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ABSTRACT

Relativistic Quantum Field Theory of High—Spin
Matter Fields: A Pragmatic Approach for Hadronic Physics.
(August 1991)
Dharam Vir Ahluwalia, B. Sc.(Hons.); M. Sc., University of Delhi, India
M. A., SUNY at Buffalo; M. S., Texas A&M University
Chair of Advisory Committee: Dr. David J. Ernst

A consistent phenomenology of the interaction of particles of arbitrary spin
requires covariant spinors, field operators, propagators and model interactions.
Guided by an approach originally proposed by Weinberg, we construct from group
theoretical arguments the (7,0) @ (0, j) covariant spinors and the field operators
for a massive particles. Specific examples are worked out in the familiar language
of the Bjorken and Drell text for the case of the (1,0) & (0,1), (3/2,0) & (0, 3/2)
and (2,0) @ (0, 2) matter fields. The m — 0 limit of the covariant spinors is shown
to have the expected structure. The algebra of the ¥ matrices associated with
the (1,0) & (0,1) matter fields is presented, and the conserved current derived.
The procedure readily extends to higher spins. The causality problem associated
with the j > 1 wave equations is discussed in detail and a systematic procedure to
construct causal propagators is provided. As an example a spin two wave equation
satisfied by the (2,0) @ (0,2), covariant spinors is found to support not only ten
correct and causal solutions, but also thirty physically unacceptable acausal solu-
tions. However, we demonstrate how to construct the Feynman propagator for the
higher spin particles directly from the spinors and thus avoid the shortcomings of
the wave equation in building a phenomenology. The same exercise is repeated for
the (1,0) @ (0,1) and (3/2,0) & (0,3/2) matter fields, and the same conclusions

obtained.

A well-known set of linear equations for massless free particles of arbitrary
spin is found to have acausal solutions. On the other hand, the m — 0 limit

of the wave equations satisfied by (7,0) @ (0,7) covariant spinors are free from
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all kinematical acausality. This paradoxical situation is resolved and corrected

through the introduction of a constraining principle.

The appendix reviews and presents in a unified framework classic works of
Schwinger, Weinberg and Wigner regarding the elements of canonical quantum

field theory, thus establishing the logical context of our work.
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1. INTRODUCTION
1.1 SHORT HISTORICAL REVIEW

Eight years after the publication of his relativistic wave equation [1] for spin
one half particles in 1928, Dirac [2] proposed high-spin equations with constraints.

«

In this 1936 paper he wrote: “... it is desirable to have the equations ready for a
possible future discovery of an elementary particle with a spin greater than a half,
or for approximate application to composite particles.” Today, this speculation
regarding the composite particles is remarkably confirmed. Neglecting the “non
established” resonances, the following high—spin composite particles [3] have been
experimentally observed: baryonic resonances with 1/2 < j < 11/2, and mesonic
resonances with 0 < j < 4. The most common approach [4] to a relativistic field
theory of particles with j > 1 is that of Proca, Rarita and Schwinger. This for-
malism [4, 5] owes its logical history to the 1936 paper of Dirac [2], the works of
Fierz and Pauli [6,7,8] and depends for its present form [4] on a classic paper of
Bargmann and Wigner [9]. For our purposes we note that this formalism consists
of high—spin wave equations along with constraint equations. There is, however, a
well recognised problem with this formalism. Corben and Schwinger [10], Johnson
and Sudarshan [11], and Kobayashi and Shamaly [12] have respectively estab-
lished for spin 1, 3/2, and 2 that electromagnetic coupling cannot be consistently
introduced via the standard replacement of derivatives in the Lagrangians with
gauge covariant derivatives: 0, — 0, + igA,. Kobayashi and Takahashi [13,14]
have recently argued that this pathology is generic to all equations of the Rarita—
Schwinger type and has its origin in the existence of the associated constraint
equations. In addition, this commonly used formalism becomes increasingly more

complicated for j > 3/2.

Parallel to the development of the Rarita—Schwinger formalism, there exist
studies of Duffin [15], Kemmer [16], Harish-Chandara [17,18] and Bhabha [19]
which propose high—spin equations of the type:

This dissertation follows the style of Annals of Physics.



(i " 0 — m) (x) = 0. (1.1)

These equations lie outside the applicability of the Kobayashi—Takahashi the-
orem [13,14] and, therefore, it is not yet completely clear if one can consistently
introduce the electromagnetic coupling into these equations through the minimal
substitution. A significant part of the work on the high—spin wave equations [20],
done after the well known paper of Johnson and Sudarshan [11], is concentrated in
this direction and generally deals with the reducible representations of the Lorentz

group ~ [(SU(2), ® SU(2),].

It is within this historical context that we now discuss some of the needs of the
nuclear physics community and our contribution to nuclear phenomenon involving

high—spin mesons and baryons.

1.2 MOTIVATION, OBJECTIVES AND ACHIEVEMENTS

At the present time several new accelerators are planned or are under construc-
tion: CEBAF, PILAC at LAMPF, and KAON. These nuclear physics facilities will
be able to explore high—spin hadronic physics in greater detail than has been pre-
viously possible. Thus, although there remain fundamental difficulties with the
quantum field theory of high—spin particles, a need for an internally consistent phe-
nomenology of these particles is required. Such a phenomenology, at a minimum,

must provide:
1.) Fully covariant spinors for any spin.

2.) Relativistic wave equations for any spin, and the associated conserved

current.

3.) Complete understanding of the possible acausality, and a systematic pro-
cedure to construct propagators for any spin which propagate only the

causal (i.e. physical) solutions.

4.) A general method for constructing model couplings.



Such a theory will allow us to do systematic calculations for the type of ex-
periments one envisages at the above mentioned accelerators. Not only is such a
work important from a pragmatic point of view, it is bound to provide a deeper

understanding of the underlying structure of relativistic quantum fields.

In this work, following the work of Weinberg [21], we provide a general and
explicit procedure [22] for constructing irreducible (j,0) @ (0, j) covariant spinors
and wave equations. The covariant spinors are obtained via construction of a
general boost for any j rather than as solutions of a specific wave equation. This
procedure reproduces the standard Dirac spinors for j = 1/2. The relativistic
covariant spinors for j = 1, 3/2 and 2 are explicitly constructed. For j = 1 we
show the connection between the (1,0) @ (0, 1) covariant spinors and the standard
Proca A* and F*¥. This is accomplished through the introduction of a procedure
called “spinorial summation.” We obtain 2(2j+1) covariant spinors for spin j, thus
incorporating spinorial as well as particle—antiparticle degrees of freedom in a very
natural fashion. The wave equations are derived so as to obtain conserved currents
and phenomenological interaction Lagrangian densities. These wave equations
are again obtained from a set of coupled equations valid for any spin, and have
no associated constraints. As a result they lie outside the applicability of the
Kobayashi-Takahashi theorem already cited. Again, for j = 1/2, these coupled
equation reproduce the standard Dirac equation for spin one half particles. For
j = 1, the m — 0 limit yields the standard source free Maxwell equations of
electromagnetism. The connection between the (1,0) @ (0,1) covariant spinors

and E and B fields is explicitly exhibited.

The (j > 1,0) & (0,5 > 1) relativistic wave equations involve second and
higher—order spacetime derivatives. A new technique is developed to study the
origin of acausality in the high-spin wave equations. We show that [23] equa-
tions developed here do indeed have solutions which are acausal in character, for
J > 1. However, the necessary propagators are constructed from the vacuum ex-
pectation values of the appropriate time ordered product of field operators. These
field operators contain only the physically acceptable causal solutions of the wave

equations and hence are free from any unphysical characteristics contained in the



green functions associated with the relativistic wave equations.

In addition the quasi-relativistic and extreme relativistic limits of the (j,0) ®
(0, 7) covariant spinors and equations are seen to provide some interesting insights

into the nature of high—spin fields.

The remaining outstanding problem is a technique for generating the general
forms for the phenomenological couplings. We take the conventional approach of
modeling the interactions via the construction of the possible Poincaré scalars.
The composite character of the hadrons is incorporated by including phenomeno-
logical form factors into the interaction. Some explicit models of such interaction

Lagrangian densities are provided.

In addition to the facts that the formalism developed here is valid for any
spin and is able to address the question of causality in a rather elegant fashion, it
is also particularly suited for modern computer oriented numerical and symbolic

manipulation technology.

Not only is the formalism developed here specifically designed to address theo-
retical issues arising from CEBAF, PILAC at LAMPF and KAON;, the formalism
is equally useful in studies of heavy ion collisions at RHIC where high spin parti-
cles such as the f2(1720) can be produced. Towards this end we have obtained the
S—Matrix elements needed for cross section calculations of two photon mediated
production of scalar and pseudoscalar particles. Extension of these results to the
production of arbitrary spin particles now requires interaction Lagrangian densi-
ties which couple the gauge vector potential A#(x) to arbitrary spin. The problem

of constructing this coupling is under investigation at present.

While the main text of this work is contained in seven chapters which follow,
the appendix reviews some of the standard elements of the quantum field theory in
the light of our work thus making the spin—dependence of the arguments involved
explicit. The appendix presents some original arguments and derivations but is
essentially based on the classic papers of Schwinger [24-32], Weinberg [21, 33-36]
and Dyson [37], and presents the connection between these classic works in a uni-

fied fashion. Finally we note that since a beginning student in the nuclear physics



community may not be familiar with some of the group theoretical nomenclature,
we have incorporated appropriate definitions in the text. This should make this

work immediately accessible to as large a research community as possible.



2. POINCARE TRANSFORMATIONS IN (1,3) SPACETIME
AND THEIR EFFECT ON PHYSICAL STATES

2.1 LOGICAL STRUCTURE OF QUANTUM FIELD THEORY

We take the view that the essential flat-spacetime kinematical and dynamical
structure of quantum field theory, apart from some principle generating masses for
some of the gauge bosons, is determined by the combined requirements of relativis-
tic and gauge invariances. The relativistic invariance is defined as the invariance
of the form of the laws of nature for all inertial observers. This invariance of
the form, rather than a specific physical quantity, is sometimes called “Poincaré
covariance” or “gauge covariance” depending upon the transformation under con-
sideration'. The demand of Poincaré invariance determines what matter fields
exist in nature. It is found that the wave equations, or the Lagrangian densities
from which they follow, for the “free” matter fields are not invariant under local

phase transformations of the form

() P1(x)
: = exp [ig Z a;(x) Ai] : , (2.1)
() ' thn(x)

with A = n x n norm preserving SU(n) matrices. The simplest such transforma-

tion, with n = 1, is the local U(1) transformation

) (x) = explig ()] ¢(2). (2.2)

. . . . . 2
Demanding invariance of the equations of motion” under local U(1) transforma-

tion (2.2) naturally introduces a vector potential A*(xz) which one identifies with

1 Since in the literature this fine distinction has almost disappeared we would often succumb not
to explicitly distinguish between “covariance” and “invariance.” However, almost invariably,
the context should provide the needed distinction.

2 And hence the invariance of the Lagrangian density. The reason for this rather “inverted”
emphasis lies in the fact that we will obtain equations of motion without reference to the
Lagrangian formalism.



the electromagnetic interaction. The electromagnetic interaction is introduced by

replacing

O — DF =9l + jq AP, (2.3)

in the kinematical equations of motion. The resulting dynamical equations are
then invariant under Poincaré as well as local U(1) gauge transformation (2.2) pro-

vided as
W' (x) = ' (x) = explig a(z)] (), (2.4)

we simultaneously let

Al (z) — AM(z) = AP (x) — OM o). (2.5)

Why some SU(n) invariances are physically realised and not others, is an
unanswered question and perhaps points towards a yet undiscovered constraining
principle of nature. Similarly why some representations of the Poincaré group
are physically realised, and not others, is not yet known. It is quite possible that
these unknown constraining principles contain in them solution of the yet unsolved
problems of quantum field theory: such as a quantum field theory incorporating

gravitational interaction.

This chapter is devoted to a systematic study of the relativistic invariance
which all laws of nature, at least locally, are expected to respect on empirical
grounds. It should perhaps be noted explicitly that the idea of “gauge invariance”
is secondary to that of “Poincaré covariance” — for its very definition (in the
quantum field theory) one needs the notion of matter fields first; and matter fields

arise as finite dimensional representations of the Lorentz group.

So we begin, ab initio, with the fundamentals and arrive at the various results

claimed in Sec. (1.2) in a logical and self contained fashion.



2.2 POINCARE TRANSFORMATIONS

If two physical events occur at z# = (t,Z) and z# 4+ dzH = (t +dt, £ + dZ) then
the observed constancy of the speed of light, for all inertial observers, requires

that the interval

ds* = dt* — (d7)? = nydatds” (2.6)

be invariant. The set of linear and continuous spacetime transformations which

preserve ds? are as follows:

Three Rotations about each of the (x,y,z)-axes. The transformation matrices

relating x'# with z#, z'/* = RF, ", are given by

1 0 0 0
0 AN, )
v 0 0 cos(f,) —sin(b,) |’ '
0 0 sin(f;) cos(f,)
1 0 0 0
B 0 cos(fy) 0 sin(fy)
mLe=1 0 L o | 29
0 —sin(fy) 0 cos(fy)
1 0 0 0
| 0 cos(f;) —sin(fz) O
I:RMV(QZ)] 0 Sln(ez) COS(Qz) 0 (29)
0 0 0 1

[RH,(0;)] represents a rotation by 6#; about the ith—axis. The rows and columns

are labelled in the order 0,1, 2, 3.



Three Lorentz Boosts along each of the (z,y,z)—axes. The boost matrix for a

boost along the positive direction of the unprimed z-axis, by velocity3 v, 18 given

by

cosh(yy) sinh(pz) 0 0
sinh(yz) cosh(py) 0 0
Bt - : 2.10
(B (¢x)] 0 0 10 ( )
0 0 0 1
with 2'* = BF,(pz)a”. Similarly
cosh(py) 0 sinh(p,) 0
B =| o 1)
VW= sinh(p,) 0 cosh(p,) 0|’ '
0 0 0 1
cosh(p,) 0 0 sinh(p,)
B 212)
VAl 0 01 0 ’ '
sinh(p,) 0 0 cosh(y,)
where
cosh(p) =v = ! (2.13)
SO |
sinh(p) = v7y. (2.14)
Four Translations
o't = at + at, (2.15)

with a, as real constant displacements.

3 This is the velocity which a particle at rest in the unprimed frame acquires when seen from
the primed frame.
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Parenthetic observations: The time-order of physical events is preserved if ds? > 0.
As a result, for any two physical events for which ds? > 0 the possibility of a
cause and effect relationship exists. In quantum mechanics, of course, appropriate
thoughts need to be given to the fundamental uncertainty in the measurement
of ds? itself. This aspect of the subject, however, lies outside the boundaries of
our immediate interest. In addition it should be noted explicitly that the Lorentz
boosts become singular for the massless particles for which v = ¢ = 1. In a closed
system completely composed of massless particles, the measuring devices and the
observer all move at relative speeds of unity. No measuring devices, such as clocks
or rods, exist which can be at rest in any frame. Consequently the meaning
of “physical measurement” seems to require a new definition for such a system.
Poincaré covariance seems to acquire meaning only if we introduce some massive
particles into our system, even if we do so only hypothetically. These massive
particles can then be used to construct measuring devices, which can be at rest
in frames occupied by observers made of massive particles. These observers can
then study the laws governing the massless as well as massive particles. It would
of course be interesting to formulate a theory, and experiments, without recourse
to the existence of massive particles. To construct a theory of the early universe

these epistemological questions must be confronted.

The above set of transformations can be summarised by
o't = A, a” + at, (2.16)
with the constraint (required to preserve ds?)
AN o = Tpor (2.17)

The metric 7, is

[1w] = (2.18)

o o o =
o
|
—_
o
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It is readily verified that

APAT = 6Py, (2.19)

(A~Hr = AP (2.20)

Using these well known results it is immediately established that Poincaré trans-

formations form a group, with

1. Multiplication law

{A,a}{A,a} = {AA, Aa +a}. (2.21)

2. Inverse element
(A}t ={A7H —A71a). (2.22)

3. Identity element
{I,0}. (2.23)

In (2.23) above [ is a 4 x 4 identity matrix and 0 is a “zero” vector

Using the group multiplication law (2.21), we find that the commutator of

the two group elements is

[{Al, al}, {Ag, GQ}] = {(A1A2 — A2A1), (A1a2 — A2a1) + (a1 — az)}.

Consequently the ds? preserving continuous spacetime transformation form a non-

Abelian group. It is called the “Poincaré group.”

4 A “zero” vector a* = (a° = 0,d@ = 6) is to be distinguished from a “null” vector for which

only ds? = 0 is required
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2.3 GENERATORS OF POINCARE TRANSFORMATIONS AND ASSOCIATED LIE

ALGEBRA

For infinitesimal transformations, Eq. (2.16) can be written as

't = (6", + N 2¥ + at, (2.24)

where M, and a* are infinitesimal constants. For various transformations the

nonvanishing A = M\ are summarised in Table I
TABLE I
Nonvanishing AW = M\ n®. Note we only tabulate the nonvanishing A", as such,

for example: \HF2V#3 — _\v#3u#2 — () for a rotation about the x—axis. Similar

comments apply for other transformations.

Rotation about: Boost along:

X—axis y—axis Z—axis X—axis y—axis Z—axis

)\23 — _/\32 )\31 — _/\13 )\12 — _)\21 )\10 — _)\01 )\20 — _/\02 )\30 — _/\03

Given Table I, we define ten linearly independent hermitian operators X,,

called “generators” of the Poincaré transformations, corresponding to a parameter
AN =0, M =, A =g, .. ]

o' | 0
Xo=i 7
Coxa |, 0k

(a=1,...... ,10). (2.25)

Corresponding to the three rotations given by equations (2.7)— (2.9) we obtain the

following three generators of rotations
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AT
. (a0

Ly = —X@y = —1 <Z£ - .Z'&) , (227)
L o 0

The three boosts given by equations (2.10)- (2.12) yield the generators of Lorentz

boosts

A
I
T

Finally the translations given by Eq. (2.15) are produced by the four”

generators of translations

0

P, EX;L: ) ——.
a “ Z(’“)xﬂ

(2.32)

It should be explicitly noted that the rotations, boosts and the translations under

consideration here are globally constant.

5 At present there is nothing quantum mechanical about these generators. Subsequently, we
will identify AL and —AP as the orbital angular momentum and linear momentum operators
respectively in the |z) basis. Note: the linear momentum P is the spacial part of P# = n** P,.
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If we introduce

Lig=L,= Ly, L3t =Ly=—Li3, Log= Ly = L3y, Lij=¢""Ly, (2.33)

Lip = —Lgo; = —K; (i=1,2,3), (2.34)

then the effect of the infinitesimal transformations (2.24) can be summarised by

the expression

27 = {1 + SN Ly, - ia”Pu] 2. (2.35)

For instance the effect of a infinitesimal rotation about the z—axis is

t = |:1 + % (/\12L12 + )\21L21)] t= [1 + i)\12L12] t

2.36

it 2] o= -

x’:[1+iA12L12}x:x+i9 —1 arsﬂ—y3 r=x—0,y (2.37)
z Oy O zd> .

y' = [1+iN2Lis|y =y + 0., (2.38)

2 =[1+iA2L) 2z = 2. (2.39)

The effect of a finite rotation (again about the z—axis.), say on x, is
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N—oo

0 N
' = lim <1 + ZNZLZ> x = [exp(i0,L,)] , (2.40)

Consequently, the finite transformations (2.16), generated by any one’ of the

Poincaré generators, have the form

z'7 = [exp (%)\’“’LW — z'a“Puﬂ il (2.41)

Before we embark on the next logical question, we pause to collect the commu-
tation relations between the various generators of the Poincaré transformations.

The commutation relations read

[Lyws Lpo| = t1(upLyo — MupLvo + Mo Lvp — Mo Lyp), (2.42)
[P;u Lpa] = i(nupPU - nuUPp)v (2'43)
P, P,) = 0. (2.44)

Definitions: A group formed by continuous transformations is called a Lie
group. The set of commutators { [X,, Xg] } associated with the generators are
said to constitute the algebra associated with the Lie group. If all the commutators
associated with the generators commute the group is said to be Abelian. If at least
some of the commutators are non-zero, the group is called non—Abelian. As such,
in the literature one often refers to commutators (2.42)—(2.44) as the Lie algebra

associated with the Poincaré group.

6 We emphasise “any one”, because generators corresponding to two different Poincaré trans-
formations do not commute in general.
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2.4 POINCARE TRANSFORMATIONS AND QUANTUM MECHANICAL STATES

Recalling the definition of Poincaré covariance:

The form of the underlying laws of Nature, as determined by an inertial ob-
server, which determine the nature of any observable phenomenon remain

unchanged under a Poincaré transformation,
we ask the question:

What constraints does the requirement of Poincaré covariance impose on

quantum mechanical states and physical observables?

To study this question let us experimentally prepare a system7 in a state
|state). Let the same system now be observed by another inertial observer charac-
terised by {A,a}. Denote the state as observed by this new observer by |state)’. In
order that |state) and |state)’ be physically acceptable states, they must transform

as

|state) = U({A,a}) |state), (2.45)

where U({A,a}) is an unitary operator constrained to satisfy:
U{A,a})U({A,a}) = U{AA, Aa +@}). (2.46)

This constraint that U({A,a}) furnish a representation of the Poincaré group is
required in order that a Poincaré transformation {A,a} followed by {A,a} has
the same effect as the Poincaré transformation {A,a}{A,a}. Strictly speaking
(2.46) is true for infinitesimal transformations. The finite Poincaré transformations
which are constructed by successive application of infinitesimal transformations
will occasionally have a minus sign on the r.h.s of (2.46). The representation
is then said to be a representation up to a sign. This situation will arise when

considering half-integral (spinor) representations. In such situations spinor fields

7 It will be seen in the Appendix that single particle free states of a massive particle are
specified by specifying the four momentum, spin, and its projection along an observer chosen
axis. With a similar specification, involving “helicity,” for massless particles
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must be so combined as to yield observables which are even functions of spinor
fields. For further comments on this point the reader is referred to Sec. 2.12 of

Ref. [41].

The linearity of the unitary operator U({A, a}) implies that for an infinitesimal

Poincaré transformation
{A,a} = {1+ A e}, (2.47)

U({A,a}) has the form

U({A,a})=1— %)\‘“’QW + i€, (2.48)

The factors of —5 and 4 are purely for reasons of historical convention, and €2,,, and
(2, are yet undetermined generators. Determining the effect of a Poincaré transfor-
mation {A, a} on physical states, therefore, involves explicit determination of these
unknown generators. For determining the generators of Poincaré transformations
we began with the known transformations, and formally determined the genera-
tors which induce those transformations. However, if we are given the generators
of the Poincaré transformations, we could from them construct the transformation
which the spacetime coordinates undergo under a Poincaré transformation. We
could even go further, and claim that we could have obtained the generators as
one of the representations of the algebra satisfied by these generators, if the Lie

algebra associated with the Poincaré group was given a priori.

Taking this philosophical point of view we now proceed to find the algebra
satisfied by €, and €,. Towards this end we follow Weinberg [34] and consider
the transformation of U({1 + A, €}) by an arbitrary U({A,a})

U({A,a}) U{1+ A, e}) UTH({A, a})
[Using (2.46) and U1 ({A,a}) = U({A, a}™Y)]
= U{A(L+N),Ae +a}) U{ATY, —A71a})
[Using (2.46), again]
U{1+ AL, —a— A a+ Ae +a)),
U({14+ AATEH —AMT + Ae}),

(2.49)
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Using (2.48) in the r.h.s of the above expression we obtain

U{{Aa}) U{L+ A e}) U ({Aa})
= 1= (AMTYQ,, +i(—AXa + A, (2.50)

v

1 % AN (AN Q4 i | A N7 (A7), 0, + AP P, |

v

But (A™1)_" = AY, according to (2.20) which relates the inverse of A, A1, to A.

g

Therefore

U({Aa}) UL+ X e}) UTH({Aa})

L aerar A NPTANY a2, + iAM eP) (2:51)
=1-5A% oSy — 1A, oyl + 1 A" peltl),.

On the [.h.s of the above expression substitute for U({1 + A, €}) from (2.48) to
get

U({A,a}) UL+ X e}) UTH({A a})

—U({A,a}) |1— %/\‘“’QW +ietQ, | UTL({A a})

—1- %w U{A, a}) Qu U™ ({A, a}) +ie" U({A, a}) Q, U ({A,a}).

(2.52)
Going back to (2.51), interchange p <> p and v <> o on the r.h.s to obtain
U({A.a}) UL+ X e}) UTH({A a})
= 1= AV NYAT Qg — AP NV A gy + A7 e
(2.53)

i 174
= 1= S NAPA Qs

o 1 1 .
— iIANYAP LAY, §(a(,§2p —a,8)y) + 5(%9’) +a,8ds) | + AP, Q,

where a,€2, is broken into its antisymmetric and symmetric parts. Now note
that if Q,, is symmetric then AP;,A%,Q,, is symmetric in the indices p,v. The

proof goes as follows. A?,A%,Q,, = [by symmetry of Q] A?,A?,Q,, = [renaming
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the summed indices] A%, ,A?,Qy, = [by rearranging] A?,A?,Qs,. Exploiting the

antisymmetry of A\ we get

U({A,a}) UL+ X e}) UTH({A a})

— 1 Dymwpe pe (Qp + a0y — a,fy) + e AP, (2:54)
= 2 ptt vidtop og3tp piio pReps

Comparison of (2.54) and (2.52) yields the Poincaré transformation properties

of Qu and
U({A,a}) Qu UTH({A, a}) = AP, A7, (Qp + a0,y — a,)2), (2.55)

and

U({A,a}) Q, UTL({A,a}) = A?,Q,. (2.56)

It is immediately observed, from the absence of a* in the r.h.s of (2.56), that

while €, is translationally invariant €, is not.

The algebra satisfied by these generators can now be obtained by setting
{A,a} = {1+ A, e}, where X and € are a new set of infinitesimals, in the Poincaré
transformation properties of 2, and €, given by (2.55) and (2.56). To implement

this calculation we need to know the expansion of U~L({A, a}) to order O(,¢)

UM ({Aa)) = U1+ A), )7
— U+ N (1))
= U({1= A ~(1=N)e}) 2.57)

1— 5(—)\)75975 +i[—(1 = A)e]",

1+ %)\75975 — i€,

We first consider (2.55), which gives the Poincaré transformation property of

Q,, and substitute for U({A,a}) for an infinitesimal transformation given by
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(2.48), and use (2.57) for U"'({A,a}), in the Lh.s (of (2.55))

- %Aaﬂﬂaﬂ + i€" Q) [1 + %WQWS — i€,
=(1+ /\)pu(l + A7, (Qpo + €6Q2p — €805).

(2.58)

To order O(\,¢),
LoH.S 0f (2:58) = Lt N7 (o — Lor Q) +i® (P — ) . (2.59)

Similarly to order O(A,€),

R.H.S of (2.58)

= Quu + N7 (uoJpy — MwpSo) + ¢’ (771/9Qu - "uﬁQV)

[where have freely raised and lowered indices and used A7 = —\7]
1 1

2 2
+ 69 [nl/ng[J - 7’/1991/]

o |1 1
— A [_ (Moo — MwoQpup) + 5 (MwpSuo + nanup)}

1
= Qu + 5)‘% (Moo = MupSov = MwpSuo + Mvolup]

+ ¢ [UVHQH - 77/1991/] )
(2.60)

where we have again used the antisymmetry of A\?7.

By comparison of (2.59) and (2.60) we arrive at the following results [we have
rearranged certain terms and made replacements like €2,, — —€,,. Note such
replacements are allowed without loss of generality because of the antisymmetry

of A (see Table I) which allows only the antisymmetric part of €2, to contribute
to U({A, a}). ]

[, Qpo] = 1 (M0puo — MupSlve + Mo Qwp — Mo Sup), (2.61)
and

[Qp, Q/w] = i(nﬁuQV - 771/09/1)- (2.62)
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When the same exercise is carried out with (2.56), we reproduce (2.62) and

complete the Lie algebra associated with the generators of U({A,a}) by obtaining

€2, 2] = 0. (2.63)

It is immediately observed that the algebra associated with the generators of the
continuous spacetime transformations {A,a}, given by (2.42)—(2.44), is identical
with the algebra (2.61)—(2.63) associated with the generators of the Lie group

formed by U({A,a}). As a result we make the following customary identifications

QMV = Jﬁ“” QN = PM' (2.64)
Consequently
[Juzlv Jpa] = i(nupjua - nupjua + nuaJI/p - nvaJup)v (265)
[Pm Jpa] = i(nuppa - mep), (2.66)
[Pl“ P,,] = 0. (2.67)

The same commutation relations are displayed in a more visually accessible form

in Table II.



TABLE II
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Lie algebra associated with the generators of the infinite dimensional representa-

tions of the Poincaré group [Generator in the first vertical column , Generator in

the first horizontal row|=Entry at the intersection. For example: [J,, P,| = iP..

K, | K, | K. | .. | J, | . | n | P.| P, | P.
K| 0 |=id, | —-iJ,| 0 |iK, |—iK,|—iP,|—iPy| 0 | 0
K,| il. | 0 |—iJ, |—iK.| 0 | iK, |—=iP,| 0 |—iB| 0
K| i, | iJe | 0 |iK, |—iK,| 0 |=iP,| 0 | 0 |—iPR
J.| 0 | iK, |—iK,| 0 | il |=id,| 0 | 0 | iP, |—iP,
Jy|—iK.| 0 | Ky |—iJ.| O | iJy | 0 |—iP| O | iP;
J | ik, |—iK.| 0 | i, | —ide| O | 0 | P, |—iP:| 0
r| P, | iP, | iP, | 0 0 o | o o] oo
P ik | 0 0 0 | P, |—iP,| 0 | 0 | 0 | 0
pl 0 | iR | O |=iP.| O |iP.| O | 0O | 0O | 0
P.| o 0 | P | B |—iP:| O | O | 0 | 0 | 0

The fact that the algebra given by (2.65)—(2.67) coincides with the algebra

associated with the Poincaré group should not lead to the inference that L, is

necessarily identical to .J,,. All that is required is that both L, and .J,, satisfy
the same algebra. Even the the P, appearing in (2.64) need not coincide with
the generators of spacetime translations. Nevertheless, as is customary, we will

concentrate on the algebraic aspect and will not explicitly differentiate between

these distinctions notationally. The distinction will be obvious, and emphasised

where necessary, from the physical context.

This establishes the connection of the Poincaré transformations {A,a} in the

ordinary spacetime and their effect in the Hilbert space of quantum mechanical

systems determined by U({A,a}). For a finite Poincaré transformation we have
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U({A, a}) = exp _%w '+ i€t P, | | (2.68)

We asked the question: What constraints does the requirement of Poincaré
covariance impose on quantum mechanical states and physical observables? The
partial answer to the questions is that physically acceptable quantum states must

transform under a Poincaré transformation {A,a} as
l
|state)’ = exp —5)\“"JW + il P, | |state). (2.69)

While Egs. (2.55) and (2.56) provide the Poincaré transformation properties
of the generators, J,, and P,; Eqs. (2.65)—(2.67) give the Lie algebra associated
with these transformations. In the Appendix we will find what invariants specify

physical states, |state)’s.
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3. (j, 0) ©® (O,j) COVARIANT SPINORS
3.1 BoosT FOR (j,0) @ (0,5) COVARIANT SPINORS

We begin with some useful definitions. Referring to Table II we note that the
generators {f, K } form a closed algebra. The Lie group generated by the genera-
tors {f , K }is called® the “Lorentz group” and corresponds to the transformations
(2.16) with a* set identically equal to zero. The term “representation” means a
group of linear operators which is homomorphic to the group to be represented.
The space of vectors on which these operators act is a complex vector space, and is
called the “representation space” (cf. Ref. [42]). An operator, constructed out of
the generators of a group, which commutes with all generators of the Lie group is
called a “Casimir operator” associated with the group. Eigenvalues of the Casimir

operators are called “Casimir invariants.”

As argued by Weinberg [21], and discussed in the Appendix here, we will see
that (with one exception, the scalar field) if one wishes to arrive at the parti-
cle interpretation within the framework of Poincaré covariant theory of quantum
systems, one is forced to incorporate necessarily non—unitary finite dimensional
representations of the Lorentz group. Since only unitary transformations of physi-
cal states allow for a probabilistic interpretation, the representation spaces of finite
dimensional representations of the Lorentz group cannot be spanned by “physical
states” defined via (2.69). The objects which span the finite dimensional represen-
tation spaces are called “matter fields,” or just “fields.” This last comment should
not lead anyone to conclude that matter fields (Dirac spinors being one example)
do not play a significant physical role in the description of quantum systems. In
fact much of this work is devoted to the study of these fields, and extends Dirac’s
original work on spin one half particles to any spin. Because of historical reasons

matter fields are also known as “covariant spinors.”

The set of generators {f , K } span a linear vector space with J and K as the

basis vectors. The vector space of the generators should not be confused with

8 Strictly speaking this is the “proper Lorentz group” because the generators {f, K } refer to
the continuous spacetime transformations.
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the vector space (= representation space) on which the generators act. Since the
Lorentz group is “non—compact”g; all its finite dimensional representations are
non—unitary according to a theorem in mathematics. To construct these finite
dimensional representations, we explicitly note the Lie algebra associated with the

Lorentz group

Ki, Ji]=0, i=uz,y,z (3.1)

oy Iyl =iy, [Ke Ky = =iy, [Jo, Kyl =K., [Kg, Jy] = 1K, (3.2)

and “cyclic permutations”. Next we implement the standard rotation ' by in-

troducing a new basis:
Sgr =

The algebra associated with these generators reads:

[(SR)iv (SL)]] - 07 27.7 =rYy,z. (34)

[(SR)z, (Sr)y] = i(SR)=: [(SL)e, (SL)y] = U(SL)= (3.5)

and “cyclic permutations.”

As a result we see that each of Sp and Sy satisfies the algebra of a SU(2)
group. The finite dimensional irreducible representations of the Lorentz group

are thus direct products of those for the sub-algebras SU(2)r and SU(2)r. The

9 Ref. [53, p. 43]: “This corresponds roughly to the observation that velocities, which are
parameters of Lorentz boosts, take on values along an open line, from v/c =0 to v/c =1,
whereas angles of rotation extend from 6 = 0 to § = 27, and these points are identified, so
the line becomes a closed circle. The group space of the rotation group is finite, but that of
the Lorentz group is infinite, so the Lorentz group is non—compact.”

10 The introduction of i = /—1, in the equations below, is a nontrivial construction, which
allows us to construct the finite dimensional representations of the Lorentz group. Its intro-
duction is ultimately justified by experimental observation that at least some of these finite
dimensional representations are indeed physically realised in nature.
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(24, + 1)(27; + 1) irreducible representations of SU(2)g ® SU(2), are labelled by
two numbers (jr,7;), Jjr(jr +1) and j;(j; + 1) being the eigenvalues of the two
Casimir operators (Sg)? and (Sp)2. The basis of (2], + 1)(2j; + 1) dimensional

representation space containing the relativistic covariant spinors can be written as

¢jr,ar ® ¢jl,017 (36)

where:

('S_:R)2 ¢jr,ar = jr(jr + 1) ¢jr,ara (SR)Z ¢jr,ar =0y (pjr,ar

UT:jT7j1“_17jr_27"'7_jT+]-7_j7" .

(3.7)

(SL)2 ¢jl;0'l = jl(jl + 1) ¢jl;0l7 (SL)z ¢jl;0'l =0y ¢jl;0'l
o=Jiu—Lau—2,....,—nu+1,-5 .

(3.8)

Since under Parity: (j,0) <> (0, 7), we introduce the (7,0)® (0, j) covariant spinors

¢ (7)
Yeu(p) = (3.9)

L

¢ (9)

where qu () represents functions in the (j,0) representation space, and ¢>L (P)

represents functions in the (0, j) representation space.

Before we proceed further the distinction between the finite dimensional rep-
resentation of {J, K} and infinite dimensional representations of {.J, K } should be
explicitly noted. For the (j,0) representation K=—iJ , since by definition for the
(7,0) representation Sp = J and S, = 0. Similarly for the (0,7) representation
K = +iJ. Covariant spinors for the Dirac field are the (1/2,0) & (0,1/2) matter
fields. For the (1/2,0) component of the field K = —ig/2 and for the (0,1/2)
component K = +id' /2. As such both J+ if, i.e. both gR and §L, are hermitian.

The same remains true for all other (4,0) @ (0, j) representations. On the other
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hand for the infinite dimensional representations (in the |x) space), we have:

e, 0
Jw = —ng = —1 (ya — Za—y>

K.=Xy =1 <t% + z%) . (3.10)

Both J and K , in the infinite dimensional representation, are hermitian. This
makes J £ iK , and hence S r and S L, non-hermitian. Besides this observation
there is a profound difference between the finite dimensional and the infinite di-
mensional representations, which is often not fully appreciated in the literature.
This has to do with the following simple observation. The finite dimensional
J 's, such as J = /2 for the Dirac field, refer to the internal degrees of freedom,
while the J’s of infinite dimensional representation refer to the external spacetime
degrees of freedom (that is they are interpreted as orbital angular momentum).
Because of this simple fact even though both the finite and infinite dimensional
representation S and J all satisfy the standard S U(2) commutation relations,
their commutation properties with the generators of spacetime translations are
very different. For the infinite dimensional representations the full commutation
relations are summarized in Table III. The same commutation relations for the
finite dimensional representations are displayed in Table IV. For the purposes of
comparison, the Poincaré algebra given by (2.65)-(2.67) is presented in a sim-
ilar format in Table V. The difference between finite dimensional S’s and the
infinite dimensional S’s is apparent. Also the commutation relations of infinite
dimensional S’s and infinite dimensional .J, both of which satisfy the same SU(2)
algebra, should be explicitly observed in reference to their commutation relations

with P,.



TABLE IIT

28

Lie algebra associated with the generators of the infinite dimensional represen-

tations of SU(2)g, SU(2)r and the generators of the spacetime translations. [Gen-

erator in the first vertical column , Generator in the first horizontal row|=Entry

at the intersection. For example: [SE, P)] = LP,.

SE | SE | SE | S| Sf| S| R | P | P | P
SEl 0 | iSE | —iSF| 0 0 0 | 3P | 3P0 | P | 3P,
SEL—iSE| 0 | iSF | 0 0 0 | 3P |—%P| 3Py | i1
SEL iSf | —iSE| 0 0 0 0 | iP. | iP, |—LiP| P
SEL o 0 0 0 | iSE | —iSk|-ipP, | 3P| 4P, | —%P,
Skl o 0 0 |—iSL| o | iSL |-3P)|-LiP.|—iPy| iP,
SEL 0 0 0 | Sk |—iSE| 0 |=3P.| Py |—5P: | —5P
Py| 3P| —3Py | —3P:| 3P | 3P, | 3P. | © 0 0 0
Py | —3R | LtP. |-iP)| 3Py | iP. |-iP,| © 0 0 0
Py|—iP. | =3Py | 5Py | —%P.| 3Py | P | 0O 0 0 0
P, | iP, |-iP | -iP)| iP) |-iP:| APy | O 0 0 0
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TABLE IV

Lie algebra associated with the generators of the finite dimensional representations
of SU(2)g, SU(2)r, and the generators of the space time translations. [Generator
in the first vertical column , Generator in the first horizontal row|=Entry at the

intersection. For example: [SE, P,] = 0.

SE | Sk | SE | SE | S| SE| R P| P| P
SEl 0 | iSE | —iSE| 0 0 0 0 0 0 0
SEl—iSE] 0 | iSE| 0 0 0 0 0 0 0
SE| sk | —iSE| 0 0 0 0 0 0 0 0
SEL o 0 0 0 | iSF |—iSk| 0 0 0 0
S 0 0 |—iSEl o [ Sk | o 0 0 0
SE1 0 0 0 | iSL |—iSE| 0 0 0 0 0
Pl 0 0 0 0 0 0 0 0 0 0
Pl 0 0 0 0 0 0 0 0 0
Pl o 0 0 0 0 0 0 0 0 0
Pl 0 0 0 0 0 0 0 0 0 0
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Lie algebra associated with the generators of the infinite dimensional representa-

tions of the Poincaré group [Generator in the first vertical column , Generator in

the first horizontal row|=Entry at the intersection. For example: [J,, P,| = iP..

K, | K, | K. | .. | J, | . | n | P.| P, | P.
K| 0 |=id, | —-iJ,| 0 |iK, |—iK,|—iP,|—iPy| 0 | 0
K,| il. | 0 |—iJ, |—iK.| 0 | iK, |—=iP,| 0 |—iB| 0
K| i, | iJe | 0 |iK, |—iK,| 0 |=iP,| 0 | 0 |—iPR
J.| 0 | iK, |—iK,| 0 | il |=id,| 0 | 0 | iP, |—iP,
Jy|—iK.| 0 | Ky |—iJ.| O | iJy | 0 |—iP| O | iP;
J | ik, |—iK.| 0 | i, | —ide| O | 0 | P, |—iP:| 0
r| P, | iP, | iP, | 0 0 o | o o] oo
P ik | 0 0 0 | P, |—iP,| 0 | 0 | 0 | 0
pl 0 | iR | O |=iP.| O |iP.| O | 0O | 0O | 0
P.| o 0 | P | B |—iP:| O | O | 0 | 0 | 0

Now if we wish to represent say AJ7=3/2(1232) by a (3/2,0)@® (0, 3/2) relativistic

covariant spinor we implicitly assume that the j = 3/2 belongs entirely to the

internal degrees of freedom (i.e. quark spins) and does not contain in it any orbital

angular momentum. Even though, in the present paper, we would treat the “spin”

of the resonances as if it were an internal degree of freedom in the above sense, it

must be remembered explicitly that this is in, general, only an approximation. It

will be an interesting exercise to develop appropriate experimental means and the

associated theoretical formalism to decompose the “j” of a given11

resonance into

orbital and internal part. For example a reference to Tables IV and V immediately

tells us that if we were to first rotate a |state) with an orbital angular momentum

11 To fully explore this problem one needs a to extend the present work to relativistic composite

particles.
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about the x-axis and then translate it in the y-direction and compare the resulting
|state) with the same operations interchanged then the two resulting |state)’s need
not be identical. On the other hand, if orbital angular momentum is replaced by
the internal angular momentum (i.e. arising from the spin) in a similar system
the above experiment would yield identical |state)’s after performing the indicated

operations in two different orders.

Having laid this background, we now proceed with the construction of the
(7,0) @ (0,7) boost operator. Since we are interested in constructing the boost
operator we set § = 0. Then if we consider the particle under consideration
to be at rest in the unprimed frame, a Lorentz boost results in a particle with
momentum p. The boost connecting the p' = 0 wavefunctions with 7 # 0 are
readily obtained. From a formal point of view the matter fields also transform as
the physical |state)’s (see Eq. (2.69)), but with one difference. That the J,, is
replaced by its finite dimensional counterpart and the unitary operator U({A,a})
is replaced by the non-unitary D({A,a}) satisfying the same condition of the

Poincaré covariant description:
D({A,a})D({A,a}) = D({AA, Aa +a}). (3.11)

Then consistent with definitions given in Table I we obtain:

R R =

¢ (7)) =explJ- 3] ¢ (0) (3.12)

L

¢ (7)) =exp[—J - 3] ¢

L

(0). (3.13)

As a consequence, the “chiral representation” 2 (4,0)® (0, ) relativistic covariant
spinors defined by (3.9)transform as:
exp(J - @) 0
You(p) = Yom (0). (3.14)

-

0 exp(—J - §)

To make identifications with the historical work for (1/2,0) & (0,1/2) Dirac

12 We call this representation “chiral representation” because for j = 1/2 the representation
coincides with the “chiral” representation of the Dirac spin one half formalism.
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covariant spinors it is convenient to introduce a “canonical representation”. The

connecting matrix A is given by

Ver () = A vbon(F). A= (j _II> . (315)

Each entry [ in the matrix A represents a (25 + 1) x (2j + 1) identity matrix,
and one is still free™ to choose any representations for the .J;. In the canonical

representation covariant spinors are

1 ¢ (7)) + o (7)
¢OA (ﬁ) - = . (3'16)

V2 ¢ (7)) — o (7)

Referring to (3.14), we identify the chiral representation boost matrix as

exp(J - @) 0
Mcu(p) = : (3.17)

-

0 exp(—J - §)

As a result the boost matrix in the canonical representation reads

M, (p) = . (3.18)
sinh(J - @) cosh(J - @)

If J is set equal to &@/2 the boost matrix given by (3.18)coincides with the
boost for Dirac spinors in the standard Bjorken and Drell [52] representation.

M

o4 (D) contains all the essential information needed to construct any (j,0)® (0, 5)

relativistic covariant spinor. This we now show by an explicit example.

13 We will fix this freedom in the next section by choosing a representation in which J, is
diagonal. This will define the “canonical representation” without ambiguity. If one wishes,
one may call the canonical representation with J, diagonal to be the standard canonical
representation, thus leaving the freedom for other “canonical” representations.
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3.2  (1,0)@® (0,1) COVARIANT SPINORS

The representation space of the (1,0) @ (0, 1) matter fields is a six dimensional
internal space whose basis vectors in the canonical representation can be chosen

to be

m 0 0
0 m 0
. 0 . 0 . m
u—‘,—l (0) = 0 ? UO (0) = 0 ? u—l(o) = 0 )
0 0 0
0 0 0
0 0 0
0 0 0
o 0 o 0 . 0
Uiy (0) - m y Uy (0) = 0 y Uy (0) = 0 (319)
0 m 0
0 0 m

The indicated norm is dictated by the convenience introduced while considering
the m — 0 limit. This choice of the basis vectors, and the interpretation attached
to them that u, (0) represents a particle at rest with the z-component of its spin to
be o (o = 0,+1) and v, (0) represent the antiparticle at rest with the z-component
of its spin to be o, forces upon us the representation for the angular momentum
operators J. It requires that J, be diagonal. So in the canonical representation

Ji can be written as follows (see ref. [50] for the notational details)

0 1 0 0 —i 0 10 0
1 1
Jo=—|10 1|, Jy=—]4d 0 —i|, J.=|0 0 0 |. (320
V2 V) : (3-:20)
0 1 0 0 i 0 00 -1

The boost matrix M, ,(p) takes the relativistic covariant spinor of a particle

at rest, ¢oA(6)7 to 1., (P), the relativistic covariant spinor of the same particle



with momentum p:

'%bcA (ﬁ) = MCA (ﬁ) wCA (6)
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(3.21)

The cosh(f - @) which appears in the covariant spinor boost matrix (3.18) can

be expanded to yield

cosh(J - @) = cosh <2f

o Gy

) =1+2(J-p)(Jp)sinh? (g)

Now we note that

n(5) - (55)
and

> 1
J p=—

—_

¥

Substituting for J; from (3.20) the matrix J - p reads

Pz %(px - Z'py) 0
Tp=—"1" | L +ipy 0 L (p2 — ipy)
(B2 — m2)% V2 y V2 WP y
0 %(px + Z'py) —Pz
Introducing
Py = Pe T ipy,

and using the just obtained results and identities, we obtain

PRt app. pap i?
Cosh(f-ﬁ):H; Lp.p p.D ——2=p:p
m(E +m) V2rE A V2
5° —J5P:p. PR gDp

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

Similarly sinh(f - @) which appears in the boost matrix for the covariant spinors

14 See the last section of the Appendix for general expansions of cosh(J - @) and sinh(J - @)
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(3.18) can be expanded as

-

b (T 3) — sin (27 £ = 207 5) cosh (£) siuh (£
sinh(J - ) = sinh <2J 2) 2(J p)cosh(2>smh<2). (3.28)

We have already obtained the explicit expression for J- P, so we only need to note

that

2m

cosh (g) - (E * m>% . (3.29)

This yields:
p: p- 0

sinh(J- @) = — | Zsp, 0 %p_ : (3.30)

3

0 5P, P

Substituting sinh(J - @) and cosh(J - @) into (3.18) provides the specific boost
for the (1,0) @ (0, 1) covariant spinors Mé1AO)®(O’1)(ﬁ). The (1,0) @ (0, 1) covariant
spinors, in the canonical representation, associated with momentum p, are now im-
mediately calculated by using Mé1AO)®(O’1)(ﬁ ) thus obtained and using (3.21) with

Yo, (0) = uy(0), vs(0) given by (3.19). The result is:



u+1(ﬁ) =

36

m+ [(2p2 + p.p )/2(E+m)]
pp, /V2(E +m)
pi/Z(E-I—m)

(3.31)

p./V2

0
p=p_/V2(E +m)
m+[p,p_/(E+m)]
—p:p,/V2(E +m)
= , (3.32)

p_/V2

0

p./V?2
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p?/2(E +m)
—p.p_/V2(E +m)

m+ [(2p2 + p,p_)/2(E +m)]
u_, (p) = : (3.33)

p./V2
0
v, (P) = , (3.34)

m+ (207 + pop )/2(E+m)]

pep,/V2(E + m)

pi/Z(E +m)



p? /2(E +m)
—p.p_/V2(E +m)

m+ [(2p2 + p.p_)/2(E +m)]

38

(3.35)

(3.36)
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The reader may wish to verify that this procedure when repeated with J=¢c /2
reproduces the standard Dirac spinors. All other (7,0) & (0, 5) covariant spinors
are obtained by following exactly the same procedure as above and using the
appropriate identities given in the last section of the Appendix for the expansion

of sinh(J - @) and cosh(J - @) which appear in (3.18).

Orthonormality of Relativistic (1,0) @ (0,1) covariant spinors:

Introducing
o () = ub (F)vg (3.37)
where (see Eq. (7.1))
I 0
CA

Yoo = (0 —I) ; (3.38)

it is readily verified that
Ug (ﬁ) Ug? (ﬁ) = m25oa’ (339)
50(17) Vg’ (ﬁ) = _m2500’- (340)

Ultrarelativistic or Massless Limit:

Since we have chosen to work in a representation in which .J, is diagonal we
expect that, for a particle traveling along the Z axis, only the uy1(p) and vy (p)
to survive. The ug(p’) and vg(p) must vanish. In this ultrarelativistic or m — 0
limit: p* = (F,0,0,p = F). Substituting p* = (E,0,0,p = E) in the (1,0)® (0, 1)
wave functions given by (3.31)—(3.36) we readily see that:

L (3.41)

=y
=y
|

lim wqg( , lim u_q(
m—0 m—0

o o Im o o

=y
N—
|
(e (e (e (e (e (e

E

0

0 .
)= E ’nlzlinouo(

0

0
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with
I Ty () g (E) = 0. (3.42)
Similarly,
E 0 0
0 0 0
li 7 O 7 O 7 - 3.43
n;gov+1(p)— 5 ,n;govo(p)— 0 ,T,;glou_1(p)— S (3.43)
0 0 0
0 0 E
with
lim 7, (E) vy (E) = 0. 44
lim v, (E) vy (E) =0 (3.44)

In the ultrarelativistic limit we thus see that we get only two non—null independent
us1(E) and two non-null independent viq(E) . The ug(F) and vo(FE) vanish
identically. While u41(F) and v41(E) are identical, the u_;(E) v_1(E) differ by

a relative phase of exp(im).

3.3 (3/2,0)® (0,3/2) COVARIANT SPINORS

For various spin 3/2 baryons [3], such as A2 (1232), we now introduce (3/2, 0)
(0,3/2) covariant spinors. As for all (j,0) & (0, j) covariant spinors, these covari-
ant spinors for spin 3/2 have exactly the right degrees of spinorial and parti-
cle/antiparticle degrees of freedom, and have an elegance and general structure

first seen in the Dirac spinors.

The canonical representation (3/2) @ (0, 3/2) covariant spinors are obtained in
a similar fashion as the (1,0) @ (0, 1) covariant spinors obtained in the last section.

To obtain the boost
cosh(.J - @) sinh(.J - @)
i=3/2 (=
MI=3%(p) = : (3.45)
sinh(J - @) cosh(J - @)
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we first note that Egs. (B.3) and (B.4) for j = 3/2 yield:

— ]_ —
cosh(2.J - F) = cosh ¢ [I + 5{(2J -p)? — I} sinh? go], (3.46)
— — ]_ —
sinh(2J - @) = (27 - p) sinh [I + {2 5)? — I} sinb? w] , (3.47)
Next letting
1
v =50 (3.48)

and using the identities

1/2
E —

sinh% - < 2mm> (3.49)

1/2

E
cosh £ = m (3.50)
2 2m

. 2J - p 2J - p

o0 - p=—-L = L (3.51)

CENCEETSIR

we obtain the desired expansions for the canonical representation boost. These

expansions are:

cosh(J - @) = <E2J;nm>1/2 [I + % {((;;]:712; - I} <E2;1m>] (3.52)

~~

3.53)

E+m\"?[ 2f.p 1 275 [ @] p)? E—m
< 2m > (E+m)+6(E+m){(E2—m2)_I ( om > :

These expansions when substituted in Eq. (3.45) provide the boost for the
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(3/2,0) @ (0,3/2) covariant spinors. The boost matrix Mg';g/z (p') takes the rel-
ativistic covariant spinor of a particle at rest, 9c4(0), to ¢ca(7), the covariant

spinor of the same particle with momentum p:
Wi () = MIT () I (0). (3.54)

In order that in the m — 0 limit
(i) The rest covariant spinors vanish, and

(ii) The m — 0 limit covariant spinors have a non—singular norm

we choose the following rest covariant spinors:

m3/2 0 0
0 m3/2 0
0 0 m3/2
T e B O A |
0 0 0
0 0 0
0 0 0
0
0
0
m3/2?
u_s (0) = :

o o o o <o



o o o O

3/2

=)

o O o o o

3/2

43

0
0
0
. 0
, v_1(0) = o |
0
32
0
) (3.55)
0
0
ws@®=| "
_3 =
2 0
0
0
m3/2

If the usual interpretation is to be attached to these covariant spinors, then we

must choose a representation for the spin 3/2 J; in which J, is diagonal. In this

representation J is:

0 V3 0 0
Jl\/ﬁozo
T2l 0 2 0 V3

0 0 V3 0

1
Jz:§

The rest of the calculation15

3
0
0
0

o o = O

0 —iv/3 0 0
1]14#w3 0 -2 0
21 0 2% 0 —iv3
0 0 /3 0
0 0
0 0
o (3.56)
0 -3

simply involves substituting these .J; into Eqs. (3.52)

15 We have performed this part of the calculation using MACSYMA.
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and (3.53), and the resulting block matrices into Eq.  (3.45). The resulting boost
M gj?’/ 2(p), in the form of a 8 x 8 matrix, when applied to the basis rest covariant
spinors (3.55) yields the (3/2,0) & (0,3/2) covariant spinors. The “particle”

covariant spinors are:

) —mt (Em)?
u =m?:
+3\P 2m

(9p% + 3p.p_ + 5m?® + AEm — E2)/A(m + E)

\/§p+pz/(m + E)

V3p? /2(m + E)

P2 (902 + Tp,p_ + 13m? + 12Em — E?)/4(m + E)?

V3p, (13p2 + Tp.p_ + 13m? + 12Em — E?)/12(m + E)?

\/gpipz/2(m + E)2

P /2(m + E)?
(3.57)
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E—i—m)%

V3p_p./(m + E)

(p% + Tp.p_ + 5m? + 4Em — E2)/A(m + E)

2
V3p2 /2(m + E)
V3p_(13p2 + Tp,p_ + 13m? + 12Em — E?)/12(m + E)?
p(p2 + 19p.p_ + 13m2 + 12Em — E2)/12(m + E)?

p, (P2 + 10p,p_ + 13m2 + 12Em — E%)/6(m + E)?

—V/3p2p./2(m + E)?
(3.58)



@) =mt (210)
V3p? /2(m + E)
0
(P2 +7Tp.p +5m? +4Em — E*)/A(m + E)
—V3p,p./(m+ E)
X V3p2p./2(m + E)?

p (P24 10p,p +13m2+ 12Em — E?)/6(m + E)?

—p-(p? +19p,p_ + 13m? + 12Em — E?)/12(m + E)?

V3p, (13p2 + Tp,p_ +13m? + 12Em — E?)/12(m + E)?

46

(3.59)



47

V3p? /2(m + E)

—\/gp_pz/(m + E)

(992 + 3p,p_ + 5m? + 4Em — E*)/A(m + E)

p*/2(m + E)?

—V3p*p./2(m + E)?

V3p (13p2 + Tp,p_ +13m? + 12Em — E?)/12(m + E)?

—p.(9p2 + Tp,p_ +13m* + 12Em — E?)/4(m + E)?
(3.60)

Here
Py = Px T ipy. (3.61)

An inspection of the boost given by Eq. (3.45) immediately tells us that four
vy (p)'s are now readily obtained by flipping the four bottom elements with the



48

four top elements of the respective u,(p)’s. That is:

Ve (P) = F ux(p), (3.62)

O 3.63
(1) 369

In general the matrix I, appearing in F, is a (25 + 1) x (2j + 1) identity matrix.

where the “flipping matrix” is

Hence for the spin 3/2 case under consideration I = 4 x 4 identity matrix.

Orthonormality of Relativistic (3/2.0) & (0,3/2) covariant spinors:

From Eq. (4.43) (See Sec. 4.4 below) we read off:

o (01 o
Voo, = L I = 4 x 4 identity matrix. (3.64)

The canonical representation 'ygf is, by definition:

I 0 1 (I 1
CA CH -1
Yoo = A Voo A :(0 _1>’ AZW(I —1)' (3.65)

Introducing (in canonical representation)

U () = ub (7)1 (3.66)
- . e 416
it is readily verified ~ that
Uy (§) g () = m°6o0 (3.67)
o (1) 0o () = =m0 (3.68)

In the canonical representation the origin of the “minus” sign in the rhs of the

orthonormality condition (3.68) can be readily traced back to the structure of yygo,

16 Using MACSYMA.
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and the fact that v, (p) are obtained (due to the structure of M (p'), given by Eq.
(3.45)) from the v, (p) via the flipping matrix F. Symbolically:

“ U b R b* 3.69
u~(b>,u~<a )(0 _I)—w ) (3.69)

Tu~aa—Db'b. (3.70)

Hence

Next

v~Fu=v=(b a)=Tv~bb—a'a=-uu, QED. (3.71)

We suspect that the (relative) minus sign in the rhs of the orthonormality relations
(3.67) and (3.68) is essential for the existence of the conserved charge constructed

out of ¢ (x) for massive particles.

Ultrarelativistic or Massless Limit:

Since we have chosen to work in a representation in which J, is diagonal,
we expect that for a particle traveling along the Z axis, only the u +3 (p) and
Vi3 (p') to survive. The u_ ! (p') and v, L (7) must vanish. In this ultrarelativistic
or m — 0 limit: p# = (F,0,0,p = E). Substituting p* = (¥,0,0,p = E) in the
(3/2,0) @ (0,3/2) wave functions we readily see that:

(3.72)

lim w1
m—0 +5(

=
IS
+
N[5
—
=y
N
|
s
[N}
O O O = O O O =
=y
N
|
o o o o o o o o
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0 0
0 0
0 0
0 1
lim u_y (p) = Nk lim u_s (p) = V2E: o | (3.73)
0 0
0 0
0 -1
with
J}LHOEU(E) us(E) = 0. (3.74)
Similarly
1 0
0 0
0 0
lim v, 3 (f) = V2E> ! , lim v, () = ! : (3.75)
m—0 2 1 m—0 2 0
0 0
0 0
0 0
0 0
0 0
0 0
0 —1
Imoy @)= | lmoes@) = V2E? uE (3.76)
0 0
0 0
0 1
with
lim 7, (E) vy (E) = 0. (3.77)

m—0



o1

In the ultrarelativistic limit we thus see that we get only two non—null independent
ui%(E) and two non-null independent vig(E) - The w1 (E) and vi%(E) vanish
identically. While u+%(E) and v, s (E) are identical the u_%(E) v_s (E) differ by

a relative phase of exp(ir).

3.4 (2,0)® (0,2) COVARIANT SPINORS

For various spin 2 mesons, such as f3(1720), we now present the relativistic

(2,0) @ (0,2) covariant spinors. Again, the formal elegance is evident.

In order to calculate the (2,0) @ (0,2) covariant spinors we follow the now
familiar procedure. The boost is:
cosh(J - @) sinh(J - @)
MIZ2(5) = : (3.78)
sinh(J - @) cosh(J - @)

with J
0 1 0 0 0
1 0 3/2 0 0
J.=10 32 0 3/2 0|,
0 0 3/2 0 1
0 0 0 1 0
0 —i 0 0 0
i 0 —iy/3/2 0 0
Jy=10 /372 0 —i\/3/2 0 |,
0 0 i\/3/2 0 —i
0 0 0 i 0
200 0 0
010 0 0
=10 00 0 o0 (3.79)
000 -1 0
000 0 -2

The expansions for cosh(.J - @) and sinh(.J - @) are now obtained from Eqs. (A406)
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and (A407), and read:

7 \2 N2 T2 =2
cosh(J - @) = I + m((‘;i )E) ) pr)nz(((njl szV ) (3.80)
T~ T = T.7\2 _ =2
sinh(J - @) = Jmp+%‘] pn(l(z(mpl E)p ) (3.81)

With J, diagonal and the requirements that the “rest” covariant spinors vanish
in the m — 0 limit and that the covariant spinors for massless particles (those
corresponding to the ultrarelativistic limit) have a non-singular norm, we choose

the following basis of rest covariant spinors:

[N

m 0 0 0
0 m? 0 0
0 0 m? 0
0 0 0 m?
4 0 . 0 . 0 . 0
u42(0) = o | u+1(0) = o | up(0) = o | u_1(0) = e
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0
0
0
0
u_s(0) = m , (3.82)

o O o o o
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0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
4 0 . 0 . 0 . 0
v42(0) = 2 , v41(0) = 0 , vo(0) = 0 , v-1(0) = e
0 m? 0 0
0 0 m? 0
0 0 0 m>
0 0 0 0
0
0
0
0
. 0
v_2(0) = 0 (3.83)
0
0
0
m2

With this skeleton of details, we now write down the (2,0) @ (0,2). The reader
who has gone through the construction of the (1,0) & (0,1) and the (3/2,0) @

(0,3/2) covariant spinors would simply find any further details unnecessary.
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(8p: + 8(p_p, + 2m?* + 2Em)p? + p? p> +4m(m + E)p_p,
+4m?2(m + E)?)/4(m + E)?

(4p,p2 + (3p_p? + 6m(m + E)p,)p-)/2(m + E)?
V6(2p2p2 +p_p® + 2m(m + E)p?)/4(m + E)?
p2p./2(m + E)?

pt/4(m + E)?

ura(F) = (3.89)

(202 + (p_p, + 2m* + 2Em)p.)/(m + E)

(4p,p% +p_p> + 2m(m + E)p,)/2(m + E)

V6 pipz/2(m + E)

P /2(m + E)




U+1(17) =

(4p_p3 4+ 3(p°p, + 2m(m + E)p_)p.)/2(m + E)?

(2(2p_p, +m? + Em)p? + 2p%pz +5m(m+ E)p_p,
+2m?2(m + E)?)/2(m + E)?

V6(p_p> + m(m + E)p,)p./2(m + E)?

(2p_p? + 3m(m + E)p?)/2(m + E)?

—pipz/Z(m+E)2

(4p_p2 + pp, +2m(m + E)p_)/2(m + E)

(2p_p, +m(m + E))p./(m + E)

V6(p_p2 +m(m+ E)p,)/2(m + E)

P /2(m + E)

35

(3.85)
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)

V6202 p2 + pp, + 2m(m + E)p*)/4(m + E)?

V6(p?p, +m(m+ E)p_)p./2(m + E)*

(3p2p* + 6m(m + E)p_p, + 2m*(m + E)?)/2(m + E)?

—V6(p_p> + m(m + E)p,)p:/2(m + E)?

V6(2p2p% + p_p® + 2m(m + E)p?) /4(m + E)?

V6p*p./2(m + E)

V6(p?p, +m(m+ E)p_)/2(m + E)

V6(p_p? +m(m+ E)p,)/2(m + E)

—V6p2p./2(m + E)

96

(3.86)



p’p./2(m + E)?

(2p°p, + 3m(m + E)p?)/2(m + E)?

—V6(p%p, +m(m + E)p_)p./2(m + E)?

(2(2p_p, +m? + Em)p? + Zp%pi +5m(m+ E)p_p,
+2m?(m + E)?)/2(m + E)?

—(4p, 3 + 3(p_p? + 2m(m + E)p,)p./2(m + E)?

p*/2(m + E)

V6(p?p, +m(m+ E)p_)/2(m + E)

—(2p_p, +m(m + E))p,/(m + E)

(4p,p% +p P2 +2m(m + E)p,)/2(m + E)

57

(3.87)



p*/4(m + E)?

—p*p./2(m + E)?

V6202 p2 + pPp, + 2m(m + E)p?)/4(m + E)?

—(4p_p2 + ?)(p%pJr + 2m(m + E)p_)p,)/2(m + E)?

(8p + 8(p_p, + 2m(m + E))p? + p*p? + dm(m + E)p_p,
+4m?(m + E)?)/4(m + E)?

p*/2(m + E)

—V6p?p./2(m + E)

(4p_p2 + p*p, +2m(m+ E)p_)/2(m + E)

—(2p2 + (p_p, + 2m(m + E))p.)/(m + E)

98

(3.88)



The “antiparticle” covariant spinors are

va(ﬁ) =F uU(ﬁ)v

where the “Hipping matrix” is

0 I
F = , I =5 x5 unit matrix.
I 0

Using MACSYMA we obtain the expected orthonormality properties:

Uy (ﬁ) Ugr (ﬁ) - m4 500’

Where

I 0
’YO%éO = (0 ) , I =5 x5 unit matrix.

-1

Ultrarelativistic or Massless Limit:

99

(3.89)

(3.90)

(3.91)

(3.92)

(3.93)

(3.94)

Since we have chosen to work in a representation in which J, is diagonal, we

expect that for a particle traveling along the Z axis, only the ui2(p) and vi2(p) to

survive. In the w41 0(p) and v41o(p) must vanish. The ultrarelativistic or m — 0

limit: p* = (F,0,0,p = E). Substituting p* = (E,0,0,p = F) in the (2,0) @ (0, 2)



60

wave functions given by (76a-e) we readily see that:

1
0
0
0
lim uio(p) = 2E> " ;
m—0 1
0
0
0
0
0 0 0
0 0 0
0 0 0
0 0 0
lim uyq(p) = " , lim w(p) = ’ , lim u_y(p) = " ;
m—0 0 m—0 0 m—0 0
0 0 0
0 0 0
0 0 0
0 0 0
0
0
0
0
lim u_s(p) = 25> ! : (3.95)
m—0 0
0
0
0

|
—_
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with
77lligloﬂg(E) ug' (E) = 0. (3.96)
Similarly:

1

0

0

0

0
T}}Lﬂov+2(ﬁ):2E2 aE

0

0

0

0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

Y o) = | | @) = || mea@) = ||

0 0 0
0 0 0
0 0 0
0 0 0
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0

0

0

0
lim v_s () = 2E2 ! , (3.97)

m—0 0

0

0

0

1

with

T}Ligloig(E) ve'(E) = 0. (3.98)

In the ultrarelativistic limit we thus see that we get only two non—null independent
u+2(E) and two non-null independent v42(E) . The utq(£) and v419(E) vanish
identically. While u42(E) and vi2(E) are identical the u_s(E) v_o(F) differ by a

relative phase of exp(ir).
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4. WAVE EQUATIONS SATISFIED BY
(7,0) @ (0,j) COVARIANT SPINORS

4.1 GENERAL COUPLED EQUATIONS SATISFIED BY (4,0) @ (0,j) COVARIANT

SPINORS

We begin with a simple observation that the (j,0) @ (0, j) relativistic covariant
spinors have been obtained purely from group theoretical considerations and not
as solutions of specific equations. As a result, given a specific set of (j,0) @
(0,7) covariant spinors, there may exist more than one equation which has these

covariant spinors as their solutions.

In this chapter a class of these wave equations is obtained by a simple exten-
sion of a procedure described by Ryder [53] for the (1/2,0) & (0,1/2) case. A
somewhat less tramspament17 procedure which yields the same wave equations is

due to Weinberg [21].

The essential ingredient which enters in deriving the relativistic wave equations
is the observation that for a particle at rest, owing to the isotropy of the null

direction p = 6, one cannot define its spin as either left or right handed. That is:

¢ (0)=¢ (0) (4.1)

Hence equations Egs. (4.1) and (3.12) yield

R

¢ (0)=explJ- 3 ¢ (7), (4.2)

and similarly Egs. (4.1) and (3.11) give

R

¢ (0) = exp[-T- @] ¢ (7). (4.3)

Substitution of Eq. (4.2) in Eq. (3.11) and Eq. (4.3) in Eq. (3.12) results in the
following coupled equations between the right and left handed matter fields d)R (P)

17 At least to the present author.
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and ¢ ():
¢ () = exp[2T- F] ¢ (7) (4.4)
¢ (7) = exp[-2T 3] ¢ (7). (4.5)
Expanding the exponentials, we obtain the coupled equations
0" (7) = (cosh(2] - @) +sinb(2T - 3)) 4" (7) (4.6)
¢ (7) = (cosh(2] - §) = sinh(2] - 7)) 4" (7). (4.7)

from which we can obtain relativistic equations satisfied by the (j,0) @ (0, j) co-
This we now show by explicit

variant spinors as a simple algebraic exercises.

examples.
4.2 EQUATION SATISFIED BY (1/2,0)® (0,1/2) COVARIANT SPINORS: DIRAC

EQUATION
Before we take up the case of general fields for an arbritrary spin let us get

acquainted with Eqs. (4.6) and (4.7) coupling qu (p) and qu (p) by considering

the case
- d
J == 4.8
’ (48))
where ¢ = Pauli matrices. Then, for J = & /2, we can write
cosh[ 2J - g] = <I+ (¢ ]5)25 4o ) =1 coshyp (4.9)
3
. S L @ -
s1nh[2J-<p]—a-p<1+?+ ------ )-a-p sinh ¢, (4.10)

where p = p/|p’| and I = 2 x 2 identity matrix. Substituting expansions (4.9) and
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(4.10) in the coupled Egs. (4.6) and (4.7) we get

R(j=1/2) L(j=1/2)

(7) = (coshp+0-p sinhg) ¢ 2y (4.11)

L(j=1/2) R(j=1/2)

(7) = (coshop—&-p sinhg) ¢~ (7). (4.12)

Since coshp = v = (1 —v2)~2 = E/m = py/m, and sinhp = vy = |7|/m , Egs.

(4.11) and (4.12) can be written as

R(j=1/2)

—m ¢ @)+ o+ -p) ¢

L(j=1/2)

(#) =0 (4.13)

L(j=1/2)

(po—&-7) SRUTYIE) —m (%) = 0. (4.14)

These coupled equations can be combined to yield the equation for chiral repre-

sentation (1/2,0) & (0,1/2) covariant spinors:

| ¢Ru:1/2> ()
) = - (4.15)
¢Lu:1/2> (7)

When this is done, we obtain:

S S R(G=1/2) ,
-m  (w+d-p)\ [ (D)
=0 . (4.16)
S o LG=1/2) ,
(po — & ) —m ¢ (D)
That this has the formal form of the well known spin one half Dirac equation can

be seen by introducing the 4 x 4 v matrices

o 0 1 iO—ai
T\ 0) T T\ o

[Chiral Representation). (4.17)

Then Eq. (4.16) becomes

(1=1/2)

(Y'pu —mDyp~ (p) =0, (4.18)

We now notice that even though we have been motivated to consider the finite

18 Note: p, = (po = E, —p)
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dimensional representations of the Lorentz group by quantum mechanical con-
siderations , so far there is nothing very specifically quantum mechanical about
our study of the matter fields. Our previous experience with quantum mechan-
ical systems suggests that we postulate hJ as the operator corresponding to
the observable associated with the quantum mechanical angular momentum, and
hp, = (hid/ot, —{—ihV}) be considered as the observable associated with the en-
ergy momentum vector. We implement these correspondences by interpreting the
pu in Eq. (4.18) as the operator P,. Thus in coordinate space, Eq. (4.18) trans-
lates to read

(1=1/2)

(iv"0, — m 1)y (x) =0, (4.19)

which is indeed the standard Dirac Equation. The linearity in d, of this field
equation has its origin in the anti-commutator {¢*,0/} = 2%, which made the
substitutions (9) and (10) possible. Put differently (2f 13)(2f- p) appearing in
the expansions of cosh(2J - @) and sinh(2J - @) equals

yo 2 py 2 pz 2 pa:py PxPz PyDz
Jy J —=J; Joy Iyt + Je, I b+ Sy, J,
(W s g g U o G Ve e g U 2

(4.20)
which reduces to a simple identity matrix only for J=¢c /2. In the absence of this
property specific to the spin—% fields the expansion of cosh(2f - @) and sinh(2f - D)
will contain higher order terms in p, and hence higher order 9, in the coordinate

space representation through the powers of J - p = J - /|7l

4.3 A EQUATION SATISFIED BY (1,0) @ (0,1) COVARIANT SPINORS

Setting j = 1 in Eqs. (A406) and (A407) of the last section of the Appendix

and taking J tobe 3 x3 angular momentum 1 matrices we get

cosh(2J - @) =14 2(J-p)(J - p) sinh® ¢, (4.21)

sinh(2J - @) = 2(J - p) cosh @ sinh . (4.22)
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Using these expansions in the coupled Egs. (4.6) and (4.7) we obtain

R(j=1) L(j=1)

b (ﬁ):[1-|-2(f-ﬁ)(f-ﬁ)sinh2<p+2(f-ﬁ)cosh<psinh<p]q5 (7) (4.23)

L(j=1) R(j=1)

b (ﬁ):[1+2(f-ﬁ)(f-ﬁ)sinh2cp—2(f-ﬁ)cosh<psinh<p]¢ (7). (4.24)

By replacing sinh ¢ by |'|/m and cosh ¢ by p”/m the above expressions take the

form

R(j=1)

¢“"”<ﬁ>=i[ 2+2<f-ﬁ><f-ﬁ)—2<f-ﬁ)p°]¢ F).  (4.26)

m2
These coupled equations can be combined to yield the equation for the chiral
representation six-component (1,0) @ (0, 1) covariant spinors:

R(j=1)

¢ (D)
G=n ,
You (F) = - (4.27)
L(j=1) ,
¢ ()
. . 19
This equation reads "~ :
I 0 NuP"p” + 1 /6" ()
2T - p)(J - )+ 2(J - §)p°
—m?l =0
nuupupy+

- - - L(j=1) ,
L\ 2(J-9)(J-7) = 2(J - §)p° 0 1 \¢ " (p)

(4.28)

19 Here we have used 7,,p"p” = m? in the first term on the lhs of the equation which follows.
Similar substitutions will be made for the (3/2,0) @ (0,3/2) and (2,0) & (0,2) cases without
explicit mention. This is a non—trivial substitution and will receive detailed attention in
Chapter 6.
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Introducing 20 ten fully symmetric (in the Lorentz indices) 6 X 6 spin—1 « matrices:

0 NPt p” +
2J - 5)(J 7))+ 2(J - §)p°
YuPH'p” = (4.29)
[nwp“p” +
2T 7)(T - 5) = 20T - 5)p'| 0

. 21
we obtain

(3=1)

(’Y/wpupy — m? I) (0 (ﬁ) =0. (4'30)

The chiral representation expressions for the j = 1 v matrices are easily read from

(4.29) to be:
0 I
Yoo = <[ 0) (4.31)

0 Ji
Yio = Y0i = - (4.32)

0 I 0 {JinJ;}
Yii = Yij = I o nij + (7T} 0 , (4.33)
1)

where J; are the 3 x 3, j = 1 angular momentum matrices. In order that Eq.
(4.30) be interpreted as a spin—1 quantum mechanical wave equation the reader is
referred to the comments made at the end of the last section. In Eq. (4.33) n;j is
the spacial part of 7,,. In Eqgs. (4.30) to (4.33) hp* should be interpreted as the
observable energy momentum vector; and h.J as the standard observable operators

associated with the angular momentum. It should be parenthetically noted that

JQuantum Mechanical — h X Jgere- (4'34)

So far the J in this work stands for the classical generators of rotation. The

quantum mechanical angular momentum operator equals h times the classical

20 We drop the representation identifying subscripts ¢y or ¢4 whenever no confusion is likely
to occur.
21 Which first appeared in ref. [21].
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generators of rotation. However it is most convenient to choose the units i =

L e=1 then numerically: JQuantum Mechanical=J Here-

In coordinate space Eq. (4.30) becomes

(=1

(’y””(‘)u@,, + m? I) P (x) =0. (4.35)

To obtain the above equation from Eq. (4.30) we first note v,,p"p” = v*'pupy -
Next, let p, — i0,.

4.4 AN EQUATION SATISFIED BY (3/2,0) @ (0,3/2) COVARIANT SPINORS

Setting 7 = 3/2 in Eqgs. (A408) and (A409) of the last section of the Appendix

and taking J tobed x4 angular momentum 3/2 matrices we get

R 1
cosh(2J - F) = cosh ¢ [1 + 5(7)2 — 1) sinh? cp] , (4.36)

R 1
sinh(2.J - g) = nsinh ¢ [1 + —(n* — 1) sinh? gp} . (4.37)

3!
Substituting expansions (4.36) and (4.37) in the coupled Egs. (4.6) and (4.7) we
obtain

21
(p) = |cosh ¢ + nsinh ¢ + (77 ) {nsinh3w+3cosh<psinh2<p}}

R(j=3/2)

6

L(j=3/2)

X (), (4.38)

L(j=3/2)

21
0] (p) = |cosh ¢ — nsinh ¢ — (77 ) {nsinhgcp—?)coshcpsinhch}]

6

R(j=3/2)

X¢ (7)- (4.39)

Reintroducing = 2J - p and sinh = |F|/m and cosh = p°/m, the above
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equations become

R(j=3/2) , _, 1 - 1 - >
’ () =— mz(p°+2J-p)+g{(2 )2 —p*H2J -+ 3p")
L(G=3/2) ,
x¢ (), (4.40)
La=s/2 . - 1 2(,0 7= 1 72 2 7= 0
(p):$ m*(p —2J-p)—g{(2J-p) —p°H2J-p—3p”}
R(j=3/2) ,
x¢ o (p). (4.41)

Finally, introducing the eight component (3/2,0) @ (0,3/2) covariant spinor

RG=3/2) ,
¢ ()
G=3/2) ,
Yo () = : (4.42)
L(G=3/2) ,
¢ (D)
and the 8 x 8 spin—-3/2  matrices
0 Nuw P 97 (P° + 27 - )+
L@ p)?2 =2 H{2] 5+ 3p'}
VAP P p = ,
N P 7 (" — 2T - 7)—
H@T p)? -5 32T -5 3p°} 0 o
43
we obtain the (3/2,0) & (0, 3/2) relativistic wave equation
G=3/2) ,
(Y p'p'p* — m* Iy (F) = 0. (4.44)
In coordinate space it reads
(92 9,0, 05 + m3 D"~ (x) = 0. (4.45)



71

4.5 AN EQUATION SATISFIED BY (2,0) @ (0,2) COVARIANT SPINORS

To obtain a wave equation satisfied by the (2,0)® (0, 2) covariant spinors using
the coupled equations (4.6) and (4.7) we need the expansions of cosh(2.J - @) and
sinh(2J - @) with J as the 5 x 5 angular momentum 2 matrices. These expansions

are obtained by using Eqs. (A406) and (A407), and the standard identities

> 0
sinh p = M, cosh ¢ = P (4.46)
m m
The result is

- 20 -7)2  2(J-p)H(T )2 - p?
cosh(2J-@) =1 + (mf) + 5( 7) {(m4p) ) (4.47)

L AT T —

m 3 m

A relativistic wave equation satisfied by the ten component (2,0)@® (0, 2) covariant
spinors
R(j=2) ,
¢ (D)
=2,
You (F) = : (4.49)

¢~ (7)

is now readily obtained using the coupled equations (4.6) and (4.7). The result is

(wuxpp’“‘p”pAPP —m*rI ) P(p) =0, (4.50)

where in chiral representation the thirty five 10x 10 fully symmetric (in the Lorentz
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indices) v matrices are:
BV AP —
Yuwrp PP PP —

NP Mrpp™p”
0 +2(-p){(T-7) + P Ynuptp”
+2 (T p)?2 =9 2T P) + 2p°}

MDD Mo p”

+2( - (T 7) = P Inuptp” 0
+3 (T T 5)? =7 2HT - 7) - 2%

(4.51)

In the coordinate space we have the following expression for (4.50):

(ywpa,ta,,axap . m41) b(x) = 0. (4.52)
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5. CAUSAL PROPAGATORS FOR
(7,0) @ (0,7) MATTER FIELDS

5.1 CAUSALITY AND WAVE EQUATIONS SATISFIED BY (j,0) @ (0, ) COVARI-

ANT SPINORS

A general wave equation, obtained from the coupled equations (4.6) and (4.7) ,

satisfied by the (7,0) @ (0, j) relativistic covariant spinors is of the form

(’Y{u}p[u] - m2J1> w(ﬁ) =0, (51)

where {u} is a set of 2j Lorentz indices and pl*l is a set of 2j one Lorentz indexed
contravariant energy momentum vectors. That is for j = 1/2, vy, plil = Yup* and

for j =1, vquy pltl = YurP'p”, and so on. 7y,y are a fully sy1r1r1met1ric22

NN+1)---(N+S-1)
St

(5.2)

set of 2(2j+1) x2(2j+1) spin—j v matrices. Here S = 25, the number of indices on
Y{u}; and for the (1, 3) spacetime under consideration N = 4. A basic requirement

for any solutions to exist is
Determinant (’Y{u} p — m2j1> = 0. (5.3)

For a given j this “existence requirement” can be interpreted as a 2j(2(2j + 1)]th
order equation in E. By working out specific examples, we will discover that there

are
Na(j) = 251227 +1)] —2(25 +1) = 2(25 - 1)(25 + 1) (5.4)
“acausal” solutions — that is solutions for which:

E? # p* + m? (5.5)

Even though we verify this relationship only for j = 1/2,1,3/2 and 2, we expect

it to be true in general. The remaining “causal” solutions, that is solutions for

22 In the Lorentz indices.
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which E? = p? + m?,
Nc(j) = 2(2j + 1), (5.6)
we identify with the already constructed (j,0)@® (0, j) relativistic covariant spinors.

The observation

Na (%) = 0; and Ny4 (j > %) £ 0 (5.7)

leads us to the conclusion that the Green” functions G(j>%’0)@(0’j>%)(a: —a)
((i)zj vt oy — m? ) G>30)2(05>5) (4 — o'y = §4(x —a')  (5.8)

associated with wave equations satisfied by the (j > %,0) S5) (O,j > %) covariant

spinors, cease to be identical with the vacuum expectation value

( T[¥(z) U(2)] ) (5.9)

24
where

=5 [ Gy ®

[<p, o) a(ih.0) exp(—ip- @) +v(F,0) b (5,0) exp(+ip- )|,

(5.10)

However we note that the fundamental object which enters the canonical S—

matrix calculations is not the Green function G(x-x’) but the “propagator”:

( T[¥ () @] )- (5.11)

The propagator can be constructed out of the (7,0) @ (0, j) covariant spinors

o (x) = ug(9) exp (—iphay) (5.12)

Vo () = v (D) exp (+ipzy) (5.13)

and, unlike the Green function, contains only the physical “causal” solutions.

23 While working specific examples we may may not symbolically distinguish between the Green
functions which arise from a source “ — 0(x — «')" rather than “+ é(x — z')".
24 Here Q = Q(m, p) is a j dependent normalization factor.
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For j = 1/2, uys(p) and vy (p) are the well known Dirac spinors. A general
method of obtaining uy(p) and v, (p') for any spin has been discussed in Chapter
3. Explicit forms of u,(p’) and v, (p’) are worked out for j = 1,3/2 and 2 in Secs.
3.2, 3.3 and 3.4 respectively.

We now explicitly examine the character of the solutions of the wave equations
satisfied by the (1,0)®(0,1), (3/2,0)®(0,3/2), and (2,0)®(0, 2) covariant spinors.
Sec. 5.3 examines the (1/2,0) @ (0, 1/2) Dirac equation. We begin with (3/2,0) &
(0,3/2) case.

5.2 CAUSAL PROPAGATOR FOR (3/2,0) @ (0,3/2) MATTER FIELD

The momentum-space wave equation satisfied by the (3/2,0)® (0, 3/2) covari-

ant spinors, as derived in Sec. 4.4, reads:
(v;mp“p”pA —~ mgl) Yl=3/2) () = 0. (5.14)

We begin with the observation:

We already know the eight physical solutions which satisfy this wave equa-

tion. These are:

ux3)o(9), ux1y2(p), vi3p2(P), vr12(P), (5.15)

Their explicit form is given in Sec. 3.3. These solutions were not obtained

as solutions of any differential equations.

With this observation in mind, we note, that for the (1/2,0) & (0,1/2) case the

Dirac propagator can be constructed either as a green function
(iv"9, — mI) GEO203) (g — ') = 54z — o) (5.16)
or, evaluated as the vacuum expectation value:

(w0209 @) 0 ) ), (5.17)
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For the (1/2,0) @ (0,1/2) case the G(z — ') and ( |[T[¥(z)¥(z')]] ) are

identical to within a numerical factor of the order of unity.

In order to study the kinematical properties of (5.14) we note that a basic

requirement for any solutions to exist is:
Determinant (’yu,,Ap’“‘p"pA - m3I) = 0. (5.18)

For mathematical convenience, and without loss of generality, we now confine to

p* = (FE,0,0,p) 2 Equation (5.18) then becomes:
(p* + m? — E2)4 (p* — m*p? — 2E*p* + m* + E*m?® + E4)4 =0. (5.19)

Treating this equation as a twenty—fourth order equation in E, we obtain 24 so-
lutions. These solutions are of the form F = E(p,m) and are called “dispersion
relations.” The dispersion relations, the associated multiplicity (that is the num-
ber of times a particular solution occurs) and their interpretation, are tabulated

in Table VI.

25 Throughout this chapter we will use the symbolic manipulation program “MACSYMA” to
carry out various analytic calculations.
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TABLE VI

Dispersion relations E = E(p, m) associated with Eq. (5.14); obtained as solutions

of Eq. (5.19): N¢ (3) = 8, and N4 (3) = 16.

(Multiplicity) Dispersion Relation Interpretation

(4) E = ++/p? + m? Causal, “particle”
4ys (7), s ()

(4) E = —/p? +m? Causal, “antiparticle”

vis(F), vel(D)

Acausal

Acausal

Acausal

( )

(1) B = — (2idgmam) Acausal
( )
( )

The term “causal” in Table VI refers to the fact that particle/antiparticle

covariant spinors satisfy the correct £ = E(m, p) relationship
E? = p* + m?. (5.20)

On the other hand the solutions termed “acausal” emphasise the fact that they do
not satisfy the correct E = E(m,p) given by (5.20). It is because of the existence

. . . 2 .
of “acausal” solutions admitted by (5.14) that the associated Green % function

26 In reference to footnote 23 note that the Green function defined here and that defined through
Eq. (5.8) for j = 3/2 differ by a “—” sign in their source term. Similar care should be taken
elsewhere.
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(i7" au0u0n + m* 1) QEOSOD@ —a) = '@~ (5.2)

will propagate not only the physical “causal” solutions but also the unphysical
g y y

“acausal” solutions.

The (3/2,0) @ (0,3/2) causal propagator is now constructed via the known
and causal (3/2,0) @ (0,3/2) covariant spinors u,(p) and v, (p) by evaluating

( reE0e0) @) TEOOD ) ), (5.22)

The eight causal solutions u, (p) and v, (p') needed to evaluate the above expression
are given explicitly in Sec. 3.3. These solutions are independent of any specific

wave equations which one may construct for phenomenological studies.

5.3 A REMARK ON (1/2,0) @ (0,1/2) MATTER FIELD

As a parenthetic remark, we note for the (1/2,0) @ (0,1/2) Dirac case’’ that
Determinant (y*p, — mlI)=0 (5.23)

yields

E=+p?2+m?, 2 times (5.24)
E=—p*+m? 2 times (5.25)

without any acausal solutions.

27 Again taking p* = (E,0,0,p) to keep calculations simple.



79

5.4 CAUSAL PROPAGATOR FOR (1,0) @ (0,1) MATTER FIELD

The (1,0) @ (0, 1) covariant spinors satisfy

(Yuw " = m? 1) $(p) = 0, (5.26)

as shown in Sec. 4.3. For this case, from a conceptual point of view, all of the

above discussion still holds. Now
Determinant (7, p"p” — mzl) =0 (5.27)

yields*®
—(p* —m? —E2)’ (p? +m? - E?)’ = 0. (5.28)
Treating this equation as a twelfth order equation in E, we obtain 12 solutions.

These solutions, the associated multiplicity and their interpretation, are tabulated

in Table VII.
TABLE VII

Dispersion relations F = E(p, m) associated with Eq. (5.26); obtained as solutions

of Eq. (5.28): N¢ (1) = 6, and N4 (1) = 12.

(Multiplicity) Dispersion Relation Interpretation

(3) E = ++/p?+m? Causal, “particle”
ut1(p), uo(P)

(3) E = —/p?>+m? Causal, “antiparticle”
v+1(P), vo(P)

(3) E = ++/p? —m? Acausal, Tachyonic

(3) E = —+/p?> —m? Acausal, Tachyonic

28 Calculations being performed with p* = (E,0,0, p).
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In Table VII the term “techyonic” is used to indicate that these solutions
propagate with velocities greater than light: v > 1. It is because of the existence

of “acausal tachyonic” solutions admitted by (5.26) that the associated Green

function GOS0 (5 — g/
(7" 0,0, + m* 1) GROPOD (5 oy = 5z — o), (5.29)

will propagate not only the physical “causal” solutions but also the unphysical

“acausal tachyonic” solutions.

The (1,0) @ (0,1) causal propagator is now constructed via the known and

causal (1,0) & (0, 1) covariant spinors: u,(p) and v, (p) by evaluating
—(1,0)9(0,1
(T t0eOD @) TV @) ). (5.30)

The six causal solutions u,(p) and v, (p) needed to evaluate the above expression
are given explicitly in Sec. 3.2. These solutions are independent of any specific

wave equations which one may construct for phenomenological studies.

5.5 CAUSAL PROPAGATOR FOR (2,0) & (0,2) MATTER FIELD

The momentum-space wave equation satisfied by the (2,0) & (0,2) covariant

spinors, as derived in Sec. 4.5 is:

('muxpp“p”pApp — m4I) Y(p) = 0. (5.31)

As before, in order to study the kinematical properties of this equation we note

that a basic requirement for any solutions to exist is
Determinant (’yuy,\pp”p”p)‘pp —mt I) =0. (5.32)

For the mathematical convenience, and without loss of the generality, we now

confine to p* = (F, 0,0, p) and evaluate this determinant. Equation29 (5.32) then

29 The long expression which follows is simply to emphasise the importance of every possible
simplification which can be introduced, like taking p* = (E,0,0,p), to execute these high—
spin calculations successfully.
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becomes:

—E* +20p® B3 — 190 p* B30 + 1140 p° E®* — (4845 p° — 5m®) B
+ (15504 p'® — 80m® p*) E* — (38760 p'? — 600 m® p*) E*®
+ (77520 p'* — 2800 m® p°) E?® — (125970 p'® — 9100 m® p® + 10 m'%) E**
— (21840 m® p* — 120 m!% p? — 167960 p'®) E*
— (184756 p*° — 40040 m® p'? + 660 m'° p*) E*°
+ (167960 p** — 57200 m® p** + 2200 m!® p®) B8
— (125970 p** — 64350 m® p'® + 4950 m'° p® — 10 m**) B

(

(

(

(

(
+ (77520 p*® — 57200 m® p'® + 7920 m'® p'® — 80 m** p?) B
— (38760 p* — 40040 m® p*® + 9240 m!0 p'? — 280 m** p*) E2
+ (15504 p* — 21840 m® p** + 7920 m'® p'* — 560 m>* p°) E'°
— (4845 p® — 9100 m® p** + 4950 m'® p! — 700 m** p® + 5m??) E®
— (2800 m® p®® — 1140 p** — 2200m'® p'® + 560 m** p'® — 20 m3? p?) EO
— (190 p*® — 600 m® p** + 660 m'® p* — 280 m** p'? + 30m*? p*) E*
+ (20p38 — 80 m8 30 + 120 m16 22 — 80 m24 14 +20 m32 6) EZ

—(p4 5m® 32-|-10m16 24 _10m** 16-|-5m p —mo):().
(5.33)

It can be factored into the following simple expression:

5 5 5
_(p2_m2_E2) (p2_|_m2_E2) (p4_2E2p2+m4_|_E4) — 0.
(5.34)
Treating this equation as a fortieth order equation in F, we obtain 40 solutions.

These solutions, the associated multiplicity and their interpretation, are tabulated

in Table VIII.

Once again, as already established for the (1,0) @ (0,1) and the (3/2,0) @
(0,3/2) matter fields, the wave equation (5.31) satisfied by the (2,0)®(0, 2) covari-

ant spinors also propagates acausal solutions via the Green function G20)®(0.2) (x—

z'):
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(77 0,0,00 0, — m* 1) GROPOD (g — o) = §4(z — o). (5.35)
The physical “causal” propagator
—(2,0)$(0,2
(|T[W(2) 20202 FEOZOD gy (5.36)

is readily constructed using the known physical “causal” covariant spinors given

in section 3.4.

TABLE VIII

Dispersion relations F = E(p, m) associated with Eq. (5.31); obtained as solutions

of Eq. (5.34): N¢ (2) = 10, and N4 (2) = 30

(Multiplicity) Dispersion Relation Interpretation

(5) E = ++/p? +m? Causal, “particle”
ux2(p), ux1(p), uo(P)

(5) E = —/p?> +m? Causal, “antiparticle”
v+2(P), v1(P), vo(P)

(5) E = ++/p? — m? Acausal, Tachyonic

(5) E = —/p? —m? Acausal, Tachyonic

(5) E = ++/p? +im? Acausal

(5) E = —/p?>+im? Acausal

(5) E = ++/p? — im? Acausal
(5) E = —/p? —im? Acausal
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5.6 A REMARK ON THE MASSLESS MATTER FIELDS

Tables VI, VII and VIII summarize the dispersion relations associated with the
wave equations associated with the (1,0)®(0, 1), (3/2,0)®(0,3/2) and (2,0)®(0, 2)
matter fields. A quick reference to these tabulated results immediately leads to

the following conclusion:

For m = 0 all “acausal” dispersion relations, E = E(p, m), associated with
the equations explicitly constructed in the last chapter cease to be acausal

and reduce to £ = £p.

In the next chapter we will find that a well known set of linear equations for
massless particles of arbitrary spin have unexpected kinematical acausality for
J > 1. On the other hand, as just noted, the m — 0 limit of the wave equations
satisfied by % (7,0)@(0, j) relativistic covariant spinors are free from all kinematical
acausality. This paradoxical situation will be resolved, and corrected, by following
some general considerations and working out a specific example associated with
the (3/2,0) @ (0,3/2) matter field. The chapter will begin with a review, and
repeat some of the algebraic equations, in order to construct an appropriate logical
environment for a rather subtle matter. This matter was ignored, so far, to keep

the logic unconvoluted.

30 At least for j = 1,3/2 and 2 where this claim is explicitly verified.
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6. KINEMATICAL ACAUSALITY IN EQUATIONS FOR
MASSLESS PARTICLES AND ITS RESOLUTION VIA
INTRODUCTION OF A CONSTRAINING PRINCIPLE

6.1 KINEMATICAL ACAUSALITY IN WEINBERG’S EQUATIONS FOR MASSLESS

PARTICLES

We begin with the observation that we have become accustomed [52] to think-
ing of the free particle covariant spinors, like the Dirac (1/2,0)®(0, 1/2) spinors, as
solutions of relativistic wave equations. However, inspired by works of Ryder®? for
spin one half particles and Weinberg?! for any spin, we have explicitly constructed
the (1,0) @ (0,1), (3/2,0) & (0,3/2) and (2,0) & (0,2) covariant spinors without
reference to any wave equations. These covariant spinors incorporate the correct
particle/antiparticle and the spinorial degrees of freedom in the 2(2j + 1) particle
and antiparticle covariant spinors: uy(p) and v, (p), 0 = j,j— 1, --- — j. In the
“canonical representation” u,(p) and v,(p) are constructed by the application

(after appropriate algebraic expansions) of the boost:
cosh(J- @) sinh(J- @)
M., (ﬁ) = . (6'1)

sinh(J - @) cosh(J - @)

on the 2(25 + 1) “rest covariant spinors” in the form of the 2(2j + 1)-dimensional

column vectors

N(j) 0
0 0
urjO) =1 0o |, -, v ;(0)=] : |. (6.2)
: 0
0 N(j)

Here N(j) is a convenient spin—-dependent factor required to satisfy the require-
ments that in the m — 0 limit: (i) The “rest covariant spinors” vanish, and

(ii) The m — 0 covariant spinors have a non-singular norm. As an example, we
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choose N(j) = m3/? for the (3/2,0) @ (0,3/2) covariant spinors. The parameter
¢ is defined as

. _E o 1P
cosh(p) = v = o2 om sinh(¢) = vy = ) (6.3)

where ¢ is the velocity which a particle at rest in the unprimed frame acquires
when seen from the primed frame. In the canonical representation the angular
momentum matrices J; have J, diagonal. The physical “propagators” needed in
standard S—matrix calculations are constructed?® using these u, (') and v, (7) in
evaluating appropriate vacuum expectation values of the time ordered product of

relevant field operators.

While the (j,0) @ (0, j) covariant spinors are obtained purely from group the-
oretical arguments , phenomenological studies cannot be carried out without an
interaction Lagrangian density. A large class of interaction Lagrangian densities
are suggested if we construct wave equations which these covariant spinors satisfy.
A class of relativistic wave equations satisfied by the (4,0)@® (0, j) covariant spinors

are obtained from the coupled equations (in the “chiral representation” ):

L

¢"(7) = (cosh(2] - @) +sinb(2]- 7)) 4" (7)

. . . P (6.4)
¢ (7) = (cosh(2] - §) —sinh(27-4) ) " (7).

where () are the matter fields associated with the SU(2)g generated by Sp =
%(f+ iK), and ¢L(p) are the matter fields associated with the SU(2);, generated
by S = %(f— iK). The J are the three spin dependent (25 + 1) x (25 + 1)
matrices of angular momentum and K are the generators of the Lorentz boosts.

The “chiral representation” covariant spinors

¢ ()
wCH (13) - (6.5)
¢ (P)

are related to the canonical representation covariant spinors by the expression

I I
Yer () = A ey (). A:%<I _I). (6.6)
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By imposing a physical criterion, which has not been explicitly stated so far,
a general wave equation satisfied by the (4,0) @ (0, j) covariant spinors is obtained

from the coupled Egs. (6.4). It has the general form:

where {4} is a set of 2j Lorentz indices. vyy,y are fully symmetric (in the Lorentz
indices)
NN+1)---(N+S-1)
S!

(6.8)

set of 2(2j+1) x2(2j+1) spin—j v matrices. Here S = 25, the number of indices on
Y{u}; and for the (1, 3) spacetime under consideration N = 4. A basic requirement

for any solutions to exist is:
Determinant <’Y{u} pll — m2jl> = 0, (6.9)

For a given j this “existence requirement” can be interpreted as a 2j(2(2j + 1)]th

order equation in E. By working out specific examples, we discover that there are
NaG) = 2225 + )] - 225 +1) = 22/ - D2j +1)  (6.10)
“acausal” solutions — that is solutions for which:
E? # p* + m? (6.11)
The remaining “causal” solutions, that is solutions for which E? = p? + m?,
Nc(j) = 2(2j+ 1), (6.12)

we identify with the (j,0) @ (0, j) relativistic covariant spinors.
For the (1,0) & (0,1), (3/2,0) @ (0,3/2) and (2,0) & (0,2) matter fields we
have verified through explicit calculations that in the m — 0 limit only u+;(p)

and v+;(p’) are non-null. In addition all “acausal” solutions turn into “causal”

solutions, as we noted in Section 5.6.
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On the other hand it is generally recognised? that in the m — 0 limit the
right and left handed matter fields decouple and satisfy the the following set of

linear equations
(J-7+7p") 6*(F) = 0

(-5 - i) ") = 0. o

That such a limit is allowed for the (j,0) @ (0, j) matter field was shown by Wein-
berg in Sec. III of Ref. 33, and is shown here in Appendix. As before, the kine-

matical causality of these equations is readily studied by examining the solutions

of

Determinant (fﬁ + jp0> = 0. (6.14)
When this is done we find that for j > 1 Eq. (6.14) not only admits the causal so-
lutions £ = =p, but also one or more acausal solutions £ # =£p. This contradicts
our earlier result obtained by taking the m — 0 limit of the massive case. For

the sake of concreteness, the dispersion relations implied by (6.14) are tabulated

in Table IX for j =1, 3/2, 2.
TABLE IX

Dispersion relations F = E(p) associated with Egs. (6.13)

Spin j Dispersion Relation
1 E=4p, E =0
3/2 E =4+p, £ ==£(p/3)

2 E =+p, E =+(p/2), E =0
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6.2 A CONSTRAINING PRINCIPLE

The resolution of the paradoxical situation created above is now studied by
carefully examining the transition from the essentially classical group theoretical
arguments which yield the coupled Egs. (6.4) and the quantum mechanically
interpreted Eqgs. (6.7). The physical criterion which we now impose is in the form

of a constraining principle. It reads:

The freedom provided by the classical c-number equivalence of the substi-

tution m?2

< M P'pY is constrained in the construction of the quantum
mechanical equations of motion so that the resulting equations are free

from all kinematical “acausality” in the m — 0 limit.

The equations which violate this constraining principle will be termed “patholog-

ical.”

For the sake of simplicity we shall do this by studying the (3/2,0) @ (0, 3/2)
matter field. We begin with m # 0 case. Using the standard expansions for
cosh(j - @ )(j=3/2) and sinh (7 - @ )|(j=3/2) and freely exploiting the identities (6.3),
the coupled Eqgs. (6.4) can be written in the form:

R(j=3/2) , 1 2,0 7o 1 7 \2 2 T = 0
= |m2(°+2J-p) + ={(2J - p)? — 20 -+ 3
¢ () = —g|m"(p P)+ gl@2J-0)" = p H2J -+ 3p7} (6.15)
L(j=3/2) ,
X ¢ (),
LG=3/2) , L1 9,0 U S S T 0
(p):=;;§ m*(p —-2J-p)—-g{(2J-p) —p°H2J-p—3p°} (6.16)
R(G=3/2) , )
X ¢ (7).

Introducing the eight component (3/2,0) & (0,3/2) relativistic covariant spinor

R(j=3/2)

| ¢ ()
You | (F) = » : (6.17)
¢L(]=3/2) (ﬁ)
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and the 8 x 8 spin-3/2 v matrices

0 M P p¥ (00 + 20 - )+
H@JT-p)?—p 22T -+ 3p°)
VP P’ pt = :
N P p7 (p° — 2.7 - ) —
2T -7) —p 22T -5 - 3p°} 0
(6.18)
we obtain the (3/2,0) & (0, 3/2) relativistic wave equation

a P00 — m® Dy~ () = 0. (6.19)

The 7, p"p” which appears in the 7,, is the crucial factor. It has been obtained

by the substitution m?

— M pI'p”, based on the criterion above. It is the only
equation which can be constructed out of the coupled Eqgs. (6.4) which satisfies
the criterion: The m — 0 limit yield the causal solutions, £ = =4p, for all the
24 solutions”" . The freedom in the form of four choices which apparently seem to

exist via the substitution: m?

< 1w pH'p”, disappear with the physical constraint
we impose. As a result of invoking this requirement we are left with one unique

equation, that is Eq. (6.19) with -, given by (6.18).

Besides Eq. (6.19) there are three alternate equations, which can be con-

structed exploiting the ambiguity mentioned above. These are:

1 v v (G=3/2) , ,
(F,(W)Ap“p P = N P'p mI) () =0, (6.20)
2 (i=3/2) , _,
(tO = 1) 0" ) =0, (6.21)
3 v v (G=3/2) , ,
(FEW)AP“p P = N P'p mI) Y (0) =0, (6.22)

30 For the massive case the spin 3/2 equation satisfying the physical criterion also allows for
exactly 2(2 x % + 1) = 8 physical “causal” solutions.
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with
1 2
F;(w))\ Pt pt = F;(w))\ Y pt
2 (0 7
0 m* (p” +2J - p)+
Li@2g - p)? —p2H2g - g+ 3p°) (6.23)

m2(p° — 2T - ) —

L@l -p)? —p2H2] - 5—3p°} 0
and
3
L P9 0 = Y p* p*
0 Uuup“P" (pO + 2j' ﬁ)"'
L@l -p)? - p2H2g g+ 3p°) (6.24)

L@l p)? —p2eg 73"} 0

Tables X, XI and XII provide us dispersion relations associated with Eqs.
(6.20), (6.21), and (6.22). A careful and detailed study of these tabulated disper-

sion relations reveals that none



91

of the alternate equations satisfy the the physical criteria defined above. In fact
for two of the three alternate equations we find that since

Determinant (F/(tll’)/\ php pt — v PP m 1 )

(6.25)
—mi (p— E)Z(p + E)Z(p2 +m2 - E2)4(16p4 + 9m2p2 — E2mZ)2 =0,

Determinant (I‘/(fy))\ plp'p — m3 I )
=m® (p2 +m? — E2)2(16p6 — 16 E*p* — 16 Em*p® — 9m*p? — m® + E2m4)
x (16p° — 16 E*p* 4+ 16 Em*p® — 9m*p? — m® + E*m*) =0,

(6.26)
vanish identically for m — 0 , no solutions exist for the massless matter fields
for these two equation. Parenthetically, it should be noted that even though Eq.
(6.20) seems to admit E = +p, with the correct multiplicity of 2, the associated
solution is null because of the observation just made:

Determinant (F/(tll/)/\ phptpt — Nuw P'P” mI) ‘ =0. (6.27)

m—0



TABLE X

Dispersion relations E = E(p, m) associated with Eq. (6.20)

92

(Multiplicity) Dispersion Relation Interpretation
4) E = ++/p* + m? Causal, “particle.”

uys(f), uss(P).

(4) E = —/p? +m? Causal, “antiparticle.”

vy (P), ve(P).
(2) E=+p m = 0 (But, see text.)
(2) E=—-p m = 0 (But, see text.)

4 Additional acausal dispersion relations, with two fold degeneracy in p

_ :tp\/ 16p2 + 9m?

m

1/2
m /81 m? + 64 E% — 9m2> :

&

Y

1
p__ﬁ

1/2
m /81 m2 + 64 E% — 9m2> :

(
7
( m\/81m2+64E2—9m2)1/2,
s

1/2
m /81 m? + 64 E? —9m2> .

%\ x\ x\
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TABLE XI

Dispersion relations E = E(p, m) associated with Eq. (6.21)

(Multiplicity) Dispersion Relation Interpretation
(2) E = ++/p?>+m? Causal, “particle.” Not all:

ui%(ﬁ), ui%(ﬁ) , allowed.

(2) E = —/p? +m? Causal, “antiparticle.” Not all:

Vi3 (p), Uil (p), allowed.

4 Acausal dispersion relations, with three fold degeneracy in p

(256 p10 — 96 m* pb — 16 mOp* + 9 mBp? + m10) '/ 1 8 m2p?

FE =
i (167 — )

o (25690 — 96 mtpP — 16 mpt 4+ 9mtp? +ml®)'? — g m2p?
h (16 p* — m?)
(2561 — 96 mt pb — 16 mOp* + 9mBp? + m10) /2 — g mp3
- (16" — mA)
(256p™ — 96 m* pb — 16mOpt + 9 mBp? + m10) '/ 4 8 m2p?
a (16 p* —m?) '

The three fold degeneracy in p arises because the above four E's are obtained as

solutions of

16 p — 16 E*p* £ 16 Em?p® — 9m*p? — m® + E*m* =0
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TABLE XII

Dispersion relations E = E(p, m) associated with Eq. (6.22)

(Multiplicity) Dispersion Relation Interpretation
(2) E = ++/p?>+m? Causal, “particle.” Not all:

Ugs (P), Ug1 (p), allowed.

(2) E = —/p? +m? Causal, “antiparticle.” Not all:

vi%(ﬁ), vi%(ﬁ), allowed.
(7) E=+p = m=0

For 6 acausal dispersion relations, see continuation of this table on the next page.
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Table XII continued.

6 Acausal dispersion relations associated with Eq. (6.22)

B P V3i+1 i /128 pb + 352 m2 p* + 25 mA p2 + mb
3 2 3V3
1/3
9m?p— 136 p3 /
+ 27
N V3i—1 (28p2+3m2> i /128 pb + 352 m2 p* + 25 mA p2 + mb
2 9 3V3
—-1/3
9m?p— 136 p3 /
+ 27

p
E=+=
3-|-

V3i—1 i /128 pb + 352 m?2 p* + 25 mA p2 + mS
2 3\/§

1/3
9m?p— 136 p3 /
i 27

V3i+1Y [28p% +3m?\ [i+/128p5 + 352m2pt + 25md p2 + mb
2 9 3V3

~1/3
9m?p — 136 p3
:F

27

Continued to the next page.
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Table XII continued.

Continued tabulation of 6 Acausal dispersion relations associated with Eq. (6.22)

P (i\/128p6+352m2p4+25m4p2 + mb
3

E=+=- +
3V3

1/3
9m?p— 136 p3 /
+ 27

(28p2+3m2> i /128 pb + 352 m2 p* + 25 mA p2 + mb
9 3V3

-1/3
9m?p— 136 p3 /
+ 27

The m = 0 equations, which have no “acausal” solutions, for the uncoupled
right and left handed matter fields follow directly from Egs. (6.18) and (6.19).

These equations read:

- ]_ =N 5 =N i 5
[nuup“p”(p°+2,]-p) + 5{(2J-p)2 - 2}{2J-p+3p°}] pLU=3/2 (5) =0

v T = 1 T = — T = = —
[mwp“p (0’ =27 -p) = AQT-§)* = H2T -5~ 3190}] $FI=32) () = 0.

(6.28)

Finally we note that one may be tempted to argue that Eq. (6.13) for j = 3/2

can be arrived at, in the pathological case violating the physical criterion defined

above, by merely replacing 7, p"p” by m? in (6.18), in the m — 0 limit. However,
this is not so. The reason is quite simple. The operator

2f-*2—*2)‘ 6.29

(@75 =7")| _,, (6.29)

is singular.
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We conclude that on careful examination the linear Eqgs. (6.13) are incon-
sistent with the relativistic wave equation satisfied by the massive (4,0) & (0, )
matter field in the m — 0 limit. We have discovered the origin of this contra-
diction, and resolved the apparently paradoxical situation by invoking a set of

physical criterion.

6.3 A STRONGER FORM OF THE CONSTRAINING PRINCIPLE

For spin 1/2 we see that the constraining principle automatically yields us an
equation which has 2(2j + 1) causal particle/antiparticle solutions for the massive
matter fields. In the next section we will verify that same is true for the (1,0) @
(0,1) matter field. However, for some j > 2 it may happen that principle we have
proposed need to be strengthened to accomplish this. For this reason we now
introduce its stronger form in anticipation. It reads:

The freedom provided by the classical c-number equivalence of the sub-

stitution m?2

< N pP'p” is constrained in the construction of the quan-
tum mechanical equations of motion so that the resulting equations are
free from all kinematical “acausality” in the m — 0 limit and allow
exactly 2(2j + 1) “causal” particle/antiparticle solutions for the massive

(4,0) @ (0, 7) matter fields.

6.4 SOME REMARKS ON THE m — 0 LIMIT FOR SPIN ONE, ALTERNATE

EQUATIONS, AND AN OBSERVATION

Remarks: We note that for spin 1, the Egs. (6.13) contain acausality only of
the form E = 0. One may be able to live with this “acausality” because all
it says is that there exists a solution which has no energy content. However,
(6.13) for j =1 does not follow from the m — 0 limit of the equation satisfying
the physical principle introduced in the last section in any straight forward fashion.

The m — 0 limit of (4.28) reads:

[mup“p +2(J ){( - 7) +p°}] o= = ¢

| (6.30)
[nuup“p +2(J- )T p) - pO}] SRG=D) — g
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In order to see how close we can get to Weinberg’s equations, we may argue that

at least for the massless causal matter fields we may postulate:

(1w p'9") " = 0, (6.31)

and hence Egs. (6.30) are equivalent to Weinberg’s Eq. (6.13). But for that to

be true we must have:
Determinant (2(J- 7)) |,_y, # 0 (6.32)

However, this is obviously not true.

Alternate Equations: We already have a equation satisfied by the (1,0) & (0,1)
covariant spinors which satisfies the constraining principle introduced above. It

reads:

(3=1)

(Vuwt'p” — m> 1) " () = 0. (6.33)

where (in chiral representation) the 6 x 6 spin—1 7 matrices are

0 [nuup“p” +
2T -5)(J - )+ 2(J - 7)p°
VPP’ = : (6.34)
Nuwp"'p” +
2(J-7)(J - 7) = 2(J - p)p" 0

We now enumerate the three alternate equations, and verify that none of them

satisfies the required physical criterion thus establishing the unlquen6853 of the

31 “Uniquness”, as far as the set of equations which can be directly derived from the coupled
Eqgs. (6.4) is concerned.
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wave equation (6.33) satisfied by the (1,0) @ (0, 1) matter field.

J=1)

( o
(Fﬁlu)p“p” — N P'P" T ) Y (p)=0. (6.35)
(Fgf)p’“‘p” - m?I ) v (@) =o0. (6.36)
v v U=,
(F,@p“p — N P'p I) () = 0. (6.37)
with
L'y’ = Cp'n”
0 m? +
2(J - §)(J-F) +2(J - p)p° (638)
m? +
2T F)(T - 7) = 20T 5)p'| 0
and
F,(ﬁ/)p“p” = Yupl'p
0 [nuup“p”ﬂL
2(J-F)J )+ 200 | |- (6.39)
[nuup“p”ﬂL
20T 5)T-5) — 205w’ 0

A simple algebraic exercise yields:

Determinant (Fg,)p“p" — nup'p’ 1 = {0} =
(6.40)
Determinant (F,(f;,)p“p" — N PPV 1 ) :

Here symbol {0} means “identically equal to zero.” Consequently alternate Eqs.

(6.36) and (6.37) have no solutions. The dispersion relations associated with
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the only remaining equation, that is Eq. (6.35), are tabulated in table XIII. An
inspection of this table immediately confirms the result claimed earlier, that this

equation too does not meet the physical criterion of Sec. 6.1.
TABLE XIII

Dispersion relations E = E(p, m) associated with Eq. (6.35)

(Multiplicity) Dispersion Relation Interpretation

(3) E = ++/p?+m? Causal, “particle.”

ux1(p), uo(p)-

(3) E=—/p2+m? Causal, “antiparticle.”
vx1(P), vo(p)-

(1) E = ++/p2 —m? Acausal, Tachyonic

(1) E=—/p? —m? Acausal, Tachyonic

(2) E=++/-3p*> —m? Acausal

(2) E=—vy —3p? — m? Acausal

An Observation: Note that alternate Eq. (6.37) has no reference to “mass.”
Hence what does m — 0 limit mean for this case. This circumstance makes it a
rather interesting equation. But, as we have seen this equation has no solution.
An inspection of (6.7) should convince the reader that such equations exist for

all bosonic j > 1. It may turn out that for some bosonic 7 > 1
Determinant (’Y{u} pl — % I) {# 0}, (6.41)

The symbol {# 0}1 means “not identically equal to zero.” Such an equation would
invite a physical interpretation if it also happens to satisfy the physical criterion

of Sec. 6.1.
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7.1 ALGEBRA OF SPIN-1 GAMMA MATRICES AND CONSERVED CURRENT

DENSITY

Since we have obtained the (1,0) @ (0,1) covariant spinors in the canonical

representation we begin by transforming the chiral representation y*, given in

Chap. 4, into the canonical representation v* using the matrix A defined in

Chap. 6. The result is:

[CANONICAL REPRESENTATION]

I 0
’YOO - 0 _I ?
0 —J
Yio = Yoi = Jz 0 ’
I 0 {7, ]} 0
To == g )M 0 —{J,J

The “commutator algebra” satisfied by these matrices, is as follows:

[’Yoov'yij] = [70077ji] =0,

0 J
[70077%] = ['7007%‘0] = —2 J 0 )

3

[%07%‘0] = [%0770]'] = [701'77]'0] = [701'770]'] = - < 0 [Ji, Jj]

0 J;
[’Yiov'ykl] = [’Yiov'yzk] :[,YOi?’Ykl] = [’Yiov'yzk] = I 0 2n,,+
i

( 0 {Jis { Ik, Jl}}>
ik, Ji}} 0 7

[Ji,J;] 0 )
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[,Yij77kl] = [7ij771k] :['ij'ykz] = [7ji771k] =
<[{Ji7*]j}v{<]k7=]l}] 0 ) (7.8)
0 i, I3 A Y] )

The “anticommutator algebra” is similarly seen to be:

{700770;‘} = {7007%0} =0, (79)

- {10 (i, Jj} 0
{voo,vij}—{voo,vji}—2[(0 1)%+< 0 {L-J;-})]’ (7.10)

= = = __ (Wl 0 7.11
{71’077]’0} - {,Yi0770j} - {’Yom’}’jo} - {’Yom’}’o]} - 0 {Jl,J]} ) ( . )

{’Viw'Ykl} = {'Yi0771k} :{’VOiv'sz} = {'Yio:'Yuc} =
( 0 [ i { Ik, Jz}]> (7.12)
[Jis { Tk Ji}] 0 7

{’Yip%cl} = {7ij771k} = {7]’1’771@!} = {7ji77zk} =
({{Jivjj}7{Jk7Jl}} 0 ) N
0 {{Ji, Ji} Ak, Ji}}

1 0 {4, Jj} 0 {Jk, i} 0
2[(0 1>nijnkl+ ( 0 {Jiij}>nkl+ ( 0 {Jkle}>mj] )
(7.13)

In preparation for the construction of the (1,0) & (0,1) conserved current
density we point to a noteworthy feature of the spin 1 gamma matrices. While g
commutes with v;;, it anticommutes with vp;. It is precisely this property which
allows us to introduce the conserved current density for the (1,0) & (0,1) matter

field. In addition we note the following hermiticity properties

T

Yoo! = Yeor Vo'

= Yoir ’YiOT = Yio» IYijT = ’Yij' (714)



103

Conserved Current Density:

Taking the hermitian conjugate of the wave equation (which satisfies the con-
straining principle introduced in Chap. 6) satisfied by the (1,0) & (0, 1) covariant
spinors, and using the hermiticity of v% and 4%, and the anti-hermiticity of the

7% and 4, we obtain
t 00 < 0« s« e e o
Y1 (x) |7 0000 =7 000i — 7" 9ido +77 9id; +m*| = 0. (7.15)

07

Since v commutes with v¥ and anticommutes with 7% and 7, multiplication

from the right by v yields

—

t 00 |.00% 0’y 05 o iS5 2| _
PN @)y (7 0000+ 000i + 77 0ido +97 0i0; +m*| = 0. (7.16)

On introducing
p(x) = i)™, (7.17)
the above equation can be written as

¥ () (7“”(5H<5V + mz) =0. (7.18)

Multiplying the above equation by 1 (z) from the right, and subtracting the left

Y (z)—multiplied (7.15), we obtain
(Dudu )Y — Py (0u01p) = 0. (7.19)
Now because v*¥ is symmetric in its Lorentz indices, we have the following identity
(@)™ (Oup) — (0ut)Y" (Oup) = 0. (7.20)
Combining (7.19) and (7.20) additively, yields

(Oudu D)V + (D )V (Outp) — (Qup)V" (i) — Py (0u0ip) = 0. (7.21)
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This implies that the we have the conserved current density

(@) = (0p(@)y" () — P()y" (D) (), (7.22)

which satisfies the continuity equation

Oujt(x) = 0. (7.23)
Introducing the notation
A()5,B(x) = A(x)(0,B(x)) — (9,A())B(x), (7.24)

we have the conserved current density in a more compact form
" — S
j* () = = (@) 0up(2). (7.25)

Note: Some authors, for example Ryder [53], prefer to have a factor of 1/2 on the

r.h.s. of the definition (7.24) for their convenience.

7.2 A REMARK ON SPIN—-1 ALGEBRA

The the algebra associated with 7, can also be written as
Y277} 4 (977,97} {07 = 200 + o + ), (7.26)

with I = 6 X 6 unit matrix. For the sake of convenience we take the liberty of
naming (7.26) as the Weinberg Algebra because, to the best of our knowledge, it
first appeared as equation (B12) in the work of Weinberg (1964), for the (1,0) &
(0,1) matter field.
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A trivial solution of the Weinberg algebra is
M =nI (7.27)

with I = 1, rather than a 6 x 6 unit matrix. Substituting this solution in the

formal equation

(V" 8,0 + m*1) ¢ (w) = 0, (7.28)

which with the spin—1 v*" is the relativistic wave equation for (1,0)@® (0, 1) matter
field, yields the Klein Gordon equation for the scalar field:

(" 0,0, +m?) (z) = @+ m?) P(z) = 0. (7.29)

7.3 (J-p+ jp°)pLf(7) = 0 FOR j = 1 AND MAXWELL EQUATIONS

The acausality associated with (J - 7 £ jp®)¢=%(5) = 0 equations for j = 1
was seen to be of the form E = 0. Here we show that source free Maxwell
Equations and (f 7+ ip")pPE(F) = 0 for j = 1 are identical, or so it seems in
our derivation. In our opinion the connection between (f-ﬁi p") LR (p) = 0 and
Maxwell Equations needs a study beyond what we present below. Specifically, we

are unable to answer the following questions at present:

1.) How does the dispersion relation E = 0, allowed by (J-g+p®)¢=f(5) = 0,

manifest itself in the Maxwell equations?

2.) What is the connection between the Maxwell equations and the acausal-
ity free m — 0 limit of the wave equation satisfied by the (1,0) @ (0,1)

covariant spinors?

In the Z-representation we have
. = .0
p=—ivV, p’=i—. (7.30)

As a result in the Z-representation

(J-p£p°)¢" () =0 (7.31)
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become
<f- V- %) ¢ () =0 (7.32)
<f- v+ %) ¢ (z) =0 (7.33)

The specific components ¢f (p) and ¢f (p) depend on the choice of representation
for the J matrices. We define chiral representation by choosing the following
representation for the J operators

[Chiral Representation]

00 0 0 0 i 0 —i 0
Je=[0 0 —i|, =0 0o o], u=]i 0 of. (7.34)
0 i 0 —i 0 0 0 0 0

In the next section section we will explicitly construct a unitary matrix which
connects these matrices, fCH, with the canonical, or standard, 7 = 1 matrices J_; N

in which J, is diagonal.

Next we introduce the even and odd parity linear combinations:

Xifa) = 5 (91 () + 6, () (7.35)
Vite) = o (6 0) ~ 6/ (), i=1,23 (7.36)

so that
o (z) = X;(z) + iY;() (7.37)

() = X;(w) — iYi(x). (7.38)
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Using (7.34) we can write J - V as

0 —0. 0,
J-V=i|l 0. 0 -0, (7.39)
-0y O 0
Or in the component form
(J'- V)ij = —i€ijp O (7.40)

Here €;;; 1s the completely antisymmetric tensor with €123 = 1. With these ob-
servations and definitions the uncoupled equations (7.32) and (7.33) take the

form

(~eigudh — o) (X —i¥;) =0 (7.41)
(~exsedh + ) (X +%5) = 0 (7.42)

Since —e¢;, ApBj = (/f X E)z, the above set of equations can be rewritten as

V x (X —iY) - ia(f —iY)=0 (7.43)
= > = 05 o
Vx (X +iY)+ za(X +iY)=0 (7.44)
Adding (7.43) and (7.44) gives
X — —— — 4
V X 5 0 (7.45)

Similarly subtracting (7.43) from (7.44) yields

. . X
Vx ¥+ =0 (7.46)

Finally taking the divergence of these two equations provides two additional equa-
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tions

V-Y=0, V-X=0. (7.47)
These four equations can be put in a more compact form by introducing

0 -Y, -Y, -V

Zm = (7.48)

Y, -X, X, 0

We now assume: “what looks like electromagnetic field must be the electromag-
netic field”. Or put differently we assume that the Z#” couples with matter with
the same strength as F*”. ldentifying Y and X with electric and magnetic fields

of the electromagnetic field:

Y =E, X=B8, (7.49)
we have
M = PRV (7.50)

Equations (7.45), (7.46) and (7.47) are now readily seen to take the simple

Poincaré covariant form
8uFuu =0, (751)
OHEVN + QMM 4 9V M = ). (7.52)

Referring to the conventional definitions of E(x) and B(x), in terms of A#(z) =

( ¢(x), A(z) ) such as found in Jackson [44], the connection between FH(z)
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[Chiral Representation]

Bifw) = 5 (#i () + ¢/ (@) (7.53)

N | —

Eiz) = 2% (6 (@)~ ¢ (@), i=1.2.3. (7.54)

and the gauge vector potential A*(x) for the electromagnetic field is
FF () = o' AY (x) — 0V A (). (7.55)

The freedom to choose any representation for the left and right handed matter

fields exhibits itself as the freedom to choose A*(x) in any “gauge.”

To be able to see this connection in the canonical representation it will be
useful to explicitly know the connection between the j = 1 angular momentum
operators in the canonical representation (representation in which j, is diagonal),

and the same in the chiral representation provided by (7.34) here.

7.4 CONSTRUCTION OF THE UNITARY TRANSFORMATION WHICH CONNECTS

Jog AND Joa

We start with

0 —i 0
(JDew =11 0 0], (7.56)
0 0 0

and note that the normalised eigenvectors corresponding to the three eigenvalues

o=+1,0,—1 are

1 0 )

In writing down these eigenvectors we have ignored a global phase factor. Next
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1 PR
ﬁ 0 ﬁe
% 0 %ew : (7.58)
0 e 0

and verify that UTU is indeed unity. The phase factors § and ¥ will now be so

fixed as to yield the identity

(Ji)OA = UT (Ji)OH U7 7’ = xv y7 z (759)
For © = z, we obtain
10 0
U'(J)ew U=10 0 0 | =(J2)en (7.60)
0 0 -1
which puts no constraints on € and ¥ as expected. For ¢ = x, we get
0 —ef 0
1 » e
U (Jp)oy U = 7 —e 0 ietV e (7.61)
0  —ie el 0
Equating the rhs of the above expression to (J;),, we obtain
O0=m, 9=m/2. (7.62)
The unitary transformation is now completely fixed and reads
1 1
vz Vo
_ 3 i
U= 7 0 7 (7.63)
0 -1 0
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That

UT (Jy)CH U= (Jy)CA (7'64)

is easily verified.

7.5  CONSTRUCTION OF THE PROCA VECTOR POTENTIAL FrOM (1,0) AND

(0,1) MATTER FIELDS VIA “SPINORIAL SUMMATION”

The basis of the (1,0) representation space can be chosen to be

R —, R — R -
¢1,4+1(0), 910(0), 1 _1(0). (7.65)
Similarly the basis for the (0, 1) representation space reads:
L —, L — L —,
$1.4+1(0), #10(0), #1._1(0). (7.66)

The effect of Lorentz boosts on these basis vectors is given by Egs. (3.12) and
(3.13). Using these transformation properties, it is readily seen that the effect of

boosting along the 2z direction is given by

$1 4107 = p2) = exp(p) by 41(0) (7.67)
b10(5 = p2) = ¢y 4(0) (7.68)
1 _1(7 = p2) = exp(—¢) ¢ _1(0) (7.69)
and:
1417 = p2) = exp(—¢) ¢y 41(0) (7.70)
B10(5 = p2) = ¢y (0) (7.71)
11 (7= p2) = exp(p) ¢y _,(0) (7.72)

Since the completely antisymmetric tensor F* = 0FAY — 0¥V A* has six inde-

pendent elements and the representation space of the (1,0) (0, 1) matter field also
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has six independent basis vectors, we suspect some linear combination of qﬁia and
¢ia to transform as an antisymmetric tensor. However, at the outset, it should be
noticed that each of the ¢(p) is a three column. This “spinorial” degree of freedom
implies that we should suspect some linear combination of d)ia and qﬁia to map
onto some yet undetermined: .7-"(’2 V) = 0“./4’(’ ) ('9".»4’(’0[). The index («) runs over

the elements of a three column.

To begin note that if the frame in which the particle has momentum p = p2

be called the “primed” frame, then we can write

F'W — NP\ NV FA FIRY = gF AV — Y AP, (7.73)

Y

Using the boosts defined in Chap. 2, the effect of a boost in the Z direction, then

yields
F'®' = cosh p FO —sinhp F13 (7.74)
F"% = cosh ¢ F* + sinh ¢ F3 (7.75)
F'03 = p03 (7.76)
F% = cosh ¢ F3? + sinh ¢ F (7.77)
F'3 = coshp F'3 —sinhp F (7.78)
F' = 3 (7.79)

These transformation properties of the antisymmetric tensor F*¥ encourage us
to study the Lorentz transformation characteristics of the odd and even (under

parity) linear combinations: (¢, 4+ ¢ ). From the transformation properties
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given by Eqs. ((7.67)-(7.72)) we find:

(6117 =p2) + 61 1 (5= 2)|

P P (7.80)
= cosh g |91 () + 6141 (0)] +sinhp 9141 (0) = 6111 0)]
(6107 = p2) + d1.0(F = p2)| = [610(0) + 61,0(0)] (7.81)
1,1 (5= D2) + 11 (7= p?) 752
= coship [y 1 (0) + 6y 1 ()] —sinhp [0} (@) o1 1 @].
and:
1415 = ) — b1 11 (5= p?)| _
= coshp[g111(0) = 6111 (0)] +sinbp [0 1 (@) + 010 )]
(6107 = 2) = d10(F = p2)| = [610(0) = 61,0(0)] (7.84)
1,1 (5= p2) — 11 (7= p?), 755

= coshp|¢y 1(0) = 61 1(0)| = sinhp gy 1 (0) + 61 4(0)]-

Comparison of Egs. ((7.74)-(7.79)) and ((7.80)-(7.85)) implies existence of an
object

FI(5) = 0" ALy () — 0" Al (5), (7.86)
with

Fy@) = |911() — 6120 (7.87)

F®) = [p1020) — 0100P)] (7.59)

F@) = |9106) — bro®)] (7.89)
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F®) = [p102(0) + 010 (7.90)
F@) = |9110) + 612060 (7.91)
F2y) = [91000) + d10@)] - (7.92)

The “spinorial” index («) runs over I, I1, 111 the elements of columns ¢112,0 (p) and

$1.4 (D).

Next we introduce the operation of “raising” the spinorial index as follows:

) = [ 0] (7.99

In configuration space }"(*; ") is

Fi (@) = AL (x) — 0" Al (x), (7.94)
with
Fy@) = [911(@) = dra(@)] oo (7.95)
01 (@) () — )[4 L f
FOUO(2) = 3 61 (2) - 611 ()] o (7.96)
The Proca vector potential is now obtained by summing over the “spinorial” index
as follows
FA (@) F1% () = Fyo () ™ () (7.97)

=
&
—~
&
™~
=
D
N
I

Ay(z)A¥ (). (7.98)

The FM (x) and A*(x) so obtained contain no spinorial degrees of freedom. The
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Lagrangian density

1 1
L(z)= —ZFMV(.’E)FMV(.I‘) + EmzAu(a:)A“(a:) (7.99)
yields the Proca equation:
O, M (x) + m? A" (z) = 0. (7.100)

Taking the four divergence of the above equation and utilizing the antisymmetry

of FM(x) we get

9, A (z) = 0. (7.101)

As a result of the vanishing d,,A*, A*(x) has only three degrees of freedom. Further
since 9, A" = 0, 0, " = 0, (0*A” — 0" A*) = 0,0* A — 0V 0, A* = 0,0'' AV = 0OA;
where we have interchanged the order of differentiation: 0,0” — 0Y9d,. As such

the Proca vector potential A*(x) satisfies:

@+ m?)AH(z) = 0. (7.102)

It should be noted that we have called A*(z) constructed via “spinorial sum-
mation” (see Eq. (7.98)) on the (1,0) and (0,1) spinorial indices as the Proca
vector potential. This has been done to emphasize how we reached at A#(x) from
the (1,0) and (0, 1) matter fields. It is not clear to the present authors what phys-
ical consequences lie behind the existence of A’(’a) (x) and similar other objects.
Moreover, the relation between the m — 0 of this construction and the similar
construction done in the section on Maxwell Equations remains open to further

study.
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7.6 {(1/2,0)®(0,1/2)}®{(1/2,0)®(0,1/2)}: CONSTRUCTION OF THE SPIN-1

ProcA EQUATION FROM THE BARGMANN WIGNER EQUATIONS

The purpose of this section is to exhibit why the study of matter fields for
arbitrary spin becomes increasingly complicated if one begins with the Bargmann
Wigner formalism. This is done by studying the simple example associated with
spin one. The arguments presented here closely follow Lurié [4]. For spin three
half details can be found in Ref. [4]. We do not know of any similar constructions
beyond spin 3/2 where the Bargmann Wigner formalism provides the Rarita—
Schwinger type equation, and the associated constraints. On the other hand the

(7,0) ® (0, j) formalism presented in this work has no similar limitation.

We first construct the basis for the {(1/2,0)® (0,1/2)} ® {(1/2,0) & (0,1/2)}
representation. Since the basis vectors for the {(1/2,0) @ (0,1/2)} representation

are the four Dirac spinors

=

R R R
¢)ll d)ll d)l _1 ¢l _1
2732 2132 20732 20732
d)a - ’ ’ ) ) (7103)
L L L L
d)ll d)l _1 ¢ll ¢l _1
2732 2073 232 27732

the basis vectors for {(1/2,0) ® (0,1/2)} ® {(1/2,0) & (0,1/2)} are

Yap = {101 ® Y1, Y1 ® P2, 1h1 ® 3,91 @ 1y,
2 @ Y1, P2 & tha, P2 @ Y3, P2 & 1y,
Y3 @ 1,193 ® P2, Y3 @ 3,13 @ Py,

¢4®¢17¢4®¢27¢4®¢3,@/}4®¢4}- (7.104)

To describe this field we have a choice of either considering 16—component spinors,
or a 4 x 4 symmetric bi-spinors 1,4 which by construction satisfy the Bargmann

Wigner equations (the origin of these equations goes back to Dirac [2], Bargmann
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and Wigner [9], see also Lurié [4] for a more detailed treatment). We choose to
interpret this field as a bi-spinor satisfying [p, v are the Lorentz indices 0,1,2,3

and «,  are the spinorial indices 1,2, 3, 4]

(190 — 1) gy () = 0. (7.105)

(17" 0y — m) g thap (x) = 0. (7.106)

We now seek a single wave equation satisfied by the field described by these
Bargmann Wigner equations. It will be a rather lengthy exercise. To begin we
write Eqgs. (7.105) and (7.106) in the matrix form [where ¢ is a 4 x 4 symmetric

matrix|

(iv'0y — m)(z) =0, (7.107)

" (MTEH —m) =0. (7.108)

In the above expression 7" stands for ‘transpose’ and <— on J,, in Eq. (7.108) in-
dicates that d, acts on the 1 (x) appearing on the left. We now wish to express
the bi-spinor 9, in terms of appropriate functions of x, and a complete set of
symmetric 4 X 4 matrices. Towards this end we note that since on taking the

transpose of

YA+ Ayt = 26H7 (7.109)

we get

ATy gt T T = g (7.110)

the fundamental theorem of Pauli requires that there exist a non-singular matrix

B such that

T = By*B7L, (7.111)

We now demonstrate that B is anti-symmetric. First take the transpose of (7.111),
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and then substitute (7.111) into the result

v = (BHT 4T BT
= (B! By*B~" BT (7.112)
= (BB~ y# (B7'BT).

Multiplying this equation by B~!BT from the left yields
(B71BT),4*| = 0. (7.113)

However (see Good [45] for the detailed arguments) any 4 x 4 matrix which com-

mutes with each of the v# must be a multiple of the unit matrix
B7!BT =, (7.114)

which implies BT = kB. Taking transpose of it gives kBT = B; putting BT = kB
back in the preceding equation gives k? = 1. Good [45] chooses the possibility
k = £1 (why not exp(if#) ? For an answer see Ref. [38]), and following Pauli
and Haantjes, argues that the possibility & = +1 leads to ten independent anti-
symmetric 4 X 4 matrices, which is an impossibility. The other possibility £ = —1

then implies that B is anti-symmetric. We thus have

’Y”T = By*B~1, BT = _B. (7.115)
Now introducing
c=ipt (7.116)
we find that
I+ = 4~C, (7.117)
and
= %w,ﬂc, (7.118)

form the needed set of the ten 4 x 4 symmetric matrices. To show this first note
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that Eq. (7.116) when substituted in Eq. (7.115) yields

ClyrC = — 4T = VO = — T, (7.119)
and
cT =c L. (7.120)
Next consider
r*t = (yro)! = CT T = —yiT = 410 =10, (7.121)

(Here we have freely used Eqs. (7.119) and (7.120)) This establishes that I'* are
symmetric matrices. Similarly the symmetry of I'*” is proved by appropriate use

of Egs. (7.119) and (7.120) as follows:

T
4 1 v v 1 14 v
()T = {—(7’“‘7 — 'Y“)C} = —CT(y Tyt — T

21 2t
1 vT _uT T T 1 vy T T

= =5 (C77 " = Oy ) = = (O ROy (7.122)
1 v 174 ]' 14 174 174

=~ (YO =YC) = = (V9" =2"")C = I,
21 21

We thus have
set {TH T} = set {I'0, T, 12,13, 10 102 193 112 713 723} (7.123)

as the complete set of ten 4 X 4 symmetric matrices.

Reminder: Each of these ten matrices is labelled by Lorentz indices. By
definition matriz T'* = — matrixz V", as such we note the anti-symmetry in
the Lorentz indices which by convention run as 0,1, 2,3. The symmetry refers to
the fact that {I'*}T = '™, that is: matriz element {I'"},5 = matriz element

{I'*}34. The spinorial indices o, 8 run as 1,2, 3, 4.
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Having thus discovered the complete set (7.123), we now express the Bargmann
Wigner bispinor in terms of a yet unspecified [Lorentz—|four vector field A, (x) and

[Lorentz-] anti-symmetric second rank tensor field £, (x)
Y(x) =c1 TFA,(T) + c2 T F,(2), (7.124)

where ¢; and ¢y are still unknown numerical factors. Substituting ¢ (z) from
above in (7.107), similarly substituting (z) in (7.108) and then replacing Cy*
by —y*C' (see (7.119)), and adding the resulting equations we obtain, where for
simplicity we introduced L* = (1/2i)[y#, "] thus '™ = L (O,

ic1 [V, 7" 1COu A, + e[y, E”A]C@MF,,)\ —2mce1y"CA, — 2m022”)‘CF,,>\ =0.
(7.125)
Next using Eq. (7.109) and the standard identity (see, for example, Dirac [54])

[u, v1v2] = [u, v1]vy = v1[u, va] we replace the commutator
[, 5] by 2i(My” — i) (7.126)

and substitute [y#,~"] by 2iX#* in Eq. (7.125) to get, on dividing the resulting

equation by —2cs
2 2C0,A, + mCE, | +o{ 200 By £ mEoar) =0,
) 2

where in writing the second term we exploited the anti-symmetry of F,) and
replaced it by —F), apart from renaming the dummy indices to collect terms

together. Now we break 0,4, in its symmetric and anti-symmetric parts by

9,A, — %(aHA,, _a,A) + %(0,“4,, +a,A,), (7.128)
and note
S (8, 4y + By A) = 0, (7.129)

because of the anti-symmetry of X#” in the Lorentz indices. Having done this, we
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set the coefficients of X#*”and v" equal to zero and get

C
(2—;) (0, Ay — By AL) +mF,, =0, (7.130)
—0*Fy, +m <i> A, =0. (7.131)
2c9

Written in this form it is apparent that ¢;/2¢y can be absorbed in the definition
(by re—defining the units) of A,, or alternately we may so choose the units of A4,

such that

<0—1> = —m. (7.132)

2¢9

With the choice (7.132), Eqgs.(7.130) and (7.131) read

Fu = 0,4, — 8,4, (7.133)

0, F" +m?A” = 0. (7.134)

Equation (7.134) is called the Proca Equation and describes the {(1/2,0) &
(0,1/2)} ® {(1/2,0) ® (0,1/2)} spin-1 field. Applying 0, from the left on (81)

yields the constraint equation

9,A” =0, (7.135)

due to the anti-symmetry of F#”. Thus, only three out of the four components of

AF are independent, as required for a spin—1 field.
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7.7 Two PHOTON MEDIATED PRODUCTION OF ELECTRICALLY NEUTRAL
PSEUDOSCALAR PARTICLES IN HIGH ENERGY SCATTERING OF TwO CHARGED

PARTICLES

FORMAL EXPRESSION FOR THE S—-MATRIX

We will designate the |in) particles as x1 and X2, the | states will have, in
addition to y; and x2, an additional particle: x3. We will use the following

notation
Im; 7, 0,) = |mass; three momentum, z — component of J), (7.136)

associated with the particle xy. To systematically study the two photon mediated
production of particles perturbatively within the framework of the S—matrix the-
ory, outlined in the Appendix, we begin with the single particle production of

neutral pseudoscalar particles.

One of the simplest of such processes can be defined by making the following

specific choice for various particles x; involved in the scattering process
X1 = A scalar particle of mass m; and charge Q1,
x2 = A scalar particle of mass ms and charge Q2,
x3 = A neutral pseudoscalar particle of mass ms.

Such a process approximates, according to our discussion in the Appendix,
the two photon mediated production of a neutral pseudoscalars, such as the 79,
n or 1'(958), in the scattering of two spin—zero nuclei. The matter field operators

associated with the three particles involved are

d3 I R i I R S
x1: X(z) :/(2@3220 . [a(plu)e P x"‘aT(pl”)eZpl x] (7.137)
P
d3p” - -
x2: O(z) = /Wiv:: [0(52/’)6_2p2 * +al (py)e™? x] (7.138)
D2
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d3 A — —ipa"- — .-
x3: P(z)= / ﬁ [G(P3Il)€ Wt a¥(py")etts " (7.139)
p3//
with
wy = (m? + 212 (7.140)

The interaction Lagrangian density operator for the two photon mediated pro-

duction under consideration is

Lint (z) = ga1 X(x)" 8, 8(x) A¥(x) + gs2 O(2)1 9,0(x) A (z)

(7.141)

+ps €uvpo " () P (1) D (),

where we have suppressed the Normal ordering. Under the assumption
Hint.(v) = —Lint.(2), (7.142)

the Dyson formula derived in the Appendix yields the following expression for the

S—matrix

S=1+ i @" 7 dha .. 7 dha, T [gm(ml) o Lone () ] (7.143)

We wish to calculate the following amplitude of transition

|Z> = |m17ﬁ1; m27ﬁ2> — |f> - |mlvﬁll; m2vﬁ2/;m37ﬁ3l>' (7144)
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Formally, this transition amplitude is

oo

<f|S|7’> = <m17171/; m27172,; m37173,|{]- +1 / d4~r1£int.($1)

—00

QL
.
8
—

DN | =

é\g é\g

d*ee T [Emt.(m)ﬁmt.(xz)]

| .

d*zs /d4$3 T[»Cint.($1)£int.($2)£int_(g;3)] (7.145)

~~
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Referring to the right hand side of the above expression note that the orthonor-

mality of the initial and final states under consideration yields
(m1,py; ma, Py’ m3,P3 [m, pr; ma,Pa) = 0. (7.146)
In the same context the matrix element
(ma,pys ma,Pys m3, 55 | Line () |ma, Pr; m2, Pa). (7.147)

consists of three terms:

(1) Two terms arising from the coupling of the scalar matter fields, ¥(z) and

O(z), with the gauge vector potential A*(z), and

(74) One term corresponding to the coupling between the pseudoscalar matter

field ®(x) with A*(x).
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The former vanish because neither the initial nor the final state involves a photon,
whereas the part of the Lagrangian density operator associated with these two

terms involves A#(z) linearly. The latter and the remaining term is

oo
; 4 =/, =/, — / [72%4
g /dl’ mi, Py M2,Pg; M3, P3|€ Fr(x
ps < 1 2 3| Qv po ( ) (7.148)
—00
FP2(z)®(x)|ma, p1; me, Pa),

and equals

00
Z.gps / d4$<m17ﬁll; m27ﬁ2/; m37ﬁ3l|eul/pa(0HAV _01/Au) (7 149)
—00

(0pAs — 05 Ap) () |ma, P15 ™a, Pa).
The gauge vector potential A, () in the Lorentz gauge is (see [53, Sec. 4.4])
3

3 . .
Ay(z) = / (27373’;%;69)(1@) {a(’\)(k)e_’k'm+a()‘)T(k)eZk'x . (7.150)
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Substituting this and ®(z) from (7.139) we obtain

o0
(7.149) = ig,, / dz(my, py; ma, py; ms, py e
—00

Pk~ )/ amibz o (Vo ik
(")u /WZEV (k) a (k)e +a (k)e
A=0
k' - M) oy | Y 1y, —ik AV ik
_81, /WZGM (k)(l (k)e —|—a (k)e
0 y—p
d3k” 3 2\’ " —ik" " ik" 2
ot ]
A7=0
ABBE" 3 WY | O =ik
— Oy ﬁZGp (™) [a'\r (K)e
(2m)32k;,
AN/:O

+ a(X”)Jf(k/l/)eik”'-x] }]

d3p” /] /i
[ G a5l s e, )

(27T)32u)p3//
(7.151)
Since
(ma, 75 ma, s my, 7y laM(k) = 0 (7.152)
oM (k) my, pi; ma,P2) =0, (7.153)

we have
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o0

(7.149) = igps / dha(my, 7 ma, fys ma, |7

— 00

31./ , , )
a / (2d)73k2k/ Z EL/\ )(k/)(—ikl/,)a(’\ )(k’)e—zk x]
T

dgk” 3 )\” . 1 . //.w
[/W hE: (K" (k) aX I (e k
)\Il 0

(7.154)

3

d3k/l/
/ G2y 2

0 )\/N 0

d3p3 -y ip3,,'l' . .
(2m)32w, (75")e [ma, Pi; ma, Pa).
p3”

(") (K™Y (k") a"t ) 6ik’”~x]

To calculate this we can rewrite the above expression as

o0

(7.149) = igps / d'aw(ma, s ma, Py; ma, jy |7

— 00

/ 4’k / d>K" / d*py ZZ
(2m)32ko ) (2m)32Kk 2732w, 1 (7.155)

P3 =0 N'=0

eV (k)ed ) (k") (k) (—iky)
expli(—k + K" + p) - 2]a® (k) a® T (k"o (p)

|m1, P15 ma, Pa) + three similar terms (t.s.t).

The z—integration is immediately performed by taking note of the fact that

diz .
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This yields

(7.149) = igys(ma, py's ma, Pa; m3, p3’|e"P7

/ A3k / d3E" / d3pl ZZ
(2m)32ky ) (27)32K] 27)32w,, 1

Ps™ xr=0 X'=0

" 7.157
N (k)8 (B (—iky,) (—ik,) (7.157)
2

)
2m) 0 (—k + k" + p§)a™ (k)aXT (K" )al (p5)

[ma1, P1; ma, pa) + t.s.t.

Now note that we have suppressed Normal ordering of the £;,;. Normal ordering
has the effect of moving a™ (k) to the right of the afs in the first term of the above

expression. But since

oM (k)|my, p1; ma, Pa) =0 (7.158)

the first term in (7.157). Similarly the ¢.s.t. in (7.157) are zero, with the result
(7.149) = 0. (7.159)

Because of this result and the observations noted down after equation (7.147) we
arrive at the result that the first order contribution to the transition amplitude
(f|S|i) for the process under consideration vanishes. From a physical point of
view this should not be a surprising result because the transition amplitude for
the process under consideration behaves as ~ gs1 gs2 gps to the lowest order. We
assume, without explicit calculations, that the second order contribution is zero
and proceed to calculate the first non—zero contribution to the transition amplitude

given in (7.145).

In order that the subscripts on the spacetime volume elements d*z; in equation

(7.145) are not confused with the subscripts on the in and out state momenta we
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change the notation as follows:

r1 — a:’
zy — 2" (7.160)

"
xrs — T,

and extract third order contribution to (f|S|é). This contribution reads

o.°] o.°] oo
<1/ 2/ 3/ |S|1 2 11T __ _é / d4x' / d4$” / d4 n 1/ 9 3|
—0o0 —00 —00

(7.161)
T\ Lin, (&) Lint. (") Lt (&) 11, 2),
where we have introduced the following abbreviations:
<m17ﬁ1l; m?vﬁ2l; m3vﬁ3l| - <1l72l7 3I|
(7.162)

|m1,p1; ma,pa) = |1,2).

The only non-vanishing contributions to (1/,2,3'|S|1,2)!! come from terms ~

gs1 gs2 gps- As such
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we have (using (7.141))

o0 o0 o0

<1/ 2/ 3/|S|1 2>III_ _agsl g52 gps / d4.I‘I / d4CE” / d4:L‘/// 1/ 2/ 3|
—00 —0Q

7|50 05 A O ") 0,0 ) A (" Yo P (0 ) FP7 (") 2"
£(a) 105 () A0 (@) 0,0(") AV )epspa P (") PP (0" (a")
S (") 05 (") A (@O 0,0 ) AT (@ Yo 1 (a7 (") D(a")
£ (") 05 (@) A0 (&) 0,0 (") A (" ey P () FP7 (0! ()
(
(

(
S(a") 0.5 (") A (") O () 10,0 () AN (' ) €yuspo FH (2 ) FP7 () D ()
(& )

~—~~

) .I‘”I)TaeE III)Ae(:EIII (_)( II)Ta,]@(.’EH)An(.I‘”)GNVPUFMV(xl)FpU($l)q)(.I‘l)

1,2).
(7.163)
Reintroducing the suppressed normal ordering of the Lagrangian density operator,

we have [also see the observations below]

. o.°] o.°] [o.°]
1
<1,72/73,|S|172>H[:_6 Gs1 Gs2 gps/d4x'/d4x”/d4x"'
—00 —00 —00

a qll)a(ﬁzl)a(ﬁgl)

( la(p
T{N(ZT 0% 4°) N(6' 9,0 A")x,,N (cpp 1™ FP®) (7.164)
+(

xl xlll

.’L'H N .’L'l”, .T”I N .’L'II) + (.’L‘l N .T”, .T” N .TI)+

/ i /" n n / / n i / n i
(" =", 2" =27, " = 2)+ (¢ =2, v =2,z =)

+ (x/ _ x///ﬂj/// N x/)] aT(ﬁ1)aT(ﬁz)| >

The non-explicitly written terms in the above expression are obtained from the

explicitly written first term by the indicated substitutions. In addition recall that:

af ()| ) = |ma, pr) (7.165)

()] ) = |ma, p2) (7.166)



= |mg, p3).

In addition note the standard abbreviation

A(z) B(z) C(z) = (A BC ) .

x

To proceed further with our calculations we consider the

first time ordered term in (7.164)

T {N (ET 0.3 A€>

',L.I

and use the definition

FH = gl AY — v AP

to get

T{N(ZT dex Aﬁ)x,
= T{N(ET 0.3 4°) N(6f 9,0 a)

wl w//

N(ef 9,0 Aﬁ)w”N(ewaF“”F”"@)zm],
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(7.167)

(7.168)

(7.169)

(7.170)

R a—

N (curpr {0147 — 0¥ 4} 004 af’A”}@) .

—T -N(ET dex AE)xIN(@T 0,0 A”)x”N(ewpU@“A”(?"Ap@
-7 -N(ET 0% A7) N(61 0,0 A7) N(cupod” 4107470
+T -N(ET 0% Af)w,N(@T 0,0 A”)I”N(eu,,pga”A”@"qu)

We now use the second Wick’s theorem (see: Ref.

the time ordered product T7--

-] which appears in (7.164).

(7.171)

[51, p.167]) to evaluate
Towards this end
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we start with the first time ordered term in the r.h.s of (7.171) (Note: l.h.s. of
(7.171) equals the first time ordered term in the r.h.s. of (7.164))

T[N(ET o 4°) N(of 9,0 A”) N(EuypgﬁuAyﬁpAa(I)>

!

{(ZJT 0.5 A5>x’

ot 9,0 A" (ew(,aﬂA"aPAff@)

ml( 1.///

N (cpprdaver 470 m

m//

+N 0! 9,0 A7)  (eupod A" 97 A7

J/

(
(@T 0y© A"
(
(

+N (o 4792 A7

(7.172)

ml(

(eu,,pgaﬂAvaPAa

m//

+N

) "
»t 9.3 A6>x, (@T 0,0 A"
n

)
)
) )
of 0,0 An) )
A7) (e,w,mau a0 a70)
) )
) )

+N (ewoaﬂA“ OPA”D

m//

(
(
(
+N :<ET 0.5 A°
(
(
(=

LN (xt of 9,0 A’7> (euypgaﬂA" oA @)mm].

o

"

Where we omitted all contractions between the different field operators, such as

Y(2)O(z"), which give a zero contribution.
—_——

Next we calculate the needed matrix element of the above time ordered product

(lali)a)at)r | N (st o5 4°) V(6 0,0 47)

1./ m//

(7.173)
N (et a0 a70) |af Gt )

Since neither the initial state i) = af(p1)a’(pa)| ) nor the final state |f) =
al (py)al (9y)al ()| ) contains a photon, the first siz terms on the r.h.s. contribute
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zero to the matriz element (7.173). As such we have

la@@)a(@y)a(@)T [N(ET 9.5 AE>$,N<@T Oy© A”)

N (Gupo 0 A7 97 A7D)
= ( la(@)a(py)a(ps)

N {(ZT 0ex. AE)W (6" a,0 a7) » (cupod A" 0 470) w] (7.174)

al (1)l (72)] )

]awﬁl)a‘f(ﬁzn )

m///

+( la(py)a(py)a(py)

N{(ZT 0% AE>$, (6" 2,0 :4’7)1"” (eu,,pgam; P A° @)xm}.

J

-~

al(p1)al ()] ).

Since contractions are c—numbers we may take the contractions on the r.h.s. of

(7.174) out of the Normal product and write the above result as follows:

(Lol a7 |3 (51 03 47) N (6F 0,0 1)

xll

N (a0 a0 a7w) ol )al )] )
— Ae (x/)auAl/ (33'”/) An (x")@pAU (x/l/) eul/pa

(laGa@)a@)N | (S0.3) (010,0) o@|a(h)al @) )
+ Ae(xl)apAU(.’EI”) A”(m")a”A”(x'") Gul/po

o
' '

',L.II

(ClaG)a)at)N | (310.35) (010,0) @) |al)al )] )

o o
' ' '

\

{ 8pAu ”Il 1477( Il)apAU( ///) i‘f(xl)ﬁpAa(a:m) i477(33//)8;@141/@///)}
(1

)N | (H0.3) (610,0) 0 ol )] )
(7.175)
Referring to this result, and equation (7.171), we can finally write down the fol-

lowing fundamental matrix element (see (7.169)) needed to evaluate
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(1',2/,3"1S1, 2)TH given by (7.163) and (7.164):
( |a(ﬁ1l)a(ﬁzl)a(133/)
T{N(ZT 0% A°) N(©1 9,0 A7) N(eupo " F/0) }
al(p)al ()] )
— €uvpo
{AE(.’EI)auAV(.’EI”) An(.’E”)apAU(.’EI”)

Y\ i
-~ -~

+ AE(.’L'I)apAU(.TIH) A”(x”)(?”A”(a:’”)

A o

~” ~”

_ AE(.T,)auAV(.T”I) An(III)aaAp(.TI l)

_ Af(a:’)aaAp(x”') A”(x”)(?”A”(a:’”)
/
A
/

~” ~”

— A5 (20" AF (2" AT (2")OP AT (©

- A
' '

e(x/)apAU(l,l/l) A”(a:")@”A“(:c”’)

s\ i
-~ -~

!/
II)
_'_ AE(.II)aVAM(.I‘”I) A’q(xll)aaAp(xll )

- A
' '

A

\

A ()07 AP (") A”(x”)a”A“(x’”)}
(lali)aa)v | (S10.3) (e2,0)
(7.176)

After the T ordering is performed, as just done, the z/,z"”, 2" are dummy
variables of integration. Consequently we need not calculate the other five matrix
elements of the 7" ordered product which appear in (7.164). With this observation

we have our final gauge independent expression for the scattering
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amplitude under study. This expression reads:

oo oo o0

<1/,2/,3,|S|1,2>H‘r:—igsl gs2 gps/d4x'/d4x"/d4x'" €po
—00 —00 — 00

Y\
-~ -~

{fle (a:')@“A” (.Tl/l) An (.Tl/)apAa (.T,”)J
(xl)apAa (.’17”/) An (x/l)auAl/ (ajl/l)

Y\ s

-~ -~

— AS(2")orAY () AM(2")07 AP(

Y\ "
-~ -~

— AS(2") 0" AF (o) A2 OP A% (

(x/)apAa'(xlll) An(xll)auAp, (aj/”)

o - o
' '

+ A°

.’17’”)

_ AE(.T,)aUAp(CE”/) An(x/l)auAl/(l,l/l)
.’17’”)

— A€

CL’HI)

+ A (2) AR (") AT(a")07 AP (

Y\ s
-~ -~

_'_ Ae(x/)aaAp(xlll) AU(JTH)aVAM(.T/H)}

Clal)aati)v | (20.3) (610,0) o6)|al @)l @) ).

(7.177)

Note that the factor of 6, arising from the 3!, has now disappeared because of six

',L.II

equal contributions from the six time ordered terms on the r.h.s. of (7.164). This
expression can be further simplified by exploiting the antisymmetry of €,,,, as

follows

Euypa{flﬁ(l./)auAl/(lﬂl) An(l,l/)apAa(xl/l)

Y\ i
-~ -~

_ Ae (a:’)(?“A” (.’17”/) An (.’17”)8UAP(.’17”/) } (7 178)

i

-~

= 2€u1p0 AE(x’)@“A"(x”’) An(xll)ﬁpAg(x/"l.

- A
' '

Using this identity in (7.177) we obtain



136

o0 o0 o0

<1/, 2/7 3/|}S¢|17 2>III — _ng]_ gsz gps / d4:L_/ / d4:L_// / d4ZE”I Guypo-
—0o0 —0Q —00

2 {Ae (x')(?“A” (.’17”/) An (x/l)apAa (.’17”/)
+ Ae(xl)apAa(xlll) A”(m")@“A”(x”’)

o - o
' '

_I_ AE(CL’/)aVAH(CL’”/) An(x/l)aaAp(x/l/

Y\ "

+ AE(.T,)aUAp(CL’”/) A”(x")(?”A”(a:"')}

(Clalatat)v | (0.5) (610,0) o6 |at )l ).
(7.179)

Exploiting the antisymmetry of €, once more, simplifies this expression to:

oo oo o0

<1/,2/,3,|S|1,2>IH:—igsl G2 gps/d4x'/d4x"/d4a7'" €po
—00 —00 —00

4{146(1',)0“14”(,%'”/) A”(:c")(?pAU(:c"’)

(. Y\ i
-~ -~

+ AE(.T,)apAU(CL’”/) An(x/l)auAu(l,l/l)}

(. Y\ "
-~ -~

(Clalatat)v | (0.5) (610,0) o6 |at )l )
(7.180)
This is the formal gauge independent expression for the scattering amplitude for
the two photon mediated production of a pseudoscalar neutral particle, such as 7,
in the scattering of two (different) spin zero nuclei. At this stage of our calculations

all particles are considered pointlike.
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7.8  EVALUATION OF
( |a<ﬁl'>a<ﬁ2')a<ﬁg'>fv[(z*aez)w, (6'9,0) >] at()al ()] )

WHICH APPEARS IN r.h.s OF (7.180)

Having obtained the expression for (1/,2',3/|S|1,2)/L, we now evaluate the
indicated matrix element. Towards this end note that the only surviving con-
tribution to this matrix element comes from terms which contain the following
combination of creation and annihilation operators af(p1)al(p2)al (73)a(p1)a ().

To pick these terms we write the argument of N|---] explicitly. It reads

d3p/1, _'_ 17; " / 17; " /
/W{a @)™ +a(p e 1" ]

d*p’ s o
/ (7[@(23 Y (—ipD)e” T 4 at (571 (iplL) e x]

21)3 2wy

d3p/2, _'_ 17; i 17; "o
2

d3p”/ - 1 i~
[ ot [a@;")(—z’p’z’;)e—% ) i) |

27) 32wy

3,/
[ i ati e e,

27)3 2wy

By inspection, we can now write down the contribution from N -] which will

survive. It is

/ d3 plll / d3 pllll / d3 plzl / d3 plzll / d3 pél
(2m)32wyr S (2m)32wpr ) (27)32wyy S (21)32wpn ) (27)32wyy

{a*(ﬁ’f)a(ﬁ”’) "5 5)a@ s )al ()

4 " i " " nr

(zp'l' ’ . /l/ ipl'a: zp2x ( 'Lpg;) —iph' -z €p3x )
+a (7 a(@ {)a (75)a(@ 5)al (55)

1
< _Zplll I ,/, 7/p,]_” ’ —ipg-x” (ipg,) ngl He pg xlll) }.

(7.182)
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As a result, we have

(Clal)a@)a)v | (H0:2) (610,0) ool i)al )] ) =

/ d3 plll / d3 pllll / d3 pl2/ / d3 plll / d3 p{sl
(2m)32wyr ) (2m)32wpm ) (27)32wpy ) (27)32wpm ) (27)32wyy
/ /

(7.183)
/) ! s 1" /11 II U nr

(ezpl (gl ye WL gz (_ iphy)e —ipy -x" ips-x )

p

=/ =/ I = = = " =11 =1
+<p17p27 37p17p2|p17p27p17p27p >

-1 4 - I ! -1 " " /! n
<e—1p1~$ (Zplllé)ewl LTI X (zp'z") ipy - eps T ) }

The integrations are easily performed by noting that

<ﬁivﬁévﬁé:ﬁ Iaﬁl2”|ﬁlvﬁ271717p gvﬁg> -
(2m)%%5 (2)°wy; wpy 1 Wy 1w w8 (B — P 1) (o — 550 (55 —75) (7.184)

yielding the result

( la(py)a(py)a(ps)N [(ET@ Z) (@TanG))w”‘I)(x'”)]aT(ﬁl)aT(ﬁzﬂ )
— eipll'xl(_z'ple)e—zpl-x ezp2~x (_Z-p2n)e—ipzm”eipgm”’ (7.185)

nr

+ e—ip’l-w’(iple)eipl-w'e—ipg-a:”(Z-pzn)eipg-w”eipg-w .
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7.9  EXPRESSION FOR (1/,2/,3/|S]1,2)/H1 IN CovARIANT LORENTZ GAUGE

Inserting (7.185) in (7.180) gives

00 00 00
<1/7 2,7 3/|S|17 2>III = 4igsl 9s2 Gps / d4$/ / d4$” / d4$m DP1eP2n €uvpo
—00 —00 —00

’

<€i(p'1—pl)-w'ei(pé—pa)w”eipé'w” + e—i(p’l—pl)-w'e—i(pé—pz)-w”eipé-w”’)

{Ae(l'l)auAy(.T”I) A"(x”)apA"(x"')

N s\ i

- - (7.186)

In the covariant Lorentz gauge the contractions appearing in (7.186) can be

+ Ae(xl)apAa(xl/l) An(xl/)auAl/(xl/l)}

evaluated using (see e.g. Ref. [53])
Al(@) A" () = (T (A" (x)A"(2))] )

v 1
_i/ d4k nu —ik:-(a:—x’)- (7 87)

(2m)4 k2 + ic.

As a consequence

d*k g kT :
AP AV (1) = G —zk~(x—x). 1
4@ (z @) / (2m)4 k2 + ie’ (7.188)
Using (7.188) in (7.186) leads to the following expression for the desired S—matrix
element
o0 o0 o0
(V2SI =i g g2 gy [ @ [ @' [ a by e
— 00 — 00 —0o0

<ei(p’1—pl)-w'ei(p'z—pz)-w"eipé-w”’ + ¢~ iPi—p1)@’ —i(pr—p2)-z” 6ip%-a:”’>

/ d4k ,'761/ kH _ik.(w’_w’”) / d4k, T)na k/p _ik/_(wu_wm)
(2m)4 k2 + ic’ (2m)4 k"2 + ic’

N / d4k” 7750 k”p e—ik”'(ﬁ?’—ﬁm) / d4k”/ T]ny k”lu e—’ik”’(x”—x”’)
(2m)4 k"2 + e (2m)4 k"2 + e
(7.189)

This expression can be further simplified and brought to a more physically trans-

parent form by performing the integrations over z/, " and z””’. The result of this
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manipulation is:

I ol ol II7 - d4k d4k,
(1,2, 3|S1,2)""" = 4i gs1 9s2 Gps €uwpo Ple P2y 2m)t | (2n)*
nvEr 1o P
k% +iek'2 + ie

+ (21) Y364 (—pl 4+ p1 — kK)o (—phy + p2 — K (P + k + k’)]

[(27r)4X354(p’1 —p1 — k)0 (P — py — K (ph + K+ K)

d4k” d4k///

+4i g1 9s2 Yps €uvpo Ple p2’7/ (2m)4 / (2m)*

neok"P e
k"2 e k2 4+ je

[(27{')4)(354(1)’1 —p— k”)54(p/2 —py — k///)54(pg + k" + k///)

+ (271')4)(354(—]9/1 +pp — k”)54(—p,2 + pg — km)54(pg +E 4+ k///)]
(7.190)

7.10 Two PHOTON MEDIATED PRODUCTION OF A ELECTRICALLY NEUTRAL
SCALAR PARTICLE IN THE HIGH ENERGY SCATTERING OF TwO CHARGED PAR-

TICLES

To study the two photon mediated production of electrically neutral scalar

particles such as f,(975), a0(980) and fp(1400) we choose
X1 = A scalar particle of mass m; and charge Q1,
x2 = A scalar particle of mass my and charge Q2,
x3 = A neutral scalar particle of mass ms.

Such a process approximates the photoproduction of a neutral scalar meson in the
scattering of two spin zero nuclei. The matter field operators associated with the

three particles involved are:

d3 /! . i T . -
x1: E(z) :/W];i)”[a(mﬂ)e P 4 al () e x] (7.191)
by
d3p” - -
x2: O(z) = /Wiv:: [0(52/’)6_2p2 “ 4 al (py")e’? x] (7.192)
Py
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— dgp” 5 i I N S
x3: E(x) = / W{a(m")e Pt af(py")etts (7.193)
pg”
with
wy = (m? + 212 (7.194)

The interaction Lagrangian density operator for the two photon mediated pro-

duction of scalar particles is

Lint.(x) = gs1 S(2)" 9,5(x) A"(2) + gs2 O(z)" 9,0(x) 1)4”(37) (7.195)

+9s Fyu () F* () (),

where we have suppressed the Normal Ordering. To calculate the transition am-

plitude
|Z> = |mlvﬁl; m27ﬁ2> - |f> = |mlvﬁll; m2vﬁ2/;m37ﬁ3l> (7196)

all arguments of Sec. 7.7 up to equation (7.177) remain unmodified provided the

following substitutions are made:

gps = 8ss €uvpo — 1, Superscript g — Subscript g,
(7.197)
Superscript ¥ — Subscript v; p—pu, o — v, @(x) = E(x).
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The counterpart of (7.177) then reads

oo o0 oo

<1/7 2/, 3/|S|1,2>III: _2981 982 gs / d4:1;/ / d4x// / d4:L_///
—00 —00 — 00

S/ i
-~ -~

{i‘le(:c')OHA,,(:E"') An(l,l/)auAl/(xl/l)

o

~

_'_ Ae(xl)apAu(xlll) A”(a:")@uA,,(x”’)
CU”/) e

— A%(2")0, A, (") AM(z")0" AM(

(=

e\

E(.’El)aVAu(.’EHI) A”(a:")@uA,,(x”’)

~

_ Af(x’)ﬁ,,AM(x”’) An(xll)apAu(xlll

-

\~—"

g g

(xl)auAl/ (CU”/) An (:U")(?,,AH (.Tl/l)

s\ "

-~

S/ \a

_ AE
+ Af(x’)ﬁ,,AM(x”’) An(xll)auAu(xlll)

~

7 -

+ A%(a!)0” AP (") A”(:U”)(’),,Au(x”’)}

-~

etV | (0.2) (670,0) =] dlat )] ).

:E//

This expression immediately simplifies to

o0 o0 o0
<1/7 2/, 3/|S|1,2>III: _2981 982 gs / d4:1;/ / d4x// / d4:L_///
—0o0 —0o0 — 00

4{146(.’17[)8”14,,(.’17[/[) An(xll)auAu(x/I/)

N i
-~

_ AE(.’EI)aMA,,(.T/H) An(.I‘/I)aVAM(.I‘/H

- P o
' v

(el )a)aV | (H0:3) (610,0) =)ol Gi)al )] ).

ml(

(7.199)

Evaluating

( |a(ﬁl’)a(ﬁ2’)a(ﬁ3’)N{(ET&E)W(@Tc‘?ﬁ@) ,E(x”’)]aT(ﬁl)aT(ﬁzﬂ ) as in Sec.

m/

7.8 (®(z) — E(z), the rest is identical) and substituting the result in the above
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expression we get,

(e 0] (e 0] o0
(1,2, 31511, 2T = digar gs2 s / it / dta" / 22" pre pay
—00 —00 — 00

(ei(p’l —p1)@ Gi(pr—p2)a” ipse e—i(p’l—pl)-x’e—i(pé—pz)m”eipéw”’)

{AE(.T,)GHAV(.TW) An(l,l/)auAl/(x/l/)

(. i
~” -~

_ Ae(x')auA,,(x”') A’q(xll)auAu(xlll)

- - 27.200)
To continue further, note
(@) DA =y o A°(2) A% (), (7.201)
In the covariant Lorentz gauge we have (see (7.188))
A(w) 9047 (') = / %Z;:kie—ik'(w—z’). (7.202)
As such
A(x) @Au(w”} = Nup vo / (547];4 Z;:kzie_ik'(m_” (7.203)
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Substituting this result in equation (7.200) gives

oo oo o0
(1’,2’,3/|S|1,2>H[ — 44 Gs1 Gs2 s / d4$/ / d4$” / d4$/// Ple Doy
—00 —00 —00

(ei(p’l—pl)-w'ei(pé—p2)~w”eipé-w”’ + e—i(p’l—pl)-ar'e—i(pé—pz)-w”eipé-w”’)

T] T] /d4—k 7760 k‘p e—ik'(w'—w”’) / d4k‘/ nnl/ k/IJf 6—ik,'($”—l'm) B
upllve (271,)4 k2 + d¢ (271')4 K2 1 e

/ dAE" 0 L'p k(™) /d4k”’ ' kv k" (& =)
NupTlve (271')4 L!12 + iee (27T)4 k2 + iee

(7.204)

Performing the z/, 2" and z" integrations then yields the counterpart of (7.190)

(1,2,3'8|1,2)1T = 4i gs1 gs2 g5 Pre P2g 1 "”"/ = /d%l
n Mup (2m)* ) (2m)4

neakp nnl/klp,
k2 + e k"2 + ie

+ (21) 364 (—pl 4 p1 — kK)o (—phy + p2 — K (P + k + k’)]

[(27r)4X354(p’1 —p1 — k)04 (ph — py — K (ph + K+ K)

d4kll d4klll

— 41 gs1 9s2 9s Ple P2n Mup 7]1/0/ (27!')4 / (271’)4

neakllp nfqpklllu

"2 + de 12 + je
+ (271')4)(354(—]9/1 +pp — k”)54(—p,2 + pg — k///)64(pé +E 4+ k///)]

(7.205)

[(2W)4X354(p'1 —p1— K")6 (0 — pa — K")0 (05 + K" + K)

7.11 CONCLUSIONS

In this work we have provided a general procedure to construct (j,0) @ (0, j)
covariant spinors for any spin. These covariant spinors are then used to construct
[23] arbitrary—spin causal propagators. While at present we do not have acuaslity—
free relativistic wave equations, which the (j,0)®(0, j) covariant spinors satisfy, we

have established that the Weinberg Equations suffer from kinematical acausality.
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APPENDIX

ELEMENTS OF CANONICAL QUANTUM FIELD THEORY

In this appendix we provide essential elements of the canonical quantum field
theory. We will establish how our work contained in the main text of this work

interfaces at various levels with canonical quantum field theory.

A1l CAsIMIR OPERATORS AND PAULI-LUBANSKI PSEUDOVECTOR

Let [1) be the state of a system as observed by an inertial observer O. If |¢)
represents the state of the same system as observed by another inertial observer

O', then

[¥)" = U({A, a}) ), (A1)

where {A,a} characterises the transformation which relates O with O’

o't = AP, a” + at. (A2)

U({A,a}) is an operator satisfying:

U({A,a})U({A,a}) = U{AA, Aa + a}). (A3)

However, because of the equivalence of all inertial observers for the description of
a system it, follows that together with [¢), [1)’ is also a possible state as viewed by
the original inertial observer (0. Thus the representation space on which unitary
operators U({A,a}) act contains with every |1), all transforms U({A, a})|¢), with

{A,a} as any Poincaré transformation.

To each solution U({A,a}) of (A3) corresponds a representation space. The
question now naturally arises: What are the quantum numbers which distinguish
one representation space from another? Casimir invariants are considered the most

suitable candidates for these quantum numbers.
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Poincaré group has two Casimir operators:

Cy = P,P", (A4)
Co = W,WH, (A5)

where W, is defined as
W, = a€pnpeJ"PP7, (A6)

with @ a ¢-number constant. W), is called the Pauli-Lubdnski pseudovector. It

was first introduced by Lubdanski [48] in 1942 with acknowledgements to Pauli.

It is readily seen that the Pauli-Lubénski operator has the following properties:

W, P" = 0. (A7)

(W, PA] = 0. (A8)

Equation (A7) follows from the vanishing of the commutator [P?, P#| because it
makes P? P#, which appears in W, P = aeypo JJ"P P? PF symmetric in the indices
o, . On the other hand €,,,, is antisymmetric in the same indices. These two

observations immediately yield the result (A7). The proof of (A8) is as follows

[(WH, PA] = afe"? ], Py, P
= aJy,[e"P Py, P] + o' J,,,, PY|P, (A9)

= aetP? {—i(nAVPp — n)‘pPy)} P,.
Now note that 7])‘,, = 7]1,677)‘6 = §*,. This yields
W, P = iac™r7 {), B, = 8%, P, } B, = ia {7 P, — 7P, =0, (A10)

where we used the complete antisymmetry of e#”P? and then renamed appropriate
indices. More properties of the Pauli-Lubanski operator can be found on page 195

of Tung [55].
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As a consequence of the constraint (7), W, has a mazimum of three inde-
pendent components. Further it is translationally invariant. This implies that
Cy = W,WH is also translationally invariant. Since W, is a four vector, W, W#
is also invariant under pure Lorentz transformations. This establishes C to be a
Casimir operator for the Poincaré group. That C; is a Casimir operator is obvi-
ous. P, is translationally invariant, which makes P,P* translationally invariant.
In addition because P, is a four vector, P,P" is invariant under pure Lorentz

transformations. As a result C] is a Casimir operator.

Restricting ourselves to timelike and lightlike momenta p* we are led to two

physically distinct classes of representation spaces.

A2 STATES WITH m # 0: TIMELIKE p#, SPIN AND LITTLE GROUP

Since the Pauli-Lubdanski operator commutes with the energy-momentum four
vector the two Casimir operators of the Poincaré group commute. So let 1) be a
simultaneous eigenstate of C; and C5. The Casimir invariants are readily found

by considering a standard vector p* = (m,0,0,0). Then we find that

Cily) = PuPty) = pup”|y) = m* (). (A11)

As such the first Casimir invariant is identified as [by definition] the square of the
Poincaré invariant mass associated with each of the states in the representation

space to which | {p* = (m,0,0,0)}) belongs.

Thus one of the quantum numbers by which a given representation space
can be labelled is the Poincaré invariant mass, m. All physical states in the
same representation space carry the same mass. This is a quantity which is to
be determined experimentally. A theory in which this number itself could be

theoretically calculated or related to other incalculable numbers of the present
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theory, such as the electronic charge e, the Planck constant h, the speed of light

. . 2.
¢, the gravitational constant GG 32 is not known at present.

To learn about the physical nature of the second Casimir invariant let’s con-
sider the action of Cy on [¢). Again, we choose the standard vector p* = (m, 0,0, 0)
throughout the calculations which follow. Since p* = (m,0,0,0), the orbital an-
gular momentum vanishes and we should replace J. , the total angular momentum,

by S , the spin angular momentum.
02 |@[)> = QZEIWPUSVPP(TeuaﬁQSaﬁPQ |@[)> = a2m26m,poe"aﬂ05”p8ag |@[)> (A12)

The complete antisymmetry of e#*?? implies that only p #0, v #0, p#0, a #
0 and B # 0 terms can survive in the r.h.s of the above expression. As such
we rename the indices as follows: y — &k, p = I, v — ¢q, @« — 4, and, 8 — J
where each of the new indices runs over 1,2,3. With these substitutions equation

(A12) reads

Cy |9) = m* o eguoe™ 0SS5 |h). (A13)
With the convention
VB — 41, (A14)
we have
erqioe 9" = (3357 — 515)). (A15)
Therefore

Cy [p) = m*a?[8S;j — S7°Si5] )
= m*a?2[e"*e;jlS)S"] ) (A16)
= m2a?2[20F 5.5 |v).

=2
That is eigenvalues of Cs are proportional to those of S

Cy 1) = m?a?2 - 28,S* |¢) (A17)

32 A constant related to a phenomenon which, it should be noted, extends Poincaré covariance
to General covariance.
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As a result if we choose

1
and note
SpS* ) = =82 [4) = —s(s+1) [¥) (A19)
for |¢) = | {p" = (m,0,0,0)}) we get the second Casimir invariant
cg = —m?s(s + 1). (A20)

Therefore the quantum numbers m and s distinguish one representation space
from another. A physical state in the representation space of timelike momenta

can thus be written as

|¢>p”pp>0 : |pﬂ; m, 870>' (A21)
with
P pts mys, o) = p'|p's m, s, o), (A22)
52
S |pt; m,s,0) =s(s+ 1) |pt; m,s,0), (A23)
S, [p"; m,s, o) = olpt; m,s,0). (A24)

Before we undertake the study of representation spaces for lightlike p* we look at
the Pauli-Lubénski pseudovector in a little more detail. For this we let p* be any
pt satisfying p,pt > 0, instead of the standard timelike momenta p* = (m,0,0,0).
The definition of the Pauli-Lubdnski pseudovector (A6) yields the 0th [or time]
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component

WO = %GOVPUJVPPU
= %(60123J12P3 + e3Py + Py Py 4 - P2 T Py + P T P)
_ (60123J12P3 + 82 .p 4 60231J23P1)
= [(+1)J3Ps + (—=1)(=J2) Py + (+1)J1 P]
= JiF;.
(A25)

—

Since P, = (P, —P)
wl=_J.P. (A26)

Now we obtain the spacial part of W#:

wt =

—

—~

61023J02P3 + 61032J03P2 + 61203J20P3 + -+ 61302J30P2 + 61320J32P0)

[\]

61023J02P3 + 61032J03P2 + 61230J23P0)
(CDEoPy 1 (F)EsPy + (1) 1P (A27)
J1Py + (=Ko P3 + K3P)]

—J1 Py + (K2 P? — K3P?)]
—J1Py + (K x P)1],

(
[
[
[
[

where

(K x P); = KoP3 — K3P? = —KoP3 + K3Ps. (A28)

Similarly one can obtain the y— and z—components of W to get
W = (-JPy + K x P). (A29)
In the above equations we have defined

Jig =J3 = —Jo1, J31=Jo=—J13, Joz = J1 = —J3g, (A30)
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Jio = —K; = —Jo;, (1=1,2,3). (A31)

The operator
wo  J.P
|71 7

[see (A26)] can be interpreted as a generalised helicity operator for it measures the

(A32)

projection of the total (rather than spin) angular momentum on the direction of
motion. The meaning of W is not as transparent. A few remarks on it may shed
some light. First, the vector K x Pisan operator which lies in a plane orthogonal
to P. Second, since W, P¥ vanishes, there are only three independent components
in W#. Equation (A32) provides one independent component. The other two may
be chosen along any two mutually orthogonal directions in the plane defined by
K x P. If one wished, these operators could be chosen as J-a and J- I;, with a and
b as two dimensionless unit vectors in the plane defined by K x P. Whether these
operators will find any use in physical problems is not obvious. Bargmann and
Wigner [9] obtained operators similar to (A26) and (A29) without attempting

any physical interpretation.

For the standard vector p* the generalised helicity operator becomes undefined
because of the null isotropy of p'= 0. As such let’s, for sake of completeness, study

the effect of W* on |p* = (m,0,0,0); m,s,o)

- =

WY |p* = (m,0,0,0); m,s,0) = —J - P |p" = (m,0,0,0); m,s,o)

o (A33)
=—J- -ppt=(m,0,0,0); m,s,o)=0,
since =0 for |p = (m,0,0,0); m,s,o)
w1l pt = (m,0,0,0); m,s,o)
= [-N1Py + (K x P)1] |p"* = (m,0,0,0); m,s,0) (A34)

= —mJ; |[p" = (m,0,0,0); m,s,0).

For later use we define the [little group as a set of transformations which leave

p* unchanged. Referring to (A33) and (A34) we once again explicitly verify
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that W# has three independent components, for any a timelike standard vector
p* = (m,0,0,0), which are proportional to the generators {.J;} of the little group
SO(3). Note from (A8) that the Pauli-Lubdnski operator commutes with P* and
hence it is the generator of the Little group.

A3 STATES WITH m = 0: LIGHTLIKE p¥, HELICITY AND LITTLE GROUP

The physical content of the Pauli-Lubanski operator depends on whether p*
is timelike or lightlike. Both Casimir invariants obtained above vanish for m — 0.
In the limit m = 0, if the primitive arguments of continuity are to hold, we should

have for a lightlike standard vector k* = (., 0,0, k)

P,P" [kt = (K,0,0,K); m =0,\) =0, (A35)
W, WH |kF = (k,0,0,K); m=0,A) =0, (A36)
W, P* |k' = (k,0,0,K); m=0,A) = 0. (A37)

So acting on the representation space to which the standard state vector |k¥ =

(k,0,0,K); m = 0,A) belongs, we have the following operator equations
P,PF =0, W,W", W,P'=0, (A38)

where A represents a yet unidentified quantum number. This quantum number
must be related, in yet unspecified fashion, in the m — 0 limit to the quan-
tum number s. Without loss of generality we take P* = (P 0,0, P3), with
the understanding that both PY and P3 acting on the standard state vector
|k = (k,0,0,k); m = 0,\) yield k|k* = (k,0,0,k); m = 0,\). Equations
(A35) to (A37) then read

PP’ — P3P3 =0, (A39)
WoW? —wiw! — WoWw? — wsw3 =0, (A40)
WoP? — W3P3 = 0. (A41)

Since both PY and P3 acting on the standard state vector lm = 0,A; kt =
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(k,0,0,K)) yield k|k* = (k,0,0,%); m = 0,A) we obtain from (A41)
Wo = Ws. (A42)

Substitution of the above result in (A40) gives us the condition thus imposed on

the 1st and 2nd component of the Pauli-Lubanski operator
wiw!l=-—woaw? = (WH)r=—-(w?2 (A43)

Now if the Pauli-Lubéansi operator is to be an observable, the square of its eigen-
values (for each component) should be a real and a positive number. The condition

(A43) then means that W1 and W? are null operators
wl=w?=0. (A44)

Thus we conclude W# must be proportional to P*. Identifying this proportionality

constant with A, introduced above, we have
(WHE—XPH) |E' = (k,0,0,K); m=0,A) =0. (A45)

This proportionality constant A has the dimension of angular momentum, and is
called helicity. We now undertake a more rigorous study of the representation
spaces associated with timelike momenta. One of the results we will obtain is that
A = 47, if the operation of parity ¥ — —& is included. Otherwise A is either +j

or —J.

We first study the form of W* for the standard lightlike vector k* = (k, 0,0, k).
With a = 1/2, as before, the zeroth, or the temporal, component of W is by
definition (A6)

1
WO _ ieoypUJupPU
1
— 5(60123J]_2P3 + 60213J21P3)

= J5P5.

(A46)
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Similarly the spacial components of WH# are

1
W= =" ],,P,

2
1
_ 5(611/p0JVpPO + 61Vp3JVpP3) (A47)
= —(J1Py + K2 P5),
W2 = —(JoPy — K1 P3), (A48)
W3 = —J3P,. (A49)

Therefore, while acting on the standard state vector |k* = (k,0,0,K); m = 0, A),

the Pauli-Lubanski operator can be written as

Wkt = —k(=Js, J1 + Ka, Jo — Ky, J3). (A50)

Introducing
T = Ji + Ko, (A51)
Ty = Jy — Ky, (A52)

we find the Lie algebra satisfied by the generators of the Little group. It reads

(11, T5] =0, [T1,J3] = —iTs, [T3,J3] = i17. (A53)

To gain physical insight into this algebra we note from Table Il that the generators
of rotations and translations in a plane [say z—y|, of the ordinary spacetime, has

associated with it the following Lie algebra

[Py, P,] =0, [Py, Js) =—iP,, [P,,J5]=iP,. (A54)

As such the Lie algebra of the Little group for the lightlike momenta is isomor-

phic to translations and rotations in a plane. To understand the possible origin of
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this isomorphism, consider a set of events
1,1 .1 .1 2 .2 .2 2
(t 7:1; 7y 7Z )7 (t 7‘7j 7y 72 )7 ''''' Y (tn7 :L‘n7 yn7 Zn) (A55)

as described by an observer O. If the same set of events are observed by another
observer O. whose relative velocity with respect to observer O is cz, ¢ being the
speed of light, then for O, the separations t* —t/ and 2* — 2/ all vanish. That is,
two out of four dimensions seem to essentially disappear. Consequently, one may
be tempted not to distinguish between the events which differ only in their ¢ or z
values and only refer to the projection of events onto the z—y plane. However, as
one may satisfy oneself by considering a few elementary examples, the physics in
O, is not completely identical if all events were initially in the z—y plane of O.
Further consider two coincident worldlines I'" and I'? in the z—y plane. Let T'! be
associated with a photon, and I'? with a neutrino. Even though I'' and I'? are
coincident, the dynamics associated with the internal helicity degrees of freedom is
not. This, by way of an example, shows why one should (at most) expect only an
isomorphism, and not an identity, between the generators of the little group for the
massless particles and the group formed by the generators of the two translations

and the rotations in a plane.
A finite Little group transformation [see Ref. (34)]
RFELEY = KF) kM = (k,0,0,K), (A56)
like all Lorentz transformations satisfies the condition
RF ) RY aMuw = Npors (A57)
and can be factored as
R(©, X1, X2) = R(0,0,0)R(0, X1, X3). (A58)
Where for infinitesimal transformations
(©, X1, X2) — (0, x1, x2)- (A59)

[Note: Ref. (34)—x1 = x2 here, and Ref. (34)—x2 = x1 here. Beware of other
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notational differences too !|

The physical states |k* = (k, 0,0, k); m = 0, A) under the infinitesimal trans-

formation of the little group, then transform as

|k* = (K,0,0,k); m = 0,\) = U[R] |k* = (k,0,0,K); m =0, )
= (1 —i0J3 +ix2Ty + ix1Th) |k" = (k,0,0,Kk); m =0, A)

= |1—i0J3 +ix2(Jo — K1) +ix1(J1 + K2)||k" = (k,0,0,K); m =0, ).
(A60)
Just as the generators of translations, P¥, in the ordinary spacetime span an
invariant Abelian subalgebra, the generators of the Little group ‘translations’ T

and Th also span an invariant Abelian subalgebra, .

Group Theory Break: Ref. (46), Definition: “An invariant subalgebra is some

set of generators which goes into itself (or zero) under commutation with any
element of the algebra”. That is if 7" is any generator in the invariant subalgebra
and X is any generator in the whole algebra, the commutator [T, X] is a generator
in the invariant subalgebra (or it is zero). To quote Ref. (46) again, Abelian
invariant subalgebras are “particularly annoying”, because the generators in an
Abelian invariant subalgebra commute with every generator in the subalgebra.
The structure constants, as a consequence, vanish. Definition: If X, is a generator

of a group, then

[Xav Xb] = i fape Xe- (A61)

The constants f,;. are called structure constants of the group. The generators

satisfy the Jacobi identity
[ Xaq, [Xp, Xc]] + cyclic permutations = 0. (A62)
In terms of structure constants the Jacobi identity reads

fbcdfade + fabdfcde + fcadfbde = 0. (A63)

One of the representations of the algebra can be found by introducing a set of
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matrices T,

(Ta)bc = _ifabcv (A64)

[Tm Tb] = Z.fabccrc- (A65)

Thus the structure constants themselves generate a representation of the algebra.
The representation generated by the structure functions is called the adjoint rep-
resentation. For more details the reader is directed to our source itself, Georgi

[46).

We now have a choice. Either to have infinite dimensional representation (in
the parameter \), or have a one dimensional representation. Which of the repre-
sentations is physically realised in nature is an interesting question, to which we
(the author) have no honest theoretical answer. However the primitive arguments
of physical continuity suggest we explore the possibility of the one dimensional
representation. By physical continuity in this context we mean a smooth con-
ceptual and algebraic transition from the m — 0 limit to the m = 0 case. This

representation is obtained by setting

Ty |k* = (k,0,0,K); m=0,A)) =0, (A66)

Ty |k¥ = (k,0,0,k); m =0,A) =0. (A67)

Using (A66) and (A67) and identifying, as will be justified soon, the states
|k# = (k,0,0,k); m =0,\) as eigenstates with a definite helicity A

J3 |k = (k,0,0,k); m=0,\) =X |k = (k,0,0,K); m=0,\), (A68)
yields for a finite Little group transformation (see (A60))

U[R|IK* = (k,0,0,k); m = 0,\) = exp(—iAO[R]) |k* = (k,0,0,k); m = 0,\).
(A69)
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Introduce the following simpler notation
|kF = (k,0,0,Kk); m =0,\) = |k, A), (A70)
In this notation Eqs. (A68) and (A69) read

J3|K'7 )‘> = A |K’7 )‘>7 (A71)

U[R] |k, A) = exp(—iAO[R])|k, A), (AT72)

Using (A60) and (A72) for the infinitesimal Little group transformations yields
(1 —10J3 + in(Jz — ICl) + iX1(J1 + /Cz)) |I§J, )\> = (1 — i@Jg) |I€, )\). (A73)

The constraints imposed on matter fields ¢(x, A) because of conditions (A66) and

(A67) thus read
[1 —0J3 +ixa(Jy — K1) +ix1(J1 + Ka)| ¢(k,A) = (1 —i0.J3) d(k, \). (AT4)

where {j, K } are now the finite dimensional representations of the Lorentz algebra.

To explore the physical consequences of this we begin with the observation

ix2(Jo — K1) +ix1(J1 + Ka2)
= ix2 [(gR)z +(Sp)2 +i(Sg)1 — i(gL)l]
. ~ ~ = = (AT75)
+1ix1 [(SR)l + (Sp)1 —i(Sg)2 + Z(SL)Z]

= (ix1 +x2) [(S0)1 +i(S0)] + (ixa = x2) [(Swr = i(S)a]

Then using (A71) and replacing J3, in accordance with definitions introduced

in Chapter 3, by (§R)3 + (§L)3 the constraint (A74) becomes three independent
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conditions, which read

(83 + (S)s] @, ) = A (s, ), (AT6)
(S +i(S0)s| 90, 2) =0, (AT7)
[(gR)l - Z'(5'1%)2] ¢(r,A) = 0. (A78)

In (A76) we used the fact that ¢(r, ) is identified with the eigenstate of J3. Since
[(5‘L)1 + z’(S‘L)z] (A79)
is a raising operator, which raises the o7 value by unity, and
[(gR)l - i(gR)z] (A80)

is a lowering operator which lowers the o, value by unity, conditions (A77) and

(A78) imply that ¢(k,A) must simultaneously be eigenstates of S; with (the

maximum) eigenvalue o7 = j; and of Sk with (the minimum) eigenvalue o, = —Jj,..
That is
(Sr)s ¢, A) = —ir (5. ), (A81)
(SL)3 $(5, A) = +1 $(5, A). (A82)

These two equations coupled with Eq. (A76) yield a simple and remarkable result
which severly restricts the type of representations allowed for a lightlike momenta,

by requiring

A= i (A83)

It must be noted that the assumed identification of ¢(x, \) with one of the eigen-
states is forced by conditions (A81) and (A82). To see this add (A81) and
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(A82) to obtain

—

(SR)3 + (§L)3 ¢(H, /\) = (Jl - ]r) ¢(K57 )‘)7 (A84)

One may satisfy oneself that constraints (A81) and (A82) are a direct result of
conditions (A66) and (A67), and need not to be connected to any of the intervening
mathematical steps. In the limit m — 0, the only degrees of freedom left out of
o=—43,—J+1,------ ,+7 — 1,4+ are +£5. However, not all representations may
have massless realisations physically. For {\ = —j, j > 0} only those fields may
be physically realised which satisfy the condition

A=—4,7>01: ji—Jjr=—J. (A85)
Consequently physically realisable fields are

For A = —1/2, A = —1 and A = —3/2, physically realisable representations are

A=—1/2]: (1/2,0),(1,1/2),(3/2,1),--- . (A87)
A=—1]: (1,0),(3/2,1/2),(2,1),-- . (A88)
A=-3/2]: (3/2,0),(2,1/2),(5/2,1),--- . (A89)

Similarly for {A = +j, j > 0} we have the constraint

The fields which may be physically realised are

[/\:‘I'j] : (jr7j+jr) — (07j)7(1/27j+1/2)7(17j+1)7"' : (Agl)
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For A = +1/2, A = 41, and A = 3/2, physically realisable representations are

A=+1/2]:  (0,1/2),(1/2,1),(1,3/2), - . (A92)
A=+1]: (0,1),(1/2,3/2),(1,2), - . (A93)
A=43/2]: (0,3/2),(1/2,2),(1,5/2), - . (A94)

As a result a massless matter field is constrained to be any one the possibilities
indicated by (A86) and (A91) , depending on the sign of the helicity. Even though
the (1/2,1/2) representation can be shown to transform as a four-vector, it violates
the constraint (A83), and is therefore physically unrealisable. Weinberg [33] adds
to this line “at least until we broaden our notion of what we mean by a Lorentz

transformation”.

So far we have considered only continuous ds? preserving transformations.

However, the discrete transformations of parity
P:i— -2, (A95)
and time reversal
T:t— —t. (A96)
also preserve ds?. Under parity the momentum changes sign, as a result
P:p——-p, K——-K, J—J. (A97)

It then follows from an inspection of Lorentz transformation properties of the (j,0)

and (0, 7) matter fields that
P (5.0) ¢ (0.). (A98)

Thus in order that we are not thrown out of the linear representation space of
the matter fields under consideration by the Parity operation we must consider
both helicity states A = 47, and the associated matter fields must transform, for

example, as the (j,0) @ (0, j) representations.
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We have followed in some detail the origin of (25 + 1) spin degrees freedom
for timelike momenta, and its seemingly abrupt reduction to just one [or two
if parity is incorporated] helicity degree of freedom for the lightlike momenta.
Further physical insights into the nature of this change in the number of degrees
of freedom may be gained by referring to Ref. (39) where Wigner poses the
question why particles with non—zero mass may have more than two spin—degrees
of freedom. In this context Wigner notes that it is only for the lightlike momenta
that, the parallelness [or anti-parallelness| of spin and momentum is a Lorentz

invariant concept.

A state with lightlike momenta p" and helicity A is obtained by a Lorentz

transformation

7, A) = UILD)]|K, A)- (A99)

where L(p) is a Lorentz transformation which takes k* = (k,0,0,k) — pt =

(171, P):
L(p): k*=(k,0,0,k)— p"=(|pl,D) (A100)

LF K = pH. (A101)

The Lorentz transformation £(p) can be factorised into a pure boost and a rotation

as follows
L(p) = R(p) B(|p])- (A102)

Here B(p) is the boost that takes k* = (k,0,0,x) — (|p],0,0,|p]). The rotation
R(p) takes (|p],0,0,|p]) — p* = (|p], ). The boost has the form

cosh(p,) 0 0 sinh(yp,)
10 0 171
B, = , . =In(—). A103
R N ez (awy)
sinh(p,) 0 0 cosh(y,)
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A4 VACUUM STATE AND SINGLE PARTICLE STATES

To develop a formalism for directly observable single particle states |p, o) or

|p, A) it seems necessary to have a Poincaré invariant state called the vacuum state

)
| ) =Ul{Aai] | ) (A104)

A global phase factor by which | ) and U[{A,a}] | ) may differ are of no physical
significance, and hence are ignored. States |p, o) and |p, A) are directly observable

states and correspond to timelike and lightlike momenta respectively.

Directly observable single particle states |p, o) or |p, A) are obtained from the

vacuum state through the action of creation operators {af(7, o)} and {af(7, \)}

7,0) = al(F,0)] ). (A105)

5, A) = al (5, A)] ). (A106)

The creation operators {a'(p, o)}, and the annihilation operators {a(7, o)} satisfy

[a(p,0), a(p’,0")]+ =0, (A107)

and

[a(7,\), o', X)]+ = 0. (A108)

If L(p) is a boost which takes a particle of mass m # 0 at rest to momentum
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p then, according to our earlier discussions,
7, 0) = UIL(p)] |0, 0). (A109)

Where, as for the m = 0 case (see equation (A70)), we have introduced a simpler

notation for m # 0 states

P m,s,0) = |p, o). (A110)

Similarly, in the terms of already defined notation for m = 0, we have
7, A) = ULL(P)] [k, A)- (A111)
The single particle states are normalised as follows 53
Bolp’ o'y =8 F—15") bo0r, (A112)

(AT N) =T~ 1) o (A113)

A5 A REMARK ON SINGLE PARTICLE STATES

Due to the non-commutativity of position and momentum, these observables
cannot simultaneously be measured to an arbritrary precision, for a state. As such
one must assume that microscopically infinite time Tt

T > (A114)

7]’

is allowed for the preparation of these states with the well defined momentum p.

This condition is invariably satisfied in the usual scattering experiments. [We are

33 The normalisations introduced above are convenient ones for these considerations and may
differ from normalisations used elsewhere in this work.
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reintroducing 7 and ¢ explicitly for this discussion.] However for any microscopi-

cally finite time T [cf. Ref. (41), section 2.13]

h
| —

p

Ty ~ ——, (A115)

e
the momentum of the particle has a non-zero probability of being either timelike,
lightlike, or spacelike. This uncertainty arises when the spacetime region, to which

the measurements are confined, reaches the quantum-mechanically placed lower
bound

5(ds?) ~ —, . A116
(ds”) eT ( )

12
If one considers gedanken microscopic observers confined to regions with ds® ~
h? /(P'p), then the transformations between these observers cease to be Poincaré
because of the inherent uncertainty involved with measurements of energy mo-
mentum and spacetime separations. The unpredictable, and uncontrollable, ac-
celerations associated with these gedanken observers are locally equivalent to the
existence of a gravitational field. The vacuum state, as observed by these observers,

is therefore no longer the Poincaré vacuum | ) introduced in Eq. (A104) above,

but is replaced by the Rindler vacuum | )) as Gerlach [47] has argued.

The Rindler vacuum has the property
(] )=0. (A117)

Ref. [(47), p 1037]: “Rindler ... vacuum of an accelerated frame determines a
Hilbert space of quantumn states which is distinct from Hilbert space determined
by the Minkowski [Poincaré, in our language| vacuum. There is no unitary trans-
formation which connects elements in these two spaces.” As a result, the physical
states accessible to the macroscopic inertial observers are only a subset of all phys-
ical states accessible to a general observer unrestricted by Poincaré covariance. In
this regard we should parenthetically, but explicitly, note that the gedanken mi-

croscopic tnertial observers are physically ruled out by the non—commutativity of
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the position and momentum associated with a particle. Consequently, in the ab-
sence of gedanken microscopic inertial observers, microscopic Poincaré covariance

is meaningless.

A6 LORENTZ TRANSFORMATION OF SINGLE PARTICLE STATES

The effect of an arbitrary Lorentz transformation A on the single particle states

|p, o) is given by
U[A] [7,0) = U[AU[L(P)] 0, 0), U[A] = U[{A,0}]. (A118)

In obtaining the rhs of the above equation we substituted for |p,o) from Eq.

(A109). Exploiting,
1 = U[L(Ap)) UL L(Ap)], UYA]=U[ATY, (A119)

we obtain

UTA] 7. 0) = UILARU LARUAILE)] 16, 0)
— ULAPWIL ADAL)] [0,0) (a120)
— UL Y [ 1) o U0,

In the last step above we have used the completeness relation
1=3 [ @l ) o (A121)
and identified a pure rotation:
Ry = LY AP)AL(p), (A122)

called the Wigner Rotation. The p—integration can be performed using the or-

thonormality condition (A112), and recalling that a pure rotation does not alter
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the momentum,

UIA] 5, o) = UL(AR)] ) 10,0")(0, o' |U[Rw]|0, 0). (A123)

0-/

We now define a matrix, dependent on the suppressed spin quantum number s

(see (A110)), whose matrix elements are given by
Dy (Bw) = (0,0'|U[Rw][0, 0). (A124)
With this definition we arrive at the remarkable result

ZD (Ryw )| AP, o). (A125)

The surprising feature of this result lies in the fact that under a Lorentz trans-
formation A, the transformation of the physical states with timelike momenta, is
completely determined by the generators of rotation f, because DS()T which de-
termines the transformation property of the single particle states associated with

timelike momenta through (A125) can be written as:

- Y R
D) (Ryw) = (0.0'| expl—5 A () I |0, ). (A126)
Or equivalently
DY) (Ry) = (0,0 exp[—%)\ij (Ry)]€7% 71|10, o). (A127)

Here, as usual, the indices i, j, k run over 1,2, 3. The notation A% (Ry,) means the
transformation parameters A are functions of the Wigner rotation matrix, Ry,
for the timelike states. We would have expected the generators of the boosts to

play an important role. But that turns out not to be the case.
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Similarly, for the m = 0 case we obtain
U[A] |9, A) = exp[—id®(Rw)] |k, A). (A128)

In the above expression we have introduced the Wigner rotation for the states

associated with lightlike momenta
Ry = L7HAP)AL(D). (A129)

©(R) means that the angle © is a function of the rotation matrix R.

A7 LORENTZ TRANSFORMATION OF CREATION AND ANNIHILATION OPERA-

TORS

The Lorentz transformation properties of the single particle states, given by
(A125) and (A128), arise out of the fundamental assumption regarding the exis-
tence of a Poincaré invariant vacuum state. Obviously the single particle states
and the vacuum state transform differently under a Lorentz transformation. For
this reason, with the exception of spinless particles, the creation and annihilation

operators cannot transform as

[NotPossible] UlA]a! (7, 0)UA] = a' (AP, 0), (A130)

[NotPossible] UlA]a! (5, VU YA] = al(AB, ). (A131)

The actual transformation property of af(p, o) as implied by (A125) is

U[Aa} (5, 0) UM [A] = >~ DS L~ (AR AL(H)]al (AF, o). (A132)

To obtain the transformation property of the annihilation operators we make the
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following observations:

UT[A] = UTYA], (A133)
{UTTAl = {UTART = UAlL (A134)

Further even though D[A] is not unitary, D*)[R] is. That is:
{D(S) [RW]}T - {D(S)[RW]}_l - {D(S>[R;V1]}. (A135)

But since D®)[Ryy] is a real matrix

T T
{D(S) [RW]} _ {D(S)[RW]} . (A136)
Therefore
t T
{D<S>[RW]} _ {D(S>[RW]} = DW[R. (A137)
Which implies
DY) [Ry] = D[R, (A138)

Taking the adjoint of (A132) and exploiting these observations, the annihilation

operators can be shown to transform, under a Lorentz transformation,
UlMlo(p.o)0™ (4] = X Dp L7 AT LAz ). (139

Similarly the transformation properties of the creation and annihilation operators

for the states associated with the lightlike momenta are found to be
U[A]a! (5, VU THA] = exp (—iAO[LTH (AP AL(P)]) ol (AF, N), (A140)
U[AJa(p, VU A] = exp (—ixO[L™ (7)) A L(AD)]) a(AF, M), (A141)

where we used

—O[Rw] = O[R;;]. (A142)
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A8  MATTER FIELD OPERATORS FOR (25 +1) COMPONENT MATTER FIELDS

The Lorentz transformation properties, for the m # 0 case, of the creation and

annihilation operators collected together are (see Egs. (A132) and (A139))

U[A]a' (7,0 Z DY 1LY AR ALl (AF, o), (A143)

UlAJa(p, o) Z DL HAT L(AD]a(AF, o). (A144)

It must be recalled, and emphasised, that the result expressed by Egs. (A143) and
(A144) depend crucially on the postulated existence of a Poincaré invariant non-
degenerate state called the vacuum | ). These are precisely the transformation
properties which provide us an opportunity to exploit the finite dimensional rep-
resentations of the Lorentz group by introducing the multicomponent matter field

operators
O, (z) = 057 (z) + 057 (2), (A145)

with @%i)(x) transforming as

UIAI@5 (@)U A] = 3 Du[ A0 (A2). (A146)

The D[A] appearing in the rhs is one of the finite dimensional representations of

the Lorentz group.

The principle of the linear superposition of the physical states suggests that the
Matter field operators ®(z) be constructed by taking linear combinations of the
creation and annihilation operators. Further in order to preserve the translational

invariance, ®(x) must be of the form

D) = (%)3/2

{“n(ﬁ,a)a(ﬁa)exp(ip-x)+(—1)j_” n(,0)b' (5, =) exp(—ip - z) |.

(A147)
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As is usual we have defined

p-x = puat. (A148)

The right hand side of the defining Eq. (A147) for the field operators ®,(x) con-
tains a(p, o) the particle annihilation operator, and bf (7, —o) the antiparticle cre-
ation operator. The combination (—1)7~?bf(j, —o’) appears in the antiparticle cre-
ation term because (—1)7~%af (5, —o) transforms as a(p, o). Like the master drum-
mer: ‘I remember that when someone had started to teach me about creation and
annihilation operators, that this operator creates an electron, I said “How do you

” 9

create an electron? It disagrees with the conservation of charge” ’ [R. P. Feynman,
Nobel Lecture], any beginning student must ask the same question. In order that
our theory have appropriate particle interpretation and the Lagrangians and the
hamiltonians yield the same wave equations as imposed upon us by the Poincaré co-
variance, the Lagrangians L(®(x), 0,®(x)) and the hamiltonians H(®(x), 0,®(x))
must be at least bilinear in ®(z) That is L or H ~ ®f(z)®(z) or ~ ®f(2)9* ,®(z).
As a result L or H ~ (af +b)(a + b") = aa + bl + ba 4 bb!. These acting on
the vacuum | ) produce no net conserved charge. The ata, for instance, acting
on the vacuum state | ) yields zero. The a'bl creates a antiparticle—particle pair,
thus producing net conserved charge of zero. The ba acting on the vacuum is
identically zero. And bb' creates a antiparticle, and then destroys it at the same
instant. This contributes zero to the net charge. Therefore, overall one has pro-
duced a particle—antiparticle pair of net conserved charge zero, and created and
destroyed an antiparticle at the same instant. Thus the total conserved charge, as-
sociated with the particles involved, of the universe remains unaltered. Of course,
one cannot but note that the phrase same instant used in the above discussion is
observationally as well as theoretically of limited validity. It must, roughly speak-
ing, be replaced by a time interval At ~ h/2mc? [Where we restored i and c|.
So are we to conclude that over time periods of the order of At ~ 7/ 2mc?, the
associated ‘conserved charge’ of the universe is uncertain by the amount ¢ = ne,

n being an integer?

We now wish to know the physical interpretation of w,(p,o) and vy, (P, o).
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Towards this end consider

L\ 32
o0~ (57)

and multiply on the left by U[A] and on the right by U~![A]. Using the Lorentz

> un(, 0)a(F, o) explip - z), (A149)

transformation property of the annihilation operators given by (A139) we imme-

diately obtain:
U5 (2)U *m—

<2ﬂ> : \/T (A150)

Z DY) L Y PHATL(AR)|a(AF, o) exp(ip - z).

Now implement a change of variables: p, — (A_l)uyp,,, so that 7 — A~ and
A lp-x = p-Ax. If confused, note: A™lp-x = p-Ax = AN Ip-x = Ap-Az, & px =
Ap - Az. This immediately translates into the more familiar form: p,a# = p) 2’ K,

The change of variables thus gives

UlAjeSY (z) U~
3/2
<2w> \rw (A151)

> un(A7'5,0)D gﬂ—m*mr%@Mﬁﬂmmwam

Substituting (A149) in (A146) gives
Aoy (@ )U_l[/\]

()

Comparison of the right hand sides of (A151) and (A152) gives the equation

A152
s A (7,007, 7) explip- Aa). )
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satisfied by the Fourier coefficients u,(p, o)

ZDnm Um p, ) (17,0') =

A153
> un(A5, ) DL H AT AT L) a(p, o). (A

Next set A = L(p), and recall that L(p) takes a particle from rest to momentum
7. L71(p) takes a particle with momentum p to rest. Then the argument of the

D®) on the rhs of the above expression equals

LYY P L (H)L(B) = L), (A154)

L~1(0), by definition, is a boost which takes p = 0 — 7= 0. Hence it is an identity

transformation 1. Consequently D(®)[I] is also an identity matrix

DL AT HATL(R)] = Gy (A155)
A=L(p)

This reduces the equation satisfied by the Fourier coefficients uy,(p, o) to
ZDnm () w5, 0) = un (0, 0). (A156)

Exploiting the group property satisfied be the finite dimensional representations

of the Lorentz group

Z DU’U” [Al]DU”U[AZ] - DU’U[A1A2]7 (A157)

o-ll

we finally obtain the equation satisfied by the the Fourier coefficients uy,(p, o)
= Dy L(p)]um(0, 7). (A158)
m

Assembling the (2j+1) up(p,0)’s in a (25 + 1)-dimensional column vector u(p, o),
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the above equation for the Fourier coefficients reads
u(@, o) = D[L(P)]u(0, 7). (A159)
Similarly, we obtain

v(p, o) = D[L(p)]v(0,0). (A160)

Matter Field Operators for the (7,0) representations are obtained by the identifi-

cation

—

DIL(p)] = DYOL(p)] = exp (] - §). (A161)

With this identification the Fourier coefficients u(p, o) [and v(p, o)] have the inter-
pretation of matter fields corresponding to the (j,0) representation of the Lorentz

group. That is
R
w(p,0) < ¢, o, (D)- (A162)

Or, in terms of the compact notation introduced earlier this identification reads

u(@, o) & ¢ (5. (A163)

Matter Field Operators for the (0, j) representations are obtained by the identifi-

cation

—,

DIL(@)] = DOV (L() = exp(—T - §). (A164)
Then the Fourier coefficients are the (0, j) matter fields
. L
U’(p7 J) And d)jl,O'l (ﬁ) (A]‘65)

Or more compactly

wp,o) & ¢ (p). (A166)
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A9  2(2j+ 1) COMPONENT MATTER FIELDS, CAUSALITY AND SPIN STATIS-

TICS

As already pointed out under the operation of parity the (j,0) and the (0, 7)
representations get interchanged. It is therefore necessary to introduce a single

2(2j + 1)—component matter field

W(x) = : (A167)

which transforms as the (j,0) & (0, j) representation of the Lorentz group. For
a spin—1/2 particle, it obeys the Dirac equation. For spin-1 it obeys the Spin-1

Weinberg equation, and so on. The associated matter field operators transform as

UA] W, (z Z D Ws(Aw), (A168)

where

DPU[A] = _ (A169)

Now note that

(=) + T (=9)}] (A170)

Introducing the 2(25 + 1) dimensional matrix (in chiral representation)
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—01-2—1 A171
6_10,6_7 ( )

one easily verifies that
(YA} = g DDA . (A172)

As a consequence, taking the hermitian conjugate of (A168) and using (A172) one
finds

UIA] Ta(z) UTHA] = Y T(Ax) DY)[A], (A173)
B
where we have introduced the covariant adjoint
U(z) = Ui(2)8. (A174)

Explicitly this is seen as follows. Hermitian conjugate of (A168)yields

UIA] Wi () UTYA] = (U ALY Wi (2) (U[AT}
= >l (Az) (DWATR
B

. (A175)
[Using (A172)]
=" wh(Aw) Bax {DD[ALL, Bro.
B.Ap
In matrix notation, this can be written as
U[A] Of(z) U A] = OT(Az) g DU)[A] 6. (A176)

Multiplying both sides by (3 from the right and remembering that U[A] and f

belong to different spaces [ U[A] is an infinite dimensional unitary operator, while
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[ is a 2(2j + 1)— dimensional :matrix in the wave function space.|, we obtain the

result claimed earlier at Eq. (A173):

U[A] U(z) UTYA] = T(Az) DYA]. (A177)

The multicomponent field operator for a general 2(2j + 1) component (4,0) &

(0,7) matter field can be written as

3/2

€ u(f.0) alf.0) explip- o)+ v(F.0) bl (5.0) exp(—ip- ).

where £ and 7 are complex numbers, £y exp(if) and ny exp(ip) respectively, to be

fixed by imposing the causality condition
[Wa(2), Us(2')], =0,  for mu(a# — ') (z" —2'™ < 0. (A179)

The [, ]+ is a commutator for the 4+ sign and anticommutator for the — sign.
The u(p, o) and v(p, o) are the particle and antiparticle wave functions satisfying
the transformation property

[Chiral Representation]

w(p, o))’ exp(J - §) 0 w(p, o)
or = or . (A180)
v(p, o) 0 exp(—J - 4) /) Lv(@,0)

The particle interpretation requires that the operators appearing in the Fourier

transform on the rhs of (A178), satisfy the following properties:

a(f,0). (70| | = 0F - ") b (A181)

WE.0) B F 0| = 0= F) Do (A182)
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(5 o), 61, 0| | =0, (A183)

{a(ﬁ, 0),b(ﬁ’,a’]i =0, (A184)

The Spin-1/2 spinors in the canonical representation are related to the ones in the

chiral representation [defined by (A167)]

(ol " (5) 1 ¢ (7)+ ¢ ()
Ug o (D) = ﬁ = — , (A185)

1 -1/ \¢ (7 V2 ¢ (7) — o ()

and are readily verified to be (See Ref. [53, Sec. 2.5]. Also note that the o (P)
and d)L (p) in the above expression correspond to j = 1/2)

[Canonical Representation]

1 0
0 1
B+ 172 B4 m 172
Uyiyn (ﬁ) = o p- s Uy (ﬁ) = o p_ )
E+m E+m
p+ —Pz
E+m E+m
D= p—_
E+m E+m
p+ —IL
E+m E+m
B4 m\ 12 B4 12
U+1/2 (m - 2m 1 ? U—I/Z(ﬁ) = 2m 0
0 1

(A186)
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They satisfy the following properties

U(5)(P) U(or)(P) = oo (A187)
V(o) (D) V(o) (P) = —00, (A188)
U(o) (P) V(o) (P) =0, (A189)
ulo (B) ey = vl (0o i oo’ (A190)
where 0 = +— —5. In addition the reader can verify the following identities
Zu () T, (77.12)7;:”1)&[3’ (A191)

> o (ﬁ)v y(0) = <w>a5’ (A192)

2m
ag

Here «, 3 are the 4-spinor indices which refer to components of a spinor; (o) runs
over the eigenvalues of %az : :I:%, and refers to a spinor (rather than components

of a spinor).

The ¢ and n as determined by the Causality Condition (A179)

for the Spin—1/2 Particles: We now wish to calculate the anticommutator

[Uo (), W)y = {Wala), Uh(2')} (A193)

explicitly for the spinf% case, and determine the constraints imposed on £ and 7
(which appear on the rhs of (A178) ). The a4, component of the 4-component

spinf% matter field operator is

Walr) = (%)3/2

€ ual.0) (o) exp(ip - @) +n va(F,0) b\ (5,0) exp(—ip-)|.

(A194)

with uq(p, o) and v, (P, o) components of u(p, o) = u ) (p) and v(p, o) = vy (P)
respectively (as given by (A186), in the canonical representation). Taking the
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hermitian conjugate of (A194) we get

3/2
o= (3:) [ S
() 2m 2w
€ ul(F.0) alpio) exp(~ip- @) + 0" v}(5.0) bl (F.o) exp(ip- ).

(A195)

Remember u and u! live in the spinorial space and a,af, b, bt are the Fock space
operators and hence can be moved across u's and v's. The component u,(p, o) of
the spinor u(p, o) are of course c—numbers; ul, is the oy, component of u! (and

equals u?). To calculate the anticommutator {¥,(z), \I%(a:’ )} we first calculate

U, (z) Uh(z') = ( ) “p Ly Z
“ ﬂ 2w V2w(p) 2w(p
€€ ua(p0) w5 ') alpo) af<ﬁ', ) explip- — i -4
+&n" ua(B,0) (B’ 0') a(B,0) b5, 0") explip-x+ip - o)
+ 08" va(B,0) uly(5',0) b5, 0) a¥ (', 0') exp(—ip-x —ip - o)

+ 11 va(B,0) V(5 0) bi(5,0) b(B',0") exp(—ip - @ +ip o).
(A196)

This immediately yields the anticommutator
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{Uqs(z), ‘I’E(ac’)} _ <i>3/ B3p d3p/

2m 20(p) 20(5) 45
6" ua(7.0) w7, 0") {a(f,0), ol (7,0} explip- o —ip' o)
+ 0" ua(p,0) V(5 0") {a(F, o), b(F',0")} explip- o +ip - o)
+ 08" va(F,0) ulh(p’, o) {015, 0), al(F',0")} exp(—ip-a—ip - a')

+ 0" va(B,0) vl(F',0") (b5, 0), b(F',0")} exp(—ip -z +ip - a)

_ (L) d’p d°pf Z
2 V20(p) 2005 ) &
€€ wapi0) w5 0") OG5 7) 6o explip- &~ /29
+ 1" va(F,0) V(5. 0") 8(F—F) dao exp(—ip-x+ip o)
3 3
:<i> / Z<p*)z
€67 ua(F o) ul(F

+ 11" va(,0) v} (7, 0) expl—ip- (z —a')]|.

,0) explip - (z — )]

(A197)

To evaluate the rhs of the above expression we now use (A191) and note that

(70)2 = 1, or equivalently, {(70)2}015 = 6o,

> ualp0) uf Z Z““ p,7) up(P ) Opp
- Zua 7o) uh(5.0) {(1") s
— Z Zua o) ub (i, 7) Ypx Mg (A198)
_Z Zua p, U)\ p7 )’ygﬂ
-% (22) %
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where we used the definition wy =3} ul(ﬁ, o) 72)\. Similarly

St o) =Y (TH) e (A199

2m
A

As a result we have

s~ (3) [ 25

e (T50) o el o) (A200)

2m

Y-p—m 0 . /
+ (7) Vg exp[—ip - (x — 2")]].
2m a\ A

We would now confine our considerations to the simplest spacelike separations.
However the results which follow hold true for all spacelike separations (See Ref.
[21]). The simplest spacelike separation is obtained by setting 2° = 2/ = ¢. For
these spacelike separations (A200) takes the form

wiensun- (2) () [ 253

EF (v-p+m)gy Vg explip- (F— &)

(A201)

+m" (7P = m)ay Nyexpl—ip- (7 & ’)]]-

Without loss of further generality , we now let p’— —p’in the term associated with

the nn* term on the rhs of the above expression, to obtain

wienson- () () 1255

[65* (Vpo — 7 - F+m),, g explip - (¥ — &

~

\ (A202)

+m* (Yp, +7 -5 —m),, Vg explip- (f—f’)]]-

In order that the anticommutator of the spin—% matter field operators vanish for
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spacelike separations we require

£ =™ (A203)

With this requirement, and taking note of the relation ) 'yg A 'y?\ﬂ = 0o, We get

[Walt, @), Wi(t,3 ") = <gfn ) (%)3 / %m o5 explip (T2 ")), (A204)

But by definition p, = w(p),

2m 2m

3
* 1
(ot ), Wyt = (5) o (57) [0 eslis-@- 2 (2209
Implementing the p-integration, we finally have the causality condition

(wa(t. ), W07 = (55 ) 77 b (A206)

We thus note that in order to arrive at the causality condition we have to impose
a constraint upon £ and 7. This constraint is given by Eq. (A203). In Wein-
berg’s [21, p. B1323] words the constraint means that “ Every particle must have
an antiparticle (perhaps itself) which enters into interactions with equal coupling
strength.” This result [proved here for spinf% particles, and the simplest spacelike
separations] is the direct consequence of demanding causality. In a similar fashion

it follows that

(W (t, @), Ug(t,2"} = 0. (A207)

In the next section we will derive the causality condition by considering the evo-
lution of a quantum system from a spacelike surface to another. For the moment

we note that
(Dot &), Oh(t,& "] £ 0%@—Z) bag, (A208)

and no simple means are known to replace # by = in the above expression, except
be replacing the commutator | , | by the anticommutator { , }. In the above

equation 7 is a c-number.

In order to match the widely used conventions of Bjorken and Drell [52, p.59]

we choose
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[For Spinf%]

£ =" = 2m, (A209)

so that the spinf% matter field operator, given by (A178), reads

Z/ 2m) 3/2 \/715) (A210)

[ (5,0) a(i,0) exp(ip-x) +v(F,0) bl (5,0) exp(—ip- )|,

and (A206) takes the slightly simpler form

(ot &), Wyt 77} = 63T~ 7') dap. (A211)

As a result of these considerations it is obvious that fermions and bosons
behave in intrinsically different ways. The anticommutativity of the fermion cre-
ation and destruction operators does not allow any two fermions to be in the same
state in a given system. This result is usually referred to as the Pauli Exclusion
Principle. As already commented there is no known way of circumventing this
anticommutativity and meeting the causality condition for fermions at the same
time. It is not only at the microscopic level that this fundamental anticommuta-
tivity shows its dramatic consequences, for example much of the different chemical
characteristics of elements arise from the Pauli exclusion principle, but the conse-
quences are equally important at the macroscopic level. For instance as a result
of this anticomutativity, the pressure, P, of an extremely degenerate electron gas
(with an electrically positive background to provide overall electrical neutrality)
depends on the 4/3 power of the electron density p. (See Ref. [49, Sec. 61]. We

have restored % and ¢ in the formula below.)

2\1/3
_ % he pel. (A212)

This pressure when balanced by the gravitational forces in astrophysical situa-

tions results in the formation of White Dwarfs and Neutron Stars. Even though
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the momentum-spectrum of the particles which is responsible for this pressure
is constrained by the Pauli exclusion principle, these momenta have their origin
in electroweak and gravitational interactions. So, given the interactions between
various fermions in a system, the anticommutativity acts as an additional con-
straint, like the boundary conditions, in determining what states are accessible to
a system. The next section may shed some light on the origin of the causality con-
ditions for fermions and bosons. However, just as the inertial-frame-independence
of the speed of light, in the context of which alone the causality conditions ac-
quire a meaning, is a mysterious empirical fact, the same holds to some extent
for the causality conditions. In regard to the last comment recall that causality
conditions require us to specify spacelike separations. The concept of spacelike
separations cannot be defined without reference to the constancy of the speed of
light. As such we suspect that the observed constancy of the speed of light and
the causality conditions are interrelated. At the least, the latter loses meaning

without the former.

The above observations require a further parenthetic remark. This concerns
the finiteness of the speed of light. For ¢ = oo, to be distinguished from ¢ — oo,
spacelike regions of spacetime disappear and the causality conditions cannot be
expressed as in (A211). For comparison with spin—1 wave functions, given in
Chapter 3, we rewrite the spinf% spinors in the canonical representation:

[Canonical Representation]

E+
me 0
B+
0 me
U, (ﬁ) = y Uy (15) =
2 2
N p
v/ 2m(E+m) 2m(E+m)
Py P
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P, p_
2m(E+m) 2m(E+m)
__ Py __—p.
2m(E+m) 2m(E+m)
v, () = ENCE . (A213)
E+m 0
2m
E
0 s

This indicates that the Pauli exclusion principle, or more generally classification of
particles as bosons and fermions, may be possible within the framework of finite ¢
theories. However, nonexistence of the causality conditions must not be considered

as equivalent to the suspension of causality itself.

It is perhaps also an open question whether the distinction between fermions
and bosons is unaffected by the introduction of gravitational interactions. We
raise this question because it is not obvious in what way is the discussion of the
next section, where we arrive at the causality condition within the framework of
the Poincaré covariant structure of quantum systems, is modified by the introduc-
tion of gravitational interactions. In any case the distinction between fermions
and bosons, i.e. the existence of the causality condition (A179), can always be

maintained in a local inertial frame, even in the presence of the gravitational field.

A10 SCHWINGER [24] As A LoGicAL CONTINUATION OF WEINBERG [21,33]:

ACTION PRINCIPLE, ORIGIN OF CAUSALITY CONDITIONS

We have seen that demanding Poincaré covariance and introducing a vacuum

state | ), such that
5.0) = a (o) ), al@io) )=0; (A214)

naturally leads to the introduction of the matter field operators

U(z) = (%)3/2 \/T (A215)

€ u(p,0) alp,o) exp(ip-2)+1 v(F.0) b (5, 0) exp(—ip- )|,
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which contain the basic degrees of freedom. As such the physical observables, must

be constructed as functionals of ¥(z).

Definition: A functional F[x(t)] gives a number for each function z(t), see Ref.

[40, Sec. 7.2].

Our discussion so far has been confined to the free fields. Given a free state,
nothing really evolves. Existence of free states is unconfirmable without some form
of interactions. It is the potentiality of a system to interact, even if the interaction
is confined to infinitesimal regions of spacetime, which allows for a measurement.
The dynamical evolution of a system arises from the introduction of interactions.
Discovering interactions and incorporating them in some unified fashion in the
quantum systems seems to be a one of the major occupations of the physicists in

the modern era.

A parenthetic remark: Should all possible fundamental interactions be ex-
pected to exist in the limit of two particle limit? To clarify, even though elec-
tromagnetic interaction can, and does exist, between n > 2 particles, it can be
detected at the 2 particle level. The questions is, is it possible that there ex-
ist interactions which have no observable consequences if only two particles are
involved? That is, are there interactions which manifest themselves only at the
n-particle level, with 2 < n < oo. The actual upper limit for n for a system of
nucleons is n ~ 1080, the number of nucleons in the observable universe. The
question which we have raised here seems relevant not only to Physics but to
Philosophy as well, for one can never from a practical point of view disprove the

existence of an interactions for large n.

In order to study the dynamical evolution we need to specify a boundary value
problem. That is, given ¥(z) on a particular surface ¥, we study its evolution (say
in the direction perpendicular to ¥ ). For this specification on ¥ to be consistent
with causality, ¥(z) must be specified at physically independent spacetime points.
That is, as noted by Schwinger [24], spacetime points which cannot be connected

even by signals propagating at the speed of light. A continuous set of such points
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forms a spacelike surface X. If A is a complete set of commuting hermitian op-
erators constructed out of W(x), and as Schwinger puts it “attached” to X, then
to X one can associate a basis |2, a). Of particular interest is the transformation
which takes the physical system from a spacelike surface Yo to another spacelike

surface ¥1. This evolution is represented as

31, a1) = Up—1(29, az), (A216)

—1 —1
Al - U2_)1 A2 UZ—)17 UZT—)I - U2_)1. (A217)

The set of eigenvalues {a1} and {as} are identical. In the absence of any inter-
actions we expect Us—y1 to be related to U({A,a}). Notational Comments: a in

U({A,a} is the translational parameter defined in
't = A" z¥ + o, (A218)

while a in {a1} or |X, a) refer to a set of eigenvalues of a general complete set of
commuting observables A. {a} is a set in which each a is in turn a set of eigenvalues
specifying a state. The transformation function can be written completely in terms

of the basis vectors on the surface X9 and the unitary operator U;_il

-1
(El,a1|22,a2> = (Eg,a2|U2_)1|22,a2>. (A219)

The operator Us—,; describes the development of the system from Yo — 3
and involves, not only the detailed dynamical characteristics of the system in this
space time region , but also the choice of observables on the surfaces ¥; and Xs.
Any infinitesimal change in the quantities on which the transformation function

. . . -1
depends induces a corresponding change in U,_,;

-1
5(El,a1|22,a2> = (Eg,a2|(5U2_)1|22,a2>. (A220)



189

The variations 6Us_; and (5U2__1)1:

Us—1 — U1 +0Uz51
B . . (A221)
Upyy = Ugpyy + 060Uy

must satisfy certain conditions in order to preserve unitarity of Us_;. First we

must have

Us1Us 1 = (Usos1 + 8Us51) (Ug sy + 0U5 ). (A222)

That is

Ussy 6Uy .y = — 6Us—y1 Uy sy, (A223)

where in deriving this result a term O(0Uz—; 5U2__1)1) has been neglected.

The second constraint is provided by the condition
-1 T
Uy = Uy (A224)

which yields

Uy sy = U, . (A225)

It is readily seen that U2_>15U£i)1 is antihermitian. From (A223) we have

Us-318Uy_yy = =0Us1Uy yy, but Uy Sy = U,
and hence, Uz_,15U27_1>1 = —5U2_>1U2T_>1. Using (A225) for 6Uz—,1 we

get Uz 5U2_—1>1 = _(5U2T—>1)T U2T—>1 = —(0Uy) U2T—>1 =~ (U251 0Uy1)'. As a

consequence there exists an infinitesimal hermitian operator 6Ws_y;
. -1
6W2_)1 = —1 U2_)1 5U2_>1, (A226)

so that

§Uy sy =i Uyyy 6Woss1. (A227)
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Substituting (5U2__1)1 from (A227) in (A220) yields
. —1
5(21, a1|22, a2> = Z(EQ, a2|U2_)1 5W2_>1|22, a2>. (A228)
Identifying (X, a|U,_,; by (31,a1] (see Eqs. (A216) and (A217)) we obtain
(X1, 01|22, a2) = (X1, a1|0Wa1|X2, ag). (A229)

In addition to the unitarity of Us—1, we now use the completeness relation on the

spacelike surface Yo
1= / |22, a2>da2<22, a2|, (A230)

to obtain an important property of dWs_; in order to eventually postulate its
general form. Using the completeness relation (A230) we write the transformation

function
<217 a1|237 a3> — /<217 a1|227 (12>d(12<22, a2|237 (13>. (A231)
As a result of variations given by (A221) and variations

Us—1 — U1 + 0Uz 1

-1 —1 -1 (A232)
Usy1 = Usy +0Us,

the change in the transformation function (X1, a1|X3,a3) given by (A231) can be

written as

5(S1, a1/, ag) — / (0(51, 1|5, a2) } das(Ss, az|Ss, as)
(A233)

+ / (51, 01[S, as)das {5(2, as|Ss, as)}

Using (A229)for the general variations 6(X;, a;|3;, a;) in the above expression and

replacing [ |29, ag)daz(Xa, az| by the unit operator 1 we get
(X1, a1[0W351[23, a3) = (X1, a1[6Wa1(|33, az) + (X1, a1{6Ws—2[33,a3). (A234)

Since the spacelike surfaces 31, X9, 33 are completely arbitrary, we have the general

property which the generators 0Wj_,; of the infinitesimal transformations must
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satisfy

OWs341 = W39 + 0Woy1. (A235)

We thus see that the unitarity and the completeness yield an additive law for the
composition of the infinitesimal generators of evolution, from a spacelike surface
¥j another spacelike surface ¥;, 6W,_;. The additive requirement (A235)suggests

that a finite evolution, the generators of the evolution have the form

3
Wy = / diz Q[z]. (A236)
3o

Individual systems are described by stating that [x] is a Poincaré covariant her-

mitian function of the fields and their derivatives. For the moment we assert
Qz] = Q(Y(z), 0,V (2)), (A237)

in order to discover some of its general properties and physical significance. The
covariance of Q[z], and therefore of Wy_,1, guarantees that our fundamental dy-

namical principle

(%1, a1|X2,a2)

= 1(21, a1|0Wa,1 |22, a2)
. (A238)

:i<21,a1|5 /d4$ Q[x] |22,a2>,
3o

is unaltered in form by Poincaré transformations or change in coordinate systems.

It should be parenthetically noted, for the moment, that Schwinger [24] points
out that an exception must be made for discrete transformations, such as time
reversal. He argues that the requirement of the invariance under time reversal im-
poses a general restriction upon the algebra of the field operators — the connection

between the spin and the statistics.
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From (A237) and (A238) we note that the evaluation of §(X1,a1|X2,az)

requires the knowledge of

p
SWoss = 6 / d'e QU (), 9, (x)). (A239)
PP
The evaluation of §Wy_,1 involves adding

i) The independent effects of changing the matter field operators at each
point by ¥ (z), ¥(z) — V'(z) = ¥(z) + 0¥ (z), and

ii) of altering the region of integration by a displacement dz* of the points on

the boundary surfaces 31 and Xs. On X7 and Xo: z# — a'# = z# + dazb.

Thus

3
Wy, = / diz 60 + (D/ — / s, 61", (A240)
22 1 D

where:

ov 00,V
(0,¥) (A241)
_ (9 o + o8 0,0V
—\ov 0(0,¥) "
By adding and subtracting
o€
Oy | =—— | oV A242
(z0.9) (4212
to the rhs of the above expression we obtain
Y] Y] 012
QY= |— — — || 0¥ — 0V . A24
75 -0 (amm)| v o om0 e

Substituting (A243) in (A240) then yields the needed expression for the variation
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in Wa_yq

3

3
o) 02 02
_ 4 Yee 4
W = [ |55 <a<am>] st [ o, [aa‘%\v) v
by

> : (A244)
+ (D// A%, 62+
1 Mo

Using the divergence theorem, the second term on the rhs of the above expression

3
90
4 —
/ d'z 9, [ 50,0 5\1/] (A245)
P

can be written as

o o0
— Yy ———— 0V X ———— 0¥ A24
(D/ [ ) s v | s e 029
1 PP

221

where o1 is a surface joining the spacelike surfaces ¥; and Y9 at their boundaries
at infinity. Under the usual assumption that the matter field operators [that is,
their expectation value for the physical states under consideration] vanish on Yoy,

we get

b}
00 09
(SWz_)l == /d4.’17 |:a—\:[f - (9M (W)] ow

PP
012
. S, | =2 50+ Q sah
+(D/ [) & o pv+oe
1 22

(A247)

Before continuing with our calculations let us explicitly note that the posi-
tional order of operators in Q(¥(x),d,V(x)) must not be altered in the course
of implementing the variations. Accordingly, the algebraic [commutators or anti-

commtators| properties of §¥(z) are involved in obtaining §Ws_,;. For simplicity,
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we have, following Schwinger, introduced the explicit assumption that the commu-
tation properties of 6W(x) and the structure of 2 must be so related that identical
contributions are produced by the terms that differ fundamentally only in the

position of d¥(x) .

In order that works of Schwinger [24] and Weinberg [21, 33] yield the same
Poincaré covariant equations of motion, Q(¥(x),0,¥(x)) must be interpreted as

the Lagrangian density L(V(x), 0,¥(x))
(), 0,0 (2)) = —L(V (), 0,9(2)) (A248)

so that 0Ws_,; can be identified with the action operator. The principle of sta-
tionary action operator is then demanded rather than postulated, and yields the

following Euler Lagrange equations of motion

oL oL

and the generator of evolution attached to a spacelike surface is

oL ] . (A250)

FX) = d¥, | =——— 0V + L oxt

)=+ [ @ |y 09+ 250
P

The reason for choosing the the + sign on the rhs of the above expression is asso-

ciated with fact that we wish to have the conventional signs in the commutation

relations and other definitions. This should become obvious by the end of this

section.

The physical interpretation of the generators of evolution F'(X) becomes clear
from the following simple considerations. The change in the transformation func-

tion resulting from variations defined above can be written in terms of F\(X) as

5(21, al |22, a2> = <Ell, a'1|22', a'2> — <21, a1|22, a2>. (A251)
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For the infinitesimal transformations we can write

%,d) =U(%) I3, ) (A252)
= [1+iF(%)] %, a).

Neglecting terms O(F(X1) F(X2)) the change in the transformation can now be

written as

0(X1, a1]X2, a2) = i(X1, a1|[F(X2) — F(X1)]]X2, az). (A253)

Comparison with (A238) then yields
Wy = F(X2) — F(X1). (A254)

The physical significance of this result reads: Action integral operator

3
Wy = — / d'e LU (), 9,0(x)) (A255)

2P}

is unaltered by the infinitesimal variations in the interior of the region bounded
by ¥y and 1. It depends only on the operator F(X) attached to the boundary

surfaces involved.

The equations of motion follow by demanding that §Ws_,; vanish and making
the identification for F'(X) provided by (A250). The form of the Lagrangian density
L(¥(x),0,¥(x)), for the free matter fields, is determined by requiring that the
Euler Lagrange equations of motion (A249) be identical with the equations of
motion obtained for a given representation of the SU,(2) ® SU, (2) as formulated
by Weinberg.

As a general procedure let
I'¥(z)=0, (A256)

with I an appropriate differential operator, be the equation of motion correspond-

ing to some representation of the SU,(2) ® SU,(2). Then the Lagrangian density
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is
L(¥(x),0,¥(z)) =U(z) T ¥(z)+ A total divergence. (A257)

The total divergence is so chosen as to keep the Lagrangian density hermitian.

The Lagrangian Density Operator for the Dirac Field: As an example for the

— — A2
(5:0)® (0, 3) (A258)
Dirac field we have
I' = (iv"0, —m). (A259)
Introduce
Lo =V(z) (iv*9, — m) ¥(x), (A260)
and note

ch =l [—i(v“)Tgu — m] (U(x))"
. o (A261)
= Uf(z) [—z‘(yo)fao —i(y)9; — m] (Ui (x)B)1.

Since the expressions in the covariant form should be representation independent
we work in the chiral representation. Then 8 = 7, (79)F =49, (v)f = —4% and
{v*,~+"} = 2n*". These observations, yield

£} = wi(@) [~1"90 + i7" 9 — m] (1" ¥ (@)
(z) [_wogo iy, — m] () (A262)

(x) [—i’y“gu - m] U(z).

I
|

I
|

That Ly is not hermitian is immediately observed by noting

£ L1 = iT(2) 7 (0,0(2)) +i(0,¥(x)) 1" U(x)

(A263)
O (¥ (z) v* W(z)) .

Since (Lo — KJ{))T = —(Ly — £J{)) we immediately conclude that 0, (¥ (z)y"¥(z))
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is antihermitian. That is:

{ioy (¥(z) v* \I/(x))}Jr = —i0y (¥(z) v* ¥(2)). (A264)

Now if we introduce

L=Ly— —0 (¥ A" W), (A265)
then using (A264) we get
ct=rh+ 2 8 (0 4+ W). (A266)
Substituting for £ from (A263) immediately yields
Lh=ry- —a (U A" 0) = L. (A267)

Thus we establish that £ defined by (A265), which is of the general form (A257), is
the required Poincaré covariant hermitian Lagrangian density operator for the

Dirac field. Thus the hermitian Dirac Lagrangian (A265) can be written as

Loinse = 5 [T 1"(0,9) = (9,7) 7 W] = mTW
i o o (A268)
= 5%“0,»11 —mUW.

We end this example of constructing the Lagrangian density operator from a

known wave equations by asking: Is
1
L= Lo~ 5(Lo— L}, (A269)

with

Lo=V(z) T ¥(x), (A270)

the general expression for the hermitian Lagrangian density operator?
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Functional variation (also called local variation by Roman [51] ) in ¥(z) is

defined by

AV(z) = V' (2) — U(z). (A271)

The points z'# and z# refer to the same geometrical point in different frames. The

total ¥(x) is defined as :

S (x) = V' (z) — W(x). (A272)

A slightly rewritten passage from Ref. [51] makes the definitions more clear:
“U'(z) differs from ¥(z) because of two reasons. First the field is described in a
new frame so that z in the argument of ¥/(x) is not the same geometrical point
as the argument in of ¥(x), but is rather the point that in the primed frame has
the same numerical values for the coordinates as had the point of definition of
U(z) in the unprimed frame. Secondly, we also envisage a relabeling of the field
components, usually a linear mixing of 1, (z) among themselves.” With the help

of a Taylor expansion we get

AU(x) = V' (z) + 0,V (z)dx” — ¥(x)

(A273)
=0U(x) + 0,V (z)dz".

In terms of the variations AU(z) and dz# the generator of evolution, given by
(A250), becomes

F(s) = / iz, {8(275@) (AT(z) — (3,0 (x))5a"] + ﬁéa:“}

2
(A274)
oL oL
= Yul =AY (2) — | =——=(0,¥) — ", “1.
[ e v - (a0 -92) o2
b
On introducing the four vector
" (z) = oL (A275)
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the generator of evolution can be written as

F(2) = / ds, [H“(x)A\If(a:) — [0, 9 (z) — o",L] (530”]. (A276)
by

The infinitesimal variations in general operators are generated by the unitary
operator
U=1+iF, U'=1-iF. (A277)
So if A is an operator under consideration, the change induced by the transforma-
tion (A277) is
SA=UAU' - A
(A278)
=(1+iF)A(1 —iF) - A.
To order O(F)

5A = i[F, A (A279)

The Rules of Quantisation or the Causality Conditions are obtained by consider-

ing transformations for which éz” = 0. Then 6V (z) = A¥(x), and the generator
of evolution given by (A276) takes the form

F(%) = / s, T 60, (), (A280)
%

where we have explicitly introduced the multicomponent indices, «, for ¥(x).
These are the four spinorial indices if we are considering the Dirac field, for exam-

ple. Equation (A279) then yields

S 5(x) = i / 45, (2') T (2!) 50 (o), Ws(x) (A281)
DY _

5T () = i / 05,(2') T (2') 60 (2'), TT(x) (A282)
By _

for all z € ¥. The simplest spacelike surface ¥ is a constant-time surface 20 =



20 = t. For the constant— time surfaces the above equations read

5V 4(t, &) :i/[ng(t,f') $Ua(t. ), U(t,7)| a5

SILY(t, 7) = i / (1,5 ) 501,21, 1(1,7)| a5
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(A283)

(A284)

We will now see that the simplest solution of these integral equations are the

equal-time causality conditions. Towards this end let’s note the following identities

[AB,C] - [A, C]B+A[B,C]

[AB,C] — A{C,B} . {C,A}B.

Solution 1, The Bosonic Solution: Using (A285) in (A283) we have

oV 4(t, ) :i/ ([Hg(t,f’), \Ifﬂ(t,f)]é%(t,f’)

+ 10,7 ) [5%@, 7'), Uyt 53’)] ) B3z,
The simplest solution is obtained by setting

T3 ), Wa(t, @)| = —i dop 67— 7 )

[5%@,5'), \I/ﬁ(t,a?’)] —0.

(A285)

(A286)

(A287)

(A288)

(A289)

But since a and (8 do not refer to any specific components of the multicomponent
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field operators, (A289) implies
St 2, %(t,f)] + [\Ila(t,a?’), 5\1/ﬁ(t,a:~’)] —0, (A290)

or equivalently

5[%@,.@"), \Ifﬁ(t,f)] ~0. (A291)
Since this result holds for arbitrary variations, we conclude
[ma(t,f'), \Ifg(t,f)] ~0. (A292)

In order to obtain the commutator [112 (¢, 7 /), H%(t, Z)] from (A284) we note that
adding a total divergence 0, f”(V¥(x),d,¥(x)) to the Lagrangian density operator

leaves the equations of motion unaltered while changes the generator of evolution
F(X) to F(X) + [xdX, éf". Choosing

(@), 0,V (x)) = —1I5(z) Va(z), (A293)

equation (A282) [with F' — F + f#] can be rewritten as

ol (z) =i {/dZu(a:') (Hg(x') W (z") — O1TH (2) W, (2)
b

I () 5%(9;')), Hg(x)] (A294)

= —i [ / 3, () ST (2') Wy (2)), Hz(x)]-
b

As before we choose ¥ to be a constant time surface z¥ = 2° = t. With this

choice of ¥ we have
O (w) = —i / [mg(t,f’) Uo(t,2'), (L, 2)| d° . (A295)

In this fashion we have brought (A284) to a more useful form. Setting v = 0 we
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have

ST () = —i / ([mg(t,f'), 1151, 8)| wa(t.7 ) o
T (¢, 2 ) [\Ifa(t,f’), H%(t,f)]) &z,

Using (A288) in the second term, and repeating steps similar to the ones used in

obtaining (A291) , we get the additional commutation relation
19 (¢, "), (¢, %)| = 0. (A297)

Therefore for constant time spacelike surfaces, Y, the simplest set of commutation

relation which solve the integral equations (A283) and (A284) is

[\Ifﬂ(t,a_:’), Hg(t,a}”)] =i 0o 0(T— 7 ) (A298)
[ma(t,f'), \Ifﬁ(t,f)] ~0. (A299)
[Hg(t,a‘f , H%(t,a?)] = 0. (A300)

For our purposes we simply note that Bosons are described by matter field op-
erators which satisfy these commutation relations. That this is the case can be
verified by considering specific cases. The simplest such exercise can be carried

out with a scalar field (as, for example, in Ref. [53, Sec. 4.1).

Solution 2, The Fermionic Solution: Using (A286) in (A283) we have

5 5(t, 7) :i/ <Hg(t,f'){\lfg(t,f), (.3 ) )
(A301)
. {\Ifﬂ(t,a_:’), ng(t,f')}awa(t,f')>d3f'.

The simplest solution is obtained by setting

{\Ifﬁ(t,f), (¢, 7 ')} — i by 0(T— ) (A302)
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{\I/a(t,a}’ , \Dg(t,f)} = 0. (A303)
Similarly (A284) yields
{Hg(t,f ), H%(t,f)} ~0. (A304)

Without proof we note, as above, that Fermions are described by matter field
operators which satisfy these anticommutation relations. That this is the case can
be verified by considering specific cases. The simplest such exercise has already

been carried out in the last section for the spin—% fermions.

As just noted, earlier in this chapter we established that solution 2 is satis-
fied, in particular, by the matter field operators associated with the Dirac field:
[(1/2,0) & (0,1/2)]. The real (or complex) scalar field is a specific example of
solution 1. These are specific examples of a more general theorem, called the Spin
Statistics Theorem, which argues that particles with half integral spins, called
fermions, are associated with the solution 2; and the integral spin particles, called
bosons, are associated with the solution 1. However, we must explicitly note with
some emphasis that these solutions, obtained here, are the simplest solutions of the
integral equations (A283) and (A284). There seems to be no reason, a priori, to
rule out the possibility of other solutions consistent with the basic interpretational

scheme of Quantum Mechanics.
A1l CONSERVATION LAws AND TIME EVOLUTION
Under the infinitesimal variations
ot — 2P = gt + St (A305)
U(z) = U'(z') = U(z) + AV(x), (A306)
with AW(z) defined by (A273), the physical states transform as
X, d) =U(X) |3,a) =[1+iF(X)] |2, a). (A307)

Using (A279) the change induced in the multicomponent matter field operators
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can be written as
0V (z) = i[F(X), Vo()]. (A308)

The generator of these changes is

F(X) = / s, (A309)

b

[ (z) AW, (x) — |I* 0,04(z) — ¥, c] gz |.

The principle of the stationary action operator, introduced in the last chapter,

and the observation (see (A254))

W1 = F(X2) — F(X1), (A310)

together imply F'(3g) = F(X1), that is we have a constant of motion. Symbolically,

IF(X)
=), A311
5 (A311)
where x is an arbitrary point on the spacelike surface . For ¥ = a constant—time
surface the invariance of the action operator [6W = 0] for every variation which
can be expressed as (1) and (2) yields a conservation law
d

P =0. (A312)

We thus see that when one considers evolution of a system from one constant—
time surface to another the invariance of the action operator under (A305) and
(A306) yields the conservation laws expressed by (A312). However, the conser-
vation laws expressed by (A312) may not be the totality of the conservation laws
associated with a particular system. These extra conservation laws appear, for
example, when one demands invariance under local phase transformations. Some
of these extra conservation laws are actually associated with a modification in the
“free” matter field equations, and as such extend the class of variations given by

(A305) and (A306) which do not modify the free matter field equations of motion.
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The simplest conservation law is obtained by requiring the invariance of the

action operator under the four translations
ot — " =zt + at (A313)

with a# a real constant. Consequently, in accord with definition (A272):
Us(z) =V (2) — Upuln)
=Vy(z —a) — Vyu(z) (A314)
= —0,¥4(z) a”
In the above we have used the fact that only the change is that of having gone to a

new frame without the introduction of any additional physical degrees of freedom.

Substituting (A314) in (A273) we have the result:
AT,y (z) = 0. (A315)

As a result, using (A309), the generator of the infinitesimal translations defined

by (A313) is found to be

F(2) = —a” / dx, [Hg 9,V (z) — 0%, L. (A316)
b

Introducing the energy momentum tensor (density) operator 0", (x)

o1, (z) = I 0, U (z) — 6%, L (A317)
we have
F(S) = —a” / as, o, (A318)
by

Demanding the action operator to be stationary under (A313) then translates

into the expression

0= 555((5)) = —a” [iiino{ fzf Ay 9“1/; fz dy, 0%, }] (A319)

[Here A = volume between ¥’ and ¥] which on using the Gauss’ theorem with the

assumption that 0#,(z) vanishes at the boundary surface at infinity connecting
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the boundaries of ¥/ and X, yields

0= = —a” 9,0",. (A320)

The statement that a certain operator vanishes at the surface at infinity means
that we confine ourselves only to those states for which the expectation value of
the operator vanishes at infinity. If one has physical states which do not satisfy
this requirement then one must review the derivation of all equations of motion

and conservation laws ab initio.

Now since the infinitesimal translation a” is arbitrary, we have the conservation

law

8,0", = 0. (A321)

Or, equivalently

90" =0, (v=0,1,2,3). (A322)

For well known reasons (see, for example, [53, p.91]) it is customary to introduce

the canonical energy momentum tensor (density) operator :
TH = 9V + 9y fA (A323)

with fA = — fENW o that

OO\ f M = 0. (A324)

The fM¥ is so chosen as to make TH symmetric.

Definitions: The 00 component of TH
T = H(2), (A325)

is called the energy density operator of the matter field in the region surrounding

the point z. The energy momentum (operator) four vector of the matter field is
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defined by

P = / S, (z) T™ (z), (v=0,1,2,3). (A326)
by

If we choose ¥ to be a constant-time surface, then
PV = / ™" d3z, (A327)
The 0th component of P
P = / T @3z = / H(z) d®z = H. (A328)

is the total matter field energy operator, or the Hamiltonian of the system under

consideration. The associated conservation law reads

d

—P" =0. A329
y (4329))
Similarly by demanding invariance of the action operator under spacial rotations

yields the angular momentum operator [see, for example: Ref. [51, pp. 71-73],

Ref. [53, pp. 91-92]

MM = / (T%z” — TO ) d3x (A330)
Ly — (A331)
dt '

It should be noted [see, for example, Ref. [53, p.91] that even though the canonical

energy momentum tensor (density) is not unique the energy and momentum in

the field are.

We now obtain a fundamental equation for the evolution of the matter field
operators. This equation when used in conjunction with the canonical commuta-
tion [or anticommutation| relations is seen to be equivalent to the Euler Lagrange

equations of motion.
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Exploiting the freedom given by (A323) requires that the generator of in-
finitesimal translations given by (A318) be replaced by

FX) = —a”/dZu T, = _aV/dEu T = —q, P. (A332)
X b

This generator induces the following [see (A314)] change in the multicomponent

matter field operators

Vo (z) =—0,¥u(x) a”. (A333)

Equations (A332) and (A333) coupled with the general results of the last section

imply that
—0,¥a(r) a” = i[F(X), Va()]
(A334)
= —ia"[P,, Vo (z)].
Since a” is arbitrary
0V (x) = i[P), Uyu(z)]. (A335)
Or, for a general operator O(z)
0,0(z) = i|P,, O(x)]. (A336)

Setting ¥ = 0 in (A335) and using (A328) yields the well known Heisenberg

Equation of Motion
d

ZVa(t,?) = ilH, Va(t, 7). (A337)
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A12 HEISENBERG, SCHRODINGER AND DIRAC/INTERACTION PICTURES

Dropping the multicomponent indices in Eq. (A337) the Heisenberg equation

of motion reads

d
%\I/(t, ) =i[H,V(t, T)]. (A338)
It has the solution
U(t, ) = M w(0, ) et (A339)

as can be verified by direct substitution of (A339) in (A338). Under the evolution
we have|Y, a'y = [1 + F(X)] |X,a). Since F(X) is a constant of motion, the state

vectors |2, a) = |a) are time independent:

0

—la) = 0. A340
= Ja) (A340)
This description of quantumn systems is called the Heisenberg picture.

An equivalent description , called the Schréodinger picture, is defined by means

of the unitary transformation
la,t)5) = 7t |g) (A341)

U = 7 (g, z) (A342)

with the following identifications

v)(2) = (0, 2) (A343)

HY = H(t =0) = H. (A344)

As a result all time dependence is now contained in the state vectors |a, t)(%). The

matter field operators and the Hamiltonian are independent of time. Operating
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(A341) from left by
2
ot

and using the fact that the Heisenberg state vectors are time independent [see

(A345)

(A340)] we obtain the equation of motion for the Schrodinger state vector

i%m, Y% = Hla, 1)), (A346)

Intermediate between these two pictures is the Dirac or the Interaction picture.

One starts with the decomposition of the hamiltonian

D = g + 1), (A347)

m

where
a) H(()I) is the time independent free field hamiltonian: Hél) = Hy(t =0), and

I

b) Hj,)

t = t+o0.

is the time dependent interaction hamiltonian assumed to vanish at

With this decomposition the time evolution is shared partly by the matter field
operators (or any other operator) and partly by the state vectors through the

following definitions:

ja, )0 = exp(iH"t) |a, t)(S) (A348)

U (¢, 7) = exp(iHt) WO (@) exp(—iH D). (A349)
Combining (A349) with (A342), and (A348)with (A341)yields the relation be-
tween the Interaction and Heisenberg pictures:

la,t)D) = exp(iHot) exp(—iHt) |a). (A350)

WD (1, 2) = exp(iHt) exp(—iHt) W(t, @) exp(iHt) exp(—iHS ) (A351)
= exp(iH(()I)t) v () exp(—iHéI)t)

At t = 0, the Heisenberg, Schrodinger and the Interaction pictures all coincide.
Unless Hél) and H both commute with the commutator [H(()I), H] the exponentials

in the above expressions cannot be combined into one term like exp[i(HSI) — H)t|.
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To see the physical motivation for the definitions of the Interaction picture
(A348) and (A349) let’s look at the equation of motion for the state vectors in

the Interaction picture:

%m, D = i B exp(iHPt) exp(—iHt)|a) — exp(iHt) iH exp(—iHt)|a)
= iH{"|a,t)D) — exp(iHt) iH exp(—iH\"t) exp(iH\t) exp(—iHt)|a)
= iHD |0, 6)D — i exp(iHt) H exp(—iH 1) a,t)D.

(A352)
Now note that
HD = exp(iH"t) H exp(—iH"?), (A353)
therefore the time evolution of a state vector in the Interaction picture is
0
ola, D = im7 D 0, 5y — iHD |, £)D. (A354)
But since Hz(iz =HWU — Hél) =H — Hél) we have
.0 I
izla, )0 = H) a0y, (A355))

Similarly from (A351), keeping in mind that the Schrédinger matter field operator

is time independent, we obtain

%\I/(I)(t,f) = il{" v, &) — iv D¢, z) 1 (A356)
%\I/(I) (t,&) = i[H", v (¢, 7). (A357)

We thus arrive at the following physical interpretation for the Interaction picture:

a) The Interaction picture state vector |a,t)) is completely determined by

the interaction hamiltonian Hz(iz (t).

b) The time evolution of the field operators depends entirely on the free field
(I)

hamiltonian Hj ’, the part of the hamiltonian which has no time depen-

dence.
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Further since the interaction—picture
oDt ) (A358)

and

1100 (¢, 2) (A359)

are related through a unitary transformation to the Heisenberg-picture V(t, %)
and II°(¢, #), the interaction—picture ¥ and II° obey the same algebra as the
Heisenberg picture ¥ and II°. This algebra has already been presented for the

Heisenberg—picture matter field operators in the previous appendix.

A13 U MATRIX

We now concentrate on the solution of the equation (A355), which provides
us with the evolution of the interaction—picture state vector. According to the
fundamental linear structure of quantum mechanics the interaction—picture state
vector at time ¢; must be related to the state vector at time ty through a H;,;.
dependent unitary matrix (We will re-establish this below. Also note that we
are dropping the superscript (I), crowning the interaction picture objects, for the
rest of discussion. An exception to this simplification in notation will be made

whenever a confusion is likely.)
la,t1) = Ul(t1,to)]|a, to)- (A360)
Setting 1 = tp yields the obvious property of the U matrix
U(to,to) = 1. (A361)

In order that U (t, ty) followed by U(t1,t) results in the same evolution as U (t1,tp),
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U should satisfy the property
Ul(t1,t) U(t,to) = U(ty, o). (A362)
Taking ¢; equal to ¢y we infer that
Ul(to,t) U(t,to) = Ulty, to) = 1. (A363)
This implies that
Ult, o)™t = Ulto, t). (A364)

In addition to these constraints which the U matrix must satisfy we now establish
that U(¢,tp) is a unitary operator. Towards this end substitute for |a,t) from
(A360) into (A355), and taking care that it is |a,t) and not |a,tp) which depends

on the running ¢, we readily obtain the equation satisfied by the U matrix:

DU 10) = Hiae (1) U1, 10). (A365)

Next take the hermitian conjugate of this equation (and restricting ourselves to

hermitian interaction hamiltonians Hjj; )
—i%U(t, to)' = Ul(t,to)" Hine.(t). (A366)
and use (A365) and (A366) to evaluate
% Ult, to)T Ut to)| = 0. (A367)
That is U(t,ty)" U(t, to) is a constant matrix. Eq. (A363) implies
Ulto, to)" = 1. (A368)
Therefore, U(to, tg)" U(to,tg) = 1. We thus have the general result
Ut to)t U(t, o) =1, Vit (A369)
Finally multiplying this equation from the right by U(t,to) ™!, we get

Ult,to)" = Ut t) 7L, (A370)

thus establishing the unitarity of U(t, ).



214

It may also be noted parenthetically that since (See (A350) and (A360))

ja, YD) = exp(iH{"t) exp(—iHt)|a) (A371)

la, YD) = U(t, t,)|a, to) D, (A372)

and |a, tg) for typ = 0 coincides with the Heisenberg ket |a), we have
U(t,0) = exp(iHt) exp(—iHt). (A373)

As result, referring to the first line in (A351), the relation between matter field
operators in the Interaction picture and and the Heisenberg picture may be written

as

vD(t,2) = U(t,0) (¢, &) U(t,0)7" (A374)

Notice that we here reintroduced appropriate superscripts designating a picture.

The differential equation

DU 10) = Hiae (1) U1 10). (A375)

with the boundary condition

U(to, to) = 1, (A376))
has the formal solution
t
U(t,to) =1- Z/ dtq Hint.(tl) U(tl,to), t > tp. (A377)
to
Equation (A377) gives
t1
U(tl,t()) =1- i/dtz Hmt.(tz) U(tz,to), t1 > to > 1p. (A378)

to
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Substituting (A378) on the rhs of (A377) yields

t t1
U(t,to) =1- i/dtl Hint.(tl) {1 — i/dtz Hint.(tZ) U(t2,t0)}

to tO
t t t1

=1- i/dt1 Hipe (1) + (—i)z/dh/dtz Hint. (t1) Hint. (t2)U (t2, to)-

to to to

(A379)

Continuing this iterative procedure we obtain the perturbative expansion

t
U(t,t()) =1- i/dtl Hint.(tl)

to
t
+ (—i)2/dt1/dt2 Hipg (t1) Hing.(t2) (A380)
to o
t

tl tn—l

-|-...-|-(—z')"/dt1/dt2... / dtp, Hint (t1) ... Hing (tn) + - - ..

to to to

The next we discuss the standard trick of making all the upper limits on the
integrals in (A380) identical. Before we proceed with this somewhat lengthy
exercise let’s note that this section is largely based on Sec. 6.1 of Ref. [4]. To

begin note that relabelling: ¢; <> t2 gives

t t1 t to
/dt1/dt2 Hing (t1) Hing (t2) = /dtz/dt1 Hing (t2) Hing (t1). (A381)
to to tO tO
Next step is the observation
¢ to t ¢
/dtz dt1 = /dtz /dt1 9(t2 — t1), (A382)
to to to to
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because

t t t t t t

/dt2/dt1 Oty —t1) = /dt2/dt1 0(t2 —t1)+/dt2/dt1 O(ts — t1). (A383)
to to to to to ta

For the first term on the rhs 0(ty — t1) equals unity because t3 > ¢; while for the
second term 6(ty — t1) vanishes because ty < t;. Now we invert the order, not

relabel as before, of integration on the rhs of (A382)

t t t
/dt2 dtq :/dtl/dtz 9 tz—tl

to to to 0
t (A384)

dtl{ dt2 9 t2 — tl) /dtQ 9(t2 — tl)}.

t1

ta

o~

For the first term on the rhs ta < t1, and hence 6(ta —t1) = 0. On the other hand
to > t1 for the second term, and 6(ty —t1) = 1. As a result we establish:

t to t t
/dt2/dt1 = /dtl/dt2. (A385)
to to to t1

Using the result just established in (A381)then gets us a little closer to our final
goal

¢ t ¢ ¢
/dtl/dtz Hint.(t1)Hine.(t2) = /dtl/dt2 Hint (t2)Hine.(t1). (A386)
# ;

With the help of this result we write

t t1

/dt1 /dtz Hint (t1)Hint. (t2)

to

= /dt1/dt2 Hipg (t1)Hipg. (t2) + /dt1/dt2 Hine (t1)Hint.(t2)  (A387)

= /dt1/dt2 Hipg (t1)Hipg. (t2) + /dt1/dt2 Hine (t2)Hint.(t1).
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Now is the right time to take a time out from the trickery and define the time
ordered product. From Ref. [51, p. 96], time ordered product for a set of arbitrary
field operators W, (z%), Ug(z),... U (2¢) is defined as

T Wy (z9)Wg(x?) .. V()| = (—1)T Wy (a°) Uy () ... W, (aP), (A388)

where, on the rhs, the field operators are the same ones as on the left but are

arranged in such a order that
>t > >t (A389)

and f = the number of necessary transpositions among the fermion field operators

that are needed to achieve the ordering.

We now return back to equation (A387) to conclude the discussion of the
trick. The second rhs has two terms. For the first term ¢; > ¢y, while for the
second term to > t1. Consequently we observe that the product Hyu (t1)Hine (t2)
in the first term and the product Hjp (t2)Hin. (t1) in the second term are in the
time ordered form for each of the respective terms. Therefore finally, we have the

result

¢ t
1

/dt1/dt2 Hipg (t1)Hipg. (t2) 5/dt1/dt2 T int. (1) Hint. (tz)]
A

t t
+ /dt1/d Hint. t2)Hint.(t1)] (A390)
to t1

[N

t
= %/dh/dtz T[Hint.(tl)Hint.(tZ)]-
to to

Regarding the rhs of (A390) an important remark needs to be made explicitly.
The time ordered product also prescribes a change of sign for each transposition
of the fermion field operators. Since Hj, (t) always contains pairs of fermion
field operators [if any are contained| the interchanges in the positions of Hjy (t)

prescribed by time ordering always involves an even number of minus signs.
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The ny, order term in the perturbative expansion (A380) can be treated

similarly, with the result

t t1 tn—l
/dtl / dty ... / dt, Hint.(tl) .. -Hint.(tn)
to to to
o t (A391)
= E dtq /dt2 . / dt, T[Hmt.(tl) .. -Hint.(tn)
. to to to

Using the result (A391) the perturbative expansion (A380) takes the form

n!
n=1

Ult,to) =1+ i (=9)" /dt1 . ./dtn T[Hint_(tl) o Hing (t)
fo fo (A392)

t
=T exp [—i/Hint,(t')dt']
to

This result can be cast into a manifestly Poincaré covariant form by realising that
the hamiltonian operator Hj,; (t) is defined in terms of the hamiltonian density

operator Hine (¢, Z) as follows:

Hing (1) = / 0 i (1, 7). (A393)
The U-Matrix then reads
S [
U(Se, X)) =1+ Z - / dixq. .. / d*z, T [Hmt,(xl) o Hing (z4)
n=1 Eto Eto
2t
= Texp[—i / d*a’ ’Hint_(a;')]
St
(A394)

In the above expression ¥, and X; are the constant ¢y and constant ¢ surfaces

respectively.
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Al4 S MATRIX

Most of the physics done at particle accelerators deals with scattering prob-
lems. Even the table top experiments of atomic and nuclear physics are often best
viewed in terms of scattering processes. In a typical scattering problem we have ¢

free particles at t = —oo, which can be represented by an initial state
i) = al(5,0)...aT (5", 0') | ). (A395)

The rhs of the above expression contains ¢ creation operators. The creation oper-
ator af (P, o) creates a particle with momentum p'and o refers to the z component
of J, as viewed in the rest frame of the particle. The creation operators do not
necessarily refer to the same spin. This description implies that |¢) is an eigenstate

of the free hamiltonian (besides other compatible observables)
(ORF S ONE
Hy" i)y = Ey’ |i). (A396)

The particles are brought together to a “small” region where most of the physical

evolution of interest takes place. The out product are f free particles at t = +00
) =al(@a)...al(@",0") | ). (A397)

The final state |f) is assumed to be an an eigenstate of yet another free hamiltonian

(besides other compatible observables)
1l )= £ 11). (A398)
In these notes we assume
2 = . (A399)

This is a non trivial assumption. As an illustrating example, this assumption
excludes a process in which the ingoing particles are an electron and a proton,

while the outgoing particles are a hydrogen atom and a photon. Such processes
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must be treated carefully. However, relaxing the assumption (A399) should pose

no undue difficulties. For the specific example just cited we know how to solve the

bound state problem for a hydrogen atom. Therefore we know the spectrum of

the outgoing states, the final state must be represented as a superposition of the

eigenstates of H, éf ) rather than H, 0(7) which has protons and electrons as free states.

The eigenstates of Héf ) are, in this example, the ground state of the hydrogen atom

and various excited states along with energy-momentum conserving photon(s).

We note that not all the ingoing (t = —o0) or outgoing (¢ = +o0) particles

may be fundamental particles. As a working definition of a fundamental particle

we adopt the following criteria

a)

b)

The particle be pointlike

It be represented by one of the representations of SU(2)r @ SU(2), intro-
duced in Appendix.

Its magnetic moment p be such that the g — factor
p=g1+a)us (A400)

be the same as that associated with the simplest matter field coupling
with the the electromagnetic field. For the Dirac spinors this simplest
coupling is, of course, the standard minimal coupling. In (A400) pp is

the generalised Bohr magneton
e .
wp = - jh, (A401)
mc

where 7 = spin of the particle and we have explicitly written the speed of
light as ¢. The “a” is to be calculated perturbatively from the theory and
depends upon the detailed content of the vacuum and various interactions

present.
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The criteria enumerated above are not necessarily independent. In the lowest
order approximation we do not distinguish between a fundamental and a composite
particle. For example if we are considering 7 — p annihilation yielding a 7°, the

simplest interaction hamiltonian density operator is
Hine.(2) = g V()" (z)D(z). (A402)

if p, p and 70 are all considered fundamental particles. The composite nature of the
particles is then introduced by introducing a phenomenological scalar function of
the various momenta and spin orientations, called a form factor, F(p,o;p ', o’; E)

as follows

M (1) = g F(F,035",0"s F) T(2)y*¥(2)@ (). (A403)

wnt.

It would be a great advancement if one could formulate a practical procedure
to solve the bound state problem for composite particles. The bound state wave
functions so obtained could then be used for the scattering process. This however
has not been accomplished so far. As such, in nuclear physics, one resorts to the

use of form factors.

In view of the above discussion the probability amplitude to make a transition

from |i) at ¢ = —oo to |f) at t = +oo is
(f151%) (A404)

where the S-matrix is defined by

S =U(t = 4o00,t) = —0)

< (_an F 7 A405
=1+ Z ( n!) / ... / d*z, T[Hint.(m) oo Hing (xn) |- ( )
n=1 —00 —00

The integration now runs over all space time. This formula first appeared in
Ref. [37], and is now commonly called the Dyson Formula. It is the heart and
the starting point of all perturbative calculations in the canonical perturbation

theory.
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A15 EXPANSIONS OF cosh(2.J - @) AND sinh(2J - @) FOR ARBITRARY SPIN

Here we provide expansions for cosh(2J - @) and sinh(2.J - @). In the identities
below we have defined 5 = (2.J - p)

INTEGER SPIN:

cosh (2 - )_1+‘§(772)(712—22)(772—42)---(772—(2n)2) b2 o, (A406)

. o 22 - 42 2 2 2
sinh(2.J - g) = ncosh ¢ g U )07 E JZ 1)'(77 (2r)%) sinh®"*1 . (A407)
n !

HALF INTEGER SPIN:

cosh(2J - @) = cosh ¢

1+leéz (n? —12)(n? = 3%)...(n* — (2n — 1)?) sinh2n80]7

~ (2n)!
(A408)
) ISR =) R = DY),
sinh(2J - @) = nsinhp |1+ Z:l @n 1) sinh“" |
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