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I got something running around my head

That just won’t keep

In the silence I hear my heart beating,

time slippin’ away

I got a time bomb ticking deep inside of me

I gotta tell you what I wanna say

I keep searching for you, darling

Searching everywhere I go

And when I find you there’s gonna be

Just one thing that you gotta know...

Bruce Springsteen





Preface

Summary

The age of gravitational-wave astronomy has begun. Gravitational waves are prop-

agating spacetime perturbations (“ripples in the fabric of space-time”) predicted

by Einstein’s theory of General Relativity. These signals propagate at the speed of

light and are generated by powerful astrophysical events, such as the merger of two

black holes and supernova explosions. The first detection of gravitational waves

was performed in 2015 with the LIGO interferometers. This constitutes a tremen-

dous breakthrough in fundamental physics and astronomy: it is not only the first

direct detection of such elusive signals, but also the first irrefutable observation of

a black-hole binary system. The future of gravitational-wave astronomy is bright

and loud: the LIGO experiments will soon be joined by a network of ground-based

interferometers; the space mission eLISA has now been fully approved by the

European Space Agency with a proof-of-concept mission called LISA Pathfinder

launched in 2015. Gravitational-wave observations will provide unprecedented

tests of gravity as well as a qualitatively new window on the Universe. Careful

theoretical modelling of the astrophysical sources of gravitational-waves is crucial

to maximize the scientific outcome of the detectors. In this Thesis, we present

several advances on gravitational-wave source modelling, studying in particular:

(i) the precessional dynamics of spinning black-hole binaries; (ii) the astrophysi-

cal consequences of black-hole recoils; and (iii) the formation of compact objects

in the framework of scalar-tensor theories of gravity. All these phenomena are

deeply characterized by a continuous interplay between General Relativity and as-

trophysics: despite being a truly relativistic messenger, gravitational waves encode

details of the astrophysical formation and evolution processes of their sources. We

work out signatures and predictions to extract such information from current and

future observations. At the dawn of a revolutionary era, our work contributes to

turning the promise of gravitational-wave astronomy into reality.
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Declaration

This dissertation is the result of my own work and includes nothing which is the outcome of

work done in collaboration except as declared in the Preface and specified in the text. It is

not substantially the same as any that I have submitted, or, is being concurrently submitted

for a degree or diploma or other qualification at the University of Cambridge or any other

University or similar institution except as declared in the Preface and specified in the text.

I further state that no substantial part of my dissertation has already been submitted, or,

is being concurrently submitted for any such degree, diploma or other qualification at the

University of Cambridge or any other University of similar institution except as declared

in the Preface and specified in the text. It does not exceed the prescribed word limit for

the relevant Degree Committee.

Research overview

Most of the material presented in this dissertation has been published in international peer-

reviewed journals and completed in scientific collaborations. In theoretical astrophysics,

the order of authors in a publication reflects the importance of the contribution given to

the project. I personally lead all my first-author publications, including those presented

here. The main contributions presented in this Thesis can be summarised as follows.

• Chapter 1 consists in a review on gravitational-wave astronomy, and is unpublished.

• The main body of Chapter 2 is based on [206] with some inclusions from [269];

Appendix 2.A is based on [203]. This material has been completed in collaboration

with Michael Kesden, Ulrich Sperhake, Emanuele Berti and Richard O’Shaughnessy.

Michael Kesden started developing the analytics of effective-potential formalism and

the precession-average approach which were then better understood and finalised by

myself. The numerical implementation has been developed entirely by myself. Ulrich

Sperhake, Emanuele Berti and Richard O’Shaughnessy provided invaluable guidance

and suggestions throughout the project.

• The main body of Chapter 3 is based on [205], while Appendix 3.A consists of un-

published material. This piece of research has been completed in collaboration with

Michael Kesden, Ulrich Sperhake, Emanuele Berti, Richard O’Shaughnessy, Antoine

Klein and Daniele Trifiró. I derived the instability thresholds analytically and veri-

fied it numerically. Michael Kesden and Richard O’Shaughnessy understood that the
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precessional period must be infinite for unstable binaries. Antoine Klein provided

the numerical code to realise Fig. 3.4.

• Chapter 4 is based on [209] and has been completed in collaboration with Alberto

Sesana. I developed the galaxy potential modelling and the numerical infrastruc-

ture to compute galaxy merger trees, while Alberto Sesana developed the analytical

framework to estimate galaxy merger rates.

• Chapter 5 is based on [211] and has been completed in collaboration with Benedetta

Veronesi, Giuseppe Lodato and Giovanni Rosotti. I developed the analytical esti-

mates of the relevant timescales, the accretion prescriptions, the cosmological study

and the kick analysis. Giuseppe Lodato pointed out the importance of non-linear

warps and the stabilising effect of the companion. I was helped in finalising this

project by Benedetta Veronesi (undergraduate student supervised by Giuseppe Lodato)

and Giovanni Rosotti, who provided insights on planetary migration.

• Chapter 6 is based on [207] and has been completed in collaboration with Christopher

Moore. I first realised that kicks can be detected directly using mass estimates,

while Christopher Moore developed the numerical implementation of Doppler-shifted

waveforms and the Fisher matrix analysis.

• Chapter 7 is based on [210] and has been completed in collaboration with Christian

Ott and Ulrich Sperhake. Christian Ott provided the General-Relativity version of

the code, as well as guidance on supernova physics. Ulrich Sperhake first started

the derivation of the equations of motion in scalar-tensor theory and their numerical

implementation. This was later checked and finalised by myself. I took care of all

production runs and the analysis of the results.

Among the results presented here, Refs. [205, 269, 207] are published in Physical Re-

view Letters; Refs. [269, 207] have been covered by press offices (see [423, 424]); and

Refs. [205, 207] have been selected as “PRL Editors’ suggestion” for their broad impact on

gravitational-wave astronomy. The scientific papers [514, 247, 208], the community review

[71] and the conference proceedings [201] were also completed during the course of my

Ph.D and are not discussed in this Thesis. In total, I completed 12 publications during my

Ph.D. My publication lists further features Refs. [317, 204] which were published before

my Cambridge appointment started. Overall, I currently list 14 scientific publications in

international peer-reviewed journals, with an h-index of 10. Beside scientific publications,

an important outcome of my Ph.D research is the open-source numerical code precession
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(Sec. 2.A and [203]). My research also provided educational activities, with two sum-

mer undergraduate students who worked under my supervision on black-hole binary spin

precession [534] and black-hole superkicks.

Cambridge, September 2016

Davide Gerosa
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Chapter 1

A tale of astronomy and relativity

Executive summary

This Chapter provides a brief introduction, mostly based on order-of-magnitude estimates,

to the field of Gravitational-Wave (GW) astronomy. Out aim is not to rival with excellent

reviews [214, 506, 104, 417, 456, 444] and textbooks [372, 418, 230, 343] on the topic, but

rather to highlight (in a perhaps unorthodox way) some of the peculiarities that make this

growing field of science so innovative and exciting. This includes a comparison between

electromagnetic waves and GWs (Sec. 1.1) and the interplay between astrophysics and

relativity in determining the inspiral rate of Black Hole (BH) binaries (Sec. 1.3). We

conclude with a summary of the main findings presented in this Thesis (Sec. 1.4).

1.1 Light and gravity

We are on the verge of a revolution in astronomy and relativity: we are entering the age of

observational GW astronomy. Most (if not all) of the information we have collected about

the Universe came to us through photons: since Galileo Galilei pointed his first telescope to

the sky, we started exploring the Universe we live in, from the small scales where stars and

planets form, to large scales comparable to the size of the entire Universe. In the past 70

years, our understanding of the Universe has been greatly revolutionized as we went beyond

optical light and started exploring new bands of the electromagnetic spectrum. From radio

waves to gamma rays, the opening of a new electromagnetic band always came not only

with a deeper understanding of known sources (such as stars and galaxies), but also with

serendipitous discoveries that shaped modern astrophysics. Some examples includes the

discovery of the Cosmic Microwave Background [412], the identification of quasars [460],
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pulsars [239], X-ray binaries [538, 95], gamma-ray bursts [281] and (more recently) fast

radio bursts [326].

Since 2015, we can observe the Universe in an entirely new way, complementary to

the electromagnetic spectrum. Predicted (although with controversies [175]) by Einstein

himself in 1916 [172, 173, 174], GWs are ripples in the fabric of space-time: perturbations

of the space-time itself travelling at the speed of light. GWs carry towards us a new set of

information on the Universe, of a completely distinct kind than electromagnetic waves.

(i) While photons are emitted by charged particles, GWs are emitted by distributions of

mass and momentum. On very fundamental grounds, through GWs we are sensible

to a very different sector of the Universe.

(ii) Photons strongly couple to ordinary matter: although this property makes them easy

to detect with our telescopes (and even naked eyes), it also implies that electromag-

netic waves are likely to be scattered and/or absorbed by the intervening material,

which therefore deteriorates the information we infer about their sources. Conversely,

GWs couples very weakly to ordinary matter. Direct detection of GWs does require

extraordinarily challenging experiments, but, at the same time, lets us probe the

highly energetic dynamics of their sources directly. This point is particularly strik-

ing when considering particle decoupling in the early Universe. While the Universe

became transparent to photons (neutrinos) about ∼ 4 × 106 yr (1 s) after the Big

Bang, primordial gravitational radiation is emitted as early as ∼ 10−30 s after the

Big Bang [456]. This signal is expected to be very weak (and certainly beyond the

reach of any current experiment), but will tell us about the laws of physics at the

very beginning of time.

(iii) Much like conservation of charge prevents monopole radiation in electromagnetism,

monopole GWs are not allowed in General Relativity (GR) because of mass conser-

vation. Momentum conservation further prevents propagating dipole gravitational

radiation. Unlike electromagnetism, the lowest allowed propagating multipole of

GWs is the quadrupole. This feature of GR is indeed crucial for astrophysics, as it

makes binary systems (which are very abundant in any astrophysical context) a very

natural source of GWs. We stress here however, that the absence of monopole and

dipole gravitational radiation is a specific property of GR, which is absent in many

of the viable alternative theories of gravity [134, 71].
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1.2 Sources and detectors

1.2.1 Compact binaries are natural emitters

Since GWs are generated by quadrupole distribution of matter, the most natural (and

indeed the first discovered [250, 13]) emitters of GWs are binary systems. Binary sys-

tems emit GWs at a frequency which is roughly twice the orbital frequency, because mass

distribution repeats twice during each orbital cycle.

Let us define the quadrupole mass tensor

Qjk =

∫
ρxjxkd

3x , (1.1)

where ρ is the mass density and xi (i = 1, 2, 3) are the spatial coordinates. The amplitude

of the emitted GWs at leading order is (e.g. [372, 456])

hij =
G

c4

2

d

d2Qjk
dt2

, (1.2)

where d is the luminosity distance between the source and the observer. A simple order-

of-magnitude estimate for the GW strain h emitted by a binary system is

h ∼ G

c4

Mr2

T 2d
∼ G

c4

Mv2

d
. (1.3)

where r is the orbital separation, T is the orbital period, v is the orbital velocity and M

is the total mass of the binary. A GW of strain h causes a deformation ∆L ∼ hL over a

spacetime region of length scale L. In other words, a detector of length L is sensible to a

GW of strain h only if L can be measured with an accuracy ∆L = Lh.

From these very simple estimates, one can immediately rule out detection of man-made

GW sources. Imagine two small cars of ∼ 103 kg, moving at the (very large) speed of

103 km/h on a track of 1 km radius. The GW strain observed at the closest possible

distance of a single GW wavelength λ ∼ 5000 km (similar to the Earth’s radius) is h ∼
10−40. Measuring lengths with such accuracy is beyond any current and foreseeable future

technological capability. In order to obtain sensible GW strain values, one needs very

compact binaries, with high orbital velocity. Astrophysics is kind enough to provide such

objects: BHs [Neutron Starts (NSs)] have compactnesses of the order of GM/Rc2 ∼ 1

(∼ 0.1) and, when part of a binary system, their orbital velocities reach a sizable fraction

of the speed of light. Two stellar-mass BHs of M ∼ 10M� ∼ 1031 kg at a separation

of ∼ 10 Schwarzschild radii orbit as fast as v ∼ 0.1c ∼ 107 m/s. Even at d ∼ 100 Mpc
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(further than the Virgo Cluster), the GW emission from such binary system results in a

strain on Earth which is roughly h ∼ 10−21: 20 orders of magnitude more powerful than

artificial sources. In order to measure such a signal with a km-scale detector, the length of

the detector has to be measured with an accuracy of ∆L ∼ 10−18 m, which smaller than

the size of a single proton! This extreme scientific and technological challenge can now be

faced.

1.2.2 Interferometers are natural receivers

Following decades of experiments involving resonant bars [537, 42, 528, 43, 357], the main

current experimental technique to detect GWs relies on Michelson-Morley based laser inter-

ferometers [212, 375, 168]. In a nutshell, GWs stretch and shorten the two laser arms, thus

producing an interference pattern. If distinguishable from instrumental and environment

noise, the detection of such interference pattern can be used to reconstruct the properties

of the GW source. In order to increase the effective length of the interferometer arms,

modern ground-based interferometers use optical cavities of Fabry-Perot type, such that

laser beams bounce many times along each arm before reaching the detection sensor. Given

a displacement ∆L produced by a GW on the interferometer arms, the phase difference

between the two light beams is roughly ∆Φ = 2b∆L/λr where λr ∼ 10−8 cm is the reduced

wavelength of the laser light and b is the number of bounces of the light in each arm. In

order to successfully detect GWs, various noise sources need to be overcome to reach the

incredible precision of ∆L ∼ 10−18 m. The most important noise sources for ground-based

interferometers are seismic noise, suspension thermal noise and quantum fluctuations in

the number of photons reaching the photo detector (photon shot noise) (see e.g. [444]).

The ground-based LIGO (Laser Interferometer Gravitational-Wave Observatory) inter-

ferometers were constructed in the late 1990s in the USA and operated in science mode

in 2005-2007 (Initial LIGO) and later in 2009-2010 (Enhanced LIGO) [22]. Although no

GW was detected, this initial phase provided several astrophysical results (e.g. [21, 1, 4])

and key technological developments [22, 5, 2]. Following major experimental upgrades

[228, 3], the Advanced LIGO detectors came finally online in 2015. At the very begin-

ning of its science operations, LIGO detected its first GW signal, now dubbed GW150914

[13, 18, 6, 12, 9, 10, 20, 19, 350]. The source of GW150914 has been identified with

the inspiral and merger of two BHs of 36+5
−AM� and 29+4

−4M� at z = 0.09+0.03
−0.04. During

its first operation run (September 2015 - January 2016), LIGO detected two BH binary

mergers with high confidence, together with another lower-confidence event [11, 7]. Later

in 2016, the European instrument VIRGO [23] will enter the LIGO network for the first
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joint observation run. The Japanese detector KAGRA [41] and the proposed LIGO India

[16] are expected to become operational in the next few years, while programs for third-

generation detectors [such as the Einstein Telescope (ET) [429]] are currently under study.

Ground-based detectors are sensible to GW frequencies of the order of 10−1000 Hz. Their

main targets are stellar-scale sources, such as stellar-mass BH binaries, NS binaries and

Supernova (SN) explosions.

Longer detector arms are needed to observe lower frequency GW sources (10−4 − 10−1

Hz), which necessarily requires space-based detectors. The eLISA (evolving Laser Inter-

ferometer Space Antenna) space mission [27, 28, 469] (an evolved concept of the proposed

LISA spacecrafts [150]) is now under development following the selection of its science

theme for the third large-scale mission of ESA’s (European Space Agency) “Cosmic Vi-

sion Program” [176]. A joint partnership with NASA (National Aeronautics and Space

Administration) is currently being finalized. eLISA will consist of a constellation of three

spacecrafts connected by laser links, equivalent to either two or three Michelson Interferom-

eters with arms of ∼ 106 km. eLISA will measure hundreds, if not thousands, of merging

Supermassive Black Hole (SMBH) binaries up to cosmological redshift [48, 282, 501] as well

as extreme-mass-ratio inspirals [195, 29, 44] and possibly even cosmological phase transi-

tions [82, 116]. As a proof of technology, NASA and ESA launched the LISA Pathfinder

mission in 2015 [33, 358] which successfully exceeded all requirements [32].

At even lower frequencies (∼ 10−9 Hz), BHs with masses ∼ 109M� are currently

being targeted by Pulsar Timing Arrays (PTAs) [345, 346, 261, 295]. This experimental

technique relies on accurate timing of several pulsars using radio telescopes, effectively

using the distance between us and the pulsars as arms of giant interferometers.

1.3 The interplay between astrophysics and relativity

The field of GW astronomy lies in between astrophysics and relativity. Although GWs

themselves are a relativistic messenger, the dynamics of their sources is deeply affected

by the astrophysical environment they live in: astrophysics is vital to predict and under-

stand the properties of sources emitting GWs in the sensitivity windows of our detectors.

To illustrate the importance of such interplay, here we discuss a simple example where

astrophysics and relativity fruitfully play together, namely the inspiral rate of BH binaries.

Astrophysical BHs are present in the Universe in two well separated mass regimes.

Stellar-mass BHs (M ∼ 10M�) [120] constitute the endpoints of the life of some massive

stars; while SMBHs (M ∼ 105−1010M�) are hosted at the center of most galaxies [293] and

constitute a fundamental ingredient to understand the evolution of large-scale structures
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in the Universe. In both regimes, BHs are expected (and observed!) to form binary sys-

tems. Stellar-mass BH binaries are expected to form from isolated binaries stars [421] and

dynamical interactions in dense stellar clusters [67]; while the formation of supermassive

BH binaries is a natural outcome of galaxy mergers [541, 60].

Let us ask the following question: how long does a BH binary take to merge? Can

astrophysical BH binaries merge within a Hubble time? Are astrophysical BH mergers

relevant in nature?

Consider a BH binary with total mass M and mass ratio q on a circular orbit with

separation r. GW emission dissipates energy and angular momentum, causing the binary

orbit to shrink at the rate given by the Peters and Mathews approximation [415, 414]

dr

dt
= −64

5

G3M3

c5r3

q

(1 + q)2
. (1.4)

The timescale on which the separation decreases because of GW emission

tRR ∼
r

|dr/dt| ∝ r
4 , (1.5)

is a steep power law of the separation r. GW emission is an efficient mechanism to dissi-

pate angular momentum and shrink the binary’s orbit only at small separation, while the

emission rate gets weaker and weaker as the separation increases. In order to merge within

a Hubble time ∼ 1.4 × 1010yr, the binary separation as to be smaller than the critical

separation

rGW = 1.2× 1011

(
tRR

1.4× 1010yr

)1/4( M

M�

)3/4

cm. (1.6)

which is roughly ∼ 10R� (∼ 0.01 pc) for stellar-mass (supermassive) BH binaries. In both

the stellar-mass and the supermassive case, the separation rGW is at the same time

i) much smaller than the separations at which binaries form;

ii) much greater than the separations at which binaries become detectable in GWs.

Because of (i), BH binaries take longer than the age of the Universe to enter the

sensitivity windows of GW detectors if the inspiral is purely driven by GW emission.

BH mergers are relevant phenomena in nature only if their astrophysical environments

provide viable mechanisms to dissipate energy and angular momentum at separations r &

rGW. Stellar-mass BH binary formation channels often involve a so-called common-envelope

phase [256, 403], where an already formed BH and a stellar core orbit in a shared hydrogen
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envelope. The binding energy of the envelope is transferred to the binary, whose separation

decreases by a factor ∼ 1000. The issue is perhaps more severe in the SMBH context [135],

where the search for viable astrophysical mechanisms to dissipate angular momentum is

commonly referred to as the final parsec problem [370]. Proposed mechanisms include

stellar scattering [123] (which however needs to be enhanced by some degree of triaxiality

of the galactic potential to be a viable process [363]), and viscous dissipation through gas

in the form of accretion discs [353] (although fragmentation may constitute a serious issue

[319]).

Point (ii) above implies that if BH binaries become detectable in GWs, their dynamics

is ruled by GR. GW signals can be often modelled in the elegant framework of vacuum

GR, neglecting environmental effects that may deteriorate our measurements (e.g. [49,

50]). Depending on binary separation and mass-ratio, GW waveforms are modelled using

techniques such as the Post-Newtonian (PN) expansion [86, 194], BH perturbation theory

[455, 74] and numerical relativity [122, 496, 117]. Decoupling of the source dynamics and

the astrophysical environment ultimately allows for the construction of accurate waveform

templates, which constitutes a vital ingredient to perform GW detections [505, 8].

The fields of astronomy and relativity share a dominant role in our understanding of

GW sources. The interplay between astrophysics and GR is the leitmotif con-

necting the various topics presented in this Thesis. We would like to introduce the

reader to the main body of this work using the words of Thomas Gold, at his after-dinner

speech at the 1st Symposium of Relativistic Astrophysics (Dallas TX, 1963). Shortly after

the discovery of the first quasar [460], this seminal conference –where the term "Rela-

tivistic Astrophysics" was actually invented [468]– saw for the first time relativists and

astrophysicists conveying together [254]:

Here we have a case that allowed one to suggest that the relativists with their

sophisticated works were not only magnificent cultural ornaments but might

actually be useful in science! Everyone is pleased: the relativists who feel they

are being appreciated, who are suddenly experts in a field they hardly knew

existed; the astrophysicists for having enlarged their domain by the annexation

of another subject: general relativity. It is all very pleasing, so let us hope it is

right!

1.4 Main findings

The remaining content of this Thesis is organized in six Chapters, which address three

main topics in relativistic astrophysics.
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Chapters 2 and 3 tackle spin precession in BH binaries. In Chapter 2 we develop a

thorough analysis of the dynamics of spinning BH binaries using innovative multi-timescale

techniques. Spinning BH binaries present a remarkably interesting phenomenology because

relativistic spin-spin and spin-orbit couplings cause the BH spins and the orbital plane to

precess about the direction of the total angular momentum. Precessing binaries are deeply

characterized by a timescale hierarchy: the orbital timescale is very short compared to

the spin-precession timescale which, in turn, is much shorter than the radiation reaction

timescale on which the orbit is shrinking due to GW emission. The binary dynamics has

typically been studied in an orbit-averaged fashion, where one only tracks the evolution

of the orbit itself, not the instantaneous position of each BH. Here we develop an innova-

tive approach where we also average over the precessional time, thus considering the spin

precessional cones as a whole, without tracking the spin’s secular motion. This approach

lets us define a new PN framework to study the evolution of precessing binary BHs. Our

new solutions improve our understanding of spin precession in much the same way that the

conical sections for Keplerian orbits provide additional insights beyond Newton’s 1/r2 law.

On the computational side, the new precession-averaged approach leads to an enormous

speed-up, allowing us to evolve binaries from arbitrarily large separations, previously inac-

cessible. Our numerical tools are made available to the scientific community through the

open-source code precession. In Chapter 3 we revisit the dynamics of BH binaries with

aligned spins in light of our new multi-timescale methods developed for precessing systems.

We unveiled a new dynamical instability in BH binaries where the spin of the more (less)

massive BH is aligned (antialigned) to the angular momentum of the binary. When enter-

ing the instability region, any perturbation to such aligned (hence non-precessing) binaries

will trigger large precession cycles. The onset of the instability lies in the sensitivity win-

dows of current and future GW detectors, thus predicting binaries that start precessing

while being observed!

In Chapters 4, 5 and 6 we study the astrophysical consequences of BH recoils.

In the late inspiral and final coalescence of BH binaries, GWs are emitted anisotropically.

The system loses net linear momentum and the remnant BH is consequently kicked in the

opposite direction. Surprisingly, numerical-relativity simulations predict that the final kick

can reach magnitudes up to ∼ 5000 km/s (“superkicks”). This exceeds the escape speed of

even the most massive galactic bulges, opening up the possibility of BH ejections. A direct

consequence of high velocity kicks is that the SMBH occupation fraction in galaxies may

be altered, providing an indirect way to test the strong-gravity physics behind BH mergers.

In Chapter 4, we investigate the consequences of superkicks on the population of SMBHs in



1.4 Main findings 25

the Universe residing in massive elliptical galaxies, showing that any future measurement

of missing or undermassive BHs will point towards the occurrence of a superkick at recent

times (z . 1). Such measurements are within the reach of future 30m-scale telescopes. The

frequent occurrence of large kicks is difficult to reconcile with observations, as almost all

large galaxies are found to host SMBHs. One solution to this problem is to align the BH

spins before merger, because numerical relativity simulations only predict large recoils for

merging BHs with substantially misaligned spins. Alignment can be achieved (and super-

kicks avoided) via gaseous interactions with surrounding accretion discs. In Chapter 5, we

present an analytical timescale argument to tackle the disc-spin alignment problem in gas-

rich galaxies. Using insights from the theory of planetary migration (which shares many

physical mechanisms with SMBH accretion physics), we show that the binary mass ratio

plays a major role in determining the degree of spin alignment. In particular, we find that

light BHs may prevent their more massive companions from aligning. Chapter 6 presents

a preliminary analysis to point out that BH kicks actually constitute a direct observable

in GW astronomy. As the kick is imparted, the binary’s center of mass accelerates and

the emitted GW waveform gets Doppler-shifted. We devise a strategy to incorporate such

effect into existing waveform models, and show that the identification of such kicked wave-

forms can be easily performed with the space-based detector eLISA. Direct observations of

BH kicks will be of fundamental nature, since they will provide direct evidence for linear

momentum carried by GWs.

Finally, Chapter 7 presents a study of NS and BH formation in Scalar Tensor

(ST) theories of gravity. Although Solar System and binary-pulsar experiments have

tested and confirmed GR with remarkable accuracy, the strong-field regime of the theory

is still largely untested. Testing GR requires developing GW signatures in alternative

theories of gravity, to be contrasted against future observations. Modifications of GR often

lead to the introduction of additional degrees of freedom, inherited from some underlying

high-energy theory. The simplest and most famous of these models are ST theories, where

the spacetime metric is coupled non-minimally to one scalar field. The phenomenology

of relativistic stars is remarkably interesting in such theories. The presence of a non-

perturbative effect called “spontaneous scalarization” (somewhat similar to spontaneous

magnetization in ferromagnets) makes the core-collapse dynamics and the formation of

NSs and BHs qualitatively different from GR, thus providing an ideal way to constrain the

parameters of the theory. Here we present the first simulations of collapse of realistic stars

till the formation of the compact remnant using modern prescriptions for the microphysics

and advanced shock-capturing numerical schemes. The most promising sources of scalar
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radiation are protoneutron stars collapsing to BHs. In case of such an event, LIGO will

be able to place the first constraints on ST theories in the strong-field, highly dynamical

regime of gravity.

To summarize, the main scientific findings presented in this Thesis are:

• a first analysis of spinning BH binaries using multi-timescales techniques; develop-

ment of a new PN approach to study such systems;

• discovery of a precessional instability in BH binaries with (anti)aligned spins;

• identification of missing SMBHs in large elliptical galaxies as a signature of the

occurrence of superkicks at low redshifts;

• reinvestigation of the disc-spin alignment problem in merging SMBH binaries, using

insight from planetary migration;

• identification of BH kicks as direct GW observables, through modelling of their

Doppler-shifted waveforms;

• state-of-the-art numerical-relativity simulations of stellar collapse in ST theories of

gravity.



Chapter 2

Multi-timescale analysis of

black-hole binary spin precession

Outlook

The dynamics of precessing binary BHs in the PN regime has a strong timescale

hierarchy: the orbital timescale is very short compared to the spin-precession

timescale which, in turn, is much shorter than the radiation-reaction timescale

on which the orbit is shrinking due to gravitational-wave emission. We exploit

this timescale hierarchy to develop a multi-scale analysis of binary BH dynam-

ics. The definition of an effective potential allows us to solve the orbit-averaged

spin-precession equations analytically for arbitrary mass ratios and spins. These

solutions are quasiperiodic functions of time: after a fixed period the BH spins

return to their initial relative orientations and jointly precess about the total an-

gular momentum by a fixed angle. We then implement a quasi-adiabatic approach

to evolve these solutions on the longer radiation-reaction time. Our procedure

leads to an innovative “precession-averaged” PN approach to studying precess-

ing binary BHs. We use our new solutions to classify binary BH spin precession

into three distinct morphologies, then investigate phase transitions between these

morphologies as BH binaries inspiral. These precession-averaged PN inspirals can

be efficiently calculated from arbitrarily large separations, thus making progress

towards bridging the gap between astrophysics and numerical relativity.
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Executive summary

This Chapter is organized as follows. In Sec. 2.1 we introduce the timescale hierarchy

that characterizes the dynamics of BH binaries. In Sec. 2.2 we derive explicit solutions

for generic BH binary spin precession at 2PN order on timescales short compared to the

radiation-reaction time. In Sec. 2.3, we use our new solutions to precession average the ra-

diation reaction on the binary at 1PN order and demonstrate how this precession averaging

improves the computational efficiency with which GW-induced inspirals can be calculated

compared to previous approaches relying solely on orbit averaging. Sec. 2.4 explores phase

transitions between the three precessional morphologies, which are readily identified using

our new formalism and have potentially interesting observational consequences. Finally,

we conclude in Sec. 2.5, highlighting the relevance of our new PN approach to both the

theoretical understanding of binary BHs and observational GW astronomy. Our numerical

implementation is described in Appendix 2.A.

The material presented in this Chapter is based on [269, 206, 203].

2.1 A tale of three timescales

The two-body problem was a major engine of historical progress in physics and astronomy.

It can be solved analytically in Newtonian gravity; its solutions are the well known Keple-

rian orbits. The analogs to Newtonian point masses in GR are binary BHs. Astrophysical

BH binaries have spins [267, 439, 354, 368] in addition to their masses. Full solutions to

the two-body problem in GR must therefore include spin evolution in addition to orbital

motion. Einstein’s equations must be solved numerically [426, 113, 45] when the binary

separation r is comparable to the gravitational radius GM/c2, but PN approximations may

be used when r � GM/c2 [418] (here M is the total mass of the binary).

Spinning BH binary dynamics is remarkably complex and interesting. BH binary sys-

tems have three angular momenta, the two spins and the orbital angular momentum, all

coupled to each other. Spin-orbit and spin-spin couplings cause these angular momenta to

precess, changing their orientation in space on the precession timescale [31, 276]. On the

longer radiation-reaction timescale, GWs take energy and momentum out of the system,

thus shrinking the orbit [415, 414]. These emitted GWs encode all the richness of the

precessional dynamics but are also more challenging to detect and characterize than GWs

emitted by non-precessing systems [100, 229, 140, 526, 182, 399, 125, 126].

In this Chapter we introduce a multi-timescale analysis of the dynamics of spinning,

precessing binary BHs. Multi-timescale analyses are commonly used in binary dynamics.
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For example, in eccentric binaries the orbital period, periastron precession, and radiation-

reaction timescales usually differ by orders of magnitude; the dynamics of these systems

can be studied using techniques that explicitly exploit this timescale hierarchy, such as

osculating orbital elements [313] or the variation of constants [147]. Exploiting timescale

hierarchies leads to deeper understanding of the dynamics because different physical pro-

cesses are decoupled and individually analyzed.

Precessing binary BHs evolve on three distinct timescales:

1. BH binaries orbit each other (changing the binary separation r) on the orbital time

torb ∼ r3/2/(GM)1/2,

2. the spins and the orbital angular momentum change direction on the precession time

tpre ∼ c2r5/2/(GM)3/2 [31],

3. the magnitudes of the orbital energy and angular momentum decrease on the radiation-

reaction time tRR ∼ c5r4/(GM)3 [415].

In the post-Newtonian (PN) regime, r � GM/c2 and these timescales are widely separated:

torb � tpre � tRR . (2.1)

BH binaries complete many orbits before their angular momenta appreciably precess, and

the angular momenta complete many precession cycles before the separation decreases

significantly.

The first inequality (torb � tpre) has been widely exploited to understand spin dynamics

and approximate the GW signal. This approximation forms the foundation of the orbit-

averaged spin-precession equations for adiabatic quasicircular orbits examined extensively

in the pioneering study of Apostolatos et al. [31] and later extended by Arun et al. [38, 39].

Using these equations, several authors have systematically explored the physics of spin

precession and their implications for GW detection [301, 302] and astrophysics [76, 270].

Following the early work by Schnittman on spin-orbit resonances [463], PN spin dynamics

has been used to predict the final spins [270] and recoils [271, 76] following BH binary

mergers, select initial conditions for numerical-relativity simulations [329], characterize

formation scenarios for stellar-mass BH binaries [204], and address the distinguishability

of these scenarios by future GW observations [208, 529, 221].

The second inequality (tpre � tRR) has received less attention because until now there

were no explicit solutions for generic spin precession (unlike the Keplerian orbits that

readily allowed orbit averaging in previous work). Here we present new solutions for spin
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precession that allow us to fully exploit the timescale hierarchy of Eq. (2.1). We show

that spin precession is quasi-periodic implying that the relative orientations of the three

angular momenta are fully specified by a single parameter, the magnitude of the total

spin, that oscillates on the precession time. These solutions improve our understanding

of spin precession in much the same way that the solutions r(f) = a(1− e2)/(1 + e cos f)

for Keplerian orbits provide additional insight beyond Newton’s law r̈ = −GM r̂/r2. As is

common in multi-timescale analyses, once the dynamics on the shorter time has been solved,

the behavior of the system on the longer time scale can be studied as a quasi-adiabatic

process. We evolve our precessional solutions during the inspiral by double-averaging

the PN equations over both the orbital and the precessional timescales. Semi-analytical

precession-averaged inspirals turn out to be extremely efficient and can be carried out from

infinitely large separation with negligible computational cost.

While our focus in this work is on spin precession, our study benefits from several

recent investigations which also used separation of timescales to efficiently and accurately

approximate both the dynamics and the associated GW signal. A series of papers by Klein

et al. [283, 125, 284] used a multi-scale analysis to construct semianalytic approximations

to the frequency-domain waveforms for generic two-spin precessing binaries. Lundgren

and O’Shaughnessy [338] used this timescale hierarchy to construct semianalytic approx-

imations to the inspiral of precessing binaries with a single significant spin. The GWs

emitted during the full inspiral-merger-ringdown of spinning, precessing binaries were also

investigated using phenomenological models based on a single “effective spin” approxima-

tion [461, 224, 462] and the effective-one-body framework [406]. We mainly focus on the

relative orientation of the momenta; the evolution of the global orientation of the system

will be addressed elsewhere [554].

From now on in this Chapter, we use geometrical units (G = c = 1) and write vectors

in boldface, denoting the corresponding unit vectors by hats and their magnitude as (e.g.)

L = |L|. Latin subscripts (i = 1, 2) label the BHs in the binary. Binaries are studied at

separations r ≥ 10M , taken as a simple but ad hoc threshold for the breakdown of the PN

approximation [105, 114, 106]. Animated versions of some figures are available online at

the URLs listed in [200].

2.2 Analytic solutions on the precessional time scale

In this Section we focus on the binary dynamics on the precessional time. Angular momen-

tum conservation (Sec. 2.2.1) and the existence of a further constant of motion (Sec. 2.2.2)

provide a simple parametrization of the binary dynamics through the identification of ef-
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Figure 2.1: Reference frames used in this Chapter to study binary BH spin precession. The angles
θ1, θ2, ∆Φ, and θ12 are defined in a frame aligned with the orbital angular momentum L (left panel).
The binary dynamics can also be studied in a frame aligned with the total angular momentum J

(right panel). Once L is taken to lie in the xz-plane, its direction is specified by S through the
angle θL. The angle ϕ′ corresponds to rotations of S1 and S2 about the total spin S. The two
frames pictured here are not inertial because the direction of L changes together with the spins to
conserve J. These angles are defined in Eqs. (2.2-2.5), (2.9) and (2.16).

fective potentials. Solutions are classified according to the precession geometry (Sec. 2.2.3)

and eventually expressed in an inertial frame (Sec. 2.2.4).

2.2.1 Parametrization of precessional dynamics

Let us consider binary BHs on a circular orbit.1 Let m1 and m2 denote the BH masses, in

terms of which we can define the mass ratio q = m2/m1 ≤ 1, the total massM = m1 +m2,

and the symmetric mass ratio η = m1m2/M
2. The spin magnitudes Si = m2

iχi (i = 1, 2)

are most conveniently parametrized in terms of the dimensionless Kerr parameter 0 ≤ χi ≤
1, while the magnitude of the orbital angular momentum is related to the binary separation

r through the Newtonian expression L = η(rM3)1/2.

The three angular momenta L, S1 and S2 in principle constitute a nine-dimensional

parameter space. However, there exist numerous constraints on the evolution of these

parameters, greatly reducing the number of degrees of freedom. At the PN order considered

1Our approach can be readily generalized to nonzero eccentricity without complicating the geometry
since the orbital pericenter precesses on a shorter timescale than the BH spins do. We restrict our attention
to circular orbits since radiation reaction is expected to suppress the eccentricity at large separations for
most astrophysical systems [415, 414].
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here, the magnitudes of both spins are conserved throughout the inspiral (see e.g. [105]),

reducing the number of degrees of freedom from nine to seven. The magnitude of the

orbital angular momentum is conserved on the precession time (although it shrinks on the

radiation-reaction time), further reducing the number of degrees of freedom from seven to

six. The total angular momentum J = L + S1 + S2 is also conserved on the precession

time, reducing the number of degrees of freedom from six to three. As described in greater

detail in the next subsection, the projected effective spin ξ [141, 431] is also conserved by

both the orbit-averaged spin-precession equations at 2PN and radiation reaction at 2.5 PN

order, providing a final constraint that reduces the system to just two degrees of freedom.

In an appropriately chosen non-inertial reference frame precessing about J, precessional

motion associated with one of these degrees of freedom can be suppressed, implying that

the relative orientations of the three angular momenta L, S1 and S2 can be specified by

just a single coordinate! We will provide an explicit analytic construction of this procedure

in this and the following subsections.

We begin by introducing two alternative reference frames in which the relative orienta-

tions of the three angular momenta can be specified explicitly. As shown in the left panel

of Fig. 2.1, one may choose the z′-axis to lie along L, the x′-axis such that S1 lies in the

x′z′-plane, and the y′-axis to complete the orthonormal triad. In this frame only three

independent coordinates are needed to describe the relative orientations of the angular

momenta; we choose them to be the angles

cos θ1 = Ŝ1 · L̂ , (2.2)

cos θ2 = Ŝ2 · L̂ , (2.3)

cos ∆Φ =
Ŝ1 × L̂

|Ŝ1 × L̂|
· Ŝ2 × L̂

|Ŝ2 × L̂|
, (2.4)

where the sign of ∆Φ is given by (cf. Fig. 2.1)

sgn ∆Φ = sgn{L · [(S1 × L)× (S2 × L)]}. (2.5)

The relative orientations of the three angular momenta can alternatively be specified

in a frame aligned with the total angular momentum J. For fixed values of L, S1, and S2,

the allowed range for J = |J| is

Jmin ≤ J ≤ Jmax (2.6)
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where

Jmin = max(0, L− S1 − S2, |S1 − S2| − L) , (2.7)

Jmax = L+ S1 + S2 . (2.8)

As shown in the right panel of Fig. 2.1, one can choose the z-axis parallel to J and the

x-axis such that L lies in the xz-plane:

J = J ẑ and L = L sin θLx̂ + L cos θLẑ . (2.9)

The third unit vector ŷ = ẑ × x̂ completes the orthonormal triad. The total spin S =

S1 + S2 = J− L will also lie in the xz-plane:

S = −L sin θLx̂ + (J − L cos θL)ẑ , (2.10)

implying

cos θL =
J2 + L2 − S2

2JL
. (2.11)

We can also define a unit vector

Ŝ⊥ =
(J − L cos θL)x̂ + L sin θLẑ

S
(2.12)

which also lies in the xz-plane but is orthogonal to Ŝ.

While the magnitudes L and J of the orbital and total angular momenta are conserved

on the precession timescale, the same is not true for the total-spin magnitude S, which

oscillates within the range

Smin ≤ S ≤ Smax , (2.13)

where

Smin = max(|J − L|, |S1 − S2|) , (2.14)

Smax = min(J + L, S1 + S2) . (2.15)

S can be used as a generalized coordinate to specify the directions of the angular momenta

J, L, and S; we can see from Eqs. (2.9-2.11) that it is the only coordinate needed to specify

these directions in the xyz-frame.
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Specifying the directions of the individual spins S1 and S2 in the xyz-frame requires

an additional generalized coordinate, which can be chosen to be the angle ϕ′ between Ŝ⊥

in Eq. (2.12) and the projection of S1 into the plane spanned by Ŝ⊥ and ŷ, as shown in

the right panel of Fig. 2.1. This angle corresponds to rotations of S1 and S2 about S and

is given analytically by

cosϕ′ =
Ŝ1 · Ŝ⊥
|Ŝ1 × Ŝ|

. (2.16)

In terms of the two coordinates S and ϕ′ varying on the precession timescale, the three

angular momenta in the xyz-frame are

L =
A1A2

2J
x̂ +

J2 + L2 − S2

2J
ẑ , (2.17)

S1 =
S2 + S2

1 − S2
2

2S
Ŝ +

A3A4

2S
(cosϕ′Ŝ⊥ + sinϕ′ŷ)

=
1

4JS2
[−(S2 + S2

1 − S2
2)A1A2 + (J2 − L2 + S2)A3A4 cosϕ′]x̂

+
1

2S
A3A4 sinϕ′ŷ

+
1

4JS2
[(S2 + S2

1 − S2
2)(J2 − L2 + S2) +A1A2A3A4 cosϕ′]ẑ , (2.18)

S2 =
S2 + S2

2 − S2
1

2S
Ŝ− A3A4

2S
(cosϕ′Ŝ⊥ + sinϕ′ŷ)

= − 1

4JS2
[(S2 + S2

2 − S2
1)A1A2 + (J2 − L2 + S2)A3A4 cosϕ′]x̂

− 1

2S
A3A4 sinϕ′ŷ

+
1

4JS2
[(S2 + S2

2 − S2
1)(J2 − L2 + S2)−A1A2A3A4 cosϕ′]ẑ , (2.19)

where we defined:

A1 ≡ [J2 − (L− S)2]1/2 , A2 ≡ [(L+ S)2 − J2]1/2 , (2.20)

A3 ≡ [S2 − (S1 − S2)2]1/2 , A4 ≡ [(S1 + S2)2 − S2]1/2 . (2.21)

All the Ai’s are real and positive in the ranges specified by Eqs. (2.6) and (2.13).



2.2 Analytic solutions on the precessional time scale 35

0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60

S/M 2

−0.25

−0.20

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15
ξ

Smax

Smin

ξ−

ξ+

ξmax

ξmin

ϕ′ ∼ π

ϕ′ ∈ [0, π]

ϕ′ ∼ 0

q = 0.6
χ1 = 1
χ2 = 1

r = 100M
J = 2.34M2

0.25 0.30 0.35 0.40 0.45 0.50

S/M 2

−π

−π/2

0

π/2

π

ϕ
′

-0.20

-0.20

-0.15

-0.15

-0.10

-0.10

-0.05

-0.05

0.00

0.00

0.05

0.05

0.10

0.10

Figure 2.2: Left: Effective potentials ξ±(S) for binary BHs with q = 0.6, χ1 = χ2 = 1, r =

100M , and J = 2.34M2. Conservation of the projected effective spin ξ constrains the BH spins to
precess along horizontal lines bounded by the effective-potential curves. The horizontal dashed lines
intersecting the effective potentials at Smin and Smax (marked by empty squares) divide BH spin
precession into three different morphological phases distinguished by whether the angle ϕ′ defined
by Eq. (2.16) oscillates about π (top orange region), circulates from −π to π (middle grey region),
or oscillates about 0 (bottom purple region). The effective potentials admit two extrema ξmin and
ξmax (marked by empty triangles) corresponding to the spin-orbit resonances discovered in [463].
Right: Contours of constant ξ(S, ϕ′) given by Eq. (2.23) for the same binary parameters. As BH
binary spins precess along the horizontal dashed lines in the left panel, they move along the curves
in the Sϕ′-plane in the right panel illustrating the three morphological phases.

2.2.2 Effective potentials and resonances

As anticipated in the previous subsection, there is an additional conserved quantity that

can be used to eliminate ϕ′ and thereby specify L, S1, and S2 with the single generalized

coordinate S. This quantity is the projected effective spin [141, 431]

ξ ≡M−2

[
(1 + q) S1 +

(
1 +

1

q

)
S2

]
· L̂ (2.22)

which is a constant of motion of the orbit-averaged spin-precession equations at 2PN order

and is also conserved by radiation reaction at 2.5 PN order. Using Eqs. (2.17-2.19), we can

express ξ as a function of S and ϕ′

ξ(S, ϕ′) =
(J2 − L2 − S2)[S2(1 + q)2 − (S2

1 − S2
2)(1− q2)]− (1− q2)A1A2A3A4 cosϕ′

4qM2S2L
.

(2.23)

Conservation of ξ restricts binary evolution to one-dimensional curves ξ(S, ϕ′) = ξ in the

Sϕ′-plane as shown in the right panel of Fig. 2.2. The simple dependence of ξ(S, ϕ′) on
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ϕ′ motivates us to define two “effective potentials” corresponding to the extreme cases

cosϕ′ = ∓1 for which L, S1 and S2 are all coplanar:

ξ±(S) =
(J2 − L2 − S2)[S2(1 + q)2 − (S2

1 − S2
2)(1− q2)]± (1− q2)A1A2A3A4

4qM2S2L
. (2.24)

At Smin and Smax

ξ−(Smin) = ξ+(Smin) , ξ−(Smax) = ξ+(Smax) , (2.25)

because one of the Ai’s defined in Eqs. (2.20-2.21) vanishes if S = Smin or S = Smax. The

functions ξ±(S) thus form a loop that encloses all allowed values of S and ξ, as shown

in the left panel of Fig. 2.2. BH binaries are constrained to evolve back and forth along

horizontal line segments of constant ξ bounded by the two effective potentials ξ±(S). The

turning points in the evolution of S are given by the solutions of ξ±(S) = ξ, where the

binary meets an effective potential. Once squared, the equation ξ±(S) = ξ reduces to the

following cubic equation in S2:

σ6S
6 + σ4S

4 + σ2S
2 + σ0 = 0 , (2.26)

where

σ6 = q(1 + q)2 , (2.27)

σ4 = (1 + q)2[−2J2q + L2
(
1 + q2

)
+ 2LM2ξq + (1− q)

(
S2

2 − qS2
1

)
] , (2.28)

σ2 = 2(1 + q)2(1− q)[J2(qS2
1 − S2

2)− L2(S2
1 − qS2

2)] + q(1 + q)2(J2 − L2)2

− 2LM2ξq(1 + q)[(1 + q)(J2 − L2) + (1− q)(S2
1 − S2

2)] + 4L2M4ξ2q2 , (2.29)

σ0 = (1− q2)[L2(1− q2)(S2
1 − S2

2)2 − (1 + q)(qS2
1 − S2

2)(J2 − L2)2

+ 2LM2qξ(S2
1 − S2

2)(J2 − L2)] , (2.30)

which admits at most three real solutions for S > 0. The number of solutions in the

range allowed by Eq. (2.13) must be even because the two effective potentials form a

closed loop and the Jordan curve theorem requires the number of intersections between a

continuous closed loop and a line to be even [231] (although these intersections can coincide

at extrema). Since two is the largest even number less than three, the equation ξ±(S) = ξ

will generally have two solutions which we denote by S± (S− ≤ S+).
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The total-spin magnitude S will oscillate between S− and S+ implying that spin pre-

cession is quasi-periodic (this will be shown explicitly in Sec. 2.2.4 below). The motion of

the spins is not fully periodic because in an inertial frame the basis vectors x̂ and ŷ will

generally not precess about J by a rational multiple of π radians in the time it takes S to

complete a full cycle from S− and S+ and back again. The turning points S = S± lie on the

effective potentials, implying from the definition cosϕ′ = ∓1 that all three vectors L, S1,

and S2 are coplanar. The qualitative evolution of ϕ′ is related to the nature of the turning

points S±. This is illustrated in Fig. 2.2, where horizontal lines in the effective-potential

diagram (left panel) correspond to contours of constant ξ(S, ϕ′), computed using Eq. (2.23)

(right panel). Three different cases are possible.

1. Both turning points lie on ξ+:

ξ+(S+) = ξ+(S−) = ξ . (2.31)

ϕ′ oscillates about π never reaching 0 (orange region in Fig. 2.2).

2. One turning point is on ξ− and the other is on ξ+:

ξ±(S−) = ξ∓(S+) = ξ . (2.32)

ϕ′ monotonically circulates from −π to π during each precession cycle (grey region

in Fig. 2.2).

3. Both turning points lie on ξ−:

ξ−(S+) = ξ−(S−) = ξ . (2.33)

ϕ′ oscillates about 0 never reaching π (purple region in Fig. 2.2).

The boundaries between the three regions are given by those values of ξ at which one of

the turning points S± coincides with either Smin or Smax (dashed lines in Fig. 2.2). Note

that ξ(Smin) may be less or greater than ξ(Smax) depending on the values of q, χi, r and

J .

The two turning points are degenerate (S+ = S−) at the extrema ξmin and ξmax of the
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effective potentials. At these extrema the derivatives

dξ±
dS

=
1 + q

2qM2S3L

{
(1− q)(J2 − L2)(S2

1 − S2
2)− (1 + q)S4

± 1− q
A1A2A3A4

[
S8 − (J2 + L2 + S2

1 + S2
2)S6 + (J2 + L2)(S2

1 − S2
2)2S2

+ (S2
1 + S2

2)(J2 − L2)2S2 − (S2
1 − S2

2)2(J2 − L2)2
]}

(2.34)

vanish and S = S− = S+ is constant. Since

lim
S→Smin

dξ+

dS
≥ lim

S→Smin

dξ−
dS

, (2.35)

lim
S→Smax

dξ+

dS
≤ lim

S→Smax

dξ−
dS

, (2.36)

and at most two turning points can exist, it follows that ξ+ admits a single maximum

in [Smin, Smax] and ξ− admits a single minimum in [Smin, Smax]. The effective potentials

therefore have exactly two distinct extrema for each value of the constants J , r, q, χ1 and

χ2. As clarified below, these special configurations correspond to the spin-orbit resonances

discovered by other means in [463].

The equal-mass limit q → 1 corresponds to ξ+(S) = ξ−(S) [cf. Eq. (2.24)] implying that

S is constant for all values of ξ [note that ξ±(Smin) 6= ξ±(Smax)]. This fact was noted at

least as early as 2008 by Racine [431] and it was recently exploited in numerical-relativity

simulations [334, 329], but the constancy of S is a peculiarity of the equal-mass case and

does not hold for generic binaries. The dynamics of equal-mass binaries will be specifically

targeted in [534].

2.2.3 Morphological classification

Although the evolution of ϕ′ already provides a way to characterize the precessional dy-

namics (Fig. 2.2), a more intuitive understanding can be gained by switching back to the

L-aligned frame illustrated in the left panel of Fig. 2.1. Substituting Eqs. (2.17-2.19) and

(2.23) into Eq. (2.2-2.4), we can express the angles θ1, θ2 and ∆Φ as functions of S, J and
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ξ. This yields the remarkably simple expressions

cos θ1 =
1

2(1− q)S1

[
J2 − L2 − S2

L
− 2qM2ξ

1 + q

]
, (2.37)

cos θ2 =
q

2(1− q)S2

[
−J

2 − L2 − S2

L
+

2M2ξ

1 + q

]
, (2.38)

cos ∆Φ =
cos θ12 − cos θ1 cos θ2

sin θ1 sin θ2
, (2.39)

where the angle θ12 = arccos Ŝ1 · Ŝ2 between the two spins can also be written in terms of

S:

cos θ12 =
S2 − S2

1 − S2
2

2S1S2
. (2.40)

Equations (2.37-2.39) parametrize double-spin binary precession using a single param-

eter S. Some examples of the evolution of these angles over a precessional cycle are given

in Fig. 2.3. The evolution of θ1 and θ2 is monotonic as S evolves between its two turning

points S±; over a full precessional cycle these angles oscillate between two extrema lying on

the effective potentials (dotted curves in Fig. 2.3). The evolution of ∆Φ can be classified

into three morphological phases similar to that of ϕ′:

1. ∆Φ oscillates about 0 (never reaching π) if

∆Φ(S−) = ∆Φ(S+) = 0 ; (2.41)

2. ∆Φ circulates through the full range [−π, π] if

∆Φ(S±) = 0 and ∆Φ(S∓) = π ; (2.42)

3. ∆Φ oscillates about π (never reaching 0) if

∆Φ(S−) = ∆Φ(S+) = π . (2.43)

The evolution of ∆Φ allows us to unambiguously categorize the precessional dynamics

into the three different classes listed above. We refer to these classes as morphologies

because of the different shapes traced out by the BH spins over a precession cycle. These

three possibilities (libration about ∆Φ = 0◦, circulation, and libration about ∆Φ = 180◦)

are shown in the left, center, and right panels of Fig. 2.4. We show some examples of

how the allowed region inside the effective-potential loop is divided between these three

morphologies in Fig. 2.5. BH binaries in the two oscillating morphologies are adjacent to
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Figure 2.3: Analytical solutions given by
Eqs. (2.37-2.39) for the evolution of the angles θ1
(top panel), θ2 (middle panel), and ∆Φ (bottom
panel) during a precession cycle. The evolution
of three binaries with ξ = 0.25 (blue), 0.3 (green)
and 0.35 (red) is shown for q = 0.8, χ1 = 1,
χ2 = 0.8, r = 20M and J = 1.29M2. The evolu-
tion of θ1 and θ2 is monotonic during each half of
a precession cycle and is bounded by the dotted
lines for which cosϕ = ∓1 [these curves can be
found by substituting ξ±(S) for ξ in Eqs. (2.37-
2.39)]. Three classes of solutions are possible and
define the binary morphology: ∆Φ can oscillate
about 0 (ξ = 0.25), circulate (ξ = 0.3) or oscillate
about π (ξ = 0.35). An animated version of this
figure is available online at [200], where precession
solutions are evolved on tRR.

the extrema of the effective potentials (ξmin and ξmax), while circulating binaries (if present)

fill the gap in between. Schnittman’s spin-orbit resonances [463] can be reinterpreted as

the limits of the two oscillating morphologies when the “precessional amplitude” S+ − S−
goes to zero at ξmin and ξmax, much like how circular orbits are the limits of eccentric orbits

as the amplitude of the radial oscillations goes to zero.

According to the criteria listed in Eqs. (2.41-2.43), boundaries between the three mor-

phologies (shown by horizontal dashed lines in Fig. 2.5) occur at values of ξ where cos ∆Φ

given by Eq. (2.39) changes discontinuously at one of the turning points S± along the
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Figure 2.4: The three morphologies of BH binary spin precession. The angular momenta J, L,
and Si are all in the xz–plane at S = S±. In all three panels the binaries have maximal spins,
q = 0.8, L = 0.781M2 (r = 10M), and J = 0.85M2. The left, middle, and right panels correspond
to ξ = −0.025, 0.025 and 0.15, respectively. If the components of Si perpendicular to L are aligned
with each other at both roots S±, ∆Φ librates about 0◦. If they are aligned at one root and anti-
aligned at the other, ∆Φ circulates. If they are anti-aligned at both roots, ∆Φ librates about π. An
animated version of this figure evolving on the radiation-reaction time tRR is available online [200].

effective-potential loop ξ±(S). We know that ∆Φ is either 0 or π along ξ±(S) because

L, S1, and S2 are coplanar when cosϕ′ = ±1 (see Fig. 2.1). A discontinuity can only

occur when the denominator of Eq. (2.39) vanishes, i.e. where one of the spins is either

aligned or anti-aligned with the orbital angular momentum (sin θi = 0). These discontinu-

ities can only happen at the turning points S± because of the monotonic evolution of θi

during each half of the precession cycle, as shown in the top and middle panels of Fig. 2.3.

The four contours cos θi = ±1 (sin θi = 0) are shown by dotted curves in Fig. 2.5; we see

that a boundary between morphologies occurs whenever these curves are tangent to the

effective-potential loop ξ±(S). These boundaries had previously been described as unstable

resonances [463].

The geometrical constraints imposed by Eqs. (2.6) and (2.13) imply that some mor-

phologies may not be allowed for given values of L, J, q, χ1, and χ2. Three qualitatively

different scenarios can occur, exemplified by the three panels of Fig. 2.5:

1. Left panel: BH spins precess in all three of the morphologies listed in Eqs. (2.41-2.43).

Libration about the coplanar configuration ∆Φ = 0 occurs for values of ξ close to

ξmin, libration about the ∆Φ = π configuration is found near ξmax, and ∆Φ circulates

for intermediate values of ξ. Our analysis in [269] was restricted to this case and later
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Figure 2.5: Effective potentials ξ±(S) of Eq. (2.24) for values of L, J , S1, and S2 leading to
three different sets of spin morphologies. The loop formed by the two curves encloses all allowed
configurations for the constants listed in the legends. As in the left panel of Fig. 2.2, empty squares
mark the extrema of S (Smin and Smax), empty triangles mark the extrema of ξ (ξmin and ξmax), and
conservation of ξ restricts the BH spins to precess along horizontal lines between the turning points
S±. BH binary spin precession can be classified into three different morphologies by the behavior
of ∆Φ during a precession cycle: oscillation about 0 (blue region), circulation from −π to π (green
region), or oscillation about π (red region). The dashed boundaries between these morphologies
occur at values of ξ where the dotted curves cos θi = ±1 intersect the effective-potential loop, as
shown by the empty circles. All three morphologies are present if one intersection occurs on ξ+(S)

and a second occurs on ξ−(S) (left panel), oscillation of ∆Φ about 0 is forbidden if two intersections
occur on either ξ+(S) or ξ−(S) (middle panel), and only oscillations about π are allowed if there
are no such intersections (right panel).

expanded in [206] to the general case.

2. Middle panel: ∆Φ oscillates about π for ξ close to both ξmin and ξmax, with circulation

still allowed for intermediate values of ξ.

3. Right panel: ∆Φ oscillates about π for all values ξmin < ξ < ξmax (circulation and

oscillation about 0 are both forbidden).

To distinguish these scenarios, it is useful to examine the values of ∆Φ on the effective-

potential loop at the extrema ξmin and ξmax. Although it is straightforward to evaluate

∆Φ numerically at ξmax, one can gain more intuition by instead evaluating it at Smin. The

value of ∆Φ is the same at these two points since the slope of the effective-potential loop

ξ+(S) connecting them is positive while that of the cos θi = ±1 contours is negative (as

can be seen in Fig. 2.5). The curves therefore cannot be tangent to each other implying

that ∆Φ must remain constant on this portion of the loop. Equation (2.14) requires that

Smin equals the greater of |J − L| and |S1 − S2|; in the former case L and J are aligned,

while in the latter case S1 and S2 are anti-aligned. In either case, the components of S1

and S2 perpendicular to L are anti-aligned (∆Φ = π). This implies that ∆Φ will oscillate
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about π near ξmax for all values of J , L, S1, and S2 (as can be seen in all three panels of

Fig. 2.5).

The values of ∆Φ on the effective-potential loop at ξmin and Smax are also the same

because the segment of the curve connecting them has a positive slope. Equation (2.15)

indicates that Smax equals the lesser of |J + L| and |S1 + S2|; in the former case L and

J are anti-aligned, while in the latter case S1 and S2 are aligned. The former case again

requires the components of S1 and S2 perpendicular to L to be anti-aligned (∆Φ = π) but

now the latter case requires these components to be aligned (∆Φ = 0). For values of J ,

L, S1, and S2 for which this latter case applies, ∆Φ will oscillate about 0 near ξmin and

we have determined that all three morphologies are possible, as shown in the left panel of

Fig. 2.5.

To distinguish the remaining two scenarios (whether or not ∆Φ circulates for inter-

mediate values of ξ), we must examine the intersections of the cos θi = ±1 contours with

the effective-potential loop ξ±(S). There can be either zero or two of such intersections.

If no intersections occur, ∆Φ remains equal to π around the entire loop just as it is at

ξmax and only oscillations about this value are possible, as shown in the right panel of

Fig. 2.5. If there are two intersections, they must happen on the two portions of the loop

with negative slopes (the segment connecting Smin and ξmin and the segment connecting

Smax and ξmax). If both intersections happen on the same segment, ∆Φ switches from π to

0 and back again as one traverses the loop from ξmax to ξmin resulting in the introduction

of a circulating phase before restoring oscillations about π near ξmin, as seen in the middle

panel of Fig. 2.5. If the two intersections happen on different segments, ∆Φ switches to 0

at the first turning point and then to π at the other leading to oscillations about 0 near

ξmin, as seen previously in the left panel of Fig. 2.5.

To summarize, the number of allowed morphologies in the effective-potential diagrams

of Fig. 2.5 depends on the magnitude of the total angular momentum J :

1. All three phases are allowed if

J > S1 + S2 − L . (2.44)

This condition implies Smax = S1 +S2 and hence ∆Φ(ξmin) = 0 (Fig. 2.5, left panel).

2. For lower values of J such that

L− |S1 − S2| < J < S1 + S2 − L , (2.45)

∆Φ will oscillate about π near ξmin and ξmax and circulate from −π to π for in-
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Figure 2.6: The (J, ξ) parameter space for binary BHs with different minimum allowed total angular
momentum Jmin. BH binary spin morphology is shown with different colors, as indicated in the
legend. The extrema ξmin(J) and ξmax(J) of the effective potentials constitute the edges of the
allowed regions and are marked by solid blue (red) curves for ∆Φ = 0 (π). Dashed lines mark the
boundaries between the different morphologies. The parameters q, χ1, χ2 and r are chosen as in
Fig. 2.5, whose panels can be thought of as vertical (constant J) “sections” of this figure (where
we suppress the S dependence). The lowest allowed value of ξ occurs at J = |L − S1 − S2| in
all three panels. Three phases are present for each vertical section with J > |L − S1 − S2|. This
condition may either cover the entire parameter space (left panel) or leave room for additional
regions where vertical sections include two different phases in which ∆Φ oscillates about π and a
circulating phase in between (center panel) or only a single phase where the spins librate about
∆Φ = π (right panel). An animated version of this figure evolving on the radiation-reaction time
tRR is available online [200].

termediate values of ξ (Fig. 2.5, middle panel). The first inequality ensures that

two (anti)aligned configurations (sin θi = 0) can be found, while the second prevents

∆Φ = 0.

3. Finally, for

J < min(S1 + S2 − L,L− |S1 − S2|) , (2.46)

the condition sin θi = 0 cannot be satisfied and ∆Φ must oscillate about π (Fig. 2.5,

right panel).

Whether these conditions can be satisfied is determined by the limits on J given by

Eq. (2.6). In particular, Jmin = L− S1 − S2 is a sufficient but not necessary condition for

all three morphologies to coexist, while Jmin = 0 is a necessary but not sufficient condition

for the single-phase case. The three-phase case was considered in our first Letter [269] and

is the only allowed case at sufficiently large binary separations (L > S1 + S2).

The Jξ-plane shown in Fig. 2.6 shows all binary BH spin configurations for fixed values

of q, χ1, χ2 and r at once. Since J and ξ are constant on the precession time tpre, the
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position of binary BHs in this figure is fixed on this timescale. The effective-potential

diagrams of Fig. 2.5 can be thought of as vertical sections of Fig. 2.6 at fixed J where the

S direction has been expanded. Each panel of Fig. 2.6 refers to a different choice of Jmin

from Eqs. (2.7). ∆Φ can only oscillate about 0 if J > |L− S1 − S2|. From Eq. (2.22), the

limit J = |L− S1 − S2| corresponds to the lowest allowed value of ξ. For separations large

enough that L > S1 + S2, this configuration also corresponds to Jmin in which case ∆Φ

can oscillate about 0 for all allowed values of J (Fig. 2.6, left panel). If L is sufficiently

small to admit values of J such that J < |L − S1 − S2|, a new region of the parameter

space where ∆Φ = 0 is forbidden appears at small J (middle and right panels of Fig. 2.6).

If even lower values J < |S1−S2|−L can be reached (i.e., if Jmin = 0), the leftmost region

of the Jξ-plane does not even allow a circulating phase (right panel of Fig. 2.6).

The center and right panels of Fig. 2.6 reveal that the regions for which ∆Φ oscillates

(shown in blue and red) are very small for L < S1 + S2. This follows from the fact that

these small values of the orbital angular momentum can only be achieved in the PN regime

(r & 10M) for low mass ratios. Oscillation of ∆Φ relies upon coupling between the two

BH spins, and the spin S2 becomes increasingly ineffective at maintaining this coupling as

q → 0 (cf. Sec. 2.4.2 below for more details). Nonetheless, a small region of the parameter

space is always occupied by librating binaries as ξ approaches the resonant values ξmin and

ξmax. For each value of ξ (horizontal sections of Fig. 2.6), one ∆Φ = 0 resonance and one

∆Φ = π resonance occur at the largest (∆Φ = 0) and the lowest (∆Φ = π) allowed values

of J . The effective spin ξ is therefore a good parameter to identify the resonant solutions,

as we pointed out in [208].

2.2.4 Time dependence

Although S fully parametrizes the precessional dynamics, time-dependent expressions may

be useful as well. The BH spins obey the 2PN precession equations [276, 431, 185, 87]

dS1

dt
=

1

2r3

[
(4 + 3q)L− 3qM2ξ

1 + q
L̂ + S2

]
× S1 , (2.47)

dS2

dt
=

1

2r3

[(
4 +

3

q

)
L− 3M2ξ

1 + q
L̂ + S1

]
× S2 , (2.48)

which include the quadrupole-monopole interaction computed in [431]. These equations

are averaged over the binary’s orbital period torb and describe the evolution of the spins on

the precession timescale tpre. Equations (2.47-2.48) imply that the orbit-averaged evolution
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Figure 2.7: Time-dependent solutions for the
total-spin magnitude S (top panel) and the
orbital-angular-momentum phase ΦL (bottom
panel). We set q = 0.7, χ1 = 0.7, χ2 = 0.9,
r = 30M and J = 1.48M2 and integrate
Eq. (2.49) for three values of ξ correspond-
ing to the three different spin morphologies:
∆Φ oscillates about 0 (ξ = 0.17, blue), circu-
lates (ξ = 0.25, green), and oscillates about
π (ξ = 0.34, red). Initial conditions have
been chosen such that S = S− and ΦL = 0

at t = 0. The oscillations in S induce small
wiggles in ΦL on top of a mostly linear drift.
Spin-orbit resonances (horizontal dashed lines,
top panel) correspond to configurations for
which S is constant and can be interpreted
as zero-amplitude limits of generic oscillatory
solutions. The projections of the effective po-
tentials, i.e. parametric curves [τ(ξ)/2, S+(ξ)]

and [τ(ξ), S−(ξ)], are shown with dotted lines.
An animated version of this figure is available
online [200].

of S = |S1 + S2| is given by:

dS

dt
= −3(1− q2)

2q

S1S2

S

(η2M3)3

L5

(
1− ηM2ξ

L

)
sin θ1 sin θ2 sin ∆Φ

= ±3

2
ηM

[
1− ξ

( r
M

)−1/2
]( r

M

)−5/2√
(ξ+ − ξ)(ξ − ξ−) . (2.49)

Integrating Eq. (2.49) yields solutions S(t), and that specifies L, S1, and S2 as functions of

time through substitution into Eqs. (2.17-2.19). Some examples of S(t) for different values

of ξ are shown in the top panel of Fig. 2.7.

These time-dependent solutions confirm the scenario outlined in Sec. 2.2.2, with S os-

cillating between two turning points S− and S+ at which dS/dt = 0. At these turning

points, the three angular momenta are coplanar [from Eq. (2.49), dS/dt = 0 implies either

sin ∆Φ = 0 or sin θi = 0] and the binary BHs lie on the effective potentials (ξ±(S±) = ξ).

The spin-orbit resonances ξmin and ξmax are shown with dashed lines in Fig. 2.7 and cor-

respond to the zero-amplitude limits of the generic oscillatory solutions. From Eq. (2.49),

we can define the precessional period τ as the time needed to complete a full cycle in S,

τ(L, J, ξ) = 2

∫ S+

S−

dS

|dS/dt| . (2.50)
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The precession timescale tpre ∼ (2πM/η)(r/M)5/2 provides an order-of-magnitude estimate

for this exact precessional period. The period τ remains finite at the spin-orbit resonances

ξmin and ξmax in much the same way that the period of a simple harmonic oscillator remains

finite in the limit of small oscillations.

The time evolution of the three angular momenta L, S1 and S2 is fully given by

Eqs. (2.17-2.19) and (2.49) when described in the non-inertial frames of Fig. 2.1. However,

J and L will generally not be confined to a plane in an inertial frame. The direction of J is

fixed on the precession time scale tpre, and hence so is ẑ. The two remaining basis vectors

will precess about the z-axis

dx̂

dt
= Ωzẑ× x̂ = Ωzŷ (2.51)

dŷ

dt
= Ωzẑ× ŷ = −Ωzx̂ . (2.52)

The solution to these two equations gives x̂(t) and ŷ(t) and hence L(t), S1(t), and S2(t)

in an inertial frame from Eqs. (2.17-2.19) and (2.23). The orbital angular momentum L

precesses about J with frequency Ωz given by

Ωz =
J

2

(
η2M3

L2

)3{
1 +

3

2η

(
1− ηM2ξ

L

)
− 3(1 + q)

2qA2
1A

2
2

(
1− ηM2ξ

L

)
(2.53)

× [4(1− q)L2(S2
1 − S2

2)− (1 + q)(J2 − L2 − S2)(J2 − L2 − S2 − 4ηM2Lξ)]

}
.

This equation can be derived by substituting Eqs. (2.47-2.48) and (2.51-2.52) into the time

derivative of Eq. (2.10). For concreteness, let us specify an inertial frame such that L lies

in the xz-plane at S = S−. At the point on a precession cycle specified by the total-spin

magnitude S, the direction of L is specified by the polar angles θL from Eq. (2.11) and the

azimuthal angle

ΦL =





∫ S

S−

Ωz
dS

|dS/dt| for S : S− → S+

α

2
+

∫ S+

S
Ωz

dS

|dS/dt| for S : S+ → S−

(2.54)

where the two cases refer to the first and the second half of the precession cycle, and

α(L, J, ξ) = 2

∫ S+

S−

Ωz
dS

|dS/dt| (2.55)

is the total change in the azimuthal angle ΦL over a full precession cycle. Solutions ΦL(t)
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are shown in the bottom panel of Fig. 2.7. The angle ΦL mainly exhibits a linear drift due

to the leading PN order term in Eqs. (2.47-2.48). Spin-spin couplings are of higher PN

order and cause small wiggles on top of this linear drift. Binaries in spin-orbit resonances

(ξmin and ξmax) precess at a constant rate Ωz with all three vectors L, S1, and S2 jointly

precessing about J. Just as ∆Φ is ill defined if either of the Si is aligned with L (cos θi =

±1), ΦL and thus α are ill defined if L is aligned with J (cos θL = ±1). This occurs for

values of J and ξ for which S− = Smin = |J − L| or S+ = Smax = J + L, corresponding to

some of the transitions between the different classes of the evolution of ϕ′ (dashed lines in

Fig. 2.2).

We stress here that the time-dependent expressions reported in this Section are only

valid on times t ∼ τ � tRR, i.e. when the precessional dynamics approximately decou-

ples from the inspiral. This approximation breaks down at small separations, where the

difference between the three timescales is smaller (cf. Sec. 2.3.3).

2.3 Precession-averaged evolution on the inspiral

timescale

The previous Section focused on spin dynamics on the precessional timescale. We now con-

sider how spin precession evolves as the BHs inspiral due to radiation reaction. Our main

tool is a precession-averaged equation to model the binary inspiral (derived in Sec. 2.3.1

below) that will allow us to overcome numerical limitations of previous analyses [270, 271,

76, 204, 208] and evolve binary BHs inwards from arbitrarily large separations (Sec. 2.3.2).

This improved computational scheme relying on our new multi-scale analysis allows us

to more efficiently “transfer” binary BHs from the large separations where they form as-

trophysically down to the small separations relevant for GW detection. In Sec. 2.3.3 we

compare the results of our precession-averaged evolution against the standard integration

of the merely orbit-averaged spin-precession equations.

2.3.1 Averaging the average

In the usual PN formulation (see e.g. [276]), the timescale hierarchy torb � tpre � tRR is

exploited to average the evolution equations for L, S1, and S2 over the orbital period T .

We already saw above how this orbit averaging can be used to increase the computational

efficiency with which spin precession can be calculated [Eqs. (2.47-2.48) can be integrated

with time steps torb � ∆t � tpre much longer than the orbital timescale]. Radiation
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reaction can be similarly orbit averaged:

〈
dLRR

dt

〉

orb

=
1

T

∫ 2π

0

dLRR

dt

dψ

dψ/dt
, (2.56)

where dLRR/dt is the instantaneous change in the orbital angular momentum due to GW

radiation reaction and ψ is the true anomaly parametrizing the orbital motion. The flux

dLRR/dt depends implicitly on both ψ and the angular momenta L, S1, and S2; the former

dependence can be averaged over since we have analytic solutions to the orbital motion as

function of ψ, while the angular momenta may be held fixed, since they barely evolve over

an orbital period. Spin precession may be calculated on the radiation-reaction timescale

by numerically integrating the coupled system of Ordinary Differential Equations (ODEs)

given by Eqs. (2.47-2.48) and (2.56) with the time step ∆t given above.

We derived analytic solutions to the orbit-averaged spin-precession equations (2.47-

2.48) in Sec. 2.2 that depend on the magnitudes L and J that evolve on the radiation-

reaction timescale tRR. In a similar spirit to the orbit averaging discussed above, we can

use these solutions to precession average the evolution equations for L and J . We define

the precession average of some scalar quantity X to be

〈X〉pre ≡
2

τ

∫ S+

S−

〈X〉orb
dS

|dS/dt| (2.57)

where dS/dt is given as a function of S in Eq. (2.49). We can hold L, J , and ξ fixed on the

right-hand side of this equation because they barely evolve during a precession cycle, much

as we held the vectorial angular momenta fixed in the orbit averaging since they evolve on

the longer timescale tpre � torb.

Since ξ is conserved by radiation reaction at 2.5PN order [141, 431], we need only

to find precession-averaged evolution equations for L and J to evolve our spin-precession

solutions on the radiation-reaction timescale tRR. Since L2 = L · L, dL/dt = L̂ · dLRR/dt

and the precession-averaged evolution of L is given by

〈
dL

dt

〉

pre

=
2

τ

∫ S+

S−

L̂ ·
〈
dLRR

dt

〉

orb

dS

|dS/dt| . (2.58)

We similarly have dJ/dt = Ĵ · dJRR/dt, but since J = L + S1 + S2 and GW emission does

not directly affect the individual spins (dSi,RR/dt = 0), dJRR/dt = dLRR/dt and we have

〈
dJ

dt

〉

pre

=
2

τ

∫ S+

S−

Ĵ ·
〈
dLRR

dt

〉

orb

dS

|dS/dt| . (2.59)
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The orbit-averaged angular momentum flux 〈dLRR/dt〉orb up to 1PN is given by [276]

〈
dLRR

dt

〉

orb

= −32

5

ηL

M

(
M

r

)4
[(

1− 2423 + 588η

336

M

r

)
L̂ +O

(
M

r

)3/2
]
. (2.60)

Note that this expression is parallel to L̂ and independent of S. Substituting this result

into Eq. (2.59) yields

〈
dJ

dt

〉

pre

=
2

τ

∫ S+

S−

L̂ ·
〈
dLRR

dt

〉

orb

cos θL
dS

|dS/dt| , (2.61)

where we used Eq. (2.9), and cos θL is given in Eq. (2.11) as a function of S. Finally,

Eqs. (2.58) and (2.61) together lead to

〈
dJ

dL

〉

pre

=
1

2LJ
(J2 + L2 − 〈S2〉pre) , (2.62)

which reduces the computation of binary BH spin precession on the radiation-reaction

timescale to solving a single ODE! Equation (2.62) is independent of the details of spin

precession (which are encoded in 〈S2〉pre) and is also independent of the PN expansion for

〈dLRR/dt〉orb provided this is parallel to L̂ and independent of S. As shown in Eq. (2.60),

both of these conditions are satisfied at 1PN level but break down at higher PN order. We

address the range of validity of our approach in Sec. 2.3.3, where we also perform extensive

comparisons with full integrations of the conventional orbit-averaged equations.

Examples of solutions to Eq. (2.62) are shown in Fig. 2.8, where J is evolved from

r = 109M to r = 10M . Solutions J(r) are bounded at all separations by the spin-orbit

resonances ξmin and ξmax which extremize the magnitude J for each fixed ξ (cf. Sec. 2.2.3

and Fig. 2.6). We perform ODE integrations using the lsoda algorithm [241] as wrapped

by the python module scipy [262]; integrations of Eq. (2.62) are numerically feasible for

arbitrary values of q < 1, χ1 ≤ 1, χ2 ≤ 1, and arbitrarily large initial separation. Our

numerical code is publicly available, as described in Appendix 2.A.

Our solutions to the spin-precession equations also depend on the direction Ĵ, since this

defines the z-axis in the orthonormal frame of Fig. 2.1. The precession-averaged evolution

of this direction is
〈
dĴ

dt

〉

pre

=
1

J

〈〈
dLRR

dt

〉

orb

− dJ

dt
Ĵ

〉

pre

(2.63)

which is proportional to the precession average of the total angular momentum radiated

perpendicular to Ĵ. Although the vector given by the right-hand side of Eq. (2.63) will
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Figure 2.8: Evolution of the total angular
momentum magnitude J during the inspi-
ral. Three binary configurations are consid-
ered here: ξ = −0.5 (orange), 0 (purple) and
0.5 (green) for q = 0.4, χ1 = 0.9, χ2 = 0.8.
Equation (2.62) is solved for several different
initial conditions (solid lines, sequential colors)
as the separation r and the angular momen-
tum L = η(rM3)1/2 decrease. Solutions are
bounded at all separations by the spin-orbit
resonances (dotted lines) which extremize the
allowed value of J for fixed ξ. Two of the
binaries pictured here cross one of the reso-
nant conditions α = 2πn (empty circles) where
changes in the direction Ĵ are expected. The
inset shows the same evolutions for a wider
separation range.

generally not vanish over a single precession cycle, if the angle α given by Eq. (2.55) above

is not an integer multiple of 2π this vector will precess about Ĵ in an inertial frame. This

implies that Ĵ will precess in a narrow cone in an inertial frame on the radiation-reaction

timescale remaining approximately constant [31, 53]. As shown for some of the binaries

of Fig. 2.8, the condition α = 2πn for integer n is indeed satisfied in generic inspirals at

meaningful separations. Preliminary results indicate that interesting spin dynamics arises

at these newly identified resonances [554]. Here we restrict our attention to the relative

orientations of the three angular momenta as specified by the three angles in Eqs. (2.37-

2.39).

2.3.2 The large-separation limit

We can gain additional physical insight by examining Eq. (2.62) in the large-separation

limit L/M2 →∞. Let us define

κ ≡ J2 − L2

2L
, (2.64)

such that Eq. (2.62) becomes

dκ

dL
= −〈S

2〉pre

2L2
. (2.65)



52 Multi-timescale analysis of black-hole binary spin precession

The right-hand side vanishes fast enough at large separations where S � L, implying that

κ∞ ≡ lim
r/M→∞

κ (2.66)

is constant. This implies that κ provides a more convenient label for precessing binary

BHs at large separations because it asymptotes to a constant while J diverges. At large

separations J evolves as

J =
√
L(2κ+ L) '

√
L (2κ∞ + L) , (2.67)

as illustrated in the inset of Fig. 2.8. From Eq. (2.64) and J = L + S one also obtains

κ∞ = lim
r/M→∞

S · L̂ (2.68)

implying that κ asymptotes to the projection of the total spin onto the orbital angular

momentum. The constant κ∞ can be calculated for a binary at finite separation by inte-

grating dκ/dL all the way to r/M → ∞. This integration can be performed by defining

u = 1/2L such that dκ/du = 〈S2〉pre can be integrated over a compact domain.

The two constants κ∞ and ξ are linear combinations of the asymptotic values of the

inner products Ŝi ·L̂ defined in Eqs. (2.37-2.39) in the large-separation limit. The constancy

of these inner products at large separations is also apparent from Eqs. (2.47-2.48), where

the Si will precess about L when spin-orbit coupling dominates over spin-spin coupling.

From Eqs. (2.22) and (2.68) one finds

cos θ1∞ ≡ lim
r/M→∞

Ŝ1 · L̂ =
−M2ξ + κ∞(1 + q−1)

S1(q−1 − q) , (2.69)

cos θ2∞ ≡ lim
r/M→∞

Ŝ2 · L̂ =
M2ξ − κ∞(1 + q)

S2(q−1 − q) . (2.70)

The terms in Eqs. (2.37-2.39) proportional to S2 become increasingly significant at smaller

separations and induce oscillations in θi on the precession timescale, while the breakdown

of the asymptotic approximation to J(L) given in Eq. (2.67) causes J (and hence θi) to

deviate on the radiation-reaction timescale for binary BHs with different values of ξ, as seen

in Fig. 2.8. The constraints | cos θ1∞| ≤ 1 and | cos θ2∞| ≤ 1 define the physically allowed

values of ξ and κ∞. These parameters, or equivalently θ1∞ and θ2∞, can be used to identify

an entire BH binary inspiral (as far as the relative orientation of the angular momenta is

concerned) without reference to a particular separation or frequency, as typically done in

GW applications [208, 398, 526, 129, 182, 398, 399].
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2.3.3 Efficient binary transfer

Our new precession-averaged equation for dJ/dL (2.62) can be used to efficiently “transfer”

binary BHs from the large separations at which they form astrophysically to the smaller

separations at which the GWs they emit become detectable. This equation can be inte-

grated with a time step tpre � ∆t′ � tRR much longer than the time step torb � ∆t� tpre

on which merely orbit-averaged equations must be integrated. This greater efficiency comes

at the cost of no longer being able to keep track of the precessional phase, in much the

same way that orbit-averaged equations do not explicitly evolve the orbital phase. This

is not a major problem for population-synthesis studies however, because evolution over a

timescale ∆t′ will randomize the precessional phase, as described below. If one needs to

track the precessional phase below a certain separation (such as that corresponding to the

lowest detectable GW frequencies) one can randomly initialize the phase at this separa-

tion and then employ orbit-averaged equations [203]. The following procedure explicitly

outlines how to evolve the spin orientations of a population of binary BHs from large to

small separations.

1. Given a sample of binary BHs specified by values of q, χ1 and χ2, choose a distribution

pi(θ1, θ2,∆Φ) for the angles that describes the spin orientations at an initial separa-

tion ri. This initial distribution is determined by the interactions between BHs and

their astrophysical environment that lead to binary formation (cf. [204, 63, 190, 264]

on stellar-mass BHs and [167, 211, 474, 92, 367] on supermassive BH binaries; see

also Chapters 4 and 5 of this Thesis).

2. Rewrite this initial distribution as a distribution pi(J, ξ) using the relations

S = [S2
1 + S2

2 + 2S1S2(sin θ1 sin θ2 cos ∆Φ + cos θ1 cos θ2)]1/2 , (2.71)

J = [L2 + S2 + 2L(S1 cos θ1 + S2 cos θ2)]1/2 , (2.72)

ξ =
qS1 cos θ1 + S2 cos θ2

ηM2(1 + q)
. (2.73)

3. Evolve each member of the distribution pi(J, ξ) to a smaller separation rf using

Eq. (2.62) for dJ/dL (ξ remains constant). This yields a final distribution pf (J, ξ).

4. For each member of the distribution pf (J, ξ), create a distribution of values of S in

the range S−(J, ξ) ≤ S ≤ S+(J, ξ) weighted by (dS/dt)−1 given by Eq. (2.49). BH

binaries spend less time at values of S where the “velocity” dS/dt is large. This yields

a distribution pf (S, J, ξ).
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5. Convert pf (S, J, ξ) into a distribution of final angles pf (θ1, θ2,∆Φ) using Eqs. (2.37-

2.39) and a randomly chosen sign for ∆Φ.

Examples of this binary transfer are given in Fig. 2.9 for three different initial spin

distributions.

1. Isotropic sample (top panels): Both spin vectors are isotropically distributed (flat

uncorrelated distributions in cos θ1, cos θ2 and ∆Φ).

2. One aligned BH (middle panels): One BH spin (either the spin of the primary or

the spin of the secondary) is aligned within 10◦ of the orbital angular momentum,

while the other spin angle θi has a flat distribution in [0◦, 180◦]; ∆Φ is also flat in

[−180◦, 180◦].

3. Gaussian spikes (bottom panels): θ1 and θ2 have Gaussian distributions peaked at

45◦ and 135◦ with deviations of 10◦; ∆Φ is kept flat in [−180◦, 180◦].

We evolve these distributions from ri = 1000M to rf = 10M and show marginalized

distributions of the three angles θ1, θ2, and ∆Φ at several intermediate separations. An

animated version of this figure can be found online [200]. The isotropic sample remains

isotropic, as found previously using the orbit-averaged equations [92]. A greater fraction

of the binaries in the distribution with one aligned BH undergoes a phase transition from

a circulating to a librating morphology, as described in Sec. 2.4 below and also found in

previous studies with the orbit-averaged equations [204]. If the angles θi initially have

Gaussian distributions, these Gaussians will spread out as the inspiral proceeds.

We use the BH binary inspirals from ri = 1000M to rf = 10M shown in Fig. 2.9

to compare the efficiency of our new precession-averaged approach to the integration of

the standard – i.e., orbit-averaged – PN equations. In the standard approach, one must

numerically integrate ten coupled ODEs specifying the directions of the three angular

momenta and the magnitude of the orbital velocity; we use the PN equations quoted by

[270, 76]. We implement the same 2PN spin-precession equations2 given by Eqs. (2.47-2.48)

but include radiation reaction up to 3.5PN order, as in Eq. (2.6) of [270]. Integrations are

performed using the same algorithm specified above [262, 241, 203]. The agreement between

the two approaches is seen to be excellent up to r ∼ 50M , and minor discrepancies emerge

at smaller separations.

Two approximations made in the precession-averaged approach may explain these dis-

crepancies. While ξ is held constant throughout the inspiral in the precession-averaged
2Higher-order PN corrections to the spin-precession equations have been computed in [347, 94, 93];

their implementation is left to future work.
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Figure 2.9: Precession-averaged BH binary inspirals as described in Sec. 2.3.3 (purple/darker)
compared to numerical integration of the orbit-averaged PN equations [270, 76] (orange/lighter).
Marginalized distributions of the spin angles θ1, θ2, and |∆Φ| (rows) are shown at several separa-
tions along the inspirals [columns: ri = 1000M , 500M, 100M, 50M , and 10M ]. The three initial
spin distributions are isotropic (top panels), one aligned BH (middle panels), and Gaussian spikes
(bottom panels) as described in Sec. 2.3.3. The two approaches are in good agreement except for
minor deviations in the distribution of ∆Φ at r ∼ 10M . We take q = 0.7, χ1 = 0.8 and χ2 = 0.4

for all binary BHs. An animated version of this figure is available online [200].
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approach (consistent with 2.5PN radiation reaction), conservation of ξ is not enforced in

the orbit-averaged approach, which employs 3.5 PN radiation reaction. The largest devia-

tions ∆ξ in the latter approach are of the order 10−10; ξ is effectively constant in the PN

regime (r & 10M). Numerical-relativity simulations may be used to test conservation of

ξ at smaller separations. We have verified that additional PN corrections in Eq. (2.60),

implemented in our orbit-average code up to 3.5PN, introduce very mild corrections to the

evolution of J : the largest variations observed in our evolutions are of order ∆J ∼ 10−2.

The second and less reliable approximation involves the timescale hierarchy itself. The

precession time tpre ∼ (r/M)5/2 and radiation-reaction time tRR ∼ (r/M)4 become more

comparable at lower separations, reducing the effectiveness of our quasi-adiabatic approach.

The precession-averaging procedure defined in Eq. (2.57) assumes that quantities like L

and J varying on tRR remain constant over a full precession cycle τ , but this assumption

will break down as the timescale hierarchy becomes invalid.

Figure 2.9 shows that differences between the two approaches are most pronounced in

pr(∆Φ). This variable is the most sensitive to the precessional dynamics; predictions for

the angles θ1 and θ2 remain reasonably accurate even at r ∼ 10M . The differences seem to

average out for wider distributions (top panels) but become more evident for more compact

initial distributions (bottom panels). Averaging over the precessional dynamics prevents us

from tracking the precession phase, implying that the two approaches will make different

predictions for quantities (like S and ∆Φ) varying on the precession timescale when the

initial separation is sufficiently small that memory of the initial phases has not been fully

forgotten. Predictions of physical quantities varying on the radiation-reaction timescale

(like J and the precession morphology) will remain robust down to small separations, as

explored in Secs. 2.4.2 and 2.4.3 below.

We compare the computational efficiency of the precession- and orbit-averaged ap-

proaches in Fig. 2.10. Isotropic samples of 100 binary BHs are transferred from large

initial separations ri to a final separation rf = 10M . The CPU time required by the two

approaches scales differently with the initial separation. The orbit-averaged (OA) equa-

tions must be integrated with a time step shorter than the precession time, implying that

the total number of time steps scales as

NOA ∝
∫ ri

rf

dr

ṙGW tpre
∼ r3/2

i , (2.74)

where ṙGW ∝ r−3 as given by the quadrupole formula [415, 414]. The ratio tRR/tpre ∝
r3/2 increases dramatically at large separations leading to a corresponding increase in the

computational cost. In the precession-averaged (PA) approach, the integration of dJ/dL
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Figure 2.10: CPU time needed to
evolve BH binaries from an ini-
tial separation ri to a final sep-
aration rf = 10M using our
new precession-averaged approach
(purple circles) and the standard
orbit-averaged approach (orange
triangles). Each CPU time is av-
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cos θ2 and ∆Φ). Dashed lines show
the expected scalings: t ∝ r3/2i for
the orbit-averaged approach and
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single core of a 2013 Intel i5-3470
3.20GHz CPU.

in Eq. (2.62) only requires time steps proportional to L, hence

NPA ∝
∫ Li

Lf

dL

L
∼ log(Li) ∝ log(ri) . (2.75)

The precession-averaged approach is very efficient at large separations because the solutions

to Eq. (2.62) become very smooth in this limit as seen from Eq. (2.67) and Fig. 2.8.

Precession-averaged inspirals may even be computed from infinite separations through a

change of variables to u ≡ (2L)−1. The integrator spends most of the computational time

at small separations, where spin effects – notably the numerical evaluation of S± – need

to be tracked with high accuracy to avoid violations of the constraints (2.6). As shown

in Fig. 2.10, these expected scalings are well reproduced by both of our integrators (cf.

Sec. 2.A).

In addition to the time needed to integrate Eq. (2.62), the precession-averaged approach

must generate a final distribution for S (step 4 above), implying that the computational

cost does not go to zero as ri → rf . While this step makes the calculation of a single

BH binary inspiral non-deterministic and more expensive, precession averaging effectively

reduces the dimensionality of the BH binary population during the inspiral. If the n

members of this final distribution for S are regarded as distinct binaries, the total number

of integrations required to produce a fixed number of binary BHs at rf is reduced by a

factor of n in the precession-averaged approach compared to the orbit-averaged approach.
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Figure 2.11: Precessional solutions ∆Φ(S) of Eqs. (2.37-2.39) as J and L evolve during inspirals
according to Eq. (2.62). These solutions are colored according to the separation r/M as shown in the
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Binaries in the left (right) panel transition from the circulating morphology to the morphology in
which ∆Φ librates about 0 (π) at the transition radius rtr ' 152M (18.9M); separations bracketing
the transition radius are marked with dashed lines. Parameters are set to the values indicated in
the legends. An animated version of this figure is available online [200].

2.4 Morphological phase transitions

As BH binaries inspiral on the radiation-reaction timescale, they can transition between

the spin-precession morphologies described in Sec. 2.2.3. Binary BH spins predominantly

circulate at large separations but increasingly transition into one of the two librating mor-

phologies as spin-spin coupling becomes important (Sec. 2.4.1). The probability of en-

countering one of these morphological phase transitions during the inspiral depends on

the asymmetry between the masses and the spin magnitudes of the two BHs (Sec. 2.4.2).

Asymmetric binaries are more likely to circulate, while binary BHs with comparable mass

and spin ratios populate the librating morphologies. BH binary spin morphologies at fi-

nite separations can be determined from their asymptotic spin orientations cos θi∞ (or

equivalently ξ and κ∞) as discussed in Sec. 2.4.3.

2.4.1 Phenomenology of phase transitions

As extensively discussed in Sec. 2.2.3, BH binary spin precession can be unambiguously

classified into one of the three morphologies depending on the values of q, χ1, χ2, ξ, r

(or L), and J . While the first four of these parameters remain constant throughout the

inspiral, r and J evolve on the radiation-reaction timescale according to Eq. (2.62) and L =

η(rM3)1/2. Binaries may therefore change their precessional morphology while evolving

towards merger. The boundaries between different morphologies (cf. Sec. 2.2.3) are set

by the (anti)alignment condition sin θi = 0; the binary morphology changes whenever
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radiation reaction brings J and L to values that satisfy this condition (which can only

occur on the effective-potential loop ξ±(S), as seen in Fig. 2.5). Figure 2.11 shows two

examples of these phase transitions. At the radii rtr where phase transitions occur, ∆Φ

changes discontinuously either at S− (left panel) or S+ (right panel), causing the solutions

∆Φ(S) of Eqs. (2.37-2.39) to transition between the qualitatively different shapes seen in

the bottom panel of Fig. 2.3. The binary BHs in the left (right) panel evolve from the

circulating morphology to the morphology in which ∆Φ oscillates about 0 (π).

A more complete phenomenology of phase transitions is illustrated in Fig. 2.12. The

evolution of cos θ1 and cos θ2 along the inspiral is shown for a variety of initial conditions

cos θi∞. At each separation r, the angles θi vary on the precession time within a finite range

specified by the conditions ξ = ξ±(S) (cf. Fig. 2.3). These envelopes vary on the radiation-

reaction time as J evolves according to Eq. (2.62); their width shrinks to a zero as r/M →
∞ according to Eqs. (2.69-2.70), and tends to thicken at smaller separations because of

the increasing importance of terms proportional to S2 in Eqs. (2.37-2.39). Horizontal bars

above each panel track the binary morphologies, which we label as C, L0, and Lπ for

circulation, libration about ∆Φ = 0, and libration about ∆Φ = π. These morphologies

change whenever one of the allowed ranges reach the boundaries cos θi = ±1.

All binaries circulate at large separation because the angles cos θ1 and cos θ2 are ap-

proximately constant (Sec. 2.3.2) and ∆Φ from Eq. (2.39) is monotonic in S, thus satisfying

Eq. (2.42). Some binaries (leftmost panels of Fig. 2.12) remain in the circulating morphol-

ogy until the PN approximation breaks down (r = 10M). Other binaries undergo a single

transition into a librating phase (middle columns of Fig. 2.12); ∆Φ will oscillate about 0

(π) following this transition if the alignment condition sin θi = 0 is satisfied at S− (S+).

Since cos θ1 (cos θ2) decreases (increases) monotonically with S [cf. Eqs. (2.37-2.39)], the

above conditions can be summarized as

cos θ1 = 1 or cos θ2 = −1 : C −→ L0 , (2.76)

cos θ1 = −1 or cos θ2 = 1 : C −→ Lπ . (2.77)

These phase transitions were seen in previous (orbit-averaged) simulations [463] and re-

ferred to as spin locking, because the BH spins locked into libration about the spin-orbit

resonances at ξmin and ξmax. As the the librating binaries continue to inspiral, some may

transition back into the circulating phase, as pictured in the rightmost column of Fig. 2.12.
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Figure 2.12: Evolution of the spin morphology and the allowed ranges of the spin angles θi over
a precession cycle as functions of the binary separation r. Each panel shows the range of cos θ1
(purple/darker) and cos θ2 (orange/lighter) for different initial conditions cos θi∞. The current
morphology is tracked by the horizontal bar above each panel. Morphologies are indicated as C
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The morphology changes whenever cos θi = ±1 (vertical dashed lines). BH binaries in the leftmost
column do not undergo any transitions in the PN regime; one transition into a librating morphology
occurs for binary BHs in the center columns; two transitions (circulating to librating, librating to
circulating) occur for binary BHs in the rightmost column. The mass ratio and spin magnitudes
are q = 0.95, χ1 = 0.5, and χ2 = 1 in all panels.
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The conditions for this second transition are

cos θ1 = −1 or cos θ2 = 1 : L0 −→ C , (2.78)

cos θ1 = 1 or cos θ2 = −1 : Lπ −→ C . (2.79)

As discussed further in Sec. 2.4.2 below, this second phase transition occurs in the PN

regime (r & 10M) only in some corners of the parameter space (q . 1 and χ1 6= χ2). We

have not found any additional transitions in the PN regime, but multiple transitions may

occur at the smaller separations accessible to numerical-relativity simulations.

2.4.2 Dependence on mass and spin asymmetry

The asymmetry in the masses mi and spin magnitudes χi determines which of the eight

scenarios depicted in Fig. 2.12 a binary will experience during its inspiral. The alignment

conditions sin θ1 = 0 and sin θ2 = 0 tend to be satisfied at similar values of ξ for symmetric

binaries (q → 1 and χ1 ' χ2), shrinking the circulating (green) region in the left panel of

Fig. 2.5 and enhancing the fraction of librating binaries. This point is illustrated in Fig. 2.13

below, which shows the fraction of isotropic binaries in each of the three morphologies as

functions of the binary separation. Each panel is computed by averaging over a sample

of binaries isotropically distributed at large separations (flat distributions in cos θ1∞ and

cos θ2∞); all binaries in each sample share the same mass ratio and spin magnitudes. As

the separation decreases, binaries transition from the circulating to librating morphologies.

The fraction of binaries experiencing these transitions strongly depends on the mass ratio

q. If the mass ratio is low (q . 0.6), most binaries remain circulating down to very small

separations r ∼ 10M . Comparable-mass binaries (q & 0.6) are more likely to undergo a

phase transition in the PN regime. The typical transition radius rtr at which these phase

transitions occur is also very sensitive to the mass ratio [463, 270]; transitions occur in

the very late inspiral for low mass ratios while rtr can be as large as 105M for q ' 0.99.

Very long evolutions are needed to capture all of the morphological transitions for nearly

equal-mass binaries; such long inspirals are prohibitively expensive in the standard orbit-

averaged approach (as seen in Fig. 2.10) but can easily be calculated within our new

precession-averaged formalism.

A more extensive exploration of how BH binary spin morphology depends on the binary

parameters is shown in Fig. 2.14 and Table 2.1. Isotropic distributions at r/M = ∞ are

evolved down to r = 10M , where their morphologies are determined; as shown in the

upper panel of Fig. 2.9, these initially isotropic distributions remain isotropic at smaller
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Figure 2.13: The fraction f of isotropic binaries in each of the three precessional morphologies as
functions of the binary separation. Each panel refers to different values of q, χ1 and χ2 as indicated
in the legends. The fraction of binaries in which ∆Φ circulates (green, middle region of each panel),
oscillates about 0 (blue, bottom region of each panel), or oscillates about π (red, top region of each
panel) is shown as the binary orbit shrinks, with dashed lines separating the different morphologies.
The fraction of binaries in librating morphologies generally grows during the inspiral; this growth
is stronger as q → 1 but may stall for nearly equal masses and χ1 6= χ2, as seen in panels in the
right column.
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Figure 2.14: The fraction f of isotropic binary BHs for which ∆Φ circulates (green, middle region),
oscillates about 0 (blue, bottom region), or oscillates about π (red, top region) at a binary separation
r = 10M as functions of the mass ratio q. Dashed lines separate the different morphologies. Each
panel corresponds to a different value of χ1 (columns) and χ2 (rows). The fraction of binary BHs in
librating morphologies increases as the mass asymmetry decreases (q → 1). For nearly equal masses
(q & 0.9), asymmetry in the spin magnitudes increases the fraction of binaries in the circulating
morphology as can be seen by comparing panels on and off of the diagonal. Some data used in this
plot are listed in Table 2.1. The website [200] contains an animated version of this figure, where
the panels are shown at decreasing binary separations.

separations. The fraction of binaries in each morphology at r = 10M is shown as functions

of q for a grid of values of the spin magnitudes χ1 and χ2. As was already seen in Fig. 2.13,

the likelihood of phase transitions depends on the mass ratio q; more librating binaries are

found for comparable-mass binary BHs at any fixed separation.

Spin magnitudes also affect the fraction of binary BHs in each morphology. As one
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0.95 0.57 0.21 0.22
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0.8 0.38 0.52 0.10
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0.4 0.03 0.96 0.01
0.6 0.10 0.87 0.03
0.8 0.32 0.58 0.10
0.95 0.42 0.40 0.17

q L0 C L⇡
0.05 0.01 0.99 0.00
0.2 0.01 0.98 0.01
0.4 0.05 0.94 0.01
0.6 0.15 0.81 0.03
0.8 0.36 0.54 0.10
0.95 0.46 0.32 0.22

q L0 C L⇡
0.05 0.01 0.98 0.01
0.2 0.02 0.97 0.01
0.4 0.06 0.92 0.02
0.6 0.18 0.77 0.04
0.8 0.41 0.49 0.09
0.95 0.58 0.17 0.25

q L0 C L⇡
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0.2 0.04 0.95 0.01
0.4 0.08 0.88 0.04
0.6 0.21 0.72 0.07
0.8 0.42 0.46 0.12
0.95 0.59 0.16 0.24

TABLE I. Fractions of isotropic BBHs in each of the three precessional morphologies (L0: �� oscillates about 0, C: ��
circulates, L⇡: �� oscillates about ⇡) at r = 10M as shown in Fig. 13. For a grid of values in �1 (columns), �2 (rows) and,
q (first column in each mini-table), we report the fraction of binaries in each morphology. The sum of the three fractions may
di↵er from unity because of rounding errors.

Table 2.1: Fractions of isotropic binary BHs in each of the three precessional morphologies (L0:
∆Φ oscillates about 0, C: ∆Φ circulates, Lπ: ∆Φ oscillates about π) at r = 10M as shown in
Fig. 2.14. For a grid of values in χ1 (columns), χ2 (rows) and, q (first column in each mini-table),
we report the fraction of binaries in each morphology. The sum of the three fractions may differ
from unity because of rounding errors.

moves along the diagonal of Fig. 2.14 in the direction of increasing χ1 = χ2, a slightly

higher fraction of binaries are found in librating morphologies because of increased spin-

spin coupling [463]. The corner of the parameter space characterized by mass symmetry

and spin asymmetry (q → 1 and χ1 6= χ2) presents a peculiar phenomenology, as seen in

the right panels of Fig. 2.13, where the fraction of binaries in each morphology approaches

constant values for r . 1000M . This behavior can be explained by recognizing that in this

region of parameter space binaries may undergo two morphological transitions in the PN

regime, as seen in the rightmost panels of Fig. 2.12. The number of binaries experiencing

their first phase transition from circulation to libration is nearly canceled by the number of
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Figure 2.15: Spin morphologies at rf = 10M as functions of the asymptotic values of the spin
angles θi∞. The mass ratio q and spin magnitudes χi for each panel are indicated in the legends.
Evolving BH binaries along the four lines cos θi = ±1 at rf out to r/M → ∞ using our new
precession-averaged approach yields the dashed curves separating the different final morphologies:
∆Φ oscillates about 0 (blue), oscillates about π (red), circulates without ever having experienced a
phase transition (plain green), or circulates after having experienced a phase transition to libration
and then a second phase transition back to circulation (hatched green). The morphology within
each region defined by the dashed boundaries is determined by which of the conditions cos θi = ±1

these boundaries satisfy, as described in Sec. 2.4.3. The points show the locations of binaries in the
cos θ1 − cos θ2 plane at rf and are colored by their morphology at that separation [∆Φ oscillates
about 0 (blue circles), oscillates about π (green squares), or circulates (red triangles)]. Because
morphology depends on ∆Φ in addition to θ1 and θ2 at finite separation, the projection onto
the cos θ1 − cos θ2 plane can lead points of different morphologies to occur at the same positions,
particularly for comparable-mass binaries q ' 1 where the θi’s oscillate with greater amplitude.
The website [200] contains an animated version of this figure in which rf evolves.

binaries undergoing a second phase transition back to the circulating morphology, leading

to almost constant fractions of binaries in each morphology. This effect also accounts for

the kinks in the morphology fractions at q ' 0.9 in the off-diagonal (χ1 6= χ2) panels of

Fig. 2.14.

2.4.3 Predicting spin morphology at small separations

We described in great detail in Sec. 2.2.3 how to determine the BH binary spin morphol-

ogy from the binary parameters at a given separation, but astrophysical binary BHs are

often formed at much larger separations than where we are interested in observing them.
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Although BH binaries can be efficiently evolved to smaller separations using the precession-

averaged approach described in Sec. 2.3.3, we can in fact predict the spin morphology at

a final separation rf based solely upon the asymptotic values of θ1∞ and θ2∞ [or equiva-

lently ξ and κ∞ according to Eqs. (2.69-2.70)] without the need to integrate dJ/dL down

to rf . This can be achieved by recognizing that the curves in the cos θ1∞ − cos θ2∞ plane

separating the final morphologies at rf correspond to binary BHs experiencing phase tran-

sitions at rf , i.e. binaries for which cos θi(rf ) = ±1. These binaries constitute the four

borders of the cos θ1 − cos θ2 plane at rf ; using our expression for dJ/dL in Eq. (2.62) to

integrate binary BHs along these borders out to r/M → ∞, we obtain four curves in the

cos θ1∞ − cos θ2∞ plane, as seen in Fig. 2.15. These curves define regions I and II in the

cos θ1∞ − cos θ2∞ plane with the following boundaries:

I. cos θ1∞ = +1, cos θ2∞ = −1,

cos θ1(rf ) = +1, cos θ2(rf ) = −1;

II. cos θ1∞ = −1, cos θ2∞ = +1,

cos θ1(rf ) = −1, cos θ2(rf ) = +1.

The final morphology at rf for each point in the cos θ1∞− cos θ2∞ plane is determined

by whether or not that point is contained in the two regions:

• Outside both region I and region II: ∆Φ circulates (no phase transitions, plain green

in Fig. 2.15).

• Inside region I but not region II: ∆Φ oscillates about 0 (one phase transition, blue

in Fig. 2.15).

• Inside region II but not region I: ∆Φ oscillates about π (one phase transition, red in

Fig. 2.15).

• Inside both region I and region II: ∆Φ circulates (two phase transitions, hatched

green in Fig. 2.15).

These conditions on the final morphology are consistent with the criteria for phase tran-

sitions given in Eqs. (2.76-2.77) and (2.78-2.79). Once the boundaries of regions I and

II have been established we can determine the final morphology of any BH binary from

its initial conditions at astrophysically large separations without further need to integrate

dJ/dL down to rf . A binary with spin orientations lying in the green, red or blue region

of Fig. 2.15 at large separations will be found with ∆Φ circulating, oscillating about 0 or

oscillating about π at the end of the inspiral.
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Measuring BH binary spin morphology directly offers several advantages over explicitly

measuring the spin angles θ1, θ2 and ∆Φ. Spin morphology encodes information about

BH binary spin precession but is more robust than the spin angles in that it only varies

on the radiation-reaction time (being a function of L, J , and ξ). Measurement of only

the two angles θ1 and θ2 at small separations constrains neither the morphology at small

separations nor the initial conditions at large separations, as can be seen from the scatter

points in Fig. 2.15, which show an isotropic sample of binaries at rf . Points corresponding

to the circulating and both librating morphologies lie right on top of each other in this

plot, evidence of both the importance of the third angle ∆Φ and the large oscillations in

θi at small separations seen in Fig. 2.12. By contrast, spin morphology is a direct memory

of a BH binary’s initial position in the cos θ1∞ − cos θ2∞ plane, as seen in Fig. 2.15.

Astrophysical scenarios of BH binary formation can favor some regions in this plane over

others [204], implying that GW observations of spin morphology can constrain BH binary

formation [208].

2.5 Towards GW astronomy

BH binaries evolve on three distinct timescales: the orbital time torb, the precession time

tpre, and the radiation-reaction time tRR. In the PN regime (r � rg), these timescales obey

a strict hierarchy: torb � tpre � tRR. All of the parameters needed to describe binary BHs

evolve on a distinct timescale: the vectorial binary separation r on torb, the angular-

momentum directions L̂ and Ŝi on tpre, and the orbital-angular-momentum magnitude L

and total angular momentum J on tRR. The mass ratio q and spin magnitudes Si remain

constant throughout the inspiral. We exploited this timescale hierarchy and conservation of

the projected effective spin ξ [141, 431] throughout the inspiral to solve the orbit-averaged

2PN equations of BH spin precession given by Eq. (2.47-2.48). The solutions given by

Eq. (2.37-2.39) for the three angles θ1, θ2, and ∆Φ that specify the relative orientations

of L, S1, and S2 are remarkably simple and are given parametrically in terms of a single

variable, the total-spin magnitude S, that evolves on tpre.

These solutions fully determine how the relative orientations of the three angular mo-

menta evolve over a precession cycle as S oscillates back and forth between extrema S±.

We find that spin precession can be classified into three distinct morphologies depending

on whether ∆Φ oscillates about 0, oscillates about π, or circulates through the full range

[−π,+π] over a precession cycle. For binary BHs with a given mass ratio q and spin mag-

nitudes Si, the precessional morphology at a binary separation r is determined by J and

ξ, implying that the morphology only evolves on the radiation-reaction time tRR. Spin-
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orbit coupling dominates over the higher-PN-order spin-spin coupling at large separations

implying that all binary BHs formed at such large separations begin in the circulating

morphology. Since ξ is constant to high accuracy throughout the inspiral, evolving our

solutions (2.37-2.39) and their associated morphology to smaller separations (lower values

of L) only requires an expression for dJ/dL due to radiation reaction. All previous studies

of radiation reaction have relied on orbit-averaged expressions for dLRR/dt that must be

integrated numerically with time steps ∆t . tpre. Our new solutions (2.37-2.39) allow us to

precession average these expressions to derive Eq. (2.62) for dJ/dL that can be integrated

with a time step tpre � ∆t′ . tRR. The computational cost of calculating inspirals from

an initial separation ri in our new precession-averaged approach scales as log ri, leading to

vast savings over the traditionally orbit-averaged approach (which scales as r3/2
i ) for the

large initial separations relevant to astrophysical BH binary formation.

Using our new expression for dJ/dL, we can evolve our initially circulating binary BHs

to smaller separations, where they may experience a phase transition to one of the two

librating morphologies. Some of these librating binary BHs may subsequently undergo

a second phase transition back to circulation before reaching a binary separation r =

10M below which the PN approximation itself begins to break down. Our precession-

averaged calculation of the inspiral agrees well with the orbit-averaged approach down to

nearly this separation where small discrepancies appear because of dynamically generated

inhomogeneity in the precessional phase as the timescale hierarchy fails. Unlike the angles

θ1, θ2 and ∆Φ, that vary rapidly on the precession time at small separations, the precession

morphology at small separations is directly determined by the asymptotic values θi∞ of

these angles at large separations, providing a memory of BH binary formation potentially

accessible to GW detectors.

Although this work focuses on BH binary spin precession, our analysis also facilitates

the calculation and interpretation of GW signals. Fast templates suitable for GW detection

and parameter estimation are being developed using our new precessional solutions and

precession-averaged equation for radiation reaction [127]. The insights underpinning our

approach (most notably the use of a hierarchical coordinate system that better respects

the separation of timescales intrinsic in the binary dynamics) are also helping us to assess

whether the precessional morphology of binary BHs in spin-orbit resonances can be reliably

identified in the context of full GW parameter estimation [208, 514]. We find that BH

binary spin orientations can be significantly constrained at realistic signal-to-noise ratios,

suggesting that observations of BH binary spin precession as described in this work may

soon provide a new window into the astrophysical origins of BH binaries and GR itself.
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Appendix

2.A precession: an open-source python module

The numerical code developed to obtain the results presented in this Chapter has been

publicly released [203]. The code, called precession, is distributed as an open-source

python module. In a nutshell, precession performs BH binary inspirals tracking their

precessional dynamics using both standard orbit-averaged and our new precession-averaged

approaches. It also conveniently implements fitting formulae obtained from numerical-

relativity simulations to predict mass, spin and recoil of BH remnants following binary

mergers (cf. Sec. 4.2.1). precession combines the flexibility of the high-level programming

language python with existing scientific libraries written in C and Fortran to bypass

speed bottlenecks.

In this Appendix we give a general overview of the code. Sec. 2.A.1 describes code

installation; Sec. 2.A.2 presents a minimal working example; Sec. 2.A.3 provides details on

documentation and source distribution.

2.A.1 Installation

precession is a python [522] module and is part of the python Package Index:

pypi.python.org/pypi/precession.

The code can be installed in a single line through the package management system pip:

pip install precession

Useful options to the command above include --user for users without root privileges

and --upgrade to update a pre-existing installation. The scientific libraries numpy [521],

scipy [262], matplotlib [251] and parmap [395] are specified as prerequisites and, if not

present, will be installed/updated together with precession. precession has been tested

on python 2.7 distributions; porting to python 3 is under development.

Once precession has been installed, it has to be imported typing

import precession

from within a python console or script. The main module precession contains ∼ 80

functions for a total of ∼ 1700 code lines. The submodule precession.test consists

https://pypi.python.org/pypi/precession
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of ∼ 300 code lines divided in 7 examples routines. If needed, this has to be imported

separately typing

import precession.test

2.A.2 A first working example

A minimal working example of some features of precession is shown in Fig. 2.A.1. We

encourage the reader to execute this code snippet typing

precession.test.minimal()

We initialize a BH binary at the extremely large separation of 10 billion gravitational

radii (r = 1010M) and evolve it down to small separations (r = 10M) where the PN

approximation breaks down. The integration is performed using precession-averaged PN

equations of motion, as described in Sec. 2.3. The evolution of the BH spins along such

an enormous separation range is computed in less than 6 seconds using a single core of a

standard off-the-shelf desktop machine.

2.A.3 Documentation and source distribution

precession is currently in its v1.0 release. The code is under active development and

additional features will be added regularly. Various parts of the code were used in the

following published results [205, 206, 211, 269, 209, 514? ], as well as in Chapters 2, 3, 4,

5 and 6 of this Thesis.

The source code is distributed under git version-control system at

github.com/dgerosa/precession (code),

and it is released under the CC BY 4.0 license. Extensive code documentation can be

generated automatically in html format from the python’s docstrings using the text pro-

cessor pdoc [197]. Documentation is regularly uploaded to a dedicated branch of the git

repository and it is available at

dgerosa.github.io/precession (documentation).

The same information can also be accessed using python’s built-in help system, e.g.

help(precession.function). Additional resources and results are available at

davidegerosa.com/precession.

Ref. [203] provides a complete user guide of the code, where each function is carefully

described and extensive example routines are provided.

https://github.com/dgerosa/precession
https://creativecommons.org/licenses/by/4.0/
https://dgerosa.github.io/precession
http://davidegerosa.com/precession
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Source code:

t0=time.time()

q=0.75 # Mass ratio

chi1=0.5 # Primary’s spin magnitude

chi2=0.95 # Secondary’s spin magnitude

print "Take a BH binary with q=%.2f, chi1=%.2f and

chi2=%.2f" %(q,chi1,chi2)↪→
sep=numpy.logspace(10,1,10) # Output separations

t1= numpy.pi/3. # Spin orientations at r_vals[0]

t2= 2.*numpy.pi/3.

dp= numpy.pi/4.

M,m1,m2,S1,S2=precession.get_fixed(q,chi1,chi2)

t1v,t2v,dpv=precession.evolve_angles(t1,t2,dp,sep,q,S1,S2)

print "Perform BH binary inspiral"

print "log10(r/M) \t theta1 \t theta2 \t deltaphi"

for r,t1,t2,dp in zip(numpy.log10(sep),t1v,t2v,dpv):

print "%.0f \t\t %.3f \t\t %.3f \t\t %.3f" %(r,t1,t2,dp)

t=time.time()-t0

print "Executed in %.3fs" %t

Screen output:

Take a BH binary with q=0.75, chi1=0.50 and chi2=0.95

Perform BH binary inspiral

log10(r/M) theta1 theta2 deltaphi

10 1.047 2.094 -2.330

9 1.047 2.094 1.811

8 1.047 2.095 2.341

7 1.046 2.095 2.827

6 1.050 2.093 0.351

5 1.055 2.089 -0.211

4 1.046 2.095 -1.588

3 0.991 2.133 -2.271

2 0.909 2.190 -1.903

1 0.505 2.439 -1.188

Executed in 5.526s

Figure 2.A.1: Source code (top)
and screen output (bottom) of the
example test.minimal described
in Sec. 2.A.2. We select a BH
binary at r = 1010M and track
the directions of the two spins
and the orbital angular momen-
tum during its PN inspiral till
r = 10M . We use precession-
averaged PN equations, which re-
quire random samplings of the
precessional phase, see Sec. 2.3.3
(different code executions will
therefore return different values
of the spin angles). The execu-
tion time reported is obtained us-
ing a single core of a 2013 In-
tel i5-3470 3.20GHz CPU. These
lines can be executed typing
precession.test.minimal().





Chapter 3

Up-down instability of spinning

black-hole binaries

Outlook

Binary BHs on quasicircular orbits with spins aligned with their orbital angular

momentum have been test beds for analytic and numerical relativity for decades,

not least because symmetry ensures that such configurations are equilibrium solu-

tions to the spin-precession equations. In this Chapter we show that these solutions

can be unstable when the spin of the higher-mass BH is aligned with the orbital an-

gular momentum and the spin of the lower-mass BH is antialigned. Spins in these

configurations are unstable to precession to large misalignment when the binary

separation r is between the values rud± = (
√
χ1±√qχ2)4(1− q)−2M , where M is

the total mass, q ≡ m2/m1 is the mass ratio, and χ1 (χ2) is the dimensionless spin

of the more (less) massive BH. This instability exists for a wide range of spin mag-

nitudes and mass ratios and can occur in the strong-field regime near the merger.

This study consists in a direct application of the formalism presented in Chapter

2 to characterize fully generic spin precession. This instability provides a channel

to circumvent astrophysical spin alignment at large binary separations, allowing

significant spin precession prior to merger affecting both GW and electromagnetic

signatures of stellar-mass and supermassive binary BHs.
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Executive summary

This Chapter is organized as follows. In Sec. 3.1 we briefly introduce the problem of BH

spin alignment and briefly summarize some of our previous findings. In Sec. 3.2 we detail

our stability analysis. Finally, Sec. 3.3 outlines the observational consequences of this

newly discovered instability. To facilitate the presentation of our main results, most of the

technical calculations are postponed to Appendix 3.A.

The material presented in this Chapter is based on [205].

3.1 Spin-aligned configurations

In this Section we first introduce the astrophysical implications of spin-alignment in BH

binaries (Sec. 3.1.1), and later summarize our findings presented in Chapter 2 on generic

BH spin precession (Sec. 3.1.2).

3.1.1 The role of BH spin (anti)alignment

BHs have been observed through electromagnetic observations in two distinct regimes:

stellar-mass BHs (5M� . m . 100M�) accrete from companions in X-ray binaries [97, 95,

538], while supermassive BHs shine as quasars or Active Galactic Nuclei (AGN) [249, 340].

Stellar-mass BH mergers are now also directly observed through GWs [13, 6, 14, 15, 8, 7, 11].

Both types of BHs naturally occur in binaries: the massive stellar progenitors of stellar-

mass BHs are typically formed in binaries, while supermassive BHs form binaries following

the mergers of their host galaxies [60]. Gravitational radiation circularizes the orbits of

these binaries [415] and causes them to inspiral and eventually merge, making them sources

of GWs for current and future GW detectors [13, 228, 517, 491, 429, 345, 346, 261, 295].

The spins of these binary BHs need not be aligned with their orbital angular momentum:

stellar-mass BHs may recoil during asymmetric collapses tilting their spins with respect to

the orbital plane [264, 252, 204], while the initial orbital plane of supermassive BH binaries

reflects that of their host galaxies and is thus independent of their spin. Gravitational

effects alone will not align the BH spins with the orbital angular momentum [463, 92], but

astrophysical mechanisms exist that drive the BH spins towards alignment in both regimes.

The first BH to collapse in stellar-mass BH binaries may accrete in a disk from its as yet

uncollapsed companion, while both members of a supermassive BH binary may accrete

from a common circumbinary disk. Warps in these accretion disks can align the BH spins

with the orbital angular momentum via the Bardeen-Petterson effect (see [55, 367, 211]

and Chapter 5), but if the initial misalignment between the BH spin and accretion disk is
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greater than 90◦, the BH may instead be driven into antialignment [278] (cf. Sec. 5.2.3).

Misaligned spins cause the orbital angular momentum to precess [56, 508, 276], modu-

lating the emitted GWs [31]. Spin misalignment is both a blessing and a curse for GW data

analysis: it increases the parameter space of templates needed to detect GWs via matched

filtering but also breaks degeneracies between estimated parameters in detected events

[139]. Misaligned spins at merger can generate large gravitational recoils [215, 115, 112],

ejecting supermassive BHs from their host galaxies (cf. Chapter 4). Spin precession may

also be responsible for the observed “X-shaped” morphology of AGN radio lobes [361, 199].

Given the importance of spin misalignment, it is worth investigating the robustness of

aligned spin configurations.

In the general case that the BHs have unequal masses, there are four distinct (anti-)aligned

configurations, which we refer to as up-up, up-down, down-up, and down-down. The direc-

tion before (after) the hyphen describes the more (less) massive BH and up (down) implies

(anti-)alignment of the spin with the orbital angular momentum. By symmetry, all four

configurations are equilibrium solutions to the orbit-averaged spin-precession equations

[276], but are these solutions stable? To answer this question, we investigate how the con-

figurations respond to perturbations of the spin directions using the approach for studying

generically precessing systems presented in Chapter 2 [269, 206]. As we will demonstrate

below, the up-down configuration is unstable for certain choices of binary parameters, with

significant consequences for GW data analysis and astrophysics.

3.1.2 Generic spin precession

This paragraph summarizes the approach to spin precession described in Chapter 2 [269,

206], using natural units G = c = 1. Binary BHs with total mass M = m1 + m2, mass

ratio q = m2/m1 ≤ 1, symmetric mass ratio η = q/(1 + q)2, and spins Si = χim
2
i Ŝi evolve

on three distinct time scales: the orbital time torb ' (r3/M)1/2 on which their separation

r changes direction, the precession time tpre ' torb(r/M) on which the spins and orbital

angular momentum L change direction, and the radiation-reaction time tRR ' torb(r/M)5/2

on which the magnitudes r and L decrease due to GW emission. The relative orientations

of the spins are often specified by the two angles cos θi = Ŝi · L̂ and the angle ∆Φ between

the projections of the two spins onto the orbital plane given in Eqs. (2.2-2.4), all of which

vary on tpre. The spin orientations can equivalently be specified by the magnitudes of the

total spin S = S1 +S2, the total angular momentum J = L+S, and the projected effective

spin [141, 431] ξ ≡M−2[(1 + q)S1 + (1 + q−1)S2] · L̂. This specification has the advantage

that only S evolves on tpre, while J evolves on tRR and ξ is conserved throughout the PN
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Figure 3.1: Effective-potential loops ξ±(S) for binary BHs with mass ratio q = 0.9, dimensionless
spins χ1 = 1, χ2 = 0.14, and total angular momentum J = |L + S1 − S2|, corresponding to
the up-down configuration. For binary separations r > rud+ ' 337M (left panel), the up-down
configuration at Smin marked by a red circle is also a minimum (marked by the lower triangle).
At intermediate separations rud+ > r > rud− ' 17M (middle panels), misaligned binaries with
the same value of the conserved ξ exist along the dashed red line. Perturbations δJ , δξ will cause
S to oscillate between the points S± where this line intersects the loop, making the up-down
configuration unstable. For r < rud− (right panel), the up-down configuration is again a stable
extremum, now a maximum (marked by the upper triangle). An animated version of this figure is
available online at [200].

stage of the inspiral (r & 10M) by orbit-averaged 2PN spin precession and 2.5PN radiation

reaction [270]. On the precession time, the spin magnitude S simply oscillates back and

forth between the two roots S± of the equation ξ = ξ±(S), where ξ±(S) are the effective

potentials for BH spin precession given by Eq. (2.24). Note that S is the only quantity on

the right-hand side of Eq. (2.24) changing on tpre; in the absence of radiation reaction, the

spins return to their initial relative orientation after a time τ(L, J, ξ) during which L, S1,

and S2 precess about J by an angle α(L, J, ξ). The two potentials ξ±(S) form a closed loop

in the Sξ plane, implying that the two roots S± coincide at the extrema ξmin,max(L, J) of

the loop. At these extrema, also known as spin-orbit resonances [463], S does not oscillate

and L, S1, and S2 all remain coplanar on the precession time.

3.2 Stability of aligned configurations

In this Section we present the stability analysis of BH binaries with aligned spins. The

evolution of aligned binaries on the precessional timescale is described in Sec. 3.2.1. In

Sec. 3.2.2 we describe the dynamics of such configurations under the effect of radiation

reaction. Technical details are postponed to Appendix 3.A.
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3.2.1 Precessional (in)stability

We begin with the up-up and down-down configurations, for which J = |L ± (S1 + S2)|,
respectively. According to Eq. (2.24), the effective-potential loop reduces to a single point in

this limit which is necessarily an extremum: S cannot oscillate consistent with conservation

of J and ξ. Now consider the down-up (up-down) configurations for which J = |L−S1+S2|
(J = |L + S1 − S2|). The effective-potential loop ξ±(S) encloses a nonzero area for these

values of J , implying that oscillations in S are possible, except at the extrema ξmin,max.

Since the spins are antialigned with each other in both configurations, S is minimized at

Smin = |S1−S2| and both configurations sit on the leftmost point of the loop, where ξ+(S)

and ξ−(S) coincide. Whether this point is also an extremum ξmin,max depends on the slopes

of these two functions at that point (cf. Sec. 3.A.1 below). Both slopes are always negative

for the down-up configuration, implying that it is a maximum ξmax and thus a spin-orbit

resonance like the up-up and down-down configurations. At large binary separations r,

the slopes of ξ±(S) are both positive for the up-down configuration, making it a minimum

ξmin. However, below rud+ given by

rud± =
(
√
χ1 ±√qχ2)4

(1− q)2
M , (3.1)

the slope of ξ−(S) becomes negative and up-down is no longer an extremum of the effective-

potential loop, as seen in Fig. 3.1. At separations below rud−, the slope of ξ+(S) also be-

comes negative and up-down is again an extremum, this time a maximum ξmax. Misaligned

BHs with the same values of J and ξ as the up-down configuration but S > Smin exist in

the intermediate range rud− < r < rud+, as shown by the dashed red line. At r = rud±,

misaligned BHs have an infinite precessional period τ (cf. Sec. 3.A.2): they exponentially

approach the up-down configuration on the precession time tpre but never reach it.

The evolving relationship between the up-down configuration and the spin-orbit reso-

nances parameterized by the angles θi is seen in Fig. 3.2. The solid curves show the ∆Φ = 0

resonances [ξmin(J)] for separations 10M ≤ r ≤ 3000M , while the dashed curves show the

∆Φ = π resonances [ξmax(J)]. The up-down configuration is located in the bottom right

corner of this figure. For r > rud+, the up-down configuration lies on the solid curves and

belongs to the ∆Φ = 0 family, but for smaller separations these curves detach from the

bottom right corner, and thus up-down is no longer a minimum of ξ±(S). The dashed

curves indicating the ∆Φ = π family migrate to the right with decreasing separation and

reach the bottom right corner, making the up-down configuration a maximum of ξ±(S), for

r < rud−. The up-up and down-down configurations (top right and bottom left corners)
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Figure 3.2: The angles cos θi = Ŝi · L̂
for spin-orbit resonances [extrema of
ξ±(S)] for BHs with q = 0.95, χ1 =

0.3, and χ2 = 1. The solid (dashed)
curves indicate the ∆Φ = 0 (π) fam-
ily and the five curves for each fam-
ily correspond to binary separations
r/M = 3000, 720, 170, 40, and 10. The
up-down configuration (bottom right
corner) belongs to the ∆Φ = 0 fam-
ily for r > rud+ ' 2149M , to the
∆Φ = π family for r < rud− ' 13M ,
and is unstable for intermediate values
rud− < r < rud+. An animated version
of this figure is available online at [200].

belong to both resonant families, reflecting the degeneracy of the effective-potential loop

as a single point that is both minimum and maximum. The down-up configuration (top

left) always belongs to the ∆Φ = π family and is thus a maximum ξmax.

The stability of a system is determined by its response to perturbations, in this case to

the spin angles (δθ1, δθ2, δ∆Φ) or equivalently to the angular momenta (δS, δJ, δξ). After

such a perturbation, configurations that are extrema of ξ±(S) (all aligned configurations

except up-down for rud− < r < rud+) will undergo oscillations in S (and thus the three

spin angles) that are linear in the perturbation amplitude, and have a period τ that is

independent of this amplitude. This is a stable response equivalent to that of a simple

harmonic oscillator. The response of the up-down configuration for rud− < r < rud+ is

very different, as seen in the middle panels of Fig. 3.1: S oscillates between the turning

points S± independent of the perturbation amplitude, but the period τ of these oscillations

– as proved in Sec. 3.A.2– diverges logarithmically as this amplitude approaches zero. This

is an unstable response: the time it takes for a zero-energy particle with dx/dt < 0 to travel

from finite x0 to δx in the unstable potential V = −1
2kx

2 similarly diverges logarithmically

with δx.

A perturbative analysis of nearly aligned configurations [283] can identify that pertur-

bations can oscillate at complex frequencies (indicating an instability) in the same region

rud− < r < rud+ found here, but such analysis cannot predict the amplitude of these

perturbations or their response to precession-averaged radiation reaction.

3.2.2 Inspiral dynamics

We have shown that for rud− < r < rud+, spin configurations with J and ξ infinitesimally

close to the up-down configuration can experience finite-amplitude oscillations in S and
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Figure 3.3: Precession-averaged radi-
ation reaction dJ/dL as a function of
J and ξ for binaries with q = 0.8,
χ1 = χ2 = 1, and separation r = 10M

in the unstable region rud− < r <

rud+. Spin-orbit resonances including
the up-up, down-down, and down-up
configurations are extrema of ξ±(S)

and constitute the boundary of the al-
lowed region. All four aligned configu-
rations are maxima where dJ/dL = 1,
but the unstable up-down configura-
tion (shown in the inset) is a cusp. An
animated version of this figure is avail-
able online at [200].

the angles θ1, θ2, and ∆Φ. We now investigate how these configurations evolve on the

longer radiation-reaction time tRR. Since ξ is conserved throughout the inspiral and L

monotonically decreases at 2.5PN order, the only challenge is to evolve J . In Sec. 2.3.1

we derived a precession-averaged expression for dJ/dL, a contour plot of which is shown

in Fig. 3.3. The shaded region shows the allowed values of J and ξ for this mass ratio,

spin magnitudes, and binary separation. The spin-orbit resonances, being extrema of

ξ±(S), constitute the boundaries of this region. The up-up, down-down, and down-up

configurations, being spin-orbit resonances, lie on these boundaries. At rud+, the up-down

configuration detaches from the right boundary of this region [it stops being a minimum of

ξ±(S)] and begins to migrate leftwards through the allowed region, eventually reattaching

to the left boundary at rud− [where it becomes a maximum of ξ±(S)]. This is just an

alternative visualization of the four panels of Fig. 3.1.

For all four aligned configurations, J and L are aligned so dJ/dL = 1 is maximized.

However, the nature of these maxima is very different for the stable and unstable configura-

tions. For the stable configurations, the partial derivatives of dJ/dL with respect to J and

ξ remain finite, implying that neighboring points separated by (δJ, δξ) slowly drift away at

a rate that scales linearly with these infinitesimal quantities. The unstable configuration

however is a cusp where these partial derivatives approach ±∞, depending on whether this

point in the Jξ plane is approached from below or above. Neighboring points (experiencing

large-amplitude oscillations in S, as seen in the middle panels of Fig. 3.1) rapidly deviate

from the up-down configuration as it sweeps across the allowed region. This is an essen-

tial point: even if the stability of the up-down configuration is restored in the PN regime

(rud− > 10M), radiation reaction during the inspiral between rud± will drive BHs initially

in this configuration to large misalignments prior to merger. The migration of the up-down
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configuration through the Jξ plane also reconciles the instability with the empirical result

that isotropic spin distributions remain isotropic during the inspiral [463, 92]: although

nearby binaries may indeed be left behind, the unstable configuration will always encounter

a fresh supply, until it is restored to stability at the left edge of the allowed region.

3.3 Binaries may start precessing while being observed

Binaries with separations in the unstable region between rud± emit GWs with frequencies

in the range fud± ' 6.4 × 104Hz(M/M�)−1(1 − q)3/(
√
χ1 ± √qχ2)6, within or below

the sensitivity band of existing and planned GW detectors. In Fig. 3.4, we show the

waveform of one such binary initially near the up-down configuration before entering the

unstable region. Once the binary crosses the threshold at rud+, its waveform develops

large-amplitude precessional modulation on the precession time tpre. The amplitude of

this modulation is independent of the initial deviation from the up-down configuration:

it is set by the finite-amplitude oscillations in S seen in the middle panels of Fig. 3.1.

Modulation occurs on two distinct time scales associated with the precession of L in a

frame aligned with J. In this frame the direction of L is specified by the polar angle

cos θL = L̂ · Ĵ and the azimuthal angle ΦL in the plane perpendicular to J. The longer

of these time scales is τ (the period of oscillations in θL), while the shorter time scale

is (2π/α)τ (the precession-averaged time for ΦL to change by 2π) [269, 206]. Measuring

this modulation could yield insights into the astrophysical origins of binary BHs [204, 206].
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Spin precession could also affect the electromagnetic counterparts to BH mergers [371, 323]

and the probability of ejecting a supermassive BH from its host galaxy [215, 115, 112, 271].

We look forward to confronting these predictions with observations in the dawning age of

GW astronomy.

Appendix

3.A Details on the stability analysis

In this Appendix we present the derivation of two crucial points entering our analysis of

BH binaries with aligned spins: the properties of the derivatives dξ±/dS (Sec. 3.A.1) and

the integrability of |dS/dt|−1 (Sec. 3.A.2).

3.A.1 Derivatives of the effective potentials

An aligned binary is described by J = |L ± S1 ± S2| and in particular: J = L + S1 + S2

for up-up binaries; J = |L − S1 − S2| for down-down binaries; J = |L + S1 − S2| for
up-down binaries; and J = |L− S1 + S2| for down-up binaries. We study the initial value

problem described by Eq. (2.62) with initial condition J0 = |L0 ± S1 ± S2|, corresponding
to an aligned binary. Such an aligned configuration is stable if the magnitude J evolves

according to J(L) = |L ± S1 ± S2|. This implies via dJ/dL = 1 [c.f. Eq. (2.62)] that

〈S2〉pre = (S1 + S2)2 for up-up and down-down binaries, and 〈S2〉pre = (S1 − S2)2 for

up-down and down-up binaries.

3.A.1.1 Up-up and down-down

The up-up configuration is defined by J = Jmax = L+S1 +S2, which gives Smin = Smax =

S1 + S2 and

ξ+(S) = ξ−(S) =
(1 + q)S1 + (1 + q−1)S2

M2
. (3.2)

Similarly, down-down binaries have J = |L− S1 − S2|, Smin = Smax = S1 + S2 and

ξ+(S) = ξ−(S) = −(1 + q)S1 + (1 + q−1)S2

M2
. (3.3)

In both cases, only one value of S is allowed at any separation (because Smin = Smax).

These configurations trivially satisfy 〈S2〉pre = (S1 + S2)2 and are therefore stable.



82 Up-down instability of spinning black-hole binaries

3.A.1.2 Up-down

First, let us recall that one of the Ai’s of Eq. (2.20-2.21) vanishes at either Smin or Smax.

Generic precessing configurations therefore satisfy

lim
S→Smin

dξ±
dS

= ±∞ , lim
S→Smax

dξ±
dS

= ∓∞ , (3.4)

because the Ai’s will show up in the denominator of these derivatives. Examples were

given in Fig. 2.5, where the effective potential loops are infinitely steep at their left and

right edges. However, for some of the aligned configurations, the numerator of dξ±/dS also

vanishes and the limits above may become finite. Ultimately, this point turns out to be

the mathematical origin of the precessional instability presented in this Chapter.

Plugging J = |L+ S1 − S2| into Eq. (2.24) one gets

ξ±(S) =
1

4LM2qS2

{
[(L+ S1 − S2)2 − L2 − S2][(1 + q)2S2 + (−1 + q2)(S1 − S2)(S1 + S2)]

± (1− q2)
√

(2L− S + S1 − S2)(S + S1 − S2)(2L+ S + S1 − S2)(S − S1 + S2)

×
√

(S + S1 − S2)(S − S1 + S2)[(S1 + S2)2 − S2]

}
. (3.5)

The up-down configuration is realized at Smin = |J − L| = |S1 − S2|, where both cases in

the maximum of Eq.(2.13) are simultaneously satisfied. From Eq. (3.5) one obtains

lim
S→Smin

dξ±
dS

= −1− q2

LM2q

[
(S1 − S2)(qS1 − S2)

1− q − L(S1 + S2)∓ 2
√
L
√
S1S2|L+ S1 − S2|

]
.

(3.6)

It follows that both limits are positive at large separations:

lim
L→∞

lim
S→Smin

dξ±
dS

=
(1− q2)

(√
S1 ±

√
S2

)2

(M2q)
> 0 . (3.7)

The upper effective potentials is steeper, but the slope of ξ− is also positive at Smin. One

example is given in the first panel of Fig. 3.1. Aligned binaries lie at Smin and are non-

precessing because they are forced to stay in the kink between the two effective potentials,

i.e. S− = S+ = Smin. This corresponds to 〈S2〉pre = (S1 − S2)2, hence stability. The onset

of the instability can be found solving

lim
S→Smin

dξ−
dS

= 0 (3.8)
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as a function of r. A straightforward (although tedious) calculation shows that only one

solution exists and it is given by

rud+ =
(
√
χ1 +

√
qχ2)4

(1− q)2
M . (3.9)

As the binary crosses rud+ (central panels of Fig.3.1), configurations with S 6= |S1 − S2|
become available. Similarly, the equation

lim
S→Smin

dξ+

dS
= 0 (3.10)

admits a single solution at

rud− =
(
√
χ1 −√qχ2)4

(1− q)2
M . (3.11)

When the derivative of the upper effective potential vanishes at Smin, a new kink forms at

Smin (right panel of Fig. 3.1). Up-down binaries at separations smaller than this second

threshold are stable because 〈S2〉pre = |S1 − S2|.

3.A.1.3 Down-up

Down-up configurations are characterized by J = |L − S1 + S2| and Smin = |J − L| =

|S1 − S2|. At large separations both effective potentials have negative derivative at Smin:

lim
L→∞

lim
S→Smin

dξ±
dS

= −(1− q2)
(√
S1 ∓

√
S2

)2

(M2q)
< 0. (3.12)

However, the equations

lim
S→Smin

dξ±
dS

= 0 (3.13)

cannot be solved for any positive r. At all separations, down-up binaries have Smin = S− =

S+ and 〈S2〉pre = (S1 − S2)2 for any value of q and χi.
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3.A.2 Precessional period

In this Section we show that up-down binaries at the instability threshold r = rud± have

infinite precessional period τ →∞. From Eq. (2.49-2.50) one has

τ = 2

∫ S+

S−

dS

|dS/dt| =
q

3(1− q2)

L5

S1S2(η2M3)3

(
1− ηM2ξ

L

)−1 ∫ S2
+

S2
−

dS2

sin θ1 sin θ2 sin ∆Φ
.

(3.14)

The integrand is the inverse of a square root of a third degree polynomial in S2. Its roots

correspond to the solution of the equation dS/dt = 0 as given by Eqs. (2.26-2.30) (which,

indeed, is a third degree polynomial in S2). Two of these solutions are S− and S+ which

mark the extrema of the evolution of the total-spin magnitude S. Let us denote the third

solution with S3, such that

τ ∝
∫ S2

+

S2
−

dS2

√
(S2 − S2

−)(S2
+ − S2)|S2 − S2

3 |
. (3.15)

In Sec. 2.2.2 we proved the third root must be outside the physical regime, i.e. S3 6∈
(Smin, Smax). For a generic precessing binary S− 6= S+ 6= S3 and the singularities at S±

are integrable.

The spin-orbit resonances ξ = maxS(ξ+) and ξ = minS(ξ−) are characterized by S− =

S+ (cf. Sec. 2.2.2). In the limit S−, S+ → S̃ one obtains1

τ ∝ 1√
|S̃2 − S2

3 |

∫ S2
+

S2
−

dS2

√
(S2 − S2

−)(S2
+ − S2)

=
π√

|S̃2 − S2
3 |
. (3.17)

The precessional period τ is finite for the spin-orbit resonances ξ = ξmin and ξ = ξmax.

Let us now concentrate on up-down BH binaries. Stable up-down binaries at separations

r > rud+ and r < rud− have S− = S+ = Smin. On the other hand, in the instability region

rud+ > r > rud− binaries have S− = Smin but S+ 6= Smin (cf. Fig. 3.1). Although it is

guaranteed that S3 6∈ (Smin, Smax), the equality S3 = Smin may, in principle, be satisfied.

There are two possibilities regarding the integration of Eq. (3.15) at S−:

• the singularity is integrable if S3 6= Smin = S−;

• the integral diverges if S3 = Smin = S−.
1We made use of the following definite integral∫ b

a

dx√
(x− a)(b− x)

= π . (3.16)
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The singularity of |dS/dt|−1 at S− is not integrable if Smin is a multiple root of the equation

ξ±(S) = ξ. Let us recall that x = x̃ is a multiple root of a real function f(x) if f(x = x̃) = 0

and f ′(x)|x=x̃ = 0. Therefore, the configuration S = Smin is a multiple root if

lim
S→Smin

dξ±
dS

= 0 . (3.18)

which are the same conditions (3.8) and (3.10) marking the onsets of the instability. To

summarize, the precessional period τ of up-down configurations behaves as follows:

• At separations r > rud+ and r < rud−, one has S− = S+ and limS→Smin dξ±/dS 6= 0.

The equation ξ = ξ±(S) has a single root on ξ− and a single root on ξ+, which

are equal to each other. This case is equivalent to the spin-orbit resonances studied

above, for which τ is finite. Note, however, that genuine spin-orbit resonances have

both roots S± on the same effective potential.

• At separations rud+ < r < rud− where up-down binaries are unstable, one has S− 6=
S+ and limS→Smin dξ±/dS 6= 0. It follows that S− = Smin is a single integrable root.

• If r = rud+, one has S− = S+ but limS→Smin dξ−/dS = 0 and limS→Smin dξ+/dS 6= 0.

Similarly, if r = rud−, one has S− = S+ but limS→Smin dξ+/dS = 0 and limS→Smin

dξ−/dS 6= 0. In both cases, all three roots all coincides S− = S+ = S3 = Smin and

the integral of Eq. (3.15) diverges.





Chapter 4

Missing black holes in

brightest cluster galaxies

Outlook

In this Chapter we investigate the consequences of superkicks on the population of

SMBHs in the Universe residing in Brightest Cluster Galaxies (BCGs). There is

strong observational evidence that BCGs grew prominently at late times (up to a

factor 2-4 in mass from z = 1), mainly through mergers with satellite galaxies

from the cluster, and they are known to host the most massive SMBHs ever

observed. Those SMBHs are also expected to grow hierarchically, experiencing

a series of mergers with other SMBHs brought in by merging satellites. Because

of the net linear momentum taken away from the asymmetric GW emission, the

remnant SMBH experiences a kick in the opposite direction. Kicks may be as

large as ∼ 5000 km s−1 (“superkicks”), pushing the SMBHs out in the cluster

outskirts for a time comparable to galaxy-evolution timescales. We predict, under

a number of plausible assumptions, that superkicks can efficiently eject SMBHs

from BCGs, bringing their occupation fraction down to a likely range 0.9 < f <

0.99 in the local Universe. Future 30m-class telescopes like E-ELT (European

Extremely Large Telescope) and TMT (Thirty Meter Telescope) will be capable

of measuring SMBHs in hundreds of BCGs up to z = 0.2, testing the occurrence

of superkicks in nature and the strong-gravity regime of SMBH mergers.
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Executive summary

This Chapter is organized as follows. In Sec. 4.1 we motivate our study. Sec. 4.2 presents

the ingredients of our models: (i) SMBHmerger fitting formulas; (ii) galaxy density profiles;

(iii) prescriptions for the SMBH return timescales and (iv) the merger events; and (v)

finally our evolutionary procedure. We highlight our results in Sec. 4.3 and present our

conclusions in Sec. 4.4

The material presented in this Chapter is based on [209].

4.1 Looking for superkicks

The centers of galaxy clusters host the most massive galaxies in the Universe, generally

known as BCGs. Their luminosity can easily exceed 1012L� and, consequently, their

estimated masses can be up to few×1012M�. They also host the biggest SMBHs known in

the Universe, with masses in the range 109−1010M� [356], tipping the observed SMBH-host

relations at the high mass end [355].

In the context of the Λ Cold Dark Matter (ΛCDM) cosmological paradigm, large Dark

Matter (DM) halos in the Universe build up hierarchically [541], driving the assembly of

galactic structures. Galaxy formation kicks off at high redshifts, as gas starts to cool at

the centers of DM halos. Following the halo hierarchy, small protogalaxies merge with

each other forming larger ones. This process continues until the present time, resulting in

the formation of massive galaxies we see today. Within this framework, also SMBHs grow

hierarchically, experiencing a sequence of accretion events and merging with other SMBHs

following galaxy mergers [60, 533].

One interesting astrophysical consequence of SMBH binary mergers is the gravitational

recoil. Emission of asymmetric GWs in the late inspiral and final coalescence takes away net

linear momentum from the binary system, and the remnant SMBH is consequently kicked

in the opposite direction. With the advent of numerical relativity [426, 113, 45], it is now

possible to simulate SMBH mergers in full GR and assess the magnitude of these kicks.

Surprisingly, configurations have been found in which the final kick can reach magnitudes

up to ∼ 5000km/s [112, 216, 332]1 opening the possibility of SMBH ejection even from the

deepest potential wells created by the most massive galaxies [362, 467]. Observationally,

few candidate recoiling SMBHs have been recently identified as off-center AGNs [132, 131,

1Technically, [112, 216] found recoils up to ∼ 4000km/s for systems with spins lying in the binary orbital
plane, which they referred to as “superkicks”. “Hangup kicks” up to ∼ 5000km/s were found by [332] in a
different configuration, in which the spins are inclined with respect to the orbital plane of the binary. For
simplicity, we will generally refer to high-velocity recoils as “superkicks” throughout this Thesis.
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294], and an excellent review of the spatial and kinematical observational signatures of

these peculiar systems can be found in [287]. A direct consequence of high velocity kicks is

that the SMBH occupation fraction may be altered [464, 532, 531], providing an indirect

way to test the strong-gravity physics behind GW kicks. In this Chapter, we explore this

possibility by investigating the consequences of gravitational recoils onto SMBH masses

and the occupation fraction in BCGs.

Although kicks will naturally eject SMBHs more easily from lighter galaxies (as ex-

tensively investigated in [531]), there are at least three good reasons for considering this

possibility in BCGs. Firstly, BCGs show the strongest mass evolution from z ≈ 1.5 up to

now. In general, both detailed numerical simulations of galaxy formation [151, 397, 300]

and observations of BCGs at different z [515, 310, 309], show an average mass doubling

from z = 1 to the present time. Though it is difficult to assess observationally what

is the cause of this mass growth, it appears in simulations to be driven primarily by

galaxy mergers [327, 303]. This is also consistent with close galaxy pair counts at z < 1

[65, 103, 152, 445, 549, 325], which imply a prominent merger activity for these systems. In

contrast with all other types of galaxies, very massive ellipticals (and BCGs in particular)

are expected to have undergone several mergers in the last 10 Gyr, some of which ‘major’

(i.e. with satellite to primary galaxy mass ratio M2/M1 > 1/4). It is therefore possible

that they also experienced a few SMBH binary coalescences, with consequent gravitational

recoils. Secondly, SMBHs of mass > 109M� in the relatively low-density environment

of BCG nuclei have the largest impact on the dynamics of the surrounding stars [356].

The influence radius of the SMBH can be up to few hundred parsecs, making them ideal

targets for direct dynamical measurements of SMBH masses. With angular resolutions

of ≈ 0.1arcsec, it is today possible to confidently measure SMBH masses in BCGs up to

z ≈ 0.03. A factor of ten improvement in the instrumentation, expected with the TMT

and the E-ELT, will dramatically increase this range. As an example, Do et al. [159] esti-

mated that 50 masses of SMBHs residing in BCGs up to z = 0.05 can be measured with

a relatively cheap program of 14 observing nights on the TMT. Moreover, they show that

the TMT potential will be much greater than that, making mass measurement possible

in hundreds of BCGs up to z ≈ 0.2. Conversely, in Milky Way-type galaxies with SMBH

sphere of influence of the order of few parsecs, even with E-ELT precision dynamical mea-

surements will be restricted to our local neighborhood (D < 30 Mpc, z < 0.01). Lastly,

according to our galaxy formation knowledge, the SMBH occupation fraction f (i.e., the

fraction of galaxies hosting a SMBH) is an increasing function of the galaxy mass. Although

already at dwarf galaxy scales f might be around unity [66], observations of galaxies in
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Virgo cluster shows a sudden drop in the X-ray activity at stellar masses around 1010M�

[366]. Although this cannot be taken as evidence of lack of nuclear SMBHs, there is no

observational confirmation of a large f for galaxies on those small scales.

Some tentative candidates of SMBH ejections from BCGs have already been identified:

the BCG in the A2261 cluster shows an exceptionally large core of 3.2 kpc consistent with

the absence of a scouring SMBH [420]; the small 1.2×1011M� lenticular galaxy NCG 1277

in the Perseus cluster hosts an exceptionally heavy SMBH of 1.7×1010M� [519] which may

have been grown in the close BCG NCG 1275, ejected by a superkick and finally captured

by NCG 1277 [487].

Summarizing, BCGs, being the most massive galaxies in the Universe, (i) are expected

to have f = 1 (pending, of course, the occurrence of superkicks); (ii) have possibly experi-

enced multiple mergers at low redshift; (iii) are the easiest targets for nuclear SMBH mass

measurements. These facts make them ideal targets for observing the effects of extreme

recoils: any observational confirmation of a missing nuclear SMBH would provide strong

evidence for the occurrence of superkicks.

Throughout this Chapter, we use a ΛCDM cosmological model with ΩM = 0.27, ΩΛ =

0.73 and H0 = 100h km/s Mpc−1 = 70 km/s Mpc−1 (cf. [242]). Following the convention

mostly used in the astrophysics literature, we use physical units where the fundamental

constants G and c are explicitly indicated.

4.2 BCG merger modeling

A thoughtful modeling of the recoil effect on the SMBH occupation fraction in BCGs

requires to put together in a coherent framework four main ingredients:

1. the recoil magnitude as a function of the SMBH binary parameters (binary mass

ratio, magnitude and orientation of the individual SMBH spins);

2. the gravitational potential in which the recoiled SMBH evolves;

3. the return timescale for SMBHs suffering kicks below the escape velocity of their

hosts;

4. the number of mergers experienced by BCGs as a function of z and of the galaxy

mass ratio.

We will describe each item separately in the following subsections, providing in Sec. 4.2.5

a description of the ‘coherent framework’ that brings them together.



4.2 BCG merger modeling 91

4.2.1 BH final mass, spin and kick velocity

We start by modelling the properties of the remnant SMBH as a function of the properties

of the progenitor merging holes. We use a standard notation in which m1 and m2 denote

the individual masses of the merging SMBHs (with m1 > m2), M = m1 +m2 is the total

mass, q = m2/m1 ≤ 1 is the mass ratio and η = m1m2/M
2 is the symmetric mass ratio.

The SMBH spin vectors are (with i = 1, 2)

Si = χi
Gm2

i

c
Ŝi, (4.1)

where 0 ≤ χi ≤ 1 is the dimensionless-spin parameter and hats denote unit vectors.

We describe the directions of the spins Ŝi with three angles θ1, θ2 and ∆Φ as defined in

Eqs. (2.2-2.4) and Fig. 2.1. It is also useful to define the following quantities

∆ =
qχ2Ŝ2 − χ1Ŝ1

1 + q
, (4.2)

χ̃ =
q2χ2Ŝ2 + χ1Ŝ1

(1 + q)2
, (4.3)

and to introduce the subscripts ‖ and ⊥ for vector components along/perpendicular to

the orbital angular momentum of the binary L: χ̃‖ = χ̃ · L̂, χ̃⊥ = |χ̃× L̂|, ∆‖ = ∆ · L̂,
∆⊥ = |∆× L̂|. The following fitting formulae are implemented in the numerical code

precession described in Sec. 2.A.

The energy radiated during the inspiral and merger phase Erad reduces the post-merger

mass to Mf = M − Eradc
−2. The dependence of Erad on the initial parameters (namely

the masses and the spins) can be derived analytically in the test-particle limit q → 0

[268], while the comparable-mass regime q ' 1 can only be estimated using full numerical

relativity simulations [72, 509, 328]. Here we use the expression recently provided in [51],

where the two regimes are interpolated

Erad

M
= 1− Mf

M
= η

[
1− E′ISCO

]
+ 4η2

[
4p0 + 16p1χ̃‖

(
χ̃‖ + 1

)
+ E′ISCO − 1

]
, (4.4)

where c2E′isco is the energy per unit mass at the Innermost Stable Circular Orbit (ISCO) in
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the test-particle limit generalized to inclined orbits and evaluated at the effective spin χ̃ [54]

E′isco =

√
1− 2

3r′isco
, (4.5)

r′isco = 3 + Z2 − sign(χ̃‖)
√

(3− Z1)(3 + Z1 + 2Z2) , (4.6)

Z1 = 1 +
(

1− χ̃2
‖
)1/3 [(

1 + χ̃‖
)1/3

+
(
1− χ̃‖

)1/3]
, (4.7)

Z2 =
√

3χ̃2
‖ + Z2

1 . (4.8)

The parameters p0 and p1 in Eq. (4.4) were fitted in [51] using the numerical relativity data

published at the time (see references therein): they report p0 = 0.04827 and p1 = 0.01707.

The final spin magnitude χf has been predicted either by calibrating fitting formulas

with numerical relativity simulations [509, 441, 53, 328], or by extrapolating test-particle

results [107, 268]. Here we use the expression developed in [53], which has been shown to

reproduce the available numerical relativity data with 8% precision in χf for every value

of q:

χf =

∣∣∣∣χ̃ +
q

(1 + q)2
` L̂

∣∣∣∣ , (4.9)

` = 2
√

3 + t2η + t3η
2 + s4

(1 + q)4

(1 + q2)2
χ̃2 + (s5η + t0 + 2)

(1 + q)2

1 + q2
χ̃‖ . (4.10)

The remaining free parameters are fitted to numerical relativity simulations (see [53] for

details): t0 = −2.8904, t2 = −3.51712, t3 = 2.5763, s4 = −0.1229 and s5 = 0.4537. We

assume χf = 1 whenever the fitting formula (4.9) predicts higher unphysical values.

GW recoils generally arise from asymmetries in the merging binary, that could be either

in the masses or in the spins. Fitting formulas for the recoil velocity vk are typically broken

down into a mass asymmetry term vm, and two spin asymmetry terms vs‖ and vs⊥ [112]

vk = vmê⊥1 + vs⊥(cos ξê⊥1 + sin ξê⊥2) + vs‖L̂ , (4.11)

where ê⊥1, ê⊥2 are two orthogonal unit vectors in the orbital plane (such that the mass term

of the kick lies along ê⊥1) and ξ is the angle between the mass term and the orbital-plane

spin term. Expressions for vm, vs‖ and vs⊥ are available as fitting formulas to numerical
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relativity simulations. In this work we implement the following expressions

vm = Aη2 1− q
1 + q

(1 +Bη) , (4.12)

vs⊥ = Hη2∆‖ , (4.13)

vs‖ = 16η2[∆⊥(V11 + 2VAχ̃‖ + 4VBχ̃
2
‖ + 8VC χ̃

3
‖) + χ̃⊥∆‖(2C2 + 4C3χ̃‖)] cos Θ . (4.14)

The term proportional to V11 in Eq. (4.14) arises from the superkick formula [215, 112], the

terms in VA,B,C have been called “hangup-kick” effect [332], while the ones proportional to

C2,3 model the more recently discovered “cross-kick” effect [333]. The parameters in the

equations above are currently estimated to be: A = 1.2 × 104 km/s, B = −0.93 [216],

H = 6.9 × 103 km/s [330], V11 = 3677.76 km/s, VA = 2481.21 km/s, VB = 1792.45 km/s,

VC = 1506.52 km/s [335], C2 = 1140 km/s, C3 = 2481 km/s [333], ξ = 145◦ [330]. The

value of the angle Θ actually depends on the initial separation of the binary in the numerical

simulations: as in previous studies [335, 76], we deal with this dependence by sampling

over a uniform distribution in Θ.

Since the spin angles θ1, θ2 and ∆Φ evolve during the inspiral (see Chapter 2), the recoil

fitting formula provided above can only by applied close to merger, at separations r ∼ 10M

where numerical relativity simulations typically start2. Kesden et al. [271] pointed out that

substantial recoil suppression/enhancement could occur due to spin-orbit resonances [463]

in the PN regime of the inspiral. In light of our findings presented in Chapter 2, this

effect can actually be revisited in terms of morphological phase transitions towards the

librating morphologies during the PN inspiral. Phase transitions mostly affect binaries

with asymmetric spin directions at large separation (θ1 6= θ2), while symmetric configu-

rations (θ1 ' θ2) are generally unaffected (Sec. 2.4.2). Both effects are generally present

for isotropic distributions of the spin angles, that are therefore maintained qualitatively

isotropic by the PN evolution [92, 270] (see also Fig. 2.9, top panels). Resonant effects are

therefore strongly dependent on early-time alignment processes, such those arising from

accretion-disk interactions (Chapter 5 and [413, 167, 317, 367]).

In this astrophysical application to BCG galaxies, we assume isotropic distributions

of both the spin vectors, taking the spin angles uniformly distributed in cos θ1, cos θ2 and

∆Φ. This is a delicate point because the misalignment distribution (also needed to properly

initialize the late-time PN inspiral) has a strong impact on the recoil velocities. Although

spin alignment is expected to occur when a SMBH binary is surrounded by a cold massive

2The effect of PN resonances is critical to compute the kick velocity, but not so critical in the case of
the final mass – Eq. (4.4) – and the final spin – Eq. (4.9) –: see [53] for a discussion of this point.
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circumbinary disk, the relative cold gas content of galaxies is a decreasing function of their

mass [121] and BCGs are extremely gas-poor systems. Fresh cold gas can be naturally

brought in by the merging satellite; however, most of the companions of massive elliptical

galaxies in observed galaxy pairs are red (up to about 70%, [325]), making dry mergers the

more common mass growth channel for BCGs. Nonetheless, a fraction of mergers can still

result in significant accretion onto the central SMBH; in fact, BCGs are known to power

luminous radio jets [80] creating X-ray cavities in a number of clusters [450, 243]. However,

as a result of the ‘anti-hierarchical’ behavior of AGNs, only about one in a thousand of

the SMBHs with M > 3 × 108M� is accreting at more than 1% of the Eddington rate

at low redshift [236]. This is despite the fact very massive galaxies experience (as we will

see below) a prominent merger activity at z < 1. Assuming one merger per BCG since

z = 1, the numbers above imply that BCGs are, on average, accreting at about 1% of the

Eddington rate for ∼ 107 yr, resulting in a mass growth < 1%. This is generally insufficient

to align the spins of a putative SMBH binary even if the gas is accreted from a coherent

circumbinary pool [167]. Moreover, accretion might occur in a series of subsequent episodes

with incoherent angular momenta orientations [279, 474], and disk spin alignment might be

less effective than generally assumed in simple α-disks models [317]. Therefore, disk-driven

alignment processes should be less important for the systems relevant to this investigation3,

and random spin orientation is a sensible working hypothesis for the majority of them. In

this case, the kick distribution is only weakly modified by the PN inspiral (cf. [76], their

Fig. 2) and can therefore be neglected. We checked and confirmed this conclusion using

orbit-averaged PN inspirals computed with the code presented in Sec. 2.A. For reasonably

large samples (∼ 1000 BCGs), uncertainties in the occupation fraction are still dominated

by Poisson counting errors, rather than the PN influence on the kicks.

4.2.2 BCG mass-density and potential profile

BCGs sit at the center of their host cluster. The relevant potential is therefore given by

the spheroidal component of the BCG plus the whole cluster DM halo.

A simple analytic model to describe the spheroidal component is given by the Hernquist

mass-density profile ([238, 513], see [303] for a specific application to BCGs)

ρBCG(r) =
MBCG

2π

rH
r

1

(r + rH)3
, (4.15)

whereMBCG is the mass of the spheroid and rH is a scale radius. The scale radius rH can be

related to the typical cusp radius rγ observed in the luminosity profiles of elliptical galaxies

3Disc-spin alignment processes in gas-rich galaxies is the main topic addressed in Chapter 5.
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Figure 4.1: BCG kinematical
properties, modeled using the
Hernquist profile. The velocity
dispersion values predicted from
our model are compared with the
sample of observations reported
by [355] (black diamonds). Green
circle points are computed sam-
pling Eq. (4.16) with a Gaussian
error of 0.1 dex and then con-
sidering σ ≈ 0.3

√
GMBCG/rH

[238]; black dashed and dotted
lines show the average and the 1-σ
interval of the same distribution.

[118, 306]. We match cusp-radius measurements from [306] and galaxy-mass measurements

from [355], obtaining a final sample of 14 BCGs. We fit these values using a log-log relation,

obtaining

log

(
rγ
pc

)
= −7.73 + 0.857log

(
MBCG

M�

)
, (4.16)

with dispersion of 0.1 dex. The central densities of elliptical cores typically lie in the range

103 − 104M�/pc3 [see, e.g., 503]; these values are reproduced by scaling the cusp radius

by an order of magnitude, i.e. taking rH = 10rγ . This choice gives acceptable results in

terms of the kinematical properties of BCGs, especially at typical BCG masses ∼ 1012M�:

Fig. 4.1 shows the velocity dispersion of the BCG σ ≈ 0.3
√
GMBCG/rH [238] compared4

to the measurements in the sample of large elliptical galaxies collected by [355].

Self-consistent (and therefore more realistic) models have also been developed to de-

scribe photometric and kinematical data in elliptical galaxies (see e.g. [77]) but we opted

for the Hernquist profile because it reproduces the kinematical properties quite well de-

spite its analytical simplicity. We model the cluster DM halo with a Navarro-Frenk-White

(NFW) profile [378, 379], which has been found to be in good agreement with galaxy cluster

data [520]. The NFW mass-density profile is

ρDM(r) =
c3gc∆v(z)

3
ρc(z)

1

(cr/rv) (1 + cr/rv)
2 , (4.17)

where rv is the virial radius; ∆v(z) is the virial overdensity (see below); c is a concentration

4Since the baryonic structure is much more concentrated than the DM halo (i.e. rH � rv), considering
the stellar component only is sufficient in a comparison with stellar-velocity data. The definition of σ used
by [355] involves measurements of velocity dispersion and radial velocity averaged up to some effective radius
[their Eq. (1)]. We compare their estimates with values of σ evaluated close to rH , where the Hernquist
profile is expected to give the largest contribution to their averaged estimations.
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parameter5; the function gc is given by

gc =
1

ln(1 + c)− c/(1 + c)
; (4.18)

and ρc(z) is the critical density of the Universe at the redshift under consideration,

ρc(z) =
3H2(z)

8πG
, (4.19)

where

H(z) = H0

√
(1 + z)3 ΩM + ΩΛ. (4.20)

The virial radius rv is defined as the distance from the center of the halo within which the

mean density is ∆v(z)ρc(z). The halo mass MDM is then simply defined to be the DM

mass within rv:

MDM =
4

3
πr3

v∆v(z)ρc(z) . (4.21)

Under the assumption that the cluster has just virialized6, perturbative calculations [409]

yield ∆v ' 18π2 ∼ 178, but the actual value depends on the cosmological model through

[299, 102, 286]

∆v(z) = 18π2 − 82ΩΛ(z)− 39Ω2
Λ(z), (4.22)

where

ΩM (z) =
(1 + z)3 ΩM

(1 + z)3 ΩM + ΩΛ
, (4.23)

ΩΛ(z) = 1− ΩM (z). (4.24)

The virial radius as a function of the halo mass reads

rv =

(
MDM

1014M�

)1/3( ΩM

ΩM (z)

∆v(z)

18π2

)−1/3 1Mpc
1 + z

. (4.25)

5We use the same symbol c to indicate the speed of light and the halo concentration parameter. The
difference should be evident from the context.

6For simplicity, we do not truncate the NFW halo at the virial radius, which is expected under such
virialization assumption (e.g. [408, 47]). Our predictions of the final occupation fractions are independent
of this assumption: SMBHs kicked at rmax > rv ∼ few Mpc in general do not find their way back to the
galactic center within a Hubble time.
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In the regime considered here (z < 1), the virial overdensity ∆v is roughly 0.7×18π2 ' 124

with a rather weak dependence on z; typical sizes of DM halos with the same mass may

differ by a factor ∼ 1.5 if placed at different redshifts.

Stott et al. [497] relate the BCG visible mass to the halo mass measured at r500, defined

to be the radius at which the mean density is 500 times the critical density of the present

Universe

M500 =
4

3
πr3

500 ρc(z = 0)× 500. (4.26)

Their observational relation reads [497]

log

(
M500

1014M�

)
= −14.29 + 1.28 log

(
MBCG

M�

)
, (4.27)

with dispersion σ ≈ 0.3 dex. The concentration parameter c is related to the halo mass and

in general depends on the redshift and the underlying cosmological model [381, 341, 337].

Those dependencies are however rather weak in the BCG range (M200 ∼ 1013−16M�), in

which theoretical predictions by different authors tend to agree (see Fig. 10 in [337]). Here

we implement the relation reported by [381]

log c = 5.26− 0.1 log

(
M200

1014M�
h−1

)
, (4.28)

with a dispersion of 0.05 dex. In analogy with Eq. (4.27), M200 is defined to be the mass

of the halo inside a radius r200 at which the mean density is 200 times the critical density

M200 =
4

3
πr3

200 ρc(z = 0)× 200. (4.29)

The value of M500 and M200 can also be obtained by integrating ρDM(r) from Eq. (4.17).

This gives the following constraints on r200, r500 and rv:

500

∆v

H2
0

H2(z)
= gc

(
rv
r500

)3 [
ln

(
1 +

cr500

rv

)
− cr500/rv

1 + cr500/rv

]
; (4.30)

200

∆v

H2
0

H2(z)
= gc

(
rv
r200

)3 [
ln

(
1 +

cr200

rv

)
− cr200/rv

1 + cr200/rv

]
. (4.31)

We implement an iterative procedure to find rv and c simultaneously; results are presented

in Fig. 4.2. For each BCG stellar mass, MBCG, we compute M500 through Eq. (4.27)

assuming a Gaussian error of 0.3 dex, and then r500 using Eq. (4.26). Given the initial

guess c = 5, the constraint (4.30) is used to obtain numerically rv. Eq. (4.31) is then solved
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Figure 4.2: Observationally based relation between the halo virial radius rv and the concentration
parameter c. Fitting formulas provided by [497] and [381] are solved using the iterative procedure
described in the main text. MBCG is reported on the color scale. Massive galaxies (lighter points
on the right) correspond to larger halos and to lower values of c; on the other hand, lighter BCGs
(darker points on the left) are hosted in smaller halos and present a wider range of concentrations
up to c ' 10. This figure is obtained with a uniform distribution in logMBCG/M� ∈ [10, 12] at
z = 0.

to find r200, and M200 is obtained using Eq. (4.29). An updated value of c can now be

computed through the observational relation (4.28). The whole procedure is then iterated.

When convergence is reached7, we add a Gaussian error of 0.05 dex to the final value of c.

Once rv and c are obtained, the halo mass, MDM, is given by Eq. (4.21). As a consistency

test, the BCG/DM-halo relation is shown in Fig. 4.3, where our Monte Carlo sample is

contrasted to observational data from [310].

To summarize: we model the BCG mass density from Eqs. (4.15) and (4.17) as ρ =

ρBCG + ρDM, while the associated gravitational potential is given by Φ = ΦBCG + ΦDM,

with

ΦBCG(r) = −GMBCG

r + rH
, (4.32)

and

ΦDM(r) = −gc
GMDM

rv

ln(1 + cr/rv)

r/rv
. (4.33)

7Convergence down to |∆c| < 10−6 is typically obtained after 5 iterations.



4.2 BCG merger modeling 99

1011 1012

MBCG [M�]

1013

1014

1015

1016
M

D
M

[M
�

]
Figure 4.3: Relation be-
tween MBCG and MDM

as implemented in our
model. Our Monte Carlo
realization (green circles) is
statistically consistent with
the observational catalog
of 160 BCGs collected by
[310] (black diamonds).
This figure is obtained with
uniform distributions in
logMBCG/M� ∈ [11, 12.3]

and z ∈ [0, 1.5], which are
the same ranges covered by
the data sample of [310].

4.2.3 Recoiled SMBH return timescales

Following the binary merger, the remnant SMBH recoils because of asymmetrical GW

emission which may result in its ejection from the BCG core. The recoiling SMBH transfers

its orbital energy into random motions of the surrounding stars through collisions, and may

sink back to the galactic center. Here we develop two physical models to predict the return

timescale of this process.

The remnant SMBH is initially kicked out on a radial trajectory. Detailed N-body

simulations of the process have been performed by Gualandris and Merritt [219], who detect

strong damping during each passage of the SMBH though the galactic core. It is therefore

critical to know whether the recoiling SMBH orbit crosses the galactic core, since damping

happens mainly in those quick passages. Repeated core passages cannot be prevented in

a spherically symmetric potential. However, post-merger galactic potentials are expected

to be triaxial [425, 272]: the SMBH orbit will not in general remain exactly radial and in

particular the core may not be crossed [527]. Moreover, especially for extreme kicks, the

SMBH can travel further than a Mpc from the BCG core. At this point, its trajectory is

likely to be perturbed by the clumpy potential of other galaxies and DM subhalos within

the main cluster halo, and return to the BCG core is unlikely. Missing the core would

result in a much longer inspiral timescale because only low-density regions contribute to

the frictional force. This difference is critical to our purposes, particularly if this timescale

gets comparable with the timescale between two galactic mergers: less efficient sinking may

result in “empty” galactic centers when the next satellite galaxy merges into the BCG. The

full complexity of the problem cannot be solved within our spherically symmetric model;

therefore, we developed two extreme approaches bracketing the uncertainties related to the
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dynamics describe above.

1. In the first model, we assume that the SMBH orbit is “quasi-circular” and we compute

the sinking timescale using Chandrasekhar’s [123] Dynamical Friction. This is meant

to be the extreme case for a strongly perturbed potential for which the SMBH never

crosses the galactic core.

2. In the second scenario, we consider repeated SMBH-core bounces by fitting the N-

body simulations reported by [219]. This model is appropriate for BCG and cluster

potentials which exhibit small deviations from spherical symmetry.

4.2.3.1 Dynamical-friction model

Let us consider a SMBH with mass MBH kicked with velocity vk from the galactic center

(r = 0). The SMBH will be ejected from the galactic halo if vk exceeds the escape velocity

of the system

vesc =

√
2G

(
MBCG

rH
+ c gc

MDM

rv

)
. (4.34)

If vk < vesc, the SMBH will stop at a distance rmax from the center. Gualandris and Merritt

[219] showed that the maximum displacement rmax can be estimated simply through energy

conservation neglecting star friction (see their Fig. 2)

1

2
v2
k + φ(0) = φ(rmax) . (4.35)

The initial displacement is reached in a time which is typically 100 times smaller than the

sinking timescale [219] and will be therefore neglected. Here we estimate the time needed

to sink back to r = 0 integrating the DF equation on quasi-circular orbits. The frictional

force exerted onto the BH is given by (e.g. [84])

F (r) =
4πG2M2

BHρ(r) ξ(r) ln Λ

v2
c (r)

, (4.36)

where vc(r) =
√
r dφ/dr is the circular velocity, ln Λ is the Coulomb logarithm and the

factor ξ(r) depends on the stellar velocity distribution. We take ln Λ = 2.5, as observed

in [219] in the very first phase of their simulated orbits (see also [177]). We assume the

velocity distribution to be locally Maxwellian, with velocity dispersion σ(r). Although not

exact, the Maxwellian distribution is approached as a consequence of collisionless relaxation
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Figure 4.4: SMBH return timescales, in both the DF (top) and the bounce model (bottom), as a
function of the kick velocity vk. We consider recoiling SMBHs with MBH = 109M� and BCGs with
stellar mass MBCG = 1011M� (solid), 5 · 1011M� (long-dashed) and 1012M� (short-dashed). The
remaining galaxy parameters (such as rH , MDM, rv and c) are estimated using the prescriptions
presented in Sec. 4.2.2. To facilitate comparisons, here we set variances in Eqs. (4.16), (4.27) and
(4.28) to zero. In order to bracket the effects of cosmological evolution we carry out the analysis
at both z = 0 (darker, black lines) and z = 1 (lighter, red lines). BHs are effectively ejected from
the BCGs when the sinking timescale (either tDF or tB) gets larger than the lookback time at the
merger redshift, which in turn is always smaller than the one computed at z = 1 (∼ 7.8 Gyr, shown
with a dotted horizontal line). Dotted vertical lines in the right panel are placed at the escape
velocity vesc, at which Eq. (4.41) must be truncated.
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processes [339]. Under this assumption, the ξ factor in Eq. (4.36) reads [84]

ξ(r) = erf
[
vc(r)√
2σ(r)

]
−
√

2

π

vc(r)

σ(r)
exp

[
− v2

c (r)

2σ2(r)

]
. (4.37)

The velocity dispersion σ(r) is computed from our galactic potential using the expression

provided in [83] when isotropy is assumed. The frictional force F (r) is tangential and

directed opposite to the SMBH velocity. The SMBH angular momentum L(r) = MBHrvc(r)

is lost at the rate dL(r)/dt = −rF (r) by Newton’s third law, causing the SMBH to slowly

inspiral while remaining on a quasi-circular orbit. The DF timescale, over which the SMBH

sinks back to the galactic center r = 0 from its initial position rmax, is thus given by8

tDF = −
∫ 0

rmax

dL(r)

dr

1

rF (r)
dr . (4.38)

DF timescales for typical systems are reported in Fig. 4.4 (top panel) as a function

of the kick velocity vk. A recoiling SMBH is strictly ejected only if vk > vesc, which is

unlikely since we are considering the whole cluster potential for which vesc may be as large

as ∼ 6000 km/s for the typical values MBCG = 1012M� and MBH = 109M�. However,

SMBHs are effectively ejected if their return timescales are larger than the lookback time

at the merger redshift zm (e.g. [410])

tL(zm) =

∫ zm

0

dz

(1 + z)H(z)
, (4.39)

which corresponds to the time the Universe needs to evolve from zm to now. In this

case, the SMBH remains outside the BCG, wandering in the intracluster medium. Our

systems are evolved from z = 1 to z = 0, which sets a (conservative) effective escape

condition tDF > tL(z = 1) for which SMBHs will never come back to the BCG center. As

shown in the top panel of Fig. 4.4, this condition is fulfilled for achievable kicks vk ∼ 1500

km/s, opening the possibility of several (effective) ejections from typical BCGs. When this

occurs, the distance between the SMBH and the galaxy center (offset) can be estimated

by numerically inverting Eq. (4.38). At z = 0, the SMBH needs the additional time

tDF − tL(zm) to sink to the center. The offset rz=0 is given by the displacement resulting

8Because of the intrinsic divergence in the density profile (4.15-4.17), this integral cannot be computed
up to r = 0: hereafter, we implement a lower threshold at 10−3rH ∼ 1 pc. We also neglect the dependence
on the redshift while computing the integral (4.38). In both models, the sinking times are computed fixing
the redshift the initial value (i.e. when the kick is imparted to the SMBH). As shown in Fig. 4.4, differences
between timescales computed at different redshifts are negligible in the interesting region tDF < tL(z = 1).
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in a such time9, i.e.

tDF − tL(zm) = −
∫ 0

rz=0

dL(r)

dr

1

rF (r)
dr . (4.40)

4.2.3.2 Bounce model

To describe recoiling SMBHs on radial orbit, we rely on the N-body simulations performed

by Gualandris and Merritt [219]. They study the motion of a SMBH recoiling from the

center of an initially spherically symmetric galaxy. The SMBH motion can be divided

into three distinct stages: (i) firstly, a short DF phase damps the radial oscillations as

predicted by Chandrasekhar’s [123] formula with 2 . ln Λ . 3; (ii) once the amplitude

of the motion is smaller than the core radius, the SMBH and the galactic core exhibit

oscillations about their common center of mass; (iii) finally, the SMBH and the core reach

thermal equilibrium when the SMBH kinetic energy equals the mean kinetic energy of the

stars in the core. Orbital energy dissipation occurs mostly during core-SMBH encounters.

Here we are interested in estimating the timescale tB, given by the sum of the first and the

second phase.

The duration of the first two phases is listed in [219] for 18 simulations in total, 6 in

each of their 3 different models. As suggested by the authors themselves [their Eq. (18)],

the second-phase times originally reported must be corrected, since the number of N-body

particles used is smaller than the actual number of stars in a galaxy. They implement

the galaxy profile firstly proposed by [503] to describe binary-depleted galactic cores which

present a well defined profile transition at the core radius rc. Oscillations damp only during

passages through the galaxy core, whose properties are expected to strongly influence the

damping time. For a given MBCG, we firstly compute the SMBH mass MBH, the velocity

dispersion σc and the mass density ρc at rc for each of their three models using the density

profile of [503]. Even if DF cannot fully describe such core-passage dynamics, the return

time appears to satisfy the same scaling relation as if DF would be fully responsible for

the sinking process [219]. We therefore scale the simulated kick velocities with σc and the

reported return timescales tB with σ3
c/G

2ρcMBH.

Once reduced to a dimensionless problem, we fit their 18 simulated timescales with the

ansatz

tB =
σ3
c

G2ρcMBH
exp

(
a
v

σc
+ b

)
, (4.41)

truncated at the escape velocity vesc. Here a and b are best fit coefficients. They only
9In both scenarios, offsets are computed with the galaxy properties at z = 0.
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Figure 4.5: Fitting curve employed to
compute the return timescale in the
bounce model tB as a function of the kick
velocity vkick. Markers show predictions
computed by [219] in each of their mod-
els, namely A1, A2 and B. Once reduced
to dimensionless quantities with the ex-
pected scaling, all three models appear
to lie on the same lin-log relation, which
however must be truncated at the escape
velocity vesc. The dimensionless-scaled
points and the fitting curve (dashed black
line) depend only weakly on the galaxy
massMBCG. This figure is produced with
M = 1012M�; the resulting fitting coeffi-
cients are a = 0.26 and b = 4.44.

depend (weakly) on the galactic mass MBCG which enters in the correction factor to tB

due to the limited number of N-body particles. Fig. 4.5 shows the results of our fit for

a fiducial mass MBCG = 1012M�. The dimensionless fit can be converted into physical

units by computing σc and ρc for our galactic profiles (Hernquist+NFW) at a fiducial core

radius

log

(
rc
pc

)
' 1.1 + 0.09 log

(
rH
pc

)
, (4.42)

as obtained by matching the mass dependencies in Eq. (4.16) with the analogous estimate

for the core radius used in [219]. Results of our procedure are reported in the bottom

panel of Fig. 4.4. This second model predicts longer return timescales for kicks smaller

than ∼ 1000 km/s; while large kicks make SMBHs return very quickly (∼ 100 Myr) to

their galactic centers. If the SMBH does not escape from the cluster (v < vesc), there

will always be a first core passage causing enough dissipation to trigger more and more

passages leading to a quick comeback.

The SMBH offset at z = 0 can be computed by iterating the fit procedure described

above. We numerically look for the hypothetical kick velocity ṽk which would result in

a return time equal to tB − tL(zm), i.e. the time left to the SMBH at z = 0 to finally

reach the galactic center. Assuming the SMBH motion to be approximately oscillatory, we

compute the amplitude of the oscillations r̃z=0 from energy conservation [cf. Eq. (4.35)]

and we finally estimate the offset to be rz=0 = r̃z=0 sinϕ, with ϕ uniformly distributed in

[0, π].
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4.2.4 BCG merger rates

In the last few years, strong observational evidence for a prominent growth of BCGs from

z = 1 came about. Among other studies, [515] observes that early-type galaxies grew

by a factor 5-10 in size and 2-4 in mass since z = 1, and [310] finds that BCGs grow

in mass by a factor of ≈ 2 in the redshift range 0.9 − 0.2 (see also [109, 40]). BCG mass

growth is naturally explained by frequent mergers in the hierarchical build-up scenario, and

several dedicated simulations and theoretical studies find that major and minor mergers

can account for it [151, 397, 300, 303]. However, there are claims that size growth cannot

be ascribed to mergers, and might be related to the redshift evolution of the properties of

the underlying DM halos [493, 419]. In general, the merger-driven mass-growth scenario

is consistent with observations of close galaxy pairs [315, 103, 152, 445, 549, 325], and

both observations and simulations point toward high merger rates for early-type galaxies

[245, 327], that can be up to 0.4/Gyr at z ∼ 1 for BCGs [309].

Here we exploit the observationally based approach put forward by Sesana [472]. We

are not interested in a global galaxy-merger rate, but rather in the distribution of mergers

experienced by the typical BCG. Building on the same formalism as in [472], the galaxy

merger rate per unit mass ratio10 and redshift experienced by a galaxy of a given mass can

be written as:
d2N

dzdQ

∣∣∣∣
M

=
df

dQ

∣∣∣∣
M,z

1

τ(z,M,Q)

dtL
dz

. (4.43)

Here, df/dQ|M,z is the differential fraction of galaxies with mass M at redshift z paired

with a secondary galaxy having a mass ratio in the range [Q,Q + δQ]; τ(z,M,Q) is the

typical merger timescale for a galaxy pair with a given M and Q at a given z; and dtL/dz

is the integrand in Eq. (4.39). df/dQ can be directly measured from observations, whereas

τ can be inferred by detailed numerical simulations of galaxy mergers. The number of

mergers experienced from z = 1 to z = 0 by a galaxy starting with mass MBCG = Mz=1

at z = 1 can be therefore written as

N(Mz=1) =

∫ 0

1
dz

∫ 1

Qmin

dQ

∫
dM

d2N

dzdQ

∣∣∣∣
M

δ[M −M(z)], (4.44)

where the integral is consistently evaluated at the redshift-evolving galaxy mass M(z)

through the Dirac delta function.

To estimate the mass growth of BCGs, we consider the fraction f of galaxies with a

companion in the range Qmin = 0.25 < Q < 1, which corresponds to the standard definition

of major mergers. f is estimated in several observational studies, and it is generally fitted

10We indicate galaxy mass ratios with Q, to differentiate with black-holes mass ratios q.



106 Missing black holes in brightest cluster galaxies

with a function of redshift of the form

f = a(1 + z)b. (4.45)

The parameters a and b are, in general, functions of the primary galaxy mass. Since we are

concerned with BCGs, we consider fits to Eq. (4.45) corresponding to primaries with mass

M > 1011M�. We construct three models, to which we will refer as “Optimistic”, “Fiducial”

and “Pessimistic”. In the “Fiducial” model we take the best fit to the observations of [103],

yielding a = 0.035, b = 1.3. Those data are consistent with a larger fraction described by

a = 0.07, b = 0.7, which we take as “Optimistic” model. A smaller pair fraction with a

stronger redshift dependence is found in [325], corresponding to a = 0.02, b = 1.8, which

we take as “Pessimistic” model. Pairs are then distributed across the allowed mass ratio

range according to df/dQ|M,z ∝ Q−1 [324]. Ref. [325] additionally provides the pair

fraction in the range 0.1 < Q < 0.25, corresponding to minor mergers. This is found to be

f ≈ 0.06 independent of redshift. We add those to the “Pessimistic” model to construct

the “Pessimistic-Minor” model, which we use to assess the impact of minor mergers on our

findings (see below).

The function τ is then specified by [280]

τ = 1.32 Gyr

(
M∗

4× 1010h−1M�

)−0.3 (
1 +

z

8

)
, (4.46)

where M∗ is the total mass of the pair11. We shall stress here that Eq. (4.46) provides the

galaxy merger timescale, which can be regarded as the timescale over which a bound SMBH

binary forms. The actual coalescence of the binary might be further delayed because the

system needs to get rid of its energy and angular momentum in order to get to the efficient

GW emission stage. This is known as the “final parsec problem” [370]; we will return on this

potential caveat in the next Section. The galaxy merger rate is finally obtained by inserting

Eq. (4.45) –distributing the pairs according to Q−1– and Eq. (4.46) into Eq. (4.43).

Fig. 4.6 compares the predicted mass growth and average number of mergers suffered

by BCGs as a function of their mass at z = 1 to a number of observations and theoretical

models. When corrected for the expected contribution of minor mergers12, the “Fiducial”

model predicts a mass growth in line with observations by [310]. The “Optimistic” one

has a larger growth, consistent with theoretical modelling of [151] and [303], whereas the

11We fixed rp = 30 kpc in Eq. (10) of [280], because this is the projected separation of the samples we
use.

12This correction is only implemented to perform this sanity test. The “Fiducial” and “Optimistic”
models do not include minor mergers.
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Figure 4.6: BCG mass growth (top panel) and average number of major mergers (bottom panel)
as a function of the initial mass at z = 1. In both panels, red solid curves are predictions of our
observation-based semianalytic models; from bottom to top: “Pessimistic”, “Fiducial” and “Opti-
mistic”. In the top panel, the additional black–dashed lines are (in the same order) growth factors
corrected for the contribution of minor mergers (the lower one corresponds to the “Pessimistic–
minor” model, whereas the same fractional growth correction factor is applied to get the other two
curves). The magenta triangle is the average mass growth predicted by [310], the brown pentagon
is derived from [151], the blue circles are a selected sample of BCGs from [303], and the cyan square
is a simulation from [397]. In the bottom panel, only the number of major mergers is considered,
and we additionally plot the average number of mergers found by [65] (magenta triangle), [549]
(brown pentagon) and [245] (blue square).

“Pessimistic” is marginally consistent with the data, and tends to slightly underpredict the

BCG mass growth (still yielding to mass doubling since z = 1). We will consider all models

in the following, and we stress that our main results do not qualitatively depend on the

details of the growth history of BCGs, so long as most galaxies experience at least one

merger at z < 1.

A small fraction of our galaxies can grow up to 1013M� (in the “Optimistic” scenario

in particular), which might be at odds with the sharp cutoff in the galaxy mass function

observed around 1012M� [64]. However, determinations of the mass function are typically

obtained by converting luminosities to stellar masses. This results in large systematic

uncertainties (especially at the high-mass end) due to the assumptions on the stellar mass-

to-light ratio, as well as the different possible light profile fitting procedures [70], which can

extend the high mass tail of the galaxy mass function by 0.5 dex [69]. Moreover, extreme
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cases of BCGs with masses possibly in excess of 5× 1012M� have been reported, the most

notable case being ESO 146-IG 005 [119].

4.2.5 Putting the pieces together

We select the initial BCG mass at z = 1 using the high-redshift sample collected in [310],

consisting in 32 observed BCGs with redshift between 0.8 and 1.6. For each initial galaxy

of mass MBCG = Mz=1, we assign a number of mergers drawn from a Poissonian distribu-

tion with average N(Mz=1); mass ratios and redshifts of galactic mergers are distributed

according to dN/dzdQ as reported in Eq. (4.43)13. Both BCG and each satellite galaxy,

are then populated with SMBHs using the SMBH-bulge relation of [355]

log

(
MBH

M�

)
= 8.46 + 1.05 log

(
MBCG

1011M�

)
, (4.47)

with a dispersion of 0.34 dex. In particular, McConnell and Ma [355] detect steeper slopes

in the galaxy scale laws when BCG data are included in the fitted sample (cf. also [292]).

When a BCG merges with a satellite galaxy, we assume that the satellite mass is fully

accreted by the BCG

M ′BCG = (1 +Q)MBCG. (4.48)

and we compute the stellar and DM profile from M ′BCG using the procedure described in

Sec. 4.2.2. No SMBH remnant can be present in the post-merger BCG if both the parent

BCG and satellite did not host any SMBH at their centers; a single SMBH is assumed to

lie in the newly formed BCG if only one of the parents carried a SMBH; finally, if both

the BCG and the satellites had a SMBH, we assume that the two SMBHs also merge at

the same time (redshift) as the galaxies merge. At each SMBH merger, we compute the

remnant mass, spin and recoil as presented in Sec. 4.2.1. From the kick velocity and the

galactic potential of the newly formed BCG, we compute the return time tR using either

tDF from Eq. (4.38) or tB from Eq. (4.41) in each of our two models. In practice, the SMBH

is removed from the simulation and placed back to the galactic center after a time tR. If tR

is smaller than the time between two galactic mergers, the SMBH will simply settle back

at the center of its BCG; if instead a subsequent galactic merger happens before, the BCG

13We bin mass and merger distributions and generate our Monte Carlo samples accordingly. Bin widths
have been determined through numerical experiments: 10 bins have been used to map the BCG mass
distribution from the [310] data; 5 bins have been considered to obtain the average merger numbersN(Mz=1)
(a Poissonian dispersion is then applied), while for dN/dzdQ we used 4 bins in the mass ratio and 37 bins
in the redshift (bin widths are smaller for z < 0.3, where redshifts get closer to the end of the simulations
z = 0).
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center may already contain a SMBH (coming from one of the satellites). A new binary

merger is computed, possibly resulting in another ejection from the BCG.

4.2.6 Possible caveats

A few simplifying assumptions have been made in the implementation of this procedure,

which we justify in the following.

Firstly, we assume that all SMBH binaries merge, thus circumventing the so-called

final-parsec problem [370]. The bottleneck to SMBH binary evolution [60] is believed to

occur on the parsec scale, where intersecting-orbit stars have all been ejected but GWs

are still not efficient enough to finally drive the inspiral. In principle, the relatively low-

density gas-poor galaxy cores of BCGs are the most exposed to SMBH binary stalling.

It has been found that triaxial potentials might alleviate the problem by increasing the

number of orbits that cross the binary’s loss-cone, therefore providing a way to get rid

of additional binary energy and angular momentum [363]. However, recent investigations

[524] called this result into question by showing that triaxiality alone might not be enough.

Nonetheless, in real mergers, other factors such as rotation, bar-like instabilities and an

unrelaxed time evolving potential might significantly enhance the flux of stars into the loss

cone [68], and recent ab-initio N-body simulations of merging stellar bulges succeeded in

driving the SMBH binary to final coalescence [425, 272]. If some gas is present, this may

provide additional help in hardening the binary (see, e.g., [35, 178, 162] for gas driven

binaries), even though it has been also argued that gas might indeed be unable to absorb

significant angular momentum from the binary if the gaseous-disk mass is limited by self-

gravity and fragmentation [319]. Gas-driven inspiral of SMBH binaries is studied in detail

in Chapter 5 of this Thesis.

Secondly, we only update SMBH masses and spins during merging events, thus neglect-

ing any accretion mechanism. Giant ellipticals are gas-poor systems, generally unable to

supply large amounts of material to feed the central SMBH. It is observationally well known

that the accretion activity of the most massive BHs peaks at z ≈ 2 (e.g. [246]), rapidly

declining at lower redshifts. This trend has been reproduced by state of the art theoretical

models, which find that the most massive SMBHs at low z grow primarily via mergers

[344, 180], with little contribution from gas accretion. The change of the SMBH spin mag-

nitude due to accretion can also be safely neglected: momentum-conservation arguments

[504] imply that the spin magnitude is modified significantly only if the accreted mass is

of the order of the SMBH mass itself. This assumption is coherent with taking isotropic

spin directions neglecting further spin-alignment processes (see discussion in Sec. 4.2.1).
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Thirdly, we neglect any delay between galactic and SMBH binary mergers, thus as-

suming that they take place simultaneously. In reality, binary formation and inspiral will

postpone the SMBH merger even if the final-parsec problem is solved efficiently. In dense

stellar environments, if there is a continuous supply of stars interacting with the binary

(technically, a full loss cone) SMBHs generally inspiral for > 3×107yr before merging with

each other [471], and similar timescales apply to gaseous environments [165]. This delay

will likely be longer for low density ellipticals [272]; however, BCGs generally experience at

most 2-3 major mergers since z = 1, therefore delayed SMBH binary mergers could have

a substantial impact on our results only if binaries typically survive for Gyrs (in which

case, the distinction between delayed merger and stalling becomes blurry). We try here

to critically assess the impact on delayed mergers on our results. We consider the longest

merger timescales found in N-body simulations of merging galaxies performed in [425, 273].

When scaled to massive ellipticals, the results of [273] give coalescence times that can be

as long as ∼ 1Gyr (see their Table 5), whereas [425] provide shorter timescales (see their

Figure 4). We therefore count a posteriori the fraction of subsequent mergers separated by

less than 1Gyr. This fractions turned out to be:

• ∼0.2 in the “Fiducial” scenario;

• ∼0.3 in the “Optimistic” scenario;

• ∼0.12 in the “Pessimistic” scenario;

• ∼0.25 in the “Pessimistic–Minor” scenario (here the number of mergers is larger).

We see that delayed mergers can produce triple interaction in 30% of the cases at most

(considering only the major merger statistics). When a triplet forms, either (i) a strong

triple interaction occurs, causing the ejection of the lightest of the three SMBHs (and

possibly accelerating the coalescence of the binary left behind), or (ii) a hierarchical system

forms, possibly exciting Kozai resonances in the inner binary, again driving it to rapid

coalescence. The outcome of the two processes is generally different, and the occurrence of

one or the other depends on how far has the SMBH binary already gone into the hardening

process, on how shallow has the galaxy core became, etc. We notice, however, that in case

(i) the number of coalescences decreases at most proportionally to the fraction of triplets

that form, whereas in case (ii), the number of coalescences is basically unaffected, since each

triplet formation leads to the coalescence of the binary that was already in place. Extensive

numerical experiments performed by [244] showed that triple interactions generally lead to

at least one binary coalescence (in 85% of the cases), usually on a timescale shorter than

1 Gyr (Fig. 8 in [244]). Therefore, triple interactions might cause a fractional change of our
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ejection fractions of 0.3 at most. In any case, it might be interesting to track consistently

triplets in our simulations, and this point may be the subject of future improvements of

our model. This effort is currently being carried out in [96]. We also note that similar

assumptions are often made in more elaborate galaxy-evolution models (see e.g. [47] for a

critical discussion).

We are also neglecting the previous merger history of the BCGs. BCGs will generally

reach z = 1 after multiple merger events. The inspiral of a SMBH binary preceding a

merger is expected to leave an imprint on the host galaxy in the form of a core scouring

in the BCG center (especially if little nuclear star formation occurs). At each merger,

the mass ejected in stars is of the order of ∼ 0.5M (where M is the total mass of the

binary) [360]. The effect may be important after many merger generations and it leads to

strong modification of the galactic potential in the core region. This effect is absent in our

simplified model, but we note that the core properties are only important when estimating

the SMBH return time in the bounce model (Sec. 4.2.3). The fitting procedure developed

here is built on the results obtained by [219], which in turn consider an elaborate galaxy

model [503] where core depletion is taken into account.

4.3 Results and discussion

We combine different prescriptions for two main processes

• the return time: “Dynamical Friction” (DF) or “Bounce” (Sec. 4.2.3);

• the merger distribution: “Fiducial”, “Optimistic” or “Pessimistic” (Sec. 4.2.4 ).

This results in a set of six models that we use as an investigation playground: “Fiducial-DF”,

“Fiducial-Bounce”, “Optimistic-DF”, “Optimistic-Bounce”, “Pessimistic-DF”, “Pessimistic-

Bounce”. In each model, the evolution of the SMBH population is characterized by the

following input parameters:

• initial BCG occupation fraction fz=1;

• occupation fraction of the satellite galaxies fs;

• initial SMBH spin magnitudes in the BCGs χz=1;

• SMBH spin magnitudes in the satellites χs.

We discuss in the following the results of our simulations, separating the effect of each

individual parameter. The main observables are:
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• final BCG occupation fraction fz=0 (later splitted between those galaxies which un-

derwent a SMBH replenishment fR
z=0 and those which keep their original SMBH

fNR
z=0);

• fraction of BCG that do not host a nuclear SMBH at z = 0, simply defined by

1− fz=0;

• distance from the BCG center (offset) of the ejected SMBH at the present time rz=0.

For any given set of parameters we simulate 1000 BCGs (with the exception of the

runs presented in Figs. 4.9 and 4.11 which contain 10000 BCGs): typical Poisson counting

errors on the final occupation fractions are therefore ∼ 3%. Most of the results presented

here are computed assuming fz=1 = 1 as a simplifying assumption, cf. Sec. 4.1 (with the

exception of Sec. 4.3.2.2 where such issue is explicitly investigated).

4.3.1 Host properties: cluster shape and BCG merger rate

The six models described above are defined by distinct ‘environmental properties’ which

are not directly related to the SMBH population itself; namely the merger history of BCGs

(determining the number of SMBH binary mergers) and the shape of the cluster potential

(governing the typical return timescales of ejected SMBHs). We describe their impact on

the results first (fixing fz=1 = fs = 1), turning to the properties of the SMBH population

in the next subsection.

4.3.1.1 Bounce and DF models

The detailed shape of the cluster potential affects the trajectory of the recoiling SMBH.

If all gravitational potentials were spherically symmetric, then SMBHs would always get

back to the core of BCGs, and the Bounce model would provide a complete description of

the dynamics. However, cluster density profiles are often triaxial, unrelaxed, and ‘clumpy’.

In a triaxial potential orbits do not conserve angular momentum, implying that the SMBH

will miss the BCG core at subsequent passages; additionally, gravitational perturbations

due to sub-halos and other galaxies can easily deflect the SMBH out of its initially radial

orbit. The DF model is taken as an extreme (and admittedly unrealistic) case in which the

SMBH returns on a circular orbit. Both the DF and the Bounce models are idealizations

meant to bracket the range of possible outcomes. As shown in Fig. 4.4 for three selected

systems, return timescales can easily exceed the Hubble time in the DF model. This is

better seen in Fig. 4.7 where the distributions of recoil velocities vk and return times tR

are computed along the evolution of the BCG population for our four default models. For
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Figure 4.7: Return time distribution tR (left) and recoil velocity distribution vk (right) of all
kicked SMBH in a 1000-events Monte Carlo realization of our four fiducial models. Red (black)
curves are for the Bounce (DF) models, whereas solid, dashed and dotted curves correspond to the
Fiducial, Optimistic and Pessimistic scenarios respectively, as labeled in figure. All distributions
are computed assuming unit occupation fractions at z = 1 and χz=1 = χs = 1.

all of them, the recoil distribution presents a high velocity tail extending to about 4000 km

s−1, with a median value of about 600 km s−1. The difference between the Bounce and the

DF models is clearly shown in the return time distribution. As expected, the rise of the

distribution at tR < 1 Gyr (corresponding to small kick velocities) is similar because the

bounce dynamics is basically equivalent to a DF process when the SMBH does not leave

the galaxy core. However, in the DF scenario, about 10% of the SMBHs are ejected outside

the host BCG and interact only with the low-density dark-matter background outside the

galaxy, with resulting return times longer than 10 Gyr (cf. the wider extent of the black

distributions in the left panel of Fig. 4.7). As a result, BCG occupation fractions fz=0 can

be as low as 85% in the case χz=1 = χs = 1, as reported in the upper panels of Fig. 4.8.

Conversely, in the Bounce model, only few SMBHs do not make it back to the galaxy core

following a kick, resulting in occupation fractions of 98% or higher. The two models are

best compared in terms of ‘depleted fraction’, i.e. the fraction of BCGs that do not host a

SMBH at z = 0, which is simply 1− fz=0. This is shown in the lower panels of Fig. 4.8; it

is clear that the DF model depletes BCGs of their central SMBH 10 times more efficiently

than the Bounce model.
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Figure 4.8: BCG occupation fractions. The left plot shows the “Fiducial” and the “Optimistic”
models, whereas the right plots compares the “Pessimistic” and the “Pessimistic-Minor” models, to
assess the impact of minor mergers. In each plot, the top panel shows the dependence of the z = 0

occupation fraction fz=0 on the initial BCG spin magnitude χz=1. To highlight the peculiarities
of each individual model, the lower panel shows the corresponding depletion fraction 1 − fz=0, in
logarithmic scale. Runs have been performed with two prescriptions on the spin magnitude of the
satellite galaxy SMBHs χs, taken either to be equal to the spins of the BCG SMBHs (black curves)
or uniformly distributed in [0, 1] (red curves). A quadratic interpolation is presented in both cases.
While final fractions as low as ∼ 0.85 are detected in the DF scenario, only fz=0 ∼ 0.98 can be
achieved in spherically symmetric (Bounce) galaxies even for maximally spinning SMBHs.
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4.3.1.2 Fiducial, Optimistic and Pessimistic models

Conversely, the adopted merger rate does not have a strong impact on fz=0, and the

difference between Fiducial, Optimistic and Pessimistic models is only modest, being at

most a factor of ∼ 2 in terms of depleted fractions, as shown in Fig. 4.8. For example, for

χz=1 = χs = 1, 1 − fz=0 varies between 0.1 and 0.15 for the DF model. The impact of

minor mergers is also small, as shown in the left panels of Fig. 4.8.

Although apparently counter intuitive, this result is in fact expected because a higher

BCG merger rate implies also a higher probability of multiple mergers. While it is true

that each SMBH has a larger chance to be kicked out of its host, it is also true that

there is a higher probability that it is replaced by another (possibly undermassive) SMBH

brought in by a subsequent merger. Enhanced ejections and replenishments nearly cancel

out making fz=0 only weakly dependent on the details of the merger history. This is

illustrated in Fig. 4.9, where the extreme case χz=1 = χs = 1 is considered. In the

Fiducial-DF model, 87% of the BCGs host a SMBH at z = 0 (fz=0 = 0.87); however, only

79% of them retained their original z = 1 SMBH, while ∼9% are depleted of their original

SMBH and ‘replenished’ in a subsequent merger with a satellite galaxy hosting a SMBH.

In the Optimistic-DF model those percentages become 69% and 16%, respectively: more

SMBH are ejected (only 69% of original SMBHs retained), but a larger fraction of BCGs

is replenished (16%) by virtue of the higher merger rate (causing a higher probability of

multiple mergers). The opposite behavior is detected when the Pessimistic-DF scenario is

considered. The balance is almost perfect in the Bounce models (also shown in Fig. 4.9).

All three scenarios show fz=0 ' 0.98, but the probability of replenishment increases from

the Pessimistic to the Fiducial and Optimistic models following a larger number of SMBH

ejections.

As expected, the SMBH-mass distributions are different for replenished and non- re-

plenished galaxies. Non-replenished galaxies reflect the injected correlation law (4.47) with

lower scattering at z = 0, while the replenished samples tend to host undermassive SMBHs

which have grown within smaller satellite galaxies in the cluster.

4.3.2 SMBH properties: spin magnitude and initial occupation fraction

Having explored the impact of the physics governing the evolution of the SMBH environ-

ment, we turn now to a description of the effect of the parameters related to the SMBH

population itself; in particular SMBH spins and initial occupation fraction.
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Figure 4.9: Deviations from the SMBH/host relation in replenished galaxies, and final occupation
fractions. We show the distributions of the SMBH mass MBH and the galaxy mass MBCG in our
six different models, assuming fz=1 = fs = 1 and χz=1 = χs = 1. Dashed and dotted lines show
the average and the standard deviation of the initial correlation (4.47). Blue circles show the initial
z = 1 sample. We track those systems where a replenishment occurred (R, red diamonds) and
those which just underwent a plain evolution to z = 0 (NR, green triangles). While the evolved
NR sample still lies on the z = 1 correlation but with lower scatter, replenished galaxies clearly
exhibit deviations towards lower MBH values. Occupation fractions for each sample are reported
in the legends and are computed considering 10000 initial BCGs; points are shown for only 2000
initial BCGs to avoid cluttering.

4.3.2.1 Spin magnitude

The magnitude of the SMBH spin vectors in BCGs is essentially unknown, since most of

the direct measurements from Kα iron lines involve local Seyfert galaxies [99, 440] and it

is difficult to derive clear constraints through indirect arguments related to jet production,

AGN spectra energy distribution fitting, or the evolution of the SMBH accretion efficiency

with mass and redshift (see, e.g., [535, 477, 382]). However, we know that spins are

crucial in the physics of gravitational recoils, because highly spinning SMBHs are likely to

experience stronger recoils [see Eq. (4.14)]. We therefore need to investigate the SMBH

parameter space carefully, to cover the full range of possibilities predicted by our models.
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For each of our four models, we initialize χz=1 at a fixed value, running between zero and

one. As stated in Sec. 4.2.1, the spin orientations are assumed to be isotropic. For each

case, we consider two different χs distributions: i) χs = χz=1 in each individual merger

tree, and ii) χs random in the range [0, 1]. As shown in the upper panels of Fig. 4.8,

fz=0 is always a decreasing function of χz=1, and is fairly well described by a quadratic

function. Trends are best seen in the lower panels of Fig. 4.8, where we plot the depleted

BCG fraction 1−fz=0. In terms of the depleted fraction, spins have an order of magnitude

impact on the results. In the DF model, only ≈1-4% of the BCGs are depleted at z = 0

(i.e., 1− fz=0 = 0.01− 0.04) for χz=1 = 0, whereas up to ≈10-15% of the BCGs lost their

SMBH at z = 0 (i.e., 1 − fz=0 = 0.1 − 0.15) for χz=1 = 1. Similar trends hold for the

Bounce model, but in that case only ≈0.1% to ≈2% of the SMBHs are lost at z = 0. It

is interesting to notice that even for χz=1 = 0, we get 0.01 < 1 − fz=0 < 0.04 in the DF

models. This is, again, because of multiple mergers: a Schwarzschild SMBH can acquire

a spin χ ≈ 0.5 − 0.6 in a single merger event [see Eq. (4.9)], which significantly enhances

the probability to experience a superkick if a subsequent merger occurs. The different χs

prescriptions [case i) and ii) above] show the same qualitative feature. The fits to the

depleted fractions (lower panels of Fig. 4.8) intersect around χz=1 = 0.5 as expected: for

lower values, the average χs in case ii) is larger, resulting in more superkicks and more

SMBH ejections, while the opposite is true in case i).

4.3.2.2 Initial BCG occupation fraction

All theoretical models developed to reproduce the SMBH cosmic evolution (including

present number density, and quasar luminosity function up to high redshift) require an

amount of SMBHs that guarantees an occupation fraction f = 1 for massive galaxies

[344, 66, 220, 275], pending, of course, the occurrence of superkicks. There is always the

possibility that a superkick occurs at z > 1, even though galaxies at higher redshift are

generally richer of cold gas, which will likely promote SMBH spin alignment during mergers

[92, 167], ultimately suppressing superkicks [271]. Nonetheless, this might introduce some

uncertainty on fz=1 and, although we do not expect it to be far from unity, we study the

sensitivity of our models to this parameter for completeness.

Fig. 4.10 shows fz=0 as a function of fz=1 for 240 different merger trees. The main

evidence is that fz=1 scales linearly with fz=0. The slopes and the intercepts of the linear

relation mostly depend on the occupation fraction of the satellite galaxies fs, i.e. on

how many SMBHs are injected in the simulations between z = 0 and z = 1. The linear

relationship between fz=1 and fz=0 can be easily understood using a simple analytic model
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Figure 4.10: Dependence of the final BCG occupation fraction (fz=0) on the initial occupation
fraction of BCGs (fz=1) and satellites (fs). Each point represents a simulation of 1000 clusters
where both the initial BCG and the satellite galaxies have the same initial spin χz=1 = χs (indicated
with symbol size, where small symbols stand for slowly rotating SMBHs and large symbols for high
spins) and model prescriptions (indicated with different symbol shapes, as detailed in the legend).
Each sample (clustered along the dashed lines, with different colors) is computed with a different
value of fs. As confirmed analytically, the final BCG occupation fraction scales linearly with the
initial occupation fraction; slopes and intercepts are mainly determined by fs.

(built along the lines of [464]). The probability fi of a BCG to have a SMBH at the i-th

merger generation consists in the sum of (i) the probability that only the BCG had a

SMBH at the previous generation fi−1(1 − fs), (ii) the probability that only the satellite

had a SMBH fs(1 − fi−1) and (iii) the probability that there has been a merger but the

SMBH has not been ejected fsfi−1(1 − Pej) (where Pej is the ejection probability). This

yields

fi = fs + fi−1 − fsfi−1(1 + Pej) . (4.49)

Using the convergence limit f∞ = 1/(1 + Pej), and fixing fz=1 as initial condition, we can

write down the previous expression as a geometric progression

fi − f∞ = (fz=1 − f∞)

(
1− fs

f∞

)i
. (4.50)
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Figure 4.11: Number of wandering, off center, SMBHs as a function of their present distance from
the galactic center (offset) rz=0. The DF models (suited for non-spherical potentials) present at
least a factor ∼ 10 more wandering SMBHs than the Bounce models. SMBH detection through
off nuclear quasar signatures or compact stellar systems may therefore distinguish between the two
scenarios. Each run presented in this figure contains 10000 BCGs, which sets the absolute scale of
the SMBH number; three different spin-magnitude values χz=1 = χs = 0 (left panel), 0.5 (middle
panel) and 1 (right panel) are considered; initial occupation fractions are fixed as fz=1 = fs = 1.

With the further (strongly idealized) assumption that Pej is constant over different merger

generations, we can estimate the final occupation fraction in our samples to be

fz=0 − f∞ = (fz=1 − f∞)
∑

j=0

εj

(
1− fs

f∞

)j
, (4.51)

where εj is the fraction of BCGs in which j mergers occur between z = 1 and z = 0.

The above expression confirms the main trends observed in the simulations presented in

Fig. 4.10, namely the linear relationship between fz=0 and fz=1, with slope and intersect

mainly depending on fs. The initial occupations fz=1 and fs are physically determined by

cosmic history at early times (z > 1), whose modeling is outside the scope of the present

analysis. However, as discussed before, we expect any deviation of fz=1 from unity to be

also related to the occurrence of superkicks.

4.3.3 Triaxiality and wandering SMBHs

Our results show that superkicks likely have very interesting and potentially observable

astrophysical consequences, most notably, a decrease of the SMBH occupation fraction in

BCGs down to 0.9 or lower, under specific assumptions. At the time of writing, secure

SMBH mass measurements have been performed in about 10 BCGs [356], an insufficient

number to empirically constrain the models presented here. As described in the introduc-

tion, future 30m-class telescopes like E-ELT and TMT can easily boost those figures by

a factor of 10 or more. With O(100) SMBH mass measurements, significant deviations
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from fz=0 = 1 can be measured, making it possible to directly test our superkick models,

and possibly providing insights on the BCG SMBH spin distribution. As shown in the

previous Section, fz=0 strongly depends on both spin magnitudes and the detailed shape

of the cluster potentials. The effect of the two ingredients is somewhat degenerate, since

both high spins and non spherical potentials tend to reduce the occupation fraction. The

degeneracy is, however, only partial. For example, fz=0 < 0.9 is possible only if cluster

potentials are highly non-spherical and typical spins are higher than 0.8. A measurement

of such low BCG occupation fraction will therefore provide valuable information on both

the dynamics of the kicked SMBHs and their spins. Conversely, an occupation fraction of,

say, 0.98 can be due to a combination of extremely low spins and non spherical potentials

or very high spins and almost spherical potentials, as demonstrated in the lower panel of

Fig. 4.8. In this case, degeneracy might be broken via independent measurements of the

cluster mass distribution derived, for example, by lensing. Those allow us to reconstruct

the shape of the cluster potential, thus providing an estimate of how likely/unlikely it is

for an ejected SMBH to return on a radial orbit.

We note that the Bounce and DF prescriptions have been taken as extreme cases of

a continuum range of possibilities. Since those prescriptions have a strong impact on the

results, we can try to assess which of the two might be closer to reality on the basis of

qualitative theoretical arguments. In the Bounce model, subsequent passages of the SMBH

across the BCG core are crucial for damping the radial oscillations, critically shortening

the return time. As a matter of fact, the clumpiness of a typical galaxy cluster mass

distribution might easily cause a SMBH kicked to a few hundred kpc to miss a galaxy

core which is smaller than 10 kpc across [306]. A simple estimate of the deviation from

the radial path can be done by considering close encounters between the kicked SMBH

and other cluster galaxies at apoastron. Consider a SMBH ejected to r ≈ 100 kpc in a

typical cluster of MDM = 5 × 1014M�. The typical time it spends close to apoastron is

δt ≈ 0.1 Gyr. The gravitational pull of a galaxy with mass M at a distance d from the

SMBH, will cause a velocity change

δv ≈ GM

d2
δt ≈ 50

(
M

1010M�

)(
d

104pc

)−2

km s−1. (4.52)

In a galaxy cluster like Coma, the galaxy density at 100kpc from the center is a few×103

galaxies Mpc−3 [539], implying that the presence of at least one perturber at d < 10 kpc

is guaranteed. Considering a circular velocity of vc ≈ 103 km s−1, it is therefore very

likely that SMBHs kicked at r > 100 kpc will acquire a tangential velocity component

≈ 0.1vc because of interactions with nearby cluster galaxies (and clumpiness of the DM
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halo). We performed a simple test of the DF return timescales for non circular orbits by

numerically integrating the DF equations in a Hernquist+NFW potential. We placed the

sinking SMBH at a distance R from the center, and we gave it an initial tangential velocity

v = vc(R) and v = 0.1vc(R). The first case corresponds to a circular orbit, while the second

implies a nominal eccentricity of e ≈ 0.98 (if the orbit was Keplerian). Despite an almost

radial orbit, the return timescale in the latter case was only approximately 5 times shorter.

We tested that reducing tDF in Eq. (4.38) by a factor 5 may cause a maximum variation

of fz=0 by ∼ 0.07 in the extreme case χs = χz=1 = 1, which still implies fz=0 ≈ 0.9. This

suggests that small deviations from a perfectly radial orbit result in return timescales just

a factor of a few smaller than our DF computation, but two orders of magnitude longer

than the Bounce model prediction, which is therefore relevant only for almost spherical

potentials. We conclude that the DF scenario provides a better approximation for the

return timescales in realistic potentials implying interesting observational prospects. As

shown in Fig. 4.8, a DF-like dynamics results in fz=0 < 0.99 for basically any choice of

other relevant parameters, and the superkick effect should be detected with a sample of

O(100) SMBH mass measurements.

Besides the lower BCG occupation fraction, another interesting phenomenon is BCG

replenishment. We saw in the previous Section that depleted BCGs can be replenished

in a subsequent merger with another SMBH carried by the satellite galaxy. In this case,

the new SMBH will most likely be undermassive with respect to the BCG mass. This is

shown by the red diamonds in Fig. 4.9, which lie ≈ 0.3 dex below the SMBH-bulge relation

defined by the green triangles. However, the net effect of replenishment is just to produce

a slightly lower normalization and larger scatter in the SMBH-bulge relation, which would

be hard to identify observationally.

The implications of superkicks on the BCG occupation fraction are directly mirrored

in the presence of a complementary population of wandering SMBHs. In fact, as already

noted, full ejections from galaxy clusters are extremely unlikely because of the high escape

speeds. As a natural consequence, some recoiled SMBHs are still sinking back to the BCG

center today, and can potentially be detected as off center objects, adding evidence to

the superkick scenario. Because of the longer return timescales, off center SMBHs are

expected to be at least 10 time more likely in the DF than in the Bounce models. The

offset distribution is shown in Fig. 4.11 for three values of the spin magnitudes χz=1 = χs =

0, 0.5, 1, assuming the “Fiducial” model (other models, not shown, yield similar results).

The absolute number of recoiling SMBHs in each panel is directly related to the average

kick velocity imparted during SMBH mergers, which reflects the average spin magnitude.
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Distributions are generally monotonically decreasing functions of the offset rz=0, meaning

that many of these wandering SMBHs are concentrated in a few central kpc. However, in

the maximally spinning case (right panel) about 50% of the ejected SMBHs are located

well outside the central BCG, with an offset between 100 kpc and 1 Mpc. Moreover, a

tail extending to few Mpc is present, implying that a few SMBHs might even lurk in the

outskirts of galaxy clusters. For this favorable configuration, we predict that between 0.5%

and 5% of massive galaxy clusters should host a wondering BCG SMBH with an offset of

a few hundred kpc from the cluster center. The situation is less promising for lower spin

values, even though in the intermediate case (central panel) for the DF model, about 1%

of the BCGs might host a SMBH lurking at few tens of kpc from their centers.

Several observational signatures of recoiling SMBHs have been proposed in the liter-

ature, ranging from off center AGNs [88] and tidal disruptions [289, 308], to intracluster

ultracompact stellar systems [364]. All of them rely on the fact that the recoiling SMBH

is carrying with it a significant amount of nuclear gas and stars, which is not likely in our

case. Firstly, BCGs are mostly gas poor systems with shallow stellar cores; little cold gas

should be available in the surrounding of the merger remnant, disfavoring off–nuclear AGN

activity. Secondly, the SMBH can carry away only material that is orbiting around it with a

velocity greater than the kick velocity vk. Ejections to a few hundred kpc require vk > 1500

km s−1 � σ, implying that the mass in stars and gas that can be carried away is likely

< 1% of the SMBH mass. Lastly, because of their high mass, those SMBHs will simply

swallow stars without tidally disrupting them, inhibiting the tidal disruption channel as a

possible observational signature. The only possibility seems therefore to be the challenging

detection of a faint ultracompact cluster with extremely high velocity dispersion, which

might be feasible in nearby galaxy clusters [364]. Alternatively, also ‘naked’ SMBHs still

interact with the diffuse hot intracluster gas. This can produce X-ray emission potentially

observable at nearby galaxy cluster distances (see [154] for details).

4.4 Strong gravity in BCGs

We investigated the consequences of superkicks for the population of the most massive

SMBHs in the Universe residing in BCGs. The choice of BCGs as study targets follows

from a number of theoretical and observational arguments: i) compared to other types of

galaxies, BCGs have the richest merger history, especially at low redshift, ii) future 30m-

scale telescopes will have the resolution to easily reveal SMBHs in hundreds of BCGs up to

z ≈ 0.2, iii) theoretically, BCGs are expected to have unit SMBH occupation fraction, and

even a single depleted system would be a smoking gun of superkick occurrence in nature.
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We demonstrate that, under plausible astrophysical assumptions, SMBHs can be ejected

from BCG cores, potentially resulting in an occupation fraction substantially lower than

one in the local Universe (say, z < 0.1).

Starting from the observational fact that BCGs have doubled their mass since z = 1 –

and that this mass growth is consistent with their merger activity as inferred from galaxy

pair counts, and as found in simulations of galaxy formation – we have constructed a simple

semianalytical model to track their evolution to the present time. Our model reconstructs

the dynamics of each single major merger, including a self-consistent computation of the

gravitational recoil and of the return time of the kicked SMBHs. We considered six classes

of models combining two BCG major merger history models (“Fiducial”, “Optimistic” and

“Pessimistic”, covering the range consistent with observations and simulations) and two

specific prescriptions for the return times (“Bounce” and “DF”). Minor merger rates were

also available for the “Pessimistic” scenario, we investigated their impact by including them

in the “Pessimistic-Minor” model. Since the magnitude of the spins of SMBHs in BCGs

is basically unknown, for each model we considered a range of spin distributions for the

SMBHs residing in the BCGs, χ, and in the merging satellites, χs. We ran several sets of

simulations varying all the relevant parameters, we studied their impact on the final BCG

occupation fraction fz=0, and we investigated possible observational consequences.

Our main results can be summarized as follows:

1. superkicks can efficiently deplete BCGs of their central SMBHs. The occupation

fraction at z = 0 can be as low as fz=0 = 0.85 for the most favorable scenarios;

2. fz=0 is quite insensitive to the BCG merger history, so long as those experience at

least ≈ 1 merger since z = 1;

3. only small quantitative differences were found when comparing the “Pessimistic” and

the “Pessimistic-Minor” models, implying that the poorly constrained distribution of

minor mergers is not a significant caveat to our findings;

4. fz=0 is very sensitive to the dynamics of the ejected SMBHs in the galaxy cluster

potential well. The fraction of depleted BCGs (i.e. 1 − fz=0) is of the order of 0.01

only for the Bounce models, but it is typically 0.05-0.1 for the DF models;

5. the intial value of the SMBH spins has an order of magnitude influence on the depleted

BCG fraction. In the DF models, this varies from ≈ 0.02 for non spinning SMBHs,

up to ≈ 0.15 for maximally spinning SMBHs;

6. we predict that a few percent of the galaxy clusters host an offset BCG SMBH
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inspiralling at a few hundred kpc from the dynamical center, although they might be

difficult to detect;

7. for a large variety of physically plausible scenarios, we predict fz=0 < 0.99, that can

be directly tested with measurements of SMBHs in the center of O(100) BCGs with

future 30m telescopes.

As detailed in Sec. 4.2.5, we made a number of simplifying assumptions in our calcula-

tion. In particular we neglected any possible mass and spin evolution due to gas accretion,

and we assumed SMBH binaries always merge following galaxy mergers (i.e., we by-passed

the final parsec problem). Moreover, we assumed random spin orientations when comput-

ing kick velocities. We showed that all these assumptions are well justified at least for the

majority of mergers involving BCGs, but refinement of some of them might be considered

for future work.

Although current statistics of SMBH mass measurements in BCGs is insufficient to

empirically constrain the models presented here, prospects look promising for the next

generation of 30m-class optical telescopes. Any measurement of a BCG occupation frac-

tion lower than unity will provide observational evidence for the occurrence of superkicks

in nature, bringing the extreme dynamical effects of strong-field GR to the realm of obser-

vational astronomy.



Chapter 5

Differential disc accretion and

black-hole spin alignment

Outlook

Interactions between a SMBH binary and the surrounding accretion disc can both

assist the binary inspiral and align the BH spins with the disc angular momentum.

While binary migration is due to angular-momentum transfer within the circumbi-

nary disc, the spin-alignment process is driven by the mass accreting onto each

BH. Mass transfer between different disc components thus couples the inspiral

and the alignment process together. Mass is expected to leak through the cavity

cleared by the binary, and preferentially accretes onto the lighter (secondary) BH

which orbits closer to the disc edge. Low accretion rate onto the heavier (pri-

mary) BH slows down the alignment process. We revisit the problem and develop

a semi-analytical model to describe the coupling between gas-driven inspiral and

spin alignment, finding that binaries with mass ratio q . 0.2 approach the GW

driven inspiral in differential misalignment: light secondaries prevent primaries

from aligning. Binary BHs with misaligned primaries are ideal candidates for pre-

cession effects in the strong-gravity regime and may suffer from moderately large

(∼ 1500 km/s) kick velocities.
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Executive summary

This Chapter is organized as follows. In Sec. 5.1 we review previous studies which tackled

the disc-spin alignment process. Our model to compute the relevant timescales is intro-

duced in Sec. 5.2, where both the inspiral and the alignment problems are treated. Sec. 5.3

describes our main findings, namely the role of the binary mass ratio in the spin-alignment

process, and its relevance for cosmologically motivated binary distributions and kick pre-

dictions. Finally, in Sec. 5.4 we draw our conclusions and stress the possible caveats of our

analysis.

The material presented in this Chapter is based on [211].

5.1 Gas interactions: inspiral and alignment

Following a galaxy merger, the SMBHs hosted [293] by the two merging galaxies sink

towards the centre of the newly formed stellar environment through DF, forming a binary

[60, 352]. Binary BHs can merge if the astrophysical environment provides a way to

dissipate their angular momentum in less than a Hubble time. Scattering from stars can

bring the binary only down to parsec scales [191], below which the available phase space is

quickly depleted, thus stalling the inspiral process (final-parsec problem [369, 552]). While

triaxiality in the stellar potential may help driving the inspiral in elliptical gas-poor galaxies

[363, 68], the interaction with gaseous disc(s) may actually solve the final-parsec problem

in gas-rich galaxies [35, 138]. Indeed, DF against a gaseous background can help reduce

the binary separation to distances of the order of 0.1 pc within a timescale of 10-50 Myrs

[178, 162, 165]. Further shrinking of the binary can proceed through what is known as

type II migration in the context of planet-disc interaction. However, such disc-assisted

migration can only be effective at separations smaller than ∼ 0.01 pc, beyond which the

disc becomes self-gravitating and will likely fragment and form stars [319]. Finally, if the

binary reaches separations close to ' 10−3pc, GWs quickly become an extremely efficient

way to drive the binary to a merger [415, 414]. Asymmetric emission of GWs in the late

inspiral and merger may impart recoil velocities to the remnant BHs [437] which can be

as high as 5000 km/s [115, 215, 332], possibly larger than the escape speed of the host

galaxies [362].

A variety of electromagnetic signatures has been proposed to detect SMBH binaries,

which however remain elusive [166, 466, 91]. The most convincing evidence comes from

double AGN imaging, with the notable example of the radio galaxy 0402+379 showing

two compact cores with estimated separation of 7.3 pc [446]. Indirect evidence for SMBH
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binaries at sub-parsec scales suffers from higher uncertainties; we mention in particular the

case of the blazar OJ287 [518], where ∼ 12 yr periodic outbursts have been interpreted as

signature of a BH binary orbital motion. Identifying recoiling BHs through observations is

even more challenging [287], but tentative candidates are nonetheless present [290, 131, 153,

294]. Direct measurements of SMBH inspirals and mergers are the main target of all future

space-based GW observatories and PTA experiments. The eLISA mission is expected to

detect hundreds merging binaries per year casting new light on our understating of such

systems [469, 48].

Hydrodynamical interactions can not only assist the binary inspiral, but are responsible

for the reorientation of the two BH spins. BH spin alignment has a crucial impact on the

merger dynamics and on the cosmic growth history of SMBHs. Strong recoil velocities

can only be achieved if the merging BHs are highly spinning and the two spin vectors are

strongly misaligned with each other. As we already saw in Chapter 4, highly recoiling

BHs can be significantly displaced from the galactic nucleus or even ejected from it. This

has strong consequences for the coevolution of SMBHs and their host galaxies, with mild

recoil regulating the BH growth and large kick velocities strongly affecting the feedback

process [89]. If large recoils causing BH ejections are present, this affects the fraction of

galaxies hosting SMBHs1 [464, 531, 209] and consequently the predicted (e)LISA event

rates [470]. As carefully addressed in Chapters 2 and 3, spin misalignments are crucial for

GW astronomy and data analysis. Spin misalignments introduce a richer structure to the

expected signals that carries precious information on the binary dynamics [525, 285, 400]

which can improve the parameter estimation process by up to an order of magnitude

[125]. At the same time, since accurate waveform modelling is required for GW searches,

spin precession makes the waveform generation more challenging [411, 284], dramatically

increasing the parameter-space dimensionality that needs to be explored.

It is thus important for both electromagnetic and GW observations to understand in

which region of the BH-binary parameter space we expect significant spin misalignment.

The physical process responsible for the reorientation of BH spins during the long gas-

driven inspiral is the so-called Bardeen-Petterson effect [55], where the general relativistic

Lense-Thirring torque between the BH and a misaligned disc warps the accretion disc and

secularly aligns the BH spin with the disc angular momentum. The Bardeen-Petterson

effect does not just affect the binary dynamics during the gas-driven phase, but leaves a

deep imprint in the subsequent GW-driven inspiral, where precession effects are strongly

dependent on the residual misalignments left by the astrophysical environment [270, 271,

1The analysis presented in Chapter 4 tackles this problem in gas-poor galaxies, where disc-assisted
inspiral and alignment are not crucial (cf. our discussion in Sec. 4.2.1).
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204]. It is therefore an essential ingredient for predicting the spin configuration at merger.

The efficiency of the Bardeen-Petterson effect in aligning the spins with the binary

angular momentum within the timescale of the merger has recently been investigated by

multiple authors. Bogdanović et al. [92] first made some order-of-magnitude estimates of

the alignment time for a single BH with its own disc and found that it is much smaller

than the merger time concluding that alignment is likely in a gaseous environment. A

similar conclusion was obtained by Dotti et al. [167], who found short alignment timescales

of ∼ 2 × 106 yr. One notable achievement of the study performed by Dotti et al. [167] is

combination of Smoothed-Particle Hydrodynamics (SPH) simulations and a semi-analytical

treatment of the Bardeen-Petterson effect [413], through which they have been able to

quantify the residual misalignment to either 10◦ or 30◦ depending on the gas temperature.

In previous work [317], we revisited these estimates considering the previously neglected

effects of non-linear warps. We found that the alignment time can be significantly longer

than 107 yr if the initial misalignments are large, thus casting doubts on the ability of the

disc to align the binary. Miller and Krolik [367] made a step forward, pointing out that

the spin alignment process in BH binaries may actually be sensibly faster than for isolated

BHs, because of the stabilizing effect of the companion that increases the degree of disc

warping close to the holes.

Here we argue that the binary mass ratio plays a key role in estimating the spin-

alignment likelihood in merging BH binaries. We present a semi-analytical model to com-

pute the inspiral and alignment processes from the properties of the circumbinary disc.

On the one hand, the mass ratio strongly affects the binary inspiral rate, marking the

onset of different disc-morphology regimes when either a gap or a proper cavity can be

opened. On the other hand, and perhaps most importantly, the binary mass ratio sets

the amount of differential accretion onto the two components of the binary system. The

Bardeen-Petterson effectiveness in aligning the spins depends sensitively on the mass accre-

tion rate through each single disc. We quantify this rate constructing prescriptions based

on results of hydrodynamical simulations. Gas is expected to preferentially accrete onto

the lighter binary member that therefore aligns faster. Accretion rates onto the heavier

BH is consequently smaller and may prevent it from aligning.

5.2 Binary and disc modelling

We model the gas environment surrounding merging BH binaries through three different

accretion discs: mass may reach the binary from galactic scales forming a circumbinary disc,

and later be accreted onto the individual BHs from circumprimary and circumsecondary
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discs respectively2. We define3 R to be the binary separation, M1 and M2 to be the

two BH masses (with M1 ≥ M2), Mbin = M1 + M2 to be the total mass of the binary,

q = M2/M1 ≤ 1 to be the binary mass ratio and Si = χiGM
2
i /c to be the spin of any of

two BHs (where i = 1, 2 and dimensionless spin 0 ≤ χi ≤ 1). Following [499], we also define

a measure of the local circumbinary-disc mass at a generic radius r as M(r) = 4πΣ(r)r2

and finally qdisc(r) = M(r)/Mbin to be the disc-to-binary mass ratio. For typical profiles

of the surface density Σ(r), this is a reasonable estimate of the rigorous value obtained by

radially integrating the surface density [476]. In addition, the migration rates are set by the

properties of the disc in the vicinity of the secondary, and the local nature of this parameter

is thus more relevant than the total disc mass. When studying the spin alignment, we will

refer to the mass of the aligning BH as M (meaning either M1 or M2) and the mass

of the other binary member as Mc. While the accretion rate of the circumbinary disc

Ṁbin determines the inspiral process, the alignment timescales are only determined by the

rates Ṁ1 and Ṁ2 at which mass reaches the circumprimary and circumsecondary discs

respectively. It is also useful to define f to be the dimensionless value of Ṁbin in terms of

the Eddington accretion rate

Ṁbin = f
Mbin

tEdd
, (5.1)

where tEdd = κec/4πG ' 4.5 × 108yr is the Salpeter time [453], and κe is the opacity for

Thomson electron scattering.

In this Section, we first present a new estimate for the inspiral timescale by interpolating

estimates computed in different regimes and we discuss the circumbinary disc self-gravity

condition to evaluate the inspiral timescale. Secondly, we summarize the main findings of

[317] on the spin-alignment timescale and we explore the effect of the companion on the

individual-discs structure. We finally model mass transfer and differential accretion onto

the different discs.

5.2.1 Gas-driven inspiral

If SMBH mergers do happen in nature, it is likely that the gas-driven phase is the bottle-

neck of the whole binary evolutionary track. Therefore, the time spent by the binary in

this phase gives us an estimate of the total time available to align the BH spins through

environmental processes before merger. Although gas-driven inspiral is mediated by the

2The name minidiscs can also be found in the literature to indicate circumprimary and circumsecondary
discs.

3We opt here for the standard notation used in the accretion-disc literature. Consequently, the notation
used in this Chapter is slightly different than the one used in any other Chapter of this Thesis.
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torques exerted by the disc on the binary, a detailed description of the torques is not nec-

essary to correctly derive the migration rates. Ultimately, the migration rate is controlled

by the rate at which the disc is able to redistribute the angular momentum gained from

the binary, and the torques will adjust to give the correct rate (e.g., [34]). This same mech-

anism is called type II migration in the context of protoplanetary discs [312]. Depending

on the ratio between the BH and the circumbinary disc masses, we identify three possible

regimes:

1. For small mass ratios (M2 � M(R) � M1), the secondary BH perturbs the disc of

the primary, which reacts by opening a gap4 at the binary separation [311, 36]. Tidal

interactions between gas particles and the secondary BH transfer angular momentum

to the disc, thus decreasing the binary separation. The secondary BH behaves like a

fluid element in the disc, evolving at the viscous rate [35]

tin = tν(R) ' R2

ν
, (5.2)

where ν = αcsH is kinematic viscosity coefficient of the disc, usually [476] rescaled

to a dimensionless coefficient α with the speed of sound cs and the disc height H.

2. If the secondary BH mass becomes comparable to the disc mass (M2 ∼M(R)�M1),

the disc cannot efficiently redistribute the momentum acquired from the binary.

The shrinking rate consequently decreases. An analytical expression for the inspi-

ral timescale in this regime can be computed directly from the angular-momentum

conservation equation in the thin-disc approximation [499, 255, 319, 57] and reads

tin =
M2 +M(R)

M(R)
tν(R) , (5.3)

which correctly reduces to tν(R) in the limit M2 �M(R).

3. For comparable mass binaries (M1 . M2), the secondary-BH potential cannot be

neglected. The gap at the secondary location now becomes a proper cavity in the disc

with radius ∼ 2R cleared by both BHs [342]. A rich phenomenology may be present,

including disc asymmetry and growing eccentricity, and can only be captured using

hydrodynamical simulations [138, 447, 448, 484]. An approximate expression for the

inspiral timescale in the comparable mass regime has been presented by Rafikov [434],

assuming the binary potential to be represented by a Newtonian potential produced

4Binaries with very small mass ratios (q . 10−4, see [34]) cannot open a gap; however, such low mass
ratios are not expected to be relevant in the SMBH context.



5.2 Binary and disc modelling 131

by the binary total mass. He obtains

tin =
M1M2

Mbin M(R)
tν(R) , (5.4)

where the correction factorM1/Mbin models the expected speed up due to the higher

angular momentum flux induced by the binary mass. The same mass-ratio depen-

dence has been recently obtained in [164] integrating the torque at the edge of a

2R-wide cavity.

Here, we propose a smooth analytical interpolation between the timescales obtained in

the different regimes given by

tin =
M1

Mbin

M2 +M(R)

M(R)
tν(R) , (5.5)

which correctly reduces to either Eq. (5.2), (5.3) or (5.4) in the relevant limits. Various

numerical factors in Eq. (5.4) –as already acknowledged in [434]– and different possible

definitions of the viscous timescale may modify this estimate by a factor ∼few. The ac-

cretion rate of the circumbinary disc Ṁbin only enters in the merger timescale through the

viscous timescale, which can be rewritten as

tν(R) =
3

4

M(R)

Ṁbin

, (5.6)

since both M(R) = 4πR2Σ(R) and Ṁbin ' 3πνΣ(R) are related to the surface density Σ

of the circumbinary disc in the stationary limit. Combining Eqs. (5.1), (5.5) and (5.6),

we obtain our final estimate of the inspiral timescale, to be compared to the individual

alignment timescales,

tin =
3

4

(1 + q) qdisc(R) + q

(1 + q)2

tedd

f
. (5.7)

While the low mass ratio regime is relatively well tested by the planetary community

(e.g. [380, 58], but see below for possible caveats), the regime of high mass ratios has not

been explored extensively. At the moment only few simulations of disc driven migration

of a binary have been conducted [342, 138, 484], which test only a small part of the

parameter space. For example, for a ratio q = 1/3, Cuadra et al. [138] find in 3D SPH

simulations a migration rate of Ṙ/R = −2 × 10−5 Ω, where Ω = (GMbin/R
3)1/2 is the

orbital frequency of the binary. They compare this value with the analytical formula of

[255], our Eq. (5.3), which yields Ṙ/R = −3 × 10−5 Ω, yielding very good agreement.

MacFadyen and Milosavljević [342] find in 2D grid-based simulations of q = 1 binaries
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that the inspiral timescale is roughly equal to the viscous timescale, reduced by qdisc,

which is consistent with Eq. (5.7). The simulations described so far neglect the details

of the angular momentum redistribution mechanism, which in the standard picture is

the magneto-rotational instability [46], and typically adopt the α parametrization [476]

(e.g., [342]) in order to reduce the computational cost. Only recently Shi et al. [484]

have performed global numerical simulations of migrating binaries including the magneto-

rotational instability. They found that magnetohydrodynamics effects slightly enhance

the migration rate with respect to the purely hydrodynamical case (a factor of ∼ 3 when

compared to [342]). They also observed that the accretion of material with a higher specific

angular momentum than the binary can make the binary gain angular momentum, which

however is offset by the higher torques they measure from the disc. Given the number of

other uncertainties present in the model, we are thus satisfied that our expressions can be

used reliably.

Recent numerical simulations [169, 170] by the planetary community have questioned

the validity of type II migration, casting doubts that a regime where the satellite behaves

like a test particle exists at all. In particular, the simulations show that it is possible

to achieve faster (up to a factor of 5) migration rates than what expected from Type II

theory. These simulations have only been run for a fraction of a viscous time, and it is

still unclear if this result holds on the timescale of the merger. For this reason we neglect

these results in what follows, and note that this makes our estimates an upper limit for

the merger timescales.

Finally, we note that the simulations conducted so far, to the best of our knowledge,

have explored relatively thick discs, with an aspect ratio ranging from 0.05 to 0.1 [e.g.,

342, 138, 448, 484]. This is significantly thicker than the value we derive in the next

Section and it is not clear how the results would change with more realistic values (cf.

Sec. 5.4).

5.2.2 Self-gravity condition

The inspiral timescale reported in Eq. (5.7) depends on the binary separation R. For

typical disc structures [476, 217], tin is a steep monotonically increasing function of R

[223]. Most time will be spent by the binary at large separations, while the remaining

inspiral is completed rather quickly. The time available to align the spins –which the spin-

alignment time must be compared to– is roughly the inspiral timescale tin evaluated at the

largest separation of the disc-driven evolution.

A natural physical limit on the size of the circumbinary disc is set by the disc’s self
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gravity. Local gravitational stability under axisymmetric disturbances is guaranteed up to

the fragmentation radius Rf where the Toomre’s [511] parameter equals unity:

Q ≡ csΩ

πGΣ
= 1 . (5.8)

At separation R > Rf , self gravity cannot be neglected and the disc is gravitationally

unstable (cf. [316] for a review). The evolution of gravitationally unstable discs has been

investigated in great detail in recent years [322, 443, 137]. If the cooling time is smaller

or of the order of the dynamical time [198], the disc will fragment into gravitationally

bound clumps, although the actual fragmentation threshold is debated [365]. For values

appropriate for AGN discs, the disc is expected to fragment, create stars and thus deplete

the area surrounding the binary of gaseous material, possibly halting the inspiral [319].

Using the vertical-equilibrium equation cs/Ω = H, the self-gravity stability conditionQ = 1

can be rewritten as

qdisc(R) =
M(R)

Mbin
' 4

H

R
, (5.9)

evaluated at R = Rf . The fragmentation radius is likely to lie in the outer region of

the circumbinary disc, dominated by gas-pressure and electron-scattering opacity [476].

Assuming viscosity to be proportional to the gas pressure (β-disc) and setting the mass of

the accreting object to Mbin, one gets for the fragmentation radius [476, 217, 223]

Rf ' 105GMbin

c2

(
Mbin

107M�

)−26/27( f

0.1

)−8/27 ( α

0.2

)14/27

' 0.05

(
Mbin

107M�

)1/27( f

0.1

)−8/27 ( α

0.2

)14/27
pc .

(5.10)

For a separation r in such a region, the disc aspect ratio reads

H

r
= 0.001

(
r

GMbin/c2

)1/20( Mbin

107M�

)−1/10( f

0.1

)1/5 ( α

0.2

)−1/10
. (5.11)

We evaluate the inspiral timescale of Eq. (5.7) at the fragmentation radius: R = Rf .

This is a rather conservative assumption because tin is monotonically increasing with R

[223] and Rf is the largest separation at which gas can be found under the form of a

circumbinary disc. We are therefore assuming –somehow ignoring the final parsec problem–

that some previous mechanisms are efficient enough to shrink the binary separation down

to Rf .

From Eqs. (5.7-5.11) we find that the inspiral time tin scales only mildly with the
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viscosity α and the binary total mass Mbin. As for the accretion rate f , the implicit

dependence of Eq. (5.11) and (5.10) is also mild; the explicit dependence 1/f in Eq. (5.7)

is still present but will cancel when compared to the spin-aligment time (Sec. 5.3.1). On the

other hand, the dependence on q plays a crucial role when comparing each spin-alignment

time with the inspiral timescale, and is therefore the main subject of this study.

5.2.3 BH spin alignment

The circumprimary and cirbumsecondary discs interact with the BHs through the Bardeen-

Petterson effect. Bardeen and Petterson [55] first showed that a viscous disc initially

misaligned with the equatorial plane of a spinning BH naturally relaxes to a coplanar state

in the inner regions, while the outer disc may retain its original misalignment. Rees [438]

realized that, by Newton’s third law, the outer disc must react by pulling the BH towards

complete alignment (or antialignment) of the spin with the orbital angular momentum of

the outer disc itself.

Angular momentum is initially transferred from the spin to the inner disc through rela-

tivistic Lense-Thirring precession and finally to the outer disc by the propagation of warps,

i.e. vertical shearing by close, misaligned, gas rings [459, 321, 348]. Warp propagation is

ruled by a vertical viscosity coefficient ν2, which generally differs from the kinematic vis-

cosity coefficient ν introduced above. As done for α, let us introduce a vertical-viscosity

coefficient α2 such that ν2 = α2csH [407]. In the small-warp –which in our case actu-

ally means small-misalignment– limit, the warp-propagation coefficient is related to the

kinematic viscosity by [427, 393]

α2 =
1

2α

4(1 + 7α2)

4 + α2
, (5.12)

and, in particular, it is independent of the misalignment ϕ between the inner disc and the

outer disc. A full non-linear theory of warp propagation has been computed in [393] and

later verified numerically [320]. Non-linearities introduce a qualitatively new dependence5

on ϕ, which can lower the value of α2 by a factor of ∼ 7 for large misalignment angles (see

Fig. 1 in [317]). We consider the full non-linear expression α2(α,ϕ) as derived by [393],

which reduces to Eq. (5.12) for ϕ� 1.

Lense-Thirring precession efficiently aligns the disc up to the Bardeen-Petterson radius

RBP , defined to be the disc location where the inverse of the Lense-Thirring precession

5The warp-propagation coefficient actually depends on the radial derivative of the local inclination of
the disc ψ, see Eq. (1) in [320]. Here we implement the approximation ψ ∼ ϕ as already done by [317].
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frequency [542]

ΩLT (r) = 2
G2M2χ

c3r3
(5.13)

equals the warp propagation time tν2(r) = r2/ν2, i.e

RBP = 22/3

(
χ

α2

)2/3(H
r

)−4/3(GM
c2

)
. (5.14)

For a single BH-disc system, RBP coincides with the maximum warp location (warp radius)

RW and marks the boundary between the (quickly aligned) inner disc and the (still aligning)

outer disc. The timescale over which the outer disc finally aligns the BH spin can be found

by computing the torque acting on the disc at RW [377]. A single BH of mass M and

dimensionless spin χ aligns with the angular momentum of the surrounding accretion disc

within [459, 377, 317]

tal ' 3.4
M

Ṁ
α

(
χ

α2

H

r

)2/3

, (5.15)

where Ṁ is the accretion rate of the circumprimary/circumsecondary disc and H/r its

aspect ratio evaluated at the warp radius. We note here that the alignment time tal is

sensibly smaller than the growth time M/Ṁ for reasonable viscosities α ∼ 0.1 and aspect

ratios H/r ∼ 0.001. BH mass and spin magnitude can therefore be considered fixed during

the alignment process ([277]; see Sec. 5.4).

The Bardeen-Petterson effect can drive the BH spin towards either alignment or an-

tialignment with the outer disc. The system antialigns if [278]

θ > π/2 and L(RW ) < 2S , (5.16)

where θ is the angle between the BH spin and the angular momentum of the outer disc,

L(RW ) is the angular momentum of the inner disc (i.e. inside the warp radius) and S is

the BH spin. The BH spin aligns with the outer disc if any of the two conditions above is

not satisfied. Once θ is provided (cf. Sec. 5.3), the misalignment ϕ between the inner-disc

angular momentum and the outer-disc angular momentum is given by ϕ = θ in the aligned

case, while ϕ = π − θ if the system tends towards antialignment.
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Figure 5.1: Effect of the companion on the location of the warp radius. Primary and secondary
BHs are considered on the left-hand and right-hand panel respectively. Contours map the ratio
between the maximum-warp location RW (where the external torque from the companion matches
the Lense-Thirring torque) and the Bardeen-Petterson radius RBP (where the Lense-Thirring time
equals the warp propagation time) derived for an isolated BH. The dependence on the binary mass
ratio q and the spin of the aligning BH (either χ1 or χ2) is reported on the x and y axes. A
companion BH is expected to speed up the alignment process up to a factor of ∼ 2 in most of the
parameter space, meaning a O(1) uncertainty in the estimate of the alignment time. This figures
have been produced taking Mbin = 107M�, H/r = 0.001, f = 0.1, α = 1/2α2 = 0.2, β = 1 and
R = Rf [see Eq. (5.19)].

5.2.4 Effect of the companion on disc-spin alignment

So far we have only considered the alignment of a single BH with its surrounding accretion

disc. Here we discuss the effect of a far (R � RW ) companion on the alignment process.

This effect –neglected in our previous study [317]– has been recently pointed out by Miller

and Krolik [367] in the SMBH binary case, while [349] have previously considered the same

interaction for stellar-mass BHs with stellar companions. For a further study, see [512].

If the aligning BH is part of a binary system, the gravitational potential felt by an

orbiting gas ring is perturbed by the presence of the companion [336, 394]. The binary

gravitational potential can be expanded in a series of r/R (where r is the distance of the

gas ring from the BH and R is the binary separation; see e.g. [265]): to leading order,

the resulting torque is perpendicular to the angular momentum of the gas ring L, causing

precession about the angular momentum of the binary Lbin. The precessional frequency

can be obtained by averaging the torque over the binary orbital period and reads6 [416]

ΩC(r) =
3

4

GMc

R3

(
r3

GM

)1/2

β , (5.17)

6We do not quote the sign of the precession frequency, because it only sets the precession direction
about Lbin which is not important for our order-of-magnitude estimate.
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where β = |L̂bin ·L̂|,M is the mass of the aligning BH andMc is the mass of the companion.

Note that in our notation Mc = qM in the case of the primary BH, but Mc = M/q when

the alignment of the secondary is considered.

If a spinning BH is part of a binary system, both Lense-Thirring and companion-

induced precession are present. The companion drives the system towards alignment with

the angular momentum of the binary, which tracks the plane of the circumbinary disc

(see Sec. 5.4 on this point). At the same time, the inner disc is being aligned with the

BH spin by Lense-Thirring precession. In practice, the companion reduces the frame-

dragging efficiency: material could stay misaligned with the BH spin at closer locations,

thus speeding the alignment process up [367]. This effect can be quantified by computing

the locations at which the two contributions are equally important. The Lense-Thirring

time Ω−1
LT equals the warp propagation time tν2 at RBP , as given by Eq. (5.14). On the

other hand, the disc is now expected to be maximally warped at the warp radius RW ,

where the Lense-Thirring contribution matches the companion one ΩLT = ΩC [349]. From

Eq. (5.13) and (5.17) one gets [349, 367]

RW =

(
8χ

3β

M

Mc

)2/9

R2/3

(
GM

c2

)1/3

. (5.18)

If RW & RBP , the companion term can be neglected and the closer location at which

misaligned material can be found is still ∼ RBP . The alignment speed-up discussed in

[367] is relevant if RW . RBP , because warped regions are present closer to the hole. At

R = Rf (cf. Sec. 5.2.2), we find

RW
RBP

' 0.48 β−2/9a−4/9

[
M +Mc

2 M
1/3
c M2/3

]2/3(
M +Mc

107M�

)−52/81

×
(
H/r

0.001

)4/3( f

0.1

)−16/81 ( α

0.2

)−26/81
(

α2

1/2α

)2/3

.

(5.19)

Fig. 5.1 shows the dependences of RW /RBP on the binary mass ratio and the spin mag-

nitude of the aligning BH, both for primaries and secondaries. Slowly rotating BHs are

less affected by the presence of a companion because the spin set the magnitude of the

frame-dragging term. For fixed total mass Mbin = M + Mc, primaries are more sensi-

tive to the companion than secondaries, because their gravitational radius is larger and

Lense-Thirring precession can be matched more easily by the additional precession term.

Here we use the simple expression reported in Eq. (5.15) to compute the spin-alignment

time, as formally obtained for an isolated BH-disc system. Our analysis [Eq. (5.19) and
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Fig. 5.1] shows that the position of the warp radius can be modified by a factor of ∼ 2 if

the BH is part of a binary system. The alignment time tal ∝ R11/10
W [377, 367] can therefore

only be lowered by a factor of ∼few. From Eq. (5.19), this assumption may not be valid if

(i) the binary is very massive Mbin & 107M�, (ii) the individual discs are thinner than the

circumbinary disc at the fragmentation radius H/r . 0.001, (iii) the binary accretion rate

is close to the Eddington limit f > 0.1. A more complete understanding of the alignment

process in BH binary systems requires explicit integrations of the angular momentum

equation [349]. This goes beyond the scope of this work, which instead focuses on getting

an estimate for the alignment timescale.

5.2.5 Cavity pile-up and differential accretion

The accretions rates of the individual discs Ṁ1 and Ṁ2 depend on the circumbinary-disc

accretion rate Ṁbin, since the formers are fed by the latter. Here we develop a simple

prescription to link these three quantities.

Accretion from the outermost regions of the circumbinary disc onto the binary BH is

suppressed because of either the perturbation of the secondary (low-q regime) or the two-

body central potential (high-q regime). Therefore, the binary may only accrete at a lower

accretion rate Ṁ1 + Ṁ2 ≤ Ṁbin. Mass tends to pile up at the outer edge of the cavity

created by the binary itself: accretion –and therefore spin alignment– is still possible if

gas streams can penetrate the cavity and reach the BHs. We call Ṁgap the mass accretion

rate that overcomes the cavity pile-up: this gas will sooner or later accrete onto either the

primary or the secondary BH, i.e.

Ṁgap = Ṁ1 + Ṁ2 . (5.20)

Gas-stream propagation is an intrinsically multi-dimensional non-linear phenomenon

that requires dedicated hydrodynamical simulations to be studied in detail. In particular,

the dynamics of gas accretion through the cavity is strongly dependent on the binary mass

ratio q, since qualitatively different regimes are present. Equal-mass binary simulations

were first performed in [342], while the q = 1/2 case has been presented in [234] and

extended to q = 1/3 in [138, 448]. A recent major improvement has been made by D’Orazio

et al. [161] and Farris et al. [183] who extensively studied the dependence on q of the mass

rate overcoming the cavity pile-up.

D’Orazio et al. [161] present 2D hydrodynamical simulations in the range 0.003 ≤
q ≤ 1 assuming fiducial values α = 0.01 and H/r = 0.1. Accretion onto the binary is

indeed limited to narrow gas streams and it is typically suppressed by a factor of 2-5 when
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Ṁ

g
ap
/Ṁ
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Figure 5.2: Numerical fits to hydrodynamical simulations to compute the accretion rates of the
two members of a BH binary. Left-hand panel shows the fraction of the accretion rate Ṁgap/Ṁbin

that penetrates through the disc cavity and reaches one of the two binary members. A quadratic
interpolation is performed to numerical results by [161] here reported in Eq. (5.21). On the right-
hand panel, the binary accretion rates is broken down between the primary and the secondary BHs.
The ratio of the accretion times in the systems simulated in [183] appears to be described by the
simple prescription (Ṁ2/M2)/(Ṁ1/M1) = 1/q2 in Eq. (5.22).

compared to a single-BH disc of the same mass. They detect the presence of two physical

regimes:

1. For high mass ratios 0.05 . q ≤ 1, the presence of the binary strongly modulates the

streams. Streams are generated by deviations from spherical symmetry in the binary

potential: more asymmetry is present for equal mass binaries that therefore show

less mass pile-up at the cavity edge and more binary accretion. In such a regime, the

ratio Ṁgap/Ṁbin is expected to increase with q.

2. In the low-mass ratio regime q . 0.05, the secondary BH quickly swipes through the

disc accreting most of the material coming from large distances: a single gas stream

is present feeding the secondary BH. This effect gets more pronounced when the mass

ratio is lower and consequently the ratio Ṁgap/Ṁbin decreases with q.

These results are shown in the left-hand panel of Fig. 5.2, were the “Mid∆r-Lo∆φ” sim-

ulations of [161] are considered. The minimum in Ṁgap/Ṁbin separates the two physical

regimes just described above. We interpolate the results of their simulations with the

ansatz

Ṁgap

Ṁbin

= p0 + p1 log(q) + p2 log2(q) (5.21)
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and best-fitting coefficients p0 = 0.8054, p1 = 0.9840 and p2 = 0.3818. For a given

circumbinary-disc accretion rate Ṁbin, Eq. (5.21) specifies the mass rate Ṁgap which over-

comes the cavity pile-up and accretes onto either the primary or the secondary BH. The

subsequent study [183] found that the ratio between the total accretion rate onto either one

of the two BHs and the accretion rate onto a single BH of the same total mass may exceed

unity, thus casting doubts on whether such fraction can be interpreted as Ṁgap/Ṁbin. To

bracket this uncertainty, we use Eq. (5.21) as our reference model but we also study an

additional variation where we fix Ṁgap = Ṁbin (cf. Sec. 5.3.1).

Farris et al. [183] performed 2D grid simulations (assuming H/R = 0.1 and α = 0.1),

specifically addressing the feeding of the individual discs from streams penetrating the

cavity. They systematically find that the secondary BH accretes faster than the primary,

mainly because the former orbits closer to the cavity edge. Their results are here reported

in the right-hand panel of Fig. 5.2, where the ratio of the accretion times Ṁi/Mi (i = 1, 2)

is showed as a function of the binary mass ratio q. Symmetry implies Ṁ1 ∼ Ṁ2 for binaries

with high mass ratios, while lower values of q show pronounced differential accretion in

favour of the secondary. A qualitatively different regime is detected for the lowest of their

simulated cases q = 0.025: the cavity is not efficiently cleared by the secondary BH, and

mass from the circumbinary disc directly flows inwards forming a large circumprimary disc.

As pointed out in Sec. 5.2.1, such a change in the dynamics of the system is expected for

lower mass ratios, where the disc should form a small annular gap rather than a large

hollow cavity. To directly reach the circumprimary disc, gas should be able to flow past

the secondary escaping its gravitational attraction. As already pointed out in [183], the

actual turning point in q is likely to be highly dependent on the thickness of the disc

and possibly on the viscosity. As shown recently [550] in the context of binary stars,

direct flow from the circumbinary to the circumprimary disc is easier for thicker discs,

where the stronger pressure forces can make part of the material “skirt” the Roche lobe

of the secondary, eventually reaching the primary Roche lobe and being captured by its

gravitational attraction. Due to such uncertainties, in this work we deliberately ignore

the onset of such effects in the low-q regime when considering differential accretion. The

growth-time ratio presented in [183] appear to be well approximated by (see Fig. 5.2, right

panel)

Ṁ2/M2

Ṁ1/M1

=
1

q2
. (5.22)

Due to such a pronounced differential accretion, the prescription presented here may for-

mally predict super-Eddington rates for the secondary BHs in the low-q regime. This
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Figure 5.3: Combined effect of mass
pile-up at the edge of the disc cavity
and differential accretion in unequal-
mass binaries. Prescriptions for
the accretion rates presented in
Eqs. (5.21-5.23) and Fig. (5.2) are
summarized here. As a function of
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which overcomes the cavity-pile up
and accretes onto the binary (solid);
(ii) Ṁ2 which is captured by the sec-
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finally accretes onto the primary BH
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has no relevant impact on our model: if we define the secondary Eddington ratio to be

f2 = εtEddṀ2/M2 = (1 + q)Ṁ2εf/qṀbin, the Eddington limit f2 = 1 is only marginally

reached for very high circumbinary-disc accretion rates (f ∼ 1) and low mass ratio q . 0.05

(assuming a typical accretion efficiency ε ∼ 0.1). Lower values of f shift the critical mass

ratio at which the Eddington limit is formally reached to even lower values. Finally, we note

that, as in Sec. 5.2.1, the thickness values explored by the simulations considered in this

Section are significantly higher than those expected for massive-BH binaries (Sec. 5.2.2).

From Eq. (5.20) and (5.22) one gets

Ṁ1 =
q

1 + q
Ṁgap , Ṁ2 =

1

1 + q
Ṁgap . (5.23)

Fig. (5.3) combines the results presented in Eq. (5.21) and Eq. (5.23). For equal-mass bina-

ries, ∼ 80% of the incoming mass may accrete onto the binary and it is equally distributed

between the two binary members. Unequal-mass binaries present differential accretion and

consequently the inequality Ṁ1 < Ṁ2 grows stronger as q is decreased. When q is increased

from q ∼ 0.2 to unity, gas streams start to flows towards the primary and Ṁ2/Ṁbin conse-

quently flattens. On the other hand, if q is decreased from q ∼ 0.05 to 0.001, the secondary

orbit gets closer to the inner edge of the cavity [161]: more mass can overcome the cavity

pile-up and it is almost entirely accreted by the secondary.



142 Differential disc accretion and black-hole spin alignment

Parameter Fiducial model Synthetic distributions
q Free parameter Power-law distributions

Mbin Not relevant Not relevant
χ1, χ2 1 Either 1 (E) or 0.1 (C)
θ1, θ2 Extremize over Random variables
R Rf (fragmentation) Rf (fragmentation)
H/r 0.001 0.001
α 0.2 0.2
f Not relevant Not relevant

Ṁ1, Ṁ2 Eqs. (5.21) and (5.23) Eqs. (5.21) and (5.23)

Table 5.1: Choice of the binary and disc parameters in our timescale comparison for both the
fiducial case (Sec. 5.3.1) and the cosmologically motivated distributions (Sec. 5.3.2).

5.3 Results: differential misalignment

In this Section we compare the spin-alignment time and the inspiral time. We first outline

the regions of the parameter space where misalignments are foreseen (Sec. 5.3.1); secondly,

we fold our model into synthetic SMBH binary populations (Sec. 5.3.2); and we finally

present a preliminary study to address the impact of our findings on the occurrence of

large post-merger kicks (Sec. 5.3.3).

5.3.1 Misaligned primary BHs

5.3.1.1 Fiducial values of the parameters

The circumbinary disc properties enter the inspiral time tin while the primary/secondary

alignment times tal are set by individual-disc parameters. The ratio tal/tin in general

depends on the binary separation R, the three disc aspect ratios H/r, the gas viscosity α,

the accretion rates of the circumbinary Ṁbin and the individual discs Ṁ1,2, the BH masses

M1 and M2 (or equivalently q and Mbin), the orientation angles θ1 and θ2, and the BH

spin magnitudes χ1 and χ2. We first specify a fiducial model by taking likely values of all

these parameters and we later perform a small parameter study around this model. Table

5.1 summarizes the values we assume for the parameters, highlighting the differences with

the next Section. We summarize our choices as follows.

• As detailed in Sec. 5.2.2, a rather conservative assumption can be made by evaluating

the inspiral time at the fragmentation radius Rf . This is determined by the largest

separation where the inspiral can be driven by interaction with a gaseous environment

and is typically believed to be the bottleneck of the whole binary evolution.

• In our fiducial model we fix the aspect ratios of all discs to H/r = 0.001. As reported
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in Eq. (5.11) for the circumbinary disc, the aspect-ratio dependence on the other

parameters (namely the viscosity, the accreting mass and the accretion rate) is not

crucial to evaluate the inspiral timescale, and will be neglected here for simplicity.

For the same reason, we assume the individual discs to share the same aspect ratio

of the circumbinary disc (cf. the analogous assumption made in [367]).

• Unless specified otherwise, we fix α = 0.2. A parametric study on the viscosity has

been presented in [317] and the alignment process has been found to be overall quite

independent of α. Negative azimuthal viscosities are formally predicted by the non-

linear warp propagation theory for α . 0.1 and large misalignments ϕ [393, 317]: the

evolution of the disc in these cases is unclear and beyond the scope of this study (see

[385, 384] for extensive discussions).

• As described in Sec. 5.2.5, the BH accretion rates Ṁ1 and Ṁ2 are related to the

circumbinary disc accretion rate Ṁbin, conveniently expressed in terms of the dimen-

sionless quantity f in Eq. (5.1). In our fiducial model we implement Eqs. (5.21) and

(5.23). Once H/r is fixed, the alignment likelihood tal/tin is independent of f because

both times scale as 1/f [cf. Eqs. (5.7) and (5.15)]. This is a point of improvement

over our previous estimate [317], where an effective dependence on f was introduced

when decoupling the inspiral and the alignment processes. For concreteness, the

overall scale of Fig. 5.4 below is computed assuming f = 0.1.

• Within our assumptions, both the inspiral and the alignment times are independent

of the binary total mass Mbin. This is compatible with [223] where tin is evaluated

at the fragmentation radius.

• The orientation angles θ1 and θ2 set the warp efficiency α2 (Sec. 5.2.3) and their

effect is the main point raised in [317]. In the following, we bracket such uncertainties

extremizing tal over all possible orientations.

• For simplicity, we consider maximally spinning BHs (χ1 = χ2 = 1) unless specified

otherwise. The status of SMBH spin measurements has been recently reviewed by

[439]: some highly spinning BHs are found, but the current statistic is too low to

provide a complete picture of the spin magnitude distributions. The effect of the spin

magnitude on the alignment likelihood can however be easily predicted, because the

alignment time scales as tal ∝ χ2/3, cf. Eq. (5.15).
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Figure 5.4: Comparison between the alignment times and the inspiral time as a function of the
binary mass ratio q. Gas interactions have time to align the BH spins with the orbital angular
momentum of the binary if the alignment time tal (shaded areas) is smaller than the inspiral time
tin (dashed line). While secondary BHs (lower, green area) aligns for all mass ratios, this is not
the case for the primary members (upper, red area) which retain their initial misalignments if q is
low enough. Our fiducial model is assumed here: H/r = 0.001, α = 0.2, f = 0.1, and maximally
spinning BHs χ1 = χ2 = 1. Warp non-linear propagation theory introduces uncertainties (thus
the shaded areas) of a factor of ∼ 2.5 in the alignment times. The corresponding times obtained
with the linear theory are shown with dotted lines for comparison and always underestimate the
non-linear result.

5.3.1.2 Predicted timescales

The key dependence of the spin-alignment problem in SMBH binaries is the one on the bi-

nary mass ratio q, which both controls the onset of different inspiral regimes and determines

the importance of differential accretion. Fig. 5.4 shows the inspiral and the alignment

times as functions of q for our fiducial set of parameters. The uncertainty in the initial

misalignments θi causes the alignment times to appear as stripes in the figure, rather than

lines. For comparison, we also show (dotted lines) the behaviour predicted by the linear

warp-propagation of Eq. (5.12) where tal is independent of θi. The linear theory underes-

timates the alignment time by up to a factor of ∼ 2.5 [317]. Fig. 5.4 illustrates the main

result of this analysis: while secondaries are found aligned (tal,2 � tin) for every value of q,

primary BHs only align if q & 0.2. Light secondaries may prevent primaries from aligning.

If such BHs were misaligned before the disc interactions, these misalignments are carried

over to the next stages of the binary evolution. As explored in Sec. 5.3.3 this differential
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Variation Primary BH Secondary BH
Fiducial [0.14 - 0.23] (0.14) [n-n] (n)
α = 0.3 [0.17 - 0.28] (0.18) [n-n] (n)
α = 0.4 [0.19 - 0.32] (0.21) [n-n] (n)
α = 0.5 [0.21 - 0.35] (0.23) [n-n] (n)

H/r = 10−4 [0.07 - 0.12] (0.07) [n-n] (n)
H/r = 10−2 [0.28 - 0.48] (0.29) [n-n] (n)
H/r = 10−1 [0.60 - 1] (0.61) [0.02 - n] (n)
χi = 0.2 [0.09 - 0.14] (0.09) [n-n] (n)
χi = 0.5 [0.12 - 0.19] (0.12) [n-n] (n)
χi = 0.8 [0.14 - 0.22] (0.14) [n-n] (n)

Ṁbin = Ṁgap [0.07 - 0.12] (0.07) [n-n] (n)

Table 5.2: Binary mass ratios marking the transition between aligned and misaligned spins. For
any variation from our fiducial model [ai = 1, α = 0.2, H/r = 10−3, Ṁgap given by Eq. (5.21)], we
report values q̄ such that BH spins in binaries with q < q̄ are expected to be left misaligned (i.e.
tal > tin) by gaseous interactions. Values in square brackets refer to the lower and upper limit of
q̄ due to the initial-misalignment uncertainty foreseen using non-linear warp propagation. Values
in round brackets show the analogous result when the linear theory is considered, and notably
underestimates the value of q̄. Misaligned secondaries are typically not present (as indicated with
“n”) unless some of the parameters are cranked up to unrealistic values (as for example H/r in this
table).

alignment between the two binary members will affect the subsequent GW-driven inspiral,

the merger phase and the properties of the remnant BHs allowing for the possibilities of

large kicks.

A short parametric study around our fiducial model is shown in Table 5.2, where

we compute the values of q which mark the onset of the misaligned regime (i.e. where

tal = tin). As expected [317], the alignment process is rather independent of α with

thresholds varying from q ∼ 0.17 to 0.35 if α is increased from 0.2 to 0.5. Notably, the

alignment likelihood is also rather independent of the spin magnitudes χ1 and χ2, because

of the mild scaling of tal [cf. Eq. (5.15)]. Alignment times are longer for maximally spinning

BHs χ1 = χ2 = 1 chosen for our fiducial model, but misaligned primaries are predicted for

mass ratios q ∼ 0.15 even when moderately spinning BHs are considered. Perhaps more

surprisingly, the alignment process appear to be strongly dependent on the disc aspect

ratio H/r which enters linearly in tin and with a lower power in tal. Only primaries with

q > 0.6 have enough time to align their spins in thicker discs with H/r ∼ 0.1, even when

maximally rotating BHs are considered. Moreover, if H/r is large enough, the inspiral time

may become comparable to the secondary alignment time within the physical uncertainty

due to initial spin orientation. As already pointed out (Sec. 5.2.1, se also Sec. 5.4 below),

the disc thickness is one of the main uncertainties in the current modelling of binary-disc

interactions. Details of the gas streams leaking through the disc cavity also have a notable
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Figure 5.5: Mass ratio distributions
in the synthetic SMBH binary popu-
lations developed by [37]. Four mod-
els are available, for different pre-
scriptions of the accretion geome-
try (Efficient versus Chaotic) and
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effect: the largest value of q where misalignment is foreseen drops down to ∼ 0.12 if all of

the gas of the circumbinary disc ends up being accreted by either one of the two BHs (i.e.

if Ṁbin = Ṁgap, cf. [183]).

5.3.2 Cosmologically-motivated distributions

Our findings are relevant if SMBH binaries with spins and mass ratios in the misaligned

regime are present in nature and detectable. While electromagnetic observations already

constrain almost a hundred SMBH masses [355] and a handful of BH spins [439], the

measurements of the global properties of the SMBH binary population is the main goal

of future space-based GW observatories. eLISA [469] will detect hundreds of binaries per

year up to redshift z ≤ 10 with sufficient signal-to-noise ratio O(10 − 100) to measure

accurately both individual-source parameters and their statistical distribution [48].

Here we present a simplified analysis to address whether the misaligned-spin regime

highlighted above is relevant in this context. Publicly available [530] synthetic distributions

of merging BH binaries have been developed by the LISA collaboration in the context of

the LISA Parameter Estimation Taskforce [37] and later updated in [475]. The authors

developed four merger-tree models of BH evolution, varying over only two ingredients,

considered to be the main sources of uncertainty.

1. The mass of the BH seeds. In the small seed scenario (S), BHs are initialized as

remnants of Population III stars at z ∼ 20 with mass ∼ 100M� and evolved according

to the model of [533]. In the large seed scenario (L), BH with mass 105M� are formed
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from gaseous protogalactic discs at z ∼ 15 to ∼ 10 as described by [61] (see also [318])

2. The accretion geometry. If accretion efficiently (E) occurs during a few long episodes,

the BHs will generally be spun up during their cosmic evolution [504]. On the other

hand, accretion may also happen to be chaotic (C), in the form of many short episodes

[279]. In this case, lumps of material accreted in random directions on average spin

the holes down.

This approach results in four models, referred to as SE, SC, LE and LC. Fig. 5.5 shows

the extracted mass ratio distributions, together with power-law fits N ∝ qγ in the range

q ∈ [0.01, 1]. We obtain γ = 0.17 for LC, γ = 0.56 for LE, γ = 0.40 for SC and γ = 0.63 for

SE. The spin-magnitude distributions of [37] are strongly peaked towards slowly spinning

BHs for the C models and a ∼ 1 for the E models. This is a direct consequence of

their simplified accretion treatment, which is either completely coherent or completely

chaotic; broader distributions are predicted for more realistic evolutionary models where

this assumption is relaxed [47, 163, 474]. Spin orientations are not tracked during the

cosmic evolution by [37]: spins are assumed to efficiently align in models E, while their

directions are kept isotropic in models C.

Fig. 5.6 shows the cumulative fraction of aligned BHs using these four synthetic BH-

binary populations7. We sample the mass ratio q over the fitted power-law distributions

from Fig. 5.5; spin magnitudes are set to χ1 = χ2 = 0.1 in the C models and χ1 = χ2 = 1

in the E models, to mimick the strongly peaked distributions of [37]. For simplicity, we fix

the disc properties to our fiducial values [H/r = 0.001, α = 0.2, Ṁgap given by Eq. (5.21)]

and we sample over a uniform distribution in cos θi to extract values of the alignment time

within the initial-orientation uncertainty presented in Sec. 5.3.1. Fig. 5.6 shows, for each

value of τ , the fraction of binaries P for which tal < tinτ . Sections at τ = 1 correspond

to our current model: while all secondaries align during the inspiral, up to ∼ 8% of the

primaries may not have time to align their spins before merger. This statement appears

to be rather independent of the population synthesis model chosen. In particular we find

P (tal,1 < tin) = 0.93 for LC, P (tal,1 < tin) = 0.96 for SC, P (tal,1 < tin) = 0.92 for

LE and P (tal,1 < tin) = 0.93 for SE. Here two main effects are combined: while the E

models present higher spin magnitudes (hence longer alignment times) than the C models,

they also predict a steeper profile in the mass ratio (Fig. 5.5), with fewer small-q binaries

(hence, on average, shorter alignment times). The misaligned, rapidly rotating, primary

7We are aware of the inconsistency of our procedure: the binary mass ratio distributions used here are
coupled to the spin orientations; at each merger tree level, the properties of the daughter BHs do depend
on the spin orientations of their progenitors (cf. Sec. 4.2.1 and references therein).
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Figure 5.6: Fraction of BH spins in binary systems that align within a factor τ of the inspiral time
tin, as predicted using the publicly available distributions by [37]. Alignment predictions using
the model presented here can be read off at τ = 1: all four distributions show that ∼ 8% of BH
primaries may fail to align during the gas-driven inspiral, while strong differential accretion quickly
aligns all secondaries. Fractions P at larger and lower values of τ predict the alignment likelihood
in case of systematic modelling errors on either the inspiral or the alignment time.

BHs predicted by the E models are ideal targets for strong-gravity precession effects in the

late inspiral and merger (Chapters 2 and 3).

Fig. 5.6 also provides intuition on the consequences of systematic errors in our timescale

estimates. If the inspiral (alignment) time is larger (smaller) by a factor τ = 10, all binaries

in the sample align by the end of the gas-driven inspiral. On the other hand, if the inspiral

(alignment) process is 10 times faster (slower), i.e. τ = 0.1, only 60%-80% of the primaries

align.

5.3.3 Differential misalignment and kick velocity

The most notable consequence of our findings is a clear prediction for the spin-orientation

angles at the onset of the GW-driven inspirals: a non-negligible fraction of SMBH binaries

approaches the GW-driven phase with θ1 6= 0 and θ2 ' 0.

If the binary lies in the same plane as the circumbinary disc ([255, 367], see Sec. 5.4),

the angles θi may be taken as estimates of the misalignment between the BH spins and the
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binary angular momentum Lbin, and used to estimate the properties of the post-merger BH.

While final mass [51] and spin [53] do not critically depend on the spin misalignments, these

are crucial to predict the final recoil [115, 215] (cf. our previous discussion in Sec. 4.2.1).

The largest kick velocities (up to ∼ 5000 Km s−1) are attained for maximally spinning,

equal-mass BH mergers with moderately large misalignments θi ∼ 50◦ [332, 333].

Here we perform a preliminary study to estimate the impact of our findings on the

kick velocity distribution. To maximize the effect, we consider maximally spinning BHs in

binaries with mass ratio q = 0.2, right at the onset of the misaligned regime highlighted

in Sec. 5.3.1 (cf. Fig. 5.4). Numerical-relativity fitting formulae are available to compute

kick velocities, but –as explored in details in Chapter 2– precession effects during the

GW-driven inspiral must be taken into account, especially for configurations with sensibly

different spin tilts θ1 6= θ2 [463, 270, 271, 269, 76, 204, 206, 205]. GWs start driving the

merger at the decoupling radius [35, 213, 371]

rdec ' 760
GMbin

c2

( α

0.2

)−2/5
(
H/r

0.001

)−4/5 (7.2 q)2/5

(1 + q)4/5
, (5.24)

where the angular momentum losses in GWs dominate over the viscous evolution of the

disc. We first transfer the spin orientations from the initial separation rdec = 760GMbin/c
2

to rfin = 10GMbin/c
2 using precession-averaged binary transfer as presented in Sec. 2.3.3;

and we finally apply the numerical-relativity fitting formula of Eq. (4.11) at rfin [333]. We

assume a random initial value of ∆Φ at rdec [c.f. Eq. (2.4)]. In order to disentangle the

dependence of the kick velocity on the spin orientations, here we maximize over the orbital

phase at merger Θ (thus only showing the maximum kick allowed in each configuration).

The relevance of Θ on the results presented in this Section can be easily predicted because

the kick velocity scales roughly as vk ∝ cos Θ, c.f. e.g. Eq. (2) in [115]. The kick velocity

is independent of Mbin.

Fig. 5.7 relates the spin orientation at the decoupling radius to the maximum kick

velocities allowed in each configuration. Notably, higher kicks are found in the θ1 6= 0,

θ2 ' 0 region, which we predict to be populated by the Bardeen-Petterson effect (∼ 8%

of the cases from the models used in Sec. 5.3.2). This behavior can be read in light

of our innovative multi-timescale approach to BH spin precession (Chapter 2). Kicks are

suppressed (enhanced) by spin-precession effects for binaries in the librating about ∆Φ = 0

(∆Φ = π) family [271]. Configurations lying in the θ1 6= 0, θ2 ' 0 region of the parameter

space are likely to be attracted into the ∆Φ = π family (Sec. 2.4.2): as binaries approach

the merger phase, most of their spin-precession cycles are spent with the two spins forming

an angle ∼ π when projected onto the orbital plane. These configurations are qualitatively
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Figure 5.7: Maximum kick velocity vkick (colour scale and marker size) as a function of the misalign-
ment angles cos θi = Si ·Lbin, measured at the decoupling radius rdec (x and y axes for primary and
secondary BHs respectively). We consider maximally spinning BH binaries with q = 0.2, predicted
to be at the onset of the misaligned regime unveiled by our astrophysical model. Large kicks are
foreseen in the θ1 6= 0, θ2 ' 0 region, predicted to be astrophysically relevant. Superkicks with
vk & 2000 km/s are not likely in gas-rich environments because binaries with larger mass ratio are
expected to align before mergers.

similar to the standard superkick configuration [115, 215] and notably lead to high kick

velocities.

Our prediction is that, if merging, rapidly rotating BHs are present in gas-rich environ-

ments, kicks as large as vk ∼ 1500 km/s can happen. Such kicks can make the BH wander

in the galaxy outskirts for times as long as 10 − 100 Myr with displacements of ∼ 103pc

[219, 290, 489, 209], possibly at the level of observational consequences [287]. Larger values

of vk are only possible in merging binaries with mass ratio closer to the equal-mass case

[551] (for more quantitative information see e.g. Fig. 3 in [333]). Both BHs in these bina-

ries are predicted to be found aligned at merger θ1 ∼ θ2 ∼ 0 (Sec. 5.3.1), which limits the

kick velocity to ∼ 300 km/s. Our analysis shows that superkicks with vk & 2000 km/s are

disfavoured in gas-rich environments where the Bardeen-Petterson effect comes into play.
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5.4 Light secondaries prevent primaries from aligning

Alignment of BH spins in merging BH binaries may be differential. Using a semi-analytical

model, we find that light secondaries may accrete almost all mass leaking through the

binary gap and prevent primary BHs from alignment. In particular, such a differential

alignment occurs for binaries with mass ratio q . 0.2. Gaseous interactions have enough

time to align both spins in binaries with mass ratio closer to the equal-mass case (Sec. 5.3.1).

We implement our analysis in terms of a timescale argument, comparing the time needed

to align the BH spins via the Bardeen-Petterson effect tal to the total time available in

the gas-driven inspiral phase tin. The alignment and the inspiral processes are coupled by

the accretion rates: while the binary migration is set by the circumbinary disc mass rate,

alignment is powered by the mass accreting onto each BH. Mass from the circumbinary

disc is expected to pile up at the outer edge of the cleared cavity, suppressing the alignment

process. On top of this, mass leaking through the cavity is found to preferentially accrete

onto the secondary BH which orbits closer to the disc edge. This causes the alignment time

of the primary BH to be several orders of magnitudes longer than that of the secondary,

and possibly even longer than the inspiral time. Differential accretion is a key feature,

previously neglected, in tackling the spin-alignment problem: for comparison, Miller and

Krolik [367] only quoted a factor of ∼ q−1/2 between the alignment times of the two BHs.

While powerful for its simplicity, our timescale argument fails to capture the dynamics of

the alignment process: more elaborate models involving numerical simulations are needed

to predict the residual misalignment of primary BHs that cannot be aligned through the

Bardeen-Petterson effect, and to estimate how close to complete alignment secondaries can

be found in realistic environments.

We present preliminary results to address the relevance of our findings for the SMBH

cosmic history. Using publicly available synthetic populations, we find that binaries in

differential misalignment are expected in realistic cosmological scenarios (Sec. 5.3.2). A

fraction of ∼ 8% of the BH primaries are found misaligned at merger even in models

predicting large spin magnitudes, which allows for the possibility of large kick velocities.

Merging BHs with spin angles θ2 ∼ 0 and θ1 6= 0 are subject to the largest kick velocities

available for their mass ratio and spin magnitudes. In particular, misaligned primaries in

BH binaries with q ' 0.2 may suffer kicks as large as ∼ 1500 km/s, while higher mass

ratios are needed to obtain “proper” superkicks (Sec. 5.3.3). Binaries approaching the

merger phase with differentially misaligned spins will exhibit pronounced precession effects

in the later GW-driven inspiral phase [463, 269]. Orbital plane precession modulates the

amplitude of the GW cycles, encoding information about the astrophysical environment
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in the emitted GW pattern [208, 529, 514]. These features may in principle be used to

constrain our models using future space-based GW observations, although more work is

needed to quantify these statements.

Several assumptions have been made in developing our models, some of them worthy of

future improvements. First and perhaps most importantly, our model estimates whether

spin misalignments, if present, are carried over towards merger. The same dynamical

processes that bring the binary together may play a role in determining the spin directions

before Type II migration takes place. While star scattering is unlikely to affect the spin

orientations because it does not present any preferred direction, this may not be the case

for previous larger-scale gas interactions. DF inside a gaseous environment may be crucial

to promote the binary formation: even if short (∼ 10 Myr; [178, 162]), this phase presents

interesting dynamics involving tidal shocks and nuclear cusp disruption [523] whose possible

consequences on the spin directions still need to be explored. Secondly, our model only

estimates whether the BH spins align to the angular momentum of the disc, while strong-

gravity effects in the late inspiral and merger phase depend on the misalignments between

the BH spins and the binary angular momentum. The further assumption of alignment

between the binary orbital plane and the circumbinary disc [255] is necessary to estimate

the properties of the post-merger BHs, in particular the kick velocity. Thirdly, we have

neglected the BH mass growth during the alignment process. Differential accretion brings

binaries towards larger mass ratios on timescales ∼M/Ṁ . While this effect can be safely

neglected on the timescale of the alignment process tal ∼ 10−3M/Ṁ [cf. Eq. (5.15)], it

may not be negligible on the timescale of the inspiral. However, this point may only

be important for aligned binaries which do not present large kick velocities anyway. As

extensively discussed in Sec. 5.2.4, we also neglect the presence of the companion when

estimating the alignment time (cf. [367]). However, Fig. 5.1 shows that this effect (a factor

of ∼ 2 in tal) mostly affects q ∼ 1 binaries where both BHs aligns anyway. This point is

worth further investigation, but sensible modelling efforts are likely to be required because

the presence of two external torques (Lense-Thirring precession and the companion) cannot

be fully captured within a timescale argument [349]. Finally, we have assumed that all

values of q are allowed on cosmological grounds. Assuming the BH mass correlates with

the galaxy mass, galaxy pairs with q . 0.1 may fail in forming close binaries because of

strong tidal interactions before the galactic merger [500, 111, 523]. Mass stripped away

from the secondary galaxy may sensibly increase the delay time between the galaxy and

the BH mergers, possibly even preventing the BH binary formation.

We stress that the impact of the disc aspect ratio on the Bardeen-Petterson effect is
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still not understood and can potentially be crucial. Both the migration process (Sec. 5.2.1)

and gas streaming through the binary cavity (Sec. 5.2.5) have only been simulated with

significantly thicker discs (typically H/r ∼ 0.01 − 0.1) than those predicted for discs sur-

rounding SMBHs (H/r ∼ 0.001, see Sec. 5.2.2). In particular, a significantly lower amount

of gas may be able to leak through the cavity in thinner discs, possibly slowing down the

alignment process. Although we are aware of the computational constraints in simulating

thin discs, we stress that such simulations are needed to validate the analytical expressions

assumed here, and we point towards the importance of pushing these numerical efforts to

lower values of the aspect ratio.8

Merging SMBH binaries are unique systems where gravity and astrophysics both play

together to shape the dynamics. BH spin alignment (or misalignment) is an imprint of an-

gular momentum transfer between the astrophysical and the relativistic side of BH binaries

whose potential still needs to be fully uncovered.

8Since our findings presented in this Chapter were first presented [211], they had stimulated further
studies in this direction: see [551, 435].





Chapter 6

Direct measurements of

black-hole kicks

Outlook

Generic BH binaries radiate GWs anisotropically, imparting a recoil, or kick, ve-

locity to the merger remnant. If a component of the kick along the line-of-sight is

present, GWs emitted during the final orbits and merger will be gradually Doppler-

shifted as the kick builds up. We develop a simple prescription to capture this

effect in existing waveform models, showing that future GW experiments will be

able to perform direct measurements, not only of the BH kick velocity, but also

of its accumulation profile. In particular, the eLISA space mission will measure

SMBH kick velocities as low as ∼ 500 km s−1, which are expected to be a com-

mon outcome of BH binary coalescence following galaxy mergers. BH kicks thus

constitute a promising new observable in the growing field of GW astronomy.
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Executive summary

This Chapter is organized as follows. In Sec. 6.1 we introduce our innovative approach to

perform direct measurements of BH kicks. This is then further explored using back-of-the-

envelope arguments (Sec. 6.2) and numerical models (Sec. 6.3). We draw our conclusions

in Sec. 6.4.

The material presented in this Chapter is based on [207] and consists in a first analysis

of the subject. A detailed follow-up study is currently underway [373].

6.1 Direct vs. indirect observations of recoiling BHs

With the first GW detection [13], merging BH binaries have entered the realm of observa-

tional astronomy. GW150914 constitutes not only the first direct detection of GWs, but

also the first observation of a stellar-mass BH binary. The identification of SMBH binary

candidates has (so far) only been possible through electromagnetic observations [465, 166].

The most promising candidates have been identified as double-core radio galaxies [446] and

quasars with periodic behaviors [518, 218]. Upcoming GW observations will revolutionize

the field of BH binary astrophysics: stellar-mass BH binaries will be targeted by a world-

wide network of ground-based interferometers [23, 41, 430] while in space the recent success

of the LISA pathfinder mission [32] has paved the way for eLISA [469] which will observe

hundreds (if not thousands) of supermassive BH binaries out to cosmo- logical redshifts

and open the era of multi-frequency GW astronomy [473].

In this Chapter, we present a preliminary analysis to show that the enormous potential

of future GW observations is further enriched by the direct observability of BH kicks. BH

binaries radiate GWs anisotropically which leads to a net emission of linear momentum

and, by conservation of momentum, to a recoil of the final remnant. This effect has

been studied extensively using PN and numerical techniques; see e.g. [122] and references

therein. The key findings of these studies are that the merger of non-spinning BHs can

only produce kicks of ∼170 km s−1 [216], but that recoil velocities as large as ∼5000 km s−1

are possible if rapidly rotating BHs with suitable spin orientations collide [215, 115, 332].

These exceptionally large recoils are commonly refered to as superkicks and their dynamics

can be attributed to anti-parallel spin components in the orbital plane [276].

BH kicks have striking astrophysical consequences, especially for SMBHs. Superkicks

of O(1000) km s−1 easily exceed the escape velocity of even the most massive galaxies

[362], and may thus eject BHs from their hosts [437]. Such ejections would affect the

fraction of galaxies hosting central BHs (see Chapter 4 for BCGs and Chapter 5 for gas-
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rich environments) and, consequently, the expected event rates for eLISA [470]. Even

smaller recoil velocities . 500 km s−1 affect the dynamics of galaxy cores by displacing

the post-merger BHs for time scales as large as ∼ 10 Myr [219, 288]. BH kicks may lead

to a variety of electromagnetic signatures [287] and observational strategies [433, 90] have

recently been proposed for their detection. Candidates are present but their nature is

debated (see [287, 294] and references therein) and, overall, BH kicks remain elusive.

If GW observations of a BH binary provide accurate measurements of the component

masses and spins, it is in principle possible to use numerical relativity results (such as

those reported in Sec 4.2.1) to infer the kick that the binary should have received around

merger (this was not possibile for GW150914 because of the poor determination of the

spin paramters [15]). Such an approach, however, would be of indirect nature and crucially

relies on the validity of the assumptions in the numerical modeling process. For instance,

it would not provide an additional consistency check of the predictions of GR. As argued

here, it is possible instead to directly measure BH kicks from the GW signal alone. If the

kick is directed towards (away from) the Earth, then the latter part of the waveform will be

blue (red) shifted relative to the early part. Roughly speaking, different, Doppler-shifted

mass parameters would be inferred from the inspiral and ringdown parts of the signal if

analyzed separately. More precisely, by observing the differential Doppler-shift throughout

the signal, one can directly measure the change in speed of the system’s center of mass as

a function of time.

6.2 Doppler mass shift

In the absence of a mass or length scale in vacuum GR, the GW frequency f enters the

binary dynamics exclusively in the dimensionless form fM , where M is the total mass

of the binary (in this Chapter we use natural units G = c = 1). This scale invariance

implies a complete degeneracy between a frequency shift and a rescaling of the total mass

of the system. For example, the cosmological redshift z of a BH binary merely enters

in the predicted GW emission through a rescaling of the total mass by a factor (1 + z)

and, hence, GW observation of the binary only measures the combination M(1 + z) [297].

BH kicks produce a similar effect: at linear order, the motion of the center of mass shifts

the emitted GW frequency by a factor 1 + vk · n̂ whilst leaving the amplitude unaffected

(vk is the kick velocity with magnitude vk and the unit vector n̂ denotes the direction of

the line-of-sight from observer to source). There is, however, one crucial difference: while

cosmological redshift homogeneously affects the entire signal, a frequency shift due to BH

kicks gradually accumulates during the last orbits and merger. This point is illustrated
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Figure 6.1: GW shift due to BH kicks (artificially exaggerated to demonstrate the key features). As
the kick velocity builds up during the last few orbits and merger, the emitted GWs are progressively
redshifted (top) or blueshifted (bottom), depending on the sign of the projection of the kick velocity
vk onto the line-of-sight n̂. This is equivalent to differentially rescaling the binary’s total mass in
the phase evolution from M to M(1 + vk · n̂). These figures have been produced by artificially
imparting kicks of vk · n̂ = ±0.5c to non-spinning equal-mass binaries, assuming a Gaussian kick
model with σ = 60M [see Eqs. (6.5)-(6.6) with αn = 0 for n ≥ 1].

in Fig. 6.1: as a kick is imparted to the merging BHs, the emitted GWs are progressively

blue- or red-shifted. The frequency of the signal changes as if the mass of the system was

varied from M in the early inspiral to M(1 + vk · n̂) by the end of the ringdown.

The detectability of this effect can be estimated using the following back-of-the-envelope

argument. Imagine breaking a BH binary waveform into two parts: inspiral and ringdown,

h(t) = hi(t) + hr(t). For simplicity, assume that the kick is imparted instantaneously at

merger so that only hr is affected. Let Mi and Mr respectively denote the total binary

mass as measured from hi and hr alone. Neglecting the energy radiated in GWs1, the

effect of a kick is to Doppler-shift the final mass according to Mr = Mi(1 + vk · n̂). The

1This effect is not negligible in magnitude, resulting in a reduction of the mass by ∼ 5 %, but can be
estimated accurately from the waveform and thus be accounted for.



6.2 Doppler mass shift 159

inspiral part hi of the GW signal generally contains a larger fraction of the Signal-to-Noise

Ratio (SNR) than the ringdown part hr, so the detectability of the kick will be limited by

the measurement of Mr: kicks of magnitude vk can be detected if Mr is measured with a

fractional accuracy of . vk/c (∼ 1% for a superkick along the line of sight). The ringdown

waveform can be modeled using the least damped quasi-normal mode for a Schwarzschild

BH [75]

hr(t) ' A exp

(
−0.089

t

Mr

)
sin

(
0.37

t

Mr

)
(6.1)

which gives a squared SNR

ρ2
r =

1

Sn

∫ ∞

0
hr(t)

2 dt ' 2.66MrA
2

Sn
, (6.2)

assuming white noise in a detector with Power Spectral Density (PSD) Sn(f) = Sn =

const. The error on the measurement of Mr can be estimated using the linear signal

approximation, [187]

(
1

∆Mr

)2

=
1

Sn

∫ ∞

0

(
∂

∂M
hr(t)

)2

dt ' 25.6A2

MrSn
, (6.3)

Therefore, the fractional error on Mr is given by

∆Mr

Mr
' 0.322

ρr
. (6.4)

This back-of-the-envelope argument suggests that kicks along the line-of-sight with magni-

tude vk ∼ 0.003c ' 900 km s−1 can be measured with GW observations if the SNR in the

ringdown is ρr ∼ 100. Direct detection of BH kicks will be very challenging, if not impos-

sible, with current ground-based detectors. For instance, the rather loud event GW150914

has a ringdown SNR ρr ∼ 5 [17], which would only allow us to measure unrealistically

large kicks vk ∼ 0.06c. On the other hand, BH kicks are very promising observables for

space-based detectors, where SNRs in the ringdown can reach ρr ∼ 103 [196]. This will

allow for measurements of SMBH kicks with magnitude as low as vk ∼ 100 km s−1, which

are expected to be ubiquitous [76, 335]. The detectability of the kick is governed by the

ringdown part of the SNR ρr, which has also been found to be important to detect the GW

memory effect (see [184] where kicks are also mentioned) and test the Kerr hypothesis via

BH spectroscopy [75].
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6.3 Kicked waveforms

In order to investigate the detectability of BH kicks more quantitatively, we need a wave-

form model that captures the cumulative frequency shift they introduce. Doppler shifts due

to BH kicks can be straightforwardly incorporated into any pre-existing waveform model

(which does not include the kick) by substitutingM →M×[1+v(t)] in the phase evolution,

where v(t) is the projection of the center-of-mass velocity due to the kick onto the line-

of-sight. Here, we only consider the non-relativistic Doppler shift; relativistic corrections

enter at the order O(v2
k) . 10−4, well below the magnitude relevant for our analysis. The

profile v(t) is taken such that v(t)→ 0 as t→ −∞ and v(t)→ vk · n̂ as t→∞. A common

observation in NR simulations is that the kick is imparted over a time 2σ ∼ 20M centered

on the merger, at a rate dv/dt which is approximately of Gaussian shape [101, 330], possi-

bly with some deceleration after merger (antikick) [291, 442]. In contrast to the kick speed,

relatively little is known regarding the kick profile beyond these qualitative observations.

We therefore adopt a flexible model for the kick profile. We expand dv/dt according to

d

dt
v(t) = vk · n

∑
n αnφn(t)∫∞

−∞
∑

n αnφn(t) dt
, (6.5)

φn(t)=
1

σ
√

2nn!
√
π

exp

(
−(t− tc)2

2σ2

)
Hn

(
t− tc
σ

)
, (6.6)

where Hn are the Hermite polynomials, tc is the time of coalescence, σ controls the dura-

tion over which the kick is accumulated and the αn weigh the various components. The

functions φn(t) constitute a complete basis (they are actually the familiar solutions for the

quantum harmonic oscillator) and so they can model all possible kick profiles. This basis

is particularly appealing, because the first two terms n = 0, 1 model Gaussian acceleration

profiles and antikicks, respectively. The case σ = 0 and αn = 0 for n ≥ 1 corresponds

to a kick instantaneously imparted at tc, as assumed in the back-of-the-envelope argu-

ment presented above. We have tested this prescription against 200 numerical-relativity

waveforms from the public SXS (Simulating eXtreme Spacetimes) catalogue [376], finding

that the radiated-momentum profiles obtained from integrating the l ≤ 6 modes of the

Newman-Penrose scalar Ψ4 are well approximated by the first two terms of the expansion

of Eqs. (6.5-6.6). For systems with kicks above 500 km s−1, residuals in vk are less than

17% in all cases, and typically less than 4% [373].

For a given waveform approximant, GW detector, and binary parameters, we generate

two signals: a standard waveform h0(t) and a second ‘kicked’ waveform hk(t). The two
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Figure 6.2: Mismatches intro-
duced by BH recoils. The top
panel shows the mismatch 1−O
between (i) a standard waveform
of equal-mass non-spinning BH
binaries of total mass M and
(ii) a ‘kicked’ waveform which
includes the Doppler-shifting ef-
fects of a velocity profile v(t).
Each line corresponds to a dif-
ferent kick profile v(t), as shown
in the bottom panel. All mod-
els shown here assume αn = 0

for n ≥ 2. The σ = 10M ,
α1/α0 = 0 model (solid line) is
used in Fig. 6.3.

waveforms can be compared by calculating their overlap

O = max
tc,φc

(h0|hk)√
(h0|h0)(hk|hk)

, (6.7)

where (h0|hk) is the noise-weighted inner product [374] and tc (φc) is the time (phase) of

coalescence. Approximately, two waveforms are distinguishable (and the kick detectable)

if O . 1− ρ−2 [314], where ρ =
√

(h0|h0) is the SNR (of the full waveform). This assumes

the kick is not degenerate with other parameters, which is expected as the kick mostly

affects the ringdown and not the entire signal.

This procedure is illustrated in Fig. 6.2 using a simple controlled experiment. We

consider 6 inspiral cycles, merger and ringdown of an equal-mass non-spinning BH binary

(a similar set-up to that used in Fig. 6.1). For simplicity, and to ensure that the results

are not detector specific, the overlaps have been computed using a flat PSD. Artificially

imposed recoils of ∼ 1000 km s−1 introduce mismatches (1 − O) ∼ 10−5. Kicks are more

likely to be detected if they are imparted over a longer period of time (i.e. larger σ) because

dephasing starts to occur earlier in the inspiral (this effect can be seen in Fig. 6.1 where a

larger value of σ = 60M was used). Note that the overlaps are approximately symmetric

with respect to the transformation vk → −vk, i.e. blueshifts and redshifts are equally

detectable. This property can be shown to hold exactly at linear order in vk [373].
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We next explore more realistic scenarios by using numerical-relativity fitting formulae

to predict the kick velocity. For this purpose, we generate two BH binary populations for

the LIGO and eLISA detectors. LIGO (eLISA) sources were selected randomly from the

following distributions: uniform total mass M ∈ [10M�, 100M�] ([105M�, 106M�]) and

mass ratio q ∈ [0.05, 1]; uniform dimensionless spin magnitudes χ1, χ2 ∈ [0, 1]; isotropic

inclination and spin directions at a reference GW frequency fref = 20 Hz (2 mHz); isotropic

sky location; sources are distributed homogeneously in comoving volume with comoving

distance Dc ∈ [0.1 Gpc, 1 Gpc] ([1 Gpc, 10 Gpc]) assuming the Planck cosmology [24]. We

use the LIGO ‘Zero-Det-High-P’ PSD of [488] with lower cutoffs flow = 10 Hz, and the two

possible eLISA PSDs ‘N2A5L6’ and ‘N2A1L4’ of [282] with flow = 0.3 mHz (the former

being more optimistic; for simplicity we neglect the spacecraft orbital motion which can be

separately accounted for). For each binary, we estimate the kick velocity using the fitting

formula summarized in Sec. 4.2.1. In order to return accurate estimates, the kick formula

requires as input the BH spin parameters at separations r ∼ 10M , comparable to the

initial separations of the numerical-relativity simulations used in the formula’s calibration.

Otherwise, resonant effects [463] are not adequately accounted for and lead to erroneous

kick magnitudes [271]. We bridge the separation range between fref and r = 10 M using

orbit-averaged PN evolutions, as described in Chapter 2. The numerical-relativity fitting

formula then provides expressions for the kick components parallel and orthogonal to the

binary orbital angular momentum L: v‖ and v⊥ [c.f. Eqs.(4.12-4.14)]. The projection of

the kick velocity along the line-of-sight is given by

vk · n̂ = v‖ cos Θ cos ι− v⊥ cos Θ′ sin ι , (6.8)

where cos ι = L̂ · n̂ is the cosine of the inclination at r = 10M , Θ is related to the direction

of the orbital-plane components of the spins at merger [101, 331], and Θ′ sets the direction

of the orbital-plane component of the kick [373]. In practice, both Θ and Θ′ depend on

the initial separation of the binary in the numerical-relativity simulations. While the Θ

dependence has been studied extensively in the literature [101, 331], the impact of Θ′ and its

relation with Θ have, to our knowledge, not yet been explored. In the following, both angles

are drawn uniformly in [0, π]. For each system, we generate two waveforms, h0 and hk,

using the inspiral-merger-ringdown approximant ‘IMRPhenomPv2’ of [224, 274, 253] which

accounts for spin precession. We have verified our results for the overlaps are insensitive

to the choice of the waveform approximant, even when non-precessing models are used.

In the following, we assume a “Gaussian” kick model, described by αn = 0 for n ≥ 1 and

σ = 10M (solid curve in Fig. 6.2); cf. [101].



6.3 Kicked waveforms 163

Figure 6.3: Detectability of BH kicks with LIGO (top) and eLISA (bottom). For each simulated
source we compute the overlap O between standard and ‘kicked’ waveforms, and compare it with
the SNR ρ. Kick velocities –here encoded in the color bar– are imparted using numerical-relativity
fitting formulae. BH kicks are detectable for the fraction F of the sources above the black line,
O < 1− ρ−2. eLISA results have here been generated with the ‘N2A5L6’ PSD of [282].

Our results are summarized in Fig. 6.3. As suggested by our previous argument, none

of the LIGO sources have mismatches high enough to detect the kick. The eLISA case is

different: ∼ 1% to 6% (depending on the PSD) of the simulated sources have O < 1− ρ−2

and therefore present detectable BH kicks. Kicks with a projected magnitude vk · n̂ & 500

km s−1 at ρ & 1000 will be generically observable, but even some of the lower kicks with

vk·n̂ ∼ 100 km s−1 may be accessible. In the fortunate case of a superkick directed along the

line-of-sight (|vk · n̂| ∼ 3000 km s−1), the effect may be so prominent to be distinguishable

at SNRs as low as ρ ∼ 50. As eLISA is expected to measure up to O(100) BH binaries per

year [469, 282], our study suggests that ∼ 6 yr−1 (∼ 30 in total for a 5-yr mission lifetime)

sources may present detectable kicks. Although more realistic astrophysical modeling is

needed to better quantify this fraction, our simple study shows that direct detection of
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BH recoils is well within the reach of eLISA. Third-generation ground-based detectors will

also present promising opportunities: repeating the calculations of the LIGO population

of binaries but observed with ET (assuming the ‘ET-D-sum’ PSD of [240], with flow = 1

Hz) we find ∼ 5% of binaries possess detectable kicks.

GW observations not only have the potential to measure the magnitude of the BH

kick, but also the details of how the velocity accumulates with time. By expanding v(t)

according to Eqs. (6.5-6.6), one can take the kick model parameters vk · n̂, σ and αn to be

free parameters of the waveform model, and treat them on an equal footing with masses,

spins, inclination angles, etc. Consider, for example, a golden system at ρ = 104 with

component masses of 1.3×106M� (chosen to maximize the mismatch caused by the kick),

misaligned extremal spins and inclination such that vk · n̂ ∼ 5000 km s−1 km. A Fisher

matrix calculation of the intrinsic parameters of this binary suggests that eLISA will be

capable of measuring the kick velocity with precision ∆vk ∼ 200 km s−1, the kick duration

with precision ∆σ ∼ 1M and the presence of an antikick at the level of ∆(α1/α0) ∼ 0.1

(considering a two-component kick model, i.e. αn = 0 for n ≥ 2) [373]. This Fisher

matrix analysis revealed no strong degeneracies between the kick and other parameters,

thus further justifying our previous use of the overlap as a detectability criterion for the

kick. Finally, note that superkicks have v‖ � v⊥ so that face-on or face-off binaries

|L̂ · n̂| ∼ 1 generate the largest velocity components along the line of sight and, hence, are

most favorable for a direct kick measurement.

6.4 Evidence for the linear momentum carried by GWs

BH kicks leave a clear imprint on the GW waveform emitted during the late stages of

the inspiral, merger and ringdown of BH binaries. eLISA and, likely, third-generation

ground-based detectors will be able to directly detect the presence of a kick from the

distortion of the waveform for a significant fraction of the binaries observed. By comparing

the directly measured kicks (both magnitude and profile) to the kick predictions from

numerical relativity for a binary with measured masses and spins, it will be possible to

verify whether linear momentum is radiated as predicted by GR. Much like the Hulse-

Taylor pulsar provided the first evidence that GWs carry away energy in accordance with

the expectation of GR [250, 502], and GW150914 provided the first direct evidence of

the GWs themselves [13], a direct measurement of a BH kick will provide the first direct

evidence for the linear momentum carried by GWs.



Chapter 7

Stellar collapse in scalar-tensor

theories of gravity

Outlook

We present numerical-relativity simulations of spherically symmetric core collapse

and compact-object formation in ST theories of gravity. The additional scalar

degree of freedom introduces a propagating monopole GW mode. Detection of

monopole scalar waves with current and future GW experiments may constitute

smoking gun evidence for strong-field modifications of GR. We collapse both poly-

tropic and more realistic pre-SN profiles using a high-resolution shock-capturing

scheme and an approximate prescription for the nuclear Equation of State (EOS).

The most promising sources of scalar radiation are protoneutron stars collapsing

to BH. In case of a Galactic core collapse event forming a BH, Advanced LIGO

may be able to place independent constraints on the parameters of the theory at

a level comparable to current Solar-System and binary-pulsar measurements. In

the region of the parameter space admitting spontaneously scalarised stars, tran-

sition to configurations with prominent scalar hair before BH formation further

enhances the emitted signal. Although a more realistic treatment of the micro-

physics is necessary to fully investigate the occurrence of spontaneous scalarisation

of NS remnants, we speculate that formation of such objects could constrain the

parameters of the theory beyond the current bounds obtained with Solar-System

and binary-pulsar experiments.
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Executive summary

This Chapter is organised as follows. In Sec. 7.1 we introduce our analysis and review

previous works on the topic. The action and the evolution equations of the theory are

presented in Sec. 7.2. Additional physical ingredients entering our simulations are given in

Sec. 7.3. Our numerical procedure is described in Sec. 7.4. We present our results on core

collapse dynamics and monopole GW emission in Sec. 7.5. We summarise our findings in

Sec. 7.6.

The material presented in this Chapter is based on [210].

7.1 Compact-object formation to test GR

GR is currently assumed to be the standard theory of gravity, and has so far passed all

experimental tests with flying colours [71, 17, 544, 428]. Theoretical and observational ev-

idence, however, suggests that some modifications of GR may be inevitable. Cosmological

and astrophysical observations require most of the energy content of the Universe to be

present in the form of dark energy and dark matter [78, 136, 495]. On theoretical grounds,

GR is expected to represent the low-energy limit of a more fundamental (quantum) theory

[108]. Presently considered candidates for such theories predict modifications of GR at

higher energies which also provide means to circumvent the formation of mathematical

singularities inevitable in GR [233].

Attempts to generalise GR in these directions often involve additional fields that medi-

ate the gravitational interaction together with the spacetime metric. The simplest class of

such models is that of ST theories, where one scalar field is included in the gravitational

sector of the action. Ever since the pioneering work of Jordan, Fierz, Brans, and Dicke

[263, 186, 98], ST theories have received a great deal of attention, both from a theoretical

and a phenomenological point of view (see e.g. [143, 128, 193, 494, 181] and references

therein). This class of theories is simple enough to allow for detailed predictions to be

worked out, but also complicated enough to introduce a richer phenomenology leading to

potentially observable deviations from GR. ST theories make predictions in the largely

untested strong-field regime, while remaining compatible with the weak-field constraints

imposed on GR by Solar System experiments (cf. Sec. 7.3.2 below).

BH spacetimes might at first glance appear to represent an ideal testing ground for

strong-field effects. The classical uniqueness theorems, first proven for Brans-Dicke the-

ory [232, 507, 124] and later extended to a wider range of ST theories (see [62, 237] for

reviews), however, strongly constrain the potential for deviations of BH spacetimes in ST
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theory from their GR counterparts. At leading PN order, for example, the dynamics of

a BH binary in Brans-Dicke theory is indistinguishable from the GR case [545]. Indeed,

considering the ST field equations given below as Eqs. (7.5)-(7.8), one immediately sees

that vacuum solutions of GR are also solutions to the ST equations with a constant scalar

field. Non-trivial BH dynamics can still be obtained by relaxing some of the fundamental

ingredients of the no-hair theorems as for example a non-vanishing potential term [235]

or non-asymptotic flatness [73]. Due to the additional coupling introduced by the energy

momentum tensor in the ST equations, however, compact matter sources such as NSs

and collapsing protoneutron stars forming BHs appear to be more promising objects for

exploring observational signatures of ST theories.

Guided by this expectation, we shall focus on the formation of compact objects through

gravitational collapse. Gravitational collapse is the expected evolutionary endpoint of stars

of Zero-Age Main Sequence (ZAMS) mass of 10M� . M . 130M� [391, 133, 498]. After

exhausting their available fuel, the star’s central core (mostly made of iron group nuclei)

collapses under the strength of gravity as it exceeds its effective Chandrasekhar mass [81].

Collapse proceeds until mass densities become comparable to those of nuclear matter.

Thereafter, the increasingly repulsive character of the nuclear interactions leads to core

bounce, which results in an outgoing hydrodynamic shock. The outgoing shock soon stalls

because of dissociation of nuclei and neutrino emission in the post-shock region, and must

be revived to successfully drive a SN explosion [81]. The physical mechanism responsible

for the shock revival is still a topic of active research (see e.g. [258] and references therein).

Multi-dimensional fluid instabilities and neutrino interactions are generally believed to play

a crucial role in driving most SN explosions with the possible exception of hyper-energetic

ones [110, 516]. One single core-collapse SN provides photon luminosities comparable to

those of an entire galaxy and outshines all stars in the Universe in neutrinos. If the

explosion is successful, a NS is left behind. If the explosion fails or is very weak, continued

accretion will push the central NS over its maximum mass of 2 − 3M� and lead to the

formation of a BH. The details of BH formation depend on the structure of the progenitor

star and on the nuclear EOS [391].

ST theories may play a crucial role in this picture of NS and BH formation. A pe-

culiar non-linear effect called “spontaneous scalarisation” [144, 145] – somewhat similar

to spontaneous magnetisation in ferromagnets – represents a particularly strong form of

non-trivial scalar-field dynamics leading to additional branches of stationary NS families

(see also [52, 404, 486] for dynamical scalarisation in binary NS systems). Moreover, ST

theories provide a new channel for emission of GWs in stellar collapse. Whereas in GR
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conservation of mass and momentum exclude monopole and dipole radiation, monopole

waves are permitted in ST theories in the form of scalar radiation, the so-called breath-

ing mode. Detection of this breathing mode generated by a galactic SN would constitute

smoking-gun evidence for a deviation from GR in the strong-field regime. Such tests of

GR represent a major scientific goal [17] of the new era of GW astronomy initiated with

the recent breakthrough detection of GW150914 [13], and thus add to the enormous sci-

entific potential of exploring the physics of stellar collapse with GWs (see Ref. [402] for a

comprehensive review on the topic).

The impact of ST theories on the equilibrium structure of NSs has been extensively

studied in the literature (see, e.g., [144, 160, 359, 490, 247, 405]). Surprisingly few studies,

however, have been devoted to their formation processes. Following pioneering numer-

ical relativity simulations in Brans-Dicke theory [351], early studies have been devoted

to dust-fluid collapse [457, 458, 485, 227]. The collapse of NSs into BHs [387] and the

transition between different static NS branches [386] was first addressed by Novak using

pseudo-spectral methods. To the best of our knowledge, the only published simulations

of NS formation in ST theories have been presented by Novak and Ibáñez in [388], who

combined pseudo-spectral techniques and high-resolution shock-capturing to study core

collapse. The only other study we are aware of is [155], which numerically models the

collapse of spherically symmetric fluids with a Γ-law EOS in Brans-Dicke theory and finds

the monopole radiation to dominate at frequencies near the GW detectors’ maximum sen-

sitivity regime f ∼ 100 Hz, independently of the Brans-Dicke coupling parameter. The

systematic exploration of GW emission from core collapse in ST theories thus represents

a largely uncharted area in SN research. The dawning age of observational GW physics

makes the filling of this gap a timely task.

For this purpose, we have extended the open-source code gr1d of O’Connor and Ott

[390] to ST theory and performed numerical simulations of NS and BH formation following

core collapse to address the detectability of the monopole GWs with Advanced LIGO [3, 10]

and the proposed ET [429]. We tackle the following questions.

• Are non-trivial scalar-field profiles and correspondingly large amplitudes in the scalar

radiation naturally triggered in compact remnants following stellar collapse?

• Can future GW observations of core collapse provide smoking gun evidence for devi-

ations from GR in the framework of ST theories?

Throughout this Chapter, we generally use geometrical units c = G = 1, but occasion-

ally restore factors of G for clarity of presentation.
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7.2 Evolution equations

In this Section, we first review different ways to formulate ST theories and then arrive

at the equations for the metric, scalar field, and matter sector in general covariant form

(Sec. 7.2.1). Next, we derive the hydrodynamic equations for the matter sources, the metric

and scalar field for the specific case of radial-gauge, polar-slicing coordinates (Sec. 7.2.2).

7.2.1 A tale of two formulations

In ST theories, gravity is mediated by the spacetime metric gµν and an additional scalar

field φ. The most general action which (i) involves a single scalar field coupled non-

minimally to the metric, (ii) is invariant under space-time diffeomorphisms, (iii) is at most

quadratic in derivatives of the field, and (iv) satisfies the weak equivalence principle can

be written in the form [143, 71, 451]

S =

∫
dx4√−g

[
F (φ)

16πG
R− 1

2
gµν(∂µφ)(∂νφ)− V (φ)

]
+ Sm(ψm, gµν) . (7.1)

Here, d4x is the standard coordinate volume element, R is the Ricci scalar built from gµν ,

g = det gµν and the symbol ψm collectively denotes all non-gravitational fields. The theory

has only two free functions of the scalar field: the potential V = V (φ) and the coupling

function F = F (φ)1. If the potential V is a slowly varying function of φ – as expected

on cosmological grounds, see [142] – it causes negligible effects on the propagation of φ on

stellar scales. For simplicity, we thus set V = 0; GR is then recovered for F = 1. Details

on the choice of the coupling function F are postponed to Sec. 7.3.2.

The weak equivalence principle – which has been verified experimentally to very high

precision [544] – is guaranteed to hold as long as the matter part of the action Sm does

not couple to the scalar field, and its motion is therefore governed by the geodesics of the

metric gµν . In this formulation, the scalar field does not interact with ordinary matter

directly, but influences the motion of particles exclusively through its coupling with the

spacetime metric.

The theory described by the action (7.1) is said to be formulated in the Jordan frame

[263]. Probably the most famous case of a ST theory, though by now severely constrained

by solar-system tests [79], is Brans-Dicke theory [98]: the specific theory obtained by setting

F (φ) = 2πφ2/ωBD where ωBD is constant [451].

Alternatively to the above Jordan-frame description, ST theories can also be formulated

1Another common notation for the coupling function is A = F−1/2 (see, e.g., [143, 144, 145]) .
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in the so-called Einstein frame. Here, one considers the conformal transformation

ḡµν = Fgµν , (7.2)

and the action of Eq. (7.1) becomes

S =
1

16πG

∫
dx4√−ḡ

[
R̄− 2ḡµν(∂µϕ)(∂νϕ)

]
+ Sm[ψm, ḡµν/F ] . (7.3)

The Ricci scalar R̄ is now built from the Einstein metric ḡµν and ϕ is a redefinition of the

scalar field φ through [451, 452],

∂ϕ

∂φ
=

√
3

4

F,φ2

F 2
+

4πG

F
. (7.4)

The key advantage resulting from this conformal transformation is a minimal coupling

between the conformal metric and the scalar field, evident at the level of the action. The

fact that such a redefinition of the theory exists has an important consequence for attempts

to constrain the theory’s parameters through observations of compact objects: BHs are less

suitable to obtain such constraints because the action (7.3) in vacuum (Sm = 0) reduces to

the Einstein-Hilbert action of GR with a minimally coupled scalar field. In the action as

well as the field equations given further below, it is evident that matter sources represent

an additional and more straightforward channel to couple the metric and scalar sectors.

The equations of motion in the Jordan frame can be obtained by varying the action

(7.1) with respect to the spacetime metric gµν and the scalar field φ:

Gµν =
8π

F

(
TFµν + T φµν + Tµν

)
, (7.5)

TFµν =
1

8π
(∇µ∇νF − gµν∇ρ∇ρF ) , (7.6)

T φµν = ∂µφ∂νφ−
1

2
gµν∂

νφ∂νφ , (7.7)

∇ρ∇ρφ = − 1

16π
F,φR . (7.8)

Combining the Bianchi identities with the field equations can be shown to imply that the

matter part of the energy momentum tensor,

Tµν =
2√−g

δSm
δgµν

, (7.9)



7.2 Evolution equations 171

is conserved on its own, i.e.

∇µTµν = 0 . (7.10)

This feature makes the Jordan frame particularly suitable for studying stellar collapse: the

matter equations, which are expected to develop shocks, do not need to be modified from

their GR counterparts (cf. Sec. 7.2.2.3). The drawback of this choice is that the scalar field

is not minimally coupled to the metric, i.e. the Hilbert term in the action (7.1) acquires

a φ-dependent factor. This factor F (φ) leads to the term TFµν on the right-hand side of

Eq. (7.5) additionally to the minimally coupling term T φµν and the standard matter sources

Tµν .

7.2.2 Equation of motions

We now restrict the equations of motion to spherical symmetry in radial-gauge, polar-slicing

coordinates [449]. The line element in the Jordan frame is

ds2 = gµνdx
µdxν = −α2dt2 +X2dr2 +

r2

F
dΩ2 , (7.11)

where the metric functions α = α(t, r) and X = X(t, r) can be more conveniently rewritten

in terms of the metric potential,

Φ = ln(
√
Fα) , (7.12)

and the enclosed mass,

m =
r

2

(
1− 1

FX2

)
. (7.13)

Note that in Eq. (7.11) we multiplied the angular part of the metric dΩ2 by a factor 1/F ,

thus effectively imposing the radial gauge in the Einstein frame. In this formulation, the

(Jordan-frame) areal radius is given by r/
√
F . This choice allows for comparisons with

[387, 386, 388], where the analysis is entirely carried out in the Einstein frame. Likewise,

Φ and m are Einstein-frame variables and their definition in terms of the Jordan metric

components in Eqs. (7.12), (7.13) acquires factors of F .

Following [390], we assume ideal hydrodynamics as described by an energy-momentum

tensor of the form

Tαβ = ρhuαuβ + Pgαβ , (7.14)
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and the matter current density

Jα = ρuα . (7.15)

Here ρ is the baryonic density, P is the fluid pressure, h is the specific enthalpy (which is

related to the specific internal energy ε and the pressure P by h = 1 + ε+ P/ρ), and uµ is

the 4-velocity of the fluid. Spherical symmetry implies

uµ =
1√

1− v2

[
1

α
,
v

X
, 0, 0

]
, (7.16)

where v = v(t, r).

The equations of motion can be reformulated in flux conservative form using conserved

variables and thus become amenable to a numerical treatment using high-resolution shock-

capturing schemes [189, 188]. These conserved variables D, Sr and τ are related to the to

the primitive variables ρ, ε, v and P by

D =
ρX

F
√
F
√

1− v2
, (7.17)

Sr =
ρhv

F 2(1− v2)
, (7.18)

τ =
ρh

F 2(1− v2)
− P

F 2
−D . (7.19)

The definitions above generalise Eq. (8) in [390] to ST theory. We take advantage of

the Einstein-frame scalar-field redefinition φ → ϕ of Eq. (7.4) because it simplifies the

wave equation (7.8). Moreover, the space of ST theories and the weak-field experimental

constraints are traditionally described in terms of ϕ (cf. Sec. 7.3.2). Following [387, 386,

388], we introduce auxiliary variables for the derivatives of the scalar field defined by

η =
∂rϕ

X
, (7.20)

ψ =
∂tϕ

α
. (7.21)
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7.2.2.1 Metric equations.

The evolution equations (7.5–7.7) for the metric potential Φ and the mass function m

expressed in terms of the conserved variables read

∂rΦ =X2F

[
m

r2
+ 4πr

(
Srv +

P

F 2

)
+

r

2F
(η2 + ψ2)

]
, (7.22)

∂rm =4πr2(τ +D) +
r2

2F
(η2 + ψ2) , (7.23)

∂tm =r2 α

X

(
1

F
ηψ − 4πSr

)
. (7.24)

These equations are not independent; the last equation for ∂tm directly follows from the

other two combined with the conservation of the energy momentum tensor (7.10). For

convenience, we follow standard practice and compute the metric functions using the con-

straints (7.22), (7.23) and discard the time evolution equation for m.

From Eq. (7.22), we further notice that the metric potential Φ is determined only up

to an additive constant. In GR, this freedom is commonly used to match the outer edge of

the computational domain to an external Schwarzschild metric. This cannot be done in ST

theories, as such theories do not obey a direct analogue of the Birkhoff theorem [85, 298].

We therefore specify a boundary condition for Φ using the method put forward by Novak

[387]: Φ is constrained on the outer boundary of the computational domain by requiring

that

K =
eΦ

√
1− 2m

r

(7.25)

is approximately constant in the weak-field regime, far away from the star. K is then

evaluated for the initial profile (cf. Sec. 7.2), fixed to be constant during the evolution and

determines Φ on the outer edge of the grid r = Rout by inverting (7.25)2

Φ(Rout) = ln


K

√
1− 2m(Rout)

Rout


 . (7.26)

Note that the Birkhoff theorem in GR corresponds to the case K = 1. The error incurred

from this procedure can be estimated by comparing results obtained for different extents

of the computational domain. We obtain variations of order |∆ϕ/ϕ| ∼ 10−3 at the radius

of extraction when the grid extent is decreased by a factor 2 (cf. Sec. 7.4.1 for more details

on our numerical setup). Similar errors are detected in the collapse of a ST polytrope if K

2Assuming the outer region of the numerical domain is in the weak-field regime, this choice is equivalent
to α→ 1 at r →∞, c.f. [387] (see also Sec. 7.3.3 below).
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is set to 1, rather than evaluated from the initial profile

7.2.2.2 Scalar-field equations.

The wave equation for the scalar field (7.8) can be written as a first-order system using

the definitions (7.20-7.21) and the identity ∂t∂rη = ∂r∂tη to obtain

∂tϕ = αψ , (7.27)

∂tη =
1

X
∂r (αψ)− rXαη(ηψ − 4πF Sr) +

F,ϕ
2F

αηψ , (7.28)

∂tψ =
1

r2X
∂r
(
αr2η

)
+ rXαψ(ηψ − 4πF Sr)

− F,ϕ
2F

αψ2 + 2πα

(
τ − Srv +D − 3

P

F 2

)
F,ϕ . (7.29)

In order to prescribe the behaviour of ϕ at the outer boundary, we consider the asymp-

totic behaviour of the scalar field at spatial infinity [143]

ϕ(r) = ϕ0 +
ω

r
+O

(
1

r2

)
, (7.30)

where ϕ0 = const and and ω denotes the scalar charge of the star. Physically, we require

that no radiation enters the spacetime from infinity and therefore impose an outgoing

boundary condition [492] at spatial infinity

lim
r→∞

ϕ(t, r) = ϕ0 +
f(t− r)

r
+O(r−2) , (7.31)

where f is a free function of retarded time. This condition can be translated into the

following differential expressions for η and ψ,

∂tψ + ∂rψ +
ψ

r
= 0 , (7.32)

∂tη + ∂rη +
η

r
− ϕ− ϕo

r2
= 0 , (7.33)

and the scalar field ϕ is directly obtained from Eq. (7.27). As shown in more detail below

[see Eq. (7.51) and the following discussion], the value of ϕ0 is degenerate with one of the

parameters used to describe the coupling function and is set to zero in our study without

loss of generality.

In practice, our computational domain extends to large but finite radii and we ap-

proximate the physical boundary conditions by imposing Eqs. (7.32), (7.33) at the outer
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edge rather than at infinity. As already mentioned, we have tested the influence of the

outer boundary location on our results and observe only tiny variations of the order of

|∆ϕ/ϕ| ∼ 10−3 in the extraction region when comparing with simulations performed with

Rout twice as large.

7.2.2.3 Matter equations in flux-conservative form.

The evolution equations (7.5–7.8) can be conveniently written in flux-conservative form

[307, 188],

∂tU +
1

r2
∂r

[
r2 α

X
f(U)

]
= s(U) , (7.34)

where U is the vector of the conserved variables U = [D,Sr, τ ] defined in Eqs. (7.17-7.19).

The fluxes f(U) = [fD, fSr , fτ ] and the source s(U) = [sD, sSr , sτ ] are given by

fD = Dv , (7.35)

fSr = Srv +
P

F 2
, (7.36)

fτ = Sr −Dv , (7.37)

sD = −DF,ϕ
2F

α(ψ + ηv) , (7.38)

sSr = (Srv − τ −D)αXF

(
8πr

P

F 2
+
m

r2
− F,ϕ

2F 2X
η

)
+
αX

F
P
m

r2
+ 2

αP

rXF 2

− 2rαXSrηψ − 3

2
α
P

F 2

F,ϕ
F
η − r

2
αX(η2 + ψ2)

(
τ +

P

F 2
+D

)
(1 + v2) , (7.39)

sτ = −
(
τ +

P

F 2
+D

)
rαX

[
(1 + v2)ηψ + v(η2 + ψ2)

]

+
α

2

F,ϕ
F

[
Dvη +

(
Srv − τ + 3

P

F 2

)
ψ

]
. (7.40)

Note that Ref. [388] misses a factor 1/a (in their notation) inside the argument of the

radial derivative in their Eq. (11). Inclusion of this factor and pulling the term proportional

to ηv in Eq. (7.38) out of the radial derivative enables us to cast the evolution equation

for D in the same form (7.34) as the other matter equations. For the integration of the

evolution equation for D, we therefore do not need the additional considerations described

in Sec. 2.1 of [388].

The hyperbolic structure of the system of equations (7.34) is dictated by the Jacobian
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matrix of the fluxes [59],

JU =
∂f(U)
∂U

. (7.41)

The characteristic speeds associated with the propagation of the matter fields are the

eigenvalues λ of JU,

λ =

[
v,

v + cs
1 + v cs

,
v − cs

1− v cs

]
. (7.42)

Here cs =
√

(dP/dρ)S/h (S is the entropy) is the local speed of sound given for our choice

of EOS of the form P = P (ρ, ε) by

h c2s =
∂P

∂ρ
+
P

ρ2

∂P

∂ε
. (7.43)

The characteristic speeds are therefore exactly the same as in GR, since they do not depend

on the conformal factor F . The high-resolution shock-capturing scheme implemented in

gr1d for GR [390] can therefore be used in ST theories as well, provided the conserved

variables U and their fluxes f(U) are generalised using the expressions presented above.

7.3 Physical setup

In this Section, we discuss in more detail the physical ingredients entering our simulations.

We discuss the EOS for the fluid used in our work (Sec. 7.3.1), the various choices for the

coupling function that relate the physical metric to its conformally rescaled counterpart

(Sec. 7.3.2) and the initial stellar profiles used in our study (Sec. 7.3.3). We also provide

information on the quantities used to compare GW signals and detector sensitivities in the

context of monopole waves (Sec. 7.3.4).

7.3.1 Equation of state

An EOS is required to close the hydrodynamical system of equations. Specifically, it pro-

vides a prescription for the pressure P and other thermodynamic quantities as a function of

the mass density, internal energy (or temperature), and possibly the chemical composition.

Here we study stellar collapse using the so-called hybrid EOS. This EOS was introduced in

[259] and qualitatively captures in closed analytic form the expected stiffening of the nuclear

matter EOS at nuclear density and includes nonisentropic (thermal) effects to model the

response of shocked material. The hybrid EOS was widely used in early multi-dimensional

core-collapse simulations (e.g. [555, 156]), and the results of simulations using a hybrid

EOS have been compared in detail with those obtained with modern finite-temperature
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EOSs [157, 158].

The hybrid EOS consists of a cold and a thermal part:

P = Pc + Pth . (7.44)

The cold component Pc is modelled in piecewise polytropic form with adiabatic indices Γ1

and Γ2,

Pc =




K1ρ

Γ1 if ρ ≤ ρnuc ,

K2ρ
Γ2 if ρ > ρnuc .

(7.45)

This expression models both the pressure contribution from relativistic electrons, which

dominates at ρ ≤ ρnuc, and the stiffening at nuclear density due to the repulsive character

of the nuclear force. The two components are matched at “nuclear density” which we set

to ρnuc = 2 × 1014 g/cm3 following [156]. We set K1 = 4.9345 × 1014 [cgs], as predicted

for a relativistic degenerate gas of electrons with electron fraction Ye = 0.5 [479], while

K2 = K1ρ
Γ1−Γ2
nuc is then obtained from requiring continuity in P at ρ = ρnuc. The specific

internal energy follows from the first law of thermodynamics applied to the case of adiabatic

processes

εc =





K1
Γ1−1ρ

Γ1−1 if ρ ≤ ρnuc ,

K2
Γ2−1ρ

Γ2−1 + E3 if ρ > ρnuc ,
(7.46)

where the integration constant E3 is determined by continuity at ρ = ρnuc. The thermal

contribution Pth is described by a Γ-law with adiabatic index Γth,

Pth = (Γth − 1)ρεth , (7.47)

where εth = ε − εc is the thermal contribution to the internal energy, computed from

the primitive variable ε. The flow is adiabatic before bounce, implying that ε ' εc and

the total pressure is described by considering only its cold contribution. At core bounce,

however, the hydrodynamic shock results in nonadiabatic flow and thus triggers the onset

of a non-negligible thermal contribution to the EOS.

We consider a hybrid EOS characterised by three parameters: Γ1, Γ2 and Γth. The

physical range of these adiabatic indices has been explicitly studied in [157, 158], where

2+1 GR simulations of core collapse were used to compute the effective adiabatic index of

the finite-temperature EOSs of Lattimer and Swesty [304, 305] and Shen et al. [481, 482].
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In the collapse phase, electron capture decreases the effective adiabatic index below the

value Γ1 = 4/3 predicted for a relativistic gas of electrons. More precisely, comparisons

with more detailed simulations yields a range from Γ1 ' 1.32 to Γ1 ' 1.28 [157, 158, 483].

In particular, lower values of Γ1 are found when deleptonisation is taken into account

because electron capture onto nuclei before neutrino trapping decreases Ye for given ρ,

thus softening the EOS. Collapse is stopped by the stiffening of the EOS at nuclear density

which raises the effective adiabatic index Γ2 above 4/3. Dimmelmeier et al. [158] finds

Γ2 ' 3.0 for the Shen et al. EOS and Γ2 ' 2.5 for the Lattimer-Swesty EOS. Finally, the

thermal adiabatic index Γth models a mixture of relativistic and non-relativistic gas, and

is therefore physically bounded to 4/3 < Γth < 5/3. We select fiducial values Γ1 = 1.3,

Γ2 = 2.5, Γth = 1.35 for our code tests presented in Sec. 7.4, and explore a more extended

parameter grid around this model in Sec. 7.5.

7.3.2 Coupling function

As introduced in Sec. 7.2.1, ST theories with a single scalar field and vanishing potential are

described by a single free function F (ϕ). The phenomenology of ST theories is simplified,

however, by the fact that all modifications of gravity at first PN order depend only on two

parameters. These are the asymptotic values of the first and second derivatives of lnF

[143, 145, 128]3,

α0 = −1

2

∂ lnF

∂ϕ

∣∣∣∣
ϕ=ϕ0

, β0 = −1

2

∂2 lnF

∂ϕ2

∣∣∣∣
ϕ=ϕ0

. (7.48)

The effective gravitational constant determining the attraction between two bodies as mea-

sured in a Cavendish experiment is

G̃ = G(1 + α2
0) , (7.49)

where G is the bare gravitational constant entering the action. Furthermore, the Eddington

Parameterised post-Newtonian parameters [171, 543] can be expressed exclusively in terms

of α0 and β0 through

βPPN − 1 =
α2

0β0

2(1 + α2
0)2

, γPPN − 1 = −2
α2

0

1 + α2
0

. (7.50)

For an interpretation of these equations in terms of fundamental interactions, see [146].

In consequence, weak-field deviations from GR are completely determined by the Taylor

3We introduce factors −1/2 in Eq. (7.48), and consequently a factor −2 in Eq. (7.51), to be consistent
with previous studies, e.g., Refs. [143, 144, 145].
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expansion of lnF to quadratic order about limr→∞ ϕ = ϕ0. For these reasons, most of the

literature on ST theories has focused on coupling functions of quadratic form [144, 145]

and we follow this approach by employing a coupling function

F = exp
[
−2α0(ϕ− ϕ0)− β0(ϕ− ϕ0)2

]
. (7.51)

The asymptotic value ϕ0 does not represent an additional degree of freedom in the theory

because it can be reabsorbed by a field redefinition ϕ→ ϕ+ ϕ0 [142] and we therefore set

ϕ0 = 0 without loss of generality.4 We can furthermore assume α0 ≥ 0 because the sign

of α0 is degenerate with the field redefinition ϕ → −ϕ. Despite its apparent simplicity,

this two-parameter family of ST theories is representative of all ST theories with the same

phenomenology up to first PN order. Brans-Dicke theory [98] is a special case of Eq. (7.51)

with the Brans-Dicke parameter [defined above Eq. (7.2)] given by ωBD = (1 − 6α2
0)/2α2

0

and β0 = 0. It is worth mentioning here that theories with the coupling function (7.51) and

strictly vanishing potential have been shown to exhibit non-viable cosmological evolutions

[149, 148]; however, this can be cured by introducing a suitable (sufficiently flat) potential

which leaves the phenomenology on stellar scales unchanged [260, 454].

It is well known that all deviations in the structure of spherically symmetric bodies

in ST theory from their general relativistic counterparts are given in terms of a series of

PN terms proportional to α2
0 [143, 179]; cf. also Eq. (7.50) above. Any ST theory with

α0 = 0 is therefore perturbatively equivalent to GR and current observations (see below)

constrain α0 to be very small. In 1993, however, Damour and Esposito-Farèse [144, 145]

discovered a remarkable non-perturbative effect called spontaneous scalarisation, which

introduces macroscopic modifications to the structure of NSs even when α0 is very small

or vanishes [248]. For certain values β0 < 0, there exists a threshold in the compactness

(M/R, where M is the total mass of the object and R is its radius) of stellar structure at

which spherically symmetric equilibrium solutions develop significant scalar hair. One can

find three distinct solutions in this regime: besides a weakly scalarised solution where the

ratio between the scalar charge and the star’s mass ω/M is of the order of α0, two strong-

field solutions appear where this ratio is of order unity [386, 226]. If α0 = 0, the weak-field

solution is a GR star and the two strong field solutions coincide. Notably, scalarised

solutions are present for compactness values of order M/R & 0.2 [179], as realised in NSs.

When present, scalarised neutron stars can be energetically favoured over their weak-field

counterparts [144, 145, 225], allowing for the possibility of dynamical transitions between

4The class of theories here parameterised by (α0, β0) can equivalently be represented using F =
exp(−2β0ϕ

2) but keeping ϕ0 as an independent parameter, as done, e.g., by [144].
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Figure 7.1: Experimental constraints on the ST-theory parameters (α0, β0) entering the coupling
function F . The shaded area is currently ruled out by observations; GR lies at α0 = β0 = 0. The
most stringent constraints on α0 are provided by the Cassini space mission while the binary-pulsar
experiments impose strong bounds on β0. Circles mark our choices for (α0, β0) used in Sec. 7.5.
This figure is produced using the data published in Fig. 6.3 of [71].

the two branches of solutions [386]. Spontaneously scalarised stars have been found for

β0 . −4.35 [386, 226], but the exact value of this threshold depends on the EOS.

The (α0, β0) parameter space of ST theories has been severely constrained by obser-

vations. Solar System probes include measurements of Mercury’s perihelion shift [478],

Lunar Laser Ranging [546], light deflection measured with Very-Long-Baseline Interferom-

etry [480], and the impressive bound α0 < 3.4 × 10−3 obtained with the Cassini space

mission [79]. Timing of binary pulsars currently provides the tightest constraints in the

β0 direction of the parameter space [540]. In particular, observations from pulsars PSR

J1738+0333 [192] and PSR J0348+0432 [30] (both orbiting a white dwarf companion) rule

out a wide range of theories exhibiting prominent spontaneous scalarisation. Current ob-

servational constraints are summarised in Fig. 7.1 where the shaded area is now excluded.

Note, however, that the binary-pulsar constraints apply to the case of a single massless

scalar field. Scalar-tensor theories with multiple scalar fields [247] or with one massive

field [436] may still lead to spontaneously scalarised neutron stars over a wide range of the

theories’ parameters without coming into conflict with the binary pulsar observations.
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7.3.3 Initial profiles

We perform simulations of stellar collapse starting from two types of initial data: (i)

polytropic models generated in the static limit of the ST theory equations and (ii) “realistic”

SN progenitors obtained from stellar evolutionary computations performed by Woosley &

Heger [547].

(i) In the static limit, the evolution equations presented in Sec. 7.2.2.1–7.2.2.3 reduce to

(cf. [144, 247])

∂rΦ = FX2

(
m

r2
+ 4πr

P

F 2
+

r

2F
η2

)
, (7.52)

∂rm = 4πr2 ρh− P
F 2

+
r2

2F
η2 , (7.53)

∂rP = −ρhFX2

(
m

r2
+ 4πr

P

F 2
+

r

2F
η2

)
+ ρh

F,ϕ
2F

Xη , (7.54)

∂rϕ = Xη , (7.55)

∂rη = −2
η

r
− 2πX

ρh− 4P

F 2
F,ϕ − ηFX2

(
m

r2
+ 4πr

P

F 2
+

r

2F
η2

)
+
X

2

F,ϕ
F
η2 ,

(7.56)

which generalise the Tolman–Oppenheimer–Volkoff [510, 396] equations to ST theory.

As in GR, the equation for the metric potential Φ decouples from the remainder and

we need an EOS P = PEOS(ρ) to close the system.

In practice, we integrate the system (7.52)–(7.56) outwards starting at the origin

where boundary and regularity conditions require

Φ(0) = 0 , m(0) = 0 , P (0) = PEOS(ρc) , ϕ(0) = ϕc , η(0) = 0 . (7.57)

Here, Pc (or, alternatively, ρc) is a free parameter determining the overall mass and

size of the star and the central value of the scalar field ϕc is related through the

integration to the value of ϕ at infinity. In our case, the boundary condition for the

scalar field is ϕ(r → ∞) = ϕ0 = 0 and the task is to identify the “correct” central

value ϕc that satisfies the outer boundary condition. From a numerical point of view,

this task represents a two point boundary value problem [422] and we use a shooting

algorithm to solve it. For this purpose, we note that the integration terminates at

the stellar surface rs defined as the innermost radius where P = 0. From this radius

rs, we could in principle continue the integration to infinity by setting the matter
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sources to zero and switching to a compactified radial coordinate such as y ≡ 1/r.

We have found such a scheme to work successfully [247], but here we implement an

equivalent, but conceptually simpler algorithm. The numerical solution computed

for r ≤ rs can be matched to a vacuum solution at r > rs to relate the scalar field at

the stellar surface ϕs to its asymptotic value ϕ0 at r =∞ [144]:

ϕs = ϕ0 −
Xsηs√

(∂rΦs)2 +X2
s η

2
s

arctanh

√
(∂rΦs)2 +X2

s η
2
s

∂rΦs + 1/rs
, (7.58)

where the subscript s denotes quantities evaluated at rs. The shooting algorithm

starts the integration of Eqs. (7.52–7.56) with some initial guess ϕ(0), obtains the

corresponding ϕs and then iteratively improves the choice of ϕ(0) until it leads to a

ϕs that satisfies Eq. (7.58) within some numerical tolerance (10−10 for the absolute

difference in our case).

The central density or pressure can be freely chosen and parameterises the family of

static solutions for a given ST theory (α0, β0) in the same way as it does in GR. The

members of this one-parameter family of solutions are often characterised by their

total gravitational mass which is given by [144]

m∞ = r2
s∂rΦs

√
1− 2ms

rs
exp

[
− ∂rΦs√

(∂rΦs)2 +X2
s η

2
s

arctanh

√
(∂rΦs)2 +X2

s η
2
s

∂rΦs + 1/rs

]
.

(7.59)

All polytropic initial profiles used in this work are generated using a polytropic EOS

P = KρΓ with K = 4.9345 × 1014 [cgs], Γ = 4/3 and central mass density ρc =

1010 g cm−3; these parameters are considered qualitatively reasonable approximations

to model iron cores supported by the degeneracy pressure of relativistic electrons

[479]. In particular, the choice ρc = 1010 g cm−3 results in stars with baryonic mass

∼ 1.44M�, slightly below the Chandrasekhar limit [81].

(ii) We also perform core collapse simulations using more realistic pre-SN models. Woosley

and Heger (WH) [547] evolved non-rotating single stars up to the point of iron core

collapse [536, 548]. Here, we consider two specific models of their catalogue obtained

from the evolution of stars with ZAMS mass MZAMS = 12M� and 40M�. We refer

to these models as WH12 and WH40 respectively. Model WH12 has a steep density

gradient outside its iron core, which results in a low accretion rate after bounce.

Even if no explosion occurs, the delay to BH formation would be multiple seconds

and no BH forms over the time we simulate. Model WH40, on the other hand, has

a very shallow density gradient, resulting in a high accretion rate after bounce. This
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Figure 7.2: Mass-density (left panel) and scalar-field (right panel) profiles for the initial data
considered in this study. In particular, dashed and dotted lines show the MZAMS = 12M� (WH12)
and MZAMS = 40M� (WH40) pre-SN models of Woosley and Heger [547] while the solid lines show
three Γ = 4/3 polytropes generated in ST theories with (α0, β0) = (0.001,−3), (0.003, 0), (0.01,−5).
The mass-density distributions of all three ST polytropes are indistinguishable from their GR
counterparts. The more realistic models WH12 and WH40 mostly differ from the polytropic ones
through the presence of outer low-density layers. Note that we cut the WH models at rs = 2 ×
104 km and pad them with an artificial atmosphere of ρatm = 1 g cm−3. The scalar field is more
pronounced in models with higher α0, but the low compactness of these models prevents spontaneous
scalarisation. The scalar field is initialised to zero when the WH models are evolved.

pushes the protoneutron star over its maximum mass and leads to BH formation

within a few hundred milliseconds of bounce (cf. [391]). Hence, we use model WH12

to explore ST theory for a scenario in which core collapse results in a stable NS and

model WH40 for a scenario in which the protoneutron star collapses to a BH.

Since WH12 and WH40 are Newtonian models, we initialise the scalar-field variables

ϕ, ψ and η to 0. An unfortunate consequence of this artificial (but unavoidable)

approximation is that no scalar-field dynamics occur at all if α0 = 0: all source terms

on the right-hand side of Eqs. (7.27–7.29) vanish at all times, and the evolution

proceeds exactly as in GR. We overcome this problem, by using small but non-

zero values for α0, which triggers a brief initial transient in the scalar field that

afterwards settles down into a smooth but non-trivial configuration eventually leading

to significant scalar field dynamics as the collapse progresses through increasingly

compact stages of the core.

For both classes of initial data there remains one degree of freedom that we need to specify:

the metric function Φ is determined by Eq. (7.52) only up to an additive constant. While

our integration in case (i) starts with Φ(0) = 0, we can trivially shift the profile of Φ(r) by
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a constant (leaving all other variables unchanged) and still have a solution of the system

of Eqs. (7.52)-(7.56). We use this freedom to enforce that the physical metric component

gtt = 1 as r → ∞, so that coordinate time is identical to the proper time measured by

an observer at infinity. In practice, this is achieved by using very large grids and fitting

Φ = Φ0 + Φ1/r on the outer parts. Φ0 is then the constant we subtract from the entire

profile Φ(r). The realistic initial models of case (ii) above are calculated without a scalar

field and in that case our procedure is equivalent to the standard matching in GR based

on the Birkhoff theorem.

For illustration, we show in Fig. 7.2 some of the initial profiles used in this study.

Because of the low compactness of iron cores, the polytropic profiles for all values of

α0 ≤ 0.01 present very similar mass-density distributions which also very closely resemble

their GR counterpart. The magnitude of the scalar field inside the star increases as larger

values are chosen for α0 (cf. right panel of Fig. 7.2) while outside the star ϕ rapidly

approaches the 1/r behaviour of Eq. (7.30). In the left panel of Fig. 7.2, we also see that the

realistic pre-SN models WH12 and WH40 are well approximated by a Γ = 4/3 polytrope in

their central regions r . 103 km; outer less degenerate layers of lighter elements, however,

substantially broaden the mass-density distribution outside the iron core.

In order to overcome instabilities arising in our numerical scheme due to zero densities

ρ [390], we add an artificial atmosphere outside the stellar surface rs. More specifically, we

pad the polytropic profiles with a layer of constant mass density ρatm = 1 g cm−3. The WH

models are cut at rs = 2× 104 km (cf. Fig. 7.2) and padded with an artificial atmosphere

of ρatm = 1 g cm−3. By comparing evolutions using different values for the atmospheric

density, we find the atmosphere to be completely irrelevant to the dynamics of the star,

but we observe that significantly larger values than ρatm = 1 g cm−3 unphysically affect

the propagation of the scalar wave signal such that the wave signal does not converge

in the limit of large extraction radii. We estimate the resulting error for our choice by

comparison with otherwise identical simulations using instead ρatm = 10 g cm−3; the

observed differences are |∆h(t)|/h(t) ∼ 0.3% in the extracted waveform [cf. Eq. (7.66)

below].

7.3.4 GW extraction and detector sensitivity curves

The output of a GW detector s(t) = n(t) + h(t) is the sum of noise n(t) and signal

h(t). For quadrupole GWs, as present in GR, h(t) is related to the metric perturbation

h+,× in the transverse traceless gauge through the beam pattern functions A+,×: h(t) =

A+h+(t) +A×h×(t) [372]. Monopole GWs are present in ST theory and are related to the
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dynamics of the scalar field ϕ. In this case, the detector response h(t) = A◦h◦(t) is given by

the metric perturbation h◦(t) weighted by the corresponding beam pattern A◦ [383, 553]5.

If we denote by h̃(f) and ñ(f) the Fourier transform of h(t) and n(t), respectively, the

(one-sided) noise power spectral density Sn(f) is defined as

〈ñ(f)ñ∗(f ′)〉 =
1

2
δ(f − f ′)Sn(f) , (7.60)

where 〈·〉 denotes a time average for stationary stochastic noise. The signal-to-noise ratio

is defined as (see [374] where the numerical factor is derived; see also [456])

ρ2 =

∫ ∞

0

4|h̃(f)|2
Sn(f)

df . (7.61)

The characteristic strains for noise and signal are defined as

hn(f) =
√
f Sn(f) , hc(f) = 2f |h̃(f)| (7.62)

such that ρ2 can be written as the squared ratio between signal and noise:

ρ2 =

∫ +∞

−∞

[
hc(f)

hn(f)

]2

d ln f . (7.63)

The most common convention used to display detector sensitivity curves involves plotting

the square root of the power-spectral density

√
Sn(f) =

hn(f)√
f

; (7.64)

and the analogous quantity [374]

√
Sh(f) =

hc(f)√
f

= 2
√
f |h̃(f)| , (7.65)

which characterises the GW signal.6 In the following we will use sensitivity curves
√
Sn(f)

for:

(i) the Advanced LIGO detectors [3, 10] in their zero-detuned high-power configuration,

as anticipated in [488];

5The most sensitive directions corresponding to A+, A× and A◦ are all different from each other. If
only these three polarisations are present, a network of four detectors can in principle disentangle them
and estimate the source direction [485]. Note also that optimally oriented sources correspond to A+ = 1,
A× = 1 but A◦ = 1/2 [383, 553].

6The convention for
√
Sh(f) used in [387] differs by a factor 2 when compared to those of [374] used

here.
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(ii) the proposed ET [429], using the analytic fit reported in [456].

Scalar waves are also promising sources for future GW experiments targeting the deci-

Hertz regime, such as the proposed space mission DECIGO (DECi-hertz Interferometer

Gravitational-wave Observatory) [266].

In contrast to GR, ST theories admit gravitational radiation in spherical symmetry,

specifically in the form of a radiative monopole of the scalar field or, equivalently, a so-

called breathing mode when considering the Jordan frame. The metric perturbation of a

monopole scalar wave in ST theory is [143]

h◦(t) =
2

D
α0r(ϕ− ϕ0) , (7.66)

where D is the distance between the detector and the source and the scalar field ϕ is

evaluated at radius r. The factor α0 is due to the coupling between the scalar field and

the detector and limits the potential of GW observations to constrain ST theories [49]. For

simplicity, we only consider optimally oriented sources, such that h(t) = A◦h◦(t) = h◦(t)/2

[383, 553].

In analysing our simulations, we proceed as follows. At a given radius rext, we extract

ϕ(t) and compute h(t). In order to eliminate the brief unphysical transient (cf. Sec. 7.4.1),

we truncate this early part from the time domain waveform h(t). We then obtain h̃(f)

numerically using a Fast Fourier Transform (FFT) algorithm. To reduce spectral leakage,

the FFT algorithm is applied to data h(t) mirrored about the latest timestep available

and the result h̃(f) is normalised accordingly [257]. This confines spectral leakage to

frequencies f & 200 Hz (cf. the tails in Figs. 7.7 and 7.8) where the signal is very weak.

Finally, we compute
√
Sh(f) from Eq.(7.65) and compare it with the detectors’ sensitivity

curves
√
Sn(f).

7.4 Numerical implementation

In this Section, we provide details of our numerical scheme, stressing the modifications

needed in ST theories with respect to the GR version of the code (Sec 7.4.1). We present

the convergence properties in Sec. 7.4.2.

7.4.1 Second-order finite differences and high-resolution shock capturing

Our numerical code is built on top of gr1d, an open-source spherically-symmetric Fortran

90+ code developed by O’Connor and Ott [390]. gr1d has been applied to a range of prob-

lems in stellar collapse and BH formation (e.g., [391, 392]). Its most recent GR version is
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available at [401] and includes energy-dependent neutrino radiation transport [389].

As in the GR case, the constraint equations (7.22) and (7.23) for the metric functions Φ

and m are integrated using standard second-order quadrature. In the scalar-field equations

(7.27–7.29), the source terms are discretised using centred second-order stencils. Due to

the potential formation of shocks in the matter variables, their evolution is handled with

a high-resolution shock capturing scheme as described in detail in Sec. 2.1 of [390]. For

our evolutions in ST theory, we extended the flux and source terms of gr1d in accordance

with our Eqs. (7.35)–(7.40). Integration in time of the evolution equations for the matter

and scalar fields is performed using the method of lines with a second-order Runge-Kutta

algorithm. One significant difference from the GR case arises from the presence of the scalar

field as a dynamical degree of freedom with the characteristic speed of light, whereas in

spherical symmetry in GR we only have to consider the characteristic speed of sound for the

matter degrees of freedom (cf. Sec. 7.2.2.3). In order to satisfy the Courant-Friedrichs-Lewy

stability condition we therefore determine the timestep using the speed of light instead of

the speed of sound, which results in smaller values for the allowed timestep as compared

with the corresponding evolutions in GR.

As discussed in Sec. 7.2.2.3, a key ingredient in the implementation of shock capturing

methods is the use of a system of evolution equations in flux conservative form which is

available in terms of the conserved variables D,Sr, τ but not in the primitive variables ρ,

v and ε. The primitive variables appear in the constraint equations for the metric, the

flux terms of the shock-capturing scheme, in the EOS, and also form convenient diagnostic

output. Conversion between the two sets of variables is thus required at each timestep.

This process is straightforward for the direction primitive → conserved; cf. Eqs. (7.17–

7.19). The reverse transformation, however, is non-trivial because of the presence of the

pressure P which is an intrinsic function of ρ and ε given by the EOS. This conversion is

performed iteratively using a Newton-Raphson algorithm: given an initial guess P̂ for the

pressure from the previous timestep, we first calculate in this order

v =
Sr

τ + P̂ /F 2 +D
, (7.67)

ρ =
F 3/2D

X

√
1− v2 , (7.68)

ε = h− P̂

ρ
− 1 =

F 2(τ +D)(1− v2)− P̂ v2

ρ
− 1 . (7.69)

Then we compute an updated estimate for the pressure from the EOS P = P (ρ, ε), and

iterate this procedure until convergence.
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The evolution of the scalar field turns out to be susceptible to numerical noise near the

origin r = 0, which represents a coordinate singularity. In order to obtain long-term stable

evolutions, we add artificial dissipation terms of Berger-Oliger type [222] to the scalar

evolution equations. Specifically, we add a dissipation term of the form D×∆r4×∂4u/∂r4

to the right-hand-side of Eqs. (7.27)–(7.29), where u stands for either of the scalar-field

variables, ∆r is the width of the grid cell, and D is a dissipation coefficient. In practice,

we obtain good results using D = 2.

In all our simulations, the grid functions exhibit much stronger spatial variation in

the central region of the star than in the wave zone. In order to accommodate these

space dependent requirements on the resolution of our computational domain, we use

a numerical domain composed of an inner grid with constant and an outer grid with

logarithmic spacing. This setup enables us to capture the dynamics of the inner core with

high accuracy while maintaining a large grid for GW extraction at tolerable computational

cost. Unless specified otherwise, we use the following grid setup. The outer edge of

the grid is placed at Rout = 1.8 × 105 km and the two grid components are matched at

Rmatch = 40 km. The cell width of the inner grid is ∆r = 0.25 km. The total number of

zones is set to Nzones = 5000, such that 160 (4840) zones are present in the inner (outer)

grid. 4 ghost cells are added at both r = 0 and r = Rout for implementing symmetry and

boundary conditions. GW signals are extracted at rext = 3× 104 km, which is well outside

the surface of the star but sufficiently far from the outer edge of the grid Rout to avoid

contamination from numerical noise from the outer boundary. We simulate the evolution

for 0.7 s to allow for the entire GW signal to cross the extraction region.

Radial gauge, polar slicing coordinates are not well adapted to BH spacetimes: as the

star approaches BH formation, the lapse function α tends to zero in the inner region [25]

and inevitably introduces significant numerical noise. The stellar evolution, however, is

effectively frozen as α → 0. Following Novak [387], we handle BH formation by explicitly

stopping the evolution of the matter variables while we let the scalar field propagate out-

wards. In practice, we freeze the matter evolution whenever the central value of α becomes

smaller than αT = 5 × 10−3. By varying the threshold αT over two orders of magnitude,

we verified this procedure introduces a negligible error |∆ϕ|/ϕ . 1% on the extracted wave

signal in case of BH formation.

A final note on the numerical methods concerns the time window used for the wave

extraction. As mentioned in Sec. 7.2, our initial data for the realistic progenitor models

require us to trigger scalar dynamics by using a small but non-zero value for α0 that induces

a brief transient in the wave signal. This transient is not part of the physical signal we
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are interested in and is removed by calculating waveforms in an interval starting not at

zero retarded time, but shortly afterwards: we use for this purpose the time window [ti, tf ]

with ti = rext/c+ 0.006 s to tf = rext/c+ 0.6 s from the beginning of the simulation. This

provides us with waveforms of total length ∆t ∼ 0.6 s corresponding to a lower bound

f ∼ 1.7 Hz in the frequency domain. Note that our waveforms are significantly longer than

those obtained in previous studies of collapse in ST theories [388].

7.4.2 Self-convergence test

Here we present the convergence properties of our dynamical code. Given three simulations

of increasing resolutions with grid spacings ∆r1 > ∆r2 > ∆r3, the self-convergence factor

Q of a quantity q is defined by

Q =
q1 − q2

q2 − q3
=

(∆r1)n − (∆r2)n

(∆r2)n − (∆r3)n
, (7.70)

where qi indicates the quantity q obtained at resolution ∆ri and n is the convergence order

of the implemented numerical scheme.

We collapse a Γ = 4/3 polytropic core in ST theory with α0 = 10−4 and β0 = −4.35

using the hybrid EOS with Γ1 = 1.3, Γ2 = 2.5 and Γth = 1.35. This model is evolved for

three uniformly spaced7 grids of sizeRout = 2×103 km withN = 6000, 12000 and 24000 grid

cells. For these grids, we expect Q = 2 (Q = 4) for first- (second-) order convergence. The

bottom panels of Fig. 7.3 show the convergence properties of the gravitational mass m and

the scalar field ϕ at various timesteps. Solid lines show the difference between the coarse

and the medium resolution runs q1− q2; dashed (dotted) lines show the difference between

the medium and the fine resolution runs q2− q3 multiplied by the expected first- (second-)

order self-convergence factor Q = 2 (Q = 4). Second-order convergence is achieved if the

solid and dotted lines coincide, while the code is only first-order convergent if the solid

and dashed lines coincide. The evolution of ρ and ϕ is displayed in the top panels for

orientation.

The enclosed gravitational mass m shows good second-order convergence properties be-

fore bounce t . 38 ms, while convergence deteriorates to first order as the shock propagates

outwards at t & 38 ms. This is a characteristic feature of high-resolution shock-capturing

schemes; they are second-order (or higher) schemes for smooth fields, but become first-

order accurate in the presence of discontinuities [390]. Note that the behaviour of the total

gravitational and baryonic mass is more complex than in the GR limit where both are
7For the convergence analysis, we use uniform grids exclusively, i.e. do not switch to a logarithmic

spacing in the outer parts. Non-linear grid structure would make a quantitative convergence analysis
highly complicated.
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Figure 7.3: Convergence test of stellar collapse in ST theory with α0 = 10−4 and β0 = −4.35. A
polytropic core is collapsed using the fiducial hybrid EOS for three different resolutions (see text for
details). The top panels show the evolution of the mass density ρ (left) and the scalar-field ϕ (right)
for the highest-resolution run at t = 7 (grey), 28 (yellow), 37 (green), 38 (blue), 57 (red) ms after
starting the simulations. Bounce happens at t ∼ 38 ms and the shock reaches the surface of the star
at t ∼ 131 ms. The bottom panels show the self-convergence properties of the gravitational mass
m (left) and the scalar field ϕ (right) at the same times. As detailed in the text, solid and dotted
(dashed) lines are expected to coincide for second- (first-) order convergence. We initially observe
second order convergence which decreases to first order due to (i) the shock capturing scheme when
a discontinuity forms at bounce and (ii) numerical noise in the scalar field propagating in from the
outer boundary.
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conserved because of the absence of gravitational radiation in spherical symmetry and the

vanishing of the source term sD in Eq. (7.38). The convergence properties of the scalar field

are more complicated. While evolved with a second-order accurate scheme, we observe that

the scalar field’s convergence may deteriorate for the following two reasons: (i) the drop to

first-order convergence of the matter fields which source the scalar dynamics; (ii) numerical

noise generated at the outer boundary, especially during the early transient (note that in

this convergence analysis the outer boundary is located much closer to the core than in our

production runs because of the limit imposed by a strictly uniform grid). The observed

convergence in the scalar field bears out these effects. Initially convergent at second order,

we note a drop to roughly first order after one light crossing time Rout/c ∼ 7 ms. As the

noise is gradually dissipated away, the convergence increases back towards second order,

but drops once more to first order at the time the shock forms in the matter profile around

38 ms.

We also tested the convergence of the scalar waveform ϕ(t) extracted at finite radius in

these simulations and observe first-order convergence which we attribute to the relatively

small total computational domain such that the outer boundary effects discussed above

causally affect the extraction radius early in the simulation. The resulting uncertainty

in the waveform is obtained by comparing the finite resolution result with the Richardson

extrapolated (see, e.g., [296]) waveform. We find a relative error of 10% which we regard as

a conservative estimate since the production runs have much larger computational domains.

7.5 Results and discussion

In this Section, we present the results of our simulations. After illustrating the main fea-

tures of stellar collapse in ST theories (Sec. 7.5.1), we present our predictions for monopole

gravitational radiation (Sec. 7.5.2). All waveforms presented in this Section are publicly

available at [202].

7.5.1 Core-collapse dynamics

The main features of the core-collapse dynamics are summarised in Figs. 7.4 and 7.5. We

present the collapse of both a polytropic core and two realistic pre-SN models (Sec. 7.3.3)

in ST theory with α0 = 10−4 and β0 = −4.35. These parameter choices lie on the edge of

the parameter space region compatible with binary pulsar experiments (cf. Fig. 7.1) and

marginally allow for spontaneous scalarisation [386, 226]. Collapse is performed using the

hybrid EOS (Sec. 7.3.1) with fiducial values Γ1 = 1.3, Γ2 = 2.5 and Γth = 1.35.

Since Γ1 < 4/3, the initial iron cores are not equilibrium solutions of the evolution
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Figure 7.4: Collapse of a Γ = 4/3 polytrope (top), the 12M� (centre) and 40M� (bottom) pre-SN
profiles of [547] in ST theory with α0 = 10−4 and β0 = −4.35, assuming Γ1 = 1.3, Γ2 = 2.5 and
Γth = 1.35. The evolution of the mass density ρ (left) and the scalar field ϕ (right) is shown as
a function of the radius r at various timesteps t − tB = −0.01,−0.001, 0.001, 0.1, 0.3, 0.375, 0.38 s,
measured from the bounce time tB . Timesteps are coloured from darker (early times) to lighter
(late times) solid lines as labelled; initial profiles are shown with black dashed lines. The inset
in the bottom right panel shows the wide variation of the scalar field when a BH is formed. An
animated version of this figure is available online at [202].
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Figure 7.5: Evolution of the central values of the mass density ρc (left panels) and lapse function
αc (right panel) through collapse, bounce and late time evolution in ST theory with α0 = 10−4 and
β0 = −4.35. We use the hybrid EOS with fiducial parameters (Γ1 = 1.3, Γ2 = 2.5 and Γth = 1.35)
and three different initial profiles: ST polytrope (top), WH12 (centre) and WH40 (bottom). Gray
dashed lines mark the bounce time tb; the WH40 profile first collapses to a protoneutron star and
then to a BH at tBH ∼ 0.46 s marked by grey dotted lines. Relative differences with analogous
simulations performed in GR are shown in the lower subpanels (red lines). Deviations in the
dynamics are very small: of the order of |∆ρc|/ρc ∼ 10−5 and |∆αc|/αc ∼ 10−6.
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equations and collapse is triggered dynamically. While the polytropic profile collapses

smoothly from the very beginning of the simulation, a brief transient in the scalar-field

evolution is present in the early stages of the collapse of both the WH12 and WH40

models. As already mentioned in Sec. 7.3.3, this is due to the fact that these initial models

are Newtonian and their initially vanishing scalar profiles are not fully consistent with

the ST theory used in the evolution. This transient generates a pulse in the scalar field

propagating outwards at the speed of light. The scalar field quickly settles down in the

stellar interior while the spurious pulse reaches the outer edge of the grid at Rout/c ∼ 0.6 s

where it is absorbed by the outgoing boundary condition.

As the collapse proceeds in either of the three models, the central mass density increases

from its initial value up to beyond nuclear densities ρnuc ' 2 × 1014 g cm−3. The EOS

suddenly stiffens to an effective adiabatic index Γ2 � 4/3 and the inner core bounces

after tb ∼ 38, 39, and 84 ms from the beginning of the simulations, for the ST polytrope,

WH12 and WH40 profile, respectively.8 Core bounce launches a hydrodynamic shock into

the outer core. Due to the steep density profile of the polytrope, the shock explodes the

polytrope promptly, reaching its surface at ∼ 130 ms from the start of the simulation. Since

we set Γth = 1.35 to qualitatively account for reduced pressure due to nuclear dissociation

and neutrino losses, the pressure behind the shock is not sufficient to lead to a prompt

explosion of the more realistic WH12 and WH40 progenitors. The shock stalls and only

secularly moves to larger radii as the accretion rate decreases. Core bounce is paralleled by a

small reversal in the scalar field amplitude. For example, in the collapse of the polytropic

model shown in Fig. 7.4, the central value of ϕ reaches a minimum ∼ −2.6 × 10−5 at

bounce before settling down to ∼ −2.3 × 10−5. A more detailed description of the scalar

field dynamics is postponed to Sec. 7.5.2.

The inner regions of the promptly exploding polytropic model settle down to a stable

compact remnant with compactness m/r ∼ 0.053 (measured from the metric potential at

r = 10 km). While simulations with model WH12 show that the shock stalls and then

only slowly shifts to larger radii, the low accretion rate in this model does not increase

its compactness above the values that we find for the polytropic model. In both models,

the scalar charge ω evolves from ∼ −10−4 M� to ∼ −2 × 10−4 M� during the entire

evolution and thus remains of the order of ω/M ∼ α0, as predicted for weakly scalarised

NS solutions (cf. Sec. 7.3.2). In both simulations, the NSs do not evolve to strongly

spontaneously scalarised solutions because the compactness of the core remains lower than

the threshold at which multiple solutions appear (m/r ∼ 0.2 [179]).

8The WH40 profile takes longer to reach ρnuc because of its lower initial central density (cf. Fig. 7.2).
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On the other hand, the WH40 model forms a protoneutron star that subsequently col-

lapses to a BH within tBH ∼ 0.46 s from the beginning of the simulation (∼ 0.38 s from

bounce). The high accretion rate in this model quickly increases the central compactness.

As BH formation is approached, our gauge choice causes the lapse function α to collapse to

zero near the origin (Fig. 7.5) and the dynamics of the inner region effectively freezes. In

this regime, spontaneously scalarised NS solutions are not only present but energetically

favourable [144, 145, 225]. While collapsing towards a BH, the core first transits through

a spontaneously scalarised NS. BH formation generates strong scalar-field excitation, en-

hanced in this case (β0 = −4.35) by spontaneous scalarisation (cf. Sec. 7.5.2.2). The

central value ϕc, which through collapse and bounce remains close to values of the order

of ∼ −10−5, increases in magnitude to ∼ −2 × 10−3. This signal propagates outwards at

the speed of light, rapidly leaves the region of the stalled shock, and reaches the extraction

radius after about ∼ 0.56 s from the beginning of the simulation.

Our gauge choice does not allow us to follow the evolution of the inner region of the star

beyond BH formation. Following [387], we terminate the evolution of the matter variables

at the onset of BH formation in order to ensure numerical stability. At this point, the inner

core has reached a compactness of ∼ 0.466, close to the BH value of 0.5. We are still able

to gain insight into the late-time behaviour of the scalar field, however, by solving the wave

equation (7.8) on the now frozen background (cf. Fig. 7.4). We observe in these evolutions

that, as the NS (now spontaneously scalarised) collapses to a BH, the scalar field slowly

relaxes to a flat profile as predicted by the no-hair theorems [232, 507, 124, 62, 130].

Overall, the entire dynamics strongly resembles GR. The scalar field is mostly driven by

the matter evolution, which in turn is largely independent of the scalar field propagation.

This point is illustrated in Fig. 7.5, where the central values of the mass density ρc and

lapse function αc obtained in ST theory and in GR are compared. The relative differences

between these two scenarios are about |∆ρc|ρc ∼ 10−5 and |∆αc|/αc ∼ 10−6 throughout

collapse, bounce, and (eventually) BH formation.

7.5.2 Monopole GW emission

Unlike GR, ST theories of gravity admit propagating monopole GWs. This breathing

mode of the scalar field is potentially detectable with current and future GW interferom-

eters which have therefore the potential of constraining the parameters of the theory. We

now analyse the scalar GW signal extracted from our numerical simulations, separately

discussing the effects of the EOS and the ST parameters.
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7.5.2.1 Effect of the EOS

As detailed in Sec. 7.3.1, the hybrid EOS is a simplified EOS model that qualitatively

approximates more sophisticated microphysical EOSs in the core collapse context (e.g.,

[304]). The hybrid EOS is characterised by three adiabatic indices for the pre-bounce

dynamics (Γ1), the repulsion at nuclear densities (Γ2), and the response of the shocked

material (Γth). The effect of the EOS on the emitted GW waveforms is explored in Fig. 7.6,

where we show time-domain monopole waveforms h(t) ∝ rϕ [cf. Eq. (7.66) with ϕ0 = 0]

for various choices of Γ1, Γ2, and Γth. All simulations shown in Fig. 7.6 are performed

in ST theory with α0 = 10−4 and β0 = −4.35, the lower limit of β0 compatible with

present observations, using the WH12 and WH40 initial profiles. We plot the GW signals

as a function of the retarded time t − r/c, such that the origin corresponds to a single

light-crossing time at the extraction radius rext = 3× 104 km.

The structure of the emitted signals displayed in Fig. 7.6 consists of the following four

main stages.

1. The initial pulse of spurious radiation arises from the initialisation of the scalar field,

as already pointed out in Secs. 7.3.3 and 7.5.1. This pulse propagates outwards and

leaves the extraction region after a retarded time of about 0.006 s.

2. As the core collapses, the scalar field signal significantly grows in amplitude. Al-

though the first ∼ 0.02 s of the waveform appear to be rather insensitive to the EOS,

the adiabatic indices strongly affect the total amount of time the star spends in the

collapse phase before bounce. In the hybrid EOS, this is controlled by Γ1. Collapse

is triggered by Γ1 ≤ 4/3 and the smaller Γ1, the more rapid the collapse and the

smaller the mass of the inner core that collapses homologously (e.g., [555, 157]). We

note that in reality (and in simulations using more realistic microphysics), Γ1 is not

a parameter. Instead, the effective adiabatic index is a complex function of the ther-

modynamics and electron capture during collapse [157, 158]. Figure 7.6 shows that

core bounce occurs in our simulations at retarded time t− rext/c ∼ 0.03, 0.04, 0.08 s

(0.06, 0.07, 0.14) for model WH12 (WH40) and Γ1 = 1.28, 1.3, 1.32 respectively. The

bounce itself is a rapid process with a duration of ∆t ∼ 1− 2 ms.

3. After bounce, the scalar field in the inner core settles down to a non-trivial profile,

as illustrated in Fig. 7.4. The post-bounce value of ϕ at rext, hence the value of h(t),

encodes information about all three adiabatic indices. In particular, larger values

of Γ1 and smaller values of Γth both produce stronger wave signals h(t), which can

be intuitively understood as follows. Larger values of Γ1 result in a more massive
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Figure 7.6: Effect of the hybrid EOS adiabatic indices on the emitted monopole gravitational
waveform h(t) ∝ rϕ [cf. Eq.(7.66)]. The signal is plotted against the retarded time t − r/c at
the extraction radius. Simulations are performed using the preSN initial profiles WH12 (top) and
WH40 (bottom) in ST theory with α0 = 10−4 and β0 = −4.35. The curves encode the value of Γ1

in their brightness (colour) and the value of Γth in their line style: Γ1 = 1.28 (red), 1.3 (blue), 1.35

(green); Γth = 1.35 (solid), 1.5 (dashed). For each of these combinations, two curves are present:
circles mark simulations with Γ2 = 2.5, while no symbols are shown for Γ2 = 3. For some cases,
these two curves overlap to such high precision that they become indistinguishable in the plot. The
lower-case Roman labels refer to the key phases of the GW signal described in Sec. 7.5.2.1: (i)
initial pulse of the spurious radiation; (ii) collapse and bounce; (iii) NS configuration; (iv) BH
formation. The bounce time is marked with vertical dotted lines following the same colour codes
of the other curves. Note that Γ1 is the only adiabatic index that has an effect on the bounce time.
Waveforms presented in this figure are available at [202].
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inner core in the pre-bounce stage because the speed of sound is larger and, hence,

more matter remains in sonic contact in the central region. At bounce, this implies

a more compact core and a correspondingly larger amplitude in the scalar wave.

Smaller values of Γth imply lower pressure in the shocked material, and, therefore,

material that accretes through the shock settles faster onto the protoneutron star. In

terms of microphysical processes, this effect is driven by neutrino cooling [157, 158],

which is not included in our simulations. In contrast, we find that Γ2 has a relatively

minor effect on this phase of the wave signal: the scalar field profile is only slightly

more pronounced for lower values of Γ2, which result in a deeper bounce and a more

compact postbounce configuration. Note that in the waveforms shown in Fig. 7.6,

both Γth and Γ2 only affect the wave signal at and after bounce. This is expected,

since Γth only plays a role in the presence of shocked material and Γ2 affects only

the high density regime of the EOS not encountered in the collapse evolution prior

to bounce.

4. Two of the simulations shown in Fig. 7.6 (namely Γ1 = 1.28, 1.3; Γ2 = 2.5; Γth = 1.35)

for the WH40 profile collapse to BHs. BH formation is triggered when the protoneu-

tron star exceeds its maximum mass and is therefore facilitated and accelerated by

smaller values of the adiabatic indices. BH formation generates a very large pulse

in the scalar field which dominates the entire GW signal. Spontaneous scalarisation

(marginally allowed for the value β0 = −4.35 chosen here) before BH formation fur-

ther enhances the signal. The amplitude of the scalar field signal from this phase is

more than an order of magnitude larger than the bounce signal in the absence of BH

formation. We expect BH-forming collapse events to be the most promising source

of monopole GWs in the context of ST theory.

7.5.2.2 Effect of the ST parameters.

As introduced in Sec. 7.3.2, PN deviations from GR in ST theories only depend on two

parameters, α0 and β0. While α0 mainly controls the perturbative deviation from GR, β0

is responsible for non-linear effects such as spontaneous scalarisation. Our primary interest

in this Section is to explore the effect of these parameters on the detectability of signals

with current and future GW detectors and, in particular, comparison with their sensitivity

curves.

Figures 7.7 and 7.8 show frequency domain waveforms
√
Sh(f) compared with the

expected (design) sensitivity curves
√
Sn(f) of Advanced LIGO and ET. We use the WH12

and WH40 initial profiles, together with the hybrid EOS with fiducial values Γ1 = 1.3,
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Figure 7.7: Effect of α0 on frequency domain waveforms for monopole GWs emitted during stellar
collapse. The MZAMS = 12M� (top) and 40M� (bottom) pre-SN models of Ref. [547] are evolved
using the hybrid EOS with Γ1 = 1.3, Γ2 = 2.5 and Γth = 1.35. Four simulations are presented
for fixed β0 = 0 (equivalent to Brans-Dicke theory): α0 = 10−4 (orange, solid), 10−3 (blue, long-
dashed), 3×10−3 (red, short-dashed), 10−2 (green, dotted). These values are compared with current
experimental constraints in Fig. 7.1. We consider optimally oriented sources placed at D = 10 kpc
and compare them with the expected sensitivity curves of Advanced LIGO and ET. Waveforms
presented in this figure are available at [202].
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Figure 7.8: Effect of β0 on frequency domain waveforms for monopole GWs emitted during stellar
collapse. The MZAMS = 12M� (top) and 40M� (bottom) pre-SN models of Ref. [547] are evolved
using the hybrid EOS with Γ1 = 1.3, Γ2 = 2.5 and Γth = 1.35. Four simulations are presented
for fixed α0 = 3× 10−3 (marginally allowed by solar-system constraints): β0 = −5 (orange, solid),
−4 (blue, long-dashed), −2 (green, dotted), 0 (red, short-dashed). These values are compared
with current experimental constraints in Fig. 7.1. We consider optimally oriented sources placed
at D = 10 kpc and compare them with the expected sensitivity curves of Advanced LIGO and ET.
Waveforms presented in this figure are available at [202].
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Γ2 = 2.5, and Γth = 1.35 (cf. Sec. 7.3.1). To better disentangle the effect of the two ST

parameters, Fig. 7.7 (7.8) presents a series of simulations where only α0 (β0) varies while

the other parameter is kept fixed at β0 = 0 (α0 = 3 × 10−3). These two parameter sets

overlap at α0 = 3× 10−3 and β0 = 0 and this specific simulation is shown in both figures.

The location of our runs in the (α0, β0) parameter space is shown in Fig. 7.1. Throughout

our analysis, we consider optimally oriented sources placed at a fiducial distance of D = 10

kpc, i.e. within the Milky Way.

As mentioned above, the most pronounced feature in the emitted waveform arises from

the collapse of the protoneutron star to a BH. As a consequence, the GW strains emitted

during collapse of the MZAMS = 40M� profile WH40 are over an order of magnitude

larger than the corresponding signals obtained from the collapse of the WH12 profile.

BH formation (possibly enhanced by spontaneous scalarisation – see below) following the

protoneutron star phase is the most promising signature of monopole GWs in the context

of ST theory.

Simulations presented in Fig. 7.7 are performed in ST theory with β0 = 0 and var-

ious values of α0, equivalent to Brans-Dicke theory with ωBD = (1 − 6α2
0)/2α2

0. Since

spontaneously scalarised stars are not permitted in this regime, this set of simulations il-

lustrates the effect of perturbative deviations from GR. In ST theory with α0 ∼ 3× 10−3,

just compatible with the Cassini bound, GW signals generated by BH formation in our

Galaxy, are marginally detectable by second-generation ground-based detectors and fall

well into the sensitivity range of future experiments like ET. Observation of a BH forming

core collapse event with Advanced LIGO therefore has the potential of independently con-

straining ST theory at a level comparable with the most stringent present tests. Future

third-generation observatories, on the other hand, will be able to push the constraint to

new levels: α0 . ×10−4 corresponding to |γPPN − 1| . 2 × 10−8; cf. Eq. (7.50). On the

other hand, our present results suggest that core collapse forming NSs (such as in our

WH12 model) will at best allow for an independent confirmation of existing bounds, even

when observed with third-generation observatories.

By analysing the curves in Fig. 7.7 quantitatively, we observe that the amplitude of

the GW signal scales approximately as α2
0. One factor of α0 is evidently due to the local

coupling between the scalar field and the detector [see Eq. (7.66)]. In our simulations,

however, we find that the amplitude of the emitted scalar field ϕ also depends (roughly

linearly) on α0. This second factor of α0 is entirely due to the source dynamics and

therefore separate from that arising in the coupling between the wave and the detector at

the moment of observation. Even though the dynamics in the matter variables only mildly
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deviates from the GR case (cf. Fig. 7.5), such perturbative deviations from GR of the

order α0 can leave a significant imprint on the generation of monopole GWs.

The strongest effect of β0 on the structure of NSs is that of allowing for spontaneously

scalarised stars in the range β0 . −4.35. In fact, it is precisely the strength of this effect

that enables binary pulsar observations to severely constrain β0 as displayed in Fig. 7.1.

For our simulations using values of β0 significantly above the spontaneous scalarisation

threshold of about −4.35, we only identify a relatively minor variation of the scalar wave

with β0. This is well illustrated by the curves in Fig. 7.8 corresponding to β0 = 0 and

−2. Deviations of this kind can become particularly pronounced for β0 . −4.35 if the

strongly non-linear effects of spontaneous scalarisation are triggered [386, 226, 144, 145];

cf. Fig. 7.8. Whether this effect is triggered in our simulations and, in consequence, the

shape and magnitude of the resulting waveform, critically depends on the stellar progenitor.

• If the core collapse leads to a protoneutron star that subsequently collapses to a BH,

spontaneous scalarisation can be triggered by the high compactness reached shortly

before BH formation, leading to a large enhancement of the GW signal. In the

bottom panel of Fig. 7.8, we compare the frequency-domain GW signals for the BH-

forming WH40 progenitor. Spontaneous scalarisation occurs in a very strong way for

the model with β0 = −5 (already ruled out by current constraints) and leads to an

enhancement of ∼two orders of magnitude in the amplitude compared to models that

do not exhibit this strong non-linear behaviour (cases with β0 = 0 and β0 = −2).

The waveform of the model with β = −4 (still allowed) is also somewhat enhanced

by non-linear scalar field dynamics. Given the quantitative differences between these

waveforms, present and future detectors have the potential of either observing scalar

waves from BH-forming core collapse events or use their absence in the data stream

to constrain the parameter β0 beyond current limits. This will, however, require that

other uncertain parameters such as the distance to the source etc. can be determined

with high precision.

• None of our simulations of the progenitor model WH12 leads to BH formation in

the time simulated. This is so because this moderate-mass progenitor has a steep

density gradient outside its core and thus a lower postbounce accretion rate. If no

explosion is launched, a BH would still result, though on a timescale of O(10) s [391].

Furthermore, we do not observe any signature of spontaneous scalarisation in the

waveform or in the protoneutron star of the WH12 model, even for the extreme case

β0 = −5 (cf. Fig. 7.8, top panel). An analogous conclusion holds for collapse of ST

polytropes, cf. Sec. 7.3.3. The reason for this absence of spontaneous scalarisation in
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these models lies in the insufficient compactness of their protoneutron stars. At the

end of our simulations, the protoneutron star in model WH12 has a compactness of

m/r ∼ 0.05 (at r = 10 km), significantly lower than the threshold of ∼ 0.2 at which

multiple families of stationary solutions appear [179].

The final compactness reached by NS remnants is naturally model dependent and the

microphysics implemented in our analysis is greatly simplified by the use of the hybrid

EOS. The possibility of triggering spontaneous scalarisation in stellar core collapse forming

NSs (as opposed to BHs) clearly requires further exploration with more realistic finite-

temperature EOS, which is left to future work. Dissociation of accreting heavy nuclei at

the shock and neutrino cooling act indeed in the direction of lowering the effective adiabatic

index in the postshock region, thus facilitating a more rapid increase in the protoneutron

star’s mass and compactness [432]. We probe this expectation within our current framework

by evolving the WH12 model with an adiabatic index Γth artificially lowered to 1.25. With

such a low value of Γth, the shock stalls at a small radius and material accreting through

the shock quickly settles onto the protoneutron star, driving up its mass and compactness.

At the end of our simulation, at 0.7 s, the protoneutron star in this model has reached

a compactness of ∼ 0.18 and is spontaneously scalarised. Configurations with non-trivial

scalar-field profiles are energetically favoured over their weak-field counterparts and the

dynamical evolutions naturally settle there. The GW strain
√
Sh(f) increases by roughly

two orders of magnitude when compared to runs performed using the more realistic value

Γth = 1.35. Galactic signals from spontaneously scalarised NSs, if formed in core collapse,

will likely be detectable by Advanced LIGO even beyond the Cassini bound α0 = 3×10−3.

Given its observational potential, this topic definitely merits further investigation with

more realistic microphysics.

7.6 Future prospects and improvements

Our study presents an extension of the open-source code gr1d [390] to ST theories of

gravity. The required additions to gr1d can be summarised as follows:

1. generalisation of the flux and source terms in the high-resolution shock capturing

scheme according to (7.35)–(7.40) as well as the constraint equations (7.22), (7.23)

for the metric components;

2. implementation of the evolution of the scalar field according to Eqs. (7.27)–(7.29)

using standard finite differencing;
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3. outgoing radiation boundary condition for the scalar field (7.32), (7.33).

The scalar field furthermore introduces a new radiative degree of freedom propagating

at the speed of light, which requires a smaller numerical timestep. All presented time

evolutions start from one of two types of initial data, (i) polytropic models obtained by

solving the time independent limit of the evolution equations and (ii) more realistic pre-SN

models from ZAMS stars of masses 12 and 40M� [547].

In this framework, we have simulated a large number of collapse scenarios which are

characterised by five parameters: the linear and quadratic coefficients α0 and β0 deter-

mining the coupling function of the ST theory and the adiabatic indices Γ1, Γ2 and Γth,

characterising the phenomenological hybrid EOS used in the time evolution. We summarise

our main observations as follows.

• The most prominent GW signals are detected from the collapse of progenitor stars

that form BHs after a protoneutron star phase (such as the MZAMS = 40M� model

of [547]), as opposed to collapse events forming long-term stable NSs. The collapse

of protoneutron stars to BHs is the most promising dynamical feature for monopole

gravitational radiation in the context of ST theories.

• The dynamical features in the matter fields (density, mass function, pressure) resem-

ble closely those obtained in the general relativistic limit α0 = β0 = 0. In other

words, the effect of the scalar field on the matter dynamics is weak.

• The opposite is not true. The scalar radiation or GW breathing mode is sensitive to

the specifics of the collapse dynamics as well as the choice of ST parameters α0 and

β0. The observed dependencies are of the kind one would intuitively expect. EOS

and progenitors giving rise to more compact post-collapse configurations result in

stronger radiation and the amplitude of the scalar wave sensitively increases with α0

with approximately a quadratic dependence.

• The ST parameter β0 is known to generate strongly non-linear effects in the scalar

field for β0 . −4.35, the so-called spontaneous scalarisation [144, 145]. For progeni-

tors collapsing to BHs after a protoneutron star phase, transition of the central core

to a spontaneously scalarised configuration before BH formation further enhances the

outgoing GW signal. For progenitors forming NSs but not BHs, we do not find spon-

taneously scalarised configurations for physically plausible values of the adiabatic

indices in our hybrid EOS. We attribute this to the stellar compactness achieved in

those collapse scenarios being insufficient to trigger spontaneous scalarisation. This
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observation may be an artefact of our simplistic treatment of microphysics in our

simulations

• We have extracted waveforms from a large set of simulations and compared their

amplitude for the case of a fiducial distance D = 10 kpc with the sensitivity curves

of Advanced LIGO and ET. Given the present constraints from the Cassini probe,

α0 . 3× 10−3, scalar radiation may be marginally detectable from galactic sources.

This offers the possibility of providing constraints on ST theory with GW observations

in case of a favourable event occurring in the Milky Way. Considerable power is

emitted at low frequencies f . 10 Hz, thus making core collapse in ST theory ideal

sources for future experiments such as DECIGO [266].

The impact of more realistic microphysics, as for example nuclear dissociation at the

shock and neutrino cooling, on the compactness of the core and, thus, its degree of scalar-

isation, represents one key extension left for future work. Our analysis has shown that the

massive increase in wave amplitudes due to spontaneous scalarisation and BH formation

has the potential to drastically increase the range for detection. The O(103) waveforms

generated for this work were completed in less than a week using O(102) CPU cores si-

multaneously. A moderate increase in the computational resources will make simulations

using tabulated finite-temperature EOS feasible. Since the matter fields’ dynamics is very

similar to the GR case, one may perhaps take advantage of existing GR simulations and

simulate the scalar field evolution using such GR results as backgrounds. A further nu-

merical improvement may consist in computing (perhaps iteratively) approximate initial

conditions for the scalar field from existing pre-collapse stellar models (such as WH12 and

WH40 used in this study), in order to reduce the brief unphysical transient in the GW

signal.

Aside from the treatment of the microphysics, our study offers further scope for exten-

sion. The effects of multiple scalar fields in ST theories on gravitational collapse remains

largely unknown in spite of some early studies [143] (see [247] for an analysis of static

NS solutions in this framework), but represents a relatively minor addition to our code.

The same holds for ST theories with non-vanishing potential, as for example massive fields

[26, 436].

As GW physics and astronomy are ushering in a new era, the community will be

offered a wealth of unprecedented opportunities to observationally test generalisations of

GR. Stellar collapse clearly offers a vast potential for such fundamental tests.
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