ as in (4.56):

dB̂ =
1

4
e2(H+G) 1

y
∗3 dz −

e(H+G)

4h2

1

y
∗3 dz +

e(H+G)

2
h2 ∗3 dy

= −1

4
y3 ∗3 d

(
z + 1

2

y2

)
d ˆ̃B = −1

4
y3 ∗3 d

(
z − 1

2

y2

)
(4.61)

Also as dV must be closed for z:

1

y
∂2
i z + ∂y

(
1

y
∂yz

)
= 0 (4.62)

4.3 Ground state configuration

For future considerations the only droplet configurations to be dealt with will be the ones

with radial symmetry, so here we change to polar coordinates (x1, x2) → (R, φ). With
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this prescription we have VR = V1 cosφ + V2 sinφ = 0. Defining V ≡ Vφ = R(−V1 sinφ +

V2 cosφ) equation (4.4) becomes:

y ∂y V = −R∂R z ,
1

R
∂R V =

1

y
∂y z . (4.63)

and the equations (4.9) and (4.10) are now:

z(R, y) = −
∫
z(R′, 0)

∂

∂R′
z0(R, y;R′)dR′ , (4.64)

V (R, y) =

∫
z(R′, 0)gV (R, y;R′)dR′ , (4.65)

where

z0(R, y;R′) =
R2 −R′2 + y2

2 [(R2 +R′2 + y2)2 − 4R2R′2]1/2
, (4.66)

gV (R, y;R′) =
−2R2R′(R2 −R′2 + y2)

[(R2 +R′2 + y2)2 − 4R2R′2]3/2
. (4.67)

where z0 is the function that LLM designate to be the circular droplet (ground state),

as can be easily verified from eqn. (4.66): z(R′, 0) = 1/2 sign(R′ − R0), which together

with eqn. (4.64) gives z(R, y) = z0(R, y;R0). As previously anticipated (see fig.4.1) such

a configuration gives rise to the AdS5 × S5 solution. This can be seen clearer after the

change of coordinates [13]:

y = R0 sinh ρ sin θ , R = R0 cosh ρ cos θ , φ = φ̃+ t , (4.68)

because one recovers the AdS5 × S5 metric in standard global form

ds2 = R0

(
− cosh2 ρdt2 + dρ2 + sinh2 ρdΩ2

3 + dθ2 + cos2 θdφ̃2 + sin2 θdΩ̃2
3

)
. (4.69)



Conclusions

• In the process of this Master program we reviewed basic aspects of string theory,

particularly the low energy limit Supergravities correspondent to the “different”

string theories, and more especially the type IIB which is the basis to formulate the

AdS/CFT conjecture. Also the counterpart, theN = 4 SYM theory, was introduced.

• We also reviewed some of the arguments which are used to propose the Maldacena

conjecture as the comparison of symmetries between N = 4 SYM and Ads5×S5, and

the argument of similarity of solutions in type IIB superstring theory which (with

some assumptions) for gsN << 1 give N = 4 SYM attached to the N D3-branes

and for gsN >> 1 give type IIB SUGRA on AdS5×S5 each one decoupled from free

gravity on the bulk and the flat side respectively.

• In the scope of the AdS/CFT correspondence, we reviewed in detail the derivation

made by LLM of the 1/2 BPS geometries in type IIB string theory. This geometries

correspond in the CFT side to the also 1/2 BPS operators in Matrix Quantum

Mechanics, which can be described as free fermions.
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