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iiiABSTRACTRelativistic Quantum Field Theory of High{SpinMatter Fields: A Pragmatic Approach for Hadronic Physics.(August 1991)Dharam Vir Ahluwalia, B. Sc.(Hons.); M. Sc., University of Delhi, IndiaM. A., SUNY at Bu�alo; M. S., Texas A&M UniversityChair of Advisory Committee: Dr. David J. ErnstA consistent phenomenology of the interaction of particles of arbitrary spinrequires covariant spinors, �eld operators, propagators and model interactions.Guided by an approach originally proposed by Weinberg, we construct from grouptheoretical arguments the (j; 0) � (0; j) covariant spinors and the �eld operatorsfor a massive particles. Speci�c examples are worked out in the familiar languageof the Bjorken and Drell text for the case of the (1; 0)� (0; 1), (3=2; 0)� (0; 3=2)and (2; 0)� (0; 2) matter �elds. The m! 0 limit of the covariant spinors is shownto have the expected structure. The algebra of the 
�� matrices associated withthe (1; 0) � (0; 1) matter �elds is presented, and the conserved current derived.The procedure readily extends to higher spins. The causality problem associatedwith the j � 1 wave equations is discussed in detail and a systematic procedure toconstruct causal propagators is provided. As an example a spin two wave equationsatis�ed by the (2; 0)� (0; 2), covariant spinors is found to support not only tencorrect and causal solutions, but also thirty physically unacceptable acausal solu-tions. However, we demonstrate how to construct the Feynman propagator for thehigher spin particles directly from the spinors and thus avoid the shortcomings ofthe wave equation in building a phenomenology. The same exercise is repeated forthe (1; 0) � (0; 1) and (3=2; 0) � (0; 3=2) matter �elds, and the same conclusionsobtained.A well{known set of linear equations for massless free particles of arbitraryspin is found to have acausal solutions. On the other hand, the m ! 0 limitof the wave equations satis�ed by (j; 0) � (0; j) covariant spinors are free from



ivall kinematical acausality. This paradoxical situation is resolved and correctedthrough the introduction of a constraining principle.The appendix reviews and presents in a uni�ed framework classic works ofSchwinger, Weinberg and Wigner regarding the elements of canonical quantum�eld theory, thus establishing the logical context of our work.
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11. INTRODUCTION1.1 Short Historical ReviewEight years after the publication of his relativistic wave equation [1] for spinone half particles in 1928, Dirac [2] proposed high{spin equations with constraints.In this 1936 paper he wrote: \: : : it is desirable to have the equations ready for apossible future discovery of an elementary particle with a spin greater than a half,or for approximate application to composite particles." Today, this speculationregarding the composite particles is remarkably con�rmed. Neglecting the \nonestablished" resonances, the following high{spin composite particles [3] have beenexperimentally observed: baryonic resonances with 1=2 � j � 11=2, and mesonicresonances with 0 � j � 4. The most common approach [4] to a relativistic �eldtheory of particles with j � 1 is that of Proca, Rarita and Schwinger. This for-malism [4, 5] owes its logical history to the 1936 paper of Dirac [2], the works ofFierz and Pauli [6,7,8] and depends for its present form [4] on a classic paper ofBargmann and Wigner [9]. For our purposes we note that this formalism consistsof high{spin wave equations along with constraint equations. There is, however, awell recognised problem with this formalism. Corben and Schwinger [10], Johnsonand Sudarshan [11], and Kobayashi and Shamaly [12] have respectively estab-lished for spin 1; 3=2; and 2 that electromagnetic coupling cannot be consistentlyintroduced via the standard replacement of derivatives in the Lagrangians withgauge covariant derivatives: @� ! @� + iqA�. Kobayashi and Takahashi [13,14]have recently argued that this pathology is generic to all equations of the Rarita{Schwinger type and has its origin in the existence of the associated constraintequations. In addition, this commonly used formalism becomes increasingly morecomplicated for j � 3=2.Parallel to the development of the Rarita{Schwinger formalism, there existstudies of Du�n [15], Kemmer [16], Harish-Chandara [17,18] and Bhabha [19]which propose high{spin equations of the type:This dissertation follows the style of Annals of Physics.



2
(i �� @� �m) (x) = 0: (1:1)These equations lie outside the applicability of the Kobayashi{Takahashi the-orem [13,14] and, therefore, it is not yet completely clear if one can consistentlyintroduce the electromagnetic coupling into these equations through the minimalsubstitution. A signi�cant part of the work on the high{spin wave equations [20],done after the well known paper of Johnson and Sudarshan [11], is concentrated inthis direction and generally deals with the reducible representations of the Lorentzgroup � [(SU(2)R 
 SU(2)L].It is within this historical context that we now discuss some of the needs of thenuclear physics community and our contribution to nuclear phenomenon involvinghigh{spin mesons and baryons.1.2 Motivation, Objectives and AchievementsAt the present time several new accelerators are planned or are under construc-tion: CEBAF, PILAC at LAMPF, and KAON. These nuclear physics facilities willbe able to explore high{spin hadronic physics in greater detail than has been pre-viously possible. Thus, although there remain fundamental di�culties with thequantum �eld theory of high{spin particles, a need for an internally consistent phe-nomenology of these particles is required. Such a phenomenology, at a minimum,must provide:1.) Fully covariant spinors for any spin.2.) Relativistic wave equations for any spin, and the associated conservedcurrent.3.) Complete understanding of the possible acausality, and a systematic pro-cedure to construct propagators for any spin which propagate only thecausal (i.e. physical) solutions.4.) A general method for constructing model couplings.



3Such a theory will allow us to do systematic calculations for the type of ex-periments one envisages at the above mentioned accelerators. Not only is such awork important from a pragmatic point of view, it is bound to provide a deeperunderstanding of the underlying structure of relativistic quantum �elds.In this work, following the work of Weinberg [21], we provide a general andexplicit procedure [22] for constructing irreducible (j; 0)� (0; j) covariant spinorsand wave equations. The covariant spinors are obtained via construction of ageneral boost for any j rather than as solutions of a speci�c wave equation. Thisprocedure reproduces the standard Dirac spinors for j = 1=2. The relativisticcovariant spinors for j = 1; 3=2 and 2 are explicitly constructed. For j = 1 weshow the connection between the (1; 0)� (0; 1) covariant spinors and the standardProca A� and F �� . This is accomplished through the introduction of a procedurecalled \spinorial summation." We obtain 2(2j+1) covariant spinors for spin j, thusincorporating spinorial as well as particle{antiparticle degrees of freedom in a verynatural fashion. The wave equations are derived so as to obtain conserved currentsand phenomenological interaction Lagrangian densities. These wave equationsare again obtained from a set of coupled equations valid for any spin, and haveno associated constraints. As a result they lie outside the applicability of theKobayashi{Takahashi theorem already cited. Again, for j = 1=2, these coupledequation reproduce the standard Dirac equation for spin one half particles. Forj = 1, the m ! 0 limit yields the standard source free Maxwell equations ofelectromagnetism. The connection between the (1; 0) � (0; 1) covariant spinorsand ~E and ~B �elds is explicitly exhibited.The (j � 1; 0) � (0; j � 1) relativistic wave equations involve second andhigher{order spacetime derivatives. A new technique is developed to study theorigin of acausality in the high{spin wave equations. We show that [23] equa-tions developed here do indeed have solutions which are acausal in character, forj � 1. However, the necessary propagators are constructed from the vacuum ex-pectation values of the appropriate time ordered product of �eld operators. These�eld operators contain only the physically acceptable causal solutions of the waveequations and hence are free from any unphysical characteristics contained in the



4green functions associated with the relativistic wave equations.In addition the quasi{relativistic and extreme relativistic limits of the (j; 0)�(0; j) covariant spinors and equations are seen to provide some interesting insightsinto the nature of high{spin �elds.The remaining outstanding problem is a technique for generating the generalforms for the phenomenological couplings. We take the conventional approach ofmodeling the interactions via the construction of the possible Poincar�e scalars.The composite character of the hadrons is incorporated by including phenomeno-logical form factors into the interaction. Some explicit models of such interactionLagrangian densities are provided.In addition to the facts that the formalism developed here is valid for anyspin and is able to address the question of causality in a rather elegant fashion, itis also particularly suited for modern computer oriented numerical and symbolicmanipulation technology.Not only is the formalism developed here speci�cally designed to address theo-retical issues arising from CEBAF, PILAC at LAMPF and KAON, the formalismis equally useful in studies of heavy ion collisions at RHIC where high spin parti-cles such as the f2(1720) can be produced. Towards this end we have obtained theS{Matrix elements needed for cross section calculations of two photon mediatedproduction of scalar and pseudoscalar particles. Extension of these results to theproduction of arbitrary spin particles now requires interaction Lagrangian densi-ties which couple the gauge vector potential A�(x) to arbitrary spin. The problemof constructing this coupling is under investigation at present.While the main text of this work is contained in seven chapters which follow,the appendix reviews some of the standard elements of the quantum �eld theory inthe light of our work thus making the spin{dependence of the arguments involvedexplicit. The appendix presents some original arguments and derivations but isessentially based on the classic papers of Schwinger [24{32], Weinberg [21, 33{36]and Dyson [37], and presents the connection between these classic works in a uni-�ed fashion. Finally we note that since a beginning student in the nuclear physics



5community may not be familiar with some of the group theoretical nomenclature,we have incorporated appropriate de�nitions in the text. This should make thiswork immediately accessible to as large a research community as possible.



62. POINCAR�E TRANSFORMATIONS IN (1,3) SPACETIMEAND THEIR EFFECT ON PHYSICAL STATES2.1 Logical Structure of Quantum Field TheoryWe take the view that the essential 
at{spacetime kinematical and dynamicalstructure of quantum �eld theory, apart from some principle generating masses forsome of the gauge bosons, is determined by the combined requirements of relativis-tic and gauge invariances. The relativistic invariance is de�ned as the invarianceof the form of the laws of nature for all inertial observers. This invariance ofthe form, rather than a speci�c physical quantity, is sometimes called \Poincar�ecovariance" or \gauge covariance" depending upon the transformation under con-sideration1. The demand of Poincar�e invariance determines what matter �eldsexist in nature. It is found that the wave equations, or the Lagrangian densitiesfrom which they follow, for the \free" matter �elds are not invariant under localphase transformations of the form0B@  01(x)... 0n(x)1CA = exphi g Xi �i(x) �ii0B@  1(x)... n(x)1CA ; (2:1)with � = n� n norm preserving SU(n) matrices. The simplest such transforma-tion, with n = 1, is the local U(1) transformation 0(x) = exp�i g �(x)� (x): (2:2)Demanding invariance of the equations of motion2 under local U(1) transforma-tion (2.2) naturally introduces a vector potential A�(x) which one identi�es with1 Since in the literature this �ne distinction has almost disappeared we would often succumb notto explicitly distinguish between \covariance" and \invariance." However, almost invariably,the context should provide the needed distinction.2 And hence the invariance of the Lagrangian density. The reason for this rather \inverted"emphasis lies in the fact that we will obtain equations of motion without reference to theLagrangian formalism.



7the electromagnetic interaction. The electromagnetic interaction is introduced byreplacing @� ! D� � @� + i q A�; (2:3)in the kinematical equations of motion. The resulting dynamical equations arethen invariant under Poincar�e as well as local U(1) gauge transformation (2.2) pro-vided as  0(x)!  0(x) = exp�i g �(x)�  (x); (2:4)we simultaneously let A�(x)! A0�(x) = A�(x)� @��(x): (2:5)Why some SU(n) invariances are physically realised and not others, is anunanswered question and perhaps points towards a yet undiscovered constrainingprinciple of nature. Similarly why some representations of the Poincar�e groupare physically realised, and not others, is not yet known. It is quite possible thatthese unknown constraining principles contain in them solution of the yet unsolvedproblems of quantum �eld theory: such as a quantum �eld theory incorporatinggravitational interaction.This chapter is devoted to a systematic study of the relativistic invariancewhich all laws of nature, at least locally, are expected to respect on empiricalgrounds. It should perhaps be noted explicitly that the idea of \gauge invariance"is secondary to that of \Poincar�e covariance" { for its very de�nition (in thequantum �eld theory) one needs the notion of matter �elds �rst; and matter �eldsarise as �nite dimensional representations of the Lorentz group.So we begin, ab initio, with the fundamentals and arrive at the various resultsclaimed in Sec. (1.2) in a logical and self contained fashion.



82.2 Poincar�e TransformationsIf two physical events occur at x� = (t; ~x) and x�+dx� = (t+dt; ~x+d~x) thenthe observed constancy of the speed of light, for all inertial observers, requiresthat the interval ds2 = dt2 � (d~x)2 � ���dx�dx� (2:6)be invariant. The set of linear and continuous spacetime transformations whichpreserve ds2 are as follows:Three Rotations about each of the (x; y; z){axes. The transformation matricesrelating x0� with x�, x0� = R��x� , are given by
[R��(�x)] = 0BBBB@ 1 0 0 00 1 0 00 0 cos(�x) � sin(�x)0 0 sin(�x) cos(�x)

1CCCCA ; (2:7)
[R��(�y)] = 0BBBB@ 1 0 0 00 cos(�y) 0 sin(�y)0 0 1 00 � sin(�y) 0 cos(�y)

1CCCCA ; (2:8)
[R��(�z)] = 0BBBB@ 1 0 0 00 cos(�z) � sin(�z) 00 sin(�z) cos(�z) 00 0 0 1

1CCCCA : (2:9)
[R��(�i)] represents a rotation by �i about the ith{axis. The rows and columnsare labelled in the order 0; 1; 2; 3.



9Three Lorentz Boosts along each of the (x; y; z){axes. The boost matrix for aboost along the positive direction of the unprimed x-axis, by velocity3 v, is givenby [B��('x)] = 0BBBB@ cosh('x) sinh('x) 0 0sinh('x) cosh('x) 0 00 0 1 00 0 0 1
1CCCCA ; (2:10)with x0� = B��('x)x� . Similarly

[B��('y)] = 0BBBB@ cosh('y) 0 sinh('y) 00 1 0 0sinh('y) 0 cosh('y) 00 0 0 1
1CCCCA ; (2:11)

[B��('z)] = 0BBBB@ cosh('z) 0 0 sinh('z)0 1 0 00 0 1 0sinh('z) 0 0 cosh('z)
1CCCCA ; (2:12)where cosh(') = 
 = 1p1� v2 ; (2:13)sinh(') = v
: (2:14)Four Translations x0� = x� + a�; (2:15)with a� as real constant displacements.3 This is the velocity which a particle at rest in the unprimed frame acquires when seen fromthe primed frame.



10Parenthetic observations: The time-order of physical events is preserved if ds2 � 0.As a result, for any two physical events for which ds2 � 0 the possibility of acause and e�ect relationship exists. In quantum mechanics, of course, appropriatethoughts need to be given to the fundamental uncertainty in the measurementof ds2 itself. This aspect of the subject, however, lies outside the boundaries ofour immediate interest. In addition it should be noted explicitly that the Lorentzboosts become singular for the massless particles for which v = c = 1. In a closedsystem completely composed of massless particles, the measuring devices and theobserver all move at relative speeds of unity. No measuring devices, such as clocksor rods, exist which can be at rest in any frame. Consequently the meaningof \physical measurement" seems to require a new de�nition for such a system.Poincar�e covariance seems to acquire meaning only if we introduce some massiveparticles into our system, even if we do so only hypothetically. These massiveparticles can then be used to construct measuring devices, which can be at restin frames occupied by observers made of massive particles. These observers canthen study the laws governing the massless as well as massive particles. It wouldof course be interesting to formulate a theory, and experiments, without recourseto the existence of massive particles. To construct a theory of the early universethese epistemological questions must be confronted.The above set of transformations can be summarised byx0� = ���x� + a�; (2:16)with the constraint (required to preserve ds2)��������� = ���: (2:17)The metric ��� is [��� ] = 0BBBB@ 1 0 0 00 �1 0 00 0 �1 00 0 0 �1
1CCCCA : (2:18)



11It is readily veri�ed that ������ = ���; (2:19)(��1)�� = ���: (2:20)Using these well known results it is immediately established that Poincar�e trans-formations form a group, with1. Multiplication law f�; agf�; ag = f��;�a+ ag: (2:21)2. Inverse element f�; ag�1 = f��1;���1ag: (2:22)3. Identity element fI; 0g: (2:23)In (2.23) above I is a 4� 4 identity matrix and 0 is a \zero" vector4.Using the group multiplication law (2.21), we �nd that the commutator ofthe two group elements is�f�1; a1g; f�2; a2g� = �(�1�2 � �2�1); (�1a2 � �2a1) + (a1 � a2)	:Consequently the ds2 preserving continuous spacetime transformation form a non-Abelian group. It is called the \Poincar�e group."
4 A \zero" vector a� � (a0 = 0;~a = ~0) is to be distinguished from a \null" vector for whichonly ds2 = 0 is required



122.3 Generators of Poincar�e Transformations and Associated LieAlgebraFor in�nitesimal transformations, Eq. (2.16) can be written asx0� = (��� + ���)x� + a�; (2:24)where ��� and a� are in�nitesimal constants. For various transformations thenonvanishing ��� = ������ are summarised in Table ITABLE INonvanishing ��� = ������ . Note we only tabulate the nonvanishing ��� , as such,for example: ��6=2;� 6=3 = ��� 6=3;�6=2 = 0 for a rotation about the x{axis. Similarcomments apply for other transformations.Rotation about: Boost along:x{axis y{axis z{axis x{axis y{axis z{axis�23 = ��32 �31 = ��13 �12 = ��21 �10 = ��01 �20 = ��02 �30 = ��03= �x = �y = �z = 'x = 'y = 'z
Given Table I, we de�ne ten linearly independent hermitian operators X�,called \generators" of the Poincar�e transformations, corresponding to a parameter�� [�1 = �x; : : : ;�4 = 'x; : : : ;�7 = a0; : : :]X� � i@x0 �@�� �����=0 @@x� (� = 1; : : : : : : ; 10): (2:25)Corresponding to the three rotations given by equations (2.7){ (2.9) we obtain thefollowing three generators of rotations



13
Lx � �X�x = �i�y @@z � z @@y� ; (2:26)
Ly � �X�y = �i�z @@x � x @@z� ; (2:27)
Lz � �X�z = �i�x @@y � y @@x� : (2:28)The three boosts given by equations (2.10){ (2.12) yield the generators of Lorentzboosts Kx � X'x = i�t @@x + x @@t� ; (2:29)
Ky � X'y = i�t @@y + y @@t� ; (2:30)
Kz � X'z = i�t @@z + z @@t� ; (2:31)Finally the translations given by Eq. (2.15) are produced by the four5generators of translations P� � Xa� = i @@x� : (2:32)It should be explicitly noted that the rotations, boosts and the translations underconsideration here are globally constant.5 At present there is nothing quantum mechanical about these generators. Subsequently, wewill identify �h~L and ��h~P as the orbital angular momentum and linear momentum operatorsrespectively in the jxi basis. Note: the linear momentum ~P is the spacial part of P� = ���P� .



14If we introduceL12 = Lz = �L21; L31 = Ly = �L13; L23 = Lx = �L32; Lij = �ijkLk; (2:33)Li0 = �L0i = �Ki; (i = 1; 2; 3); (2:34)then the e�ect of the in�nitesimal transformations (2.24) can be summarised bythe expression x0� = �1 + i2���L�� � ia�P��x�: (2:35)For instance the e�ect of a in�nitesimal rotation about the z{axis ist0 = �1 + i2 ��12L12 + �21L21�� t = �1 + i�12L12� t= t+ i�z ��i�x @@y � y @@x�� t = t; (2:36)
x0 = �1 + i�12L12�x = x+ i�z ��i�x @@y � y @@x�� x = x� �zy; (2:37)

y0 = �1 + i�12L12� y = y + �zx; (2:38)
z0 = �1 + i�12L12� z = z: (2:39)The e�ect of a �nite rotation (again about the z{axis.), say on x, is
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x0 = limN!1�1 + i�zNLz�N x = [exp(i�zLz)] x; (2:40)Consequently, the �nite transformations (2.16), generated by any one6 of thePoincar�e generators, have the formx0� = �exp� i2���L�� � ia�P���x�: (2:41)

Before we embark on the next logical question, we pause to collect the commu-tation relations between the various generators of the Poincar�e transformations.The commutation relations read[L��; L��] = i(���L�� � ���L�� + ���L�� � ���L��); (2:42)[P�; L��] = i(���P� � ���P�); (2:43)[P�; P� ] = 0: (2:44)De�nitions: A group formed by continuous transformations is called a Liegroup. The set of commutators f [X�; X�] g associated with the generators aresaid to constitute the algebra associated with the Lie group. If all the commutatorsassociated with the generators commute the group is said to be Abelian. If at leastsome of the commutators are non-zero, the group is called non{Abelian. As such,in the literature one often refers to commutators (2.42){(2.44) as the Lie algebraassociated with the Poincar�e group.
6 We emphasise \any one", because generators corresponding to two di�erent Poincar�e trans-formations do not commute in general.



162.4 Poincar�e Transformations and Quantum Mechanical StatesRecalling the de�nition of Poincar�e covariance:The form of the underlying laws of Nature, as determined by an inertial ob-server, which determine the nature of any observable phenomenon remainunchanged under a Poincar�e transformation,we ask the question:What constraints does the requirement of Poincar�e covariance impose onquantum mechanical states and physical observables?To study this question let us experimentally prepare a system7 in a statejstatei. Let the same system now be observed by another inertial observer charac-terised by f�; ag. Denote the state as observed by this new observer by jstatei0. Inorder that jstatei and jstatei0 be physically acceptable states, they must transformas jstatei0 = U(f�; ag) jstatei; (2:45)where U(f�; ag) is an unitary operator constrained to satisfy:U(f�; ag)U(f�; ag) = U(f��;�a+ ag): (2:46)This constraint that U(f�; ag) furnish a representation of the Poincar�e group isrequired in order that a Poincar�e transformation f�; ag followed by f�; ag hasthe same e�ect as the Poincar�e transformation f�; agf�; ag. Strictly speaking(2.46) is true for in�nitesimal transformations. The �nite Poincar�e transformationswhich are constructed by successive application of in�nitesimal transformationswill occasionally have a minus sign on the r:h:s of (2.46). The representationis then said to be a representation up to a sign. This situation will arise whenconsidering half{integral (spinor) representations. In such situations spinor �elds7 It will be seen in the Appendix that single particle free states of a massive particle arespeci�ed by specifying the four momentum, spin, and its projection along an observer chosenaxis. With a similar speci�cation, involving \helicity," for massless particles



17must be so combined as to yield observables which are even functions of spinor�elds. For further comments on this point the reader is referred to Sec. 2.12 ofRef. [41].The linearity of the unitary operator U(f�; ag) implies that for an in�nitesimalPoincar�e transformation f�; ag = f1 + �; �g; (2:47)U(f�; ag) has the formU(f�; ag) = 1� i2���
�� + i��
�: (2:48)The factors of � i2 and i are purely for reasons of historical convention, and 
�� and
� are yet undetermined generators. Determining the e�ect of a Poincar�e transfor-mation f�; ag on physical states, therefore, involves explicit determination of theseunknown generators. For determining the generators of Poincar�e transformationswe began with the known transformations, and formally determined the genera-tors which induce those transformations. However, if we are given the generatorsof the Poincar�e transformations, we could from them construct the transformationwhich the spacetime coordinates undergo under a Poincar�e transformation. Wecould even go further, and claim that we could have obtained the generators asone of the representations of the algebra satis�ed by these generators, if the Liealgebra associated with the Poincar�e group was given a priori.Taking this philosophical point of view we now proceed to �nd the algebrasatis�ed by 
�� and 
�. Towards this end we follow Weinberg [34] and considerthe transformation of U(f1 + �; �g) by an arbitrary U(f�; ag)U(f�; ag) U(f1 + �; �g) U�1(f�; ag)[Using (2:46) and U�1(f�; ag) = U(f�; ag�1)]= U(f�(1 + �);��+ ag) U(f��1;���1ag)[Using (2:46); again]= U(f1 + ����1;�a� ����1a+ ��+ ag);= U(f1 + ����1;�����1 + ��g); (2:49)



18Using (2.48) in the r.h.s of the above expression we obtainU(f�; ag) U(f1 + �; �g) U�1(f�; ag)= 1� i2(����1)��
�� + i(�����1a+ ��)�
�= 1� i2������(��1)��
�� + i h�������(��1)��a�
� + �����
�i : (2:50)
But (��1)�� = ��� according to (2.20) which relates the inverse of �, ��1, to �.ThereforeU(f�; ag) U(f1 + �; �g) U�1(f�; ag)= 1� i2���������
�� � i���������a�
� + i�����
�: (2:51)On the l.h.s of the above expression substitute for U(f1 + �; �g) from (2.48) toget U(f�; ag) U(f1 + �; �g) U�1(f�; ag)= U(f�; ag) �1� i2���
�� + i��
�� U�1(f�; ag)= 1� i2��� U(f�; ag) 
�� U�1(f�; ag) + i�� U(f�; ag) 
� U�1(f�; ag):(2:52)Going back to (2.51), interchange �$ � and � $ � on the r.h.s to obtainU(f�; ag) U(f1 + �; �g) U�1(f�; ag)= 1� i2���������
�� � i���������a�
� + i�����
�= 1� i2���������
��� i��������� �12(a�
� � a�
�) + 12(a�
� + a�
�)�+ i�����
�; (2:53)
where a�
� is broken into its antisymmetric and symmetric parts. Now notethat if Q�� is symmetric then ������Q�� is symmetric in the indices �; �. Theproof goes as follows. ������Q�� = [by symmetry of Q] ������Q�� = [renaming



19the summed indices] ������Q�� = [by rearranging] ������Q��: Exploiting theantisymmetry of ��� we getU(f�; ag) U(f1 + �; �g) U�1(f�; ag)= 1� i2���������(
�� + a�
� � a�
�) + i�����
�; (2:54)Comparison of (2.54) and (2.52) yields the Poincar�e transformation propertiesof 
�� and 
�U(f�; ag) 
�� U�1(f�; ag) = ������(
�� + a�
� � a�
�); (2:55)and U(f�; ag) 
� U�1(f�; ag) = ���
�: (2:56)It is immediately observed, from the absence of a� in the r.h.s of (2.56), thatwhile 
� is translationally invariant 
�� is not.The algebra satis�ed by these generators can now be obtained by settingf�; ag = f1 + �; �g, where � and � are a new set of in�nitesimals, in the Poincar�etransformation properties of 
�� and 
� given by (2.55) and (2.56). To implementthis calculation we need to know the expansion of U�1(f�; ag) to order O(�; �)U�1(f�; ag) = U(f(1 + �); �g�1)= U(f(1 + �)�1;�(1 + �)�1�g)= U(f1� �;�(1� �)�g)= 1� i2(��)
�

� + i[�(1� �)�]�
�= 1 + i2�
�

� � i��
�: (2:57)
We �rst consider (2.55), which gives the Poincar�e transformation property of
�� , and substitute for U(f�; ag) for an in�nitesimal transformation given by



20(2.48), and use (2.57) for U�1(f�; ag), in the l.h.s (of (2.55))[1� i2���
�� + i��
�]
�� [1 + i2�
�

� � i��
�]= (1 + �)��(1 + �)��(
�� + ��
� � ��
�): (2:58)To order O(�; �),L:H:S of (2:58) = 
��+ i2��� (
��
�� � 
��
��)+i�� (
�
�� � 
��
�) : (2:59)Similarly to order O(�; �),R:H:S of (2:58)= 
�� + ��� (���J�� � ���
��) + �� ����
� � ���
��[where have freely raised and lowered indices and used ��� = ����]= 
�� + ��� �12 (���
�� � ���
��) + 12 (���
�� + ���
��)�� ��� �12 (���
�� � ���
��) + 12 (���
�� + ���
��)�+ �� ����
� � ���
��= 
�� + 12��� [���
�� � ���
�� � ���
�� + ���
��]+ �� ����
� � ���
�� ; (2:60)where we have again used the antisymmetry of ���.By comparison of (2.59) and (2.60) we arrive at the following results [we haverearranged certain terms and made replacements like 
�� ! �
��. Note suchreplacements are allowed without loss of generality because of the antisymmetryof ��� (see Table I) which allows only the antisymmetric part of 
�� to contributeto U(f�; ag). ][
�� ;
��] = i(���
�� � ���
�� + ���
�� � ���
��); (2:61)and [
�;
��] = i(���
� � ���
�): (2:62)



21When the same exercise is carried out with (2.56), we reproduce (2.62) andcomplete the Lie algebra associated with the generators of U(f�; ag) by obtaining[
�;
� ] = 0: (2:63)It is immediately observed that the algebra associated with the generators of thecontinuous spacetime transformations f�; ag, given by (2.42){(2.44), is identicalwith the algebra (2.61){(2.63) associated with the generators of the Lie groupformed by U(f�; ag). As a result we make the following customary identi�cations
�� � J�� ; 
� � P�: (2:64)Consequently [J�� ; J��] = i(���J�� � ���J�� + ���J�� � ���J��); (2:65)[P�; J��] = i(���P� � ���P�); (2:66)[P�; P� ] = 0: (2:67)The same commutation relations are displayed in a more visually accessible formin Table II.



22TABLE IILie algebra associated with the generators of the in�nite dimensional representa-tions of the Poincar�e group [Generator in the �rst vertical column , Generator inthe �rst horizontal row]=Entry at the intersection. For example: [Jx; Py] = iPz.Kx Ky Kz Jx Jy Jz P0 Px Py PzKx 0 �iJz �iJy 0 iKz �iKy �iPx �iP0 0 0Ky iJz 0 �iJx �iKz 0 iKx �iPy 0 �iP0 0Kz iJy iJx 0 iKy �iKx 0 �iPz 0 0 �iP0Jx 0 iKz �iKy 0 iJz �iJy 0 0 iPz �iPyJy �iKz 0 iKx �iJz 0 iJx 0 �iPz 0 iPxJz iKy �iKx 0 iJy �iJx 0 0 iPy �iPx 0P0 iPx iPy iPz 0 0 0 0 0 0 0Px iP0 0 0 0 iPz �iPy 0 0 0 0Py 0 iP0 0 �iPz 0 iPx 0 0 0 0Pz 0 0 iP0 iPy �iPx 0 0 0 0 0
The fact that the algebra given by (2.65){(2.67) coincides with the algebraassociated with the Poincar�e group should not lead to the inference that L�� isnecessarily identical to J�� . All that is required is that both L�� and J�� satisfythe same algebra. Even the the P� appearing in (2.64) need not coincide withthe generators of spacetime translations. Nevertheless, as is customary, we willconcentrate on the algebraic aspect and will not explicitly di�erentiate betweenthese distinctions notationally. The distinction will be obvious, and emphasisedwhere necessary, from the physical context.This establishes the connection of the Poincar�e transformations f�; ag in theordinary spacetime and their e�ect in the Hilbert space of quantum mechanicalsystems determined by U(f�; ag). For a �nite Poincar�e transformation we have



23U(f�; ag) = exp �� i2���J�� + i��P�� : (2:68)We asked the question: What constraints does the requirement of Poincar�ecovariance impose on quantum mechanical states and physical observables? Thepartial answer to the questions is that physically acceptable quantum states musttransform under a Poincar�e transformation f�; ag asjstatei0 = exp �� i2���J�� + i��P�� jstatei: (2:69)While Eqs. (2.55) and (2.56) provide the Poincar�e transformation propertiesof the generators, J�� and P�; Eqs. (2.65){(2.67) give the Lie algebra associatedwith these transformations. In the Appendix we will �nd what invariants specifyphysical states, jstatei's.



243. (j; 0) � (0; j) COVARIANT SPINORS3.1 Boost for (j; 0)� (0; j) Covariant SpinorsWe begin with some useful de�nitions. Referring to Table II we note that thegenerators f ~J; ~Kg form a closed algebra. The Lie group generated by the genera-tors f ~J; ~Kg is called8 the \Lorentz group" and corresponds to the transformations(2.16) with a� set identically equal to zero. The term \representation" means agroup of linear operators which is homomorphic to the group to be represented.The space of vectors on which these operators act is a complex vector space, and iscalled the \representation space" (cf. Ref. [42]). An operator, constructed out ofthe generators of a group, which commutes with all generators of the Lie group iscalled a \Casimir operator" associated with the group. Eigenvalues of the Casimiroperators are called \Casimir invariants."As argued by Weinberg [21], and discussed in the Appendix here, we will seethat (with one exception, the scalar �eld) if one wishes to arrive at the parti-cle interpretation within the framework of Poincar�e covariant theory of quantumsystems, one is forced to incorporate necessarily non{unitary �nite dimensionalrepresentations of the Lorentz group. Since only unitary transformations of physi-cal states allow for a probabilistic interpretation, the representation spaces of �nitedimensional representations of the Lorentz group cannot be spanned by \physicalstates" de�ned via (2.69). The objects which span the �nite dimensional represen-tation spaces are called \matter �elds," or just \�elds." This last comment shouldnot lead anyone to conclude that matter �elds (Dirac spinors being one example)do not play a signi�cant physical role in the description of quantum systems. Infact much of this work is devoted to the study of these �elds, and extends Dirac'soriginal work on spin one half particles to any spin. Because of historical reasonsmatter �elds are also known as \covariant spinors."The set of generators f ~J; ~Kg span a linear vector space with ~J and ~K as thebasis vectors. The vector space of the generators should not be confused with8 Strictly speaking this is the \proper Lorentz group" because the generators f ~J; ~Kg refer tothe continuous spacetime transformations.



25the vector space (� representation space) on which the generators act. Since theLorentz group is \non-compact"9; all its �nite dimensional representations arenon{unitary according to a theorem in mathematics. To construct these �nitedimensional representations, we explicitly note the Lie algebra associated with theLorentz group [Ki; Ji] = 0; i = x; y; z (3:1)[Jx; Jy] = iJz; [Kx; Ky] = �iJz; [Jx; Ky] = iKz; [Kx; Jy] = iKz; (3:2)and \cyclic permutations". Next we implement the standard rotation10 by in-troducing a new basis: ~SR = 12( ~J + i ~K); ~SL = 12( ~J � i ~K): (3:3)The algebra associated with these generators reads:[(SR)i; (SL)j ] = 0; i; j = x; y; z: (3:4)[(SR)x; (SR)y] = i(SR)z; [(SL)x; (SL)y] = i(SL)z; (3:5)and \cyclic permutations."As a result we see that each of ~SR and ~SL satis�es the algebra of a SU(2)group. The �nite dimensional irreducible representations of the Lorentz groupare thus direct products of those for the sub-algebras SU(2)R and SU(2)L. The9 Ref. [53, p. 43]: \This corresponds roughly to the observation that velocities, which areparameters of Lorentz boosts, take on values along an open line, from v=c = 0 to v=c = 1,whereas angles of rotation extend from � = 0 to � = 2�, and these points are identi�ed, sothe line becomes a closed circle. The group space of the rotation group is �nite, but that ofthe Lorentz group is in�nite, so the Lorentz group is non{compact."10 The introduction of i � p�1, in the equations below, is a nontrivial construction, whichallows us to construct the �nite dimensional representations of the Lorentz group. Its intro-duction is ultimately justi�ed by experimental observation that at least some of these �nitedimensional representations are indeed physically realised in nature.



26(2jr + 1)(2jl + 1) irreducible representations of SU(2)R 
 SU(2)L are labelled bytwo numbers (jr; jl), jr(jr + 1) and jl(jl + 1) being the eigenvalues of the twoCasimir operators (~SR)2 and (~SL)2. The basis of (2jr + 1)(2jl + 1) dimensionalrepresentation space containing the relativistic covariant spinors can be written as�jr ;�r 
 �jl;�l ; (3:6)where: (~SR)2 �jr ;�r = jr(jr + 1) �jr ;�r ; (SR)z �jr;�r = �r �jr ;�r�r = jr; jr � 1; jr � 2; : : : ;�jr + 1;�jr : (3:7)(~SL)2 �jl;�l = jl(jl + 1) �jl;�l; (SL)z �jl;�l = �l �jl;�l�l = jl; jl � 1; jl � 2; : : : ;�jl + 1;�jl : (3:8)Since under Parity: (j; 0)$ (0; j), we introduce the (j; 0)�(0; j) covariant spinors CH(~p ) = 0B@�R(~p )�L(~p )1CA (3:9)
where �R(~p ) represents functions in the (j; 0) representation space, and �L(~p )represents functions in the (0; j) representation space.Before we proceed further the distinction between the �nite dimensional rep-resentation of f ~J; ~Kg and in�nite dimensional representations of f ~J; ~Kg should beexplicitly noted. For the (j; 0) representation ~K = �i ~J , since by de�nition for the(j; 0) representation ~SR = ~J and ~SL = 0. Similarly for the (0; j) representation~K = +i ~J . Covariant spinors for the Dirac �eld are the (1=2; 0)� (0; 1=2) matter�elds. For the (1=2; 0) component of the �eld ~K = �i~�=2 and for the (0; 1=2)component ~K = +i~�=2. As such both ~J� i ~K, i.e. both ~SR and ~SL, are hermitian.The same remains true for all other (j; 0) � (0; j) representations. On the other



27hand for the in�nite dimensional representations (in the jxi space), we have:Jx � �X�x = �i�y @@z � z @@y�...Kz � X�z = i�t @@z + z @@t� : (3:10)Both ~J and ~K, in the in�nite dimensional representation, are hermitian. Thismakes ~J � i ~K, and hence ~SR and ~SL, non-hermitian. Besides this observationthere is a profound di�erence between the �nite dimensional and the in�nite di-mensional representations, which is often not fully appreciated in the literature.This has to do with the following simple observation. The �nite dimensional~J 's, such as ~J = ~�=2 for the Dirac �eld, refer to the internal degrees of freedom,while the ~J 's of in�nite dimensional representation refer to the external spacetimedegrees of freedom (that is they are interpreted as orbital angular momentum).Because of this simple fact even though both the �nite and in�nite dimensionalrepresentation ~SR;L and ~J all satisfy the standard SU(2) commutation relations,their commutation properties with the generators of spacetime translations arevery di�erent. For the in�nite dimensional representations the full commutationrelations are summarized in Table III. The same commutation relations for the�nite dimensional representations are displayed in Table IV. For the purposes ofcomparison, the Poincar�e algebra given by (2.65){(2.67) is presented in a sim-ilar format in Table V. The di�erence between �nite dimensional ~S's and thein�nite dimensional ~S's is apparent. Also the commutation relations of in�nitedimensional ~S's and in�nite dimensional ~J , both of which satisfy the same SU(2)algebra, should be explicitly observed in reference to their commutation relationswith P�.



28TABLE IIILie algebra associated with the generators of the in�nite dimensional represen-tations of SU(2)R, SU(2)L and the generators of the spacetime translations. [Gen-erator in the �rst vertical column , Generator in the �rst horizontal row]=Entryat the intersection. For example: [SRx ; Py] = i2Pz.SRx SRy SRz SLx SLy SLz P0 Px Py PzSRx 0 iSRz �iSRy 0 0 0 12Px 12P0 i2Pz �i2 PySRy �iSRz 0 iSRx 0 0 0 12Py � i2Pz 12P0 i2PxSRz iSRy �iSRx 0 0 0 0 12Pz i2Py � i2Px 12P0SLx 0 0 0 0 iSLz �iSLy �12Px �12P0 i2Pz � i2PySLy 0 0 0 �iSLz 0 iSLx �12Py � i2Pz �12P0 i2PxSLz 0 0 0 iSLy �iSLx 0 �12Pz i2Py � i2Px �12P0P0 �12Px �12Py �12Pz 12Px 12Py 12Pz 0 0 0 0Px �12P0 i2Pz � i2Py 12P0 i2Pz � i2Py 0 0 0 0Py � i2Pz �12P0 i2Px � i2Pz 12P0 i2Px 0 0 0 0Pz i2Py � i2Px �12P0 i2Py � i2Px 12P0 0 0 0 0



29TABLE IVLie algebra associated with the generators of the �nite dimensional representationsof SU(2)R, SU(2)L and the generators of the space time translations. [Generatorin the �rst vertical column , Generator in the �rst horizontal row]=Entry at theintersection. For example: [SRx ; Py] = 0.SRx SRy SRz SLx SLy SLz P0 Px Py PzSRx 0 iSRz �iSRy 0 0 0 0 0 0 0SRy �iSRz 0 iSRx 0 0 0 0 0 0 0SRz iSRy �iSRx 0 0 0 0 0 0 0 0SLx 0 0 0 0 iSLz �iSLy 0 0 0 0SLy 0 0 0 �iSLz 0 iSLx 0 0 0 0SLz 0 0 0 iSLy �iSLx 0 0 0 0 0P0 0 0 0 0 0 0 0 0 0 0Px 0 0 0 0 0 0 0 0 0 0Py 0 0 0 0 0 0 0 0 0 0Pz 0 0 0 0 0 0 0 0 0 0



30TABLE VLie algebra associated with the generators of the in�nite dimensional representa-tions of the Poincar�e group [Generator in the �rst vertical column , Generator inthe �rst horizontal row]=Entry at the intersection. For example: [Jx; Py] = iPz.Kx Ky Kz Jx Jy Jz P0 Px Py PzKx 0 �iJz �iJy 0 iKz �iKy �iPx �iP0 0 0Ky iJz 0 �iJx �iKz 0 iKx �iPy 0 �iP0 0Kz iJy iJx 0 iKy �iKx 0 �iPz 0 0 �iP0Jx 0 iKz �iKy 0 iJz �iJy 0 0 iPz �iPyJy �iKz 0 iKx �iJz 0 iJx 0 �iPz 0 iPxJz iKy �iKx 0 iJy �iJx 0 0 iPy �iPx 0P0 iPx iPy iPz 0 0 0 0 0 0 0Px iP0 0 0 0 iPz �iPy 0 0 0 0Py 0 iP0 0 �iPz 0 iPx 0 0 0 0Pz 0 0 iP0 iPy �iPx 0 0 0 0 0
Now if we wish to represent say �j=3=2(1232) by a (3=2; 0)�(0; 3=2) relativisticcovariant spinor we implicitly assume that the j = 3=2 belongs entirely to theinternal degrees of freedom (i.e. quark spins) and does not contain in it any orbitalangular momentum. Even though, in the present paper, we would treat the \spin"of the resonances as if it were an internal degree of freedom in the above sense, itmust be remembered explicitly that this is in, general, only an approximation. Itwill be an interesting exercise to develop appropriate experimental means and theassociated theoretical formalism to decompose the \j" of a given11 resonance intoorbital and internal part. For example a reference to Tables IV and V immediatelytells us that if we were to �rst rotate a jstatei with an orbital angular momentum11 To fully explore this problem one needs a to extend the present work to relativistic compositeparticles.



31about the x-axis and then translate it in the y-direction and compare the resultingjstatei with the same operations interchanged then the two resulting jstatei's neednot be identical. On the other hand, if orbital angular momentum is replaced bythe internal angular momentum (i.e. arising from the spin) in a similar systemthe above experiment would yield identical jstatei's after performing the indicatedoperations in two di�erent orders.Having laid this background, we now proceed with the construction of the(j; 0) � (0; j) boost operator. Since we are interested in constructing the boostoperator we set ~� = ~0. Then if we consider the particle under considerationto be at rest in the unprimed frame, a Lorentz boost results in a particle withmomentum ~p. The boost connecting the ~p = ~0 wavefunctions with ~p 6= 0 arereadily obtained. From a formal point of view the matter �elds also transform asthe physical jstatei's (see Eq. (2.69)), but with one di�erence. That the J�� isreplaced by its �nite dimensional counterpart and the unitary operator U(f�; ag)is replaced by the non-unitary D(f�; ag) satisfying the same condition of thePoincar�e covariant description:D(f�; ag)D(f�; ag) = D(f��;�a+ ag): (3:11)Then consistent with de�nitions given in Table I we obtain:�R(~p ) = exp[ ~J � ~'] �R(~0) (3:12)�L(~p ) = exp[� ~J � ~'] �L(~0): (3:13)As a consequence, the \chiral representation"12 (j; 0)� (0; j) relativistic covariantspinors de�ned by (3.9)transform as: CH(~p ) = 0B@ exp( ~J � ~') 00 exp(� ~J � ~')1CA CH(~0): (3:14)To make identi�cations with the historical work for (1=2; 0) � (0; 1=2) Dirac12 We call this representation \chiral representation" because for j = 1=2 the representationcoincides with the \chiral" representation of the Dirac spin one half formalism.



32covariant spinors it is convenient to introduce a \canonical representation". Theconnecting matrix A is given by CA(~p ) = A  CH(~p ); A = 1p2  I II �I ! : (3:15)Each entry I in the matrix A represents a (2j + 1) � (2j + 1) identity matrix,and one is still free13 to choose any representations for the Ji. In the canonicalrepresentation covariant spinors are CA(~p ) = 1p2 0B@�R(~p ) + �L(~p )�R(~p )� �L(~p )1CA : (3:16)Referring to (3.14), we identify the chiral representation boost matrix asMCH(~p ) = 0B@ exp( ~J � ~') 00 exp(� ~J � ~')1CA : (3:17)As a result the boost matrix in the canonical representation readsMCA(~p ) = 0B@ cosh( ~J � ~') sinh( ~J � ~')sinh( ~J � ~') cosh( ~J � ~')1CA : (3:18)
If ~J is set equal to ~�=2 the boost matrix given by (3.18)coincides with theboost for Dirac spinors in the standard Bjorken and Drell [52] representation.MCA(~p ) contains all the essential information needed to construct any (j; 0)�(0; j)relativistic covariant spinor. This we now show by an explicit example.13 We will �x this freedom in the next section by choosing a representation in which Jz isdiagonal. This will de�ne the \canonical representation" without ambiguity. If one wishes,one may call the canonical representation with Jz diagonal to be the standard canonicalrepresentation, thus leaving the freedom for other \canonical" representations.



333.2 (1; 0)� (0; 1) Covariant SpinorsThe representation space of the (1; 0)� (0; 1) matter �elds is a six dimensionalinternal space whose basis vectors in the canonical representation can be chosento be
u+1(~0) = 0BBBBBBBBB@

m00000
1CCCCCCCCCA ; u0(~0) = 0BBBBBBBBB@

0m0000
1CCCCCCCCCA ; u�1(~0) = 0BBBBBBBBB@

00m000
1CCCCCCCCCA ;

v+1(~0) = 0BBBBBBBBB@
000m00
1CCCCCCCCCA ; v0(~0) = 0BBBBBBBBB@

0000m0
1CCCCCCCCCA ; v�1(~0) = 0BBBBBBBBB@

00000m
1CCCCCCCCCA : (3:19)

The indicated norm is dictated by the convenience introduced while consideringthe m! 0 limit. This choice of the basis vectors, and the interpretation attachedto them that u�(~0) represents a particle at rest with the z-component of its spin tobe � (� = 0;�1) and v�(~0) represent the antiparticle at rest with the z-componentof its spin to be �, forces upon us the representation for the angular momentumoperators ~J . It requires that Jz be diagonal. So in the canonical representationJi can be written as follows (see ref. [50] for the notational details)
Jx = 1p20B@ 0 1 01 0 10 1 01CA ; Jy = 1p2 0B@ 0 �i 0i 0 �i0 i 0 1CA ; Jz = 0B@ 1 0 00 0 00 0 �11CA : (3:20)The boost matrix MCA(~p ) takes the relativistic covariant spinor of a particleat rest,  CA(~0), to  CA(~p ), the relativistic covariant spinor of the same particle



34with momentum ~p:  CA(~p ) =MCA(~p )  CA(~0): (3:21)The cosh( ~J � ~') which appears in the covariant spinor boost matrix14 (3.18) canbe expanded to yieldcosh( ~J � ~') = cosh�2 ~J � ~'2� = 1 + 2( ~J � p̂ )( ~J � p̂ ) sinh2 �'2� (3:22)Now we note that sinh �'2� = �E �m2m � 12 ; (3:23)and ~J � p̂ = 1j~pj ~J � ~p = 1(E2 �m2) 12 (Jxpx + Jypy + Jzpz) : (3:24)Substituting for Ji from (3.20) the matrix ~J � p̂ reads
~J � p̂ = 1(E2 �m2) 12 0BBBBBBB@

pz 1p2(px � ipy) 01p2(px + ipy) 0 1p2(px � ipy)0 1p2(px + ipy) �pz
1CCCCCCCA : (3:25)

Introducing p� � px � ipy; (3:26)and using the just obtained results and identities, we obtain
cosh( ~J � ~') = 1 + 1m(E +m) 0BBBBBBB@

p2z + 12p+p� 1p2pzp� 12p2�1p2pzp+ p+p� � 1p2pzp�12p2+ � 1p2pzp+ p2z + 12p+p�
1CCCCCCCA : (3:27)

Similarly sinh( ~J � ~') which appears in the boost matrix for the covariant spinors14 See the last section of the Appendix for general expansions of cosh( ~J � ~') and sinh( ~J � ~')



35(3.18) can be expanded assinh( ~J � ~') = sinh�2 ~J � ~'2� = 2( ~J � p̂ ) cosh�'2� sinh�'2� : (3:28)We have already obtained the explicit expression for ~J � p̂, so we only need to notethat cosh�'2� = �E +m2m � 12 : (3:29)This yields: sinh( ~J � ~') = 1m 0BBBBBBB@
pz 1p2p� 01p2p+ 0 1p2p�0 1p2p+ �pz

1CCCCCCCA : (3:30)
Substituting sinh( ~J � ~') and cosh( ~J � ~') into (3.18) provides the speci�c boostfor the (1; 0)� (0; 1) covariant spinors M (1;0)�(0;1)CA (~p ). The (1; 0)� (0; 1) covariantspinors, in the canonical representation, associated with momentum ~p, are now im-mediately calculated by using M (1;0)�(0;1)CA (~p ) thus obtained and using (3.21) with CA(~0) = u�(~0); v�(~0) given by (3.19). The result is:
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u+1(~p ) =
0BBBBBBBBBBBBBBBBBBBBBBB@

m+ �(2p2z + p+p�)=2(E +m)�pzp+=p2(E +m)p2+=2(E +m)pzp+=p20

1CCCCCCCCCCCCCCCCCCCCCCCA
; (3:31)

u0(~p ) =
0BBBBBBBBBBBBBBBBBBBBBBB@

pzp�=p2(E +m)m+ [p+p�=(E +m)]�pzp+=p2(E +m)p�=p20p+=p2

1CCCCCCCCCCCCCCCCCCCCCCCA
; (3:32)
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u�1(~p ) =
0BBBBBBBBBBBBBBBBBBBBBBB@

p2�=2(E +m)�pzp�=p2(E +m)m+ �(2p2z + p+p�)=2(E +m)�0p�=p2�pz

1CCCCCCCCCCCCCCCCCCCCCCCA
; (3:33)

v+1(~p ) =
0BBBBBBBBBBBBBBBBBBBBBBB@

pzp+=p20m+ �(2p2z + p+p�)=2(E +m)�pzp+=p2(E +m)p2+=2(E +m)

1CCCCCCCCCCCCCCCCCCCCCCCA
; (3:34)
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v0(~p ) =
0BBBBBBBBBBBBBBBBBBBBBBB@

p�=p20p+=p2pzp�=p2(E +m)m+ [p+p�=(E +m)]�pzp+=p2(E +m)

1CCCCCCCCCCCCCCCCCCCCCCCA
; (3:35)

v�1(~p ) =
0BBBBBBBBBBBBBBBBBBBBBBB@

0p�=p2�pzp2�=2(E +m)�pzp�=p2(E +m)m+ �(2p2z + p+p�)=2(E +m)�

1CCCCCCCCCCCCCCCCCCCCCCCA
: (3:36)



39The reader may wish to verify that this procedure when repeated with ~J = ~�=2reproduces the standard Dirac spinors. All other (j; 0) � (0; j) covariant spinorsare obtained by following exactly the same procedure as above and using theappropriate identities given in the last section of the Appendix for the expansionof sinh( ~J � ~') and cosh( ~J � ~') which appear in (3.18).Orthonormality of Relativistic (1; 0)� (0; 1) covariant spinors:Introducing u�(~p ) = uy�(~p )
CA00 ; (3:37)where (see Eq. (7.1)) 
CA00 =  I 00 �I ! ; (3:38)it is readily veri�ed that u�(~p ) u�0(~p ) = m2���0 (3:39)v�(~p ) v�0(~p ) = �m2���0: (3:40)Ultrarelativistic or Massless Limit:Since we have chosen to work in a representation in which Jz is diagonal weexpect that, for a particle traveling along the ẑ axis, only the u�1(~p ) and v�1(~p )to survive. The u0(~p ) and v0(~p ) must vanish. In this ultrarelativistic or m ! 0limit: p� = (E; 0; 0; p = E). Substituting p� = (E; 0; 0; p = E) in the (1; 0)� (0; 1)wave functions given by (3.31){(3.36) we readily see that:
limm!0u+1(~p ) =

0BBBBBBBBB@
E00E00
1CCCCCCCCCA ; limm!0u0(~p ) =

0BBBBBBBBB@
000000
1CCCCCCCCCA ; limm!0u�1(~p ) =

0BBBBBBBBB@
00E00�E
1CCCCCCCCCA ; (3:41)



40with limm!0u�(E) u�(E) = 0: (3:42)Similarly,
limm!0 v+1(~p ) =

0BBBBBBBBB@
E00E00
1CCCCCCCCCA ; limm!0 v0(~p ) =

0BBBBBBBBB@
000000
1CCCCCCCCCA ; limm!0u�1(~p ) =

0BBBBBBBBB@
00�E00E
1CCCCCCCCCA ; (3:43)

with limm!0 v�(E) v�(E) = 0: (3:44)In the ultrarelativistic limit we thus see that we get only two non{null independentu�1(E) and two non{null independent v�1(E) . The u0(E) and v0(E) vanishidentically. While u+1(E) and v+1(E) are identical, the u�1(E) v�1(E) di�er bya relative phase of exp(i�).3.3 (3=2; 0)� (0; 3=2) Covariant SpinorsFor various spin 3=2 baryons [3], such as � 32 (1232), we now introduce (3=2; 0)�(0; 3=2) covariant spinors. As for all (j; 0)� (0; j) covariant spinors, these covari-ant spinors for spin 3=2 have exactly the right degrees of spinorial and parti-cle/antiparticle degrees of freedom, and have an elegance and general structure�rst seen in the Dirac spinors.The canonical representation (3=2)� (0; 3=2) covariant spinors are obtained ina similar fashion as the (1; 0)� (0; 1) covariant spinors obtained in the last section.To obtain the boostM j=3=2CA (~p ) = 0B@ cosh( ~J � ~') sinh( ~J � ~')sinh( ~J � ~') cosh( ~J � ~')1CA : (3:45)



41we �rst note that Eqs. (B.3) and (B.4) for j = 3=2 yield:cosh(2 ~J � ~') = cosh'hI + 12�(2 ~J � p̂ )2 � I	 sinh2 'i; (3:46)
sinh(2 ~J � ~') = (2 ~J � p̂ ) sinh'hI + 16�(2 ~J � p̂ )2 � I	 sinh2 'i; (3:47)Next letting '! 12' (3:48)and using the identities sinh '2 = �E �m2m �1=2 (3:49)

cosh '2 = �E +m2m �1=2 (3:50)
2 ~J � p̂ = 2 ~J � ~pj~pj = 2 ~J � ~p(E2 �m2)1=2 ; (3:51)we obtain the desired expansions for the canonical representation boost. Theseexpansions are:cosh( ~J � ~') = �E +m2m �1=2 "I + 12 ( (2 ~J � ~p )2(E2 �m2) � I)�E �m2m �# (3:52)

sinh( ~J � ~') =�E +m2m �1=2 " 2 ~J � ~p(E +m) + 16 2 ~J � ~p(E +m) ( (2 ~J � ~p )2(E2 �m2) � I)�E �m2m �# : (3:53)These expansions when substituted in Eq. (3.45) provide the boost for the



42(3=2; 0) � (0; 3=2) covariant spinors. The boost matrix M j=3=2CA (~p ) takes the rel-ativistic covariant spinor of a particle at rest,  CA(~0), to  CA(~p ), the covariantspinor of the same particle with momentum ~p: j=3=2CA (~p ) =M j=3=2CA (~p )  j=3=2CA (~0): (3:54)In order that in the m! 0 limit(i) The rest covariant spinors vanish, and(ii) The m! 0 limit covariant spinors have a non{singular normwe choose the following rest covariant spinors:
u+ 32 (~0) =

0BBBBBBBBBBBBBBB@
m3=20000000

1CCCCCCCCCCCCCCCA ; u+ 12 (~0) =
0BBBBBBBBBBBBBBB@

0m3=2000000
1CCCCCCCCCCCCCCCA ; u� 12 (~0) =

0BBBBBBBBBBBBBBB@
00m3=200000
1CCCCCCCCCCCCCCCA ;

u� 32 (~0) =
0BBBBBBBBBBBBBBBBBB@

000m3=200000

1CCCCCCCCCCCCCCCCCCA
;



43
v+ 32 (~0) =

0BBBBBBBBBBBBBBB@
0000m3=2000
1CCCCCCCCCCCCCCCA ; v+ 12 (~0) =

0BBBBBBBBBBBBBBB@
00000m3=200
1CCCCCCCCCCCCCCCA ; v� 12 (~0) =

0BBBBBBBBBBBBBBB@
000000m3=20
1CCCCCCCCCCCCCCCA ;

v� 32 (~0) =
0BBBBBBBBBBBBBBB@

0000000m3=2
1CCCCCCCCCCCCCCCA :

(3:55)

If the usual interpretation is to be attached to these covariant spinors, then wemust choose a representation for the spin 3=2 Ji in which Jz is diagonal. In thisrepresentation ~J is:Jx = 120BBBB@ 0 p3 0 0p3 0 2 00 2 0 p30 0 p3 0
1CCCCA ; Jy = 12 0BBBB@ 0 �ip3 0 0ip3 0 �2i 00 2i 0 �ip30 0 ip3 0

1CCCCA ;
Jz = 120BBBB@ 3 0 0 00 1 0 00 0 �1 00 0 0 �3

1CCCCA : (3:56)The rest of the calculation15 simply involves substituting these Ji into Eqs. (3.52)15 We have performed this part of the calculation using MACSYMA.



44and (3.53), and the resulting block matrices into Eq. (3.45). The resulting boostM j=3=2CA (~p ), in the form of a 8� 8 matrix, when applied to the basis rest covariantspinors (3.55) yields the (3=2; 0) � (0; 3=2) covariant spinors. The \particle"covariant spinors are:u+ 32 (~p ) =m 12 �E +m2m � 12

�

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

(9p2z + 3p+p� + 5m2 + 4Em�E2)=4(m+E)p3p+pz=(m+E)p3p2+=2(m+ E)0pz(9p2z + 7p+p� + 13m2 + 12Em�E2)=4(m+ E)2p3p+(13p2z + 7p+p� + 13m2 + 12Em� E2)=12(m+ E)2p3p2+pz=2(m+ E)2p3+=2(m+ E)2

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

;

(3:57)



45
u+ 12 (~p ) =m 12 �E +m2m � 12

�

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

p3p�pz=(m+E)(p2z + 7p+p� + 5m2 + 4Em� E2)=4(m+ E)0p3p2+=2(m+ E)p3p�(13p2z + 7p+p� + 13m2 + 12Em� E2)=12(m+ E)2pz(p2z + 19p+p� + 13m2 + 12Em� E2)=12(m+ E)2p+(p2z + 10p+p� + 13m2 + 12Em� E2)=6(m+ E)2�p3p2+pz=2(m+E)2

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

;

(3:58)
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u� 12 (~p ) =m 12 �E +m2m � 12

�

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

p3p2�=2(m+ E)0(p2z + 7p+p� + 5m2 + 4Em� E2)=4(m+ E)�p3p+pz=(m+ E)p3p2�pz=2(m+ E)2p�(p2z + 10p+p� + 13m2 + 12Em�E2)=6(m+E)2�pz(p2z + 19p+p� + 13m2 + 12Em�E2)=12(m+E)2p3p+(13p2z + 7p+p� + 13m2 + 12Em� E2)=12(m+ E)2

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

;

(3:59)
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u� 32 (~p ) =m 12 �E +m2m � 12

�

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

0p3p2�=2(m+ E)�p3p�pz=(m+E)(9p2z + 3p+p� + 5m2 + 4Em�E2)=4(m+ E)p3�=2(m+ E)2�p3p2�pz=2(m+ E)2p3p�(13p2z + 7p+p� + 13m2 + 12Em� E2)=12(m+ E)2�pz(9p2z + 7p+p� + 13m2 + 12Em�E2)=4(m+ E)2

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

:

(3:60)Here p� = px � ipy: (3:61)An inspection of the boost given by Eq. (3.45) immediately tells us that fourv�(~p )0s are now readily obtained by 
ipping the four bottom elements with the



48four top elements of the respective u�(~p )0s. That is:v�(~p ) = F u�(~p ); (3:62)where the \
ipping matrix" is F =  0 II 0! (3:63)In general the matrix I, appearing in F , is a (2j + 1)� (2j + 1) identity matrix.Hence for the spin 3=2 case under consideration I = 4� 4 identity matrix.Orthonormality of Relativistic (3=2; 0)� (0; 3=2) covariant spinors:From Eq. (4.43) (See Sec. 4.4 below) we read o�:
CH000 =  0 II 0! ; I = 4� 4 identity matrix: (3:64)The canonical representation 
CA000 is, by de�nition:
CA000 = A 
CH000 A�1 =  I 00 �I ! ; A = 1p2  I II �I ! : (3:65)Introducing (in canonical representation)u�(~p ) = uy�(~p )
CA000 ; (3:66)it is readily veri�ed16 that u�(~p ) u�0(~p ) = m3���0 (3:67)v�(~p ) v�0(~p ) = �m3���0 (3:68)In the canonical representation the origin of the \minus" sign in the rhs of theorthonormality condition (3.68) can be readily traced back to the structure of 
000,16 Using MACSYMA.



49and the fact that v�(~p ) are obtained (due to the structure of M(~p ), given by Eq.(3.45)) from the v�(~p ) via the 
ipping matrix F. Symbolically:u �  ab! ; u � ( a� b� ) I 00 �I ! = ( a� �b� ) (3:69)Hence u u � a�a� b�b: (3:70)Next v � F u) v = ( b a )) v v � b�b� a�a = �u u; QED: (3:71)We suspect that the (relative) minus sign in the rhs of the orthonormality relations(3.67) and (3.68) is essential for the existence of the conserved charge constructedout of  (x) for massive particles.Ultrarelativistic or Massless Limit:Since we have chosen to work in a representation in which Jz is diagonal,we expect that for a particle traveling along the ẑ axis, only the u� 32 (~p ) andv� 32 (~p ) to survive. The u� 12 (~p ) and v� 12 (~p ) must vanish. In this ultrarelativisticor m ! 0 limit: p� = (E; 0; 0; p = E). Substituting p� = (E; 0; 0; p = E) in the(3=2; 0)� (0; 3=2) wave functions we readily see that:
limm!0u+ 32 (~p ) = p2E 32

0BBBBBBBBBBBBBBB@
10001000
1CCCCCCCCCCCCCCCA ; limm!0u+ 12 (~p ) =

0BBBBBBBBBBBBBBB@
00000000
1CCCCCCCCCCCCCCCA (3:72)
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limm!0u� 12 (~p ) =

0BBBBBBBBBBBBBBB@
00000000
1CCCCCCCCCCCCCCCA ; limm!0u� 32 (~p ) = p2E 32

0BBBBBBBBBBBBBBB@
0001000�1
1CCCCCCCCCCCCCCCA ; (3:73)

with limm!0u�(E) u�(E) = 0: (3:74)Similarly
limm!0 v+ 32 (~p ) = p2E 32

0BBBBBBBBBBBBBBB@
10001000
1CCCCCCCCCCCCCCCA ; limm!0 v+ 12 (~p ) =

0BBBBBBBBBBBBBBB@
00000000
1CCCCCCCCCCCCCCCA ; (3:75)

limm!0 v� 12 (~p ) =
0BBBBBBBBBBBBBBB@
00000000
1CCCCCCCCCCCCCCCA ; limm!0 v� 32 (~p ) = p2E 32

0BBBBBBBBBBBBBBB@
000�10001
1CCCCCCCCCCCCCCCA ; (3:76)

with limm!0 v�(E) v�(E) = 0: (3:77)



51In the ultrarelativistic limit we thus see that we get only two non{null independentu� 32 (E) and two non{null independent v� 32 (E) . The u� 12 (E) and v� 12 (E) vanishidentically. While u+ 32 (E) and v+ 32 (E) are identical the u� 32 (E) v� 32 (E) di�er bya relative phase of exp(i�).3.4 (2; 0)� (0; 2) Covariant SpinorsFor various spin 2 mesons, such as f2(1720), we now present the relativistic(2; 0)� (0; 2) covariant spinors. Again, the formal elegance is evident.In order to calculate the (2; 0) � (0; 2) covariant spinors we follow the nowfamiliar procedure. The boost is:M j=2CA (~p ) = 0B@ cosh( ~J � ~') sinh( ~J � ~')sinh( ~J � ~') cosh( ~J � ~')1CA : (3:78)with ~J Jx = 0BBBBBBB@
0 1 0 0 01 0 p3=2 0 00 p3=2 0 p3=2 00 0 p3=2 0 10 0 0 1 0

1CCCCCCCA ;
Jy = 0BBBBBBB@

0 �i 0 0 0i 0 �ip3=2 0 00 ip3=2 0 �ip3=2 00 0 ip3=2 0 �i0 0 0 i 0
1CCCCCCCA ;

Jz = 0BBBBBBB@
2 0 0 0 00 1 0 0 00 0 0 0 00 0 0 �1 00 0 0 0 �2

1CCCCCCCA (3:79)
The expansions for cosh( ~J � ~') and sinh( ~J � ~') are now obtained from Eqs. (A406)



52and (A407), and read:cosh( ~J � ~') = I + ( ~J � ~p )2m(m+ E) + 16 ( ~J � ~p )2(( ~J � ~p )2 � ~p 2)m2(m+E)2 (3:80)sinh( ~J � ~') = ~J � ~pm + 13 ~J � ~p (( ~J � ~p )2 � ~p 2)m2(m+ E) (3:81)With Jz diagonal and the requirements that the \rest" covariant spinors vanishin the m ! 0 limit and that the covariant spinors for massless particles (thosecorresponding to the ultrarelativistic limit) have a non{singular norm, we choosethe following basis of rest covariant spinors:
u+2(~0) =

0BBBBBBBBBBBBBBBBBBBB@

m2000000000

1CCCCCCCCCCCCCCCCCCCCA
; u+1(~0) =

0BBBBBBBBBBBBBBBBBBBB@

0m200000000

1CCCCCCCCCCCCCCCCCCCCA
; u0(~0) =

0BBBBBBBBBBBBBBBBBBBB@

00m20000000

1CCCCCCCCCCCCCCCCCCCCA
; u�1(~0) =

0BBBBBBBBBBBBBBBBBBBB@

000m2000000

1CCCCCCCCCCCCCCCCCCCCA
;

u�2(~0) =
0BBBBBBBBBBBBBBBBBBBB@

0000m200000

1CCCCCCCCCCCCCCCCCCCCA
; (3:82)
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v+2(~0) =

0BBBBBBBBBBBBBBBBBBBB@

00000m20000

1CCCCCCCCCCCCCCCCCCCCA
; v+1(~0) =

0BBBBBBBBBBBBBBBBBBBB@

000000m2000

1CCCCCCCCCCCCCCCCCCCCA
; v0(~0) =

0BBBBBBBBBBBBBBBBBBBB@

0000000m200

1CCCCCCCCCCCCCCCCCCCCA
; v�1(~0) =

0BBBBBBBBBBBBBBBBBBBB@

00000000m20

1CCCCCCCCCCCCCCCCCCCCA
;

v�2(~0) =
0BBBBBBBBBBBBBBBBBBBB@

000000000m2

1CCCCCCCCCCCCCCCCCCCCA
: (3:83)

With this skeleton of details, we now write down the (2; 0)� (0; 2). The readerwho has gone through the construction of the (1; 0) � (0; 1) and the (3=2; 0) �(0; 3=2) covariant spinors would simply �nd any further details unnecessary.
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u+2(~p ) =

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

(8p4z + 8(p�p+ + 2m2 + 2Em)p2z + p2�p2++4m(m+ E)p�p++4m2(m+ E)2)=4(m+ E)2(4p+p3z + (3p�p2+ + 6m(m+ E)p+)pz)=2(m+ E)2p6(2p2+p2z + p�p3+ + 2m(m+ E)p2+)=4(m+E)2p3+pz=2(m+ E)2p4+=4(m+ E)2(2p3z + (p�p+ + 2m2 + 2Em)pz)=(m+ E)(4p+p2z + p�p2+ + 2m(m+ E)p+)=2(m+ E)p6 p2+pz=2(m+ E)p3+=2(m+E)0

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

(3:84)
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u+1(~p ) =

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

(4p�p3z + 3(p2�p+ + 2m(m+ E)p�)pz)=2(m+E)2(2(2p�p+ +m2 + Em)p2z + 2p2�p2+ + 5m(m+ E)p�p++2m2(m+ E)2)=2(m+ E)2p6(p�p2+ +m(m+E)p+)pz=2(m+ E)2(2p�p3+ + 3m(m+E)p2+)=2(m+ E)2�p3+pz=2(m+E)2(4p�p2z + p2�p+ + 2m(m+ E)p�)=2(m+E)(2p�p+ +m(m+ E))pz=(m+E)p6(p�p2+ +m(m+E)p+)=2(m+ E)0p3+=2(m+E)

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

(3:85)
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u0(~p ) =

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

p6(2p2�p2z + p3�p+ + 2m(m+ E)p2�)=4(m+ E)2p6(p2�p+ +m(m+ E)p�)pz=2(m+ E)2(3p2�p2+ + 6m(m+E)p�p+ + 2m2(m+E)2)=2(m+E)2�p6(p�p2+ +m(m+E)p+)pz=2(m+ E)2p6(2p2+p2z + p�p3+ + 2m(m+ E)p2+)=4(m+E)2p6p2�pz=2(m+ E)p6(p2�p+ +m(m+ E)p�)=2(m+E)0p6(p�p2+ +m(m+E)p+)=2(m+ E)�p6p2+pz=2(m+ E)

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

(3:86)
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u�1(~p ) =

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

p3�pz=2(m+E)2(2p3�p+ + 3m(m+ E)p2�)=2(m+E)2�p6(p2�p+ +m(m+E)p�)pz=2(m+E)2(2(2p�p+ +m2 + Em)p2z + 2p2�p2+ + 5m(m+ E)p�p++2m2(m+ E)2)=2(m+ E)2�(4p+p3z + 3(p�p2+ + 2m(m+ E)p+)pz=2(m+E)2p3�=2(m+ E)0p6(p2�p+ +m(m+ E)p�)=2(m+E)�(2p�p+ +m(m+E))pz=(m+ E)(4p+p2z + p�p2+ + 2m(m+ E)p+)=2(m+ E)

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

(3:87)
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u�2(~p ) =

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

p4�=4(m+ E)2�p3�pz=2(m+ E)2p6(2p2�p2z + p3�p+ + 2m(m+ E)p2�)=4(m+ E)2�(4p�p3z + 3(p2�p+ + 2m(m+E)p�)pz)=2(m+E)2(8p4z + 8(p�p+ + 2m(m+E))p2z + p2�p2+ + 4m(m+ E)p�p++4m2(m+ E)2)=4(m+ E)20p3�=2(m+ E)�p6p2�pz=2(m+ E)(4p�p2z + p2�p+ + 2m(m+ E)p�)=2(m+E)�(2p3z + (p�p+ + 2m(m+ E))pz)=(m+E)

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

(3:88)



59The \antiparticle" covariant spinors arev�(~p ) = F u�(~p ); (3:89)where the \
ipping matrix" isF =  0 II 0! ; I = 5� 5 unit matrix: (3:90)Using MACSYMA we obtain the expected orthonormality properties:u�(~p ) u�0(~p ) = m4 ���0 (3:91)v�(~p ) v�0(~p ) = �m4 ���0: (3:92)Where u�(~p ) = uy�(~p )
CA0000 ; (3:93)
CA0000 =  I 00 �I ! ; I = 5� 5 unit matrix: (3:94)
Ultrarelativistic or Massless Limit:Since we have chosen to work in a representation in which Jz is diagonal, weexpect that for a particle traveling along the ẑ axis, only the u�2(~p ) and v�2(~p ) tosurvive. In the u�1;0(~p ) and v�1;0(~p ) must vanish. The ultrarelativistic or m! 0limit: p� = (E; 0; 0; p = E). Substituting p� = (E; 0; 0; p = E) in the (2; 0)� (0; 2)



60wave functions given by (76a-e) we readily see that:
limm!0u+2(~p ) = 2E2

0BBBBBBBBBBBBBBBBBBBB@

1000010000

1CCCCCCCCCCCCCCCCCCCCA
;

limm!0u+1(~p ) =
0BBBBBBBBBBBBBBBBBBBB@

0000000000

1CCCCCCCCCCCCCCCCCCCCA
; limm!0u0(~p ) =

0BBBBBBBBBBBBBBBBBBBB@

0000000000

1CCCCCCCCCCCCCCCCCCCCA
; limm!0u�1(~p ) =

0BBBBBBBBBBBBBBBBBBBB@

0000000000

1CCCCCCCCCCCCCCCCCCCCA
;

limm!0u�2(~p ) = 2E2
0BBBBBBBBBBBBBBBBBBBB@

000010000�1

1CCCCCCCCCCCCCCCCCCCCA
; (3:95)



61with limm!0u�(E) u�0(E) = 0: (3:96)Similarly:
limm!0 v+2(~p ) = 2E2

0BBBBBBBBBBBBBBBBBBBB@

1000010000

1CCCCCCCCCCCCCCCCCCCCA
;

limm!0 v+1(~p ) =
0BBBBBBBBBBBBBBBBBBBB@

0000000000

1CCCCCCCCCCCCCCCCCCCCA
; limm!0 v0(~p ) =

0BBBBBBBBBBBBBBBBBBBB@

0000000000

1CCCCCCCCCCCCCCCCCCCCA
; limm!0 v�1(~p ) =

0BBBBBBBBBBBBBBBBBBBB@

0000000000

1CCCCCCCCCCCCCCCCCCCCA
;
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limm!0 v�2(~p ) = 2E2

0BBBBBBBBBBBBBBBBBBBB@

0000�100001

1CCCCCCCCCCCCCCCCCCCCA
; (3:97)

with limm!0 v�(E) v�0(E) = 0: (3:98)In the ultrarelativistic limit we thus see that we get only two non{null independentu�2(E) and two non{null independent v�2(E) . The u�1;0(E) and v�1;0(E) vanishidentically. While u+2(E) and v+2(E) are identical the u�2(E) v�2(E) di�er by arelative phase of exp(i�).



634. WAVE EQUATIONS SATISFIED BY(j; 0) � (0; j) COVARIANT SPINORS4.1 General Coupled Equations Satisfied by (j; 0)� (0; j) CovariantSpinorsWe begin with a simple observation that the (j; 0)�(0; j) relativistic covariantspinors have been obtained purely from group theoretical considerations and notas solutions of speci�c equations. As a result, given a speci�c set of (j; 0) �(0; j) covariant spinors, there may exist more than one equation which has thesecovariant spinors as their solutions.In this chapter a class of these wave equations is obtained by a simple exten-sion of a procedure described by Ryder [53] for the (1=2; 0) � (0; 1=2) case. Asomewhat less transparent17 procedure which yields the same wave equations isdue to Weinberg [21].The essential ingredient which enters in deriving the relativistic wave equationsis the observation that for a particle at rest, owing to the isotropy of the nulldirection ~p = ~0, one cannot de�ne its spin as either left or right handed. That is:�R(~0) = �L(~0) (4:1)Hence equations Eqs. (4.1) and (3.12) yield�R(~0) = exp[ ~J � ~'] �L(~p ); (4:2)and similarly Eqs. (4.1) and (3.11) give�L(~0) = exp[� ~J � ~'] �R(~p ): (4:3)Substitution of Eq. (4.2) in Eq. (3.11) and Eq. (4.3) in Eq. (3.12) results in thefollowing coupled equations between the right and left handed matter �elds �R(~p )17 At least to the present author.



64and �L(~p ): �R(~p ) = exp[2 ~J � ~' ] �L(~p ) (4:4)�L(~p ) = exp[�2 ~J � ~' ] �R(~p ): (4:5)Expanding the exponentials, we obtain the coupled equations�R(~p ) = �cosh(2 ~J � ~' ) + sinh(2 ~J � ~' )� �L(~p ) (4:6)�L(~p ) = �cosh(2 ~J � ~' )� sinh(2 ~J � ~' )� �R(~p ); (4:7)from which we can obtain relativistic equations satis�ed by the (j; 0)� (0; j) co-variant spinors as a simple algebraic exercises. This we now show by explicitexamples.4.2 Equation Satisfied by (1=2; 0)� (0; 1=2) Covariant Spinors: DiracEquationBefore we take up the case of general �elds for an arbritrary spin let us getacquainted with Eqs. (4.6) and (4.7) coupling �R(~p ) and �L(~p ) by consideringthe case ~J = ~�2 (4:8))where ~� = Pauli matrices. Then, for ~J = ~�=2, we can writecosh[ 2 ~J � ~' ] = �I + (~� � p̂ )2'22! + � � � � � �� = I cosh' (4:9)
sinh[ 2 ~J � ~' ] = ~� � p̂�1 + '33! + � � � � � �� = ~� � p̂ sinh'; (4:10)where p̂ = ~p=j~p j and I = 2� 2 identity matrix. Substituting expansions (4.9) and



65(4.10) in the coupled Eqs. (4.6) and (4.7) we get�R(j=1=2)(~p ) = (cosh'+ ~� � p̂ sinh') �L(j=1=2)(~p ) (4:11)�L(j=1=2)(~p ) = (cosh'� ~� � p̂ sinh') �R(j=1=2)(~p ): (4:12)Since cosh' = 
 = (1 � v2)� 12 = E=m = p0=m, and sinh' = 
v = j~p j=m , Eqs.(4.11) and (4.12) can be written as�m �R(j=1=2)(~p ) + (p0 + ~� � ~p ) �L(j=1=2)(~p ) = 0 (4:13)(p0 � ~� � ~p ) �R(j=1=2)(~p )�m �L(j=1=2)(~p ) = 0: (4:14)These coupled equations can be combined to yield the equation for chiral repre-sentation (1=2; 0)� (0; 1=2) covariant spinors: (j=1=2)(~p ) = 0B@�R(j=1=2)(~p )�L(j=1=2)(~p ) 1CA : (4:15)When this is done, we obtain:0B@ �m (p0 + ~� � ~p )(p0 � ~� � ~p ) �m 1CA0B@�R(j=1=2)(~p )�L(j=1=2)(~p ) 1CA = 0 : (4:16)That this has the formal form of the well known spin one half Dirac equation canbe seen by introducing the 4� 4 
 matrices
0 =  0 11 0! ; 
i =  0 ��i�i 0 !
[Chiral Representation]: (4:17)Then Eq. (4.16) becomes18(
�p� � mI) (j=1=2)(~p ) = 0: (4:18)We now notice that even though we have been motivated to consider the �nite18 Note: p� = (p0 = E;�~p )



66dimensional representations of the Lorentz group by quantum mechanical con-siderations , so far there is nothing very speci�cally quantum mechanical aboutour study of the matter �elds. Our previous experience with quantum mechan-ical systems suggests that we postulate �h~J as the operator corresponding tothe observable associated with the quantum mechanical angular momentum, and�hp� = (�hi@=@t;�f�i�h~rg) be considered as the observable associated with the en-ergy momentum vector. We implement these correspondences by interpreting thep� in Eq. (4.18) as the operator P�. Thus in coordinate space, Eq. (4.18) trans-lates to read (i
�@� � mI) (j=1=2)(x) = 0; (4:19)which is indeed the standard Dirac Equation. The linearity in @� of this �eldequation has its origin in the anti-commutator f�i; �jg = 2�ij , which made thesubstitutions (9) and (10) possible. Put di�erently (2 ~J � p̂ )(2 ~J � p̂ ) appearing inthe expansions of cosh(2 ~J � ~') and sinh(2 ~J � ~') equals4 p2xj~pj2J2x + p2yj~pj2J2y + p2zj~pj2J2z + pxpyj~pj2 fJx; Jyg+ pxpzj~pj2 fJx; Jzg+ pypzj~pj2 fJy; Jzg!(4:20)which reduces to a simple identity matrix only for ~J = ~�=2. In the absence of thisproperty speci�c to the spin-12 �elds the expansion of cosh(2 ~J � ~') and sinh(2 ~J � ~')will contain higher order terms in ~p, and hence higher order @� in the coordinatespace representation through the powers of ~J � p̂ = ~J � ~p=j~pj.4.3 A Equation Satisfied by (1; 0)� (0; 1) Covariant SpinorsSetting j = 1 in Eqs. (A406) and (A407) of the last section of the Appendixand taking ~J to be 3� 3 angular momentum 1 matrices we getcosh(2 ~J � ~') = 1 + 2( ~J � p̂ )( ~J � p̂ ) sinh2 '; (4:21)sinh(2 ~J � ~') = 2( ~J � p̂ ) cosh' sinh': (4:22)



67Using these expansions in the coupled Eqs. (4.6) and (4.7) we obtain�R(j=1)(~p ) = �1 + 2( ~J � p̂ )( ~J � p̂ ) sinh2 '+ 2( ~J � p̂ ) cosh' sinh'��L(j=1)(~p ) (4:23)�L(j=1)(~p ) = �1 + 2( ~J � p̂ )( ~J � p̂ ) sinh2 '� 2( ~J � p̂ ) cosh' sinh'��R(j=1)(~p ): (4:24)By replacing sinh' by j~p j=m and cosh' by p0=m the above expressions take theform �R(j=1)(~p ) = 1m2�m2 + 2( ~J � ~p )( ~J � ~p ) + 2( ~J � ~p )p0��L(j=1)(~p ) (4:25)�L(j=1)(~p ) = 1m2�m2 + 2( ~J � ~p )( ~J � ~p )� 2( ~J � ~p )p0��R(j=1)(~p ): (4:26)These coupled equations can be combined to yield the equation for the chiralrepresentation six{component (1; 0)� (0; 1) covariant spinors:
 (j=1)CH (~p ) = 0BBBB@�R(j=1)(~p )�L(j=1)(~p )

1CCCCA : (4:27)
This equation reads19 :266666664
0BBBBBBB@

0 h���p�p� +2( ~J � ~p )( ~J � ~p ) + 2( ~J � ~p )p0ih���p�p� +2( ~J � ~p )( ~J � ~p )� 2( ~J � ~p )p0i 0
1CCCCCCCA�m2I377777775

0BBBBBBB@
�R(j=1)(~p )
�L(j=1)(~p )

1CCCCCCCA = 0:(4:28)19 Here we have used ���p�p� = m2 in the �rst term on the lhs of the equation which follows.Similar substitutions will be made for the (3=2; 0)� (0; 3=2) and (2; 0)� (0; 2) cases withoutexplicit mention. This is a non{trivial substitution and will receive detailed attention inChapter 6.



68Introducing20 ten fully symmetric (in the Lorentz indices) 6�6 spin{1 
 matrices:

��p�p� = 0BBBBBBB@

0 h���p�p� +2( ~J � ~p )( ~J � ~p ) + 2( ~J � ~p )p0ih���p�p� +2( ~J � ~p )( ~J � ~p )� 2( ~J � ~p )p0i 0
1CCCCCCCA (4:29)

we obtain21 �
��p�p� � m2 I� (j=1)(~p ) = 0: (4:30)The chiral representation expressions for the j = 1 
 matrices are easily read from(4.29) to be: 
00 =  0 II 0! (4:31)
i0 = 
0i =  0 Ji�Ji 0 ! (4:32)
ji = 
ij =  0 II 0! �ij + 0 fJi; JjgfJi; Jjg 0 ! ; (4:33)where Ji are the 3 � 3, j = 1 angular momentum matrices. In order that Eq.(4.30) be interpreted as a spin{1 quantum mechanical wave equation the reader isreferred to the comments made at the end of the last section. In Eq. (4.33) �ij isthe spacial part of ��� . In Eqs. (4.30) to (4.33) �hp� should be interpreted as theobservable energy momentum vector; and �h ~J as the standard observable operatorsassociated with the angular momentum. It should be parenthetically noted that~JQuantum Mechanical = �h� ~JHere: (4:34)So far the ~J in this work stands for the classical generators of rotation. Thequantum mechanical angular momentum operator equals �h times the classical20 We drop the representation identifying subscripts CH or CA whenever no confusion is likelyto occur.21 Which �rst appeared in ref. [21].



69generators of rotation. However it is most convenient to choose the units �h =1; c = 1 then numerically: ~JQuantum Mechanical= ~JHere.In coordinate space Eq. (4.30) becomes�
��@�@� + m2 I� (j=1)(x) = 0: (4:35)To obtain the above equation from Eq. (4.30) we �rst note 
��p�p� = 
��p�p� .Next, let p� ! i@�.4.4 An Equation Satisfied by (3=2; 0)� (0; 3=2) Covariant SpinorsSetting j = 3=2 in Eqs. (A408) and (A409) of the last section of the Appendixand taking ~J to be 4� 4 angular momentum 3=2 matrices we getcosh(2 ~J � ~') = cosh' �1 + 12!(�2 � 1) sinh2 '� ; (4:36)sinh(2 ~J � ~') = � sinh' �1 + 13!(�2 � 1) sinh2 '� : (4:37)Substituting expansions (4.36) and (4.37) in the coupled Eqs. (4.6) and (4.7) weobtain�R(j=3=2)(~p ) = �cosh'+ � sinh'+ ��2 � 16 ��� sinh3 '+ 3 cosh' sinh2 '���'L(j=3=2)(~p ); (4:38)
�L(j=3=2)(~p ) = �cosh'� � sinh'� ��2 � 16 ��� sinh3 '� 3 cosh' sinh2 '����R(j=3=2)(~p ): (4:39)Reintroducing � = 2 ~J � p̂ and sinh' = j~p j=m and cosh' = p0=m, the above



70equations become�R(j=3=2)(~p ) = 1m3 �m2(p0 + 2 ~J � ~p ) + 16f(2 ~J � ~p )2 � p2gf2 ~J � ~p+ 3p0g���L(j=3=2)(~p ); (4:40)
�L(j=3=2)(~p ) = 1m3 �m2(p0 � 2 ~J � ~p )� 16f(2 ~J � ~p )2 � p2gf2 ~J � ~p� 3p0g���R(j=3=2)(~p ): (4:41)Finally, introducing the eight component (3=2; 0)� (0; 3=2) covariant spinor (j=3=2)CH (~p ) = 0B@�R(j=3=2)(~p )�L(j=3=2)(~p )1CA : (4:42)and the 8� 8 spin{3=2 
 matrices


��� p� p� p� = 0BBBBBBB@
0 h��� p� p�(p0 + 2 ~J � ~p )+16f(2 ~J � ~p )2 � ~p 2gf2 ~J � ~p+ 3p0gih��� p� p�(p0 � 2 ~J � ~p )�16f(2 ~J � ~p )2 � ~p 2gf2 ~J � ~p� 3p0gi 0

1CCCCCCCA ;(4:43)we obtain the (3=2; 0)� (0; 3=2) relativistic wave equation(
��� p�p�p� � m3 I) (j=3=2)(~p ) = 0: (4:44)In coordinate space it reads(i
��� @� @� @� + m3 I) (j=3=2)(x) = 0: (4:45)



714.5 An Equation Satisfied by (2; 0)� (0; 2) Covariant SpinorsTo obtain a wave equation satis�ed by the (2; 0)�(0; 2) covariant spinors usingthe coupled equations (4.6) and (4.7) we need the expansions of cosh(2 ~J � ~' ) andsinh(2 ~J � ~' ) with ~J as the 5� 5 angular momentum 2 matrices. These expansionsare obtained by using Eqs. (A406) and (A407), and the standard identitiessinh' = j~p jm ; cosh' = p0m: (4:46)The result iscosh(2 ~J � ~' ) = I + 2( ~J � ~p )2m2 + 23 ( ~J � ~p )2f( ~J � ~p )2 � ~p 2gm4 (4:47)sinh(2 ~J � ~' ) = 2( ~J � ~p )p0m2 + 43 ( ~J � ~p )f( ~J � ~p )2 � ~p 2gp0m4 (4:48)A relativistic wave equation satis�ed by the ten component (2; 0)�(0; 2) covariantspinors  (j=2)CH (~p ) = 0B@�R(j=2)(~p )�L(j=2)(~p )1CA ; (4:49)is now readily obtained using the coupled equations (4.6) and (4.7). The result is�
���� p�p�p�p� � m4 I� (~p) = 0; (4:50)where in chiral representation the thirty �ve 10�10 fully symmetric (in the Lorentz



72indices) 
 matrices are:
���� p�p�p�p� =0BBBBBBBBBBBB@
h���p�p� ���p�p�0 + 2( ~J � ~p )f( ~J � ~p ) + p0g���p�p�+23 ( ~J � ~p )f( ~J � ~p )2 � ~p 2gf( ~J � ~p ) + 2p0gih���p�p� ���p�p�+2( ~J � ~p )f( ~J � ~p ) � p0g���p�p� 0+23 ( ~J � ~p )f( ~J � ~p )2 � ~p 2gf( ~J � ~p ) � 2p0gi

1CCCCCCCCCCCCA:(4:51)In the coordinate space we have the following expression for (4.50):� 
���� @�@�@�@� � m4 I �  (x) = 0: (4:52)



735. CAUSAL PROPAGATORS FOR(j; 0) � (0; j) MATTER FIELDS5.1 Causality and Wave Equations Satisfied by (j; 0)� (0; j) Covari-ant SpinorsA general wave equation, obtained from the coupled equations (4.6) and (4.7) ,satis�ed by the (j; 0)� (0; j) relativistic covariant spinors is of the form� 
f�g p[�] � m2j I �  (~p ) = 0; (5:1)where f�g is a set of 2j Lorentz indices and p[�] is a set of 2j one Lorentz indexedcontravariant energy momentum vectors. That is for j = 1=2, 
f�g p[�] = 
�p� andfor j = 1, 
f�g p[�] = 
��p�p� , and so on. 
f�g are a fully symmetric22N (N + 1) � � � (N + S � 1)S! (5:2)set of 2(2j+1)�2(2j+1) spin{j 
 matrices. Here S = 2j, the number of indices on
f�g; and for the (1; 3) spacetime under consideration N = 4. A basic requirementfor any solutions to exist isDeterminant � 
f�g p[�] � m2j I � = 0: (5:3)For a given j this \existence requirement" can be interpreted as a 2j[2(2j + 1)]thorder equation in E. By working out speci�c examples, we will discover that thereare NA(j) = 2j[2(2j + 1)]� 2(2j + 1) = 2(2j � 1)(2j + 1) (5:4)\acausal" solutions { that is solutions for which:E2 6= p2 + m2: (5:5)Even though we verify this relationship only for j = 1=2; 1; 3=2 and 2, we expectit to be true in general. The remaining \causal" solutions, that is solutions for22 In the Lorentz indices.



74which E2 = p2 + m2, NC(j) = 2(2j + 1); (5:6)we identify with the already constructed (j; 0)�(0; j) relativistic covariant spinors.The observation NA�12� = 0; and NA�j > 12� 6= 0 (5:7)leads us to the conclusion that the Green23 functions G(j> 12 ;0)�(0;j> 12)(x� x0)� (i)2j 
f�g @[�] � m2j � G(j> 12 ;0)�(0;j> 12)(x� x0) = �4(x� x0) (5:8)associated with wave equations satis�ed by the �j > 12 ; 0� � �0; j > 12� covariantspinors, cease to be identical with the vacuum expectation valueh jT [	(x) 	(x0)]j i (5:9)where24	(x) =X� Z d3p(2�)3=2p
hu(~p; �) a(~p; �) exp(�ip � x) + v(~p; �) by(~p; �) exp(+ip � x)i; (5:10)However we note that the fundamental object which enters the canonical S{matrix calculations is not the Green function G(x-x') but the \propagator":h jT [	(x) 	(x0)]j i: (5:11)The propagator can be constructed out of the (j; 0)� (0; j) covariant spinorsu�(x) = u�(~p ) exp (�ip�x�) ; (5:12)v�(x) = v�(~p ) exp (+ip�x�) ; (5:13)and, unlike the Green function, contains only the physical \causal" solutions.23 While working speci�c examples we may may not symbolically distinguish between the Greenfunctions which arise from a source \� �(x� x0)00 rather than \ + �(x� x0)00.24 Here 
 = 
(m; ~p) is a j dependent normalization factor.



75For j = 1=2, u�(~p ) and v�(~p ) are the well known Dirac spinors. A generalmethod of obtaining u�(~p ) and v�(~p ) for any spin has been discussed in Chapter3. Explicit forms of u�(~p ) and v�(~p ) are worked out for j = 1; 3=2 and 2 in Secs.3.2, 3.3 and 3.4 respectively.We now explicitly examine the character of the solutions of the wave equationssatis�ed by the (1; 0)�(0; 1), (3=2; 0)�(0; 3=2), and (2; 0)�(0; 2) covariant spinors.Sec. 5.3 examines the (1=2; 0)� (0; 1=2) Dirac equation. We begin with (3=2; 0)�(0; 3=2) case.5.2 Causal Propagator for (3=2; 0)� (0; 3=2) Matter FieldThe momentum{space wave equation satis�ed by the (3=2; 0)�(0; 3=2) covari-ant spinors, as derived in Sec. 4.4, reads:� 
��� p�p�p� � m3 I �  (j=3=2)(~p ) = 0: (5:14)We begin with the observation:We already know the eight physical solutions which satisfy this wave equa-tion. These are:u�3=2(~p ); u�1=2(~p ); v�3=2(~p ); v�1=2(~p ); (5:15)Their explicit form is given in Sec. 3.3. These solutions were not obtainedas solutions of any di�erential equations.With this observation in mind, we note, that for the (1=2; 0) � (0; 1=2) case theDirac propagator can be constructed either as a green function( i 
�@� � mI ) G( 12 ;0)�(0; 12)(x� x0) = �4(x� x0) (5:16)or, evaluated as the vacuum expectation value:h jT [	( 12 ;0)�(0; 12)(x)	( 12 ;0)�(0; 12)(x0)]j i: (5:17)



76For the (1=2; 0) � (0; 1=2) case the G(x � x0) and h jT [	(x)	(x0)]j i areidentical to within a numerical factor of the order of unity.In order to study the kinematical properties of (5.14) we note that a basicrequirement for any solutions to exist is:Determinant � 
��� p�p�p� � m3 I � = 0: (5:18)For mathematical convenience, and without loss of generality, we now con�ne top� = (E; 0; 0; p)25. Equation (5.18) then becomes:�p2 + m2 � E2�4 �p4 � m2 p2 � 2E2 p2 +m4 + E2m2 + E4�4 = 0: (5:19)Treating this equation as a twenty{fourth order equation in E, we obtain 24 so-lutions. These solutions are of the form E = E(p;m) and are called \dispersionrelations." The dispersion relations, the associated multiplicity (that is the num-ber of times a particular solution occurs) and their interpretation, are tabulatedin Table VI.

25 Throughout this chapter we will use the symbolic manipulation program \MACSYMA" tocarry out various analytic calculations.



77TABLE VIDispersion relations E = E(p;m) associated with Eq. (5.14); obtained as solutionsof Eq. (5.19): NC �32� = 8, and NA �32� = 16.(Multiplicity) Dispersion Relation Interpretation(4) E = +pp2 +m2 Causal, \particle"u� 32 (~p ), u� 12 (~p )(4) E = �pp2 +m2 Causal, \antiparticle"v� 32 (~p ), v� 12 (~p )(4) E = +�2p2+ip3m2�m22 �1=2 Acausal(4) E = ��2p2+ip3m2�m22 �1=2 Acausal(4) E = +�2p2�ip3m2�m22 �1=2 Acausal(4) E = ��2p2�ip3m2�m22 �1=2 Acausal
The term \causal" in Table VI refers to the fact that particle/antiparticlecovariant spinors satisfy the correct E = E(m; p) relationshipE2 = p2 + m2: (5:20)On the other hand the solutions termed \acausal" emphasise the fact that they donot satisfy the correct E = E(m; p) given by (5.20). It is because of the existenceof \acausal" solutions admitted by (5.14) that the associated Green26 function26 In reference to footnote 23 note that the Green function de�ned here and that de�ned throughEq. (5.8) for j = 3=2 di�er by a \�" sign in their source term. Similar care should be takenelsewhere.



78G( 32 ;0)�(0; 32)(x� x0)� i 
��� @�@�@� + m3 I � G( 32 ;0)�(0; 32)(x� x0) = �4(x� x0); (5:21)will propagate not only the physical \causal" solutions but also the unphysical\acausal" solutions.The (3=2; 0) � (0; 3=2) causal propagator is now constructed via the knownand causal (3=2; 0)� (0; 3=2) covariant spinors u�(~p) and v�(~p) by evaluatingh jT [	( 32 ;0)�(0; 32)(x) 	(32 ;0)�(0; 32)(x0)]j i: (5:22)The eight causal solutions u�(~p ) and v�(~p ) needed to evaluate the above expressionare given explicitly in Sec. 3.3. These solutions are independent of any speci�cwave equations which one may construct for phenomenological studies.5.3 A Remark on (1=2; 0)� (0; 1=2) Matter FieldAs a parenthetic remark, we note for the (1=2; 0)� (0; 1=2) Dirac case27 thatDeterminant ( 
� p� � mI ) = 0 (5:23)yields E = +pp2 +m2; 2 times (5:24)E = �pp2 +m2; 2 times (5:25)without any acausal solutions.
27 Again taking p� = (E; 0; 0; p) to keep calculations simple.



795.4 Causal Propagator for (1; 0)� (0; 1) Matter FieldThe (1; 0)� (0; 1) covariant spinors satisfy� 
�� p�p� � m2 I �  (~p) = 0; (5:26)as shown in Sec. 4.3. For this case, from a conceptual point of view, all of theabove discussion still holds. NowDeterminant � 
�� p�p� � m2 I � = 0 (5:27)yields28 � � p2 � m2 � E2 �3 � p2 + m2 � E2 �3 = 0: (5:28)Treating this equation as a twelfth order equation in E, we obtain 12 solutions.These solutions, the associated multiplicity and their interpretation, are tabulatedin Table VII. TABLE VIIDispersion relations E = E(p;m) associated with Eq. (5.26); obtained as solutionsof Eq. (5.28): NC (1) = 6, and NA (1) = 12.(Multiplicity) Dispersion Relation Interpretation(3) E = +pp2 +m2 Causal, \particle"u�1(~p), u0(~p)(3) E = �pp2 +m2 Causal, \antiparticle"v�1(~p), v0(~p)(3) E = +pp2 �m2 Acausal, Tachyonic(3) E = �pp2 �m2 Acausal, Tachyonic28 Calculations being performed with p� = (E; 0; 0; p).



80In Table VII the term \techyonic" is used to indicate that these solutionspropagate with velocities greater than light: v > 1. It is because of the existenceof \acausal tachyonic" solutions admitted by (5.26) that the associated Greenfunction G(1;0)�(0;1)(x� x0)� 
�� @�@� + m2 I � G(1;0)�(0;1)(x� x0) = �4(x� x0); (5:29)will propagate not only the physical \causal" solutions but also the unphysical\acausal tachyonic" solutions.The (1; 0) � (0; 1) causal propagator is now constructed via the known andcausal (1; 0)� (0; 1) covariant spinors: u�(~p) and v�(~p) by evaluatingh jT [	(1;0)�(0;1)(x) 	(1;0)�(0;1)(x0)]j i: (5:30)The six causal solutions u�(~p ) and v�(~p ) needed to evaluate the above expressionare given explicitly in Sec. 3.2. These solutions are independent of any speci�cwave equations which one may construct for phenomenological studies.5.5 Causal Propagator for (2; 0)� (0; 2) Matter FieldThe momentum{space wave equation satis�ed by the (2; 0)� (0; 2) covariantspinors, as derived in Sec. 4.5 is:� 
���� p�p�p�p� � m4 I � (~p) = 0: (5:31)As before, in order to study the kinematical properties of this equation we notethat a basic requirement for any solutions to exist isDeterminant � 
���� p�p�p�p� � m4 I� = 0 : (5:32)For the mathematical convenience, and without loss of the generality, we nowcon�ne to p� = (E; 0; 0; p) and evaluate this determinant. Equation29 (5.32) then29 The long expression which follows is simply to emphasise the importance of every possiblesimpli�cation which can be introduced, like taking p� = (E; 0; 0; p), to execute these high{spin calculations successfully.



81becomes:�E40 + 20 p2E38 � 190 p4E36 + 1140 p6E34 � �4845 p8 � 5m8� E32+ �15504 p10 � 80m8 p2� E30 � �38760 p12 � 600m8 p4� E28+ �77520 p14 � 2800m8 p6� E26 � �125970 p16 � 9100m8 p8 + 10m16� E24� �21840m8 p10 � 120m16 p2 � 167960 p18� E22� �184756 p20 � 40040m8 p12 + 660m16 p4� E20+ �167960 p22 � 57200m8 p14 + 2200m16 p6� E18� �125970 p24 � 64350m8 p16 + 4950m16 p8 � 10m24� E16+ �77520 p26 � 57200m8 p18 + 7920m16 p10 � 80m24 p2� E14� �38760 p28 � 40040m8 p20 + 9240m16 p12 � 280m24 p4� E12+ �15504 p30 � 21840m8 p22 + 7920m16 p14 � 560m24 p6� E10� �4845 p32 � 9100m8 p24 + 4950m16 p16 � 700m24 p8 + 5m32� E8� �2800m8 p26 � 1140 p34 � 2200m16 p18 + 560m24 p10 � 20m32 p2� E6� �190 p36 � 600m8 p28 + 660m16 p20 � 280m24 p12 + 30m32 p4� E4+ �20 p38 � 80m8 p30 + 120m16 p22 � 80m24 p14 + 20m32 p6� E2� �p40 � 5m8 p32 + 10m16 p24 � 10m24 p16 + 5m32 p8 �m40� = 0:(5:33)It can be factored into the following simple expression:� � p2 � m2 � E2 �5 � p2 + m2 � E2 �5 � p4 � 2E2 p2 + m4 + E4 �5 = 0:(5:34)Treating this equation as a fortieth order equation in E, we obtain 40 solutions.These solutions, the associated multiplicity and their interpretation, are tabulatedin Table VIII.Once again, as already established for the (1; 0) � (0; 1) and the (3=2; 0) �(0; 3=2) matter �elds, the wave equation (5.31) satis�ed by the (2; 0)�(0; 2) covari-ant spinors also propagates acausal solutions via the Green function G(2;0)�(0;2)(x�x0):
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� 
���� @�@�@� @� � m4 I �G(2;0)�(0;2)(x� x0) = �4(x� x0): (5:35)The physical \causal" propagatorh jT [	(x)(2;0)�(0;2) 	(2;0)�(0;2)(x0)]j i (5:36)is readily constructed using the known physical \causal" covariant spinors givenin section 3.4. TABLE VIIIDispersion relations E = E(p;m) associated with Eq. (5.31); obtained as solutionsof Eq. (5.34): NC (2) = 10, and NA (2) = 30(Multiplicity) Dispersion Relation Interpretation(5) E = +pp2 +m2 Causal, \particle"u�2(~p), u�1(~p), u0(~p)(5) E = �pp2 +m2 Causal, \antiparticle"v�2(~p), v�1(~p), v0(~p)(5) E = +pp2 �m2 Acausal, Tachyonic(5) E = �pp2 �m2 Acausal, Tachyonic(5) E = +pp2 + im2 Acausal(5) E = �pp2 + im2 Acausal(5) E = +pp2 � im2 Acausal(5) E = �pp2 � im2 Acausal



835.6 A Remark on the Massless Matter FieldsTables VI, VII and VIII summarize the dispersion relations associated with thewave equations associated with the (1; 0)�(0; 1), (3=2; 0)�(0; 3=2) and (2; 0)�(0; 2)matter �elds. A quick reference to these tabulated results immediately leads tothe following conclusion:For m = 0 all \acausal" dispersion relations, E = E(p;m), associated withthe equations explicitly constructed in the last chapter cease to be acausaland reduce to E = �p.In the next chapter we will �nd that a well known set of linear equations formassless particles of arbitrary spin have unexpected kinematical acausality forj � 1. On the other hand, as just noted, the m ! 0 limit of the wave equationssatis�ed by30 (j; 0)�(0; j) relativistic covariant spinors are free from all kinematicalacausality. This paradoxical situation will be resolved, and corrected, by followingsome general considerations and working out a speci�c example associated withthe (3=2; 0) � (0; 3=2) matter �eld. The chapter will begin with a review, andrepeat some of the algebraic equations, in order to construct an appropriate logicalenvironment for a rather subtle matter. This matter was ignored, so far, to keepthe logic unconvoluted.

30 At least for j = 1; 3=2 and 2 where this claim is explicitly veri�ed.



846. KINEMATICAL ACAUSALITY IN EQUATIONS FORMASSLESS PARTICLES AND ITS RESOLUTION VIAINTRODUCTION OF A CONSTRAINING PRINCIPLE6.1 Kinematical Acausality in Weinberg's Equations for MasslessParticlesWe begin with the observation that we have become accustomed [52] to think-ing of the free particle covariant spinors, like the Dirac (1=2; 0)�(0; 1=2) spinors, assolutions of relativistic wave equations. However, inspired by works of Ryder53 forspin one half particles and Weinberg21 for any spin, we have explicitly constructedthe (1; 0)� (0; 1), (3=2; 0)� (0; 3=2) and (2; 0)� (0; 2) covariant spinors withoutreference to any wave equations. These covariant spinors incorporate the correctparticle/antiparticle and the spinorial degrees of freedom in the 2(2j + 1) particleand antiparticle covariant spinors: u�(~p ) and v�(~p ), � = j; j � 1; � � � � j. In the\canonical representation" u�(~p ) and v�(~p ) are constructed by the application(after appropriate algebraic expansions) of the boost:MCA(~p ) = 0B@ cosh( ~J � ~' ) sinh( ~J � ~' )sinh( ~J � ~' ) cosh( ~J � ~' )1CA : (6:1)on the 2(2j +1) \rest covariant spinors" in the form of the 2(2j +1){dimensionalcolumn vectors
u+j(~0) = 0BBBBBBB@

N(j)00...0
1CCCCCCCA ; � � � ; v�j(~0) = 0BBBBBBB@

00...0N(j)
1CCCCCCCA : (6:2)

Here N(j) is a convenient spin{dependent factor required to satisfy the require-ments that in the m ! 0 limit: (i) The \rest covariant spinors" vanish, and(ii) The m ! 0 covariant spinors have a non-singular norm. As an example, we



85choose N(j) = m3=2 for the (3=2; 0)� (0; 3=2) covariant spinors. The parameter' is de�ned ascosh(' ) = 
 = 1p1� v2 = Em; sinh(' ) = v
 = j~p jm ; (6:3)where ~v is the velocity which a particle at rest in the unprimed frame acquireswhen seen from the primed frame. In the canonical representation the angularmomentum matrices Ji have Jz diagonal. The physical \propagators" needed instandard S{matrix calculations are constructed23 using these u�(~p ) and v�(~p ) inevaluating appropriate vacuum expectation values of the time ordered product ofrelevant �eld operators.While the (j; 0)� (0; j) covariant spinors are obtained purely from group the-oretical arguments , phenomenological studies cannot be carried out without aninteraction Lagrangian density. A large class of interaction Lagrangian densitiesare suggested if we construct wave equations which these covariant spinors satisfy.A class of relativistic wave equations satis�ed by the (j; 0)�(0; j) covariant spinorsare obtained from the coupled equations (in the \chiral representation" ):�R(~p ) = �cosh(2 ~J � ~' ) + sinh(2 ~J � ~' )� �L(~p )�L(~p ) = �cosh(2 ~J � ~' )� sinh(2 ~J � ~' )� �R(~p ); (6:4)where �R(~p ) are the matter �elds associated with the SU(2)R generated by ~SR =12( ~J + i ~K), and �L(~p) are the matter �elds associated with the SU(2)L generatedby ~SL = 12( ~J � i ~K). The ~J are the three spin dependent (2j + 1) � (2j + 1)matrices of angular momentum and ~K are the generators of the Lorentz boosts.The \chiral representation" covariant spinors CH (~p) = 0B@�R(~p)�L(~p)1CA (6:5)are related to the canonical representation covariant spinors by the expression CA(~p) = A  CH (~p); A = 1p2  I II �I ! : (6:6)



86By imposing a physical criterion, which has not been explicitly stated so far,a general wave equation satis�ed by the (j; 0)� (0; j) covariant spinors is obtainedfrom the coupled Eqs. (6.4). It has the general form:� 
f�g p[�] � m2j I �  (~p ) = 0; (6:7)where f�g is a set of 2j Lorentz indices. 
f�g are fully symmetric (in the Lorentzindices) N (N + 1) � � � (N + S � 1)S! (6:8)set of 2(2j+1)�2(2j+1) spin{j 
 matrices. Here S = 2j, the number of indices on
f�g; and for the (1; 3) spacetime under consideration N = 4. A basic requirementfor any solutions to exist is:Determinant � 
f�g p[�] � m2j I � = 0; (6:9)For a given j this \existence requirement" can be interpreted as a 2j[2(2j + 1)]thorder equation in E. By working out speci�c examples, we discover that there areNA(j) = 2j[2(2j + 1)]� 2(2j + 1) = 2(2j � 1)(2j + 1) (6:10)\acausal" solutions { that is solutions for which:E2 6= p2 + m2: (6:11)The remaining \causal" solutions, that is solutions for which E2 = p2 + m2,NC(j) = 2(2j + 1); (6:12)we identify with the (j; 0)� (0; j) relativistic covariant spinors.For the (1; 0) � (0; 1), (3=2; 0) � (0; 3=2) and (2; 0) � (0; 2) matter �elds wehave veri�ed through explicit calculations that in the m ! 0 limit only u�j(~p )and v�j(~p ) are non-null. In addition all \acausal" solutions turn into \causal"solutions, as we noted in Section 5.6.



87On the other hand it is generally recognised33 that in the m ! 0 limit theright and left handed matter �elds decouple and satisfy the the following set oflinear equations � ~J � ~p + j p0 � �L(~p ) = 0� ~J � ~p � j p0 � �R(~p ) = 0: (6:13)That such a limit is allowed for the (j; 0)� (0; j) matter �eld was shown by Wein-berg in Sec. III of Ref. 33, and is shown here in Appendix. As before, the kine-matical causality of these equations is readily studied by examining the solutionsof Determinant � ~J � ~p � j p0 � = 0: (6:14)When this is done we �nd that for j � 1 Eq. (6.14) not only admits the causal so-lutions E = �p, but also one or more acausal solutions E 6= �p. This contradictsour earlier result obtained by taking the m ! 0 limit of the massive case. Forthe sake of concreteness, the dispersion relations implied by (6.14) are tabulatedin Table IX for j = 1; 3=2; 2. TABLE IXDispersion relations E = E(p) associated with Eqs. (6.13)Spin j Dispersion Relation1 E = �p; E = 03=2 E = �p; E = �(p=3)2 E = �p; E = �(p=2); E = 0



886.2 A Constraining PrincipleThe resolution of the paradoxical situation created above is now studied bycarefully examining the transition from the essentially classical group theoreticalarguments which yield the coupled Eqs. (6.4) and the quantum mechanicallyinterpreted Eqs. (6.7). The physical criterion which we now impose is in the formof a constraining principle. It reads:The freedom provided by the classical c{number equivalence of the substi-tution m2 $ ��� p�p� is constrained in the construction of the quantummechanical equations of motion so that the resulting equations are freefrom all kinematical \acausality" in the m! 0 limit.The equations which violate this constraining principle will be termed \patholog-ical."For the sake of simplicity we shall do this by studying the (3=2; 0)� (0; 3=2)matter �eld. We begin with m 6= 0 case. Using the standard expansions forcosh(~j � ~' )j(j=3=2) and sinh(~j � ~' )j(j=3=2) and freely exploiting the identities (6.3),the coupled Eqs. (6.4) can be written in the form:�R(j=3=2)(~p ) = 1m3 hm2(p0 + 2 ~J � ~p ) + 16f(2 ~J � ~p )2 � p2gf2 ~J � ~p+ 3p0gi� �L(j=3=2)(~p ); (6:15)
�L(j=3=2)(~p ) = 1m3 hm2(p0 � 2 ~J � ~p )� 16f(2 ~J � ~p )2 � p2gf2 ~J � ~p� 3p0gi� �R(j=3=2)(~p ): (6:16)Introducing the eight component (3=2; 0)� (0; 3=2) relativistic covariant spinor (j=3=2)CH (~p ) = 0B@�R(j=3=2)(~p )�L(j=3=2)(~p )1CA : (6:17)



89and the 8� 8 spin{3=2 
 matrices

��� p� p� p� = 0BBBBBBB@

0 h��� p� p�(p0 + 2 ~J � ~p )+16f(2 ~J � ~p )2 � ~p 2gf2 ~J � ~p+ 3p0gih��� p� p�(p0 � 2 ~J � ~p )�16f(2 ~J � ~p )2 � ~p 2gf2 ~J � ~p� 3p0gi 0
1CCCCCCCA ;(6:18)we obtain the (3=2; 0)� (0; 3=2) relativistic wave equation(
��� p�p�p� � m3 I) (j=3=2)(~p ) = 0: (6:19)The ��� p�p� which appears in the 
��� is the crucial factor. It has been obtainedby the substitution m2 ! ��� p�p� , based on the criterion above. It is the onlyequation which can be constructed out of the coupled Eqs. (6.4) which satis�esthe criterion: The m ! 0 limit yield the causal solutions, E = �p, for all the24 solutions30. The freedom in the form of four choices which apparently seem toexist via the substitution: m2 $ ��� p�p� , disappear with the physical constraintwe impose. As a result of invoking this requirement we are left with one uniqueequation, that is Eq. (6.19) with 
��� given by (6.18).Besides Eq. (6.19) there are three alternate equations, which can be con-structed exploiting the ambiguity mentioned above. These are:��(1)��� p�p�p� � ��� p�p�mI� (j=3=2)(~p ) = 0; (6:20)��(2)��� p�p�p� � m3 I� (j=3=2)(~p ) = 0; (6:21)��(3)��� p�p�p� � ��� p�p�mI� (j=3=2)(~p ) = 0; (6:22)30 For the massive case the spin 3=2 equation satisfying the physical criterion also allows forexactly 2(2� 32 + 1) = 8 physical \causal" solutions.



90with�(1)��� p� p� p� = �(2)��� p� p� p�
= 0BBBBBBB@

0 hm2 (p0 + 2 ~J � ~p )+16f(2 ~J � ~p )2 � ~p 2gf2 ~J � ~p+ 3p0gihm2(p0 � 2 ~J � ~p )�16f(2 ~J � ~p )2 � ~p 2gf2 ~J � ~p� 3p0gi 0
1CCCCCCCA ; (6:23)

and�(3)��� p� p� p� = 
��� p� p� p�
= 0BBBBBBB@

0 h��� p�p� (p0 + 2 ~J � ~p )+16f(2 ~J � ~p )2 � ~p 2gf2 ~J � ~p+ 3p0gih��� p� p�(p0 � 2 ~J � ~p )�16f(2 ~J � ~p )2 � ~p 2gf2 ~J � ~p� 3p0gi 0
1CCCCCCCA : (6:24)

Tables X, XI and XII provide us dispersion relations associated with Eqs.(6.20), (6.21), and (6.22). A careful and detailed study of these tabulated disper-sion relations reveals that none



91of the alternate equations satisfy the the physical criteria de�ned above. In factfor two of the three alternate equations we �nd that sinceDeterminant ��(1)��� p�p�p� � ��� p�p�mI�= m4 (p�E)2(p+ E)2�p2 +m2 �E2�4�16 p4 + 9m2 p2 � E2m2�2 = 0; (6:25)Determinant ��(2)��� p�p�p� � m3 I�= m8 �p2 +m2 �E2�2�16 p6 � 16E2p4 � 16Em2p3 � 9m4p2 �m6 + E2m4�� �16 p6 � 16E2p4 + 16Em2p3 � 9m4p2 �m6 + E2m4� = 0; (6:26)vanish identically for m ! 0 , no solutions exist for the massless matter �eldsfor these two equation. Parenthetically, it should be noted that even though Eq.(6.20) seems to admit E = �p, with the correct multiplicity of 2, the associatedsolution is null because of the observation just made:Determinant ��(1)��� p�p�p� � ��� p�p�mI� ���m!0 = 0: (6:27)



92TABLE XDispersion relations E = E(p;m) associated with Eq. (6.20)(Multiplicity) Dispersion Relation Interpretation(4) E = +pp2 +m2 Causal, \particle."u� 32 (~p ), u� 12 (~p ).(4) E = �pp2 +m2 Causal, \antiparticle."v� 32 (~p ), v� 12 (~p ):(2) E = +p m) 0 (But, see text.)(2) E = �p m) 0 (But, see text.)4 Additional acausal dispersion relations, with two fold degeneracy in pE = �pp16p2 + 9m2m ;p = � 14p2 �mp81m2 + 64E2 � 9m2�1=2 ;p = + 14p2 �mp81m2 + 64E2 � 9m2�1=2 ;p = � 14p2 ��mp81m2 + 64E2 � 9m2�1=2 ;p = + 14p2 ��mp81m2 + 64E2 � 9m2�1=2 :



93TABLE XIDispersion relations E = E(p;m) associated with Eq. (6.21)(Multiplicity) Dispersion Relation Interpretation(2) E = +pp2 +m2 Causal, \particle." Not all:u� 32 (~p ), u� 12 (~p ) , allowed.(2) E = �pp2 +m2 Causal, \antiparticle." Not all:v� 32 (~p ), v� 12 (~p ), allowed.4 Acausal dispersion relations, with three fold degeneracy in p
E = +�256 p10 � 96m4 p6 � 16m6p4 + 9m8p2 +m10�1=2 + 8m2p3(16 p4 �m4)E = ��256 p10 � 96m4 p6 � 16m6p4 + 9m8p2 +m10�1=2 � 8m2p3(16 p4 �m4)E = +�256 p10 � 96m4 p6 � 16m6p4 + 9m8p2 +m10�1=2 � 8m2p3(16 p4 �m4)E = ��256 p10 � 96m4 p6 � 16m6p4 + 9m8p2 +m10�1=2 + 8m2p3(16 p4 �m4) :The three fold degeneracy in p arises because the above four E0s are obtained assolutions of 16 p6 � 16E2p4 � 16Em2p3 � 9m4p2 �m6 +E2m4 = 0



94TABLE XIIDispersion relations E = E(p;m) associated with Eq. (6.22)(Multiplicity) Dispersion Relation Interpretation(2) E = +pp2 +m2 Causal, \particle." Not all:u� 32 (~p ), u� 12 (~p ), allowed.(2) E = �pp2 +m2 Causal, \antiparticle." Not all:v� 32 (~p ), v� 12 (~p ), allowed.(7) E = +p ) m = 0(7) E = �p ) m = 0For 6 acausal dispersion relations, see continuation of this table on the next page.



95Table XII continued.6 Acausal dispersion relations associated with Eq. (6.22)
E = �p3 �  p3 i+ 12 !  ip128 p6 + 352m2 p4 + 25m4 p2 +m63p3� 9m2 p� 136 p327 !1=3+ p3 i� 12 !�28 p2 + 3m29 � ip128 p6 + 352m2 p4 + 25m4 p2 +m63p3� 9m2 p� 136 p327 !�1=3
E = �p3 +  p3 i� 12 !  ip128 p6 + 352m2 p4 + 25m4 p2 +m63p3� 9m2 p� 136 p327 !1=3� p3 i+ 12 !�28 p2 + 3m29 � ip128 p6 + 352m2 p4 + 25m4 p2 +m63p3� 9m2 p� 136 p327 !�1=3

Continued to the next page.



96Table XII continued.Continued tabulation of 6 Acausal dispersion relations associated with Eq. (6.22)
E = �p3 +  ip128 p6 + 352m2 p4 + 25m4 p2 +m63p3 � 9m2 p� 136 p327 !1=3+ �28 p2 + 3m29 � ip128 p6 + 352m2 p4 + 25m4 p2 +m63p3 � 9m2 p� 136 p327 !�1=3

The m = 0 equations, which have no \acausal" solutions, for the uncoupledright and left handed matter �elds follow directly from Eqs. (6.18) and (6.19).These equations read:h��� p� p�(p0 + 2 ~J � ~p ) + 16f(2 ~J � ~p )2 � ~p 2gf2 ~J � ~p+ 3p0gi�L(j=3=2)(~p ) = 0h��� p� p�(p0 � 2 ~J � ~p ) � 16f(2 ~J � ~p )2 � ~p 2gf2 ~J � ~p� 3p0gi�R(j=3=2)(~p ) = 0:(6:28)Finally we note that one may be tempted to argue that Eq. (6.13) for j = 3=2can be arrived at, in the pathological case violating the physical criterion de�nedabove, by merely replacing ��� p�p� by m2 in (6.18), in them! 0 limit. However,this is not so. The reason is quite simple. The operator�(2 ~J � ~p )2 � ~p 2 � ���j=3=2 (6:29)is singular.



97We conclude that on careful examination the linear Eqs. (6.13) are incon-sistent with the relativistic wave equation satis�ed by the massive (j; 0) � (0; j)matter �eld in the m ! 0 limit. We have discovered the origin of this contra-diction, and resolved the apparently paradoxical situation by invoking a set ofphysical criterion.6.3 A Stronger Form of the Constraining PrincipleFor spin 1=2 we see that the constraining principle automatically yields us anequation which has 2(2j+1) causal particle/antiparticle solutions for the massivematter �elds. In the next section we will verify that same is true for the (1; 0)�(0; 1) matter �eld. However, for some j � 2 it may happen that principle we haveproposed need to be strengthened to accomplish this. For this reason we nowintroduce its stronger form in anticipation. It reads:The freedom provided by the classical c{number equivalence of the sub-stitution m2 $ ��� p�p� is constrained in the construction of the quan-tum mechanical equations of motion so that the resulting equations arefree from all kinematical \acausality" in the m ! 0 limit and allowexactly 2(2j + 1) \causal" particle/antiparticle solutions for the massive(j; 0)� (0; j) matter �elds.6.4 Some Remarks on the m ! 0 Limit for Spin One, AlternateEquations, and an ObservationRemarks: We note that for spin 1, the Eqs. (6.13) contain acausality only ofthe form E = 0. One may be able to live with this \acausality" because allit says is that there exists a solution which has no energy content. However,(6.13) for j = 1 does not follow from the m ! 0 limit of the equation satisfyingthe physical principle introduced in the last section in any straight forward fashion.The m! 0 limit of (4.28) reads:h���p�p� + 2( ~J � ~p )�( ~J � ~p ) + p0	i�L(j=1) = 0h���p�p� + 2( ~J � ~p )�( ~J � ~p )� p0	i�R(j=1) = 0: (6:30)



98In order to see how close we can get to Weinberg's equations, we may argue thatat least for the massless causal matter �elds we may postulate:(��� p�p�)�rel: = 0; (6:31)and hence Eqs. (6.30) are equivalent to Weinberg's Eq. (6.13). But for that tobe true we must have: Determinant �2( ~J � ~p )���j=1; 6= 0 (6:32)However, this is obviously not true.Alternate Equations: We already have a equation satis�ed by the (1; 0) � (0; 1)covariant spinors which satis�es the constraining principle introduced above. Itreads: �
��p�p� � m2 I� (j=1)(~p ) = 0: (6:33)where (in chiral representation) the 6� 6 spin{1 
 matrices are

��p�p� = 0BBBBBBB@

0 h���p�p� +2( ~J � ~p )( ~J � ~p ) + 2( ~J � ~p )p0ih���p�p� +2( ~J � ~p )( ~J � ~p )� 2( ~J � ~p )p0i 0
1CCCCCCCA : (6:34)

We now enumerate the three alternate equations, and verify that none of themsatis�es the required physical criterion thus establishing the uniqueness31 of the31 \Uniquness", as far as the set of equations which can be directly derived from the coupledEqs. (6.4) is concerned.



99wave equation (6.33) satis�ed by the (1; 0)� (0; 1) matter �eld.��(1)�� p�p� � ��� p�p� I� (j=1)(~p ) = 0: (6:35)��(2)�� p�p� � m2 I� (j=1)(~p ) = 0: (6:36)��(3)�� p�p� � ��� p�p� I� (j=1)(~p ) = 0: (6:37)with �(1)�� p�p� = �(2)�� p�p�0BBBBBBB@
0 hm2+2( ~J � ~p )( ~J � ~p ) + 2( ~J � ~p )p0ihm2+2( ~J � ~p )( ~J � ~p )� 2( ~J � ~p )p0i 0

1CCCCCCCA (6:38)
and �(3)�� p�p� = 
��p�p�0BBBBBBB@

0 h���p�p� +2( ~J � ~p )( ~J � ~p ) + 2( ~J � ~p )p0ih���p�p� +2( ~J � ~p )( ~J � ~p )� 2( ~J � ~p )p0i 0
1CCCCCCCA : (6:39)

A simple algebraic exercise yields:Determinant ��(2)�� p�p� � ��� p�p� I = f0gI =Determinant ��(3)�� p�p� � ��� p�p� I� : (6:40)Here symbol f0gI means \identically equal to zero." Consequently alternate Eqs.(6.36) and (6.37) have no solutions. The dispersion relations associated with



100the only remaining equation, that is Eq. (6.35), are tabulated in table XIII. Aninspection of this table immediately con�rms the result claimed earlier, that thisequation too does not meet the physical criterion of Sec. 6.1.TABLE XIIIDispersion relations E = E(p;m) associated with Eq. (6.35)(Multiplicity) Dispersion Relation Interpretation(3) E = +pp2 +m2 Causal, \particle."u�1(~p ), u0(~p ).(3) E = �pp2 +m2 Causal, \antiparticle."v�1(~p ), v0(~p ):(1) E = +pp2 �m2 Acausal, Tachyonic(1) E = �pp2 �m2 Acausal, Tachyonic(2) E = +p�3p2 �m2 Acausal(2) E = �p�3p2 �m2 Acausal
An Observation: Note that alternate Eq. (6.37) has no reference to \mass."Hence what does m ! 0 limit mean for this case. This circumstance makes it arather interesting equation. But, as we have seen this equation has no solution.An inspection of (6.7) should convince the reader that such equations exist forall bosonic j � 1. It may turn out that for some bosonic j > 1Determinant � 
f�g p[�] � m2j I � f6= 0gI : (6:41)The symbol f6= 0gI means \not identically equal to zero." Such an equation wouldinvite a physical interpretation if it also happens to satisfy the physical criterionof Sec. 6.1.



1017. CONSERVED CURRENT, TWO PHOTON MEDIATEDPARTICLE PRODUCTION AND CONCLUSIONS7.1 Algebra of Spin{1 Gamma Matrices and Conserved CurrentDensitySince we have obtained the (1; 0) � (0; 1) covariant spinors in the canonicalrepresentation we begin by transforming the chiral representation 
�� , given inChap. 4, into the canonical representation 
�� using the matrix A de�ned inChap. 6. The result is: [CANONICAL REPRESENTATION]
00 =  I 00 �I ! ; (7:1)
i0 = 
0i =  0 �JiJi 0 ! ; (7:2)
ij = 
ji =  I 00 �I ! �ij + fJi ; Jjg 00 �fJi ; Jjg! : (7:3)The \commutator algebra" satis�ed by these matrices, is as follows:[
00; 
ij ] = [
00 ; 
ji] = 0; (7:4)[
00 ; 
0i] = [
00; 
i0] = �2 0 JiJi 0 ! ; (7:5)[
i0 ; 
j0] = [
i0; 
0j ] = [
0i; 
j0] = [
0i ; 
0j ] = � [Ji; Jj] 00 [Ji; Jj]! ; (7:6)[
i0 ; 
kl] = [
i0; 
lk ] =[
0i ; 
kl] = [
i0; 
lk ] =  0 JiJi 0 ! 2�kl+ 0 fJi; fJk; JlggfJi; fJk; Jlgg 0 ! ; (7:7)



102
[
ij ; 
kl] = [
ij ; 
lk] =[
ji ; 
kl] = [
ji; 
lk] = [fJi; Jjg; fJk; Jlg] 00 [fJi; Jjg; fJk; Jlg]! : (7:8)The \anticommutator algebra" is similarly seen to be:f
00 ; 
0ig = f
00 ; 
i0g = 0; (7:9)f
00; 
ijg = f
00; 
jig = 2" 1 00 1! �ij + fJi; Jjg 00 fJi; Jjg!# ; (7:10)f
i0; 
j0g = f
i0; 
0jg = f
0i; 
j0g = f
0i; 
0jg = � fJi; Jjg 00 fJi; Jjg! ; (7:11)f
i0; 
klg = f
i0; 
lkg =f
0i ; 
klg = f
i0 ; 
lkg = 0 [Ji; fJk; Jlg][Ji; fJk; Jlg] 0 ! ; (7:12)f
ij ; 
klg = f
ij ; 
lkg = f
ji; 
klg = f
ji; 
lkg = ffJi; Jjg; fJk; Jlgg 00 ffJi; Jjg; fJk; Jlgg!+2" 1 00 1! �ij�kl + fJi; Jjg 00 fJi; Jjg! �kl + fJk; Jlg 00 fJk; Jlg! �ij# ;(7:13)In preparation for the construction of the (1; 0) � (0; 1) conserved currentdensity we point to a noteworthy feature of the spin 1 gamma matrices. While 
00commutes with 
ij , it anticommutes with 
0i. It is precisely this property whichallows us to introduce the conserved current density for the (1; 0)� (0; 1) matter�eld. In addition we note the following hermiticity properties
00y = 
00 ; 
0iy = �
0i; 
i0y = �
i0 ; 
ij y = 
ij : (7:14)



103Conserved Current Density:Taking the hermitian conjugate of the wave equation (which satis�es the con-straining principle introduced in Chap. 6) satis�ed by the (1; 0)� (0; 1) covariantspinors, and using the hermiticity of 
00 and 
ij, and the anti{hermiticity of the
0i and 
i0, we obtain y(x)�
00 @ 0 @ 0 � 
0i @ 0 @ i � 
i0 @ i @ 0 + 
ij @ i @ j +m2� = 0: (7:15)Since 
00 commutes with 
ij and anticommutes with 
0i and 
i0, multiplicationfrom the right by 
00 yields y(x)
00�
00 @ 0 @ 0 + 
0i @ 0 @ i + 
i0 @ i @ 0 + 
ij @ i @ j +m2� = 0: (7:16)On introducing  (x) �  y(x)
00; (7:17)the above equation can be written as (x)�
�� @ � @ � +m2� = 0: (7:18)Multiplying the above equation by  (x) from the right, and subtracting the left (x){multiplied (7.15), we obtain(@�@� )
�� �  
��(@�@� ) = 0: (7:19)Now because 
�� is symmetric in its Lorentz indices, we have the following identity(@� )
��(@� )� (@� )
��(@� ) = 0: (7:20)Combining (7.19) and (7.20) additively, yields(@�@� )
�� + (@� )
��(@� )� (@� )
��(@� )�  
��(@�@� ) = 0: (7:21)



104This implies that the we have the conserved current densityj�(x) � (@� (x))
�� (x)�  (x)
��(@� (x)); (7:22)which satis�es the continuity equation@�j�(x) = 0: (7:23)Introducing the notationA(x)$@ �B(x) � A(x)(@�B(x))� (@�A(x))B(x); (7:24)we have the conserved current density in a more compact formj�(x) = � (x)
��$@ � (x): (7:25)Note: Some authors, for example Ryder [53], prefer to have a factor of 1=2 on ther:h:s: of the de�nition (7.24) for their convenience.7.2 A Remark on Spin{1 AlgebraThe the algebra associated with 
�� can also be written asf
��; 
��g+ f
��; 
��g+ f
��; 
��g = 2(������ + ������ + ������)I; (7:26)with I = 6 � 6 unit matrix. For the sake of convenience we take the liberty ofnaming (7.26) as the Weinberg Algebra because, to the best of our knowledge, it�rst appeared as equation (B12) in the work of Weinberg (1964), for the (1; 0)�(0; 1) matter �eld.



105A trivial solution of the Weinberg algebra is
�� = ���I (7:27)with I = 1, rather than a 6 � 6 unit matrix. Substituting this solution in theformal equation �
��@�@� +m2I� (x) = 0; (7:28)which with the spin{1 
�� is the relativistic wave equation for (1; 0)�(0; 1) matter�eld, yields the Klein Gordon equation for the scalar �eld:����@�@� +m2� (x) = � +m2� (x) = 0: (7:29)7.3 ( ~J � ~p� jp0)�L;R(~p ) = 0 for j = 1 and Maxwell EquationsThe acausality associated with ( ~J � ~p � jp0)�L;R(~p ) = 0 equations for j = 1was seen to be of the form E = 0. Here we show that source free MaxwellEquations and ( ~J � ~p � jp0)�L;R(~p ) = 0 for j = 1 are identical, or so it seems inour derivation. In our opinion the connection between ( ~J � ~p� p0)�L;R(~p ) = 0 andMaxwell Equations needs a study beyond what we present below. Speci�cally, weare unable to answer the following questions at present:1.) How does the dispersion relation E = 0, allowed by ( ~J �~p�p0)�L;R(~p ) = 0,manifest itself in the Maxwell equations?2.) What is the connection between the Maxwell equations and the acausal-ity free m ! 0 limit of the wave equation satis�ed by the (1; 0) � (0; 1)covariant spinors?In the ~x-representation we have~p = �i~r; p0 = i @@t: (7:30)As a result in the ~x-representation( ~J � ~p� p0)�L;R(~p ) = 0 (7:31)



106become � ~J � ~r� @@t��L(x) = 0 (7:32)� ~J � ~r+ @@t��R(x) = 0 (7:33)The speci�c components �Li (~p) and �Ri (~p) depend on the choice of representationfor the ~J matrices. We de�ne chiral representation by choosing the followingrepresentation for the ~J operators[Chiral Representation]
Jx = 0B@ 0 0 00 0 �i0 i 0 1CA ; Jy = 0B@ 0 0 i0 0 0�i 0 01CA ; Jz = 0B@ 0 �i 0i 0 00 0 01CA : (7:34)In the next section section we will explicitly construct a unitary matrix whichconnects these matrices, ~JCH , with the canonical, or standard, j = 1 matrices ~JCAin which Jz is diagonal.Next we introduce the even and odd parity linear combinations:Xi(x) = 12 ��Ri (x) + �Li (x)� (7:35)Yi(x) = 12i ��Ri (x)� �Li (x)� ; i = 1; 2; 3: (7:36)so that �Ri (x) = Xi(x) + iYi(x) (7:37)�Li (x) = Xi(x)� iYi(x): (7:38)



107Using (7.34) we can write ~J � ~r as
~J � ~r = i0BBBBBBB@

0 �@z @y@z 0 �@x�@y @x 0
1CCCCCCCA : (7:39)

Or in the component form ( ~J � ~r)ij = �i�ijk@k: (7:40)Here �ijk is the completely antisymmetric tensor with �123 = 1. With these ob-servations and de�nitions the uncoupled equations (7.32) and (7.33) take theform ���ijk@k � @@t� (Xj � iYj) = 0 (7:41)���ijk@k + @@t� (Xj + iYj) = 0 (7:42)Since ��ijkAkBj = ( ~A� ~B)i, the above set of equations can be rewritten as~r� ( ~X � i~Y )� i @@t( ~X � i~Y ) = 0 (7:43)~r� ( ~X + i~Y ) + i @@t( ~X + i~Y ) = 0 (7:44)Adding (7.43) and (7.44) gives~r� ~X � @~Y@t = 0 (7:45)Similarly subtracting (7.43) from (7.44) yields~r� ~Y + @ ~X@t = 0 (7:46)Finally taking the divergence of these two equations provides two additional equa-



108tions ~r � ~Y = 0; ~r � ~X = 0: (7:47)These four equations can be put in a more compact form by introducing
Z�� =

0BBBBBBBBBBBB@
0 �Yx �Yy �YzYx 0 �Xz XyYy Xz 0 �XxYz �Xy Xx 0

1CCCCCCCCCCCCA (7:48)
We now assume: \what looks like electromagnetic �eld must be the electromag-netic �eld". Or put di�erently we assume that the Z�� couples with matter withthe same strength as F �� . Identifying ~Y and ~X with electric and magnetic �eldsof the electromagnetic �eld: ~Y = ~E; ~X = ~B; (7:49)we have Z�� = F �� : (7:50)Equations (7.45), (7.46) and (7.47) are now readily seen to take the simplePoincar�e covariant form @�F�� = 0; (7:51)@�F �� + @�F �� + @�F �� = 0: (7:52)Referring to the conventional de�nitions of ~E(x) and ~B(x), in terms of A�(x) =( �(x); ~A(x) ) such as found in Jackson [44], the connection between F ��(x)



109[Chiral Representation]Bi(x) = 12 ��Ri (x) + �Li (x)� (7:53)Ei(x) = 12i ��Ri (x)� �Li (x)� ; i = 1; 2; 3: (7:54)and the gauge vector potential A�(x) for the electromagnetic �eld isF ��(x) = @�A�(x)� @�A�(x): (7:55)The freedom to choose any representation for the left and right handed matter�elds exhibits itself as the freedom to choose A�(x) in any \gauge."To be able to see this connection in the canonical representation it will beuseful to explicitly know the connection between the j = 1 angular momentumoperators in the canonical representation (representation in which jz is diagonal),and the same in the chiral representation provided by (7.34) here.7.4 Construction of the Unitary Transformation which Connects~JCH and ~JCAWe start with (Jz)CH = 0B@ 0 �i 0i 0 00 0 01CA ; (7:56)and note that the normalised eigenvectors corresponding to the three eigenvalues� = +1; 0;�1 arej+i = 1p20B@ 1i01CA ; j0i = ei�0B@ 0011CA ; j�i = ei#p20B@ i101CA (7:57)In writing down these eigenvectors we have ignored a global phase factor. Next



110we construct U = 0BBBBBBB@
1p2 0 ip2ei#ip2 0 1p2ei#0 ei� 0

1CCCCCCCA ; (7:58)
and verify that U yU is indeed unity. The phase factors � and # will now be so�xed as to yield the identity(Ji)CA = U y (Ji)CH U; i = x; y; z (7:59)For i = z, we obtain U y (Jz)CH U = 0B@ 1 0 00 0 00 0 �11CA = (Jz)CA (7:60)which puts no constraints on � and # as expected. For i = x, we get

U y (Jx)CH U = 1p2 0BBBBBBB@
0 �ei� 0�e�i� 0 iei#e�i�0 �ie�i#ei� 0

1CCCCCCCA : (7:61)
Equating the rhs of the above expression to (Jx)CA we obtain� = �; # = �=2: (7:62)The unitary transformation is now completely �xed and reads

U = 0BBBBBBB@
1p2 0 � 1p2ip2 0 ip20 �1 0

1CCCCCCCA : (7:63)



111That U y (Jy)CH U = (Jy)CA (7:64)is easily veri�ed.7.5 Construction of the Proca Vector Potential From (1; 0) and(0; 1) Matter Fields Via \Spinorial Summation"The basis of the (1; 0) representation space can be chosen to be�R1;+1(~0); �R1;0(~0); �R1;�1(~0): (7:65)Similarly the basis for the (0; 1) representation space reads:�L1;+1(~0); �L1;0(~0); �L1;�1(~0): (7:66)The e�ect of Lorentz boosts on these basis vectors is given by Eqs. (3.12) and(3.13). Using these transformation properties, it is readily seen that the e�ect ofboosting along the ẑ direction is given by�R1;+1(~p = pẑ) = exp(') �R1;+1(~0) (7:67)�R1;0(~p = pẑ) = �R1;0(~0) (7:68)�R1;�1(~p = pẑ) = exp(�') �R1;�1(~0) (7:69)and: �L1;+1(~p = pẑ) = exp(�') �L1;+1(~0) (7:70)�L1;0(~p = pẑ) = �L1;0(~0) (7:71)�L1;�1(~p = pẑ) = exp(') �L1;�1(~0) (7:72)Since the completely antisymmetric tensor F �� � @�A� � @�A� has six inde-pendent elements and the representation space of the (1; 0)�(0; 1) matter �eld also



112has six independent basis vectors, we suspect some linear combination of �R1;� and�L1;� to transform as an antisymmetric tensor. However, at the outset, it should benoticed that each of the �(~p) is a three column. This \spinorial" degree of freedomimplies that we should suspect some linear combination of �R1;� and �L1;� to maponto some yet undetermined: F��(�) = @�A�(�) � @�A�(�). The index (�) runs overthe elements of a three column.To begin note that if the frame in which the particle has momentum ~p = pẑbe called the \primed" frame, then we can writeF 0�� = ������F ��; F �� = @�A� � @�A�: (7:73)Using the boosts de�ned in Chap. 2, the e�ect of a boost in the ẑ direction, thenyields F 001 = cosh' F 01 � sinh' F 13 (7:74)F 002 = cosh' F 02 + sinh' F 32 (7:75)F 003 = F 03 (7:76)F 032 = cosh' F 32 + sinh' F 02 (7:77)F 013 = cosh' F 13 � sinh' F 01 (7:78)F 021 = F 21: (7:79)These transformation properties of the antisymmetric tensor F �� encourage usto study the Lorentz transformation characteristics of the odd and even (underparity) linear combinations: (�R1;� � �R1;�). From the transformation properties



113given by Eqs. ((7.67)-(7.72)) we �nd:h�R1;+1(~p = pẑ) + �L1;+1(~p = pẑ)i= cosh'h�R1;+1(~0) + �L1;+1(~0)i+ sinh'h�R1;+1(~0)� �L1;+1(~0)i (7:80)h�R1;0(~p = pẑ) + �L1;0(~p = pẑ)i = h�R1;0(~0) + �L1;0(~0)i (7:81)h�R1;�1(~p = pẑ) + �L1;�1(~p = pẑ)i= cosh'h�R1;�1(~0) + �L1;�1(~0)i� sinh'h�R1;�1(~0)� �L1;�1(~0)i; (7:82)and: h�R1;+1(~p = pẑ)� �L1;+1(~p = pẑ)i= cosh'h�R1;+1(~0)� �L1;+1(~0)i+ sinh'h�R1;+1(~0) + �L1;+1(~0)i (7:83)h�R1;0(~p = pẑ)� �L1;0(~p = pẑ)i = h�R1;0(~0)� �L1;0(~0)i (7:84)h�R1;�1(~p = pẑ)� �L1;�1(~p = pẑ)i= cosh'h�R1;�1(~0)� �L1;�1(~0)i� sinh'h�R1;�1(~0) + �L1;�1(~0)i: (7:85)Comparison of Eqs. ((7.74)-(7.79)) and ((7.80)-(7.85)) implies existence of anobject F��(�)(~p) = @�A�(�)(~p)� @�A�(�)(~p); (7:86)with F01(�)(~p) = h�R1;�1(~p)� �L1;�1(~p)i(�) (7:87)F02(�)(~p) = h�R1;+1(~p)� �L1;+1(~p)i(�) (7:88)F03(�)(~p) = h�R1;0(~p)� �L1;0(~p)i(�) (7:89)



114F32(�)(~p) = h�R1;+1(~p) + �L1;+1(~p)i(�) (7:90)F13(�)(~p) = h�R1;�1(~p) + �L1;�1(~p)i(�) (7:91)F21(�)(~p) = h�R1;0(~p) + �L1;0(~p)i(�) : (7:92)The \spinorial" index (�) runs over I; II; III the elements of columns �R1;�(~p) and�L1;�(~p).Next we introduce the operation of \raising" the spinorial index as follows:F01 (�)(~p) = �h�R1;�1(~p)� �L1;�1(~p)iy�(�) ; � � � : (7:93)In con�guration space F��(�) isF��(�)(x) = @�A�(�)(x)� @�A�(�)(x); (7:94)with F01(�)(x) = h�R1;�1(x)� �L1;�1(x)i(�) ; � � � (7:95)F01 (�)(x) = �h�R1;�1(x)� �L1;�1(x)iy�(�) ; � � � : (7:96)The Proca vector potential is now obtained by summing over the \spinorial" indexas follows F (�)�̂�̂ (x)F��(�)(x) � F�̂�̂(x)F ��(x) (7:97)A(�)�̂ (x)A�(�)(x) � A�̂(x)A�(x): (7:98)The F ��(x) and A�(x) so obtained contain no spinorial degrees of freedom. The



115Lagrangian densityL(x) = �14F��(x)F ��(x) + 12m2A�(x)A�(x) (7:99)yields the Proca equation: @�F ��(x) +m2A�(x) = 0: (7:100)Taking the four divergence of the above equation and utilizing the antisymmetryof F ��(x) we get @�A�(x) = 0: (7:101)As a result of the vanishing @�A�, A�(x) has only three degrees of freedom. Furthersince @�A� = 0, @�F �� = @�(@�A��@�A�) = @�@�A��@�@�A� = @�@�A� = A�;where we have interchanged the order of di�erentiation: @�@� ! @�@�. As suchthe Proca vector potential A�(x) satis�es:( +m2)A�(x) = 0: (7:102)
It should be noted that we have called A�(x) constructed via \spinorial sum-mation" (see Eq. (7.98)) on the (1; 0) and (0; 1) spinorial indices as the Procavector potential. This has been done to emphasize how we reached at A�(x) fromthe (1; 0) and (0; 1) matter �elds. It is not clear to the present authors what phys-ical consequences lie behind the existence of A�(�)(x) and similar other objects.Moreover, the relation between the m ! 0 of this construction and the similarconstruction done in the section on Maxwell Equations remains open to furtherstudy.



1167.6 f(1=2; 0)�(0; 1=2)g
f(1=2; 0)�(0; 1=2)g: Construction of the Spin{1Proca Equation from the Bargmann Wigner EquationsThe purpose of this section is to exhibit why the study of matter �elds forarbitrary spin becomes increasingly complicated if one begins with the BargmannWigner formalism. This is done by studying the simple example associated withspin one. The arguments presented here closely follow Luri�e [4]. For spin threehalf details can be found in Ref. [4]. We do not know of any similar constructionsbeyond spin 3/2 where the Bargmann Wigner formalism provides the Rarita{Schwinger type equation, and the associated constraints. On the other hand the(j; 0)� (0; j) formalism presented in this work has no similar limitation.We �rst construct the basis for the f(1=2; 0)� (0; 1=2)g
 f(1=2; 0)� (0; 1=2)grepresentation. Since the basis vectors for the f(1=2; 0)� (0; 1=2)g representationare the four Dirac spinors � = 8><>:0B@�R12 ; 12�L12 ; 12 1CA ;0B@ �R12 ; 12�L12 ;� 12 1CA ;0B@�R12 ;� 12�L12 ; 12 1CA ;0B@�R12 ;� 12�L12 ;� 12 1CA9>=>; ; (7:103)the basis vectors for f(1=2; 0)� (0; 1=2)g 
 f(1=2; 0)� (0; 1=2)g are �� = � 1 
  1;  1 
  2;  1 
  3;  1 
  4; 2 
  1;  2 
  2;  2 
  3;  2 
  4; 3 
  1;  3 
  2;  3 
  3;  3 
  4; 4
 1;  4
 2;  4
 3;  4
 4�: (7:104)To describe this �eld we have a choice of either considering 16{component spinors,or a 4� 4 symmetric bi{spinors  �� which by construction satisfy the BargmannWigner equations (the origin of these equations goes back to Dirac [2], Bargmann



117and Wigner [9], see also Luri�e [4] for a more detailed treatment). We choose tointerpret this �eld as a bi-spinor satisfying [�; � are the Lorentz indices 0; 1; 2; 3and �; � are the spinorial indices 1; 2; 3; 4](i
�@� �m)��0  �0�(x) = 0; (7:105)(i
�@� �m)��0  ��0(x) = 0: (7:106)We now seek a single wave equation satis�ed by the �eld described by theseBargmann Wigner equations. It will be a rather lengthy exercise. To begin wewrite Eqs. (7.105) and (7.106) in the matrix form [where  is a 4� 4 symmetricmatrix] (i
�@� �m) (x) = 0; (7:107) �i
�T @ � �m� = 0: (7:108)In the above expression T stands for `transpose' and  on @� in Eq. (7.108) in-dicates that @� acts on the  (x) appearing on the left. We now wish to expressthe bi-spinor  �� in terms of appropriate functions of x, and a complete set ofsymmetric 4 � 4 matrices. Towards this end we note that since on taking thetranspose of 
�
� + 
�
� = 2��� ; (7:109)we get 
�T
�T + 
�T
�T = 2��� ; (7:110)the fundamental theorem of Pauli requires that there exist a non-singular matrixB such that 
�T = B
�B�1: (7:111)We now demonstrate that B is anti-symmetric. First take the transpose of (7.111),



118and then substitute (7.111) into the result
� = (B�1)T 
�T BT= (B�1)T B
�B�1 BT= (B�1BT )�1 
� (B�1BT ): (7:112)Multiplying this equation by B�1BT from the left yieldsh(B�1BT ); 
�i = 0: (7:113)However (see Good [45] for the detailed arguments) any 4� 4 matrix which com-mutes with each of the 
� must be a multiple of the unit matrixB�1BT = k; (7:114)which implies BT = kB. Taking transpose of it gives kBT = B; putting BT = kBback in the preceding equation gives k2 = 1. Good [45] chooses the possibilityk = �1 (why not exp(i�) ? For an answer see Ref. [38]), and following Pauliand Haantjes, argues that the possibility k = +1 leads to ten independent anti-symmetric 4� 4 matrices, which is an impossibility. The other possibility k = �1then implies that B is anti-symmetric. We thus have
�T = B
�B�1; BT = �B: (7:115)Now introducing C � iB�1; (7:116)we �nd that �� � 
�C; (7:117)and ��� � 12i [
�; 
�]C; (7:118)form the needed set of the ten 4� 4 symmetric matrices. To show this �rst note



119that Eq. (7.116) when substituted in Eq. (7.115) yieldsC�1
�C = � 
�T () 
�C = � C
�T ; (7:119)and CT = C�1: (7:120)Next consider ��T = (
�C)T = CT
�T = �C
�T = 
�C = ��: (7:121)(Here we have freely used Eqs. (7.119) and (7.120)) This establishes that �� aresymmetric matrices. Similarly the symmetry of ��� is proved by appropriate useof Eqs. (7.119) and (7.120) as follows:(���)T = � 12i(
�
� � 
�
�)C�T = 12iCT (
�T
�T � 
�T
�T )= � 12i(C
�T
�T � C
�T
�T ) = � 12i(�
�C
�T + 
�C
�T )= � 12i(
�
�C � 
�
�C) = 12i(
�
� � 
�
�)C = ��� : (7:122)
We thus haveset f��;���g = set f�0;�1;�2;�3; �01;�02;�03;�12;�13;�23g (7:123)as the complete set of ten 4� 4 symmetric matrices.Reminder: Each of these ten matrices is labelled by Lorentz indices. Byde�nition matrix ��� = � matrix ���, as such we note the anti-symmetry inthe Lorentz indices which by convention run as 0; 1; 2; 3. The symmetry refers tothe fact that f���gT = ��� , that is: matrix element f���g�� = matrix elementf���g��. The spinorial indices �; � run as 1; 2; 3; 4.



120Having thus discovered the complete set (7.123), we now express the BargmannWigner bispinor in terms of a yet unspeci�ed [Lorentz{]four vector �eld A�(x) and[Lorentz{] anti-symmetric second rank tensor �eld F��(x) (x) = c1 ��A�(x) + c2 ���F��(x); (7:124)where c1 and c2 are still unknown numerical factors. Substituting  (x) fromabove in (7.107), similarly substituting  (x) in (7.108) and then replacing C
�Tby �
�C (see (7.119)), and adding the resulting equations we obtain, where forsimplicity we introduced ��� = (1=2i)[
�; 
�] thus ��� = ���C,ic1[
�; 
�]C@�A� + ic2[
�;���]C@�F�� � 2mc1
�CA� � 2mc2���CF�� = 0:(7:125)Next using Eq. (7.109) and the standard identity (see, for example, Dirac [54])[u; v1v2] = [u; v1]v2 = v1[u; v2] we replace the commutator[
�;���] by 2i(���
� � ���
�) (7:126)and substitute [
�; 
�] by 2i��� in Eq. (7.125) to get, on dividing the resultingequation by �2c2����c1c2C@�A� +mCF���+ 
���2C@�F�� +mc1c2CA�� = 0; (7:127)where in writing the second term we exploited the anti-symmetry of F�� andreplaced it by �F�� apart from renaming the dummy indices to collect termstogether. Now we break @�A� in its symmetric and anti-symmetric parts by@�A� ! 12(@�A� � @�A�) + 12(@�A� + @�A�); (7:128)and note ���(@�A� + @�A�) = 0; (7:129)because of the anti-symmetry of ��� in the Lorentz indices. Having done this, we



121set the coe�cients of ���and 
� equal to zero and get� c12c2� (@�A� � @�A�) +mF�� = 0; (7:130)�@�F�� +m� c12c2�A� = 0: (7:131)Written in this form it is apparent that c1=2c2 can be absorbed in the de�nition(by re{de�ning the units) of A�, or alternately we may so choose the units of A�such that � c12c2� = �m: (7:132)With the choice (7.132), Eqs.(7.130) and (7.131) readF�� = @�A� � @�A�; (7:133)@�F �� +m2A� = 0: (7:134)Equation (7.134) is called the Proca Equation and describes the f(1=2; 0) �(0; 1=2)g 
 f(1=2; 0) � (0; 1=2)g spin{1 �eld. Applying @� from the left on (81)yields the constraint equation @�A� = 0; (7:135)due to the anti{symmetry of F �� . Thus, only three out of the four components ofA� are independent, as required for a spin{1 �eld.



1227.7 Two Photon Mediated Production of Electrically NeutralPseudoscalar Particles in High Energy Scattering of Two ChargedParticles FORMAL EXPRESSION FOR THE S{MATRIXWe will designate the jini particles as �1 and �2, the j states will have, inaddition to �1 and �2, an additional particle: �3. We will use the followingnotationjm; ~p; �zi � jmass; three momentum; z� component of ~Ji; (7:136)associated with the particle �. To systematically study the two photon mediatedproduction of particles perturbatively within the framework of the S{matrix the-ory, outlined in the Appendix, we begin with the single particle production ofneutral pseudoscalar particles.One of the simplest of such processes can be de�ned by making the followingspeci�c choice for various particles �i involved in the scattering process�1 = A scalar particle of mass m1 and charge Q1,�2 = A scalar particle of mass m2 and charge Q2,�3 = A neutral pseudoscalar particle of mass m3.Such a process approximates, according to our discussion in the Appendix,the two photon mediated production of a neutral pseudoscalars, such as the �0,� or �0(958), in the scattering of two spin{zero nuclei. The matter �eld operatorsassociated with the three particles involved are�1 : �(x) = Z d3p001(2�)32!p 001 �a(~p 001 )e�ip 001 �x + ay(~p 001 )eip 001 �x� (7:137)
�2 : �(x) = Z d3p002(2�)32!p 002 �a(~p 002 )e�ip 002 �x + ay(~p 002 )eip 002 �x� (7:138)



123
�3 : �(x) = Z d3p003(2�)32!p 003 �a(~p 003 )e�ip 003 �x + ay(~p 003 )eip 003 �x� (7:139)with !p = (m2 + ~p 2)1=2: (7:140)

The interaction Lagrangian density operator for the two photon mediated pro-duction under consideration isLint:(x) = gs1 �(x)y @��(x) A�(x) + gs2 �(x)y @��(x) A�(x)+gps �����F ��(x)F ��(x)�(x); (7:141)where we have suppressed the Normal ordering. Under the assumptionHint:(x) = �Lint:(x); (7:142)the Dyson formula derived in the Appendix yields the following expression for theS{matrix
S = 1 + 1Xn=1 (i)nn! 1Z�1 d4x1 : : : 1Z�1 d4xn ThLint:(x1) : : :Lint:(xn)i: (7:143)We wish to calculate the following amplitude of transitionjii = jm1; ~p1; m2; ~p2i ! jfi = jm1; ~p 01 ; m2; ~p 02 ;m3; ~p 03 i: (7:144)



124Formally, this transition amplitude ishf jSjii = hm1; ~p 01 ; m2; ~p 02 ; m3; ~p 03 j(1 + i 1Z�1 d4x1Lint:(x1)� 12 1Z�1 d4x1 1Z�1 d4x2 ThLint:(x1)Lint:(x2)i� i6 1Z�1 d4x1 1Z�1 d4x2 1Z�1 d4x3 ThLint:(x1)Lint:(x2)Lint:(x3)i+ � � �+ (i)nn! 1Z�1 d4x1 � � � 1Z�1 d4xn ThLint:(x1) � � � � � � Lint:(xn)i+ � � � � � �)jm1; ~p1; m2; ~p2i:
(7:145)

Referring to the right hand side of the above expression note that the orthonor-mality of the initial and �nal states under consideration yieldshm1; ~p 01 ; m2; ~p 02 ; m3; ~p 03 jm1; ~p1; m2; ~p2i = 0: (7:146)In the same context the matrix elementhm1; ~p 01 ; m2; ~p 02 ; m3; ~p 03 jLint:(x)jm1; ~p1; m2; ~p2i: (7:147)consists of three terms:(i) Two terms arising from the coupling of the scalar matter �elds, �(x) and�(x), with the gauge vector potential A�(x), and(ii) One term corresponding to the coupling between the pseudoscalar matter�eld �(x) with A�(x).



125The former vanish because neither the initial nor the �nal state involves a photon,whereas the part of the Lagrangian density operator associated with these twoterms involves A�(x) linearly. The latter and the remaining term isigps 1Z�1 d4xhm1; ~p 01 ; m2;~p 02 ; m3; ~p 03 j�����F ��(x)F ��(x)�(x)jm1; ~p1; m2; ~p2i; (7:148)and equalsigps 1Z�1 d4xhm1; ~p 01 ; m2;~p 02 ; m3; ~p 03 j�����(@�A� � @�A�)(@�A� � @�A�)�(x)jm1; ~p1; m2; ~p2i: (7:149)The gauge vector potential A�(x) in the Lorentz gauge is (see [53, Sec. 4.4])A�(x) = Z d3k(2�)32k0 3X�=0 �(�)� (k)�a(�)(k)e�ik�x + a(�)y(k)eik�x�: (7:150)



126Substituting this and �(x) from (7.139) we obtain(7:149) = igps 1Z�1 d4xhm1; ~p 01 ; m2; ~p 02 ; m3; ~p 03 j�����"@��Z d3k(2�)32k0 3X�=0 �(�)� (k)�a(�)(k)e�ik�x + a(�)y(k)eik�x��� @��Z d3k0(2�)32k00 3X�0=0 �(�0)� (k0)�a(�0)(k0)e�ik0�x + a(�0)y(k0)eik0�x��#"@��Z d3k00(2�)32k000 3X�00=0 �(�00)� (k00)�a(�00)(k00)e�ik00�x + a(�00)y(k00)eik00�x��� @��Z d3k000(2�)32k0000 3X�000=0 �(�000)� (k000)�a(�000)(k000)e�ik000�x+ a(�000)y(k000)eik000�x��#Z d3p003(2�)32!p 003 �a(~p 003 )e�ip 003 �x + ay(~p 003 )eip 003 �x�jm1; ~p1; m2; ~p2i: (7:151)Since hm1; ~p 01 ; m2; ~p 02 ; m3; ~p 03 ja(�)y(k) = 0 (7:152)a(�)(k)jm1; ~p1; m2; ~p2i = 0; (7:153)we have



127
(7:149) = igps 1Z�1 d4xhm1; ~p 01 ; m2; ~p 02 ; m3; ~p 03 j�����"Z d3k(2�)32k0 3X�=0 �(�)� (k)(�ik�)a(�)(k)e�ik�x� Z d3k0(2�)32k00 3X�0=0 �(�0)� (k0)(�ik0�)a(�0)(k0)e�ik0�x#"Z d3k00(2�)32k000 3X�00=0 �(�00)� (k00)(ik00�)a(�00)y(k00)eik00�x� Z d3k000(2�)32k0000 3X�000=0 �(�000)� (k000)(ik000� )a(�000)y(k000)eik000�x#�Z d3p003(2�)32!p 003 ay(~p 003 )eip 003 �x�jm1; ~p1; m2; ~p2i:

(7:154)

To calculate this we can rewrite the above expression as(7:149) = igps 1Z�1 d4xhm1; ~p 01 ; m2; ~p 02 ; m3; ~p 03 j�����Z d3k(2�)32k0 Z d3k00(2�)32k000 Z d3p003(2�)32!p 003 3X�0=0 3X�00=0�(�)� (k)�(�00)� (k00)(�ik�)(�ik�)exp[i(�k + k00 + p003) � x]a(�)(k)a(�00)y(k00)ay(p003)jm1; ~p1; m2; ~p2i+ three similar terms (t:s:t):
(7:155)

The x{integration is immediately performed by taking note of the fact thatZ d4x(2�)4eik�x = �4(k): (7:156)



128This yields(7:149) = igpshm1; ~p 01 ; m2; ~p 02 ; m3; ~p 03 j�����Z d3k(2�)32k0 Z d3k00(2�)32k000 Z d3p003(2�)32!p 003 3X�0=0 3X�00=0�(�)� (k)�(�00)� (k00)(�ik�)(�ik�)(2�)4�4(�k + k00 + p003)a(�)(k)a(�00)y(k00)ay(p003)jm1; ~p1; m2; ~p2i+ t:s:t: (7:157)
Now note that we have suppressed Normal ordering of the Lint: Normal orderinghas the e�ect of moving a(�)(k) to the right of the ays in the �rst term of the aboveexpression. But since a(�)(k)jm1; ~p1; m2; ~p2i = 0 (7:158)the �rst term in (7.157). Similarly the t:s:t: in (7.157) are zero, with the result(7:149) = 0: (7:159)Because of this result and the observations noted down after equation (7.147) wearrive at the result that the �rst order contribution to the transition amplitudehf jSjii for the process under consideration vanishes. From a physical point ofview this should not be a surprising result because the transition amplitude forthe process under consideration behaves as � gs1 gs2 gps to the lowest order. Weassume, without explicit calculations, that the second order contribution is zeroand proceed to calculate the �rst non{zero contribution to the transition amplitudegiven in (7.145).In order that the subscripts on the spacetime volume elements d4xi in equation(7.145) are not confused with the subscripts on the in and out state momenta we



129change the notation as follows: x1 ! x0x2 ! x00x3 ! x000; (7:160)and extract third order contribution to hf jSjii. This contribution readsh10; 20; 30jSj1; 2iIII = � i6 1Z�1 d4x0 1Z�1 d4x00 1Z�1 d4x000h10; 20; 30jThLint:(x0)Lint:(x00)Lint:(x000)ij1; 2i; (7:161)
where we have introduced the following abbreviations:hm1; ~p 01 ; m2; ~p 02 ; m3; ~p 03 j = h10; 20; 30jjm1; ~p1; m2; ~p2i = j1; 2i: (7:162)The only non{vanishing contributions to h10; 20; 30jSj1; 2iIII come from terms �gs1 gs2 gps. As such



130we have (using (7.141))h10; 20; 30jSj1; 2iIII = � i6gs1 gs2 gps 1Z�1 d4x0 1Z�1 d4x00 1Z�1 d4x000h10; 20; 30jT��(x0)y@��(x0)A�(x0)�(x00)y@��(x00)A�(x00)�����F ��(x000)F ��(x000)�(x000)+ �(x0)y@��(x0)A�(x0)�(x000)y@��(x000)A�(x000)�����F ��(x00)F ��(x00)�(x00)+ �(x00)y@��(x00)A�(x00)�(x0)y@��(x0)A�(x0)�����F ��(x000)F ��(x000)�(x000)+ �(x00)y@��(x)A�(x00)�(x000)y@��(x000)A�(x000)�����F ��(x0)F ��(x0)�(x0)+ �(x000)y@��(x000)A�(x000)�(x0)y@��(x0)A�(x0)�����F ��(x00)F ��(x00)�(x00)+ �(x000)y@��(x000)A�(x000)�(x00)y@��(x00)A�(x00)�����F ��(x0)F ��(x0)�(x0)�j1; 2i: (7:163)Reintroducing the suppressed normal ordering of the Lagrangian density operator,we have [also see the observations below]h10; 20; 30jSj1; 2iIII = � i6 gs1 gs2 gps 1Z�1 d4x0 1Z�1 d4x00 1Z�1 d4x000h ja(~p 01 )a(~p 02 )a(~p 03 )T�N��y @�� A��x0N��y @�� A��x00N������F ��F ����x000+ (x00 ! x000; x000 ! x00) + (x0 ! x00; x00 ! x0)+(x0 ! x00; x00 ! x000; x000 ! x0) + (x0 ! x000; x00 ! x0; x000 ! x00)+ (x0 ! x000; x000 ! x0)�ay(~p1)ay(~p2)j i:
(7:164)

The non{explicitly written terms in the above expression are obtained from theexplicitly written �rst term by the indicated substitutions. In addition recall that:ay(~p1)j i = jm1; ~p1i (7:165)ay(~p2)j i = jm2; ~p2i (7:166)



131ay(~p3)j i = jm3; ~p3i: (7:167)In addition note the standard abbreviationA(x) B(x) C(x) = �A B C �x: (7:168)To proceed further with our calculations we consider the�rst time ordered term in (7.164)T�N��y @�� A��x0N��y @�� A��x00N������F ��F ����x000�; (7:169)and use the de�nition F �� = @�A� � @�A� (7:170)to getT�N��y @�� A��x0N��y @�� A��x00N������F ��F ����x000�= T�N��y @�� A��x0N��y @�� A��x00N������f@�A� � @�A�gf@�A� � @�A�g��x000�= T�N��y @�� A��x0N��y @�� A��x00N������@�A�@�A���x000�� T�N��y @�� A��x0N��y @�� A��x00N������@�A�@�A���x000�� T�N��y @�� A��x0N��y @�� A��x00N������@�A�@�A���x000�+ T�N��y @�� A��x0N��y @�� A��x00N������@�A�@�A���x000�: (7:171)We now use the second Wick's theorem (see: Ref. [51, p.167]) to evaluatethe time ordered product T [� � �] which appears in (7.164). Towards this end



132we start with the �rst time ordered term in the r:h:s of (7.171) (Note: l:h:s: of(7.171) equals the �rst time ordered term in the r:h:s: of (7.164))T�N��y @�� A��x0N��y @�� A��x00N������@�A�@�A���x000�= N���y @�� A��x0��y @�� A��x00������@�A�@�A���x000�+N���y @�� A��x0��y @�� A�| {z }�x00������@�A�@�A���x000�+N���y @�� A��x0��y @�� A��x00������@�A�| {z }@�A���x000�+N���y @�� A��x0��y @�� A��x00������@�A�@�A�| {z }��x000�+N���y @�� A��x0��y @�� A��x00������@�A�| {z } @�A���x000�+N���y @�� A��x0��y @�� A��x00������@�A�@�A�| {z }��x000�+N���y @�� A��x0��y @�� A��x00������@�A�| {z }@�A���x000�+N���y @�� A��x0��y @�� z }| {A��x00������@�A� @�A�| {z }��x000�:
(7:172)

Where we omitted all contractions between the di�erent �eld operators, such as�(x0)�(x00)| {z }, which give a zero contribution.Next we calculate the needed matrix element of the above time ordered producth ja(~p 01 )a(~p 02 )a(~p 03 )T�N��y @�� A��x0N��y @�� A��x00N������@�A�@�A���x000�ay(~p1)ay(~p2)j i: (7:173)
Since neither the initial state jii = ay(~p1)ay(~p2)j i nor the �nal state jfi =ay(~p 01 )ay(~p 02 )ay(~p 03 )j i contains a photon, the �rst six terms on the r:h:s: contribute



133zero to the matrix element (7.173). As such we haveh ja(~p 01 )a(~p 02 )a(~p 03 )T�N��y @�� A��x0N��y @�� A��x00N������@�A�@�A���x000�ay(~p1)ay(~p2)j i= h ja(~p 01 )a(~p 02 )a(~p 03 )N���y @�� A��x0��y @�� A��x00������@�A�| {z }@�A���x000�ay(~p1)ay(~p2)j i+ h ja(~p 01 )a(~p 02 )a(~p 03 )N���y @�� A��x0��y @�� z }| {A��x00������@�A� @�A�| {z }��x000�:ay(~p1)ay(~p2)j i:
(7:174)

Since contractions are c{numbers we may take the contractions on the r:h:s: of(7.174) out of the Normal product and write the above result as follows:h ja(~p 01 )a(~p 02 )a(~p 03 )T�N��y @�� A��x0N��y @�� A��x00N������@�A�@�A���x000�ay(~p1)ay(~p2)j i= A�(x0)@�A�(x000)| {z } A�(x00)@�A�(x000)| {z } �����h ja(~p 01 )a(~p 02 )a(~p 03 )N���y@���x0��y@���x00�(x000)�ay(~p1)ay(~p2)j i+ A�(x0)@�A�(x000)| {z } A�(x00)@�A�(x000)| {z } �����h ja(~p 01 )a(~p 02 )a(~p 03 )N���y@���x0��y@���x00�(x000)�ay(~p1)ay(~p2)j i= ������A�(x0)@�A�(x000)| {z } A�(x00)@�A�(x000)| {z }+A�(x0)@�A�(x000)| {z } A�(x00)@�A�(x000)| {z }�h ja(~p 01 )a(~p 02 )a(~p 03 )N���y@���x0��y@���x00�(x000)�ay(~p1)ay(~p2)j i: (7:175)Referring to this result, and equation (7.171), we can �nally write down the fol-lowing fundamental matrix element (see (7.169)) needed to evaluate



134h10; 20; 30jSj1; 2iIII given by (7.163) and (7.164):h ja(~p 01 )a(~p 02 )a(~p 03 )T�N��y @�� A��x0N��y @�� A��x00N������F ��F ����x000�ay(~p1)ay(~p2)j i= ������A�(x0)@�A�(x000)| {z } A�(x00)@�A�(x000)| {z }+ A�(x0)@�A�(x000)| {z } A�(x00)@�A�(x000)| {z }� A�(x0)@�A�(x000)| {z } A�(x00)@�A�(x000)| {z }� A�(x0)@�A�(x000)| {z } A�(x00)@�A�(x000)| {z }� A�(x0)@�A�(x000)| {z } A�(x00)@�A�(x000)| {z }� A�(x0)@�A�(x000)| {z } A�(x00)@�A�(x000)| {z }+ A�(x0)@�A�(x000)| {z } A�(x00)@�A�(x000)| {z }+ A�(x0)@�A�(x000)| {z } A�(x00)@�A�(x000)| {z }�h ja(~p 01 )a(~p 02 )a(~p 03 )N���y@���x0��y@���x00�(x000)�ay(~p1)ay(~p2)j i: (7:176)After the T ordering is performed, as just done, the x0; x00; x000 are dummyvariables of integration. Consequently we need not calculate the other �ve matrixelements of the T ordered product which appear in (7.164). With this observationwe have our �nal gauge independent expression for the scattering



135amplitude under study. This expression reads:h10; 20; 30jSj1; 2iIII = �igs1 gs2 gps 1Z�1 d4x0 1Z�1 d4x00 1Z�1 d4x000 ������A�(x0)@�A�(x000)| {z } A�(x00)@�A�(x000)| {z }+ A�(x0)@�A�(x000)| {z } A�(x00)@�A�(x000)| {z }� A�(x0)@�A�(x000)| {z } A�(x00)@�A�(x000)| {z }� A�(x0)@�A�(x000)| {z } A�(x00)@�A�(x000)| {z }� A�(x0)@�A�(x000)| {z } A�(x00)@�A�(x000)| {z }� A�(x0)@�A�(x000)| {z } A�(x00)@�A�(x000)| {z }+ A�(x0)@�A�(x000)| {z } A�(x00)@�A�(x000)| {z }+ A�(x0)@�A�(x000)| {z } A�(x00)@�A�(x000)| {z }�h ja(~p 01 )a(~p 02 )a(~p 03 )N���y@���x0��y@���x00�(x000)�ay(~p1)ay(~p2)j i: (7:177)Note that the factor of 6, arising from the 3!, has now disappeared because of sixequal contributions from the six time ordered terms on the r:h:s: of (7.164). Thisexpression can be further simpli�ed by exploiting the antisymmetry of ����� asfollows������A�(x0)@�A�(x000)| {z } A�(x00)@�A�(x000)| {z }�A�(x0)@�A�(x000)| {z } A�(x00)@�A�(x000)| {z }�= 2����� A�(x0)@�A�(x000)| {z } A�(x00)@�A�(x000)| {z } : (7:178)
Using this identity in (7.177) we obtain



136
h10; 20; 30jSj1; 2iIII = �igs1 gs2 gps 1Z�1 d4x0 1Z�1 d4x00 1Z�1 d4x000 �����2�A�(x0)@�A�(x000)| {z } A�(x00)@�A�(x000)| {z }+ A�(x0)@�A�(x000)| {z } A�(x00)@�A�(x000)| {z }+ A�(x0)@�A�(x000)| {z } A�(x00)@�A�(x000)| {z }+ A�(x0)@�A�(x000)| {z } A�(x00)@�A�(x000)| {z }�h ja(~p 01 )a(~p 02 )a(~p 03 )N���y@���x0��y@���x00�(x000)�ay(~p1)ay(~p2)j i: (7:179)Exploiting the antisymmetry of �����, once more, simpli�es this expression to:h10; 20; 30jSj1; 2iIII = �igs1 gs2 gps 1Z�1 d4x0 1Z�1 d4x00 1Z�1 d4x000 �����4�A�(x0)@�A�(x000)| {z } A�(x00)@�A�(x000)| {z }+ A�(x0)@�A�(x000)| {z } A�(x00)@�A�(x000)| {z }�h ja(~p 01 )a(~p 02 )a(~p 03 )N���y@���x0��y@���x00�(x000)�ay(~p1)ay(~p2)j i: (7:180)This is the formal gauge independent expression for the scattering amplitude forthe two photon mediated production of a pseudoscalar neutral particle, such as �0,in the scattering of two (di�erent) spin zero nuclei. At this stage of our calculationsall particles are considered pointlike.



1377.8 Evaluation ofh ja(~p 01 )a(~p 02 )a(~p 03 )N���y@���x0��y@���x00�(x000)�ay(~p1)ay(~p2)j iwhich Appears in r:h:s of (7.180)Having obtained the expression for h10; 20; 30jSj1; 2iIII, we now evaluate theindicated matrix element. Towards this end note that the only surviving con-tribution to this matrix element comes from terms which contain the followingcombination of creation and annihilation operators ay(~p1)ay(~p2)ay(~p3)a(~p1)a(~p2):To pick these terms we write the argument of N [� � �] explicitly. It readsZ d3p 001(2�)32!p001 �ay(~p 001)eip001 �x0 + a(~p 001)e�ip001 �x0�Z d3p0001(2�)32!p0001 �a(~p 0001 )(�ip0001�)e�ip0001 �x0 + ay(~p 0001 )(ip0001�)eip0001 �x0�Z d3p002(2�)32!p002 �ay(~p 002)eip002 �x00 + a(~p 002)e�ip002 �x00�Z d3p0002(2�)32!p0002 �a(~p 0002 )(�ip0002�)e�ip0002 �x00 + ay(~p 0002 )(ip0002�)eip0002 �x00�Z d3p003(2�)32!p003 �a(~p 003)e�ip003 �x000 + ay(~p 003)eip003 �x000�:
(7:181)

By inspection, we can now write down the contribution from N [� � �] which willsurvive. It isZ d3p001(2�)32!p001 Z d3p0001(2�)32!p0001 Z d3p002(2�)32!p002 Z d3p0002(2�)32!p0002 Z d3p003(2�)32!p003�ay(~p 001)a(~p 0001 )ay(~p 002)a(~p 0002 )ay(~p 003)�eip001 �x0(�ip0001�)e�ip0001 �x0eip002 �x00(�ip0002�)e�ip0002 �x00eip003 �x000�+ ay(~p 0001 )a(~p 001)ay(~p 0002 )a(~p 002)ay(~p 003)�e�ip001 �x0(ip0001�)eip0001 �x0e�ip002 �x00(ip0002�)eip0002 �x00eip003 �x000��:
(7:182)



138As a result, we haveh ja(~p 01 )a(~p 02 )a(~p 03 )N���y@���x0��y@���x00�(x000)�ay(~p1)ay(~p2)j i =Z d3p001(2�)32!p001 Z d3p0001(2�)32!p0001 Z d3p002(2�)32!p002 Z d3p0002(2�)32!p0002 Z d3p003(2�)32!p003�h~p 01; ~p 02; ~p 03; ~p 0001 ; ~p 0002 j~p1; ~p2; ~p 001; ~p 002; ~p 003i�eip001 �x0(�ip0001�)e�ip0001 �x0eip002 �x00(�ip0002�)e�ip0002 �x00eip003 �x000�+ h~p 01; ~p 02; ~p 03; ~p 001; ~p 002j~p1; ~p2; ~p 0001 ; ~p 0002 ; ~p 003i�e�ip001 �x0(ip0001�)eip0001 �x0e�ip002 �x00(ip0002�)eip0002 �x00eip003 �x000��:
(7:183)

The integrations are easily performed by noting thath~p 01; ~p 02; ~p 03; ~p 0001 ; ~p 0002 j~p1; ~p2; ~p 001; ~p 002; ~p 003i =(2�)3�5 (2)5!p01 !p2 0 !p3 0!p1!p2�3(~p 01 � ~p 001)�3(~p 02 � ~p 002)�3(~p 03 � ~p 003)�3(~p 0001 � ~p1)�3(~p 0002 � ~p2); etc:; (7:184)yielding the resulth ja(~p 01 )a(~p 02 )a(~p 03 )N���y@���x0��y@���x00�(x000)�ay(~p1)ay(~p2)j i= eip01�x0(�ip1�)e�ip1�x0eip02�x00(�ip2�)e�ip2�x00eip03�x000+ e�ip01�x0(ip1�)eip1�x0e�ip02�x00(ip2�)eip2�x00eip03�x000: (7:185)



1397.9 Expression for h10; 20; 30jSj1; 2iIII in Covariant Lorentz GaugeInserting (7.185) in (7.180) givesh10; 20; 30jSj1; 2iIII = 4igs1 gs2 gps 1Z�1 d4x0 1Z�1 d4x00 1Z�1 d4x000 p1�p2� ������ei(p01�p1)�x0ei(p02�p2)�x00eip03�x000 + e�i(p01�p1)�x0e�i(p02�p2)�x00eip03�x000��A�(x0)@�A�(x000)| {z } A�(x00)@�A�(x000)| {z }+ A�(x0)@�A�(x000)| {z } A�(x00)@�A�(x000)| {z }�(7:186)In the covariant Lorentz gauge the contractions appearing in (7.186) can beevaluated using (see e.g. Ref. [53])A�(x)A�(x0)| {z } = h jT �A�(x)A�(x0)�j i= �i Z d4k(2�)4 ���k2 + i�e�ik�(x�x0): (7:187)As a consequence A�(x) @�A�(x0)| {z } = Z d4k(2�)4 ��� k�k2 + i�e�ik�(x�x0): (7:188)Using (7.188) in (7.186) leads to the following expression for the desired S{matrixelementh10; 20; 30jSj1; 2iIII = 4i gs1 gs2 gps 1Z�1 d4x0 1Z�1 d4x00 1Z�1 d4x000 p1�p2� ������ei(p01�p1)�x0ei(p02�p2)�x00eip03�x000 + e�i(p01�p1)�x0e�i(p02�p2)�x00eip03�x000���Z d4k(2�)4 ��� k�k2 + i�e�ik�(x0�x000)��Z d4k0(2�)4 ��� k0�k02 + i�e�ik0�(x00�x000)�+ �Z d4k00(2�)4 ��� k00�k002 + i�e�ik00�(x0�x000)��Z d4k000(2�)4 ��� k000�k0002 + i�e�ik000�(x00�x000)��(7:189)This expression can be further simpli�ed and brought to a more physically trans-parent form by performing the integrations over x0; x00 and x000. The result of this



140manipulation is:h10; 20; 30jSj1; 2iIII = 4i gs1 gs2 gps ����� p1� p2� Z d4k(2�)4 Z d4k0(2�)4���k�k2 + i� ���k0�k02 + i��(2�)4�3�4(p01 � p1 � k)�4(p02 � p2 � k0)�4(p03 + k + k0)+ (2�)4�3�4(�p01 + p1 � k)�4(�p02 + p2 � k0)�4(p03 + k + k0)�+ 4i gs1 gs2 gps ����� p1� p2� Z d4k00(2�)4 Z d4k000(2�)4���k00�k002 + i� ���k000�k0002 + i��(2�)4�3�4(p01 � p1 � k00)�4(p02 � p2 � k000)�4(p03 + k00 + k000)+ (2�)4�3�4(�p01 + p1 � k00)�4(�p02 + p2 � k000)�4(p03 + k00 + k000)�(7:190)7.10 Two Photon Mediated Production of a Electrically NeutralScalar Particle in the High Energy Scattering of Two Charged Par-ticlesTo study the two photon mediated production of electrically neutral scalarparticles such as f0(975), a0(980) and f0(1400) we choose�1 = A scalar particle of mass m1 and charge Q1,�2 = A scalar particle of mass m2 and charge Q2,�3 = A neutral scalar particle of mass m3.Such a process approximates the photoproduction of a neutral scalar meson in thescattering of two spin zero nuclei. The matter �eld operators associated with thethree particles involved are:�1 : �(x) = Z d3p001(2�)32!p 001 �a(~p 001 )e�ip 001 �x + ay(~p 001 )eip 001 �x� (7:191)
�2 : �(x) = Z d3p002(2�)32!p 002 �a(~p 002 )e�ip 002 �x + ay(~p 002 )eip 002 �x� (7:192)



141
�3 : �(x) = Z d3p003(2�)32!p 003 �a(~p 003 )e�ip 003 �x + ay(~p 003 )eip 003 �x� (7:193)with !p = (m2 + ~p 2)1=2: (7:194)The interaction Lagrangian density operator for the two photon mediated pro-duction of scalar particles isLint:(x) = gs1 �(x)y @��(x) A�(x) + gs2 �(x)y @��(x) A�(x)+gs F��(x)F ��(x) �(x); (7:195)where we have suppressed the Normal Ordering. To calculate the transition am-plitude jii = jm1; ~p1; m2; ~p2i ! jfi = jm1; ~p 01 ; m2; ~p 02 ;m3; ~p 03 i (7:196)all arguments of Sec. 7.7 up to equation (7.177) remain unmodi�ed provided thefollowing substitutions are made:gps ! gs; ����� ! 1; Superscript �! Subscript �;Superscript � ! Subscript �; �! �; � ! �; �(x)! �(x): (7:197)



142The counterpart of (7.177) then readsh10; 20; 30jSj1; 2iIII = �igs1 gs2 gs 1Z�1 d4x0 1Z�1 d4x00 1Z�1 d4x000�A�(x0)@�A�(x000)| {z } A�(x00)@�A�(x000)| {z }+A�(x0)@�A�(x000)| {z } A�(x00)@�A�(x000)| {z }�A�(x0)@�A�(x000)| {z } A�(x00)@�A�(x000)| {z }�A�(x0)@�A�(x000)| {z } A�(x00)@�A�(x000)| {z }�A�(x0)@�A�(x000)| {z } A�(x00)@�A�(x000)| {z }�A�(x0)@�A�(x000)| {z } A�(x00)@�A�(x000)| {z }+A�(x0)@�A�(x000)| {z } A�(x00)@�A�(x000)| {z }+A�(x0)@�A�(x000)| {z } A�(x00)@�A�(x000)| {z }�h ja(~p 01 )a(~p 02 )a(~p 03 )N���y@���x0��y@���x00�(x000)�ay(~p1)ay(~p2)j i: (7:198)This expression immediately simpli�es toh10; 20; 30jSj1; 2iIII = �igs1 gs2 gs 1Z�1 d4x0 1Z�1 d4x00 1Z�1 d4x0004�A�(x0)@�A�(x000)| {z } A�(x00)@�A�(x000)| {z }�A�(x0)@�A�(x000)| {z } A�(x00)@�A�(x000)| {z }�h ja(~p 01 )a(~p 02 )a(~p 03 )N���y@���x0��y@���x00�(x000)�ay(~p1)ay(~p2)j i: (7:199)Evaluatingh ja(~p 01 )a(~p 02 )a(~p 03 )N���y@���x0��y@���x00�(x000)�ay(~p1)ay(~p2)j i as in Sec.7.8 (�(x) ! �(x), the rest is identical) and substituting the result in the above



143expression we geth10; 20; 30jSj1; 2iIII = 4igs1 gs2 gs 1Z�1 d4x0 1Z�1 d4x00 1Z�1 d4x000 p1� p2��ei(p01�p1)�x0ei(p02�p2)�x00eip03�x000 + e�i(p01�p1)�x0e�i(p02�p2)�x00eip03�x000��A�(x0)@�A�(x000)| {z } A�(x00)@�A�(x000)| {z }� A�(x0)@�A�(x000)| {z } A�(x00)@�A�(x000)| {z }�(7:200)To continue further, noteA�(x) @�A�(x0)| {z } = ��� ��� A�(x) @�A�(x)| {z } : (7:201)In the covariant Lorentz gauge we have (see (7.188))A�(x) @�A�(x0)| {z } = Z d4k(2�)4 ��� k�k2 + i�e�ik�(x�x0): (7:202)As such A�(x) @�A�(x0)| {z } = ��� ��� Z d4k(2�)4 ��� k�k2 + i�e�ik�(x�x0): (7:203)



144Substituting this result in equation (7.200) givesh10; 20; 30jSj1; 2iIII = 4i gs1 gs2 gs 1Z�1 d4x0 1Z�1 d4x00 1Z�1 d4x000 p1� p2��ei(p01�p1)�x0ei(p02�p2)�x00eip03�x000 + e�i(p01�p1)�x0e�i(p02�p2)�x00eip03�x000��������� Z d4k(2�)4 ��� k�k2 + i�e�ik�(x0�x000)��Z d4k0(2�)4 ��� k0�k02 + i�e�ik0�(x00�x000)��������� Z d4k00(2�)4 ��� k00�k002 + i�e�ik00�(x0�x000)��Z d4k000(2�)4 ��� k000�k0002 + i�e�ik000�(x00�x000)��(7:204)Performing the x0; x00 and x000 integrations then yields the counterpart of (7.190)h10; 20; 30jSj1; 2iIII = 4i gs1 gs2 gs p1� p2� ��� ��� Z d4k(2�)4 Z d4k0(2�)4���k�k2 + i� ���k0�k02 + i��(2�)4�3�4(p01 � p1 � k)�4(p02 � p2 � k0)�4(p03 + k + k0)+ (2�)4�3�4(�p01 + p1 � k)�4(�p02 + p2 � k0)�4(p03 + k + k0)�� 4i gs1 gs2 gs p1� p2� ��� ��� Z d4k00(2�)4 Z d4k000(2�)4���k00�k002 + i� ���k000�k0002 + i��(2�)4�3�4(p01 � p1 � k00)�4(p02 � p2 � k000)�4(p03 + k00 + k000)+ (2�)4�3�4(�p01 + p1 � k00)�4(�p02 + p2 � k000)�4(p03 + k00 + k000)�(7:205)7.11 ConclusionsIn this work we have provided a general procedure to construct (j; 0)� (0; j)covariant spinors for any spin. These covariant spinors are then used to construct[23] arbitrary{spin causal propagators. While at present we do not have acuaslity{free relativistic wave equations, which the (j; 0)�(0; j) covariant spinors satisfy, wehave established that the Weinberg Equations su�er from kinematical acausality.



145APPENDIXELEMENTS OF CANONICAL QUANTUM FIELD THEORYIn this appendix we provide essential elements of the canonical quantum �eldtheory. We will establish how our work contained in the main text of this workinterfaces at various levels with canonical quantum �eld theory.A1 Casimir Operators and Pauli{Lub�anski PseudovectorLet j i be the state of a system as observed by an inertial observer O. If j i0represents the state of the same system as observed by another inertial observerO0, then j i0 = U(f�; ag)j i; (A1)where f�; ag characterises the transformation which relates O with O0:x0� = ���x� + a�: (A2)U(f�; ag) is an operator satisfying:U(f�; ag)U(f�; ag) = U(f��;�a+ ag): (A3)However, because of the equivalence of all inertial observers for the description ofa system it, follows that together with j i, j i0 is also a possible state as viewed bythe original inertial observer O. Thus the representation space on which unitaryoperators U(f�; ag) act contains with every j i, all transforms U(f�; ag)j i, withf�; ag as any Poincar�e transformation.To each solution U(f�; ag) of (A3) corresponds a representation space. Thequestion now naturally arises: What are the quantum numbers which distinguishone representation space from another? Casimir invariants are considered the mostsuitable candidates for these quantum numbers.



146Poincar�e group has two Casimir operators:C1 = P�P �; (A4)C2 =W�W �; (A5)where W� is de�ned as W� = ������J��P �; (A6)with � a c{number constant. W� is called the Pauli{Lub�anski pseudovector. Itwas �rst introduced by Lub�anski [48] in 1942 with acknowledgements to Pauli.It is readily seen that the Pauli{Lub�anski operator has the following properties:W�P � = 0: (A7)[W �; P �] = 0: (A8)Equation (A7) follows from the vanishing of the commutator [P �; P �] because itmakes P �P �, which appears inW�P � = ������J��P �P � symmetric in the indices�; �. On the other hand ����� is antisymmetric in the same indices. These twoobservations immediately yield the result (A7). The proof of (A8) is as follows[W �; P �] = �[�����J��P�; P �]= �J��[�����P�; P �] + �[�����J��; P �]P�= ������ n�i(���P� � ���P�)oP�: (A9)Now note that ��� = ������ = ��� : This yields[W �; P �] = i������ n���P� � ���P�oP� = i�n�����P� � �����P�o = 0; (A10)where we used the complete antisymmetry of ����� and then renamed appropriateindices. More properties of the Pauli{Lub�anski operator can be found on page 195of Tung [55].



147As a consequence of the constraint (7), W� has a maximum of three inde-pendent components. Further it is translationally invariant. This implies thatC2 � W�W � is also translationally invariant. Since W� is a four vector, W�W �is also invariant under pure Lorentz transformations. This establishes C2 to be aCasimir operator for the Poincar�e group. That C1 is a Casimir operator is obvi-ous. P� is translationally invariant, which makes P�P � translationally invariant.In addition because P� is a four vector, P�P � is invariant under pure Lorentztransformations. As a result C1 is a Casimir operator.Restricting ourselves to timelike and lightlike momenta p� we are led to twophysically distinct classes of representation spaces.
A2 States with m 6= 0: Timelike p�, Spin and Little GroupSince the Pauli{Lub�anski operator commutes with the energy{momentum fourvector the two Casimir operators of the Poincar�e group commute. So let j i be asimultaneous eigenstate of C1 and C2. The Casimir invariants are readily foundby considering a standard vector p� = (m; 0; 0; 0). Then we �nd thatC1j i = P�P �j i = p�p�j i = m2j i: (A11)As such the �rst Casimir invariant is identi�ed as [by de�nition] the square of thePoincar�e invariant mass associated with each of the states in the representationspace to which j fp� = (m; 0; 0; 0)gi belongs.Thus one of the quantum numbers by which a given representation spacecan be labelled is the Poincar�e invariant mass, m. All physical states in thesame representation space carry the same mass. This is a quantity which is tobe determined experimentally. A theory in which this number itself could betheoretically calculated or related to other incalculable numbers of the present



148theory, such as the electronic charge e, the Planck constant �h, the speed of lightc, the gravitational constant G32 is not known at present.To learn about the physical nature of the second Casimir invariant let's con-sider the action of C2 on j i. Again, we choose the standard vector p� = (m; 0; 0; 0)throughout the calculations which follow. Since p� = (m; 0; 0; 0), the orbital an-gular momentum vanishes and we should replace ~J , the total angular momentum,by ~S, the spin angular momentum.C2 j i = �2�����S��P ������S��P� j i = �2m2����0����0S��S�� j i (A12)The complete antisymmetry of ����� implies that only � 6= 0; � 6= 0; � 6= 0; � 6=0 and � 6= 0 terms can survive in the r:h:s of the above expression. As suchwe rename the indices as follows: � ! k; � ! l; � ! q; � ! i; and; � ! jwhere each of the new indices runs over 1; 2; 3. With these substitutions equation(A12) reads C2 j i = m2�2�kql0�kij0SqlSij j i: (A13)With the convention �0123 = +1; (A14)we have �kql0�kij0 = (�iq�jl � �il�jq): (A15)Therefore C2 j i = m2�2[SijSij � SjiSij ] j i= m2�22[�ijk�ijlSkSl] j i= m2�22[2�kl SkSl] j i: (A16)That is eigenvalues of C2 are proportional to those of ~S 2,C2 j i = m2�22 � 2SkSk j i (A17)32 A constant related to a phenomenon which, it should be noted, extends Poincar�e covarianceto General covariance.



149As a result if we choose � = 12 ; (A18)and note SkSk j i � �~S2 j i = �s(s+ 1) j i (A19)for j i = j fp� = (m; 0; 0; 0)gi we get the second Casimir invariantc2 = �m2s(s+ 1): (A20)
Therefore the quantum numbers m and s distinguish one representation spacefrom another. A physical state in the representation space of timelike momentacan thus be written as j ip�p�>0 : jp�; m; s; �i: (A21)with P � jp�; m; s; �i = p�jp�; m; s; �i; (A22)~S 2 jp�; m; s; �i = s(s+ 1) jp�; m; s; �i; (A23)Sz jp�; m; s; �i = �jp�; m; s; �i: (A24)Before we undertake the study of representation spaces for lightlike p� we look atthe Pauli{Lub�anski pseudovector in a little more detail. For this we let p� be anyp� satisfying p�p� > 0, instead of the standard timelike momenta p� = (m; 0; 0; 0).The de�nition of the Pauli{Lub�anski pseudovector (A6) yields the 0th [or time]



150componentW 0 = 12�0���J��P�= 12(�0123J12P3 + �0132J13P2 + �0213J21P3 + � � �+ �0312J31P2 + �0321J32P1)= (�0123J12P3 + �0132J13P2 + �0231J23P1)= [(+1)J3P3 + (�1)(�J2)P2 + (+1)J1P1]= JiPi: (A25)Since P� = (P0;�~P ) W 0 = � ~J � ~P : (A26)Now we obtain the spacial part of W �:W 1 =12(�1023J02P3 + �1032J03P2 + �1203J20P3 + � � �+ �1302J30P2 + �1320J32P0)= (�1023J02P3 + �1032J03P2 + �1230J23P0)= [(�1)K2P3 + (+1)K3P2 + (�1)J1P0]= [�J1P0 + (�K2P3 +K3P2)]= [�J1P0 + (K2P 3 �K3P 2)]= [�J1P0 + ( ~K � ~P )1];
(A27)

where ( ~K � ~P )1 � K2P 3 �K3P 2 = �K2P3 +K3P2: (A28)Similarly one can obtain the y{ and z{components of W � to get~W = (� ~JP0 + ~K � ~P ): (A29)In the above equations we have de�nedJ12 = J3 = �J21; J31 = J2 = �J13; J23 = J1 = �J32; (A30)



151Ji0 = �Ki = �J0i; (i = 1; 2; 3): (A31)The operator �W 0j~pj = ~J � ~Pj~pj ; (A32)[see (A26)] can be interpreted as a generalised helicity operator for it measures theprojection of the total (rather than spin) angular momentum on the direction ofmotion. The meaning of ~W is not as transparent. A few remarks on it may shedsome light. First, the vector ~K� ~P is an operator which lies in a plane orthogonalto ~P . Second, since W�P � vanishes, there are only three independent componentsinW �. Equation (A32) provides one independent component. The other two maybe chosen along any two mutually orthogonal directions in the plane de�ned by~K� ~P . If one wished, these operators could be chosen as ~J � â and ~J � b̂, with â andb̂ as two dimensionless unit vectors in the plane de�ned by ~K� ~P . Whether theseoperators will �nd any use in physical problems is not obvious. Bargmann andWigner [9] obtained operators similar to (A26) and (A29) without attemptingany physical interpretation.For the standard vector p� the generalised helicity operator becomes unde�nedbecause of the null isotropy of ~p = ~0. As such let's, for sake of completeness, studythe e�ect of W � on jp� = (m; 0; 0; 0); m; s; �iW 0 jp� = (m; 0; 0; 0); m; s; �i = � ~J � ~P jp� = (m; 0; 0; 0); m; s; �i= � ~J � ~p jp� = (m; 0; 0; 0); m; s; �i = 0; (A33)since ~p = ~0 for jp� = (m; 0; 0; 0); m; s; �iW 1 jp� = (m; 0; 0; 0); m; s; �i= [�J1P0 + ( ~K � ~P )1] jp� = (m; 0; 0; 0); m; s; �i= �mJi jp� = (m; 0; 0; 0); m; s; �i: (A34)For later use we de�ne the little group as a set of transformations which leavep� unchanged. Referring to (A33) and (A34) we once again explicitly verify



152that W � has three independent components, for any a timelike standard vectorp� = (m; 0; 0; 0), which are proportional to the generators fJig of the little groupSO(3). Note from (A8) that the Pauli{Lub�anski operator commutes with P � andhence it is the generator of the Little group.A3 States with m = 0: Lightlike p�, Helicity and Little GroupThe physical content of the Pauli{Lub�anski operator depends on whether p�is timelike or lightlike. Both Casimir invariants obtained above vanish for m! 0.In the limit m = 0, if the primitive arguments of continuity are to hold, we shouldhave for a lightlike standard vector k� = (�; 0; 0; �)P�P � jk� = (�; 0; 0; �); m = 0; �i = 0; (A35)W�W � jk� = (�; 0; 0; �); m = 0; �i = 0; (A36)W�P � jk� = (�; 0; 0; �); m = 0; �i = 0: (A37)So acting on the representation space to which the standard state vector jk� =(�; 0; 0; �); m = 0; �i belongs, we have the following operator equationsP�P � = 0; W�W �; W�P � = 0; (A38)where � represents a yet unidenti�ed quantum number. This quantum numbermust be related, in yet unspeci�ed fashion, in the m ! 0 limit to the quan-tum number s. Without loss of generality we take P � = (P 0; 0; 0; P 3), withthe understanding that both P 0 and P 3 acting on the standard state vectorjk� = (�; 0; 0; �); m = 0; �i yield �jk� = (�; 0; 0; �); m = 0; �i. Equations(A35) to (A37) then read P0P 0 � P3P 3 = 0; (A39)W0W 0 �W1W 1 �W2W 2 �W3W 3 = 0; (A40)W0P 0 �W3P 3 = 0: (A41)Since both P 0 and P 3 acting on the standard state vector jm = 0; �; k� =



153(�; 0; 0; �)i yield �jk� = (�; 0; 0; �); m = 0; �i we obtain from (A41)W0 = W3: (A42)Substitution of the above result in (A40) gives us the condition thus imposed onthe 1st and 2nd component of the Pauli{Lub�anski operatorW1W 1 = �W2W 2 ) (W 1)2 = �(W 2)2: (A43)Now if the Pauli{Lub�ansi operator is to be an observable, the square of its eigen-values (for each component) should be a real and a positive number. The condition(A43) then means that W 1 and W 2 are null operatorsW 1 =W 2 = 0: (A44)Thus we concludeW � must be proportional to P �. Identifying this proportionalityconstant with �, introduced above, we have(W � � �P �) jk� = (�; 0; 0; �); m = 0; �i = 0: (A45)This proportionality constant � has the dimension of angular momentum, and iscalled helicity. We now undertake a more rigorous study of the representationspaces associated with timelike momenta. One of the results we will obtain is that� = �j, if the operation of parity ~x ! �~x is included. Otherwise � is either +jor �j.We �rst study the form ofW � for the standard lightlike vector k� = (�; 0; 0; �).With � = 1=2, as before, the zeroth, or the temporal, component of W � is byde�nition (A6) W 0 = 12�0���J��P�= 12(�0123J12P3 + �0213J21P3)= J3P3: (A46)



154Similarly the spacial components of W � areW 1 = 12�1���J��P�= 12(�1��0J��P0 + �1��3J��P3)= �(J1P0 +K2P3); (A47)
W 2 = �(J2P0 �K1P3); (A48)W 3 = �J3P0: (A49)Therefore, while acting on the standard state vector jk� = (�; 0; 0; �); m = 0; �i,the Pauli{Lub�anski operator can be written asW � = ��(�J3; J1 +K2; J2 �K1; J3): (A50)Introducing T1 = J1 +K2; (A51)T2 = J2 �K1; (A52)we �nd the Lie algebra satis�ed by the generators of the Little group. It reads[T1; T2] = 0; [T1; J3] = �iT2; [T2; J3] = iT1: (A53)To gain physical insight into this algebra we note from Table II that the generatorsof rotations and translations in a plane [say x{y], of the ordinary spacetime, hasassociated with it the following Lie algebra[Px; Py] = 0; [Px; J3] = �iPy; [Py; J3] = iPx: (A54)As such the Lie algebra of the Little group for the lightlike momenta is isomor-phic to translations and rotations in a plane. To understand the possible origin of



155this isomorphism, consider a set of events(t1; x1; y1; z1); (t2; x2; y2; z2); � � � � � � ; (tn; xn; yn; zn) (A55)as described by an observer O. If the same set of events are observed by anotherobserver Oc whose relative velocity with respect to observer O is cẑ, c being thespeed of light, then for Oc the separations ti � tj and zi � zj all vanish. That is,two out of four dimensions seem to essentially disappear. Consequently, one maybe tempted not to distinguish between the events which di�er only in their t or zvalues and only refer to the projection of events onto the x{y plane. However, asone may satisfy oneself by considering a few elementary examples, the physics inOc is not completely identical if all events were initially in the x{y plane of O.Further consider two coincident worldlines �1 and �2 in the x{y plane. Let �1 beassociated with a photon, and �2 with a neutrino. Even though �1 and �2 arecoincident, the dynamics associated with the internal helicity degrees of freedom isnot. This, by way of an example, shows why one should (at most) expect only anisomorphism, and not an identity, between the generators of the little group for themassless particles and the group formed by the generators of the two translationsand the rotations in a plane.A �nite Little group transformation [see Ref. (34)]R��k� = k�; k� = (�; 0; 0; �); (A56)like all Lorentz transformations satis�es the conditionR��R����� = ���; (A57)and can be factored asR(�; X1; X2) = R(�; 0; 0)R(0; X1; X2): (A58)Where for in�nitesimal transformations(�; X1; X2)! (�; �1; �2): (A59)[Note: Ref. (34){�1 = �2 here, and Ref. (34){�2 = �1 here. Beware of other



156notational di�erences too !]The physical states jk� = (�; 0; 0; �); m = 0; �i under the in�nitesimal trans-formation of the little group, then transform asjk� = (�; 0; 0; �); m = 0; �i0 = U [R] jk� = (�; 0; 0; �); m = 0; �i= (1� i�J3 + i�2T2 + i�1T1) jk� = (�; 0; 0; �); m = 0; �i= h1� i�J3 + i�2(J2 �K1) + i�1(J1 +K2)ijk� = (�; 0; 0; �); m = 0; �i:(A60)Just as the generators of translations, P �, in the ordinary spacetime span aninvariant Abelian subalgebra, the generators of the Little group `translations' T1and T2 also span an invariant Abelian subalgebra .Group Theory Break: Ref. (46), De�nition: \An invariant subalgebra is someset of generators which goes into itself (or zero) under commutation with anyelement of the algebra". That is if T is any generator in the invariant subalgebraand X is any generator in the whole algebra, the commutator [T;X] is a generatorin the invariant subalgebra (or it is zero). To quote Ref. (46) again, Abelianinvariant subalgebras are \particularly annoying", because the generators in anAbelian invariant subalgebra commute with every generator in the subalgebra.The structure constants, as a consequence, vanish. De�nition: If Xa is a generatorof a group, then [Xa; Xb] = ifabcXc: (A61)The constants fabc are called structure constants of the group. The generatorssatisfy the Jacobi identity[Xa; [Xb; Xc]] + cyclic permutations = 0: (A62)In terms of structure constants the Jacobi identity readsfbcdfade + fabdfcde + fcadfbde = 0: (A63)One of the representations of the algebra can be found by introducing a set of



157matrices Ta (Ta)bc � �ifabc; (A64)
[Ta; Tb] = ifabcTc: (A65)Thus the structure constants themselves generate a representation of the algebra.The representation generated by the structure functions is called the adjoint rep-resentation. For more details the reader is directed to our source itself, Georgi[46].We now have a choice. Either to have in�nite dimensional representation (inthe parameter �), or have a one dimensional representation. Which of the repre-sentations is physically realised in nature is an interesting question, to which we(the author) have no honest theoretical answer. However the primitive argumentsof physical continuity suggest we explore the possibility of the one dimensionalrepresentation. By physical continuity in this context we mean a smooth con-ceptual and algebraic transition from the m ! 0 limit to the m = 0 case. Thisrepresentation is obtained by settingT1 jk� = (�; 0; 0; �); m = 0; �ii = 0; (A66)T2 jk� = (�; 0; 0; �); m = 0; �i = 0: (A67)Using (A66) and (A67) and identifying, as will be justi�ed soon, the statesjk� = (�; 0; 0; �); m = 0; �i as eigenstates with a de�nite helicity �J3 jk� = (�; 0; 0; �); m = 0; �i = � jk� = (�; 0; 0; �); m = 0; �i; (A68)yields for a �nite Little group transformation (see (A60))U [R]jk� = (�; 0; 0; �); m = 0; �i = exp(�i��[R]) jk� = (�; 0; 0; �); m = 0; �i:(A69)



158Introduce the following simpler notationjk� = (�; 0; 0; �); m = 0; �i = j�; �i; (A70)In this notation Eqs. (A68) and (A69) readJ3j�; �i = � j�; �i; (A71)U [R] j�; �i = exp(�i��[R])j�; �i; (A72)Using (A60) and (A72) for the in�nitesimal Little group transformations yields(1� i�J3 + i�2(J2 �K1) + i�1(J1 + K2)) j�; �i = (1� i�J3) j�; �i: (A73)The constraints imposed on matter �elds �(�; �) because of conditions (A66) and(A67) thus read�1� i�J3 + i�2(J2 �K1) + i�1(J1 +K2)� �(�; �) = (1� i�J3) �(�; �): (A74)where f ~J; ~Kg are now the �nite dimensional representations of the Lorentz algebra.To explore the physical consequences of this we begin with the observationi�2(J2 �K1) + i�1(J1 +K2)= i�2 h(~SR)2 + (~SL)2 + i(~SR)1 � i(~SL)1i+ i�1 h(~SR)1 + (~SL)1 � i(~SR)2 + i(~SL)2i= (i�1 + �2) h(~SL)1 + i(~SL)2i+ (i�1 � �2) h(~SR)1 � i(~SR)2i : (A75)
Then using (A71) and replacing J3, in accordance with de�nitions introducedin Chapter 3, by (~SR)3 + (~SL)3 the constraint (A74) becomes three independent



159conditions, which readh(~SR)3 + (~SL)3i �(�; �) = � �(�; �); (A76)h(~SL)1 + i(~SL)2i �(�; �) = 0; (A77)h(~SR)1 � i(~SR)2i �(�; �) = 0: (A78)In (A76) we used the fact that �(�; �) is identi�ed with the eigenstate of J3. Sinceh(~SL)1 + i(~SL)2i (A79)is a raising operator, which raises the �l value by unity, andh(~SR)1 � i(~SR)2i (A80)is a lowering operator which lowers the �r value by unity, conditions (A77) and(A78) imply that �(�; �) must simultaneously be eigenstates of ~SL with (themaximum) eigenvalue �l = jl and of ~SR with (the minimum) eigenvalue �r = �jr.That is (~SR)3 �(�; �) = �jr �(�; �); (A81)(~SL)3 �(�; �) = +jl �(�; �): (A82)These two equations coupled with Eq. (A76) yield a simple and remarkable resultwhich severly restricts the type of representations allowed for a lightlike momenta,by requiring � = jl � jr: (A83)It must be noted that the assumed identi�cation of �(�; �) with one of the eigen-states is forced by conditions (A81) and (A82). To see this add (A81) and



160(A82) to obtain h(~SR)3 + (~SL)3i �(�; �) = (jl � jr) �(�; �); (A84)One may satisfy oneself that constraints (A81) and (A82) are a direct result ofconditions (A66) and (A67), and need not to be connected to any of the interveningmathematical steps. In the limit m ! 0, the only degrees of freedom left out of� = �j;�j + 1; � � � � � � ;+j � 1;+j are �j. However, not all representations mayhave massless realisations physically. For f� = �j; j > 0g only those �elds maybe physically realised which satisfy the condition[� = �j; j > 0] : jl � jr = �j: (A85)Consequently physically realisable �elds are[� = �j] : (jl + j; jl) ! (j; 0); (j + 1=2; 1=2); (j + 1; 1); � � � : (A86)For � = �1=2; � = �1 and � = �3=2, physically realisable representations are[� = �1=2] : (1=2; 0); (1; 1=2); (3=2; 1); � � � : (A87)[� = �1] : (1; 0); (3=2; 1=2); (2; 1); � � � : (A88)[� = �3=2] : (3=2; 0); (2; 1=2); (5=2; 1); � � � : (A89)Similarly for f� = +j; j > 0g we have the constraint[� = +j; j > 0] : jl � jr = +j: (A90)The �elds which may be physically realised are[� = +j] : (jr; j + jr) ! (0; j); (1=2; j + 1=2); (1; j + 1); � � � : (A91)



161For � = +1=2; � = +1; and � = 3=2, physically realisable representations are[� = +1=2] : (0; 1=2); (1=2; 1); (1; 3=2); � � � : (A92)[� = +1] : (0; 1); (1=2; 3=2); (1; 2); � � � : (A93)[� = +3=2] : (0; 3=2); (1=2; 2); (1; 5=2); � � � : (A94)As a result a massless matter �eld is constrained to be any one the possibilitiesindicated by (A86) and (A91) , depending on the sign of the helicity. Even thoughthe (1/2,1/2) representation can be shown to transform as a four{vector, it violatesthe constraint (A83), and is therefore physically unrealisable. Weinberg [33] addsto this line \at least until we broaden our notion of what we mean by a Lorentztransformation".So far we have considered only continuous ds2 preserving transformations.However, the discrete transformations of parityP : ~x! �~x; (A95)and time reversal T : t! �t: (A96)also preserve ds2. Under parity the momentum changes sign, as a resultP : ~p! �~p; ~K ! � ~K; ~J ! ~J: (A97)It then follows from an inspection of Lorentz transformation properties of the (j; 0)and (0; j) matter �elds that P : (j; 0)$ (0; j): (A98)Thus in order that we are not thrown out of the linear representation space ofthe matter �elds under consideration by the Parity operation we must considerboth helicity states � = �j, and the associated matter �elds must transform, forexample, as the (j; 0)� (0; j) representations.



162We have followed in some detail the origin of (2j + 1) spin degrees freedomfor timelike momenta, and its seemingly abrupt reduction to just one [or twoif parity is incorporated] helicity degree of freedom for the lightlike momenta.Further physical insights into the nature of this change in the number of degreesof freedom may be gained by referring to Ref. (39) where Wigner poses thequestion why particles with non{zero mass may have more than two spin{degreesof freedom. In this context Wigner notes that it is only for the lightlike momentathat, the parallelness [or anti{parallelness] of spin and momentum is a Lorentzinvariant concept.A state with lightlike momenta ~p and helicity � is obtained by a Lorentztransformation j~p; �i = U [L(~p)]j�; �i: (A99)where L(~p) is a Lorentz transformation which takes k� � (�; 0; 0; �) ! p� �(j~pj; ~p): L(~p) : k� � (�; 0; 0; �)! p� � (j~pj; ~p) (A100)L��k� = p�: (A101)The Lorentz transformation L(~p) can be factorised into a pure boost and a rotationas follows L(~p) = R(p̂) B(j~pj): (A102)Here B(~p) is the boost that takes k� = (�; 0; 0; �) ! (j~pj; 0; 0; j~pj). The rotationR(p̂) takes (j~pj; 0; 0; j~pj)! p� � (j~pj; ~p). The boost has the form
[B�� ] = 0BBBB@ cosh('z) 0 0 sinh('z)0 1 0 00 0 1 0sinh('z) 0 0 cosh('z)

1CCCCA ; 'z � ln( j~pj� ): (A103)



163A4 Vacuum State and Single Particle StatesTo develop a formalism for directly observable single particle states j~p; �i orj~p; �i it seems necessary to have a Poincar�e invariant state called the vacuum statej i j i = U [f�; ag] j i: (A104)A global phase factor by which j i and U [f�; ag] j i may di�er are of no physicalsigni�cance, and hence are ignored. States j~p; �i and j~p; �i are directly observablestates and correspond to timelike and lightlike momenta respectively.Directly observable single particle states j~p; �i or j~p; �i are obtained from thevacuum state through the action of creation operators fay(~p; �)g and fay(~p; �)gj~p; �i = ay(~p; �)j i; (A105)j~p; �i = ay(~p; �)j i: (A106)The creation operators fay(~p; �)g, and the annihilation operators fa(~p; �)g satisfy[a(~p; �); ay(~p 0; �0)]� � �3(~p� ~p 0) ���0[a(~p; �); a(~p 0; �0)]� � 0; (A107)and [a(~p; �); ay(~p 0; �0)]� � �3(~p� p 0) ���0[a(~p; �); ay(~p 0; �0)]� � 0: (A108)If L(~p) is a boost which takes a particle of mass m 6= 0 at rest to momentum



164~p then, according to our earlier discussions,j~p; �i = U [L(~p)] j~0; �i: (A109)Where, as for the m = 0 case (see equation (A70)), we have introduced a simplernotation for m 6= 0 states jp�; m; s; �i = j~p; �i: (A110)Similarly, in the terms of already de�ned notation for m = 0, we havej~p; �i = U [L(~p)] j�; �i: (A111)The single particle states are normalised as follows33h~p; �j~p 0; �0i = �3(~p� ~p 0) ���0; (A112)h~p; �j~p 0; �0i = �3(~p� ~p 0) ���0: (A113)
A5 A Remark on Single Particle StatesDue to the non-commutativity of position and momentum, these observablescannot simultaneously be measured to an arbritrary precision, for a state. As suchone must assume that microscopically in�nite time T1T1 � �hj~p jc; (A114)is allowed for the preparation of these states with the well de�ned momentum ~p.This condition is invariably satis�ed in the usual scattering experiments. [We are33 The normalisations introduced above are convenient ones for these considerations and maydi�er from normalisations used elsewhere in this work.



165reintroducing �h and c explicitly for this discussion.] However for any microscopi-cally �nite time T0 [cf. Ref. (41), section 2.13]T0 � �hj~p jc; (A115)the momentum of the particle has a non-zero probability of being either timelike,lightlike, or spacelike. This uncertainty arises when the spacetime region, to whichthe measurements are con�ned, reaches the quantum{mechanically placed lowerbound �(ds2) � �h2~p:~p : (A116)If one considers gedanken microscopic observers con�ned to regions with ds2 ��h2=(~p:~p), then the transformations between these observers cease to be Poincar�ebecause of the inherent uncertainty involved with measurements of energy mo-mentum and spacetime separations. The unpredictable, and uncontrollable, ac-celerations associated with these gedanken observers are locally equivalent to theexistence of a gravitational �eld. The vacuum state, as observed by these observers,is therefore no longer the Poincar�e vacuum j i introduced in Eq. (A104) above,but is replaced by the Rindler vacuum j ii as Gerlach [47] has argued.The Rindler vacuum has the propertyh j ii = 0: (A117)Ref. [(47), p 1037]: \Rindler : : : vacuum of an accelerated frame determines aHilbert space of quantum states which is distinct from Hilbert space determinedby the Minkowski [Poincar�e, in our language] vacuum. There is no unitary trans-formation which connects elements in these two spaces." As a result, the physicalstates accessible to the macroscopic inertial observers are only a subset of all phys-ical states accessible to a general observer unrestricted by Poincar�e covariance. Inthis regard we should parenthetically, but explicitly, note that the gedanken mi-croscopic inertial observers are physically ruled out by the non{commutativity of



166the position and momentum associated with a particle. Consequently, in the ab-sence of gedanken microscopic inertial observers, microscopic Poincar�e covarianceis meaningless.A6 Lorentz Transformation of Single Particle StatesThe e�ect of an arbitrary Lorentz transformation � on the single particle statesj~p; �i is given byU [�] j~p; �i = U [�]U [L(~p)] j~0; �i; U [�] � U [f�; 0g]: (A118)In obtaining the rhs of the above equation we substituted for j~p; �i from Eq.(A109). Exploiting,1 = U [L(�~p)] U�1[L(�~p)]; U�1[�] = U [��1]; (A119)we obtainU [�] j~p; �i = U [L(�~p)]U�1[L(�~p)]U [�]U [L(~p)] j~0; �i= U [L(�~p)]U [L�1(�~p)�L(~p)] j0; �i= U [L(�~p)]X�0 Z d3p0j~p 0; �0ih~p 0; �0jU [RW ]j0; �i: (A120)
In the last step above we have used the completeness relation1 =X�0 Z d3p0j~p 0; �0ih~p 0; �0j; (A121)and identi�ed a pure rotation:RW = L�1(�~p)�L(~p); (A122)called the Wigner Rotation. The p0{integration can be performed using the or-thonormality condition (A112), and recalling that a pure rotation does not alter



167the momentum,U [�] j~p; �i = U [L(�~p)] X�0 j~0; �0ih~0; �0jU [RW ]j~0; �i: (A123)We now de�ne a matrix, dependent on the suppressed spin quantum number s(see (A110)), whose matrix elements are given byD(s)�0�(RW ) � h0; �0jU [RW ]j0; �i: (A124)With this de�nition we arrive at the remarkable resultU [�] j~p; �i =X�0 D(s)�0�(RW )j�~p; �0i: (A125)The surprising feature of this result lies in the fact that under a Lorentz trans-formation �, the transformation of the physical states with timelike momenta iscompletely determined by the generators of rotation ~J , because D(s)�0� which de-termines the transformation property of the single particle states associated withtimelike momenta through (A125) can be written as:D(s)�0�(RW ) � h~0; �0j exp[� i2�ij(RW )Jij ]j~0; �i: (A126)Or equivalently D(s)�0�(RW ) � h~0; �0j exp[� i2�ij(RW )]�ijkJk]j~0; �i: (A127)Here, as usual, the indices i; j; k run over 1; 2; 3. The notation �ij(RW ) means thetransformation parameters �ij are functions of the Wigner rotation matrix, RW ,for the timelike states. We would have expected the generators of the boosts toplay an important role. But that turns out not to be the case.



168Similarly, for the m = 0 case we obtainU [�] j~p; �i = exp[�i��(RW )] j�; �i: (A128)In the above expression we have introduced the Wigner rotation for the statesassociated with lightlike momentaRW � L�1(�~p)�L(~p): (A129)�(R) means that the angle � is a function of the rotation matrix R.
A7 Lorentz Transformation of Creation and Annihilation Opera-torsThe Lorentz transformation properties of the single particle states, given by(A125) and (A128), arise out of the fundamental assumption regarding the exis-tence of a Poincar�e invariant vacuum state. Obviously the single particle statesand the vacuum state transform di�erently under a Lorentz transformation. Forthis reason, with the exception of spinless particles, the creation and annihilationoperators cannot transform as[NotPossible] U [�]ay(~p; �)U�1[�] = ay(�~p; �); (A130)[NotPossible] U [�]ay(~p; �)U�1[�] = ay(�~p; �): (A131)The actual transformation property of ay(~p; �) as implied by (A125) isU [�]ay(~p; �)U�1[�] =X�0 D(s)�0�[L�1(�~p)�L(~p)]ay(�~p; �0): (A132)To obtain the transformation property of the annihilation operators we make the



169following observations: U y[�] = U�1[�]; (A133)fU�1[�]gy = fU y[�]gy = U [�]: (A134)Further even though D[�] is not unitary, D(s)[R] is. That is:nD(s)[RW ]oy = nD(s)[RW ]o�1 = nD(s)[R�1W ]o : (A135)But since D(s)[RW ] is a real matrixnD(s)[RW ]oy = nD(s)[RW ]oT : (A136)Therefore nD(s)[RW ]oy = nD(s)[RW ]oT = D(s)[R�1W ]: (A137)Which implies D(s)�0�[RW ] = D(s)��0[R�1W ]: (A138)Taking the adjoint of (A132) and exploiting these observations, the annihilationoperators can be shown to transform, under a Lorentz transformation,U [�]a(~p; �)U�1[�] =X�0 D(s)��0[L�1(~p)��1L(�~p)]a(�~p; �0): (A139)Similarly the transformation properties of the creation and annihilation operatorsfor the states associated with the lightlike momenta are found to beU [�]ay(~p; �)U�1[�] = exp ��i��[L�1(�~p)�L(~p)]� ay(�~p; �); (A140)U [�]a(~p; �)U�1[�] = exp ��i��[L�1(~p)��1L(�~p)]�a(�~p; �); (A141)where we used ��[RW ] = �[R�1W ]: (A142)



170A8 Matter Field Operators for (2j+1) Component Matter FieldsThe Lorentz transformation properties, for the m 6= 0 case, of the creation andannihilation operators collected together are (see Eqs. (A132) and (A139))U [�]ay(~p; �)U�1[�] =X�0 D(s)�0�[L�1(�~p)�L(~p)]ay(�~p; �0); (A143)U [�]a(~p; �)U�1[�] =X�0 D(s)��0[L�1(~p)��1L(�~p)]a(�~p; �0): (A144)It must be recalled, and emphasised, that the result expressed by Eqs. (A143) and(A144) depend crucially on the postulated existence of a Poincar�e invariant non-degenerate state called the vacuum j i. These are precisely the transformationproperties which provide us an opportunity to exploit the �nite dimensional rep-resentations of the Lorentz group by introducing the multicomponent matter �eldoperators �n(x) � �(+)n (x) + �(�)n (x); (A145)with �(�)n (x) transforming asU [�]�(�)n (x)U�1[�] =Xm Dnm[��1]�(�)m (�x): (A146)The D[�] appearing in the rhs is one of the �nite dimensional representations ofthe Lorentz group.The principle of the linear superposition of the physical states suggests that theMatter �eld operators �(x) be constructed by taking linear combinations of thecreation and annihilation operators. Further in order to preserve the translationalinvariance, �(x) must be of the form�n(x) = � 12��3=2 Z d3(p)p2!(~p)X��un(~p; �)a(~p; �) exp(ip � x) + (�1)j��vn(~p; �)by(~p;��) exp(�ip � x)�: (A147)



171As is usual we have de�ned p � x � p�x�: (A148)The right hand side of the de�ning Eq. (A147) for the �eld operators �n(x) con-tains a(~p; �) the particle annihilation operator, and by(~p;��) the antiparticle cre-ation operator. The combination (�1)j��by(~p;��) appears in the antiparticle cre-ation term because (�1)j��ay(~p;��) transforms as a(~p; �). Like the master drum-mer: `I remember that when someone had started to teach me about creation andannihilation operators, that this operator creates an electron, I said \How do youcreate an electron? It disagrees with the conservation of charge" ' [R. P. Feynman,Nobel Lecture], any beginning student must ask the same question. In order thatour theory have appropriate particle interpretation and the Lagrangians and thehamiltonians yield the same wave equations as imposed upon us by the Poincar�e co-variance, the Lagrangians L(�(x); @��(x)) and the hamiltonians H(�(x); @��(x))must be at least bilinear in �(x) That is L or H � �y(x)�(x) or � �y(x)@$��(x).As a result L or H � (ay + b)(a + by) = aya + ayby + ba + bby. These acting onthe vacuum j i produce no net conserved charge. The aya, for instance, actingon the vacuum state j i yields zero. The ayby creates a antiparticle{particle pair,thus producing net conserved charge of zero. The ba acting on the vacuum isidentically zero. And bby creates a antiparticle, and then destroys it at the sameinstant. This contributes zero to the net charge. Therefore, overall one has pro-duced a particle{antiparticle pair of net conserved charge zero, and created anddestroyed an antiparticle at the same instant. Thus the total conserved charge, as-sociated with the particles involved, of the universe remains unaltered. Of course,one cannot but note that the phrase same instant used in the above discussion isobservationally as well as theoretically of limited validity. It must, roughly speak-ing, be replaced by a time interval �t � �h=2mc2 [Where we restored �h and c].So are we to conclude that over time periods of the order of �t � �h=2mc2, theassociated `conserved charge' of the universe is uncertain by the amount q = ne,n being an integer?We now wish to know the physical interpretation of un(~p; �) and vn(~p; �).



172Towards this end consider�(+)n (x) = � 12��3=2 Z d3pp2!(~p)X� un(~p; �)a(~p; �) exp(ip � x); (A149)and multiply on the left by U [�] and on the right by U�1[�]. Using the Lorentztransformation property of the annihilation operators given by (A139) we imme-diately obtain:U [�]�(+)n (x)U�1[�] =� 12��3=2 Z d3(p)p2!(~p)X�un(~p; �)X�0 D(s)��0 [L�1(~p)��1L(�~p)]a(�~p; �0) exp(ip � x): (A150)
Now implement a change of variables: p� ! (��1)��p� , so that ~p ! ��1~p and��1p�x = p��x. If confused, note: ��1p�x = p��x) ���1p�x = �p��x;, p�x =�p � �x. This immediately translates into the more familiar form: p�x� = p0�x0�.The change of variables thus givesU [�]�(+)n (x)U�1[�] =� 12��3=2 Z d3(p)p2!(~p)X�X�0 un(��1~p; �)D(s)��0[L�1(��1~p)��1L(~p)]a(~p; �0) exp(ip � �x): (A151)
Substituting (A149) in (A146) givesU [�]�(+)n (x)U�1[�] =� 12��3=2 Z d3pp2!(~p)X� Xm Dnm[��1]um(~p; �)a(~p; �) exp(ip � �x): (A152)Comparison of the right hand sides of (A151) and (A152) gives the equation



173satis�ed by the Fourier coe�cients un(~p; �)Xm Dnm[��1]um(~p; �)a(~p; �) =X�0 un(��1~p; �)D(s)��0[L�1(��1~p)��1L(~p)]a(~p; �0): (A153)Next set � = L(~p), and recall that L(~p) takes a particle from rest to momentum~p. L�1(~p) takes a particle with momentum ~p to rest. Then the argument of theD(s) on the rhs of the above expression equalsL�1(L�1(~)~p)L�1(~p)L(~p) = L�1(~0): (A154)L�1(~0), by de�nition, is a boost which takes ~p = ~0! ~p = ~0. Hence it is an identitytransformation I. Consequently D(s)[I] is also an identity matrixD(s)��0 [L�1(��1~p)��1L(~p)]�����=L(~p) = ���0: (A155)This reduces the equation satis�ed by the Fourier coe�cients un(~p; �) toXm Dnm[L�1(~p)]um(~p; �) = un(~0; �): (A156)Exploiting the group property satis�ed be the �nite dimensional representationsof the Lorentz group X�00 D�0�00 [�1]D�00�[�2] = D�0�[�1�2]; (A157)we �nally obtain the equation satis�ed by the the Fourier coe�cients un(~p; �)un(~p; �) =Xm Dnm[L(~p)]um(~0; �): (A158)Assembling the (2j+1) un(~p; �)'s in a (2j+1){dimensional column vector u(~p; �),



174the above equation for the Fourier coe�cients readsu(~p; �) = D[L(~p)]u(~0; �): (A159)Similarly, we obtain v(~p; �) = D[L(~p)]v(~0; �): (A160)Matter Field Operators for the (j; 0) representations are obtained by the identi�-cation D[L(~p)] = D(j;0)[L(~p)] = exp( ~J � ~�): (A161)With this identi�cation the Fourier coe�cients u(~p; �) [and v(~p; �)] have the inter-pretation of matter �elds corresponding to the (j; 0) representation of the Lorentzgroup. That is u(~p; �), �Rjr;�r(~p): (A162)Or, in terms of the compact notation introduced earlier this identi�cation readsu(~p; �), �R(~p): (A163)
Matter Field Operators for the (0; j) representations are obtained by the identi�-cation D[L(~p)] = D(0;j)[L(~p)] = exp(� ~J � ~�): (A164)Then the Fourier coe�cients are the (0; j) matter �eldsu(~p; �), �Ljl;�l(~p): (A165)Or more compactly u(~p; �), �L(~p): (A166)



175A9 2(2j + 1) Component Matter Fields, Causality and Spin Statis-ticsAs already pointed out under the operation of parity the (j; 0) and the (0; j)representations get interchanged. It is therefore necessary to introduce a single2(2j + 1){component matter �eld (x) = 0B@�R(x)�L(x)1CA : (A167)which transforms as the (j; 0) � (0; j) representation of the Lorentz group. Fora spin{1=2 particle, it obeys the Dirac equation. For spin{1 it obeys the Spin{1Weinberg equation, and so on. The associated matter �eld operators transform asU [�]	�(x)U�1[�] =X� D(j)�� [��1]	�(�x); (A168)where D(j)[�] = 0B@D(j;0)[�] 00 D(0;j)[�]1CA : (A169)Now note that fD(j;0)[�]gy = exp[i ~J � ~�+ ~J � ~�]2 = exp[�fi ~J � (�~�) + ~J � (�~�)g]= D(0;j)[��1]: (A170)Introducing the 2(2j + 1) dimensional matrix (in chiral representation)



176
� =  0 11 0! ; �2 = 1; (A171)one easily veri�es that fD(j)[�]gy = � D(j)[��1] �: (A172)As a consequence, taking the hermitian conjugate of (A168) and using (A172) one�nds U [�] 	�(x) U�1[�] =X� 	(�x) D(j)��[�]; (A173)where we have introduced the covariant adjoint	(x) � 	y(x)�: (A174)Explicitly this is seen as follows. Hermitian conjugate of (A168)yieldsU [�] 	y�(x) U�1[�] = fU�1[�]gy 	y�(x) fU [�]gy=X� 	y�(�x) fD(j)[��1]gy��[Using (A172)]= X�;�;�	y�(�x) ��� fD(j)[�]g�� ���: (A175)

In matrix notation, this can be written asU [�] 	y(x) U�1[�] = 	y(�x) � D(j)[�] �: (A176)Multiplying both sides by � from the right and remembering that U [�] and �belong to di�erent spaces [ U [�] is an in�nite dimensional unitary operator, while



177� is a 2(2j + 1){ dimensional :matrix in the wave function space.], we obtain theresult claimed earlier at Eq. (A173):U [�] 	(x) U�1[�] = 	(�x) D(j)[�]: (A177)The multicomponent �eld operator for a general 2(2j + 1) component (j; 0)�(0; j) matter �eld can be written as	(x) = � 12��3=2 Z d3pp2!(~p)X�h� u(~p; �) a(~p; �) exp(ip � x) + � v(~p; �) by(~p; �) exp(�ip � x)i: (A178)where � and � are complex numbers, �0 exp(i�) and �0 exp(i') respectively, to be�xed by imposing the causality condition�	�(x);	�(x0)�� = 0; for ���(x� � x0�)(x� � x0�) < 0: (A179)The [ ; ]� is a commutator for the + sign and anticommutator for the � sign.The u(~p; �) and v(~p; �) are the particle and antiparticle wave functions satisfyingthe transformation property [Chiral Representation]8><>:u(~p; �)orv(~p; �)9>=>;0 = 0B@ exp( ~J � ~�) 00 exp(� ~J � ~�)1CA8><>:u(~p; �)orv(~p; �)9>=>; : (A180)The particle interpretation requires that the operators appearing in the Fouriertransform on the rhs of (A178), satisfy the following properties:ha(~p; �); ay(~p 0; �0i� = �(~p� ~p 0) ���0; (A181)hb(~p; �); by(~p 0; �0i� = �(~p� ~p 0) ���0; (A182)



178ha(~p; �); by(~p 0; �0i� = 0; (A183)ha(~p; �); b(~p 0; �0i� = 0; (A184)The Spin-1/2 spinors in the canonical representation are related to the ones in thechiral representation [de�ned by (A167)]uCA(~p) = 1p20B@ 1 11 �11CA0B@�R(~p)�L(~p)1CA = 1p20B@�R(~p) + �L(~p)�R(~p)� �L(~p)1CA ; (A185)and are readily veri�ed to be (See Ref. [53, Sec. 2.5]. Also note that the �R(~p)and �L(~p) in the above expression correspond to j = 1=2)[Canonical Representation]
u+1=2(~p) = �E +m2m �(1=2)

0BBBBBBBBBBBBBBB@
10pzE+mp+E+m
1CCCCCCCCCCCCCCCA ; u�1=2(~p) = �E +m2m �(1=2)

0BBBBBBBBBBBBBBB@
01p�E+m�pzE+m
1CCCCCCCCCCCCCCCA ;

v+1=2(~p) = �E +m2m �(1=2)
0BBBBBBBBBBBBBBB@

pzE+mp+E+m10
1CCCCCCCCCCCCCCCA ; v�1=2(~p) = �E +m2m �(1=2)

0BBBBBBBBBBBBBBB@
p�E+m�pzE+m01

1CCCCCCCCCCCCCCCA :
(A186)



179They satisfy the following propertiesu(�)(~p) u(�0)(~p) = ���0; (A187)v(�)(~p) v(�0)(~p) = ����0; (A188)u(�)(~p) v(�0)(~p) = 0; (A189)uy(�)(~p) u(�0) = vy(�)(~p)v(�0) = Em���0; (A190)where � = +12 ;�12 . In addition the reader can verify the following identitiesX� u�(�)(~p) u�(�)(~p) = �
 � p+m2m ��� ; (A191)X� v�(�)(~p) v�(�)(~p) = �
 � p�m2m ��� ; (A192)Here �; � are the 4-spinor indices which refer to components of a spinor; (�) runsover the eigenvalues of 12�z : �12 , and refers to a spinor (rather than componentsof a spinor).The � and � as determined by the Causality Condition (A179)for the Spin{1/2 Particles: We now wish to calculate the anticommutator[	�(x);	y�(x0)]+ � f	�(x);	y�(x0)g (A193)explicitly for the spin{12 case, and determine the constraints imposed on � and �(which appear on the rhs of (A178) ). The �th component of the 4-componentspin{12 matter �eld operator is	�(x) = � 12��3=2 Z d3pp2!(~p)X�h� u�(~p; �) a(~p; �) exp(ip � x) + � v�(~p; �) by(~p; �) exp(�ip � x)i: (A194)with u�(~p; �) and v�(~p; �) components of u(~p; �) � u(�)(~p) and v(~p; �) � v(�)(~p)respectively (as given by (A186), in the canonical representation). Taking the



180hermitian conjugate of (A194) we get	y�(x) = � 12��3=2 Z d3pp2!(~p)X�h�� uy�(~p; �) a(~p; �) exp(�ip � x) + �� vy�(~p; �) by(~p; �) exp(ip � x)i:(A195)Remember u and uy live in the spinorial space and a; ay; b; by are the Fock spaceoperators and hence can be moved across u0s and v0s. The component u�(~p; �) ofthe spinor u(~p; �) are of course c{numbers; uy� is the �th component of uy (andequals u��). To calculate the anticommutator f	�(x);	y�(x0)g we �rst calculate	�(x) 	y�(x0) = � 12��3 Z d3p d3p0p2!(~p) 2!(~p 0)X�;�0h��� u�(~p; �) uy�(~p 0; �0) a(~p; �) ay(~p 0; �0) exp(ip � x� ip0 � x0)+ ��� u�(~p; �) vy�(~p 0; �0) a(~p; �) by(~p 0; �0) exp(ip � x+ ip0 � x0)+ ��� v�(~p; �) uy�(~p 0; �0) by(~p; �) ay(~p 0; �0) exp(�ip � x� ip0 � x0)+ ��� v�(~p; �) vy�(~p 0; �0) by(~p; �) b(~p 0; �0) exp(�ip � x+ ip0 � x0)i:(A196)This immediately yields the anticommutator



181
f	�(x); 	y�(x0)g = � 12��3 Z d3p d3p0p2!(~p) 2!(~p 0)X�;�0h��� u�(~p; �) uy�(~p 0; �0) fa(~p; �); ay(~p 0; �0)g exp(ip � x� ip0 � x0)+ ��� u�(~p; �) vy�(~p 0; �0) fa(~p; �); by(~p 0; �0)g exp(ip � x+ ip0 � x0)+ ��� v�(~p; �) uy�(~p 0; �0) fby(~p; �); ay(~p 0; �0)g exp(�ip � x� ip0 � x0)+ ��� v�(~p; �) vy�(~p 0; �0) fby(~p; �); b(~p 0; �0)g exp(�ip � x+ ip0 � x0)i= � 12��3 Z d3p d3p0p2!(~p) 2!(~p 0)X�;�0h��� u�(~p; �) uy�(~p 0; �0) �(~p� ~p0) ���0 exp(ip � x� ip0 � x0)+ ��� v�(~p; �) vy�(~p 0; �0) �(~p� ~p0) ���0 exp(�ip � x+ ip0 � x0)i= � 12��3 Z d3p2!(~p)X�h��� u�(~p; �) uy�(~p; �) exp[ip � (x� x0)]+ ��� v�(~p; �) vy�(~p; �) exp[�ip � (x� x0)]i: (A197)To evaluate the rhs of the above expression we now use (A191) and note that�
0�2 = 1, or equivalently, f�
0�2g�� = ���,X� u�(~p; �) uy�(~p; �) =X� X� u�(~p; �) uy�(~p; �) ���=X� X� u�(~p; �) uy�(~p; �) f�
0�2g��=X� X�;� u�(~p; �) uy�(~p; �) 
0�� 
0��=X� X� u�(~p; �) u�(~p; �) 
0��=X� �
 � p+m2m ��� 
0��;

(A198)



182where we used the de�nition u� �P� uy�(~p; �) 
0��. SimilarlyX� v�(~p; �) vy�(~p; �) =X� �
 � p�m2m ��� 
0��: (A199)As a result we havef	�(x); 	y�(x0)g = � 12��3 Z d3p2!(~p)X�h��� �
 � p+m2m ��� 
0�� exp[ip � (x� x0)]+ ��� �
 � p�m2m ��� 
0�� exp[�ip � (x� x0)]i: (A200)
We would now con�ne our considerations to the simplest spacelike separations.However the results which follow hold true for all spacelike separations (See Ref.[21]). The simplest spacelike separation is obtained by setting x0 = x00 = t. Forthese spacelike separations (A200) takes the formf	�(t; ~x); 	y�(t; ~x 0)g = � 12m� � 12��3 Z d3p2!(~p)X�h��� (
 � p+m)�� 
0�� exp[i~p � (~x� ~x 0)]+ ��� (
 � p�m)�� 
0�� exp[�i~p � (~x� ~x 0)]i: (A201)
Without loss of further generality , we now let ~p! �~p in the term associated withthe ��� term on the rhs of the above expression, to obtainf	�(t; ~x); 	y�(t; ~x 0)g = � 12m� � 12��3 Z d3p2!(~p)X�h��� �
0p0 � ~
 � ~p+m��� 
0�� exp[i~p � (~x� ~x 0)]+ ��� �
0p0 + ~
 � ~p�m��� 
0�� exp[i~p � (~x� ~x 0)]i: (A202)
In order that the anticommutator of the spin-12 matter �eld operators vanish for



183spacelike separations we require ��� = ���: (A203)With this requirement, and taking note of the relationP� 
0�� 
0�� = ��� , we getf	�(t; ~x); 	y�(t; ~x 0)g = ����2m� � 12��3 Z d3p2!(~p) 2p0 ��� exp[i~p�(~x�~x 0)]: (A204)But by de�nition p0 = !(~p),f	�(t; ~x); 	y�(t; ~x 0)g = ����2m� ��� � 12��3 Z d3p exp[i~p � (~x� ~x 0)]: (A205)Implementing the p{integration, we �nally have the causality conditionf	�(t; ~x); 	y�(t; ~x 0)g = ����2m� �3(~x� ~x 0) ��� : (A206)We thus note that in order to arrive at the causality condition we have to imposea constraint upon � and �. This constraint is given by Eq. (A203). In Wein-berg's [21, p. B1323] words the constraint means that \ Every particle must havean antiparticle (perhaps itself) which enters into interactions with equal couplingstrength." This result [proved here for spin{12 particles, and the simplest spacelikeseparations] is the direct consequence of demanding causality. In a similar fashionit follows that f	�(t; ~x); 	�(t; ~x 0)g = 0: (A207)In the next section we will derive the causality condition by considering the evo-lution of a quantum system from a spacelike surface to another. For the momentwe note that [	�(t; ~x); 	y�(t; ~x 0)] 6= � �3(~x� ~x 0) ��� ; (A208)and no simple means are known to replace 6= by = in the above expression, exceptbe replacing the commutator [ ; ] by the anticommutator f ; g. In the aboveequation � is a c{number.In order to match the widely used conventions of Bjorken and Drell [52, p.59]we choose



184[For Spin{12 ]��� = ��� = 2m; (A209)so that the spin{12 matter �eld operator, given by (A178), reads	(x) =X� Z d3p(2�)3=2r m!(~p)hu(~p; �) a(~p; �) exp(ip � x) + v(~p; �) by(~p; �) exp(�ip � x)i; (A210)and (A206) takes the slightly simpler formf	�(t; ~x); 	y�(t; ~x 0)g = �3(~x� ~x 0) ��� : (A211)As a result of these considerations it is obvious that fermions and bosonsbehave in intrinsically di�erent ways. The anticommutativity of the fermion cre-ation and destruction operators does not allow any two fermions to be in the samestate in a given system. This result is usually referred to as the Pauli ExclusionPrinciple. As already commented there is no known way of circumventing thisanticommutativity and meeting the causality condition for fermions at the sametime. It is not only at the microscopic level that this fundamental anticommuta-tivity shows its dramatic consequences, for example much of the di�erent chemicalcharacteristics of elements arise from the Pauli exclusion principle, but the conse-quences are equally important at the macroscopic level. For instance as a resultof this anticomutativity, the pressure, P , of an extremely degenerate electron gas(with an electrically positive background to provide overall electrical neutrality)depends on the 4=3 power of the electron density �e (See Ref. [49, Sec. 61]. Wehave restored �h and c in the formula below.)P = (3�2)1=34 �hc �4=3e : (A212)This pressure when balanced by the gravitational forces in astrophysical situa-tions results in the formation of White Dwarfs and Neutron Stars. Even though



185the momentum-spectrum of the particles which is responsible for this pressureis constrained by the Pauli exclusion principle, these momenta have their originin electroweak and gravitational interactions. So, given the interactions betweenvarious fermions in a system, the anticommutativity acts as an additional con-straint, like the boundary conditions, in determining what states are accessible toa system. The next section may shed some light on the origin of the causality con-ditions for fermions and bosons. However, just as the inertial-frame-independenceof the speed of light, in the context of which alone the causality conditions ac-quire a meaning, is a mysterious empirical fact, the same holds to some extentfor the causality conditions. In regard to the last comment recall that causalityconditions require us to specify spacelike separations. The concept of spacelikeseparations cannot be de�ned without reference to the constancy of the speed oflight. As such we suspect that the observed constancy of the speed of light andthe causality conditions are interrelated. At the least, the latter loses meaningwithout the former.The above observations require a further parenthetic remark. This concernsthe �niteness of the speed of light. For c = 1, to be distinguished from c ! 1,spacelike regions of spacetime disappear and the causality conditions cannot beexpressed as in (A211). For comparison with spin{1 wave functions, given inChapter 3, we rewrite the spin{12 spinors in the canonical representation:[Canonical Representation]
u+12 (~p) =

0BBBBBBBBBBBB@
qE+m2m0pzp2m(E+m)p+p2m(E+m)

1CCCCCCCCCCCCA ; u� 12 (~p) =
0BBBBBBBBBBBB@

0qE+m2mp�p2m(E+m)�pzp2m(E+m)
1CCCCCCCCCCCCA
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v+12 (~p) =

0BBBBBBBBBBBB@
pzp2m(E+m)p+p2m(E+m)qE+m2m0

1CCCCCCCCCCCCA ; v� 12 (~p) =
0BBBBBBBBBBBB@

p�p2m(E+m)�pzp2m(E+m)0qE+m2m
1CCCCCCCCCCCCA : (A213)

This indicates that the Pauli exclusion principle, or more generally classi�cation ofparticles as bosons and fermions, may be possible within the framework of �nite ctheories. However, nonexistence of the causality conditions must not be consideredas equivalent to the suspension of causality itself.It is perhaps also an open question whether the distinction between fermionsand bosons is una�ected by the introduction of gravitational interactions. Weraise this question because it is not obvious in what way is the discussion of thenext section, where we arrive at the causality condition within the framework ofthe Poincar�e covariant structure of quantum systems, is modi�ed by the introduc-tion of gravitational interactions. In any case the distinction between fermionsand bosons, i.e. the existence of the causality condition (A179), can always bemaintained in a local inertial frame, even in the presence of the gravitational �eld.A10 Schwinger [24] as a Logical Continuation of Weinberg [21,33]:Action Principle, Origin of Causality ConditionsWe have seen that demanding Poincar�e covariance and introducing a vacuumstate j i, such that j~p; �i = ay(~p; �)j i; a(~p; �)j i = 0; (A214)naturally leads to the introduction of the matter �eld operators	(x) = � 12��3=2 Z d3pp2!(~p)X�h� u(~p; �) a(~p; �) exp(ip � x) + � v(~p; �) by(~p; �) exp(�ip � x)i; (A215)



187which contain the basic degrees of freedom. As such the physical observables, mustbe constructed as functionals of 	(x).De�nition: A functional F [x(t)] gives a number for each function x(t), see Ref.[40, Sec. 7.2].Our discussion so far has been con�ned to the free �elds. Given a free state,nothing really evolves. Existence of free states is uncon�rmable without some formof interactions. It is the potentiality of a system to interact, even if the interactionis con�ned to in�nitesimal regions of spacetime, which allows for a measurement.The dynamical evolution of a system arises from the introduction of interactions.Discovering interactions and incorporating them in some uni�ed fashion in thequantum systems seems to be a one of the major occupations of the physicists inthe modern era.A parenthetic remark: Should all possible fundamental interactions be ex-pected to exist in the limit of two particle limit? To clarify, even though elec-tromagnetic interaction can, and does exist, between n � 2 particles, it can bedetected at the 2 particle level. The questions is, is it possible that there ex-ist interactions which have no observable consequences if only two particles areinvolved? That is, are there interactions which manifest themselves only at then-particle level, with 2 < n � 1. The actual upper limit for n for a system ofnucleons is n � 1080, the number of nucleons in the observable universe. Thequestion which we have raised here seems relevant not only to Physics but toPhilosophy as well, for one can never from a practical point of view disprove theexistence of an interactions for large n.In order to study the dynamical evolution we need to specify a boundary valueproblem. That is, given 	(x) on a particular surface �, we study its evolution (sayin the direction perpendicular to � ). For this speci�cation on � to be consistentwith causality, 	(x) must be speci�ed at physically independent spacetime points.That is, as noted by Schwinger [24], spacetime points which cannot be connectedeven by signals propagating at the speed of light. A continuous set of such points



188forms a spacelike surface �. If A is a complete set of commuting hermitian op-erators constructed out of 	(x), and as Schwinger puts it \attached" to �, thento � one can associate a basis j�; ai. Of particular interest is the transformationwhich takes the physical system from a spacelike surface �2 to another spacelikesurface �1. This evolution is represented asj�1; a1i = U2!1j�2; a2i; (A216)A1 = U2!1 A2 U�12!1; U y2!1 = U�12!1: (A217)The set of eigenvalues fa1g and fa2g are identical. In the absence of any inter-actions we expect U2!1 to be related to U(f�; ag). Notational Comments: a inU(f�; ag is the translational parameter de�ned inx0� = ���x� + a�; (A218)while a in fa1g or j�; ai refer to a set of eigenvalues of a general complete set ofcommuting observables A. fag is a set in which each a is in turn a set of eigenvaluesspecifying a state. The transformation function can be written completely in termsof the basis vectors on the surface �2 and the unitary operator U�12!1h�1; a1j�2; a2i = h�2; a2jU�12!1j�2; a2i: (A219)
The operator U2!1 describes the development of the system from �2 ! �1and involves, not only the detailed dynamical characteristics of the system in thisspace time region , but also the choice of observables on the surfaces �1 and �2.Any in�nitesimal change in the quantities on which the transformation functiondepends induces a corresponding change in U�12!1�h�1; a1j�2; a2i = h�2; a2j�U�12!1j�2; a2i: (A220)



189The variations �U2!1 and �U�12!1:U2!1 ! U2!1 + �U2!1U�12!1 ! U�12!1 + �U�12!1: (A221)must satisfy certain conditions in order to preserve unitarity of U2!1. First wemust have U2!1U�12!1 = (U2!1 + �U2!1)(U�12!1 + �U�12!1): (A222)That is U2!1 �U�12!1 = � �U2!1 U�12!1; (A223)where in deriving this result a term O(�U2!1 �U�12!1) has been neglected.The second constraint is provided by the conditionU�12!1 = U y2!1; (A224)which yields �U�12!1 = �U y2!1: (A225)It is readily seen that U2!1�U�12!1 is antihermitian. From (A223) we haveU2!1�U�12!1 = ��U2!1U�12!1, but U�12!1 = U y2!1and hence, U2!1�U�12!1 = ��U2!1U y2!1. Using (A225) for �U2!1 weget U2!1 �U�12!1 = �(�U y2!1)y U y2!1 = �(�U�12!1)y U y2!1 = �(U2!1 �U�12!1)y. As aconsequence there exists an in�nitesimal hermitian operator �W2!1�W2!1 = �i U2!1 �U�12!1; (A226)so that �U�12!1 = i U�12!1 �W2!1: (A227)



190Substituting �U�12!1 from (A227) in (A220) yields�h�1; a1j�2; a2i = ih�2; a2jU�12!1 �W2!1j�2; a2i: (A228)Identifying h�2; a2jU�12!1 by h�1; a1j (see Eqs. (A216) and (A217)) we obtain�h�1; a1j�2; a2i = ih�1; a1j�W2!1j�2; a2i: (A229)In addition to the unitarity of U2!1, we now use the completeness relation on thespacelike surface �2 1 = Z j�2; a2ida2h�2; a2j; (A230)to obtain an important property of �W2!1 in order to eventually postulate itsgeneral form. Using the completeness relation (A230) we write the transformationfunction h�1; a1j�3; a3i = Z h�1; a1j�2; a2ida2h�2; a2j�3; a3i: (A231)As a result of variations given by (A221) and variationsU3!1 ! U3!1 + �U3!1U�13!1 ! U�13!1 + �U�13!1; (A232)the change in the transformation function h�1; a1j�3; a3i given by (A231) can bewritten as�h�1; a1j�3; a3i = Z f�h�1; a1j�2; a2ig da2h�2; a2j�3; a3i+ Z h�1; a1j�2; a2ida2 f�h�2; a2j�3; a3ig : (A233)Using (A229)for the general variations �h�i; aij�j ; aji in the above expression andreplacing R j�2; a2ida2h�2; a2j by the unit operator 1 we geth�1; a1j�W3!1j�3; a3i = h�1; a1j�W2!1j�3; a3i+ h�1; a1j�W3!2j�3; a3i: (A234)Since the spacelike surfaces �1;�2;�3 are completely arbitrary, we have the generalproperty which the generators �Wj!i of the in�nitesimal transformations must



191satisfy �W3!1 = �W3!2 + �W2!1: (A235)We thus see that the unitarity and the completeness yield an additive law for thecomposition of the in�nitesimal generators of evolution, from a spacelike surface�j another spacelike surface �i, �Wj!i. The additive requirement (A235)suggeststhat a �nite evolution, the generators of the evolution have the formW2!1 � �1Z�2 d4x 
[x]: (A236)Individual systems are described by stating that 
[x] is a Poincar�e covariant her-mitian function of the �elds and their derivatives. For the moment we assert
[x] � 
 (	(x); @�	(x)) ; (A237)in order to discover some of its general properties and physical signi�cance. Thecovariance of 
[x], and therefore of W2!1, guarantees that our fundamental dy-namical principle �h�1; a1j�2; a2i= ih�1; a1j�W2!1j�2; a2i= ih�1; a1j� �1Z�2 d4x 
[x] j�2; a2i; (A238)
is unaltered in form by Poincar�e transformations or change in coordinate systems.It should be parenthetically noted, for the moment, that Schwinger [24] pointsout that an exception must be made for discrete transformations, such as timereversal. He argues that the requirement of the invariance under time reversal im-poses a general restriction upon the algebra of the �eld operators { the connectionbetween the spin and the statistics.



192From (A237) and (A238) we note that the evaluation of �h�1; a1j�2; a2irequires the knowledge of�W2!1 = � �1Z�2 d4x 
(	(x); @�	(x)): (A239)The evaluation of �W2!1 involves addingi) The independent e�ects of changing the matter �eld operators at eachpoint by �	(x), 	(x)! 	0(x) = 	(x) + �	(x), andii) of altering the region of integration by a displacement �x� of the points onthe boundary surfaces �1 and �2. On �1 and �2: x� ! x0� = x� + �x�.Thus �W2!1 = �1Z�2 d4x �
 +0@Z�1 � Z�2 1A d���x�
; (A240)where: �
 � �@
@	� �	+ @
@(@�	) �@�	= �@
@	� �	+ @
@(@�	) @��	: (A241)By adding and subtracting @�� @
@(@�	)� �	 (A242)to the rhs of the above expression we obtaind
 = �@
@	 � @�� @
@(@�	)�� �	+ @� � @
@(@�	) �	� : (A243)Substituting (A243) in (A240) then yields the needed expression for the variation



193in W2!1�W2!1 = �1Z�2 d4x �@
@	 � @�� @
@(@�	)�� �	+ �1Z�2 d4x @� � @
@(@�	) �	�+0@Z�1 � Z�2 1A d���x�
: (A244)
Using the divergence theorem, the second term on the rhs of the above expression�1Z�2 d4x @� � @
@(@�	) �	� (A245)can be written as0@Z�1 � Z�2 1A d�� @
@(@�	) �	+ Z�21 d�� @
@(@�	) �	; (A246)where �21 is a surface joining the spacelike surfaces �1 and �2 at their boundariesat in�nity. Under the usual assumption that the matter �eld operators [that is,their expectation value for the physical states under consideration] vanish on �21,we get �W2!1 = �1Z�2 d4x �@
@	 � @�� @
@(@�	)�� �	+0@Z�1 � Z�2 1A d�� � @
@(@�	) �	+ 
 �x�:� (A247)

Before continuing with our calculations let us explicitly note that the posi-tional order of operators in 
(	(x); @�	(x)) must not be altered in the courseof implementing the variations. Accordingly, the algebraic [commutators or anti-commtators] properties of �	(x) are involved in obtaining �W2!1. For simplicity,



194we have, following Schwinger, introduced the explicit assumption that the commu-tation properties of �	(x) and the structure of 
 must be so related that identicalcontributions are produced by the terms that di�er fundamentally only in theposition of �	(x) .In order that works of Schwinger [24] and Weinberg [21, 33] yield the samePoincar�e covariant equations of motion, 
(	(x); @�	(x)) must be interpreted asthe Lagrangian density L(	(x); @�	(x))
(	(x); @�	(x)) = �L(	(x); @�	(x)) (A248)so that �W2!1 can be identi�ed with the action operator. The principle of sta-tionary action operator is then demanded rather than postulated, and yields thefollowing Euler Lagrange equations of motion@L@	 � @�� @L@(@�	)� = 0 (A249)and the generator of evolution attached to a spacelike surface isF (�) = + Z� d�� � @L@(@�	) �	+ L �x�� : (A250)The reason for choosing the the + sign on the rhs of the above expression is asso-ciated with fact that we wish to have the conventional signs in the commutationrelations and other de�nitions. This should become obvious by the end of thissection.The physical interpretation of the generators of evolution F (�) becomes clearfrom the following simple considerations. The change in the transformation func-tion resulting from variations de�ned above can be written in terms of F (�) as�h�1; a1j�2; a2i � h�10; a01j�20; a02i � h�1; a1j�2; a2i: (A251)



195For the in�nitesimal transformations we can writej�0; a0i = U(�) j�; ai= [1 + iF (�)] j�; ai: (A252)Neglecting terms O(F (�1) F (�2)) the change in the transformation can now bewritten as �h�1; a1j�2; a2i = ih�1; a1j[F (�2)� F (�1)]j�2; a2i: (A253)Comparison with (A238) then yields�W2!1 = F (�2)� F (�1): (A254)The physical signi�cance of this result reads: Action integral operatorW2!1 = � �1Z�2 d4x L(	(x); @�	(x)) (A255)is unaltered by the in�nitesimal variations in the interior of the region boundedby �2 and �1. It depends only on the operator F (�) attached to the boundarysurfaces involved.The equations of motion follow by demanding that �W2!1 vanish and makingthe identi�cation for F (�) provided by (A250). The form of the Lagrangian densityL(	(x); @�	(x)), for the free matter �elds, is determined by requiring that theEuler Lagrange equations of motion (A249) be identical with the equations ofmotion obtained for a given representation of the SUR(2)
 SUL(2) as formulatedby Weinberg.As a general procedure let � 	(x) = 0; (A256)with � an appropriate di�erential operator, be the equation of motion correspond-ing to some representation of the SUR(2)
 SUL(2). Then the Lagrangian density



196is L(	(x); @�	(x)) = 	(x) � 	(x) + A total divergence: (A257)The total divergence is so chosen as to keep the Lagrangian density hermitian.The Lagrangian Density Operator for the Dirac Field: As an example for the(12 ; 0)� (0; 12) (A258)Dirac �eld we have � = (i
�@� �m): (A259)Introduce L0 � 	(x) (i
�@� �m) 	(x); (A260)and note Ly0 = 	y(x) h�i(
�)y @ � �mi (	(x))y= 	y(x) h�i(
0)y @ 0 � i(
i)y @ i �mi (	y(x)�)y: (A261)Since the expressions in the covariant form should be representation independentwe work in the chiral representation. Then � = 
0, (
0)y = 
0, (
i)y = �
i andf
�; 
�g = 2��� . These observations, yieldLy0 = 	y(x) h�i
0 @ 0 + i
i @ i �mi (
0	(x))= 	(x) h�i
0 @ 0 � i
i @ i �mi	(x)= 	(x) h�i
� @ � �mi	(x): (A262)
That L0 is not hermitian is immediately observed by notingL � Ly = i	(x) 
� (@�	(x)) + i(@�	(x)) 
� 	(x)= i@� �	(x) 
� 	(x)� : (A263)Since (L0 � Ly0)y = �(L0 � Ly0) we immediately conclude that i@� �	(x)
�	(x)�



197is antihermitian. That is:fi@� �	(x) 
� 	(x)�gy = �i@� �	(x) 
� 	(x)� : (A264)Now if we introduce L � L0 � i2@� �	 
� 	� ; (A265)then using (A264) we get Ly = Ly0 + i2@� �	 
� 	� : (A266)Substituting for Ly from (A263) immediately yieldsLy = L0 � i2@� �	 
� 	� = L: (A267)Thus we establish that L de�ned by (A265), which is of the general form (A257), isthe required Poincar�e covariant hermitian Lagrangian density operator for theDirac �eld. Thus the hermitian Dirac Lagrangian (A265) can be written asLDIRAC = i2 �	 
�(@�	)� (@�	) 
� 	��m		= i2	
�$@ �	�m		: (A268)
We end this example of constructing the Lagrangian density operator from aknown wave equations by asking: IsL = L0 � i2(L0 � Ly0); (A269)with L0 � 	(x) � 	(x); (A270)the general expression for the hermitian Lagrangian density operator?



198Functional variation (also called local variation by Roman [51] ) in 	(x) isde�ned by �	(x) � 	0(x0)�	(x): (A271)The points x0� and x� refer to the same geometrical point in di�erent frames. Thetotal 	(x) is de�ned as : �	(x) � 	0(x)�	(x): (A272)A slightly rewritten passage from Ref. [51] makes the de�nitions more clear:\	0(x) di�ers from 	(x) because of two reasons. First the �eld is described in anew frame so that x in the argument of 	0(x) is not the same geometrical pointas the argument in of 	(x), but is rather the point that in the primed frame hasthe same numerical values for the coordinates as had the point of de�nition of	(x) in the unprimed frame. Secondly, we also envisage a relabeling of the �eldcomponents, usually a linear mixing of  �(x) among themselves." With the helpof a Taylor expansion we get�	(x) = 	0(x) + @�	0(x)�x� �	(x)= �	(x) + @�	0(x)�x� : (A273)
In terms of the variations �	(x) and �x� the generator of evolution, given by(A250), becomesF (�) = Z� d�� � @L@(@�	) [�	(x)� (@�	(x))�x�] + L�x��= Z� d�� � @L@(@�	)�	(x)� � @L@(@�	)(@�	)� ���L� �x�� : (A274)

On introducing the four vector ��(x) = @L@(@�	) ; (A275)



199the generator of evolution can be written asF (�) = Z� d��h��(x)�	(x)� ���@�	(x)� ���L��x�i: (A276)The in�nitesimal variations in general operators are generated by the unitaryoperator U = 1 + iF; U�1 = 1� iF: (A277)So if A is an operator under consideration, the change induced by the transforma-tion (A277) is �A � UAU1 � A= (1 + iF )A(1� iF )�A: (A278)To order O(F ) �A = i[F;A]: (A279)The Rules of Quantisation or the Causality Conditions are obtained by consider-ing transformations for which �x� = 0. Then �	(x) = �	(x), and the generatorof evolution given by (A276) takes the formF (�) = Z� d�� ��� �	�(x); (A280)where we have explicitly introduced the multicomponent indices, �, for 	(x).These are the four spinorial indices if we are considering the Dirac �eld, for exam-ple. Equation (A279) then yields�	�(x) = i24Z� d��(x0) ���(x0) �	�(x0); 	�(x)35 (A281)
����(x) = i24Z� d��(x0) ���(x0) �	�(x0); ���(x)35 (A282)for all x 2 �. The simplest spacelike surface � is a constant-time surface x00 =



200x0 = t. For the constant{ time surfaces the above equations read�	�(t; ~x) = i Z h�0�(t; ~x 0) �	�(t; ~x 0); 	�(t; ~x)i d3~x 0 (A283)
����(t; ~x) = i Z h�0�(t; ~x 0) �	�(t; ~x 0); ���(t; ~x)i d3~x 0: (A284)We will now see that the simplest solution of these integral equations are theequal{time causality conditions. Towards this end let's note the following identitieshAB;Ci = hA;CiB +AhB;Ci (A285)hAB;Ci = AnC;Bo� nC;AoB: (A286)

Solution 1, The Bosonic Solution: Using (A285) in (A283) we have�	�(t; ~x) = i Z �h�0�(t; ~x 0); 	�(t; ~x)i�	�(t; ~x 0)+ �0�(t; ~x 0)h�	�(t; ~x 0); 	�(t; ~x)i�d3~x 0: (A287)
The simplest solution is obtained by settingh�0�(t; ~x 0); 	�(t; ~x)i = �i ��� �(~x� ~x 0) (A288)h�	�(t; ~x 0); 	�(t; ~x)i = 0: (A289)But since � and � do not refer to any speci�c components of the multicomponent



201�eld operators, (A289) impliesh�	�(t; ~x 0); 	�(t; ~x)i+ h	�(t; ~x 0); �	�(t; ~x)i = 0; (A290)or equivalently �h	�(t; ~x 0); 	�(t; ~x)i = 0: (A291)Since this result holds for arbitrary variations, we concludeh	�(t; ~x 0); 	�(t; ~x)i = 0: (A292)In order to obtain the commutator [�0�(t; ~x 0); �0�(t; ~x)] from (A284) we note thatadding a total divergence @�f�(	(x); @�	(x)) to the Lagrangian density operatorleaves the equations of motion unaltered while changes the generator of evolutionF (�) to F (�) + R� d�� �f�. Choosingf�(	(x); @�	(x)) = ����(x) 	�(x); (A293)equation (A282) [with F ! F + f�] can be rewritten as����(x) = i�Z� d��(x0) ����(x0) �	�(x0)� ����(x0) 	�(x0)� ���(x0) �	�(x0)�; ���(x)�= �i�Z� d��(x0) ����(x0) 	�(x0); ���(x)�: (A294)
As before we choose � to be a constant time surface x00 = x0 = t. With thischoice of � we have����(x) = �i Z h��0�(t; ~x 0) 	�(t; ~x 0); ���(t; ~x)i d3~x 0: (A295)In this fashion we have brought (A284) to a more useful form. Setting � = 0 we



202have ��0�(x) = �i Z �h��0�(t; ~x 0); �0�(t; ~x)i	�(t; ~x 0)+ ��0�(t; ~x 0)h	�(t; ~x 0); �0�(t; ~x)i� d3~x 0: (A296)Using (A288) in the second term, and repeating steps similar to the ones used inobtaining (A291) , we get the additional commutation relationh�0�(t; ~x 0); �0�(t; ~x)i = 0: (A297)Therefore for constant time spacelike surfaces, �, the simplest set of commutationrelation which solve the integral equations (A283) and (A284) ish	�(t; ~x); �0�(t; ~x 0)i = i ��� �(~x� ~x 0) (A298)h	�(t; ~x 0); 	�(t; ~x)i = 0: (A299)h�0�(t; ~x 0); �0�(t; ~x)i = 0: (A300)For our purposes we simply note that Bosons are described by matter �eld op-erators which satisfy these commutation relations. That this is the case can beveri�ed by considering speci�c cases. The simplest such exercise can be carriedout with a scalar �eld (as, for example, in Ref. [53, Sec. 4.1).Solution 2, The Fermionic Solution: Using (A286) in (A283) we have�	�(t; ~x) = i Z ��0�(t; ~x 0)n	�(t; ~x); �	�(t; ~x 0)o� n	�(t; ~x); �0�(t; ~x 0)o�	�(t; ~x 0)�d3~x 0: (A301)The simplest solution is obtained by settingn	�(t; ~x); �0�(t; ~x 0)o = i ��� �(~x� ~x 0) (A302)



203n	�(t; ~x 0); 	�(t; ~x)o = 0: (A303)Similarly (A284) yields n�0�(t; ~x 0); �0�(t; ~x)o = 0: (A304)Without proof we note, as above, that Fermions are described by matter �eldoperators which satisfy these anticommutation relations. That this is the case canbe veri�ed by considering speci�c cases. The simplest such exercise has alreadybeen carried out in the last section for the spin-12 fermions.As just noted, earlier in this chapter we established that solution 2 is satis-�ed, in particular, by the matter �eld operators associated with the Dirac �eld:[(1=2; 0) � (0; 1=2)]. The real (or complex) scalar �eld is a speci�c example ofsolution 1. These are speci�c examples of a more general theorem, called the SpinStatistics Theorem, which argues that particles with half integral spins, calledfermions, are associated with the solution 2; and the integral spin particles, calledbosons, are associated with the solution 1. However, we must explicitly note withsome emphasis that these solutions, obtained here, are the simplest solutions of theintegral equations (A283) and (A284). There seems to be no reason, a priori, torule out the possibility of other solutions consistent with the basic interpretationalscheme of Quantum Mechanics.A11 Conservation Laws and Time EvolutionUnder the in�nitesimal variationsx� ! x0� = x� + �x� (A305)	(x)! 	0(x0) = 	(x) + �	(x); (A306)with �	(x) de�ned by (A273), the physical states transform asj�0; a0i = U(�) j�; ai = [1 + iF (�)] j�; ai: (A307)Using (A279) the change induced in the multicomponent matter �eld operators



204can be written as �	�(x) = i[F (�);	�(x)]: (A308)The generator of these changes isF (�) = Z� d��"���(x) �	�(x)� h��� @�	�(x)� ��� Li�x�#: (A309)The principle of the stationary action operator, introduced in the last chapter,and the observation (see (A254))�W2!1 = F (�2)� F (�1); (A310)together imply F (�2) = F (�1), that is we have a constant of motion. Symbolically,�F (�)�� = 0; (A311)where x is an arbitrary point on the spacelike surface �. For � = a constant{timesurface the invariance of the action operator [�W = 0] for every variation whichcan be expressed as (1) and (2) yields a conservation lawddtF (t) = 0: (A312)We thus see that when one considers evolution of a system from one constant{time surface to another the invariance of the action operator under (A305) and(A306) yields the conservation laws expressed by (A312). However, the conser-vation laws expressed by (A312) may not be the totality of the conservation lawsassociated with a particular system. These extra conservation laws appear, forexample, when one demands invariance under local phase transformations. Someof these extra conservation laws are actually associated with a modi�cation in the\free" matter �eld equations, and as such extend the class of variations given by(A305) and (A306) which do not modify the free matter �eld equations of motion.



205The simplest conservation law is obtained by requiring the invariance of theaction operator under the four translationsx� ! x0� = x� + a� (A313)with a� a real constant. Consequently, in accord with de�nition (A272):�	�(x) = 	0�(x)�	�(x)= 	�(x� a)�	�(x)= �@�	�(x) a� (A314)In the above we have used the fact that only the change is that of having gone to anew frame without the introduction of any additional physical degrees of freedom.Substituting (A314) in (A273) we have the result:�	�(x) = 0: (A315)As a result, using (A309), the generator of the in�nitesimal translations de�nedby (A313) is found to beF (�) = �a� Z� d��h��� @�	�(x)� ��� Li: (A316)Introducing the energy momentum tensor (density) operator ���(x)���(x) = ��� @�	�(x)� ��� L (A317)we have F (�) = �a� Z� d�� ��� : (A318)Demanding the action operator to be stationary under (A313) then translatesinto the expression0 = � F (�)��(x) � �a�" lim�!0�R�0 d�� ��� � R� d�� ���� �# (A319)[Here � = volume between �0 and �] which on using the Gauss' theorem with theassumption that ���(x) vanishes at the boundary surface at in�nity connecting



206the boundaries of �0 and �, yields0 = � F (�)�� = �a� @���� : (A320)The statement that a certain operator vanishes at the surface at in�nity meansthat we con�ne ourselves only to those states for which the expectation value ofthe operator vanishes at in�nity. If one has physical states which do not satisfythis requirement then one must review the derivation of all equations of motionand conservation laws ab initio.Now since the in�nitesimal translation a� is arbitrary, we have the conservationlaw @���� = 0: (A321)Or, equivalently @���� = 0; (� = 0; 1; 2; 3): (A322)For well known reasons (see, for example, [53, p.91]) it is customary to introducethe canonical energy momentum tensor (density) operator :T �� = ��� + @�f��� (A323)with f��� = �f��� , so that @�@�f��� = 0: (A324)The f��� is so chosen as to make T �� symmetric.
De�nitions: The 00 component of T ��T 00 � H(x); (A325)is called the energy density operator of the matter �eld in the region surroundingthe point x. The energy momentum (operator) four vector of the matter �eld is



207de�ned by P � = Z� d��(x) T ��(x); (� = 0; 1; 2; 3): (A326)If we choose � to be a constant{time surface, thenP � = Z T 0� d3x; (A327)The 0th component of P �P 0 = Z T 00 d3x = Z H(x) d3x � H: (A328)is the total matter �eld energy operator, or the Hamiltonian of the system underconsideration. The associated conservation law readsddtP � = 0: (A329))Similarly by demanding invariance of the action operator under spacial rotationsyields the angular momentum operator [see, for example: Ref. [51, pp. 71-73],Ref. [53, pp. 91-92] M�� = Z (T 0�x� � T 0�x�)d3x (A330)ddtM�� = 0: (A331)It should be noted [see, for example, Ref. [53, p.91] that even though the canonicalenergy momentum tensor (density) is not unique the energy and momentum inthe �eld are.We now obtain a fundamental equation for the evolution of the matter �eldoperators. This equation when used in conjunction with the canonical commuta-tion [or anticommutation] relations is seen to be equivalent to the Euler Lagrangeequations of motion.



208Exploiting the freedom given by (A323) requires that the generator of in-�nitesimal translations given by (A318) be replaced byF (�) = �a� Z� d�� T �� = �a� Z� d�� T �� = �a�P �: (A332)This generator induces the following [see (A314)] change in the multicomponentmatter �eld operators �	�(x) = �@�	�(x) a� : (A333)Equations (A332) and (A333) coupled with the general results of the last sectionimply that �@�	�(x) a� = i[F (�);	�(x)]= �ia� [P�;	�(x)]: (A334)Since a� is arbitrary @�	�(x) = i[P� ;	�(x)]: (A335)Or, for a general operator O(x)@�O(x) = i[P� ;O(x)]: (A336)Setting � = 0 in (A335) and using (A328) yields the well known HeisenbergEquation of Motion ddt	�(t; ~x) = i[H;	�(t; ~x)]: (A337)



209A12 Heisenberg, Schr�odinger and Dirac/Interaction PicturesDropping the multicomponent indices in Eq. (A337) the Heisenberg equationof motion reads ddt	(t; ~x) = i[H;	(t; ~x)]: (A338)It has the solution 	(t; ~x) = eiHt 	(0; ~x) e�iHt (A339)as can be veri�ed by direct substitution of (A339) in (A338). Under the evolutionwe havej�0; a0i = [1 + F (�)] j�; ai. Since F (�) is a constant of motion, the statevectors j�; ai � jai are time independent:@@t jai = 0: (A340)This description of quantum systems is called the Heisenberg picture.An equivalent description , called the Schr�odinger picture, is de�ned by meansof the unitary transformation ja; ti(S) = e�iHt jai (A341)	(S) = e�iHt 	(t; ~x) eiHt (A342)with the following identi�cations	(S)(~x) = 	(0; ~x) (A343)H(S) = H(t = 0) = H: (A344)As a result all time dependence is now contained in the state vectors ja; ti(S). Thematter �eld operators and the Hamiltonian are independent of time. Operating



210(A341) from left by i @@t (A345)and using the fact that the Heisenberg state vectors are time independent [see(A340)] we obtain the equation of motion for the Schr�odinger state vectori @@t ja; ti(S) = Hja; ti(S): (A346)Intermediate between these two pictures is the Dirac or the Interaction picture.One starts with the decomposition of the hamiltonianH(I) = H(I)0 +H(I)int:; (A347)wherea) H(I)0 is the time independent free �eld hamiltonian: H(I)0 = H0(t = 0), andb) H(I)int: is the time dependent interaction hamiltonian assumed to vanish att = �1.With this decomposition the time evolution is shared partly by the matter �eldoperators (or any other operator) and partly by the state vectors through thefollowing de�nitions: ja; ti(I) = exp(iH(I)0 t) ja; ti(S) (A348)	(I)(t; ~x) = exp(iH(I)0 t) 	(S)(~x) exp(�iH(I)0 t): (A349)Combining (A349) with (A342), and (A348)with (A341)yields the relation be-tween the Interaction and Heisenberg pictures:ja; ti(I) = exp(iH0t) exp(�iHt) jai: (A350)	(I)(t; ~x) = exp(iH(I)0 t) exp(�iHt) 	(t; ~x) exp(iHt) exp(�iH(I)0 t)= exp(iH(I)0 t) 	(S)(~x) exp(�iH(I)0 t) (A351)At t = 0 , the Heisenberg, Schr�odinger and the Interaction pictures all coincide.Unless H(I)0 and H both commute with the commutator [H(I)0 ; H] the exponentialsin the above expressions cannot be combined into one term like exp[i(H(I)0 �H)t].



211To see the physical motivation for the de�nitions of the Interaction picture(A348) and (A349) let's look at the equation of motion for the state vectors inthe Interaction picture:@@t ja; ti(I) = iH(I)0 exp(iH(I)0 t) exp(�iHt)jai � exp(iH(I)0 t) iH exp(�iHt)jai= iH(I)0 ja; ti(I)� exp(iH(I)0 t) iH exp(�iH(I)0 t) exp(iH(I)0 t) exp(�iHt)jai= iH(I)0 ja; ti(I)� i exp(iH(I)0 t) H exp(�iH(I)0 t)ja; ti(I): (A352)Now note that H(I) � exp(iH(I)0 t) H exp(�iH(I)0 t); (A353)therefore the time evolution of a state vector in the Interaction picture is@@t ja; ti(I) = iH(I)0 ja; ti(I)� iH(I)ja; ti(I): (A354)But since H(I)int: � H(I) �H(I)0 = H �H(I)0 we havei @@t ja; ti(I) = H(I)int:ja; ti(I): (A355))Similarly from (A351), keeping in mind that the Schr�odinger matter �eld operatoris time independent, we obtainddt	(I)(t; ~x) = iH(I)0 	(I)(t; ~x)� i	(I)(t; ~x) H(I)0 (A356)ddt	(I)(t; ~x) = i[H(I)0 ;	(I)(t; ~x)]: (A357)We thus arrive at the following physical interpretation for the Interaction picture:a) The Interaction picture state vector ja; ti(I) is completely determined bythe interaction hamiltonian H(I)int:(t).b) The time evolution of the �eld operators depends entirely on the free �eldhamiltonian H(I)0 , the part of the hamiltonian which has no time depen-dence.



212Further since the interaction{picture	(I)(t; ~x) (A358)and �0(I)(t; ~x) (A359)are related through a unitary transformation to the Heisenberg{picture 	(t; ~x)and �0(t; ~x), the interaction{picture 	 and �0 obey the same algebra as theHeisenberg picture 	 and �0. This algebra has already been presented for theHeisenberg{picture matter �eld operators in the previous appendix.
A13 U MatrixWe now concentrate on the solution of the equation (A355), which providesus with the evolution of the interaction{picture state vector. According to thefundamental linear structure of quantum mechanics the interaction{picture statevector at time t1 must be related to the state vector at time t0 through a Hint:dependent unitary matrix (We will re-establish this below. Also note that weare dropping the superscript (I), crowning the interaction picture objects, for therest of discussion. An exception to this simpli�cation in notation will be madewhenever a confusion is likely.)ja; t1i = U(t1; t0)ja; t0i: (A360)Setting t1 = t0 yields the obvious property of the U matrixU(t0; t0) = 1: (A361)In order that U(t; t0) followed by U(t1; t) results in the same evolution as U(t1; t0),



213U should satisfy the propertyU(t1; t) U(t; t0) = U(t1; t0): (A362)Taking t1 equal to t0 we infer thatU(t0; t) U(t; t0) = U(t0; t0) = 1: (A363)This implies that U(t; t0)�1 = U(t0; t): (A364)In addition to these constraints which the U matrix must satisfy we now establishthat U(t; t0) is a unitary operator. Towards this end substitute for ja; ti from(A360) into (A355), and taking care that it is ja; ti and not ja; t0i which dependson the running t, we readily obtain the equation satis�ed by the U matrix:i @@tU(t; t0) = Hint:(t) U(t; t0): (A365)Next take the hermitian conjugate of this equation (and restricting ourselves tohermitian interaction hamiltonians Hint:)�i @@tU(t; t0)y = U(t; t0)y Hint:(t): (A366)and use (A365) and (A366) to evaluateddthU(t; t0)y U(t; t0)i = 0: (A367)That is U(t; t0)y U(t; t0) is a constant matrix. Eq. (A363) impliesU(t0; t0)y = 1: (A368)Therefore, U(t0; t0)y U(t0; t0) = 1. We thus have the general resultU(t; t0)y U(t; t0) = 1; 8 t: (A369)Finally multiplying this equation from the right by U(t; t0)�1, we getU(t; t0)y = U(t; t0)�1; (A370)thus establishing the unitarity of U(t; t0).



214It may also be noted parenthetically that since (See (A350) and (A360))ja; ti(I) = exp(iH(I)0 t) exp(�iHt)jai (A371)ja; ti(I) = U(t; to)ja; t0i(I); (A372)and ja; t0i for t0 = 0 coincides with the Heisenberg ket jai, we haveU(t; 0) = exp(iH(I)0 t) exp(�iHt): (A373)As result, referring to the �rst line in (A351), the relation between matter �eldoperators in the Interaction picture and and the Heisenberg picture may be writtenas 	(I)(t; ~x) = U(t; 0) 	(t; ~x) U(t; 0)�1 (A374)Notice that we here reintroduced appropriate superscripts designating a picture.The di�erential equationi @@tU(t; t0) = Hint:(t) U(t; t0): (A375)with the boundary condition U(t0; t0) = 1; (A376))has the formal solutionU(t; t0) = 1� i tZt0 dt1 Hint:(t1) U(t1; t0); t � t0: (A377)Equation (A377) givesU(t1; t0) = 1� i t1Zt0 dt2 Hint:(t2) U(t2; t0); t1 � t2 � t0: (A378)



215Substituting (A378) on the rhs of (A377) yieldsU(t; t0) = 1� i tZt0 dt1 Hint:(t1) (1� i t1Zt0 dt2 Hint:(t2) U(t2; t0))= 1� i tZt0 dt1 Hint:(t1) + (�i)2 tZt0 dt1 t1Zt0 dt2 Hint:(t1)Hint:(t2)U(t2; t0): (A379)
Continuing this iterative procedure we obtain the perturbative expansionU(t; t0) = 1� i tZt0 dt1 Hint:(t1)+ (�i)2 tZt0 dt1 t1Zt0 dt2 Hint:(t1)Hint:(t2)+ : : :+ (�i)n tZt0 dt1 t1Zt0 dt2 : : : tn�1Zt0 dtn Hint:(t1) : : :Hint:(tn) + : : : : (A380)

The next we discuss the standard trick of making all the upper limits on theintegrals in (A380) identical. Before we proceed with this somewhat lengthyexercise let's note that this section is largely based on Sec. 6.1 of Ref. [4]. Tobegin note that relabelling: t1 $ t2 givestZt0 dt1 t1Zt0 dt2 Hint:(t1)Hint:(t2) = tZt0 dt2 t2Zt0 dt1 Hint:(t2)Hint:(t1): (A381)Next step is the observationtZt0 dt2 t2Zt0 dt1 = tZt0 dt2 tZt0 dt1 �(t2 � t1); (A382)



216becausetZt0 dt2 tZt0 dt1 �(t2 � t1) = tZt0 dt2 t2Zt0 dt1 �(t2 � t1) + tZt0 dt2 tZt2 dt1 �(t2 � t1): (A383)For the �rst term on the rhs �(t2 � t1) equals unity because t2 > t1 while for thesecond term �(t2 � t1) vanishes because t2 < t1. Now we invert the order, notrelabel as before, of integration on the rhs of (A382)tZt0 dt2 t2Zt0 dt1 = tZt0 dt1 tZt0 dt2 �(t2 � t1)= tZt0 dt1( t1Zt0 dt2 �(t2 � t1) + tZt1 dt2 �(t2 � t1)): (A384)
For the �rst term on the rhs t2 < t1, and hence �(t2� t1) = 0. On the other handt2 > t1 for the second term, and �(t2 � t1) = 1. As a result we establish:tZt0 dt2 t2Zt0 dt1 = tZt0 dt1 tZt1 dt2: (A385)Using the result just established in (A381)then gets us a little closer to our �nalgoal tZt0 dt1 t1Zt0 dt2 Hint:(t1)Hint:(t2) = tZt0 dt1 tZt1 dt2 Hint:(t2)Hint:(t1): (A386)With the help of this result we writetZt0 dt1 t1Zt0 dt2 Hint:(t1)Hint:(t2)= 12 tZt0 dt1 t1Zt0 dt2 Hint:(t1)Hint:(t2) + 12 tZt0 dt1 t1Zt0 dt2 Hint:(t1)Hint:(t2)= 12 tZt0 dt1 t1Zt0 dt2 Hint:(t1)Hint:(t2) + 12 tZt0 dt1 tZt1 dt2 Hint:(t2)Hint:(t1): (A387)



217Now is the right time to take a time out from the trickery and de�ne the timeordered product. From Ref. [51, p. 96], time ordered product for a set of arbitrary�eld operators 	�(x�);	�(x�); : : :	�(x�) is de�ned asTh	�(x�)	�(x�) : : :	�(x�)i = (�1)f	!(x!)	�(x�) : : :	�(x�); (A388)where, on the rhs, the �eld operators are the same ones as on the left but arearranged in such a order that t! � t� � : : : � t�; (A389)and f = the number of necessary transpositions among the fermion �eld operatorsthat are needed to achieve the ordering.We now return back to equation (A387) to conclude the discussion of thetrick. The second rhs has two terms. For the �rst term t1 > t2, while for thesecond term t2 > t1. Consequently we observe that the product Hint:(t1)Hint:(t2)in the �rst term and the product Hint:(t2)Hint:(t1) in the second term are in thetime ordered form for each of the respective terms. Therefore �nally, we have theresulttZt0 dt1 t1Zt0 dt2 Hint:(t1)Hint:(t2) = 12 tZt0 dt1 t1Zt0 dt2 ThHint:(t1)Hint:(t2)i+ 12 tZt0 dt1 tZt1 dt2 ThHint:(t2)Hint:(t1)i= 12 tZt0 dt1 tZt0 dt2 ThHint:(t1)Hint:(t2)i: (A390)
Regarding the rhs of (A390) an important remark needs to be made explicitly.The time ordered product also prescribes a change of sign for each transpositionof the fermion �eld operators. Since Hint:(t) always contains pairs of fermion�eld operators [if any are contained] the interchanges in the positions of Hint:(t)prescribed by time ordering always involves an even number of minus signs.



218The nth order term in the perturbative expansion (A380) can be treatedsimilarly, with the resulttZt0 dt1 t1Zt0 dt2 : : : tn�1Zt0 dtn Hint:(t1) : : :Hint:(tn)= 1n! tZt0 dt1 tZt0 dt2 : : : tZt0 dtn ThHint:(t1) : : :Hint:(tn)i (A391)
Using the result (A391) the perturbative expansion (A380) takes the formU(t; t0) = 1 + 1Xn=1 (�i)nn! tZt0 dt1 : : : tZt0 dtn ThHint:(t1) : : :Hint:(tn)i� T exph�i tZt0 Hint:(t0)dt0i (A392)
This result can be cast into a manifestly Poincar�e covariant form by realising thatthe hamiltonian operator Hint:(t) is de�ned in terms of the hamiltonian densityoperator Hint:(t; ~x) as follows:Hint:(t) � Z d3x Hint:(t; ~x): (A393)The U-Matrix then readsU(�t;�t0) = 1 + 1Xn=1 (�i)nn! �tZ�t0 d4x1 : : : �tZ�t0 d4xn ThHint:(x1) : : :Hint:(xn)i� T exph�i �tZ�t0 d4x0 Hint:(x0)i (A394)In the above expression �t0 and �t are the constant t0 and constant t surfacesrespectively.



219A14 S MatrixMost of the physics done at particle accelerators deals with scattering prob-lems. Even the table top experiments of atomic and nuclear physics are often bestviewed in terms of scattering processes. In a typical scattering problem we have ifree particles at t = �1, which can be represented by an initial statejii = ay(~p; �) : : : ay(~p 0; �0) j i: (A395)The rhs of the above expression contains i creation operators. The creation oper-ator ay(~p; �) creates a particle with momentum ~p and � refers to the z componentof Jz as viewed in the rest frame of the particle. The creation operators do notnecessarily refer to the same spin. This description implies that jii is an eigenstateof the free hamiltonian (besides other compatible observables)H(i)0 jii = E(i)0 jii: (A396)The particles are brought together to a \small" region where most of the physicalevolution of interest takes place. The out product are f free particles at t = +1jfi = ay(~p; �) : : : ay(~p 00; �00) j i: (A397)The �nal state jfi is assumed to be an an eigenstate of yet another free hamiltonian(besides other compatible observables)H(f)0 jfi = E(f)0 jfi: (A398)In these notes we assume H(i)0 = H(f)0 : (A399)This is a non trivial assumption. As an illustrating example, this assumptionexcludes a process in which the ingoing particles are an electron and a proton,while the outgoing particles are a hydrogen atom and a photon. Such processes



220must be treated carefully. However, relaxing the assumption (A399) should poseno undue di�culties. For the speci�c example just cited we know how to solve thebound state problem for a hydrogen atom. Therefore we know the spectrum ofthe outgoing states, the �nal state must be represented as a superposition of theeigenstates ofH(f)0 rather thanH0(i) which has protons and electrons as free states.The eigenstates ofH(f)0 are, in this example, the ground state of the hydrogen atomand various excited states along with energy-momentum conserving photon(s).We note that not all the ingoing (t = �1) or outgoing (t = +1) particlesmay be fundamental particles. As a working de�nition of a fundamental particlewe adopt the following criteriaa) The particle be pointlikeb) It be represented by one of the representations of SU(2)R
SU(2)L intro-duced in Appendix.c) Its magnetic moment � be such that the g � factor� = g(1 + a)�B (A400)be the same as that associated with the simplest matter �eld couplingwith the the electromagnetic �eld. For the Dirac spinors this simplestcoupling is, of course, the standard minimal coupling. In (A400) �B isthe generalised Bohr magneton�B = emcj�h; (A401)where j = spin of the particle and we have explicitly written the speed oflight as c. The \a" is to be calculated perturbatively from the theory anddepends upon the detailed content of the vacuum and various interactionspresent.



221The criteria enumerated above are not necessarily independent. In the lowestorder approximation we do not distinguish between a fundamental and a compositeparticle. For example if we are considering p � p annihilation yielding a �0, thesimplest interaction hamiltonian density operator isHint:(x) = g 	(x)
5	(x)�(x): (A402)if p; p and �0 are all considered fundamental particles. The composite nature of theparticles is then introduced by introducing a phenomenological scalar function ofthe various momenta and spin orientations, called a form factor, F (~p; �; ~p 0; �0;~k)as follows Hph:int:(x) = g F (~p; �; ~p 0; �0;~k) 	(x)
5	(x)�(x): (A403)It would be a great advancement if one could formulate a practical procedureto solve the bound state problem for composite particles. The bound state wavefunctions so obtained could then be used for the scattering process. This howeverhas not been accomplished so far. As such, in nuclear physics, one resorts to theuse of form factors.In view of the above discussion the probability amplitude to make a transitionfrom jii at t = �1 to jfi at t = +1 ishf jSjii (A404)where the S-matrix is de�ned byS �U(t = +1; t0 = �1)= 1 + 1Xn=1 (�i)nn! 1Z�1 d4x1 : : : 1Z�1 d4xn ThHint:(x1) : : :Hint:(xn)i: (A405)The integration now runs over all space time. This formula �rst appeared inRef. [37], and is now commonly called the Dyson Formula. It is the heart andthe starting point of all perturbative calculations in the canonical perturbationtheory.



222A15 Expansions of cosh(2 ~J � ~') and sinh(2 ~J � ~') For Arbitrary SpinHere we provide expansions for cosh(2 ~J � ~') and sinh(2 ~J � ~'). In the identitiesbelow we have de�ned � = (2 ~J � p̂ )INTEGER SPIN:
cosh(2 ~J � ~') = 1 + j�1Xn=0 (�2)(�2 � 22)(�2 � 42) : : : (�2 � (2n)2)(2n+ 2)! sinh2n+2 '; (A406)
sinh(2 ~J � ~') = � cosh' j�1Xn=0 (�2 � 22)(�2 � 42) : : : (�2 � (2n)2)(2n+ 1)! sinh2n+1 ': (A407)HALF INTEGER SPIN:
cosh(2 ~J � ~') = cosh' "1 + j�1=2Xn=1 (�2 � 12)(�2 � 32) : : : (�2 � (2n� 1)2)(2n)! sinh2n '#;(A408)sinh(2 ~J � ~') = � sinh' "1 + j�1=2Xn=1 (�2 � 12)(�2 � 32) : : : (�2 � (2n� 1)2)(2n+ 1)! sinh2n '#:(A409)
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