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Abstract
Multi-horizon means multi-temperature unless all of the Hawking temperatures of
horizons coincide. Multi-temperature system is a nonequilibrium system, and gener-
ally the equation of state in nonequilibrium is different form that in equilibrium. This
may imply that the horizon entropies in multi-horizon spacetime do not satisfy the
entropy-area law which is an equation of state of a horizon in thermal equilibrium.
This report examines whether the entropy-area law holds for Schwarzschild-de Sitter
(SdS) spacetime, which is two-temperature system due to the difference of Hawk-
ing temperatures of black hole event horizon (BEH) and cosmological event horizon
(CEH). We propose a reasonable evidence of breakdown of entropy-area law for CEH
in SdS spacetime. The validity of the law for BEH in SdS spacetime can not be
judged, but we point out the key issue for BEH’s entropy.

1 Simple question from the Nonequilibrium viewpoint

Entropy-area law, which claims the entropy of horizon is equal to one quarter of its spatial area, is the
equation of state for equilibrium systems which consist of horizons and matter fields. Now this law seems
accepted as the universal law of thermodynamic aspects of any horizon in thermal equilibrium. However
nothing is known about nonequilibrium situations of horizons.

On the other hand, generally in nonequilibrium physics, once the system under consideration comes in
a nonequilibrium state, the equation of state for nonequilibrium case takes different form in comparison
with that for equilibrium case. Especially the nonequilibrium entropy deviates from the equilibrium
entropy (when a nonequilibrium entropy is well defined). Indeed, although a quite general formulation of
nonequilibrium thermodynamics remains unknown at present 2, the differences of nonequilibrium entropy
from equilibrium one are already revealed for some restricted class of nonequilibrium systems [1].

Then, for horizon systems, a simple question arises; does the entropy-area law of horizons hold for
horizon systems in nonequilibrium states? We try to resolve this question and discuss to what extent
the entropy-area law is universal. The representative nonequilibrium system of horizons may be multi-
horizon spacetimes whose horizons have different Hawking temperatures. As a simple example of such
system, we focus our discussion on Schwarzschild-de Sitter (SdS) spacetime, which is in two-temperature
nonequilibrium state due to the difference of Hawking temperatures of black hole event horizon (BEH)
and cosmological event horizon (CEH). We examine the entropy-area law for SdS spacetime.

However, applying some existing nonequilibrium thermodynamics to SdS spacetime is difficult at
present. Then as one trial to search for SdS horizon entropy, we make a good strategy: We construct
carefully two thermal EQUILIBRIUM systems separately for BEH and CEH which are designed so that
the origin of nonequilibrium effect of CEH (BEH) on thermodynamic state of BEH (CEH) is retained
and the Euclidean action method is applicable (see next section for a more concrete explanation). The
subtraction term in Euclidean action is determined with referring to Schwarzschild thermodynamics for
BEH and de Sitter thermodynamics for CEH. Although our systems are in thermal equilibrium states,
some implication for nonequilibrium states of SdS horizons can be extracted, because the thermal states
are “fine tuned” to include the origin of nonequilibrium nature of SdS spacetime. In this report, we will
propose a reasonable evidence of breakdown of entropy-area law for CEH. The validity of the law for
BEH can not be judged, but we will point out the key issue for BEH’s entropy.

Recall that every existing verification of entropy-area law requires the thermal equilibrium of horizons.
However, strictly speaking, it is not clear whether the thermal equilibrium is the necessary and sufficient
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2Or, a completely general formulation of nonequilibrium thermodynamics may not exist in our physical world.
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condition for the entropy-area law. Then, if the breakdown of the law will be confirmed for our thermal
systems of BEH and CEH in SdS spacetime, it implies that the thermal equilibrium is not the necessary
and sufficient condition but it is just the necessary condition for the entropy-area law. The sufficient
condition for the law will be also suggested by this report.

2 Nonequilibrium nature of Schwarzschild-de Sitter spacetime

In general, the clear evidence of nonequilibrium is the existence of an energy flow inside the system under
consideration, since no energy flow arises in thermal equilibrium systems. In SdS spacetime, because the
Hawking temperature of BEH is always higher than that of CEH [2], a net energy flow arises inevitably
from BEH to CEH. SdS spacetime is obviously a two-temperature nonequilibrium system. When one
tries to analyze the SdS thermodynamics with the presence of the net energy flow, there arise difficult
problems of nonequilibrium physics due to the net energy flow [1]; which quantity does the net energy
flow raise as a new state variable to describe the degree of nonequilibrium nature?, how does the net
energy flow cause the time evolution of the two-horizon system?, and so on. Therefore, at present, we
need a good strategy to research the SdS thermodynamics with avoiding such difficult problems.

Here let us dare to ask: Is the existence of net energy flow the principal origin of the nonequilibrium
nature of SdS spacetime? This can be rephrased as: Does the net energy flow originate from some
other physical factor? The answer to the latter question seems Yes (No for the former) at least for
SdS spacetime, because the energy flow between BEH and CEH is due to the difference of Hawking
temperatures of horizons 3. Furthermore, since the Hawking temperature is given by the surface gravity,
the temperature difference is produced by the gravitational interaction between BEH and CEH. Therefore
we recognize the gravitational interaction between BEH and CEH as the principal origin of nonequilibrium
nature of SdS spacetime. Hence, if we can construct a system including a horizon (BEH or CEH) under
the influence of gravitational interaction but excluding the net energy flow, then such system may reveal
the nonequilibrium properties of BEH and CEH with avoiding the difficulties due to net energy flow.
Then we introduce the following setup:

Setup (Heat Wall): Place a “heat wall” at r = rw in the region, rb < r < rc, as shown in the fig-
ure below, where r is the areal radius in SdS metric, and rb and rc are radii of BEH and CEH
respectively. This heat wall reflects perfectly Hawking radiation of each horizon, and shields BEH
(CEH) from the Hawking radiation emitted by CEH (BEH). The BEH (CEH) side of heat wall
is regarded as a “heat bath” of Hawking temperature of BEH (CEH), and the net energy flow
from BEH to CEH disappears. Then it is obvious that the region Mb enclosed by BEH and heat
wall (rb < r < rw) forms a thermal EQUILIBRIUM system for BEH which is filled with Hawking
radiation emitted by BEH and reflected by heat wall. Similarly the region Mc enclosed by CEH
and heat wall (rw < r < rc) is also regarded as a thermal EQUILIBRIUM system for CEH. And
we place the observer at the heat wall who measures all state variables of horizons. (Mb and Mc

with the observer at rw are already used to calculate Hawking temperatures in [2].)

..... .....BEH CEH

observer : r = rw  (constant)

As discussed hereafter, we can regard the thermal systems Mb and Mc as the desired systems which are
under the influence of gravitational interaction between BEH and CEH without the net energy flow:

To explain it, we should remark that, while the heat wall shields the energy flow between the two
horizons (which is mediated by matter fields of Hawking radiation), however the heat wall does not
shield the gravitational interaction between the horizons (which is not mediated by matter field but

3For example, for ordinary gases in laboratory, an energy flow can arise by not only temperature difference but also
viscosity, differences of pressure, number density and chemical potential, and so on. Energy flow is not the “cause” but the
“effect” of nonequilibrium nature.
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by gravitational field). This means the following; if we find that all state variables of thermal system
Mb depend on a parameter of such gravitational interaction, then it is reasonable to regard the system
Mb as a thermal equilibrium system for BEH under the influence of gravitational interaction of two
horizons but excluding net energy flow, and similarly for Mc as a thermal system for CEH. Here it
seems natural that the control parameter of the gravitational interaction between BEH and CEH are the
mass parameter M and the cosmological constant Λ. Furthermore, concerning the state variables, we
can assume very reasonably that every state variable of BEH depends on horizon radius rb or its surface
gravity κb, and similarly for CEH. Here the radii rb, rc and surface gravities κb, κc depend on M and Λ,
because, for example, rb(M, Λ) and rc(M, Λ) are the positive roots of algebraic equation f(r) = 0, where
f(r) := −gtt = 1−2M/r−Λ r2/3 and t is the time coordinate in the static chart of SdS metric gµν . Then,
obviously, every state variable of BEH (CEH) is under the influence of CEH’s (BEH’s) gravity through
its dependence on horizon radii and surface gravities. Consequently, as mentioned above, we can regard
the thermal systems Mb and Mc as the desired systems which are under the influence of gravitational
interaction between the two horizons without the net energy flow.

Here note that the gravitational interaction on Mb is expressed as an external gravitational field
produced by CEH which acts on BEH, and that on Mc is an external field by BEH acting on CEH.
This situation is analogous to a magnetized gas under the influence of an external magnetic field. The
magnetized gas consists of molecules possessing magnetic moment, and its thermodynamic state is charac-
terized by three independent state variables; for example, temperature, volume and magnetization vector
(response of the gas to external field), where the temperature and volume are variables required even for
ordinary non-magnetized gas, and the magnetization vector is responsible for the magnetic property of
the gas. The existence of three independent variables is mandatory for thermodynamic consistency of
the magnetized gas. Then, as a strict thermodynamic requirement, our thermal systems Mb and Mc

should also have three independent state variables to ensure thermodynamic consistency. This implies
that every state variable of Mb and Mc is a function of three independent variables. Consequently, as a
working hypothesis, we have to require that three parameters M , rw and Λ are independent variables:

Working Hypothesis (three independent variables): To ensure thermodynamic consistency of our
thermal systems Mb and Mc, the radius of heat wall rw, the mass parameter M and the cosmo-
logical constant Λ are regarded as three independent variables.

When one consider a non-variable Λ as a physical situation, it is obtained by setting the variation of Λ
zero (δΛ = 0) in thermodynamics of Mb and Mc after constructing them with regarding Λ as an
independent variable. In such case, the variable Λ is interpreted as a “working variable” to obtain SdS
thermodynamics.

3 Entropies of horizons in Schwarzschild-de Sitter spacetime

As page space is limited, this section gives only a brief sketch of discussion of entropy-area law.
As a technique to obtain the state variables of Mb and Mc, we make use of the Euclidean action

method [3] which is applicable for any thermal equilibrium systems. The Euclidean action IE is obtained
by the imaginary unit i times the Wick rotation t → −iτ of Lorentzian Einstein-Hilbert action,

IE =
1

16π

∫

M
dx4√gE (RE − 2Λ) +

1
8π

∫

∂M
dx3

√
hE KE − I0 , (1)

where RE is the scalar curvature of Euclidean spacetime region M, ∂M is the boundary of M, KE is the
trace of the extrinsic curvature of ∂M, gE is the determinant of Euclidean metric, hE is the determinant
of metric on ∂M, and I0 is the so-called subtraction term. I0 is independent of the bulk metric gEµν of
M and determines the integration constant of action integral with eliminating unexpected divergences
of the other two integral terms. For our thermal systems for BEH and CEH in SdS spacetime, M = Mb

for BEH, M = Mc for CEH, and ∂M is the heat wall for both horizons. (I0 is determined later.)
The Euclidean spaces of Mb and Mc respectively have topology D2 × S2, where D2 is the time-

radial part and S2 reflects the spherical symmetry of Lorentzian SdS spacetime. The event horizon
in Euclidean space is the center of D2 and the boundary of D2 has radius rw. The regularity at the
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center of D2 (excluding a conical singularity) determines the temperatures Tb of BEH and Tc of CEH,
Tb = κb/(2π

√
fw) and Tc = κc/(2π

√
fw), where fw = f(rw) and f(r) = −gtt. The factor

√
f(rw) is

equal to the so-called Toleman factor which expresses the gravitational redshift on the Hawking radiation
propagating from horizon to observer. Therefore, these temperatures are consistent with our setting that
the observer is at the heat wall.

We determine the subtraction term I0 to match with Schwarzschild thermodynamics for BEH and
de Sitter thermodynamics for CEH. Referring to [4] which established precisely the Schwarzschild thermo-
dynamics, it is natural to set I0 = Iflat, where Iflat is the Euclidean action for Minkowski spacetime. On
the other hand, the existing formulation of de Sitter thermodynamics does not introduce any boundary,
since the spacetime is closed [5]. This corresponds to considering the micro-canonical ensemble, while
the introduction of the boundary (heat wall) corresponds to the canonical ensemble. We can construct
the canonical ensemble for de Sitter thermodynamics with introducing an appropriate boundary term in
IE to reproduce the same equations of state which the micro-canonical ensemble gives. Then, referring
to the de Sitter’s canonical ensemble, we find it is natural to set I0 = (1 − rc/rw)

√
fw Iflat. With these

subtraction terms, the Euclidean actions Ib for Mb and Ic for Mc are

Ib =
π

κb

[
3M − rb + 2rw

(
fw −

√
fw

) ]
, Ic =

π

κb
[ 3M − rc + 2rcfw ] . (2)

Hence, following the argument of Euclidean action method [3], the free energies Fb for BEH and Fc for
CEH are given by Fb(Tb, Aw, Xb) := −Tb Ib and Fb(Tc, Aw, Xc) := −Tc Ic, where Aw := 4πr2

w is the
extensive state variable of system size which mimics the volume of ordinary gases (see [4] for detail of this
variable), and Xb and Xc are respectively the response of thermal systems Mb and Mc to the external
gravitational field. These free energies are functions of three independent state variables as discussed at
the working hypothesis in previous section.

Since Xb is the response of Mb to the external gravitational field by CEH, Xb should be a function of
the quantity which characterizes the gravity of CEH and is measured by the observer at rw. This implies,

Xb = r2
w Ψb(Λ r2

w) or Xb = r2
w Ψb(κc rw) , (3)

where Ψb is an arbitrary function of single argument, and the factor r2
w is due to the detail of extensive

nature of state variable [4] but not an essence of present discussion. Here we can not judge which of Λ
and κc is appropriate as the characteristic quantity of CEH’s gravity. Similarly, it is natural for Xc to
require Xc = r2

w Ψc(M/rw) or Xc = r2
w Ψc(κb rw), where Ψc is an arbitrary function. Then, following

the argument of thermodynamics, the entropy of BEH Sb and that of CEH Sc are define by the partial
derivatives; Sb := −∂Fb(Tb, Aw, Xb)/∂Tb and Sb := −∂Fc(Tc, Aw, Xc)/∂Tc, which are rearranged to be
first order partial differential equations of Ψb and Ψc. We can find these differential equations imply:

Result for BEH: BEH’s entropy Sb = π r2
b for the choice Xb = r2

w Ψb(Λ r2
w), but Sb 6= π r2

b for the
choice Xb = r2

w Ψb(κc rw). The entropy-area law for BEH holds if ∂MXb = 0, but breaks down if
∂MXb 6= 0. This denotes that the sufficient condition of entropy-area law for BEH is ∂MXb = 0.
Hence it is the dependence of Xb on M that determines the validity of entropy-area law for BEH.

Result for CEH: CEH’s entropy Sc 6= π r2
c for either choice Xc = r2

w Ψc(M/rw) and Xc = r2
w Ψc(κb rw).

The entropy-area law seems break down for CEH in SdS spacetime.
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