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Aspects of Stability of the Toroidal AdS Schwarzschild Black Hole

Abstract

In this thesis various aspects about the dynamical stability of the toroidally symmetric Schwarzschild

AdS black hole are discussed and proven.

The first chapter of the thesis is a literature review. This covers the key relevant results within

the area and provides context for the results of the later chapters.

The second chapter concerns the Klein-Gordon equation with Dirichlet, Neumann and Robin

boundary conditions on the exterior of the toroidally symmetric Schwarzschild AdS black hole.

Through the vector field method energy estimates, and degenerating Morawetz estimates are

proven. From these it is seen that the energy of the solutions on these spacetimes are bounded

and decay polynomially in time. Furthermore, it is shown that there exist null geodesics on

this spacetime remain exterior to the event horizon boundary for arbitrary coordinate time.

Through a Gaussian beam argument, it follows that the degeneration in the Morawetz esti-

mates is necessary.

The third chapter proves the non-linear stability of the toroidally symmetric Schwarzschild AdS

black hole as a solution to the AdS-Einstein–Klein-Gordon system within the class of square

toroidal symmetries where the field satisfies Dirichlet or Neumann boundary conditions. This

is done through establishing wellposedness of the system in a region near null infinity. Then for

initial data ‘sufficiently small’ it is shown through bootstrap arguments that the energy remains

bounded by the initial data on the regular region exterior to the black hole. This is then used

to establish the orbital stability of the spacetime. Then through the vector field method,

exponential decay of the field on the regular region exterior to the black hole is established.

From this the asymptotic stability follows. Finally, a vacuum stability result is established in

the toroidal symmetry class where the periods of the torus are allowed to vary.
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1
Introduction

1.1 Introduction

In 1915 Albert Einstein published his revolutionary theory of general relativity. It is of a

geometric nature. The role of space and time is played by a four dimensional Lorentzian

manifold (M, g), where the metric g satisfies the Einstein field equations

Rµν −
1

2
Rgµν + Λgµν =

8πG

c4
Tµν . (1.1)

The left hand side of these equations consists of geometric quantities. Rµν is the Ricci curvature

of the metric, R is the scalar curvature given by the trace of Rµν with respect to g, and Λ is a

scalar known as the cosmological constant. The right hand side consists of physical quantities.

Tµν is the stress-energy tensor which describes the distribution of stress and energy of the

universe. G is the gravitational constant, and c is the speed of light. Typically one works in

geometrised units and takes G = c = 1. The unification of these two, seemingly unrelated,

concepts was elegantly summarised by John Wheeler as: ‘Spacetime tells matter how to move;

matter tells spacetime how to curve’.

Specialising now to the case Tµν = 0, (1.1) reduces to the Einstein vacuum equations

Rµν = Λgµν . (1.2)

Imposing the further restriction Λ = 0, one can see that the manifold M = R4 equipped with

the metric

η = −dt2 + dx2 + dy2 + dz2, (1.3)

solves (1.2). This is not hugely surprising, as if we are to interpret gravity through the curvature

of a spacetime and reconcile this with the Newtonian notion that gravity is related to mass,

then one should expect the flat spacetime as a solution. This isn’t the only solution to (1.2),
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in 1916 Karl Schwarzschild [Sch16] published his solution,M = R× (2M,∞)× S2 with metric

gM = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2dS2, (1.4)

which is a one parameter family (in M) of solutions to (1.2). It is thought to model spherically

symmetric static stars. Originally it was expected that the radius of the star would exceed

rstar > 2M [Buc59] and a vacuum model was no longer appropriate in the region r ≤ rstar. At

the time this would have appeared fortuitous as there appears to be a singularity at r = 2M .

However it turns out that this is only a coordinate singularity, and the solution can be extended

beyond r = 2M . Within this new region it can be seen that all future directed causal curves

remained trapped to r < 2M , forming what we now call a black hole. The surface H = {r =

2M} is known as the event horizon. This solution however does have a genuine singularity at

r = 0, which can be seen by the blow up of the Kretschmann scalar K = RabcdR
abcd. (For

Schwarzschild this takes the value KSch = 48M2

r6 ). Forty seven years later Kerr discovered a

larger family of solutions to (1.2) [Ker63]. These are rotating black holes with the additional

parameter gM,α where α represents the angular momentum of the black hole.

While these black hole solutions are mathematically interesting their physical relevance could

be contested. A popular idea in physics is that of gravitational collapse. It is believed the end

state of large stars can be modelled by a Kerr solution. However when solving for Schwarzschild

or Kerr solutions one imposes symmetry restrictions on the spacetime that a priori the universe

may not exhibit (and is almost certainly not present in gravitational collapse). Furthermore,

there are currently no known explicit collapsing matter solutions with the Kerr exterior as

their final state [BC05]. Nevertheless objects resembling black holes have been observed in

experiments such as LIGO’s detection of gravitational waves [Aea17]. It is therefore apparent

that in order to explore the significance of these solutions within the physical theory one needs

to study (1.2) as a dynamical problem.

1.2 The Cauchy problem

When studying equations of motion of hyperbolic type as in (1.2) one typically considers a

Cauchy problem. An example would be given by the wave equation on R1,3 with coordinates

(t,x),

−ψtt(t,x) + ∆ψ(t,x) = 0,

ψ(0,x) = f1(x),

ψt(0,x) = f2(x).

(1.5)

In order to have a well posed problem the function ψ and its first time derivative at t = 0 must

be specified.

Due to the geometrical nature of (1.2), it proved difficult to find a similar appropriate formula-

tion of the problem. This was resolved for the Λ = 0 case in the work of Choquet-Bruhat–Geroch
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[CBG69]. One defines an initial data set as a spacelike three dimensional manifold Σ, with a

Riemannian metric h, and a symmetric 2 tensor K, satisfying the Einstein constraint equations

Rh + (Ka
a)2 −Kb

aK
a
b = 0,

∇bK
b
a −∇aK

b
b = 0.

(1.6)

Formulating the equations in the wave gauge

Γαµ
µ = 0, (1.7)

(Γ are the connection coefficients) the equations form a system of quasilinear wave equations

− 1

2
gµα

∂2gσν
∂xµ∂xα

+Nσν(g, ∂g) = 0. (1.8)

The system is then solvable by standard methods, while checking the gauge condition (1.7) is

propagated. This leads to the result

Theorem 1.2.1 (Choquet-Bruhat-Geroch). For a smooth initial data set (Σ, h,K) satisfying

(1.6), there exists a unique smooth maximal four dimensional Lorentzian manifold (M, g) satis-

fying (1.2) (Λ = 0) with a smooth embedding ι : Σ→M such that (M, g) is globally hyperbolic

with Cauchy surface ι(Σ) and h, K are the induced first and second fundamental forms on ι(Σ)

respectively.

In comparison to (1.5), one can think of h ∼ ψ|t=0 and K ∼ ψt|t=0. The theorem proven is a

local wellposedness result, because while it implies the existence of spacetimes, it doesn’t tell us

about global properties, such as completeness or structure. These need to be inferred from other

methods. It is worth remarking that in establishing existence of the maximal development, the

original authors invoked Zorn’s lemma. This has since been shown to be unnecessary as seen

in [Sbi16]. The regularity of the solution is also not optimal in this theorem; there has been

further work culminating in the proof of the bounded L2 curvature conjecture [KRS15] which

shows wellposedness of (1.2) in a very low level of regularity. Scaling arguments suggest this

level of regularity is however still not optimal.

1.3 Stability problems

With (1.2) now understood as a locally wellposed initial value problem for an initial data set

(Σ, h,K), one can start asking questions about global properties of the solution. One really

wants to know whether the black hole solutions can actually form from a large class of initial

data [Chr09], or if they are just artefacts of symmetry. It seems that this problem is beyond the

reach of the current methodology. A simpler question to understand their physical significance

is about their stability as solutions. Indeed if they aren’t stable as solutions to (1.2) then their

natural presence is cast into doubt. However before the stability of black holes is tackled, there

is the simpler, yet still highly non-trivial problem of the non-linear stability of Minkowski space.
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This was proven in the work of Christodoulou-Klainerman [CK93]

Theorem 1.3.1. Consider a strongly asymptotically flat initial data set (Σ, h,K), assume it is

sufficiently close to Minkowski space in some weighted Hk sense. The maximal development is

geodesically complete and approaches Minkowski space in all directions. Furthermore a complete

null infinity can be attached to the spacetime.

The proof was later simplified in the work of [LR05] who worked in the wave gauge rather than

the more invariant formulation of [CK93]. This result has since been extended including the

addition of various matter fields [LM17], [Tay17], [LT17], [Bie09], and to higher dimensional

theories of relativity [Wya17]. It had already been established in the de-Sitter (Λ > 0) setting

[Fri86]. The extension of this result to black hole spacetimes without symmetry assumptions

remains largely still open. However there has been success for the slowly rotating (|α| � M)

Kerr de-Sitter black hole (Λ > 0) by Hintz and Vasy [HV16], who show that the solutions decay

exponentially fast to another Kerr de Sitter metric.

1.4 Linear waves on black hole spacetimes

While the full non-linear stability of black holes has not yet been proven, a typical approach

would be to work on linear problems, and to build up methodology from there. Perhaps the

simplest linearisation that can be attempted is to study the wave equation on the fixed target

black hole solution. The Cauchy problem is given by

�gψ = 0,

ψ|Σ = Ψ1,

n|Σψ|Σ = Ψ2,

(1.9)

where n|Σ is the future directed unit normal to the spacelike surface Σ, and �g is the wave

operator given by

�gψ =
1√
|g|
∂i

(√
|g|gij∂jψ

)
. (1.10)

In view of (1.8) we may loosely think that ψ is standing in for the metric tensor, and when

g is a black hole spacetime, many of the difficulties seen in the non-linear stability problem

manifest themselves in proving boundedness and decay of ψ. Indeed the decay of waves and

boundedness by initial data is akin to asymptotic and orbital stability in the non-linear problem

respectively.

1.4.1 Vector field method

A robust method to prove boundedness and decay of waves on black hole spacetimes is known as

the vector field method. The core idea is to define a quantity known as the energy momentum

tensor

Tµν [ψ] = ∇µψ∇νψ −
1

2
gµν∇σψ∇σψ, (1.11)

4



which satisfies ∇µTµν [ψ] = 0 when �gψ = 0. For a smooth vector field X one then defines the

vector field multiplier current as

JXµ [ψ] = Tµν [ψ]Xν , (1.12)

and its associated bulk term

KX [ψ] = XπµνTµν [ψ], (1.13)

where Xπ = 1
2
LXg. Crucially the following identity holds

∇µJXµ [ψ] = KX [ψ], (1.14)

which through the divergence theorem has many applications when integrating over spacetime

regions of the manifold.

Bounded Energy

Considering the case where the spacetime is Minkowski. Let Στ to be the surface {t = τ} where

τ is constant, and let X = ∂t which is Killing. The current is computed as

2JTµ n
µ|Σt = (∇tψ)2 + (∇xψ)2 + (∇yψ)2 + (∇zψ)2 . (1.15)

So JTµ n
µ|Σt forms the energy density of ψ. Integrating (1.14) for the field decaying sufficiently

fast to spacelike infinity we derive the result∫
Σt

JTµ n
µ|ΣtdSΣt =

∫
Σ0

JTµ n
µ|Σ0dSΣ0 , (1.16)

which is nothing more than the classical conservation of energy. One can now extract pointwise

bounds on the field ψ in terms of its initial data through commuting the equation with all

the Killing fields, elliptic estimates, and Klainerman-Sobolev inequalities [Kla87]. The same

methodology works in black hole spacetimes however there are additional issues. Many of these

can be seen on the Schwarzschild geometry. In order to have a regular horizon one uses the

Gullstrand-Painlevé coordinate system

g = −
(

1− 2M

r

)
dt2 + 2

√
2M

r
dtdr + dr2 + r2dS2. (1.17)

In this setting T = ∂t is still a timelike Killing field. Let Σ be a Cauchy hypersurface (that

is every inextendible causal curve of the spacetime intersects Σ precisely once), furthermore

let it be asymptotically flat. Then define Στ to be φτ (Σ ∩ {r ≥ 2M}) where φτ is the one

parameter family of diffeomorphisms generated by T . Noting that the flux along H is positive

and integrating (1.14) yields a result about a bounded energy∫
Σt

(
1− 2M

r

)(
(∇tψ)2 + (∇rψ)2 +

∣∣ /∇ψ∣∣2) dSΣt ≤ C

∫
Σ0

JTµ n
µ|Σ0dSΣ0 , (1.18)

5



where C > 0 is a uniform constant. While the same methodology as in Minkowski space can

still be applied, this estimate degenerates as r → 2M . Boundedness can only be obtained away

from the horizon. Fortunately this issue can be rectified by exploiting an interesting phenomena

of the black hole, known as the red shift effect. The idea being that if two observers A and

B are transmitting photons to each other, while falling into the black hole with B entering at

a later (coordinate) time, then the frequency of the light that B sees from A is exponentially

decaying (being shifted to the red). This suggests there is an additional decay mechanism in

a neighbourhood of the surface H. This is exploited by [DR08], [DR09b], and manifests itself

in the existence of a vector field N , which is timelike, acts like T away from the horizon and

importantly doesn’t have a degenerate current at the horizon. Combining this with the T

estimate as before, one can remove the degeneration in the estimates, [DR08] and apply the

same theory to prove boundedness as the Minkowski case.

Energy Decay

To prove that the fields are decaying in time one turns to techniques pioneered by Morawetz

[Mor61], [Mor68], [Mor66]. The idea is to use the vector field method, but to also consider

vector fields that aren’t Killing. In the context of wave equation on the exterior of an obstacle,

the conformal Killing field K = t∂t + r∂r was used in [Mor61]. This choice of K leads to a t

weight appearing in (1.12) along with the standard energy density. From this time decay of the

energy can be inferred. In [Mor68] an alternative idea was seen for the non-linear Klein-Gordon

equation. The idea is to use vector fields of the form X = h(r)∂r, for a radial function h(r).

This results in what are now known as Morawetz or integrated energy decay estimates (IED).

To illustrate the idea, consider a spherically symmetric, static, asymptotically flat spacetime

with a smooth time function t, area radius r, and polar angles θ, φ. Let Eψ(t, r, θ, φ) be a density

for Eψ(t) the energy of ψ (associated to T ). A Morawetz estimate for ψ would typically take

the form ∫ T

0

∫
Σt

f(r)Eψ(t, r, θ, φ)dSdt ≤ CEψ[0], (1.19)

where C > 0 is uniform and f : (0,∞)→ [0,∞). Typically f degenerates on certain surfaces of

the spacetime, or as r → ∞. When this estimate is coupled with a bounded energy estimate,

providing the weight of the function f is sufficiently strong, one can then prove decay of the

energy on hyperboloidal slices [DR09a]. These decay rates are typically polynomial in nature

however in the instance where no degeneration of f occurs, exponential decay can be established.

The standard commutation methods and Sobolev estimates are then invoked to imply pointwise

estimates. In order to prove Morawetz type estimates, one returns to the vector field method

but instead of using T as a multiplier other more specialised choices are used. The idea is to

chose X in such a way the the bulk term KX [ψ] ≥ 0 and JX [ψ] is controllable by the energy

(which has been proven bounded typically through the vector fields T and N). In the case of

the Schwarzschild geometry, the work of [LS00], [BS06] employed these ideas in the context of

the non-linear Schrödinger equation. This was later extended to the wave equation in [DR09b],

[DR07a], where the use of growing t weights in X was seen to not be necessary. Uniform decay
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|ψ| ≤ Cτ−1 was proven by using the more robust vector fields of the form f(r)∂r. Locally

this was improved by [Luk10] and then later [AAG18] to |ψ| ≤ Cτ−3 for r < R with R > 0.

In the case of the Kerr spacetime for the range |α| < M , uniform decay of rate τ−
1
2 and for

bounded r, the rate τ−
3
2

+δ was established in [DR10], and [DRSR14]. Alternatively [AB15]

proved Morawetz estimates, and uniform boundedness for slowly rotating Kerr, (|α| � M) by

using a more generalised version of the vector field method, exploiting Killing tensors. In the

case of Schwarzschild de-Sitter, polynomial decay was established in [DR07b] and extended to

exponential decay in [Dya10], for the Kerr de-Sitter setting. With the strong cosmic censorship

conjecture in mind, there has also been a lot of work on linear waves for the Reissner-Nördstrom

spacetime; here the focus shifts towards studying the interior of the black hole in order to

understand the behaviour of the Cauchy horizon [Are11], [Fra16], [AAG18].

Trapping and the Photon sphere

In the case of proving energy decay for black hole spacetimes, it is often the case that one

cannot prove a Morawetz estimate where f does not degenerate either on compact surfaces or

as r → ∞. The key obstacle to decay that appears for black holes is the photon sphere. In

the case of Schwarzschild the surface r = 3M forms a surface of trapped null geodesics. Its

effect on the estimates can be seen by taking Reggie-Wheeler coordinates (r∗, t), and choosing

a radial vector field of the form X = f(r∗)∂r∗ for a C1 function f . From [DR08] we get a bulk

term

KX [ψ] =
f ′

1− 2M
r

(∂r∗ψ)2 +
f

r

(
1− 3M

r

) ∣∣ /∇ψ∣∣2 − 1

4

(
2f ′ + 4

r − 2M

r2
f

)
∇σψ∇σψ. (1.20)

With modification to JXµ [ψ] (adding terms of the form w∇µ(ψ2) and ψ2∇µ(w) for a smooth

function w) it is possible to choose f so that this is positive semi-definite. There is the problem

of degeneration at r = 3M . This can resolved by commuting the equation with the angular

momentum operators, proving estimates of the form∫ T

0

∫
Σt

Eψ(t, r,x)dSdt ≤ CẼψ[0]. (1.21)

where Ẽψ is a higher order energy. This is often referred to as ‘having to lose a derivative’. The

geometric optics approximation shows that high frequency disturbances propagate along null

geodesics hence the photon sphere is forming an obstacle for decay. In the work of [Sbi15] this

idea was made rigorous and it was proven that if there are trapped null geodesics in a region

of bounded radius on a spacetime then one cannot prove estimates of the form∫ T

0

∫
Σt∩{r≤R}

Eψ(t, r,x)dSdt ≤ CEψ[0]. (1.22)

To contradict an estimate of the form (1.22) one constructs Gaussian beams localised to null

geodesics, whose energy remains arbitrarily close to the geodesic’s energy. As Gaussian beams
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approximately solve the wave equation, one can construct actual solutions that remain arbi-

trarily close the Gaussian beam (in the energy norm) for a given time. These solutions then

naturally decay very slowly in time. They have to overcome this trapping before the decaying

effects of the black hole event horizon or dispersion to infinity can occur.

1.5 Spacetimes with symmetry

When moving from the linear regime of the wave equation to non-linear problems, it is helpful to

first restrict to the spherical symmetry class. This reduces the dimensionality of the problem

to 1 + 1 dimensions, where more methodology for the study of PDE has been developed.

Unfortunately if one studies (1.2) within the class of spherical symmetry, through Birkhoff’s

theorem, they see the only solution is (an isometric subset of) the Schwarzschild solution.

As this solution is static there are no dynamics in the problem. To study a time dependent

problem, one has to revisit (1.1) where the system is coupled to a matter model.

1.5.1 Scalar field system

The simplest matter model one can consider for Λ = 0 is to couple to a scalar field ψ. This is

done with the stress energy tensor

Tµν [ψ] = ∇µψ∇νψ −
1

2
gµν∇σψ∇σψ, (1.23)

as the LHS of (1.1) is divergence free, the stress energy tensor must also be. This implies the

field satisfies

�gψ = 0. (1.24)

This system was studied comprehensively by Christodoulou. Through a series of papers a full

picture of the dynamics was established. In the paper [Chr86b], Christodoulou shows that

ψ governs the dynamics of (1.1) within this symmetry class, and that one can express the

system as a non-linear evolution equation for ψ. Applying contraction map arguments, local

wellposedness for the system is established. The result is then extended to global existence

for small initial data, and it is shown that the spacetime converges to Minkowski space with

polynomial decay rates. Finally, it is shown that the Bondi mass converges to zero. (This

result could be thought of as a specialisation of stability of Minkowski space, for the scalar field

system under spherical symmetry). For larger data the existence of a generalised solution was

shown [Chr86a], uniqueness and the fact that generalised solutions extend classical solutions

was shown in [Chr87b]. Finally, in the paper [Chr87a], it was shown that if the Bondi mass

does not converge to zero, a black hole forms, surrounded by a vacuum. A similar result has

been proven for the de-Sitter setting [CAN13], where for small initial data the solution decays

back to de-Sitter exponentially.

An alternative to studying Schwarzschild as a 1+1 dimensional PDE but as a solution of
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(1.2), is to move to five dimensional relativity and impose biaxial Bianchi IX symmetry. In

this setting Birkhoff’s theorem fails to hold. Orbital stability was shown in [DH06] and the

asymptotic in [Hol10b].

Cosmic Censorship and other matter models

As well as being a simplified non-linear problem to study the stability of black holes, spher-

ically symmetric spacetimes have been studied in detail to understand the cosmic censorship

conjectures.

Conjecture 1.5.1 (Weak Cosmic Censorship). For admissible initial data to (1.1) there exists

a generic subclass in which future null infinity is complete.

The physical intuition behind this conjecture is that any singularities must form behind an

event horizon, and observers at future null infinity can exist for all time.

Conjecture 1.5.2 (Strong Cosmic Censorship). For admissible initial data to (1.1) there ex-

ists a generic subclass for which the the maximal future development of the solution is future

inextendible as a suitably regular Lorentzian metric.

This conjecture is a statement about the determinism of general relativity as a physical theory.

In spite of their names the strong and weak cosmic censorship conjectures are logically indepen-

dent of each other. This can be seen when viewed from a PDE perspective. The weak cosmic

censorship is a statement about global existence, and the strong is about global uniqueness,

which are a priori independent concepts. In the case of the scalar field system under spherical

symmetry both of these conjectures have been proven to be true [Chr98].

There has been further work on these conjectures in other spherically symmetric spacetimes

notably in the work of Dafermos [Daf05]. The author shows that for spherically symmetric

spacetimes obeying certain conditions (notably, an energy condition and an extension principle

on the regular and marginally trapped regions) then they have a complete null infinity. In the

case of the Einstein–Maxwell-Klein-Gordon system, Kommemi [Kom13], was able to prove a

stronger extension principle which also holds in the trapped region. Price’s law (polynomial

decay rate along the horizon) has also been shown [DR05].

Spherical symmetry is not the only symmetry studied in (1.1), the case of toroidal symmetries

leading to Gowdy spacetimes [Gow74], (which form toy models for big bang cosmology) has

also been studied in [LS15].

1.6 Anti de-Sitter space

Historically, most of the theory in relation to (1.1) has been considering the case Λ ≥ 0. There

are two main reasons for this. Firstly from a physical perspective these have been traditionally
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thought of as the interesting cases, Λ = 0 models isolated gravitational systems. Λ > 0 models

an expanding universe, useful for inflation theories and the universe on a large scale. Λ < 0

would model a collapsing universe which seems unphysical. There is however now a great deal

of interest from the high energy physics community about these spacetimes, coming from the

AdS/CFT correspondence [Mal99]. Loosely speaking it is believed that conformal field theories

in n− 1 dimensions are in duality with n dimensional solutions to (1.1) with Λ < 0. The other

reason they were less studied is that they are qualitatively different to the Λ ≥ 0 case. If we

look for a solution to (1.1) with Λ < 0 and Tµν = 0, with the maximal amount of symmetry,

one finds the anti de-Sitter spacetime. It is the manifold M = R4 with metric

g = −
(

1 +
r2

l2

)
dt2 +

(
1 +

r2

l2

)−1

dr2 + r2dS2, (1.25)

where l2 = −3
Λ

. Inspecting the Penrose diagram of this solution [HE73],

i+

i−

r = 0 I

Σ

p

Figure 1.1: Penrose diagram of AdS

one can see that for any attempt to define a Cauchy hypersurface, one will run into trouble.

Past directed causal curves passing through points like p can intersect with null infinity (I)

(which is now timelike). This means that AdS is not globally hyperbolic, and nor are spacetimes

with similar asymptotics known as asymptotically AdS spacetimes (aAdS). When looking at

the Cauchy problem in these spacetimes and applying the result from theorem 1.2.1, we cannot

expect to get AdS as the maximal development of any initial data set. In order to resolve this

issue one needs to discuss initial boundary value problems (IBVPs) [Fri95].

1.6.1 The Kottler solutions

The setting Λ < 0 also has its own analogue of the Schwarzschild solution, however in this

setting a curious new phenomenon occurs. It is no longer necessary that static black holes

with compact horizons must be spherical. The solutions are known as the Kottler metrics

[Kot18], [Lem95], [Bir99] or Schwarzschild AdS. Defining r+,k to be the unique real root of

f(r) = k − 2M
r

+ r2

l2
where k ∈ {−1, 0, 1}, the solutions are given by M = R× (r+,k,∞)× Gk,

10



equipped with

g = −
(
k − 2M

r
+
r2

l2

)
dt2 +

(
k − 2M

r
+
r2

l2

)−1

dr2 + r2dγ2
k, (1.26)

and

Gk =


S2 for k = 1,

T2 for k = 0,

Σg for k = −1,

(1.27)

where S2 is a sphere, T2 = R2/Z2 is a torus, Σg is a surface of genus g ≥ 2 with a metric of

constant curvature −1, and dγ2
k is the unit metric on these spaces.

The symmetries of the geometry are not tied to the staticity. There are static solutions to

(1.1) with Λ < 0, in which the geometry at I of the above solutions is perturbed providing a

non-degeneracy condition holds [ACD02]. A rigidity result (see [ACD02] for a precise formula-

tion) exists in the first two cases. If the topology at I is given by R× S2, then the AdS metric

(1.25) or the regular region of the spherical Schwarzschild AdS (M > 0) are the unique static

globally hyperbolic (in a sense of manifold with boundary) solutions to (1.2), with boundary

metric at null infinity γ = −dt2 + dγ2
1 . In the case of toroidal solutions, there is a similar

result where the regular region of the toroidal AdS Schwarzschild black hole and the AdS soli-

ton [HM98], are the unique static, globally hyperbolic (in a sense of manifold with boundary)

solutions to (1.2), with boundary metric at null infinity γ = −dt2 +dγ2
0 . Due to the symmetries

of (Σg, dγ
2
−1) only being local, a rigidity result in the hyperbolic case is still open.

Extensions and coordinate transformations

As is typical in Schwarzschildean coordinates, it can be seen that the metric in (1.26) becomes

singular on the future and past event horizons, H+ = {r = r+,k, t > 0} and

H− = {r = r+,k, t < 0} respectively. The Penrose diagram for these solutions is given by

H+

H−

I

Figure 1.2: Penrose diagram of the Kottler solutions in Schwarzschildean coordinates.
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These coordinates are largely problematic for analysis. We will often want to study regions of

the spacetime containing the event horizon. In order to remedy this we will illustrate a maximal

extension of this solution which will include the event horizons and the black hole region. We

will then exhibit coordinate systems on restrictions of this extension. These restrictions will

cover the regions of interest considered in this thesis.

Kruskal–Szekeres extension

We follow a similar construction to that in [Hem04], generalising slightly for k ∈ {−1, 0, 1}.
We define

F (X) :=

(
k − 2M

X
+
X2

l2

)
, (1.28)

and the tortoise coordinate r∗ by

r∗(r) :=

∫ r

2r+,k

F−1(X)dX. (1.29)

A change of variable w = F (X), shows us that limr→r+,k r∗(r) = −∞. Now through a Taylor

expansion, we see that r∗ has the following behaviour near r+,k

r∗ =
1

F ′(r+,k)
(ln (r − r+,k) +O (r − r+,k)) . (1.30)

Now the metric (1.26), can be written as

g = −F (r)
(
dt2 − dr2

∗
)

+ r2dγ2
k. (1.31)

We change to null coordinates, defined by

u = t− r∗, v = t+ r∗, (1.32)

where u, v ∈ (−∞,∞). The metric now takes the Eddington-Finkelstein form

g = −F (r)dudv + r2dγ2
k. (1.33)

Through the chain rule we see the following relationships

− 2ru = 2rv = F. (1.34)

The metric still degenerates at r+,k, to remove this degeneration consider the change of coor-

dinates given by

U = − exp
(
−u

2
· F ′(r+,k)

)
, V = exp

(v
2
· F ′(r+,k)

)
. (1.35)
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where U ∈ (−∞, 0), V ∈ (0,∞). The metric now takes the form

g =
−4

(F ′(r+,k))
2F (r)e−F

′(r+,k)r∗(U,V )dUdV + r2dγ2
k. (1.36)

We can now extend the spacetime so that U, V ∈ (−∞,∞). Computing the limit

lim
r→r+,k

F (r)e−F
′(r+,k)r∗ = lim

r→r+,k

F (r)

r − r+,k

= lim
r→r+,k

(
r

l2
+
r+,k

l2
+
r2

+,k

l2r
+

k

r+,k

)
=

3r2
+,k + kl2

l2r+,k

> 0.

(1.37)

We see the metric no longer degenerates at the horizon. The function r(U, V ) is now defined

implicitly through the relation

UV = −eF ′(r+,k)r∗(r(U,V )). (1.38)

We note that the sets {U = 0} and {V = 0} correspond to the set {r = r+,k} the event horizons.

Now through the symmetry (U, V ) 7→ (−U,−V ) we see now that r = const curves have two

solutions. So we deduce that the spacetime has two regions containing a singularity and two

causally disconnected exterior regions. This results in the Penrose diagram

U < 0, V > 0

U > 0, V > 0

U > 0, V < 0

U < 0, V < 0

r = 0

r = 0

II

I
II

III

IV

U = 0

V = 0

Figure 1.3: Kruskal extension of the Kottler solution.

Region I is the exterior of the black hole. Region II is the black hole, in the sense that all

causal curves remained trapped in this region. Region III is also an exterior region and is

isometric to I but causally disconnected. In region IV we find that all causal curves must leave

this region in finite affine time, we refer to it as a white hole. This extension is maximal in the

sense that geodesics cannot be continued into other regions.

Extended Eddington-Finkelstein chart

As curious as regions III and IV of the maximal extension are, they would seem to be unphys-

ical. Furthermore, the metric given by (1.36), is poorly suited for identifying that the metric
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is indeed asymptotically AdS. For later applications in chapter three we remedy this by going

back to the form in (1.33). Recall these coordinates cover region I but degenerate at r = r+,k.

To fix this we choose a surface {V = V0 > 0} and denote its past intersection with I by (u0, V0).

We now make the coordinate transformation in u along this surface given by the solution to

the ODE

dû

du
=

(
k − 2M

r
+ r2

l2

)
k + r2

l2

, (1.39)

with û(u0) = u0. This metric is now regular at r = r+,k and the coordinates cover the region

shown in the Penrose diagram

{V = V0}

I

H

r = 0

(u0, V0)

Figure 1.4: Penrose diagram for regularised Eddington Finkelstein chart.

We now have that the radial function satisfies

− 2rû =

(
k +

r2

l2

)
, (1.40)

along this surface.

We can see through the chain rule that specifying r to satisfy these relations on this ray is

equivalent to fixing the u coordinate along it.

Gullstrand-Painlevé chart

An alternative to using the tortoise coordinate to remove the degeneration is to change the

time coordinate. This is done in the Gullstrand-Painlevé coordinate system.

Defining

t∗ = t− f(r), (1.41)

with

f ′(r) = − 2M

r
(
k + r2

l2

)
F 2
, (1.42)

then the metric (1.26) takes the non-diagonal form

g = −Fdt2∗ +
4M

r

1

k + r2

l2

drdt∗ +

(
k + 2M

r
+ r2

l2

)
(
k + r2

l2

)2 dr2 + r2dγ2
k. (1.43)
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We see that at r = r+,k that there is no degeneration of the metric. The coordinates cover the

region given in the following Penrose diagram

{t∗ = −∞}
I

H

r = 0

Figure 1.5: Penrose diagram for Gullstrand-Painlevé chart.

This chart will be of use in chapter two.

1.6.2 Linear waves on AdS

Due to the lack of global hyperbolicity of aAdS spacetimes the wellposedness of the wave

equation is now non-trivial. On AdS if one considers the Klein-Gordon equation

�gψ −
2a

l2
ψ = 0, (1.44)

as in [BF82], and exploits the SO(2, 3) symmetries of the spacetime, the equation separates.

The radial component of the field has a regular singular point at I. It locally admits the

expansion

ψ(t, r, θ, φ) =
1

rβ+

(
ψ+(t, θ, φ) +O

(
r−2
))

+
1

rβ−
(
ψ−(t, θ, φ) +O

(
r−2
))
, (1.45)

where β± = −3
2
±
√

9

4
+ 2a︸ ︷︷ ︸

=:κ

. Restricting to the range −9
8
< a < 0, both of the branches decay

towards I. For a wellposed problem, conditions on the functions ψ± at I must be imposed.

The case ψ− = 0 would be the analogue of homogeneous Dirichlet boundary conditions. ψ+ =

0 would correspond to homogeneous Neumann boundary conditions. Combinations such as

ψ+ + βψ− = 0, where β is a function along I, correspond to Robin boundary conditions.

The latter two boundary conditions are only wellposed in the range −9
8
< a < −5

4
. The

conditions on a have become known as the Breitenlohner-Freedman bounds. Using the vector

field method one can see that that the energy (or renormalised energy in the Neumann case),

is conserved for these boundary conditions. As these are reflective boundary conditions there

is no dissipation at I. There are no obvious decay mechanisms in the spacetime and in general

for these boundary conditions one cannot expect decay. This is confirmed in [BF82] where time

periodic solutions are constructed. It is for this reason it is suspected that pure AdS is not
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stable in the full non-linear problem. Wellposedness of (1.44) at H2 regularity was extended

to aAdS spacetimes with Dirichlet boundary conditions in [Hol12]. This was then extended in

[War13] to a H1 level of regularity, but also to a much wider class of boundary conditions, such

as inhomogeneous Dirichlet/Neumann as well as Robin. The core difficulty of moving from

Dirichlet homogeneous boundary conditions to the others can be seen in (1.45). If ψ− 6= 0

then the slowly decaying branch of the solution is still present. Attempting to use X = ∂t in

the vector field method one finds the energy flux is infinite on the surface I. For all discussed

boundary conditions, with the exception of homogeneous Dirichlet, a renormalisation of the

energy is required. In [BF82] this was done by considering the tensor

Tµν = Tµν + κ (gµν�−∇µ∇ν +Rµν)ψ
2, (1.46)

which satisfies

∇µTµν =
κ

2
(∂νR)ψ2, (1.47)

for pure AdS this will give a conserved renormalised energy. This new energy is related to the

classical Killing energy, differing only by a surface term (which is diverging for the classical

energy). This idea was exploited further in [War13] where the problem is rephrased in terms of

‘twisted derivatives’. Formally, one takes a function that captures the radial decay of the field

f , and then defines a new derivative operator by

∇̃µψ := f∇µ

(
f−1ψ

)
. (1.48)

Expressing the problems in terms of twisted derivatives one finds that the new energy arising

from the T Killing field is finite at I. From here using standard techniques adapted to twisted

Sobolev spaces, one can show wellposedness in the class H1 (the twisted equivalent of H1).

The problem of boundedness and decay of linear waves on asymptotically AdS spacetimes

is more complex than in the asymptotically flat counter part. This is because the natural

boundary conditions (homogeneous Dirichlet or Neumann) don’t allow for the wave to disperse

at I. In the case of pure AdS the existence of time periodic solutions means that we can’t

expect decay in general. In order to add a decay mechanism to the problem one can consider

spacetimes with a black hole. One would expect that energy would fall through the horizon pro-

viding a decay mechanism. In the cases of Robin boundary conditions, one might expect that

the energy may not even be bounded, as the Robin function may be permitting energy to enter

the system through I. Energy boundedness for slowly rotating Kerr-AdS (and thus including

Spherical Schwarzschild-AdS) with Dirichlet boundary conditions was first proven in [Hol10a],

which used the vector field method, coupled with Hardy estimates to compensate for the fact

that Tµν no longer satisfies the dominant energy condition. The problem of the other boundary

conditions was addressed in [HW14]. It was shown that in the case of AdS Schwarzschild for

Dirichlet, Neumann, and Robin boundary conditions (either positive time independent Robin

function, or a negative Robin constant greater than a critical value) that the energy arising

from twisting is finite, non-increasing, and positive definite. This result can be extended to
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general aAdS black holes (with positive surface gravity), providing the smallest eigenvalue of

an associated bilinear form is strictly positive. It was shown that if the smallest eigenvalue was

the only one with negative sign, then there are solutions with energy growing faster than any

power of t. Finally in the case of Kerr-AdS, there exists boundary data depending on the black

holes parameters which gives rise to a linear hair solution (i.e. a non-trivial stationary solution).

As for decay of linear waves, in the paper [HS13a] Holzegel and Smulevici, show that un-

der: the Hawking-Reall bound r2
+ > |α| l2 [HR99], slowly rotating Kerr AdS, or restrictions

on the Klein-Gordon mass, then the H1 energy of a field arising from H2 data decays loga-

rithmically in time. Compared to the results for asymptotically flat Schwarzschild and Kerr,

this is notably slower. The cause of this slower decay can be understood from the spherical

Schwarzschild case. Much like the asymptotically flat case there is a photon sphere at r = 3M .

However the asymptotically AdS end coupled with the boundary conditions provides a type of

reflective barrier for null geodesics. In this setting, a stable trapping like phenomenon occurs

and the only way the waves are able to decay is due to tunnelling through a potential barrier.

Another barrier for decay in the Kerr AdS setting is due to superradiance. If the Hawking-Reall

bound is violated this effect is present in Kerr AdS and corresponds to waves being amplified in

an ergoregion. Dold [Dol17b] showed in this setting it is possible to construct mode solutions to

(1.44) on Kerr-AdS with homogeneous Dirichlet or Neumann boundary conditions which grow

exponentially. This provides evidence that Kerr-AdS is also likely unstable, in the superradiant

regime.

An alternative problem for studying waves on AdS was undertaken in [HLSW15]. In this

setting one considers dissipative boundary conditions. This adds an alternative decay mecha-

nism where some of the energy of the wave leaves the spacetime through I. In the case of the

conformal Klein-Gordon equation (a = −1), Maxwell’s equations, and the Bianchi equations

boundedness of the energy was established, along with a Morawetz estimate degenerating at

I. This was then extended to a non-degenerate energy estimate with a derivative loss. It

was further shown that some derivative loss was necessary using the Gaussian beam method

of [Sbi15]. These results have led to the belief that under an appropriate formulation of the

non-linear problem, AdS is stable if dissipative boundary conditions are imposed.

In chapter two of this thesis, we will consider the problem of linear waves on the toroidal

AdS Schwarzschild black hole. The key contrast to the spherical setting is best expressed in

terms of the null geodesics of the space time. Considering the geodesic equations one can see

the radial coordinate obeys the equation

E2 = ṙ2 − d2

r2

(
k − 2M

r
+
r2

l2

)
︸ ︷︷ ︸

V (r)

, (1.49)
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where E and d are some quantities relating to the integrals of motion. Dot denotes differenti-

ation with respect to an affine parameter. Studying the null geodesics leads to the equation

0 = V ′(r) =
2d2

r4
(3M − kr) . (1.50)

We sketch the potential in Figure 1.6 and we see that there are only trapped null geodesics in

the spherical setting (r = 3M).

k=1

k=0

k=-1

r

V(r)

Figure 1.6: Plots of V (r) for the values of k.

Loosely one can think of the sign of k representing either an attractive (negative) or repulsive

(positive) force for the null geodesics. Approximating solutions of wave equations with Gaus-

sian beams [Sbi15], and recalling that for AdS spacetimes with Dirichlet/Neumann boundary

conditions there isn’t naturally a dissipative effect at I, the plots indicate that for large r it

could take a photon a long time to fall into the black hole. This would be an obstacle for decay.

In the case of k = 1 with the lack of dissipation at I we can interpret this confining effect in

the spirit of stable trapping. This provides a heuristic interpretation of the results in [HS13a].

In the case of k = 0 there is no photon sphere and the stable trapping-like effect appears to be

absent. One would expect a faster decay rate for the waves, and the quantification of such a

rate would be the first step in proving a non-linear stability result for an aAdS black hole.

In section 2.2 the IBVP is formulated, and wellposedness is established at a H1 level for

Dirichlet, Neumann, and Robin boundary conditions using the results from [War13]. In section

2.3, using the vector field method but on an adapted version of the twisted energy momentum

tensor the problem of bounded energy from [Dun14] is revisited. Then in section 2.4, we use

radial vector fields as multipliers and modified energy currents to construct Morawetz estimates

at a H1 level. The degeneration lies only on the tangential and time derivatives of the field as

it approaches I. Through commuting the equation with ∂t, a non-degenerate integrated decay

estimate is established, and t−1 decay is proven for H2 regular initial data. Faster polynomial

decay is shown for more regular data. Finally in section 2.6 we establish through a Gaussian

beam method that some loss of derivative is necessary. This is done by constructing null

geodesics which remain outside the event horizon for arbitrarily long coordinate time. These

fast decay rates show that more investigation into the non-linear stability is warranted.
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1.6.3 Symmetric spacetimes

In much the same way as in the asymptotically flat case, if one wants to study a 1+1 system

of Einstein’s equations by imposing spherical symmetry, a Birkhoff theorem [SW10] forces

one to consider a non-trivial matter model for there to be any dynamics. Analogous to the

asymptotically flat case the simplest such matter field one can consider is given by the Klein-

Gordon equation. The first problem of studying this system is to prove it is locally wellposed

near I. In a double null coordinate system the metric takes the form

g = −Ω2(u, v)dudv + r2(u, v)dS2, (1.51)

where r(u, v) is the area radius of the sphere at point (u, v). The system then reduces to the

Einstein–Klein-Gordon system

∂u

( ru
Ω2

)
= −4πr

ψ2
u

Ω2
, (1.52)

∂v

( rv
Ω2

)
= −4πr

ψ2
v

Ω2
, (1.53)

ruv = −rurv
r

+
2aπ

l2
rψ2Ω2 − 3

4l2
rΩ2 − Ω2

4r
, (1.54)

(log Ω)uv = −4πψuψv +
rurv
r2

+
Ω2

4r2
, (1.55)

ψuv = −rv
r
ψu −

ru
r
ψv −

a

2l2
Ω2ψ. (1.56)

This was first studied in [HS12] where local wellposedness was proven for Dirichlet boundary

conditions at a H2 level of regularity. As the spacetime is expected to be aAdS, the variables

are expected to become singular on the boundary I. At the expense of clear geometric inter-

pretations an equivalent renormalised system is studied. Furthermore it is fruitful to consider

a new dynamical variable; the Hawking mass

$ =
r

2

(
1 +

4rurv
Ω2

)
+
r3

2l2
. (1.57)

It satisfies the cleaner boundary conditions $|I = M , and is invariant under a change of null

coordinates, unlike Ω2. From (1.52), (1.53) (the Raychaudhuri equations) and (1.54) it can be

seen that this variable satisfies

∂u$ = −8πr2 rv
Ω2
ψ2
u +

4πr2a

l2
ruψ

2, (1.58)

∂v$ = −8πr2 ru
Ω2
ψ2
v +

4πr2a

l2
rvψ

2. (1.59)

These equations can then be used to replace (1.52), and (1.53) for Ω2. Furthermore, the trans-

port equations imply (after a Hardy inequality) that $ forms a potential for the H1 energy of

ψ. The authors show that to construct initial data one needs to provide r and ψ on constant

v null ray. As initial data sets for (1.1) must obey constraint equations, the other variables
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are determined by integrating transport equations. Furthermore, fixing r on a v = const ray

is equivalent to specifying the u coordinate along the ray and thus the only free data is the

field ψ. This shows the advantage of working in the double null gauge. A contraction map

argument is then used to prove the existence of a solution. Higher regularity is then shown a

posteriori. The authors also provide further results for global analysis of the solution. A unique

maximal development of the solution is shown to exist. Crucially, the geometric invariance of

the boundary conditions is required to prove uniqueness. Extension principles are also proven:

firstly in the regions near I where one needs future control over various quantities of the so-

lution, and secondly in the regions of bounded, non-zero r, and finite spacetime volume. This

extension principle is very much in the spirit of [Kom13] allowing one to fill in the spacetime

away from I, and describe first singularity formation. Due to the work of [War13] it is possible

to pose the problem at a lower level of regularity, and with other boundary conditions. In the

paper [HW13], Holzegel and Warnick show that the system is locally wellposed for a wider

class of Dirichlet, Neumann, and Robin boundary conditions. The same energy flux issues ap-

pear in this problem, and the renormalisation scheme needs to be phrased in terms of twisted

derivatives. Another renormalisation of the Hawking mass is also required. Integrating along

characteristics and using energy estimates a contraction map argument can be formulated. The

result is then extended to consider non-linear potentials for the field (i.e. self interacting fields),

which is of interest in exploring the dynamics of hairy black holes. For smoother initial data,

H2 solutions are also constructed.

The stability of spherical Schwarzschild AdS, under spherical symmetry, with Dirichlet bound-

ary conditions was proven in [HS13b]. Establishing orbital stability in this setting is non-trivial

as the energy conditions of [Daf05] no longer hold. The key idea of using the Hawking mass

as a potential is still retained, however the quantity is no longer monotonic. It is however

coercive in the regular region of the spacetime (in an integrated sense after establishing Hardy

inequalities). Proving this requires a complicated bootstrap argument on the location of the

horizon. The coercivity is then used to show that the Hawking mass is indeed bounded (for

small initial data). Coupled with a redshift argument, the H1 norm along with pointwise norms

of the field, and metric functions, are shown to be bounded by initial data. Then using a vec-

tor field argument, a non-degenerate Morawetz estimate is constructed for the range a ≥ −1

showing that the fields are decaying exponentially to zero. Commuting the equations with T ,

the Kodama vector field [Kod80], higher regularity estimates are shown, and the completeness

of null infinity can be shown from the extension principle.

Motivated by these results, in chapter three we will consider the stability of toroidal AdS

Schwarzschild black holes, for homogeneous Dirichlet, and Neumann boundary conditions at a

H1 level of regularity. The main interest being in if these results can be established in spite

of the slower decay from the Neumann conditions. The toroidal setting has an advantage over

spherical. This is that the ‘right’ twisting function is simpler. As previously stated, proving

orbital stability in the non-linear problem is similar to boundedness in the linear problem. The

twisting function for the spherical problem from [HW14], is comparatively complex to the one
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used in chapter two. The latter having a nicer relation to the standard derivative operator.

This simpler form is then exploited to see monotonicity properties.

In section 3.3 we state the problem and discuss the symmetry reduction. Wishing to maintain

a similar system to the spherical setting, a metric ansatz of the form

g = −Ω2(u, v)dudv + r2(u, v)
(
dx2 + dy2

)
, (1.60)

is posed. The topology is the product manifold Q+ × T2. Where Q+ is a two dimensional

Lorentzian manifold with boundary, and T2 = R2/Z2. Geometrically we are imposing a flat

square toroidal symmetry on our solution (see definition 3.3.2). In this symmetry reduction we

see that the toroidal Einstein–Klein-Gordon system takes the form

∂u

( ru
Ω2

)
= −4πr

(∂uψ)2

Ω2
, (1.61)

∂v

( rv
Ω2

)
= −4πr

(∂vψ)2

Ω2
, (1.62)

ruv = −rurv
r

+
2πar

l2
Ω2ψ2 − 3

4

r

l2
Ω2, (1.63)

(log Ω)uv = −4π∂uψ∂vψ +
rurv
r2

, (1.64)

∂u∂vψ = −ru
r
ψv −

rv
r
ψu −

Ω2a

2l2
ψ. (1.65)

We can now see that these equations are similar to (1.52) - (1.56). The differing terms being

in (1.63) and (1.64). The terms are sub-leading in powers of r. In section 3.4 we discuss that

after a suitable modification to the renormalised Hawking mass of [HW13], the same proof of

wellposedness carries through. In section 3.4.3, geometric uniqueness of the solution is shown.

In section 3.5, we prove the analogues of the extension results from [HS12]. As the regularity

of the system is now posed at a lower level, the conditions for extension near I are now simpler

(only requiring H1 regularity to propagate). The local extension result is also similar, however

as ψv is now only in L2, appropriate modifications need to be made for local wellposedness and

the extension principle in the interior. This is included in appendix A and generalises for all

Λ, k, a.

Smallness of the initial data is vital for the stability results of chapter three. In section 3.6 we

quantify this smallness in terms of norms. We then use this to show the maximal development

contains a black hole region.

In section 3.7 we prove orbital stability for solutions arising from small initial data. This is done

by exploiting monotonicity of a new variable that we will call the final renormalised Hawking

mass. To illustrate why we do this, first consider the natural analogue of the Hawking mass as

in [HS12]

$1 =
2rrurv

Ω2
+
r3

2l2
. (1.66)
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For Neumann boundary conditions this leads to the expected divergent energy fluxes. As in

[HW13] this variable needs to be renormalised. If we consider the renormalisation used for local

existence in [HW13]

$2 = $1 − 2π

(
−3

2
+ κ

)
r3

l2
ψ2, (1.67)

then the energy fluxes remain finite. However the equations now satisfy

∂u$2 = −8πr2 rv
Ω2

(∇̃uψ)2 − 8π

(
−3

2
+ κ

)(
$2 + 2π

(
−3

2
+ κ

)
r3

l2
ψ2

)
ψ∇̃uψ

− 4πψ2ru

(
−3

2
+ κ

)2

(
$2 + 2π

(
−3

2
+ κ
)
r3

l2
ψ2
)

r
,

(1.68)

∂v$2 = −8πr2 ru
Ω2

(∇̃vψ)2 − 8π

(
−3

2
+ κ

)(
$2 + 2π

(
−3

2
+ κ

)
r3

l2
ψ2

)
ψ∇̃vψ

− 4πψ2rv

(
−3

2
+ κ

)2

(
$2 + 2π

(
−3

2
+ κ
)
r3

l2
ψ2
)

r
,

(1.69)

where the twisting is done with respect to r−
3
2

+κ. There is no obvious monotonicity to these

equations or even integrated coercivity. In order to fix this, we consider another renormalisation

of the Hawking mass. The idea is to iteratively use the product rule on the cross terms involving

ψ∇̃µψ and $ψ∇̃µψ. At each iteration we move the total derivative term to the LHS and define

a new Hawking mass. This generates a series which can be summed to

$ =
2rurvr

Ω2
e4π(− 3

2
+κ)ψ2

+
r3

2l2
, (1.70)

which satisfies

∂u$ = −8πr2rv
Ω2

(∇̃uψ)2e4π(− 3
2

+κ)ψ2

+
4π
(
−3

2
+ κ
)2
ru

r
$ψ2 +

rur
2

l2
f(ψ2),

∂v$ = −8πr2ru
Ω2

(∇̃vψ)2e4π(− 3
2

+κ)ψ2

+
4π
(
−3

2
+ κ
)2
rv

r
$ψ2 +

rvr
2

l2
f(ψ2).

(1.71)

where f(ψ2) are higher order terms of ψ. From here establishing that $ > 0 shows monotonic-

ity, providing f ≥ 0 (which we will show follows for ψ2 � 1). In establishing this, we use a

bootstrap argument for the magnitude of the field. This is arguably simpler that the boot-

strap argument of [HS12] as bootstrapping on the location of the horizon is no longer needed.

Coupled with a redshift argument one finds that the H1 energy of the field is controlled by

the initial data. This allows the bootstrap argument to be closed from the smallness of the

initial data. We then establish further estimates for the field and metric functions, and the

orbital stability follows for κ ∈ (0, 1
2
]. Then in section 3.8, we use vector field arguments to

show exponential decay of the field, and a Penrose inequality for κ ∈ (0, 1
2
). This establishes

the stability of the toroidal Schwarzschild black hole within this symmetry class. It is worth

contrasting this result to [HS13b] as under suitable modifications to that argument one expects

that the toroidal symmetry result would hold at a H2 level for Dirichlet boundary conditions.
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This result is stronger in two senses. Firstly much rougher initial data can now be considered.

Secondly the scale of the perturbation can be thought of as larger (in a Sobolev sense). The

norms of [HS13b], would diverge for a subset of data admissible by these methods.

Finally in section 3.10 we show a vacuum result. Moving from constant square toroidal sym-

metry to varying rectangular, an extra field B(u, v) can be introduced. Posing a metric of the

form

g = −Ω2(u, v)dudv + r2(u, v)
(
e−
√

8πB(u,v)dx2 + e
√

8πB(u,v)dy2
)
, (1.72)

and considering the vacuum system (1.2), which reduces to (1.61) - (1.65), where B = ψ, and

a = 0. A massless scalar field system. However from the work of [War13] this has currently

not been shown to be wellposed with Neumann boundary conditions, and the main result of

chapter three cannot be directly applied here. However we will have shown that many of the

key results from [HS12] and [HS13b] can be applied to the Dirichlet case, and this system is

stable within that regime. This shows a curious, intimate link between dynamics of the scalar

field and the vacuum system, within this symmetry setting.
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2
The Klein-Gordon Equation on the

Toroidal AdS Black Hole

2.1 The Results

In this chapter we discuss the Klein-Gordon equation on the toroidal AdS Schwarzschild black

hole (TAdSS), first seen in [DW16]. The goal of this chapter will be to prove a precise version

of four results. For brevity in the statements we make reference to some quantities that will

be later defined. Firstly let ψ be a solution to the Klein-Gordon equation given by (2.23), sat-

isfying suitable Dirichlet, Neumann, or Robin boundary conditions. E [ψ] is a non-degenerate

energy density of ψ defined in (2.57).

The first result is a Morawetz estimate that holds at a purely H1 level of regularity. It forms

the basis of energy decay estimates, and gives indication to a trapping like issue occurring in

the tangential directions.

Theorem 2.1.1 (Morawetz estimate). For T1 < T2, there exists an open set of Klein-Gordon

masses, such that the following estimate holds∫
{T1<t<T2}

1

r3
E [ψ]drdxdydt ≤ CM,l,κ

∫
{t=T1}

E [ψ]drdxdy, (2.1)

where CM,l,κ > 0.

Exploiting the staticity of the spacetime and commuting with the Killing field T = ∂t we extend

the Morawetz estimate to a full integrated decay estimate.

Theorem 2.1.2 (Integrated decay estimate with derivative loss). For T1 < T2, there exists an

24



open set of Klein-Gordon masses, such that the following estimate holds∫
{T1<t<T2}

E [ψ]drdxdydt ≤ CM,l,κ

∫
{t=T1}

(E [ψ] + E [ψt]) drdxdy, (2.2)

where CM,l,κ > 0.

A corollary of theorem 2.1.2 is polynomial decay of the field.

Corollary 2.1.1 (Polynomial decay of energy). For T1 < T , there exists an open set of Klein-

Gordon masses, such that the following estimate holds∫
{t=T}

E [ψ]drdxdy ≤ C

(1 + T )n

n∑
k=0

∫
{t=T1}

E [∂kt ψ]drdxdy, (2.3)

where Cn,M,l,κ > 0.

Finally we show that some degeneration in estimate (2.1) is necessary.

Theorem 2.1.3 (Necessity of derivative loss). There exists no constant C > 0, independent of

T , such that the estimate∫
{0<t<T}

E [ψ]drdxdydt ≤ C

∫
{t=0}

E [ψ]drdxdy, (2.4)

holds for all smooth solutions of (2.23).

2.2 The spacetime and the Klein-Gordon equation

2.2.1 The toroidal AdS Schwarzschild black hole

Fix M, l > 0 and define the value r+ := (2Ml2)
1
3 , let T2 denote the two dimensional torus

R2/Z2. The exterior of the toroidal AdS Schwarzschild black hole is then defined to be the

manifold with boundary given by

M = Rt≥0 × Rr≥r+ × T2, (2.5)

with Lorentzian metric

g = −
(−2M

r
+
r2

l2

)
dt2 +

4Ml2

r3
dtdr +

(
2Ml4

r5
+
l2

r2

)
dr2 + r2

(
dx2 + dy2

)
. (2.6)

Here we use Gullstrand–Painlevé coordinates as discussed in section 1.6.1. The parameter M

represents the mass of the black hole, l the AdS radius. The set

H = {(t, r, x, y) ∈M : r = r+}, (2.7)
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forms the event horizon of this spacetime. The cometric takes the form

g−1 = −
(

2Ml4

r5
+
l2

r2

)
∂2
t +

4Ml2

r3
∂t∂r +

(−2M

r
+
r2

l2

)
∂2
r +

1

r2

(
∂2
x + ∂2

y

)
. (2.8)

Define the function

r̃ =
1

r
, (2.9)

which is a boundary defining function for the null infinity I of the spacetime. We attach the

set {r̃ = 0} as a boundary. Formally

I = {(t, r, x, y) ∈M : r̃ = 0}. (2.10)

2.2.2 Hypersurfaces

Throughout this chapter we will make extensive use of the divergence theorem. As this relates

4-volume integrals to flux integrals across hypersurfaces it will be helpful to define various

geometric quantities related to this specific spacetime. This set up is similar to the spherical

problem in [HW14] but has been adapted to the toroidal setting.

We introduce the following slab of spacetime

M[T1,T2] =M∩ {t ∈ [T1, T2]}, (2.11)

which has volume form

dV = r2dtdrdxdy =: r2dη. (2.12)

We will denote surfaces of constant t by Σt. These surfaces have future directed unit normal

given by

n =

√
2l4M

r5
+
l2

r2
∂t −

2lM√
2l4M + r4

∂r, (2.13)

and surface measure

dSΣt =

√
l2
(

2l2M

r
+ r2

)
drdxdy. (2.14)

We see that Σt is a regular spacelike surface up to and including the horizon.

We define a subset of this surface by

Σ
[R1,R2]
t = Σt ∩ {r ∈ [R1, R2]}. (2.15)

We also denote the surfaces of constant r by Σ̂r. These surfaces have unit normal given by

m =
2l2M

r3

√
−2M
r

+ r2

l2

∂t +

√
−2M

r
+
r2

l2
∂r, (2.16)
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and surface measure

dSΣ̂r
= r2

√
−2M

r
+
r2

l2
drdxdy, (2.17)

while m becomes singular, and dSΣ̂r
degenerates as we approach the null surface H, we note

that the combination mµdSΣ̂r
is well defined on this surface, and gives the appropriate surface

measure.

We again define a subset of this surface by

Σ̂
[T1,T2]
t = Σ̂r ∩ {r ∈ [T1, T2]}. (2.18)

We will also define for fixed t and r the associated torus

T2
t,r = Σt ∩ Σ̂r. (2.19)

This surface has induced measure

dST2
t,r

= r2dxdy. (2.20)

The Divergence Theorem

We now state the divergence theorem for this spacetime.

Let

D = {(t, r, x, y) ∈M | t ∈ [T1, T2], r ∈ [R1, R2]}, (2.21)

be a region of the spacetime, then for Jµ a C1 vector field on M, the following form of the

divergence theorem holds∫
D

−∇µJ
µdV =

∫
Σ

[R1,R2]
T2

Jµn
µdSΣT2

−
∫

Σ
[R1,R2]
T1

Jµn
µdSΣT1

+

∫
Σ̂

[T1,T2]
R1

Jµm
µdSΣR1

−
∫

Σ̂
[T1,T2]
R2

Jµm
µdSΣR2

.

(2.22)

We may extend D to the set M[T1,T2] by taking the limits R1 → r+ and R2 → ∞, provided

they exist.
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D

Figure 2.1: Penrose diagram of the spacetime

2.2.3 The Klein-Gordon equation

We now turn to study the Klein-Gordon equation on this spacetime. It is given by

�gψ −
2a

l2
ψ = 0, (2.23)

where the constant

− a < 9

8
, (2.24)

obeys the Breitenlohner-Freedman bound [BF82]. It will be useful at this point to define the

parameter

κ =

√
9

4
+ 2a, (2.25)

the main reason for doing this will become apparent in the wellposedness section.

Expanding this equation in Gullstrand–Painlevé coordinates we see that the equation has the

following form

−
(

2Ml4

r5
+
l2

r2

)
ψtt +

1

r2
∂r

(
r2

(−2M

r
+
r2

l2

)
ψr

)
+

4Ml2

r3
ψrt

− 2Ml2

r4
ψt +

1

r2
∆(x,y)ψ −

2a

l2
ψ = 0.

(2.26)

we see that as r → r+ the second order radial derivatives are degenerating. Expressed in the

operator form

− ψtt +Bψt + Lψ = 0, (2.27)

where B is a first order spatial operator and L a second order spatial operator. It is clear

that L is not strongly elliptic on the set M. For this reason standard energy methods will

prove insufficient to prove boundedness of the full H1 norm. This issue can be resolved by

exploiting the redshift effect for black holes [DR08], [DR09b]. Furthermore as the spacetime

is not globally hyperbolic we will need to provide boundary conditions to solve this equation

uniquely. With the exception of the class of Dirichlet boundary conditions the standard energy

fluxes associated to the Killing field ∂t will not be finite. In order to resolve this issue we use a
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renormalisation process first developed in [War13].

The Twisted Derivative

The basis of the renormalisation scheme is the twisted derivative. The core idea being once

the Klein-Gordon equation is expressed with twisted derivatives, that when restricted to finite

spatial domains the associated ‘Killing’ energy differs to the standard one by only a surface

flux. It is this flux that that is diverging for the standard energy as the domain is expanded to

infinity, but the twisted Killing energy remains finite, and serves as a good quantity for energy

methods.

We define a twisting function f by the property

fr
3
2
−κ = 1 +O

(
r−2
)
. (2.28)

The twisted derivative with respect to f is given by

∇̃µψ = f∇µ

(
f−1ψ

)
, (2.29)

and the formal L2 adjoint of ∇̃ by

∇̃†µψ = −f−1∇µ (fψ) . (2.30)

We can bring the Klein-Gordon equation to the form

− ∇̃†µ∇̃µψ − V ψ = 0, (2.31)

where the potential function V is given by

V = −
(
f−1∇µ∇µf − 2a

l2

)
. (2.32)

2.2.4 Boundary conditions

For this section we will study three classes of boundary conditions. For ψ ∈ C1(M,R) we say

it obeys

• Dirichlet boundary conditions, if κ > 0 and

r
3
2
−κψ → 0, as r →∞, (2.33)

• Neumann boundary conditions, if κ ∈ (0, 1) and

r
5
2

+κ∇̃rψ → 0 as r →∞, (2.34)
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• Robin boundary conditions, if κ ∈ (0, 1) and

r
5
2

+κ∇̃rψ + βr
3
2
−κψ → 0, as r →∞. (2.35)

where β ∈ C1(I). We further will require that ∂tβ = 0 and β ≥ 0. We remark that this

constraint is not necessary for the wellposedness results.

2.2.5 Twisted Sobolev spaces, wellposedness, and asymptotics

Twisted Sobolev Spaces

Let Σ be a spacelike hypersurface extending to I, which it intersects orthogonally. We define

the norms

||ψ||2L2(Σ) =

∫
Σ

ψ2

r
dSΣ, (2.36)

||ψ||2H1(Σ,κ) =

∫
Σ

(∣∣∣∇̃ψ∣∣∣2 +
ψ2

r2

)
rdSΣ, (2.37)

and now define the space H1
0 (Σ, κ) as the completion of smooth functions supported away from

I. Different choices of twisting functions give rise to equivalent norms provided the function

satisfies (2.28).

We now also define the renormalised energy on a constant t-slice associated to this problem by

Et[ψ] =
1

2

∫
Σt

(
−gtt (∇tψ)2 + grr

(
∇̃rψ

)2

+
∣∣ /∇ψ∣∣2 + V (r)ψ2

)
r2drdxdy

+
1

2l2

∫
T2
t,∞

(
r

3
2
−κψ

)2

βdxdy.
(2.38)

where /∇ denotes the connection of the induced metric on tori of constant t and r, (in these

coordinates we see that
∣∣ /∇ψ∣∣2 = 1

r2

(
ψ2
x + ψ2

y

)
). We will often refer to /∇ψ as ‘tangential terms’.

The later integral is understood in the limiting sense as r →∞.

Wellposedness

For completeness we summarise and state the wellposedness theorem, and asymptotic expansion

as found in [HW14] (theorem 1.1 and theorem 1.2 respectively), and proven in [War13] for (2.23).

We will denote by D+(Σ) the future Cauchy development of Σ together with the subset of I
lying in the future of Σ. Let nΣ be the future directed unit normal of Σ and define

n̂Σ = rnΣ. (2.39)

Theorem 2.2.1. • Let κ > 0, and ψ0 ∈ H1
0(Σ, κ), ψ1 ∈ L1(Σ). Then there exists a unique
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weak solution ψ to the equation

�gψ +
1

l2

(
9

4
− κ2

)
ψ = 0, (2.40)

in D+(Σ) with Dirichlet boundary conditions on I, such that ψ|Σ = ψ0 and n̂|Σψ = ψ1.

Furthermore for a spacelike surface S ⊂ D+(Σ) intersecting I orthogonally we have that

u|S ∈ H1
0(S, κ), n̂Σψ|S ∈ L2(S).

• Let κ ∈ (0, 1), ψ0 ∈ H1(Σ, κ), ψ1 ∈ L1(Σ). Then there exists a unique weak solution ψ to

the equation

�gψ +
1

l2

(
9

4
− κ2

)
ψ = 0, (2.41)

in D+(Σ) with Neumann or Robin (for given β) boundary conditions on I, such that

ψ|Σ = ψ0 and n̂|Σψ = ψ1. Furthermore for a spacelike surface S ⊂ D+(Σ) intersecting I
orthogonally we have that ψ|S ∈ H1(S, κ), n̂Σψ|S ∈ L2(S).

If it is the case that the renormalised energy Et[ψ] is coercive and if

• ψ satisfies Neumann or Robin boundary conditions with κ ∈ (0, 1), and the initial data

satisfies
1∑
i=0

∣∣∣∣∣∣(n̂Σ0)i ψ
∣∣∣∣∣∣
H1(Σ0,κ)

+
∣∣∣∣(n̂Σ0)2 ψ

∣∣∣∣
L2(Σ0)

<∞, (2.42)

then ψ is locally C0 and,

sup
Σt

∣∣∣r 3
2
−κψ

∣∣∣ ≤ C

(
1∑
i=0

∣∣∣∣∣∣(n̂Σ0)i ψ
∣∣∣∣∣∣
H1(Σ0,κ)

+
∣∣∣∣(n̂Σ0)2 ψ

∣∣∣∣
L2(Σ0)

)
, (2.43)

where C > 0 is a t independent constant.

• ψ satisfies Dirichlet boundary conditions, κ > 0, and the initial data satisfies

1∑
i=0

∣∣∣∣∣∣(n̂Σ0)i ψ
∣∣∣∣∣∣
H1(Σ0,κ)

+
∣∣∣∣(n̂Σ0)2 ψ

∣∣∣∣
L2(Σ0)

<∞, (2.44)

then ψ is locally C0 and for all ε > 0 there exists a t independent Cε > 0 such that

sup
Σt

∣∣∣r 3
2
−εψ
∣∣∣ ≤ Cε

(
1∑
i=0

∣∣∣∣∣∣(n̂Σ0)i ψ
∣∣∣∣∣∣
H1(Σ0,κ)

+
∣∣∣∣(n̂Σ0)2 ψ

∣∣∣∣
L2(Σ0)

)
. (2.45)

By using higher order energies we can also gain uniform control over derivatives of ψ.

For sufficiently smooth initial data we have that ψ|S ∈ Hk
loc.(S), n̂Σψ|S ∈ Hk−1

loc. (S), and the field

ψ admits the asymptotic expansion

ψ = r−
3
2

+κ
[
ψ−0 +O

(
r−1−κ)]+ r−

3
2
−κ [ψ+

1 +O
(
rκ−1

)]
, (2.46)
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where the functions ψ±i ∈ Hk−1−i(I) satisfy

• ψ−0 = 0 for Dirichlet boundary conditions,

• ψ+
1 = 0 for Neumann boundary conditions,

• 2κψ+
1 − βψ0 = 0 for Robin boundary conditions.

Remark 2.2.1. From (2.43) we can see that the twisting function f is capturing the decay of

the field.

Remark 2.2.2. For convenience we will now assume that our initial data is chosen such that

solutions to (2.23) are smooth. A density argument shows that this assumption can be removed

later. As such we will have asymptotic expansions to all orders which will allow us to quantify

the decay of the field and derivatives.

Corollary 2.2.1. For sufficiently smooth solutions to (2.23) for κ ∈ (0, 1), we have the following

asymptotics

Dirichlet:

ψ = O
(
r−

3
2
−κ
)
, ∇tψ = O

(
r−

3
2
−κ
)
,∣∣ /∇ψ∣∣ = O

(
r−

3
2
−κ
)
, ∇̃rψ = O

(
r−

5
2
−κ
)
,

(2.47)

and for Neumann and Robin:

ψ = O
(
r−

3
2

+κ
)
, ∇tψ = O

(
r−

3
2

+κ
)
,∣∣ /∇ψ∣∣ = O

(
r−

3
2

+κ
)
, ∇̃rψ = O

(
r−

5
2

+κ
)
.

(2.48)

Twisted energy momentum tensor

Rather than working with the classical energy momentum tensor (1.11), we work with a tensor

adapted to the twisting. The twisted energy momentum tensor.

Definition 2.2.1. For ψ ∈ C1(M) we define the twisted energy momentum tensor as

T̃µν [ψ] = ∇̃µψ∇̃νψ −
1

2
gµν

(
∇̃σψ∇̃σψ + V ψ2

)
, (2.49)

recalling that

V = −
(
f−1∇µ∇µf − 2a

l2

)
. (2.50)

In contrast to the classical twisted energy momentum tensor, this tensor does not satisfy the

property of vanishing divergence for when ψ is a solution (2.23). It does however satisfy some

useful algebraic relations.
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Corollary 2.2.2.

Taken from [HW14]

• For φ ∈ C2(M)

∇µT̃µν [φ] =
(
−∇̃†µ∇̃µφ− V φ

)
∇̃νφ+ S̃ν [φ], (2.51)

with

S̃ν [φ] =
∇̃†ν(fV )

2f
φ2 +

∇†νf
2f
∇̃σφ∇̃σφ. (2.52)

For ψ a solution to (2.23) and X a smooth vector field.

We define the current

J̃Xµ [ψ] = T̃µν [ψ]Xν , (2.53)

the bulk term

K̃X [ψ] = XπµνT̃µν [ψ] +XνS̃ν [ψ], (2.54)

where
Xπµν =

1

2
(∇µXν +∇νXµ) =

1

2
(LXg)µν (2.55)

is the deformation tensor. Then

∇µJ̃Xµ [ψ] = K̃X [ψ]. (2.56)

• If the twisting function f is chosen such that V ≥ 0 then T̃µν satisfies the dominant

energy condition.

• If Z is a Killing field of the spacetime that satisfies LZ(f) = 0 then we have that J̃Zµ [ψ]

is a conserved current.

As S̃µ and thus K̃X only depend on the 1−jet of ψ, we observe that J̃Xµ [ψ] is a compatible

current in the sense of Christodoulou [Chr16].

2.3 Bounded energy

In this section we recall the bounded energy result first shown in [Dun14].

Theorem 2.3.1. For ψ a solution to (2.23), with κ ∈ (0, 1), satisfying Dirichlet, Neumann or

Robin boundary conditions, for T1 < T2 there exists a uniform constant CM,l,κ > 0 such that

the renormalised energy density given by

E [ψ] :=
1

r
ψ2 + r4

(
∇̃rψ

)2

+ (∇tψ)2 + r2
∣∣ /∇ψ∣∣2 , (2.57)

satisfies the following energy inequality∫
ΣT2

E [ψ]drdxdy ≤ CM,l,κ

∫
ΣT1

E [ψ]drdxdy. (2.58)

33



Proof. First making the choice of twisting function

f(r) = r−
3
2

+κ, (2.59)

yields that

V (r) =
(3− 2κ)2M

2r3
> 0. (2.60)

We now consider the Killing field

T = ∂t, (2.61)

it is trivial to see

LT (f) = 0, (2.62)

so we have that J̃Tµ [ψ] is a conserved quantity, that is

∇µJ̃Tµ [ψ] = 0. (2.63)

Integrating over the spacetime slab D gives∫
Σ

[R1,R2]
T2

J̃Tµ [ψ]nµdSΣT2
−
∫

Σ
[R1,R2]
T1

J̃Tµ [ψ]nµdSΣT1
=

∫
Σ̂

[T1,T2]
R2

J̃Tµ [ψ]mµdSΣ̂R2
−
∫

Σ̂
[T1,T2]
R1

J̃Tµ [ψ]mµdSΣ̂R1
.

(2.64)

expanding the constant t slices in coordinates we see that∫
Σ

[R1,R2]
t

J̃Tµ [ψ]nµdSΣt =
1

2

∫
Σ

[R1,R2]
t

(
−gtt (∇tψ)2 + grr

(
∇̃rψ

)2

+
∣∣ /∇ψ∣∣2 + V (r)ψ2

)
r2drdxdy,

(2.65)

which we see due to the choice of f is a coercive quantity. We may also expand the contribution

on constant r surfaces to see∫
Σ̂

[T1,T2]
r

J̃Tµ [ψ]mµdSΣ̂r
=

∫
Σ̂

[T1,T2]
r

(
grt (∇tψ)2 + grr (∇tψ)

(
∇̃rψ

))
r2dtdxdy. (2.66)

Now taking the limit R1 → r+ we see that∫
Σ̂

[T1,T2]
r+

J̃Tµ [ψ]mµdSΣ̂r
=

∫
H[T1,T2]

grt (∇tψ)2 r2
+dtdxdy =: F (ψ; [T1, T2]) ≥ 0, (2.67)

and taking R2 →∞ we see that for Dirichlet and Neumann boundary conditions

lim
r→∞

∫
Σ̂

[T1,T2]
r

J̃Tµ [ψ]mµdSΣ̂r
= 0, (2.68)

and for Robin

lim
r→∞

∫
Σ̂

[T1,T2]
r

J̃Tµ [ψ]mµdSΣ̂r
=

1

2l2

∫
T2
T1,∞

(
r

3
2
−κψ

)2

βdxdy − 1

2l2

∫
T2
T2,∞

(
r

3
2
−κψ

)2

βdxdy, (2.69)

where T2
T1,∞ is the torus at infinity, and we understand the r terms in the integral to mean
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limr→∞ r
3
2
−κψ. We have shown the energy identity

ET2 [ψ] = ET1 [ψ]− F (ψ; [T1, T2]). (2.70)

An application of the redshift effect [DR08] removes the degeneration in the gtt term, and we

conclude ∫
ΣT2

E [ψ]drdxdy ≤ CM,l,κ

∫
ΣT1

E [ψ]drdxdy. (2.71)

Corollary 2.3.1. Pointwise bounds for the field can now be proven. For a sufficient smooth

solution we apply T , and the redshift vector field as commutators. Then coupled with elliptic

estimates, the result follows from a Sobolev embedding.

2.4 Energy decay rates

Now that we have established bounds in time on the energy, we seek to show that it is decaying

to zero. In view of Dirichlet and Neumann boundary conditions this would imply that all the

energy of the field is falling into the black hole region. Proving decay of the field in this setting

will serve as a blueprint for the nonlinear problems of chapter three.

2.4.1 Morawetz estimate

Theorem 2.4.1. There exists κ∗ ∈ (3
4
, 1], such that for κ ∈ (0, κ∗), ψ satisfying (2.23), with

Dirichlet, Neumann or Robin boundary conditions, and for T1 < T2, the following estimate

holds∫
M[T1,T2]

(
1

r
ψ2 + r4

(
∇̃rψ

)2

+
1

r
(∇tψ)2 +

1

r

∣∣ /∇ψ∣∣2) dtdrxdy ≤ CM,l,κ

∫
ΣT1

E [ψ]drdxdy

(2.72)

for some CM,l,κ > 0.

To prove this we first prove three lemmas

Lemma 2.4.1 (Hardy Inequality). Let φ ∈ C∞ ([r+,∞),R) be such that limr→∞ r
1
2φ = 0.

Then the following inequality holds∫ ∞
r+

φ2 ≤ C

(∫ ∞
r+

φ2

r
dr +

∫ ∞
r+

(∇̃rφ)2r2dr

)
, (2.73)

where C = C(r+).
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Proof. Define a cut off function by

χ(r) =


0 if r ≤ 2r+,

1 if r ≥ 4r+,

Smooth if r ∈ [2r+, 4r+],

(2.74)

with the property that χ′(r) ≤ C
r

for some C > 0, and monotone. Now express

||ψ||L2 = ||(1− χ)ψ + χψ||L2 (2.75)

after an application of the triangle inequality we can estimate the terms separately.

||(1− χ)ψ||2L2 =

∫ ∞
r+

(1− χ)2ψ2dr ≤
∫ 4r+

r+

r · ψ
2

r
dr ≤ 4r+

∫ ∞
r+

ψ2

r
dr, (2.76)

and for the second term

||χψ||2L2(r+,∞) =

∫ ∞
r+

(χψ)2dr =

∫ ∞
2r+

(χψ)2dr =

∫ ∞
2r+

(
χψr

3
2
−κ
)2

∂r

(
r−2+2κ

2κ− 2

)
dr

=

[
1

2κ− 2
(χψ)2r

]∞
2r+

+
2

2− 2κ

∫ ∞
2r+

χψ
(
∇̃rχψ

)
rdr

≤ 1

1− κ ||χψ||L2(r+,∞)

∣∣∣∣∣∣r∇̃rχψ
∣∣∣∣∣∣
L2(2r+,∞)

.

(2.77)

We then estimate the term∣∣∣∣∣∣r∇̃rχψ
∣∣∣∣∣∣2
L2(2r+,∞)

=

∫ ∞
2r+

r2(∇̃rχψ)2dr

≤ C

∫ ∞
2r+

r2(χ∇̃rψ)2 + r2(u∂rχ)2dr

≤ C

(∫ ∞
r+

(∇̃rψ)2r2dr +

∫ ∞
r+

ψ2

r
dr

)
,

(2.78)

the result then follows from these estimates.

Lemma 2.4.2. Let ψ satisfy (2.23) with Dirichlet, Neumann or Robin boundary conditions.

Define the modified energy current as

J̃µ[ψ] = T̃νµ[ψ]Xν + w1(r)ψ∇̃µψ + w2(r)ψ2Xµ, (2.79)

with

X = r∂r, (2.80)
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then following equality holds

∇µJ̃
µ[ψ] =

(
2rw2(r) +

(
r2

l2
− 2M

r

)
w′1(r)

)
ψ∇̃rψ +

2l2M

r3
w′1(r)ψ∇tψ

+

(
rw′2(r) + 2κw2(r) +

(3− 2κ)3M

4r3
+

(3− 2κ)2M

2r3
w1(r)

)
ψ2

+ 4

(
(2− κ)l2M

r3
+
l2M

r3
w1(r)

)
∇̃rψ∇tψ + ((1− κ) + w1(r))

∣∣ /∇ψ∣∣2
+

(
−κr

2

l2
− (3− 2κ)

r
+

(
r2

l2
− 2M

r

)
w1(r)

)(
∇̃rψ

)2

+

(
−(5− 2κ)l4M

r5
− 2l4M

r5
w1(r)− ((1− κ) + w1(r))

l2

r2

)
(∇tψ)2 .

(2.81)

Proof. We proceed term by term. Recall the identity

∇µ
(
T̃µνXν

)
= XπµνT̃µν +XνS̃ν . (2.82)

We compute

S̃r =
1

r

(
(3− κ)V (r)ψ2 +

(3− 2κ)

2
∇̃µψ∇̃µψ

)
, (2.83)

and deduce

XνS̃ν = (3− κ)V (r)ψ2 +
(3− 2κ)

2
∇̃µψ∇̃µψ. (2.84)

Turning to the first term of (2.82), we first compute the deformation tensor as

Xπ = g − 3M

r
dt2 − 8l2M

r3
dtdr − l2(5l2M + r3)

r5
dr2, (2.85)

so we see that X is asymptotically conformally Killing. Contracting the metric into the twisted

energy momentum tensor we get

gµνT̃µν = −∇̃µψ∇̃µψ − 2V (r)ψ2, (2.86)

we then combine this with the S̃ terms

gµνT̃µν +XνS̃ν = (1− κ)V (r)ψ2 +
(1− 2κ)

2
gµν∇̃µψ∇̃νψ. (2.87)

Contracting with the remaining terms produces

6l2M

r3
∇̃rψ∇tψ −

l2(8l2M + r3)M

2r5
(∇tψ)2 − 4l2M + r3

2l2r
(∇̃rψ)2 +

M(3− 2κ)2

4r3
ψ2 +

1

2

∣∣ /∇ψ∣∣2 .
(2.88)

We now compute the divergence of the w1 term

∇µ

(
w1(r)ψ∇̃µψ

)
= ∇µ(w1ψ)∇̃µψ + w1ψ∇µ∇̃µψ, (2.89)
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noting the relation for φ ∈ C1

∇µφ = φ∇̃†µ1− ∇̃†µφ, (2.90)

and that ∇̃†r1 = ∇̃r1, we now compute

∇µ∇̃µψ = V ψ + ∇̃r1∇̃rψ. (2.91)

(2.89) becomes

∇µ

(
w1(r)ψ∇̃µψ

)
= w′1ψ∇̃rψ + w1∇̃µψ∇̃µψ + w1V ψ

2, (2.92)

which expands to

∇µ

(
w1(r)ψ∇̃µψ

)
=

2l2M

r3
w′1ψ∇tψ + w′1

(
r2

l2
− 2M

r

)
ψ∇̃rψ +

4l2M

r2
∇̃rψ∇tψ

+ w1

(
r2

l2
− 2M

r

)(
∇̃rψ

)2

+ w1

(
−2l4M

r5
− l2

r2

)
(∇tψ)2

+ w1
M(3− 2κ)2

4r3
ψ2 + w1

∣∣ /∇ψ∣∣2 .
(2.93)

For the final term

∇µµ
(
w2ψ

2Xµ
)

= (rw′2 + 3w2)ψ2 + 2rw2ψ∇rψ

= (rw′2 + 2κw2)ψ2 + 2rw2ψ∇̃rψ,
(2.94)

the result then follows.

Lemma 2.4.3. For solutions of (2.23) with Dirichlet, Neumann or Robin boundary conditions,

consider a current of the form

J̃µ[ψ] = T̃νµ[ψ]Xν + w1(r)ψ∇̃µψ + w2(r)ψ2Xµ, (2.95)

that satisfies

• X = r∂r

• w1 = −k1 + f(r)

with f(r) ∈ O(r−3) and k1 > 0,

• w2 = k2

r3 ,

with 0 ≤ k2 <
(3−2κ)2

4
M.

It follows that ∫
M[T1,T2]

−∇µJ̃
µ[ψ]dV ol ≤ C

∫
ΣT1

E [ψ]drdxdy, (2.96)

for some constant C > 0 independent of T1 and T2.
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Proof. We start by studying surfaces of constant r, then take limits to evaluate the boundary

contributions. We compute∫
Σ̂

[T1,T2]
r

J̃µm
µdSΣ̂r

=∫
Σ̂

[T1,T2]
r

(
r3w2(r)− (3− 2κ)2

4
M

)
ψ2 +

r2

2l2
(r3 − 2Ml2)(∇̃rψ)2 +

(
l4M

r2
+
l2r

2

)
(∇tψ)2

− 1

2
r2
∣∣ /∇ψ∣∣2 + w1(r)

r

l2
(
r3 − 2Ml2

)
ψ∇̃rψ +

2l2Mw1(r)

r
ψ∇tψdtdxdy.

(2.97)

We study the terms at I first. One can easily see from the decay in r for the field that most of

terms are converging to 0. For the non-obvious ones we compute

lim
r→∞

r2

2l2
(
r3 − 2Ml2

)
(∇̃ψ)2 + w1(r)

r

l2
(
r3 − 2Ml2

)
ψ∇̃rψ

= lim
r→∞

1

2l2
r−2κ

(
r

5
2

+κ∇̃rψ
)2

− k1

l2

(
r

3
2
−κψ

)
r

5
2

+κ∇̃rψ.

(2.98)

The first term is also clearly converging to 0, in the case of Dirichlet or Neumann conditions

we see that the latter term also converges to 0. In the case of Robin we find that it converges

to

lim
r→∞

k1

l2
β
(
r

3
2
−κψ

)2

. (2.99)

We summarise this as

lim
r→∞

∫
Σ̂

[T1,T2]
r

J̃µm
µdSΣ̂r

=
k1

l2

∫ T2

T1

∫
T 2
t,∞

β
(
r

3
2
−κψ

)2

dxdydt, (2.100)

where β = 0 for Dirichlet and Neumann boundary conditions.

We now turn to the terms at the horizon, applying Young’s inequality with ε, we see that

lim
r→r+

∫
Σ̂

[T1,T2]
r

J̃µm
µdSΣ̂r

≤

lim
r→r+

∫
Σ̂

[T1,T2]
r

(
r3w2(r)− (3− 2κ)2

4
M + ε

)
ψ2 +

r2

2l2
(
r3 − 2Ml2

)
(∇̃rψ)2

+

(
l4M

r2
+
l2r

2
+
l4Mw2

1(r)

εr2

)
(∇tψ)2 − 1

2
r3
∣∣ /∇ψ∣∣2 + w1(r)

r

l2
(r3 − 2Ml2)ψ∇̃rψdtdxdy

≤
∫

Σ̂
[T1,T2]
r+

(
k2 −

(3− 2κ)2

4
M + ε

)
ψ2 + CF (ψ; [T1, T2]).

(2.101)

For k2 <
(3−2κ)2

4
M we can always find an ε > 0, such that the integrand is negative. We thus

have

lim
r→r+

∫
Σ̂

[T1,T2]
r

J̃µm
µdSΣ̂r

≤ CF (ψ; [T1, T2]) ≤ CET1 [ψ]. (2.102)
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We now study the surfaces of constant t, we compute∫
Σt

J̃µn
µdSΣt

=

∫
Σt

−2l2M(∇̃rψ)2 +

(
2l4M

r2
+ l2r

)
∇̃rψ∇tψ + w1(r)

(
2l4M

r3
+ l2

)
ψ∇tψ

− 2l2Mw1(r)

r
ψ∇̃rψdrdxdy

=

∫
Σt

−2l2M(∇̃rψ)2 +

(
2l4M

r2
+ l2r

)
∇̃rψ∇tψ − k1l

2ψ∇tψ

+

(
2l4M (f(r)− k1)

r3
+ l2f(r)

)
ψ∇tψ −

2l2Mw1(r)

r
ψ∇̃rψdrdxdy

=

∫
Σt

−2l2M(∇̃rψ)2 + h1(r)∇̃rψ∇tψ − k1l
2ψ∇tψ + h2(r)ψ∇tψ − h3(r)ψ∇̃rψdrdxdy,

(2.103)

where we have h1 ∈ O(r), h2 ∈ O(r−1), and h3 ∈ O(r−1). We now apply Young’s inequality∫
Σt

J̃µn
µdSΣt

≤
∫

Σt

(
1

2ε1
+
k1l

4

2ε3
+

1

2
|h2(r)|

)
(∇tψ)2 +

(
1

2
|h2(r)|+ 1

2ε2
|h3(r)|

)
ψ2drdxdy

+

∫
Σt

(ε2
2
|h3(r)|+ ε1

2
(h1(r))2 − 2l2M

)
(∇̃rψ)2 +

k2
1l

4ε3
2

ψ2drdxdy.

(2.104)

The first integral can clearly be controlled by a constant multiple of the energy at time T1. For

the latter one we invoke the Hardy estimate∫
Σt

J̃µn
µdSΣt ≤ CET1 [ψ]

+

∫
Σt

(
C2
k2

1l
4ε3

2
r2 +

ε2
2
|h3(r)|+ ε1

2
(h1(r))2 − 2l2M

)
(∇̃rψ)2 +

k2
1l

4ε3
2

ψ2 + C2
k2

1l
4ε3

2r
ψ2drdxdy.

(2.105)

We now choose εi’s small enough such that

C2
k2

1l
4ε3

2
r2

+ +
ε2
2
|h3(r+)|+ ε1

2
(h1(r+))2 < 2l2M, (2.106)

we may then find a C > 0 independent of T1 and T2 such that∫
Σt

J̃µn
µdSΣt ≤ CET1 [ψ]. (2.107)

From here we simply apply the divergence theorem∫
M[T1,T2]

−∇µJ̃
µ[ψ]dV ≤ CET1 [ψ]− C̃

∫ T2

T1

∫
T2
t,∞

β(r
3
2
−κψ)2dxdydt, (2.108)
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from here the result follows.

We are now able to prove theorem 2.4.1. From inspection of the of the bulk terms in lemma

2.4.2, we can see that tangential terms appear with the opposite sign to the higher order co-

efficients of the time derivative terms. In order to get a signed bulk term we cancel these off.

This gives us our first estimate. We can then reintroduce the tangential terms controlling the

negative terms by the first estimate.

Proof of theorem 2.4.1. Define the first current as

J̃µ1 = T̃µνXµ + (κ− 1)ψ∇̃µψ +
(3− 2κ)M

2r3

(
1

2
+
ε

2

)
ψ2Xµ, (2.109)

its easy to see that the current satisfies lemma 2.4.3, provided ε < 2(1− κ). Then from lemma

2.4.2 we compute

−∇µJ̃
µ
1 [ψ] · r2 =

3l4M

r3
(∇tψ)2 − 4Ml2

r
∇̃rψ∇tψ +

r4

l2
(∇̃rψ)2

+
(3− 2κ)2Mε

4r
ψ2 − 1

2
(3− 2κ)(1 + ε)Mψ∇̃rψ +Mr(∇̃rψ)2.

(2.110)

Two applications of Young’s inequality give

−∇µJ̃
µ
1 [ψ] · r2 ≥ l

4M

r3

(
3− 4

δ1

)
(∇tψ)2 +

(
r4

l2
−Mr

(
δ1 +

(1 + ε)2

2δ2

− 1

))
(∇̃rψ)2

+
M

r

(
ε− δ1

2

)(
3− 2κ

2

)2

ψ2,

(2.111)

if we restrict to

δ2 < 2ε, δ1 >
4

3
, δ1 +

(1 + ε)2

2δ2

− 1 < 2, (2.112)

we have a positive bulk term. These conditions can be met provided

3ε2 − 14ε+ 3 < 0, (2.113)

that is

ε ∈
(

1

3
(7− 2

√
10),

1

3

(
7 + 2

√
10
))

, (2.114)

with the constraint

κ < 1− ε

2
. (2.115)

This provides the upper bound κ < κ∗ = 1
6

(
2
√

10− 1
)
≈ 0.887, for which our result holds.

Choosing ε = 1− κ, we see that we have positivity and boundedness for the range

κ ∈
(

0,
1

6

(
2
√

10− 1
))

. (2.116)
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Within this range we may now find a constant c = c(M, l, κ), such that

−∇µJ̃
µ
1 [ψ] · r2 ≥ c

(
1

r3
(∇tψ)2 + r4

(
∇̃rψ

)2

+
1

r
ψ2

)
. (2.117)

We apply lemma 2.4.3 to deduce∫
M[T1,T2]

(
1

r3
(∇tψ)2 + r4(∇̃rψ)2 +

1

r
ψ2

)
dtdrdxdy ≤ C

∫
ΣT1

E [ψ]drdxdy. (2.118)

To control the tangential terms, we consider the current

J̃µ2 = T̃µνXµ −
(

1

r3
+ (1− κ)

)
ψ∇̃µψ. (2.119)

Computing the divergence of this current we see

−∇µJ̃
µ
2 [ψ] · r2 =

(
6M

r3
− 3

l2

)
ψ∇̃rψ −

6l2M

r5
ψ∇tψ −

4l2M(r3 − 1)

r4
∇̃rψ∇tψ

+

(
r4 + r

l2
+M

(
r − 2

r2

))
(∇̃rψ)2 +

(l4M (3r3 − 2)− l2r3)

r6
(∇tψ)2

− (3− 2κ)2M (r3 − 2)

4r4
ψ2 +

1

r

∣∣ /∇ψ∣∣2 .
(2.120)

From (2.117) we control all the non-tangential terms, and may deduce the estimate

1

r

∣∣ /∇ψ∣∣2 ≤ −∇µJ̃
µ
2 [ψ] · r2 + C

(
1

r3
(∇tψ)2 + r4(∇̃rψ)2 +

1

r
ψ2

)
. (2.121)

Integrating this estimate yields the result.

2.4.2 Integrated decay estimate with derivative loss

We now seek to improve the weights of the Morawetz estimate. Unfortunately this will require

‘losing’ a derivative that is

Theorem 2.4.2. For κ ∈ (0, κ∗) and ψ a solution to (2.23) with Dirichlet, Neumann, or Robin

boundary conditions the following integral inequality holds∫
M[T1,T2]

E [ψ]dtdrdxdy ≤ C

∫
ΣT1

(E [ψ] + E [ψt]) drdxdy, (2.122)

for a constant C = C(M, l, κ) > 0.

Proof. An application of lemma 2.4.1 to the estimate in theorem 2.4.1 yields∫
M[T1,T2]

ψ2dtdrdxdy ≤ C

∫
ΣT1

E [ψ]drdxdy. (2.123)
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We now exploit some symmetry of the spacetime. Noting that ∂t is a Killing field we have the

commutator relation [
∂t,�g −

2a

l2

]
= 0, (2.124)

which in turn implies, for smooth enough initial data, that∫
M[T1,T2]

(∇tψ)2 dtdrdxdy ≤ C

∫
ΣT1

E [ψt]drdxdy, (2.125)

combining this estimate with theorem 2.4.1 yields

∫
M[T1,T2]

(∇tψ)2 + r4
(
∇̃rψ

)2

+ ψ2dtdrdxdy ≤ C

(∫
ΣT1

E [ψ] + E [ψt]drdxdy

)
. (2.126)

All that remains is to recover the tangential derivatives. While we could at this point exploit

further symmetry of the spacetime by using the ∂x and ∂y Killing fields, we will favour a more

robust method. This allows these results to be applied to the perturbed solutions from [ACD02],

and will be more useful with non-linear applications in mind. Consider the current defined by

J̃µ3 [ψ] = T̃µν [ψ]Xν − (2− κ)ψ∇̃µψ, (2.127)

which has divergence

−∇µJ̃
µ
3 ·r2 =

(
l4M

r3
− l2

)
(∇tψ)2+

(
2r4

l2
−Mr

)(
∇̃rψ

)2

+
M(3− 2κ)2

4r
ψ2+r2

∣∣ /∇ψ∣∣2 . (2.128)

This current satisfies the conditions of lemma 2.4.3 and as we control all the non tangential

terms we have ∫
M[T1,T2]

r2
∣∣ /∇ψ∣∣2 dtdrdxdy ≤ C

(∫
ΣT1

E [ψ] + E [ψt]drdxdy

)
, (2.129)

and thus∫
M[T1,T2]

(∇tψ)2 + r4
(
∇̃rψ

)2

+ ψ2 + r2
∣∣ /∇ψ∣∣2 dtdrdxdy ≤ C

(∫
ΣT1

E [ψ] + E [ψt]drdxdy

)
.

(2.130)

2.5 Polynomial energy decay

We now extract a statement about energy decay from the integrated decay estimate. We prove

the following theorem

Corollary 2.5.1. For κ ∈ (0, κ∗), and ψ a solution to (3.5) with Dirichlet, Neumann or Robin
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conditions. Then ∫
Σt

E [ψ]drdxdy ≤ C

(1 + t)n

n∑
k=0

∫
Σ0

E [∂kt ψ]drdxdy, (2.131)

for some C = C(n,M, l, κ) > 0.

We proceed to prove this with two technical results. Firstly a Gronwall type estimate,

Lemma 2.5.1 (Gronwall type estimate). Let k > 0, and f ∈ C1([T1,∞)) satisfy

f ′(t) ≤ −κf(t) +
A

(1 + t− T1)k
, (2.132)

for some A > 0. There exists C = C(κ, k) > 0 such that

f(t) ≤ f(T1)e−κ(t−T1) +
CA

(1 + t− T1)k
. (2.133)

Proof. From (2.132) we derive

d

dt

(
f(t)eκt

)
≤ Aeκt

(1 + t− T1)k
, (2.134)

integrating this quantity gives

f(t)eκt − f(T1)eκT1 ≤ A

∫ t

T1

eκs

(1 + s− T1)k
ds. (2.135)

A simple change of variable yields

f(t)eκt − f(T1)eκT1 ≤ AeκT1

∫ t−T1

0

eκs
′

(1 + s′)k
ds′, (2.136)

and finally

f(t)eκt − f(T1)eκT1 ≤ AeκT1
eκ(t−T1)

(1 + t− T1)k
. (2.137)

For the last estimate we have used∫ t

0

eκs
′

(1 + s′)k
ds′ =

[
eκs

′

κ(1 + s′)k

]t
0

+ k

∫ t

0

eκs
′

κ(1 + s′)k+1
ds′

≤ eκt

κ(1 + t)k
+ kt max

s∈(0,t)

∣∣∣∣ eκs

κ(1 + s)k+1

∣∣∣∣
≤ C

eκt

(1 + t)k
.

(2.138)

From here the result follows.

Secondly, the following quantitative form of the red shift from [War15], theorem 3.8.
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Lemma 2.5.2. There exists a modified energy Et[ψ], the redshift energy such that we have a

uniform C > 0 such that

C−1

∫
Σt

E [ψ]drdxdy ≤ Et[ψ] ≤ C

∫
Σt

E [ψ]drdxdy, (2.139)

and for ψ a solution to (2.23) with Dirichlet, Neumann or Robin boundary conditions then,

d

dt
Et[ψ] ≤ −κEt[ψ] + CEt[ψ], (2.140)

for some κ > 0.

Proof of theorem 2.5.1. It is trivial to see from 2.38 that

Et[ψ] ≤ C

∫
Σt

E [ψ]drdxdy, (2.141)

we then integrate in time and apply theorem 2.4.2 to see

∫ T2

T1

Es[ψ] ≤ C

(∫
ΣT1

E [ψ] + E [ψt]drdxdy

)
. (2.142)

We now write

(1 + t− T1)Et[ψ] = Et[ψ] +

∫ t

T1

d

ds
((s− T1)Es[ψ]) ds

= Et[ψ] +

∫ t

T1

Es[ψ] + (s− T1)Ėt[ψ]ds

≤ Et[ψ] +

∫ t

T1

Es[ψ]ds

≤ C

(∫
Σt

E [ψ] + E [ψt]drdxdy

)
.

(2.143)

Where we have used to monotonicity property of Et[ψ]. We thus deduce

Et[ψ] ≤ C

(1 + t− T1)

(∫
ΣT1

E [ψ] + E [ψt]drdxdy

)
. (2.144)
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Now an application of lemma 2.5.1 to (2.140) gives

Et[ψ] ≤ ET1 [ψ]e−κ(t−T1) +
C

1 + t− T1

(∫
ΣT1

E [ψ] + E [ψt]drdxdy

)

≤ ET1 [ψ]e−κ(t−T1) +
C

1 + t− T1

(∫
ΣT1

E [ψ] + E [ψt]drdxdy

)

≤ Ce−κ(t−T1)

∫
ΣT1

E [ψ]drdxdy +
C

1 + t− T1

(∫
ΣT1

E [ψ] + E [ψt]drdxdy

)

≤ C

1 + t− T1

(∫
ΣT1

E [ψ] + E [ψt]drdxdy

)
,

(2.145)

from which we obtain∫
Σt

E [ψ]drdxdy ≤ C

1 + t− T1

(∫
ΣT1

E [ψ] + E [ψt]drdxdy

)
. (2.146)

From here we proceed inductively, noting that taking T1 = 0 proves the case n = 1. The rest

follows as in [HLSW15], lemma 5.8.

2.6 Gaussian beams and derivative loss

The result of this section establishes that some derivative loss or degeneration of weights is

indeed necessary.

Theorem 2.6.1. There exists no constant C > 0, independent of T , such that the estimate∫
M[0,T ]

E [ψ]dtdrdxdy ≤ C

∫
Σ0

E [ψ]drdxdy, (2.147)

holds for all smooth solutions of (2.23).

The proof is this is an adaptation of the Gaussian beam method of Sbierski [Sbi15]. The idea

is to show the existence of null geodesics that remain outside the event horizon for arbitrary

amounts of coordinate time. One then constructs approximate solutions (Gaussian beams) to

(2.23), supported in a tubular neighbourhood N of these geodesics. The energy of the Gaussian

beam remains arbitrarily close to the Killing energy of the geodesic in a neighbourhood of N .

Furthermore it also remains close to a true solution of (2.23) in the energy norm. This true

solution is then used to contradict inequalities of the form (2.147).

Lemma 2.6.1. Fix T > 0 then there exists a null geodesic γ such that Im(γ) ⊂M[0,T ]∩{3
2
r+ <

r < R(T )} for some large R(T ).

Proof. We proceed by using a Hamiltonian method. We construct integrals of motion from the

Killing fields ∂t, ∂x, ∂y, and from the fact that γ̇ is null. That is there are three constants a, b, c
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such that

a = g(γ̇, ∂t),

b = g(γ̇, ∂x),

c = g(γ̇, ∂y),

0 = g(γ̇, γ̇).

(2.148)

Working in coordinates and taking τ as an affine parameter, we get the following geodesic

equations

ṫ =
−1

−2M
r

+ r2

l2

(
a− ṙ2Ml2

r3

)
,

ṙ = −
(
d2

(
2M

r
− 1

l2

)
+ a2

) 1
2

,

ẋ =
b

r2
,

ẏ =
c

r2
,

(2.149)

where d2 = b2 +c2. In order that we are heading towards the event horizon and not null infinity

we choose the negative root of ṙ2. As we are interested in a photon moving in the tangential

directions at a distance R, we give the following initial conditions

r(0) = R,

ṙ(0) = 0.
(2.150)

We solve for a

a = −d
(

1

l2
− 2M

R

) 1
2

, (2.151)

where we again choose the negative root. This is the geodesic is future directed i.e. ṫ ≥ 0. The

geodesic equation becomes

ṫ =
drl2

r3 − 2Ml2

((
1

l2
− 2M

R3

) 1
2

− 2Ml2

r3

√
2M

(
1

r3
− 1

R3

) 1
2

)
,

ṙ = −d
√

2M

(
1

r3
− 1

R3

) 1
2

,

ẋ =
b

r2
,

ẏ =
c

r2
.

(2.152)

So as long as R > r+ we see all of these are signed (away from R), and t, r, x, y are monotonic.

As r is monotonic and decreasing it never reaches I. Furthermore ṫ, ṙ, ẋ, ẏ are also monotonic.

We deduce that γ is a smooth embedding.

We now turn to computing the coordinate time taken for the photon to fall a distance R
2

,
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remaining on the exterior of the black hole. We proceed by computing the affine time τR
2
, this

is done using (2.152)

τR
2

=
1

d
√

2M

∫ R

R
2

(
1

r3
− 1

R3

)− 1
2

dr. (2.153)

Rescaling the integral we get

τR
2

=
R

5
2

d
√

2M

∫ 1

1
2

√
y3

1− y3
dy. (2.154)

Now

0 <

∫ 1

1
2

√
y3

1− y3
dy ≤

∫ 1

0

√
y3

1− y3
dy =

√
π

Γ(5
6
)

Γ(1
3
)
<∞, (2.155)

so this integral is simply some positive constant. We denote it as KF and write

τR
2

=
KFR

5
2

d
√

2M
. (2.156)

We use this to prove an estimate for the coordinate time. In order to do this we consider

bounding ṫ below on the interval r ∈
[
R
2
, R
]

ṫ ≥ dl2

r2

(
1

l2
− 2M

R3

) 1
2

− 4dl2

(R3 − 16Ml2)R
7
2

(
16Ml2

√
14M

)
︸ ︷︷ ︸

=:K̃

, (2.157)

now fix ε > 1, and set C = l−1
(
1− 1

ε

)
, then provided R3 ≥ 2εMl2, we have

ṫ ≥ dl2C

R2
− 4dl2K̃

R
7
2 (R3 − 16Ml2)

=
dl2

R2

(
C − 4K̃

R
3
2 (R3 − 16Ml2)

)
.

(2.158)

If we then choose ε = 9, we have

ṫ ≥ dl2

R2

(
8

9l
− 4K̃

R
3
2 2Ml2

)
. (2.159)

Insisting R3 ≥ max

{
18Ml2,

(
18K̃
7M

)2
}

we find

ṫ ≥ dl

9

1

R2
. (2.160)

We thus have an inequality for the fall time (for large R)

∆R
2
t =

∫ τR
2

0

ṫdτ ≥ K
dl2

R2
· τR

2
= KFR

1
2 . (2.161)
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Now fix T and let R = max

{
9T 2

4K2
F
, (18Ml2)

1
3 ,
(

18K̃
7M

) 2
3

}
, we then have

∆R
2
t ≥ 3T

2
, (2.162)

or in other words a geodesic with r > 3
2
r+, for 0 ≤ t ≤ T .

Remark 2.6.1. To visualise this geodesic it is helpful to return to equations (2.151) and rewrite

them as

d2 =
a2

R− 2Ml2
. (2.163)

From here we can see that the value of d (a tangential momentum) has to be non zero for the

construction of the geodesic. We can think of these null geodesics as curves spiralling in towards

the horizon, typically starting at a distance far away.

We now need a result from Sbierski [Sbi15], it is slightly modified to requiring the geodesic

being a smooth embedding rather than working on a globally hyperbolic manifold (see comment

following definition 2.35 of [Sbi15]).

Theorem 2.6.2. Let (M, g) be a time orientated Lorentzian manifold with time function t, and

foliated by the level sets Στ = {t = τ}. Furthermore let γ be a smooth geodesic embedding that

intersects Σ0, and let N be a timelike, future directed vector field. Then for any neighbourhood

N of γ and T > 0 with ΣT ∩ Im(γ) 6= ∅ there exists a Gaussian beam ψλ of the form

ψλ(x) = aN e
iλφ(x), (2.164)

such that the following hold

||�gψλ||L2(M[0,T ])
≤ C(T ), (2.165)

where C(T ) depends on aN , φ and T but not on λ. Furthermore

Et[ψλ]→∞, as λ→∞, (2.166)

and

ψλ is supported in N , (2.167)

provided that on M[0,T ] ∩ J+(N ∩ Σ0),

|nΣτ |−1 ≤ C, g(N,N) ≤ −c < 0, −g(N, nΣτ ) ≤ C, (2.168)

and ∣∣g(∇nΣτ
N, nΣτ )

∣∣ , ∣∣g(∇nΣτ
N, ei)

∣∣ , |g(∇eiN, ej)| ≤ C, (2.169)

for 1 ≤ i, j ≤ 3, c and where C are positive constants and {nΣτ , e1, e2, e3} are an orthonormal

frame.
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For our problem we use N = ∂t, and use the time coordinate t as the time function. We also

use the result from [Sbi15]

Lemma 2.6.2.

I(φ|γ) = I(∇φ|γ) = 0 (2.170)

and

I(∇∇φ|γ) is positive definite on a 3D subspace transversal to γ̇ (2.171)

where I denotes the imaginary part.

Combining this lemma with the fact that aN is independent of λ we see that the L2 norm of

ψλ is also independent of λ. That is

Lemma 2.6.3. Let ψλ be the Gaussian beam constructed in theorem 2.6.2 then there exists a

constant C(T ) > 0 independent of λ such that the following estimate holds

||ψλ||L2(M[0,T ])
≤ C(T ). (2.172)

We now show that we can approximate solutions of (2.23) in the energy norm with Gaussian

beams.

Lemma 2.6.4. For all ε > 0 there exists a solution ψ of (2.23) satisfying Dirichlet, Neumann

or Robin boundary conditions, and initial data supported away from the horizon, with

E0[ψ] = 1, (2.173)

and a Gaussian beam ψ̃λ such that∣∣∣Et[ψ]− Et[ψ̃λ]
∣∣∣ < ε, ∀0 ≤ t ≤ T. (2.174)

Proof. Construct ψλ from theorem 2.6.2, and use the geodesic from lemma 2.6.1. Then ensuring

that N is bounded away from I, and H we define

ψ̃λ :=
ψλ√
E0[ψλ]

. (2.175)

It follows from the triangle inequality that∣∣∣∣∣∣∣∣�gψ̃λ +
−2a

l2
ψ̃λ

∣∣∣∣∣∣∣∣
L2(M[0,T ])

→ 0, (2.176)

as λ→∞.
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Now take ψ to be the solution to

�gψ −
2a

l2
ψ = 0,

ψ|Σ0 = ψ̃λ|Σ0 ,

nΣ0ψ|Σ0 = n|Σ0ψ̃λ,

(2.177)

with Dirichlet, Neumann or Robin boundary conditions.

Applying the standard energy estimates to ψ̃λ we get

Et[ψ̃λ] ≤ E0[ψ̃λ] +

∣∣∣∣∣∣∣∣(�gψ̃λ −
2a

l2
ψ̃λ

)
∇tψ̃λ

∣∣∣∣∣∣∣∣2
L2(M[0,T ])

, (2.178)

using that N is bounded from I, applying Cauchy Schwartz, taking supremums, and absorbing

with Young’s inequality we get

Et[ψ̃λ] ≤ C(T )

(
E0[ψ̃λ] +

∣∣∣∣∣∣∣∣�gψ̃λ −
2a

l2
ψ̃λ

∣∣∣∣∣∣∣∣
L2(M[0,T ])

)
. (2.179)

Using this inequality on the difference ψ − ψ̃λ yields∣∣∣Et[ψ − ψ̃λ]∣∣∣ ≤ C(T )

∣∣∣∣∣∣∣∣�gψ̃λ −
2a

l2
ψ̃λ

∣∣∣∣∣∣∣∣
L2(M[0,T ])

, (2.180)

then for ε > 0 we simply choose a large enough λ and the result follows.

We now quote theorem 2.36 from [Sbi15]. This tells us that the Gaussian beam energy is

localised around the geodesic Killing energy.

Lemma 2.6.5. For all ε > 0 there exists a neighbourhood N0 of N such that∣∣∣Et[ψ̃λ|N0 ]− (−g(T, γ̇)|Im(γ)∩Σt)
∣∣∣ < ε, (2.181)

for all 0 ≤ t ≤ T.

We now show that the constructed solutions to (2.23) are losing energy very slowly.

Lemma 2.6.6. Let T > 0 then for all ε > 0 there exists a solution ψ of (2.23) with initial data

supported away from H, satisfying Dirichlet, Neumann or Robin boundary conditions with

E0[ψ] = 1, (2.182)

such that

Et[ψ] ≤ 1− ε, (2.183)

for all 0 ≤ t ≤ T .
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Proof. It follows from ∂t being Killing that −g(T, γ̇)|Im(γ)∩Σt is a constant. We may renormalise

this to 1 when solving for γ. The result then follows from the triangle inequality.

With these results we can now prove theorem 2.6.1

Proof of theorem 2.6.1. Assume there exists a constant C independent of T , and ψ, such that

follow estimate holds for all solutions (2.23)∫ T

0

Et[ψ]dt ≤ CE0[ψ]. (2.184)

As the energy is a decreasing function of t we have

TET [ψ] =

∫ T

0

ET [ψ]dt ≤
∫ T

0

Et[ψ]dt ≤ CE0[ψ]. (2.185)

Choosing T = 2C, and constructing ψ from lemma 2.6.6, with the choice ε = 1
4

we deduce

3

2
C ≤ C. (2.186)

A clear contradiction. We now extend this result to the non-degenerate energy by observing

that for ψ supported away from H we have the estimate∫
Σ0

E [ψ] ≤ CE0[ψ], (2.187)

and the estimate ∫ T

0

Et[ψ]dt ≤ C

∫
M[0,T ]

E [ψ], (2.188)

from which we construct the same contradiction.
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3
The Einstein–Klein-Gordon System

3.1 Introduction

3.1.1 The results

In this chapter the Einstein–Klein-Gordon system, within the class of square flat toroidal sym-

metry is presented (1.61)-(1.65), and five results are proven about its analysis.

Theorem 3.1.1 (Wellposedness). Given suitable initial data on a characteristic surface in-

tersecting null infinity, and Dirichlet or Neumann boundary conditions for the field ψ. The

Einstein–Klein-Gordon system (1.61)-(1.65) (with κ ∈ (0, 2
3
)) has a unique toroidally symmet-

ric weak solution in a future neighbourhood of this surface.

Characteristic surface

I

Figure 3.1: Region of solution

Furthermore the maximal development of this solution is unique.
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Theorem 3.1.2 (Orbital Stability). Assume we are given initial data on a characteristic sur-

face intersecting null infinity that is ‘close’ to the TAdSS data, and Dirichlet or Neumann

boundary conditions for the field ψ. The maximal development for the Einstein–Klein-Gordon

system (with κ ∈ (0, 1
2
]) contains a black hole, and exterior region with complete null infinity.

The solution is qualitatively similar to TAdSS. Furthermore there exists a constant D > 0,

depending only on the initial data, Klein-Gordon ‘mass’, and AdS radius such that∣∣∣r 3
2
−κψ(u, v)

∣∣∣ ≤ D, (3.1)

holds on the intersection of the regular region of the spacetime and the exterior of the black hole.

Where r is a radial function, and u, v are Eddington-Finkelstein coordinates on the spacetime

constructed as part of the proof.

Theorem 3.1.3 (Asymptotic Stability). Assume we are given initial data on a characteristic

surface intersecting null infinity that is ‘close’ to the TAdSS data, and Dirichlet or Neumann

boundary conditions for the field ψ. On the maximal development for the Einstein–Klein-

Gordon system (with κ ∈ (0, 1
2
)), we have constants C,D > 0 depending only on the initial

data, Klein-Gordon ‘mass’, and AdS radius such that∣∣∣r 3
2
−κψ(u, v)

∣∣∣ ≤ D exp(−Cv), (3.2)

holds on the intersection of the regular region of the spacetime and the exterior of the black

hole. Where v is an Eddington-Finkelstein coordinate.

Theorem 3.1.4. We have that for κ ∈ (0, 1
2
), M the initial final renormalised Hawking mass

at null infinity, H the event horizon of the spacetime, and r+ := (2Ml2)
1
3 that the Lorentzian

Penrose inequality

sup
H
r ≤ r+, (3.3)

holds. Furthermore we have along H that r converges to r+ exponentially in v an Eddington-

Finkelstein coordinate.

These can all be summarised in the following theorem

Theorem 3.1.5. Assume we are given initial data on a characteristic surface intersecting null

infinity that is ‘close’ to the TAdSS data, and Dirichlet or Neumann boundary conditions for

the field ψ. The associated maximal development (with κ ∈ (0, 1
2
)), is a black hole spacetime

with a regular future horizon, and a complete null infinity. Furthermore the estimate∣∣∣r 3
2
−κψ(u, v)

∣∣∣ ≤ D exp(−Cv), (3.4)

holds on the intersection of the regular region of the spacetime and the exterior of the black

hole. From which we may deduce that the metric is converging exponentially in v, uniformly in

u, to a toroidal AdS Schwarzschild solution with mass M , in the Eddington-Finkelstein gauge.

It is in this sense we say that the toroidal AdS Schwarzschild is stable within the class of square

flat toroidal symmetries.
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3.2 Structure of the argument

The proofs of this chapter are quite long and complex; the following flowchart has been included

to help the reader understand the structure and dependences.

Einstein–Klein-Gordon System

Square Flat Toriodal Symmetry System Reduction

Twisted Derivatives Wellposedness of renormalised system at H1 level

Geometric Boundary Conditions Unique Maximal Development

Small Initial Data

Bootstrap Argument

Non-Degenerate Energy Estimates

Orbital Stability

Morawetz Estimates

Asymptotic Stability

Spacetime Contains A Trapped Region

Degenerate Energy Estimates

Closes

Closes

Red Shift Estimates

Interior Extension Principle

Extension Principle Near Infinity

(Lemma 3.6.1)

(Lemma 3.7.14)

(Theorem 3.5.1)

(Lemma 3.8.3 and Theorem 3.8.4) (Lemma 3.8.4)

Red Shift Estimates

(Theorem 3.4.1)

(Theorem 3.4.2)

(Theorem 3.5.2) (Theorem 3.7.1)

(Lemma 3.3.1)

(Lemma 3.7.7)

(Theorem 3.7.4)

(Theorem 3.9.1)

Exponential decay of Energy

(Theorem 3.8.5)

(Definition 3.3.1)

(Definition 3.3.2)

(Definition 3.4.1)

(Definition 3.4.3 and 3.4.4)

(Definition 3.6.1)

Figure 3.2: Structure of the arguments
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3.3 The Einstein–Klein-Gordon system and its renormalisation

Definition 3.3.1. The Einstein–Klein-Gordon system (EKG) in an asymptotically anti de-

Sitter space time is given by

Rµν −
1

2
gµνR−

3

l2
gµν = 8πTµν ,

�gψ −
2a

l2
ψ = 0,

∇µψ∇νψ −
1

2
gµν∇σψ∇σψ − gµν

a

l2
ψ2 = Tµν .

(3.5)

Here g, ψ are the Lorentzian metric and Klein-Gordon field which we are solving for respectively.

Rµν is the Ricci curvature, R the scalar curvature, l the AdS radius related the cosmological

constant of the system Λ through the relationship Λ = −3
l2

, a is a negative constant which can

be thought of as the mass of the Klein-Gordon equation. Keeping with the notation of [HW13]

we define a parameter κ =
√

9
8

+ 2a with κ ∈ (0, 1).

System reduction

Label the spacetime coordinates (u, v, x, y). As seen in [Gow74], imposing a global T2 symmetry

on the spacetime enforces the product form M = Q+ × T2. Where Q+ is a two dimensional

Lorentzian manifold, and T2 = R2/Z2. Furthermore, the metric may be put into the form

g =− Ω2(u, v)dudv + r2(u, v) (A(u, v)dx+B(u, v)dy)2 + (B(u, v)dx+ C(u, v)dy)2, (3.6)

where AC −B2 = 1, and A+ C > 0.

Choosing A = C = 1 and B = 0 retains similarity to the spherical problem. This gives the

torus the properties of being square and flat.

Definition 3.3.2. If a Lorentzian manifold has topology M = Q+ × T2, and a metric of the

form

g = −Ω2(u, v)dudv + r2(u, v)
(
dx2 + dy2

)
. (3.7)

We say the spacetime has a square flat toroidal symmetry.

Lemma 3.3.1. For a metric of the form (3.7), the system (3.5) reduces to

∂u

( ru
Ω2

)
= −4πr

(∂uψ)2

Ω2
, (3.8)

∂v

( rv
Ω2

)
= −4πr

(∂vψ)2

Ω2
, (3.9)

ruv = −rurv
r

+
2πar

l2
Ω2ψ2 − 3

4

r

l2
Ω2, (3.10)

(log Ω)uv = −4π∂uψ∂vψ +
rurv
r2

, (3.11)
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∂u∂vψ = −ru
r
ψv −

rv
r
ψu −

Ω2a

2l2
ψ. (3.12)

Proof. To see this we need to compute the Ricci curvature. (3.8) and (3.9) are the uu and vv

components respectively. (3.10) comes from the uv component and (3.11), (3.12) follow from

the other components. Conversely for the metric and field given by a solution to (3.8)-(3.12),

the system of equations (3.5) holds.

Renormalised Hawking mass:

We consider a suitable modification to [HW13], [HS12], and [HS13b]. We define the first

renormalised Hawking mass as

$1 =
2rurvr

Ω2
+
r3

2l2
. (3.13)

It can be seen that provided equations (3.8)-(3.12) hold, this quantity satisfies the transport

equations:

∂u$1 = −8πr2 rv
Ω2

(∂uψ)2 +
4πr2a

l2
ruψ

2, (3.14)

∂v$1 = −8πr2 ru
Ω2

(∂vψ)2 +
4πr2a

l2
rvψ

2. (3.15)

We may replace some of the equations in lemma 3.3.1 with these transport equations. This

follows from the following lemma (where we assume derivatives to be taken in a weak sense).

Lemma 3.3.2. Suppose (3.10), (3.12), (3.14) and (3.15), hold (where Ω is defined through

(3.13)). Then we have that (3.8) and (3.9) holds. Furthermore if (3.10) can be differentiated

in u, then (3.11) holds.

We may also express the wave equation for r in terms of $1 as

ruv = −Ω2

2

($1

r2
+
r

l2

)
+

2πa

l2
Ω2ψ2. (3.16)

Similar to the system [HS13b], (3.14), and (3.15) imply that we can think of the Hawking mass

as potential for a weighted H1 energy.

3.4 Wellposedness of the initial-boundary-value problem

We will now discuss the wellposedness of the Einstein–Klein-Gordon system (3.8)-(3.12). This

section follows in a similar fashion to [HW13].

The variables in (3.8)-(3.12), while having a clear geometrical meaning, are inconvenient to

analyse the system. We anticipate the behaviour Ω2 ∼ r2, ψ ∼ r−
3
2

+κ at the conformal bound-

ary (where we expect r →∞). Furthermore when we introduce Neumann boundary conditions

to the problem, the variable $1 will no longer form a potential for a useful H1 energy. The

quantity will diverge as r → ∞. To rectify these issues we proceed by solving an equivalent
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system that has undergone a renormalisation scheme, as in [HW13]. It is worth remarking

that the modifications to the toroidal case are sub-leading, and the system behaves almost

identically in the analysis of wellposedness. We will assume for now that the solutions have

enough regularity for the (3.8) to (3.12) to be understood in a weak sense but will postpone

the discussion until section 3.4.3.

3.4.1 Renormalised system

Motivated by [HW13] we introduce the twisted derivative.

Definition 3.4.1. Let f ∈ C1, then the twisted derivative is defined as the differential operator

given by

∇̃µψ = f∇µ

(
ψ

f

)
. (3.17)

Following [HW13], and considering the linear problem in [DW16], the canonical choice of twist-

ing function is

rg, where g = −3

2
+ κ. (3.18)

We define the second renormalised Hawking mass to be

$2 = $1 − 2πg
r3

l2
ψ2. (3.19)

The latter term has been introduced to cancel the diverging term as I is approached.

Lemma 3.4.1. Define the variables

r =
1

r̃
, $1 = $2 + 2πg

r3

l2
ψ2, (3.20)

then the EKG system is equivalent to

∂u$2 = −8πr2 rv
Ω2

(∇̃uψ)2 − 8πg

(
$2 + 2πg

r3

l2
ψ2

)
ψ∇̃uψ − 4πψ2rug

2

(
$2 + 2πg r

3

l2
ψ2
)

r
, (3.21)

r̃uv = Ω2r̃2

(
3

2
$2r̃

2 − 2πg2

l2r̃
ψ2

)
, (3.22)

∂v

(
r∇̃uψ

)
=

(
κ− 1

2

)
ru∇̃vψ −

Ω2

4
rV ψ, (3.23)

with auxiliary variables

Ω2 = −4r4r̃ur̃v
µ1

, µ1 = −2$1

r
+
r2

l2
, V =

2g2

r3
$1 +

8πag

l2
ψ2, (3.24)
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and constraint equation

∂v$2 = −8πr2 ru
Ω2

(∇̃vψ)2 − 8πg

(
$2 + 2πg

r3

l2
ψ2

)
ψ∇̃vψ − 4πψ2rvg

2

(
$2 + 2πg r

3

l2
ψ2
)

r
. (3.25)

We remark that equation (3.23) can also be expressed as

∂u

(
r∇̃vψ

)
=

(
κ− 1

2

)
rv∇̃uψ −

Ω2

4
rV ψ. (3.26)

Proof. This is just calculation. We simply study the derivatives of the variables r̃, $2, and use

the equations (3.8) - (3.12) to simplify. For the Klein-Gordon equation we substitute in the

definition of the twisted derivative and simplify.

The domain

We define the triangular domain:

∆δ,u0 := {(u, v) ∈ R2 : u0 ≤ v ≤ u0 + δ, v < u ≤ u0 + δ}, (3.27)

and the boundary piece

I = ∆δ,u0\∆δ,u0 = {(u, v) ∈ ∆δ,u0 : u = v}. (3.28)

vu

v = u0

u = u0 + δ

I = {u = v}

Figure 3.3: Diagram of ∆δ,u0
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A solution to (3.21)-(3.23) obeying constraint (3.25) can be constructed on ∆δ,u0 . We will need

to specify initial data, and boundary conditions for this system. We follow the generality of

[HW13], but keep in mind that we are mainly interested in perturbations of the TAdSS solution.

The Klein-Gordon mass

Throughout this chapter three quantities related to the Klein-Gordon mass are used fairly

interchangeably. This is largely to clean up the algebra. In order improve clarity we collect

them here

• a, denotes the Klein-Gordon mass,

• g, denotes the radial decay of the field, g = −3
2

+
√

9
4

+ 2a,

• κ, denotes the radical part of g, κ =
√

9
4

+ 2a.

We now collect some of the key values of the quantities and how they relate in a table below

BF Lower Bound Conformal BF Upper Bound

a −9
8

−1 −5
8

κ 0 1
2

1

g −3
2

−1 −1
2

3.4.2 Initial data and boundary conditions

Initial data

Definition 3.4.2. Let N = (u0, u1] be a real interval. Then a free data set is a pair of functions

(r̃, ψ) ∈ C2(N )× C1(N ) such that:

• r̃ > 0 and r̃u > 0 in N , as well as limu→u0 r̃u = 1
2l2

and limu→u0 r̃uu = 0.

• The following bounds hold on the initial data∫ u1

u0

[(
∇̃uψ

)2

+ ψ
2
]

(u− u0)−2du <∞, (3.29)

•
sup
N

∣∣∣ψ · r̃− 3
2

+κ
∣∣∣+ sup

N

∣∣∣r 1
2 ∇̃uψ

∣∣∣ <∞. (3.30)

Where ∇̃u is a twisted derivative with twisting function: f =
(

1
2
(u− u0)

) 3
2
−κ

.
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With a free data set we are now able to construct a complete initial data set (r̃, ψ,$2, r̃v)

Let MN > 0, we define $2 as the unique C1(N ) solution to:

∂u$2 =2π
r2

ru

(
−2$2

r
+
r2

l2
− 4πg

r2

l2
ψ

2
)

(∇̃uψ)2 − 8πg

(
$2 + 2πg

r3

l2
ψ

2
)
ψ∇̃uψ

− 4πψ
2
rug

2

(
$2 + 2πg r

3

l2
ψ

2
)

r
,

(3.31)

with boundary condition

lim
u→u0

$2 = MN . (3.32)

We define r̃v is a similar way, as the unique C1(N ) solution of the ODE

∂ur̃v =
r̃

2
r̃ur̃v

−2$2

r
+ r2

l2
− 4πg r

2

l2
ψ

2

(
3

2
$2r̃

2 − 2πg2

l2r̃
ψ

2
)
, (3.33)

with boundary condition

lim
u→u0

r̃v = − 1

2l2
. (3.34)

Remark 3.4.1. The choice of r̃ is equivalent to choosing the scale of the u coordinate along

N . It represents the gauge choice of this problem. Typically one will choose r̃ = u−u0

2l2
.

The choice of ψ is free, providing the conditions (3.29), and (3.30) hold. The value MN is free

provided it is strictly positive.

The choice of boundary condition for r̃v is to ensure that initially r̃u + r̃v = 0, this will be

propagated along the boundary I boundary conditions on I as defined in the next section.

Boundary conditions and weak formulations

Notation

We now define the function

ρ =
u− v

2
, (3.35)

and the boundary coordinate

t =
u+ v

2
, (3.36)

which we can see parametrises I.

We denote twisting with the function ρ by

∇̂µψ := ρ
3
2
−κ∇µ(ψρ−

3
2

+κ). (3.37)

The H1 norm over a set U ⊂ ∆δ,u0 is given by

||ψ||2H1(U) :=

∫
U

(
ρ−2

(∣∣∣∇̂ψ∣∣∣2)+ ρ−2ψ2

)
dudv. (3.38)
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The space H1
0(∆δ,u0) is given by the completion of C∞c (∆δ,u0) in the H1 norm.

Boundary conditions for r̃

In order that we produce a spacetime that is asymptotically AdS we will insist

r̃|I = 0. (3.39)

As a consequence of T := ∂u + ∂v being tangent to I, we see that

T (r̃) = 0, (3.40)

along I.

Weak formulations for ψ

We want to impose homogeneous Dirichlet and Neumann boundary conditions on the field. As

we will be solving at a C0H1 level of regularity, following the weak formulation for hyperbolic

equations in [Lad85], we see this requires the following weak forms for (3.23).

Definition 3.4.3. We say ψ weakly solves (3.23) with Dirichlet boundary conditions if∫
∆δ,u0

(
∇̃µφ∇̃µψ − V ψφ

)
dV ol = 0, (3.41)

holds for all φ ∈ H1
0 (∆δ,u0), and ρ−

3
2

+κψ = 0 on I in a trace sense.

Definition 3.4.4. We say ψ weakly solves (3.23) with Neumann boundary conditions if∫
∆δ,u0

(
∇̃µφ∇̃µψ − V ψφ

)
dV ol = 0, (3.42)

holds for all φ ∈ H1 (∆δ,u0) with φ|{v=u0} = φ|{u=u0+δ} = 0 in a trace sense.

Assuming higher regularity on the solution, we can define the following classical notions of

boundary conditions:

We will say a solution classically satisfies Neumann boundary conditions on I if

ρ−
1
2
−κ
(
∇̃ρψ

)
= 0. (3.43)

We will say a solution classically satisfies Dirichlet boundary conditions on I if

ρ−
3
2

+κψ = 0. (3.44)

3.4.3 Wellposedness

Regularity

In this section we define the regularity we require for a weak solution to exist. We define the
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C0H1 norm by

||ψ||2C0H1(∆δ,u0
) := sup

(u,v)∈∆δ,u0

∫ u

v

(
ρ−2

(
∇̂uψ

)2

+ ρ−2ψ2

)
du′

+ sup
(u,v)∈∆δ,u0

∫ v

v0

(
ρ−2

(
∇̂vψ

)2

+ ρ−2ψ2

)
dv′.

(3.45)

Definition 3.4.5. A weak solution to the renormalised EKG system is an element of the func-

tion space:

W = {(r̃, $2, ψ) : r̃ ∈ C1
loc., ψ ∈ C0H1, $2 ∈ W 1,1

loc , r̃uv, r̃uu, ψu, ($2)u ∈ C0
loc.}, (3.46)

that satisfies (3.21)-(3.23) in a weak sense. That is equations (3.21) and (3.22) hold classically,

(3.25) holds almost everywhere and (3.23) holds weakly in the sense of 3.41 or 3.42.

Remark 3.4.2. We note the mixed regularity of the solution. Notably ψu ∈ C0
loc. is allowing

some equations to hold pointwise. From this it follows that if we have a weak solution to the

EKG system we necessarily have that r̃uuv,Ω,Ωu ∈ C0
loc..

Lemma 3.4.2. If we have a weak solution to the renormalised EKG equations, then the EKG

equations (3.8)-(3.12) hold weakly. We say the metric (3.7) solves (3.5) weakly, and is C0.

Theorem 3.4.1. Fix 0 < κ < 2
3
, let (r̃, ψ) be a free data set on N = (u0, u1], and fix Neumann

or Dirichlet boundary conditions. Then there exists a δ > 0, such that the following holds. There

exists a weak solution (r̃, $2, ψ) ∈W, of the renormalised Einstein Klein-Gordon equations in

the triangle ∆δ,u0, such that

• r̃ → 0 as I is approached,

• ψ satisfies either Dirichlet or Neumann boundary conditions weakly,

• The functions ψ and r̃ agree as C1 functions with ψ and r̃, respectively when restricted

to {v = u0}.

Proof. The proof of this theorem is essentially identical to that found in [HW13]. There is a

minor difference in that there is a slight change in sub-leading terms compared to the spherical

case. Largely this manifests as certain terms not being present so the argument is slightly

cleaner. It follows a Banach fixed point theorem argument of establishing a map whose fixed

point is a solution to (3.21)-(3.23) and then establishing that it is a contraction over a ball of

radius b in the space W.

Remark 3.4.3. If more regularity is assumed on the initial data then just as in [HW13] it

may be shown that we have a classical solution. The boundary conditions hold classically, and

T ψ := − ru
Ω2∂vψ + rv

Ω2∂uψ decays like ρ
3
2
−κ, as the boundary is approached.
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Remark 3.4.4. As the field ψ ∈ C0H1, it obeys energy estimates. These are shown by working

at this higher level of regularity, and recovered by a density argument (similar to proposition

8.1 in [HW13]). In later sections when deriving these energy estimates, we will see boundary

terms that won’t make sense at the current level of regularity. We can however see they vanish

at a higher level of regularity, and thus may be dropped from the estimates.

Further properties of the local solution

Definition 3.4.6. We say a spacetime is asymptotically AdS if the metric has the following

form

g = − 1

r̃2

((
1

l2
+O

(
r̃2+ε

))
dûdv̂ + dT2

)
, (3.47)

and weakly asymptotically AdS if it has the form

g = − 1

r̃2

((
1

l2
+O (r̃ε)

)
dûdv̂ + dT2

)
. (3.48)

for some ε > 0.

Remark 3.4.5. We note that the W solution constructs an asymptotically AdS set. If one

makes the definitions:

f(u) := r̃u(u, u), g(v) := r̃v(v, v), (3.49)

(these are bounded functions on ∆δ,u0 from the wellposedness proof), and then the coordinate

transformation
dû

du
= 2l2f(u),

dv̂

dv
= −2l2g(v), (3.50)

then on I we have r̃u = 1
2l2

, and r̃v = − 1
2l2

. Furthermore from the analysis of [HW13], or

similarly in section 3.5.2 one can see that in this coordinate system

r̃ûv̂ = O
(
r̃2−2κ

)
. (3.51)

We deduce that

r̃u =
1

2l2
+O

(
r̃3−2κ

)
, r̃v = − 1

2l2
+O

(
r̃3−2κ

)
, (3.52)

and the conformal factor satisfies

Ω2 =
−4r4r̃ur̃v

µ1

=
1

r̃2l2
(
1 +O

(
r̃3−2κ

))
. (3.53)

This implies the metric has the form

g = − 1

r̃2

((
1

l2
+O

(
r̃3−2κ

))
dûdv̂ + dT2

)
. (3.54)

We remark that for κ ≥ 1
2

the spacetime is only weakly asymptotically AdS.
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Remark 3.4.6. We note that the local W solution will obey all the estimates of lemma 5.1 of

[HW13]. We list them here

e−b ≤ r̃

ρ
≤ eb, e−b ≤ 2r̃u ≤ eb, e−b ≤ −2r̃v ≤ eb, |r̃uv| ≤ b,

|T (r̃)| ≤ b · ρ, $1 ≤ Cb · r̃−2κ,

∣∣∣∣Ω2

r2

∣∣∣∣ ≤ Cb, |ψ| ≤ Bb · r̃
3
2
−κ,

∣∣∣∇̂uψ
∣∣∣ ≤ Cb · r̃

1
2
− s

4 .

(3.55)

We first note the estimate e−b ≤ r̃
ρ
≤ eb implies

lim
u→v

r̃ = 0. (3.56)

We remark further that as Ω2 := 4r4r̃ur̃v
−2$1
r

+ r2

l2

the estimate

∣∣∣∣ r2

Ω2

∣∣∣∣ ≤ Cb, (3.57)

immediately follows.

Remark 3.4.7. It follows that corollary 5.3 of [HW13] holds, that is∣∣∣∣ r̃ur̃ − 1

2ρ

∣∣∣∣ ≤ 3b · eb. (3.58)

The proof is identical. We remark this result is important for establishing decay of the twisted

derivative with respect to rg

∇̃uψ = ∇̂uψ + ψ

(
3

2
− κ
)(

r̃u
r̃
− 1

2ρ

)
. (3.59)

This allows us to see that the decay of ∇̃uψ is as strong as ∇̂uψ, and that twisting with ρ and

r̃ are equivalent.

Remark 3.4.8. For U ⊂ R1+1 we can define the following norm

||ψ||2H1
g(U) :=

∫
U

(
r̃−2

(∣∣∣∇̃ψ∣∣∣2)+ r̃−2ψ2

)
dudv. (3.60)

We see that in ∆δ,u0 this is equivalent to the H1 norm. We can equivalently define H1
0,g(∆δ,u0)

as the completion of C∞c (∆δ,u0) with the H1
g norm.

This norm can be promoted to subsets of R1+1×T2 by also integrating over the toroidal variables.

We will slightly abuse notation and use it to mean both as all our functions are toroidally

symmetric and pose no change to its value.

We now define some important geometric quantities.

Definition 3.4.7. We define the Kodama vector field

T = − rv
Ω2
∂u +

ru
Ω2
∂v, (3.61)
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its orthogonal complement

R = − rv
Ω2
∂u −

ru
Ω2
∂v = (dr)], (3.62)

and the operators

T̃ ψ = T µ∇̃µψ, R̃ψ = Rµ∇̃µψ. (3.63)

We also note

T̃ ψ = T ψ. (3.64)

Definition 3.4.8. It is now convenient to define the final renormalised Hawking mass as

$ =
2rurvr

Ω2
e4πgψ2

+
r3

2l2
, (3.65)

it is clear that it is invariant under change in null coordinates.

Lemma 3.4.3. $ satisfies the following differential equations

∂u$ = −8πr2rv
Ω2

(∇̃uψ)2e4πgψ2

+
4πg2ru
r

$ψ2 +
rur

2

l2
f(ψ2),

∂v$ = −8πr2ru
Ω2

(∇̃vψ)2e4πgψ2

+
4πg2rv
r

$ψ2 +
rvr

2

l2
f(ψ2),

(3.66)

where

f(ψ2) = e4πgψ2

(
4πaψ2 − 3

2

)
− 2πg2ψ2 +

3

2
. (3.67)

Proof. We begin by directly studying the u derivative of $

∂u$ = ∂u

(
2rurvr

Ω2

)
e4πgψ2

+
16gπrurvr

Ω2
ψψue

4πgψ2

+
3

2l2
r2ru. (3.68)

Equation (3.8) and (3.10) imply that

∂u

(
2rurvr

Ω2

)
= −8π

r2rv
Ω2

ψ2
u +

4πr2a

l2
ruψ

2 − 3

2l2
r2ru, (3.69)

so

∂u$ = −8π
r2rv
Ω2

ψ2
ue

4πgψ2

+
4πr2a

l2
ruψ

2e4πgψ2 − 3

2l2
r2rue

4πgψ2

+
16gπrurvr

Ω2
ψψue

4πgψ2

+
3

2l2
r2ru.

(3.70)

Recalling the twisting function

f = rg, (3.71)

and the identity

ψ2
u = (∇̃uψ)2 +

2gru
r

ψψu +
g2r2

u

r2
ψ2. (3.72)

We see that

∂u$ = −8πr2rv
Ω2

(∇̃uψ)2e4πgψ2

+
8πg2r2

urv
Ω2

ψ2e4πgψ2

+
4πr2a

l2
ruψ

2e4πgψ2

+
3

2l2
r2ru

(
1− e4πgψ2

)
.

(3.73)
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We turn to studying

F :=
8πg2r2

urv
Ω2

ψ2e4πgψ2

+
4πr2a

l2
ruψ

2e4πgψ2

+
3

2l2
r2ru

(
1− e4πgψ2

)
. (3.74)

Recalling

$ − r3

2l2
=

2rurvr

Ω2
e4πgψ2

, (3.75)

giving

F =
4πg2ru
r

$ψ2 − 2π
rur

2g2

l2
ψ2 +

4πr2a

l2
ruψ

2e4πgψ2

+
3

2l2
r2ru

(
1− e4πgψ2

)
. (3.76)

Expanding (3.76) reveals hows the twisting function removes the divergent terms

F =
4πg2ru
r

$ψ2 − 2π
rur

2g2

l2
ψ2 +

4πrur
2a

l2
ψ2 +

4πrur
2a

l2

(
e4πgψ2 − 1

)
+
−3 · 4πgψ2

2l2
r2ru

+
3

2l2
r2ru

(
1 + 4πgψ2 − e4πgψ2

)
,

(3.77)

factoring

F =
4πg2ru
r

$ψ2 +
2π

l2
rur

2
(
−g2 + 2a− 3g

)
ψ2 +

4πrur
2a

l2

(
e4πgψ2 − 1

)
︸ ︷︷ ︸

∼ψ2

ψ2

+
3

2l2
r2ru

(
1 + 4πgψ2 − e4πgψ2

)
︸ ︷︷ ︸

∼ψ4

,

(3.78)

recalling the relation

− g2 + 2a− 3g = 0, (3.79)

we see the divergent terms are no longer present, and

F =
4πg2ru
r

$ψ2 +
4πrur

2a

l2

(
e4πgψ2 − 1

)
ψ2 +

3

2l2
r2ru

(
1 + 4πgψ2 − e4πgψ2

)
, (3.80)

which factorises to

F =
4πg2ru
r

$ψ2 +
rur

2

l2

(
e4πgψ2

(
4πaψ2 − 3

2

)
− 2πg2ψ2 +

3

2

)
. (3.81)

From here the result follows. By the symmetry of the equations the ∂v$ result is analogous.

Lemma 3.4.4. $ is constant along I.

Remark 3.4.9. The proof of this result is largely technical, and comes down to understanding

a regularity issue. Formally as in [HW13] we could compute

T$|I = lim
ρ→0

4πr2e4πgψ2∇̃ρψ · T ψ, (3.82)
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which for Dirichlet or Neumann conditions can be seen to be 0, for ψ ∈ H2. However at a

H1 level we do not have enough decay to infer this result. To get around this problem we use

the fact that we expect $ to be an energy potential for ψ. Performing energy methods with a

rescaling of the Kodama vector field gives rise to this expected energy equality. However in this

latter setting we can exploit the C0H1 regularity of ψ to see this boundary term is zero. We

then integrate the curl of the divergence of $ over a smaller triangle, bounded away from I and

take limits to recover the result.

Proof of lemma 3.4.4. From the wave equations (3.23) and (3.26) we derive the following for-

mula for multipliers

∂u

(
h(∇̃vψ)2

)
+ ∂v

(
w(∇̃uψ)2

)
= 2

(
κ− 1

2

)
∇̃uψ∇̃vψ

(rv
r
h+

ru
r
w
)

+ 2

(
1

2
hu −

ru
r
h

)
(∇̃vψ)2 + 2

(
1

2
wv −

rv
r
w

)
(∇̃uψ)2

− Ω2

2
V ψ

(
h∇̃vψ + w∇̃uψ

)
.

(3.83)

Where h,w are C1 functions. We expect that Kodama vector field T should give rise to a

conservation law. However from the modifications made to the Hawking mass we will choose

a rescaling of this vector field by X = 8πr2e4πgψ2T . This amounts to choosing the following

functions as multipliers

w = 8π
rv
Ω2
r2e4πgψ2

, h = 8π
−ru
Ω2

r2e4πgψ2

. (3.84)

From (3.83) we see the cross terms involving ∇̃uψ∇̃vψ cancel. We now study the term

Ω2

2
V ψ

(
h∇̃vψ + w∇̃uψ

)
= 4πr2e4πgψ2

V ψ (−ru∇vψ + rv∇uψ) , (3.85)

the twisted derivative terms cancel here, (as we are effectively taking a T derivative but only

twist with r). Expanding the potential V in terms of $ we have

V =
2g2

r3
$e−4πgψ2 − g2

l2
e−4πgψ2

+
g2

l2
+

8πag

l2
ψ2, (3.86)

and thus we derive the equation

4πr2e4πgψ2

V ψ (−ru∇vψ + rv∇uψ) = −8π
g2

r
ru$ψ∇vψ + 8π

g2

r
rv$ψ∇uψ

− 4πg2

l2
r2ψ (rv∇uψ − ru∇vψ)

+
4πg2

l2
r2ψe4πgψ2

(rv∇uψ − ru∇vψ)

+
32π2ag

l2
r2ψ3e4πgψ2

(rvψu − ruψv) .

(3.87)
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Now let us define

f(ψ2) = e4πgψ2

(
4πaψ2 − 3

2

)
− 2πg2ψ2 +

3

2
, (3.88)

and consider its T derivative

∂u

(
rvr

2

l2
f(ψ2)

)
+ ∂v

(−rur2

l2
f(ψ2)

)
, (3.89)

it can be quickly seen this will cancel down to

rvr
2

l2
∂u
(
f(ψ2)

)
− rur

2

l2
∂v
(
f(ψ2)

)
. (3.90)

Computing

∂u
(
f(ψ2)

)
= 4πg2e4πgψ2

ψψu − 4πg2ψψu + 32π2age4πgψ2

ψ3ψu, (3.91)

we see that

∂u

(
rvr

2

l2
f(ψ2)

)
+ ∂v

(−rur2

l2
f(ψ2)

)
=

− 4πg2

l2
r2ψ (rv∇uψ − ru∇vψ) +

4πg2

l2
r2ψe4πgψ2

(rv∇uψ − ru∇vψ)

+
32π2ag

l2
r2ψ3e4πgψ2

(rvψu − ruψv) .

(3.92)

Returning to (3.87) we can now write this as a combination of flux terms and a bulk term as

follows

−Ω2

2
V ψ

(
h∇̃vψ + w∇̃uψ

)
= −4πr2e4πgψ2

V ψ (−ru∇vψ + rv∇uψ)

= ∂v

(
4π
g2

r
ru$ψ

2

)
+ ∂u

(
−4π

g2

r
rv$ψ

2

)
+∂u

(
−rvr

2

l2
f(ψ2)

)
+ ∂v

(
rur

2

l2
f(ψ2)

)
−ψ2∂v

(
4π
g2

r
ru$

)
+ ψ2∂u

(
4π
g2

r
rv$

)
.

(3.93)

We then compute using the Hawking mass equations (and symmetry) that

−ψ2∂v

(
4π
g2

r
ru$

)
+ ψ2∂u

(
4π
g2

r
rv$

)
=

32π2g2rr2
u

Ω2
ψ2
(
∇̃vψ

)2

e4πgψ2 − 32π2g2rr2
v

Ω2
ψ2
(
∇̃uψ

)2

e4πgψ2

.

(3.94)

We now compute the bulk terms

2

(
1

2
hu −

ru
r
h

)
=

32π2r3

Ω2
e4πgψ2

(
∇̃uψ

)2

− 32π2g2rr2
u

Ω2
e4πg2ψ2

ψ2, (3.95)
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and

2

(
1

2
wv −

rv
r
w

)
= −32π2r3

Ω2
e4πgψ2

(
∇̃vψ

)2

+
32π2g2rr2

v

Ω2
e4πg2ψ2

ψ2. (3.96)

It follows from the choice of multipliers and (3.83) that

∂u

(
−8π

rur
2

Ω2
e4πgψ2

(
∇̃vψ

)2

+ 4π
g2

r
rv$ψ

2 +
rvr

2

l2
f(ψ2)

)
+∂v

(
−
(
−8π

rvr
2

Ω2
e4πgψ2

(
∇̃uψ

)2

+ 4π
g2

r
ru$ψ

2 +
rur

2

l2
f(ψ2)

))
= 0.

(3.97)

We now perform the energy estimate by integrating over the domain ∆δ,u0

0 =

∫ t(u0+δ,u0+δ)

t(u0,u0)

4πr2e4πgψ2∇̃ρψ · T ψdt

+

∫ u0+δ

u0

(
−8π

rur
2

Ω2
e4πgψ2

(
∇̃vψ

)2

+ 4π
g2

r
rv$ψ

2 +
rvr

2

l2
f(ψ2)

)
(u, u0)du

−
∫ u0+δ

u0

(
8π
rvr

2

Ω2
e4πgψ2

(
∇̃uψ

)2

− 4π
g2

r
ru$ψ

2 − rur
2

l2
f(ψ2)

)
(u0 + δ, v)dv,

(3.98)

here we have used that T (r̃) = 0 on the boundary.

From the boundary conditions we get the energy estimate∫ u0+δ

u0

(
−8π

rur
2

Ω2
e4πgψ2

(
∇̃vψ

)2

+ 4π
g2

r
rv$ψ

2 +
rvr

2

l2
f(ψ2)

)
(u, u0)du

=

∫ u0+δ

u0

(
8π
rvr

2

Ω2
e4πgψ2

(
∇̃uψ

)2

− 4π
g2

r
ru$ψ

2 − rur
2

l2
f(ψ2)

)
(u0 + δ, v)dv.

(3.99)

Now to show the Hawking mass is constant along this surface we consider a smaller triangle

∆δ,u∗ where u∗ > u0 so we are bounded away from null infinity. We thus see that

$(u0 + δ, u0 + δ)−$(u0, u0) = lim
u∗→u0

∫ t(u∗+δ)

t(u∗)

T$dt. (3.100)

Now define a vector field

X = −$v∂u +$u∂v, (3.101)

we then see from the divergence theorem and lemma 3.4.3 that

0 =

∫ t(u∗+δ)

t(u∗)

T$dt+

∫ u∗+δ

u∗

(
−8π

rur
2

Ω2
e4πgψ2

(
∇̃vψ

)2

+ 4π
g2

r
rv$ψ

2 +
rvr

2

l2
f(ψ2)

)
(u, u∗)du

−
∫ u∗+δ

u∗

(
8π
rvr

2

Ω2
e4πgψ2

(
∇̃uψ

)2

− 4π
g2

r
ru$ψ

2 − rur
2

l2
f(ψ2)

)
(u∗ + δ, v)dv.

(3.102)
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Sending u∗ → u0 we see the second two integrals cancel from the energy estimate leaving us to

conclude that

$(u0 + δ, u0 + δ) = $(u0, u0). (3.103)

As δ is arbitrary we see that the Hawking mass is constant along the boundary, and equal to

its initial value. One can now also make the interpretation that $ forms a potential for the

energy of the system.

Geometric uniqueness

When solving system (3.21) - (3.26) it is important to note that we have made a choice of gauge

to define the boundary of the space-time. Thus a priori we might expect our solution to be

dependant on this gauge. This is essentially the problem of geometric uniqueness as discussed

in [Fri09]. In order to address this issue we note that the weak formulations of the Klein-Gordon

equation are invariant under a change of null coordinates.

Lemma 3.4.5. Let D = (r̃, ψ) be a data set satisfying the initial and boundary conditions of

section 3.4.2. Let (Mi, gi, ψi) be two developments of D. Then both (Mi, gi, ψi) are extensions

of a common development.

Theorem 3.4.2. A data set D = (r̃, ψ) satisfying the initial and boundary conditions of section

3.4.2 admits a maximal development. This development is unique up to isometry.

We remark at this point that the following proof follows similarly to [HS13b]. In this vein we

make the following definition

Definition 3.4.9. Let N be an interval of the form N = (u0, u1]. Given an initial data

set (r̃, ψ) satisfying the initial conditions in section 3.4.2 we say a development D is a triple

(M, g, ψ) such that (M, g) is a smooth Lorentzian manifold with C0 metric, ψ is C0H1 function

on M, and the following hold

• (M, g, ψ) is a square flat toroidally symmetric weak solution to the EKG system, with

area radius r being a C1 function with r > 0.

• The quotient manifold Q =M/T2 with its induced Lorentzian metric is a manifold with

boundary NQ which is a null ray, diffeomorphic to a subset N of the form (u0, u0 + ε), for

some ε > 0. If ϕ is such a diffeomorphism: ϕ : NQ → (u0, u0 + ε), then ψ ◦ϕ = ψ|(u0,u0+ε)

and r̃ ◦ ϕ = r̃|(u0+u0+ε).

• Q admits a a system of global bounded null coordinates, and may be embedded conformally

into a subset of R1+1. The boundary of Q with respect to the topology of R1+1 is composed

of a future boundary NF , a past boundary which coincides with NQ and a C1 time-like

boundary I given by the level set I = {(u, v) ∈ R1+1 : r̃(u, v) = 0}. The metric g is

asymptotically AdS in the sense of (3.47).

• The field ψ is in C0H1, and satisfies the following weak formulations of (3.23)
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– Dirichlet ∫
M

(
∇̃µφ∇̃µψ − V ψφ

)
dV ol = 0, (3.104)

holds for all φ ∈ H1
0,g (M), and r̃−

3
2

+κψ = 0 on I in a trace sense.

– Neumann ∫
M

(
∇̃µφ∇̃µψ − V ψφ

)
dV ol = 0, (3.105)

holds for all φ ∈ H1
g (M) with φ|NQ = φ|NF = 0 in a trace sense.

• ‘Global hyperbolicity’ holds in the sense that all past directed inextendible causal curves in

Q either intersect NQ, or have a limit point on I.

• The field ψ satisfies the following integrability conditions:

For each constant v ray, Rv ⊂ Q we have:∫
Rv

r4

|ru|
(∇̃uψ)2 +

|ru|
r
ψ2dū <∞, (3.106)

and each constant u ray, Ru ⊂ Q we have:∫
Ru

∣∣∣∣r2ru
Ω2

∣∣∣∣ (∇̃vψ)2 +
|rv|
r
ψ2dv̄ <∞. (3.107)

It follows from the definition that the Penrose diagram of D has the form:

NQ

I

NF

Figure 3.4: Penrose diagram of a development.

We now define what we mean by an extension of a development. Let (Mi, gi, ψi), be develop-

ments with associated null ray diffeomorphisms ϕi mapping NQi 7→ N for i = 1, 2. We say

that (M1, g1, ψ1) is an extension of (M2, g2, ψ2) if there exists an isometric embedding ϕ of

(M2, g2) into (M1, g1) which maps ψ2 to ψ1, and ϕ−1
1 ◦ ϕ ◦ ϕ2 is the identity map on N .

This definition makes the set of developments into a partially ordered set. The maximal de-

velopment is the maximal element. We remark at the stage that while we are invoking Zorn’s

lemma the work of [Sbi16] means this is likely unnecessary.
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We now prove lemma 3.4.5:

Proof. Let (M, g, ψ) be a development with N = (u0, u1]. Let NQ be the initial null ray as

in definition 3.4.9. We thus may apply a change of u coordinate so that NQ may be identified

with (u0, u0 + ε) of N . In this coordinate system we have r̃u = r̃u, ∇̃uψ = ∇̃uψ etc on NQ. As

I is a C1 boundary we can find a function f with f ′ > 0 such that u = f(v), on I, defining

V = f(v) we see that in the (u, V ) coordinate system I = u = V , and the boundary has been

straightened out. As this is a C1 coordinate transform the invariant norms of ψ remain finite.

We thus have the metric is at least C0. Hence the variables (r̃, $2, ψ) of the development satisfy

(3.21) - (3.23) in the coordinates used in the proof of theorem 3.4.1. Furthermore they have the

same regularity and satisfy the same weak formulations of the theorem as these are invariant

under a change of double null coordinates. By the uniqueness property of solutions to theorem

3.4.1 the solutions must agree in the intersection of their domain of definitions, notably in a

neighbourhood of N ∩ I.

3.5 Extension principles

We now wish to control aspects of the maximal development’s geometry, in particular how

singularities may form. For this we prove two extension principles for the space time.

3.5.1 Interior extension principle

Theorem 3.5.1. Let (Q+ × T2, g, ψ) denote the maximal W extension of an asymptotically

AdS initial data set for the system (3.8)-(3.12). Suppose p = (U, V ) ∈ Q+. If the set

D = [U ′, U ]× [V ′, V ]\{p} ⊂ Q+, (3.108)

is non-empty, has finite spacetime volume, and there exist constants

0 < r0 ≤ r ≤ R <∞, for all (u, v) ∈ D, (3.109)

then p ∈ Q+.

Proof. The proof of this is similar to [Kom13] and [HS12]. The key difference is that we are

working with a slightly lower level of regularity. In particular the function ψv is in L2 but may

not also be in C0. This means that standard contraction map argument cannot be done in

just Ck spaces. The extension principle then follows in the same manner but exploiting the

absolute continuity of ψ. The proofs for this can be found as an appendix to this thesis.
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Corollary 3.5.1. For a free data set that contains a (marginally) trapped surface (that is a

point on N such that rv ≤ 0), the quotient of the maximal development of the initial data set

contains a subset as shown in the Penrose diagram:

v = v0

u = uH

I

Here uH is the boundary of u-constant null rays on which r̃ → 0 on. Furthermore this set is

belongs to Q+.

Proof. The local wellposedness gives us a solution in a small triangle where r̃ → 0 along a

constant u ray. Now the initial data contains points where rv ≤ 0. From the Raychaudhuri

equation (3.9) we see that this inequality propagates in v, hence there are points in the spacetime

that cannot reach I. As we have a solution in a small triangle in which r̃ → 0 along any

u = const ray, there exists some uH such that for u < uH, r̃ 6→ 0 along these rays. Finally

we can see that that the ray u = uH is regular, as r is monotonic, the extension principle (for

finite v) forbids singularities along it.

3.5.2 Extension principle near infinity

Theorem 3.5.2. For a W solution to (3.5)-(3.12) in a triangular region ∆d,u0, assume that

we have:

• The corner condition

lim
v→u0+d

r̃(u0 + d, v) = 0. (3.110)

• For any constant v-ray (N (v)) contained ∆d,u0 and intersecting I, there exists a constant

K > 0∫ u

uI

r4

−ru
(∇̃uψ)2(ū, v)−ruψ2(ū, v)dū+ sup

N (v)

∣∣∣∣∣ r
5
2

−ru
∇̃uψ

∣∣∣∣∣+ sup
N (v)

∣∣∣r 3
2
−κψ

∣∣∣+ sup
N (v)

|$ −M | 12 < K.

(3.111)
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These are all geometric quantities which will be used to form an initial data set on the

ray (N (v)).

• A non-degeneracy condition

min

(
inf

∆d,u0

∣∣∣∣ 1

l2
− 2$

r3

∣∣∣∣ , inf
∆d,u0

∣∣∣∣ 1

l2
− 2$1

r3

∣∣∣∣) > c. (3.112)

• There exists a constant rmin > 0 such that in ∆d,u0

r ≥ rmin. (3.113)

Then there exists a δ∗ > 0 such that the solution can be extended to the set ∆d+δ∗,u0.

Proof. We proceed with the following three lemmas.

Lemma 3.5.1. In ∆d,u0 we have the following estimates

r̃(u, v) > 0 , r̃u(u, v) > 0, lim
u→v

∣∣∣∣r̃u − 1

2l2

∣∣∣∣ = 0, and lim
u→v

r̃(u, v) = 0. (3.114)

Proof. Recall from the boundary conditions

lim
u→v

r̃(u, v) = 0, (3.115)

We now prove estimates for the quantity r̃u.

Using the wave equation for the radial component (3.10) (rewritten in terms of Ω2)

r̃uv =
−3r̃urv
r

+
3

4l2
Ω2

r
− 2πa

l2
ψ2Ω2

r
, (3.116)

we may express this as the first order equation

∂vr̃u = r̃u · f(u, v)rv, (3.117)

where

f(u, v) =

(
6$

r2
+

3r

l2

(
1− e−4πgψ2

)
+

6$

r2

(
e−4πgψ2 − 1

)
− 8πa

l2
rψ2

)
e4πgψ2

r2

l2
− 2$

r

. (3.118)

For fixed u, integrating (3.116) in v from v = v0, we see

r̃u =
1

2l2
exp

(∫ r(v)

r(v0)

f(u, v)dr

)
. (3.119)

We now wish to show that f is integrable. Elementary estimation and noting that∣∣∣1− e−4πgψ2
∣∣∣ ≤ Cl,gr

−3+2κ, (3.120)
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shows

|f | ≤ 1∣∣ r2

l2
− 2$

r

∣∣
(∣∣6Mr−2

∣∣+
∣∣Cl,gr−2+2κ

∣∣+
∣∣CM,l,gr

−3+2κ
∣∣+

∣∣∣∣2π(−a)

l2
Kr−2+2κ

∣∣∣∣) . (3.121)

Due to the given inequality
r2

l2
− 2$

r
≥ cr2, (3.122)

we see that

|f | ≤ CM,l,gr
−4+2κ. (3.123)

We thus have a constant CM,l,g such that

1

2l2
exp

(
−CM,l,g

∫ r(v)

r(v0)

r−4+2κdr

)
≤ r̃u ≤

1

2l2
exp

(
CM,l,g

∫ r(v)

r(v0)

r−4+2κdr

)
, (3.124)

which integrates to

1

2l2
exp

(
−CM,l,g

(
r−3+2κ − r−3+2κ

))
≤ r̃u ≤

1

2l2
exp

(
CM,l,g

(
r−3+2κ − r−3+2κ

))
. (3.125)

From here we can clearly see (from continuity) that as u→ v, we have

lim
u→v

∣∣∣∣r̃u − 1

2l2

∣∣∣∣ = 0. (3.126)

So we can find a constant such that

0 <
1

2l2
C̃ ′ ≤ r̃u ≤

1

2l2
C ′. (3.127)

We may also integrate the above inequality in u to see that

r̃(u, v) ≥ r̃(u) > 0. (3.128)

Lemma 3.5.2. In ∆d,u0 we have the following estimates

lim
u→v

r̃uu(u, v) = 0. (3.129)

The idea is to integrate the quantity r̃uuv in v, this however requires control over more asymp-

totics of the solution, and its derivatives in the region ∆d,u0. The majority of this lemma is

showing the required decay.

Proof. Estimates for rv:

It follows from

r̃u|I + r̃v|I = 0, (3.130)
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that

− r̃v|I =
1

2l2
. (3.131)

Returning to the evolution equation for r̃, (3.10) (rewritten in terms of Ω2)

r̃uv =
−3rur̃v
r

+
3

4l2
Ω2

r
− 2πa

l2
ψ2Ω2

r
, (3.132)

we are in the similar situation of the previous lemma

∂ur̃v = r̃v · f(u, v)ru, (3.133)

where

f(u, v) =

(
6$

r2
+

3r

l2

(
1− e−4πgψ2

)
+

6$

r2

(
e−4πgψ2 − 1

)
− 8πa

l2
rψ2

)
e4πgψ2

r2

l2
− 2$

r

. (3.134)

Integrating in along u for fixed v, and using the estimates on the value at I

− 1

2l2
exp

(∫ ∞
r(u)

f(u, v)dr

)
≤ r̃v ≤ −

1

2l2
exp

(∫ ∞
r(u)

f(u, v)dr

)
. (3.135)

Recalling that

|f | ≤ CM,l,gr
−4+2κ, (3.136)

we deduce the bound

− CM,l,g ≤ r̃v ≤ −CM,l,g. (3.137)

Estimates for Ω2:

Recall that

Ω2 =
−4rurv
r2

l2
− 2$

r

e4πgψ2

, (3.138)

so using our previous estimates we can quickly see for some constants C̃, C > 0

Cr2 ≤ Ω2 ≤ C̃r2. (3.139)

Estimates for $2:

First note

$2 = $e−4πgψ2

+
(

1− 4πgψ2 − e−4πgψ2
) r3

2l2
, (3.140)

and that

1− 4πgψ2 − e−4πgψ2 ≤ −4π2g2ψ4 +O
(
r−9+6κ

)
≤ CgK

2r−6+4κ. (3.141)

So we easily see

|$2| ≤ Cg,M . (3.142)

Estimates for ∂u$2:
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Recalling the equation (3.25)

∂u$2 = −8πr2 rv
Ω2

(∇̃uψ)2 − 8πg

(
$2 + 2πg

r3

l2
ψ2

)
ψ∇̃uψ − 4πψ2rug

2

(
$2 + 2πg r

3

l2
ψ2
)

r
,

(3.143)

we can now estimate all these quantities pointwise to deduce

|∂u$2| ≤ CM,g,lr. (3.144)

Estimates for r̃uv:

Rewriting r̃uv equation (3.22) as

r̃uv = $Ω2e−4πgψ2 3

4r4
− 1

rl2
Ω2

(
3

4
e−4πgψ2 − 3

4
+ 2πaψ2

)
, (3.145)

estimating the bracketed term∣∣∣∣34e−4πgψ2 − 3

4
+ 2πaψ2

∣∣∣∣ =
∣∣πg2ψ2 +O

(
r−6+4κ

)∣∣ ≤ Cgr
−3+2κ, (3.146)

so from here we can conclude that

|r̃uv| ≤ Cl,g,Mr
−2+2κ. (3.147)

Estimates for $1:

We now prove that ∣∣∣∣$1 −M
r2κ

∣∣∣∣ ≤ CM,g. (3.148)

(The motivation for the r−2κ term is to ensure a finiteness of this quantity as we approach I.)

We recall the estimates

M −K ≤ $ ≤M +K, (3.149)

and note

− Cgr−3+2κ ≤ 1− e−4πgψ2 ≤ 0. (3.150)

Then we expand

$1 −M
r2κ

=
1

r2κ

(
$e−4πgψ2 −M

)
+
(

1− e−4πgψ2
) r3−2κ

2l2
, (3.151)

estimating we see

$1 −M
r2κ

≤ M

r2κ

(
e−4πgψ2 − 1

)
+
K

r2κ
e−4πgψ2 ≤ CM,g. (3.152)
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In the other direction

$1 −M
r2κ

≥ 1

r2κ

(
(M −K)e−4πgψ2 −M

)
− Cl,g

≥ M

r2κ

(
e−4πgψ2 − 1

)
− K

r2κ
e−4πgψ2 − Cl,g

≥ M

r2κ
· Cgr−3+2κ − K

r2κ
CK − Cl,g

≥ −CM,g,l,

(3.153)

thus concluding the proof.

Estimates for r̃uu:

Recalling

µ1 =
r2

l2
− 2$1

r
, (3.154)

We easily see from (3.112) and estimates for $1 it follows that

cr2 ≤ µ1 ≤ Cl,M,g

(
r2 + r2κ−1

)
≤ Cl,M,gr

2. (3.155)

We will prefer the form

C̃l,M,gr
−2 ≤ 1

µ1

≤ cr−2. (3.156)

We will also need to bound |∂uµ1|. We start with

|∂u$1| =
∣∣∣∣∂u($2 − 2πg

r3

l2
ψ2

)∣∣∣∣ , (3.157)

preserving only the powers of r terms we get

∂u

(
$2 − 2πg

r3

l2
ψ2

)
∼ ∂u$2 + r2ruψ

2 + r3ψ∇̃uψ + r2ruψ
2 ∼ r + r1+2κ + r2+κ + r1+κ, (3.158)

so the dominant behaviour is r2+κ and thus

|∂u$1| ≤ CM,l,gr
2+κ. (3.159)

We then deduce the following bound for |∂uµ1|

|∂uµ1| =
∣∣∣∣2rrul2 − 2$1,u

r
+

2$1

r2

∣∣∣∣ ≤ CM,l,g

(
r3 + r1+κ + r−2+2κ

)
≤ CM,l,gr

3. (3.160)

We now need to study r̃uvu, it will be worthwhile recalling the relation

Ω2

r2
=
−4r̃ur̃v
r̃2µ1

. (3.161)
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Then we compute

r̃uvu =∂u

(
Ω2

r2

(
3$2r̃

2 − g2π

r̃l2
ψ2

))
=∂u

(−4r̃ur̃v
µ1

(
3$2 −

g2π

r̃3l2
ψ2

))
=− r̃uu

4r̃v
µ1

(
3$2 −

g2π

r̃3l2
ψ2

)
+

(−4r̃ur̃uv
µ1

+
4r̃ur̃vµ1,u

µ2
1

)(
3$2 −

g2π

r̃3l2
ψ2

)
+
−4r̃ur̃v
µ1

(
3$2,u + 2ψψu

1

r̃3
− 3r̃u

r̃4
ψ2

)
.

(3.162)

We thus have a first order equation of the form

∂v(r̃uu) + F r̃uu = G, (3.163)

where

F =
4r̃v
µ1

(
3$2 −

g2π

r̃3l2
ψ2

)
, (3.164)

and

G =

(−4r̃ur̃uv
µ1

+
4r̃ur̃vµ1,u

µ2
1

)(
3$2 −

g2π

r̃3l2
ψ2

)
+
−4r̃ur̃v
µ1

(
3$2,u + 2ψψu

1

r̃3
− 3r̃u

r̃4
ψ2

)
,

(3.165)

with initial data

r̃uu = 0. (3.166)

We solve for

r̃uu(u, v) = exp

(
−
∫ v

v0

Fdv

)∫ v

v0

exp

(∫ v

v0

Fdv

)
Gdv, (3.167)

and estimate by

|r̃uu| ≤ exp

(∫ v

v0

|F | dv
)∫ v

v0

exp

(∫ v

v0

|F | dv
)
|G| dv. (3.168)

Term by term we estimate

|F | =
∣∣∣∣4r̃vµ1

(
3$2 −

g2π

r̃3l2
ψ2

)∣∣∣∣ ≤ CM,l,gr
−2+2κ, (3.169)

so ∫ v

v0

|F | dv ≤ CM,l,g

∫ v

v0

r−2+2κr−2rvdv =

∫ r

r0

r−4+2κdr ≤ CM,l,g. (3.170)

So the asymptotics of G will determine those of r̃uu. We examine the terms of G separately(−4r̃ur̃uv
µ1

+
4r̃ur̃vµ1,u

µ2

)
≤ CM,l,g

(
r−2 · r−2+2κ +

1 · 1 · r3

r4

)
≤ CM,l,gr

−1, (3.171)

then we have (
3$2 −

g2π

r̃3l2
ψ2

)
≤ CM,l,g

(
1 + r2κ

)
≤ CM,l,gr

2κ, (3.172)
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so we have for the first term(−4r̃ur̃uv
µ1

+
4r̃ur̃vµ1,u

µ2

)(
3$2 −

g2π

r̃2l2
ψ2

)
≤ CM,l,gr

−1+2κ. (3.173)

Then for

−4r̃ur̃v
µ1

(
2ψψu

1

r̃3
− 2r̃u

r̃4
ψ2

)
=
−4r̃ur̃v
µ1

(
2ψ∇̃uψ

1

r̃3
+ 2ψ2 gru

r̃2
− 2r̃u

r̃3
ψ2

)
=
CM,l,g

r2

(
r−2+κr3 + r−3+2κr2r2 + r3r−3+2κ

)
≤ CM,l,gr

−1+2κ,

(3.174)

thus

|G| ≤ CM,l,gr
−1+2κ. (3.175)

Finally we see ∫ v

v0

|G| dv ≤
∫ v

v0

CM,l,gr
−1+2κdv ≤ CM,l,g

∫ v

v0

r−3+2κrvdv

≤ CM,l,g

(
r−2+2κ − r−2+2κ

)
≤ CM,l,gr

−2+2κ.

(3.176)

Proving

lim
u→v
|r̃uu| = 0. (3.177)

Furthermore, we can find a constant such that

|r̃uu| ≤ CM,l,g. (3.178)

Lemma 3.5.3. There exists a constant Cg,l,M > 0 such that∣∣∣∣ r̃ur̃ − 1

2ρ

∣∣∣∣ < Cg,M,l. (3.179)

Proof. We split the proof into two parts. The first part is to provide estimates on the radial

function and its T derivative. These are then used to estimate a solution to a differential

equation.

Estimates for r̃:

Recalling that r̃|I = r̃(u, u) = r̃(v, v) = 0,

r̃(u, v) =

∫ u

v

r̃udu ≤ Cl(u− v) = Clρ, (3.180)

and similarly

r̃(u, v) =

∫ u

v

r̃udu ≥ Cl(u− v) = Clρ. (3.181)
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Thus

C̃lρ ≤ r̃ ≤ Clρ. (3.182)

Estimates for T (r̃):

Noting that

T (r̃)(u, v) = 0 +

∫ u

v

r̃vu + r̃uudu, (3.183)

we deduce

|T (r̃)| ≤
∫ u

v

|r̃uv|+ |r̃uu| du ≤ CM,l,g(u− v) = CM,l,gρ ≤ CM,l,gr̃. (3.184)

Now consider the following equation

∂v

(
ρr̃u −

1

2
r̃

)
= −1

2
T (r̃) + ρ · r̃uv, (3.185)

not that the bracketed term on the LHS is 0 on the boundary I. Integrating∫ u

v

∂v

(
ρr̃u −

1

2
r̃

)
dv ≤

∫ u

v

C · ρdv ≤ Cρ2, (3.186)

we thus conclude that
r̃u
r̃
− 1

2ρ
≤ C

ρ

r̃
. (3.187)

Similarly

− r̃u
r̃

+
1

2ρ
≤ C

ρ

r̃
. (3.188)

Finally from (3.182) ∣∣∣∣ r̃ur̃ − 1

2ρ

∣∣∣∣ < C. (3.189)

Corollary 3.5.2. We have that there exists a constant Cg,M,l > 0 such that

1

Cg,M,l

((
∇̂uψ

)2

+ ψ2

)
ρ−2 ≤

((
∇̃uψ

)2

+ ψ2

)
r2 ≤ Cg,M,l

((
∇̂uψ

)2

+ ψ2

)
ρ−2. (3.190)

That is twisting with r and ρ are equivalent in H1 type norms.

We now have the relevant estimates to prove the theorem:

Proof of the Theorem 3.5.2. From the interior wellposedness results we can extend to the

set ∆d+δ̃,u0
∩ {v ≤ u0 + d + δ̃ − ε}, for some δ̃ > 0, which depends on ε from the continuity.

We now extend to a triangle ∆d+δ∗,u0 . We note that from the previous lemmas we have on

each v = const ray in ∆d,u0 that the function r̃ restricted to this space is admissible as part

of an initial data set. Lemma 3.5.1, and corollary 3.5.2 show us that ψ restricted to the ray

is also admissible as part of an initial data set. Now let δ be the time of existence of a so-

lution using this data set, but with K replaced by 2K and c by c
2
. Now by choosing the ray
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vc = u0 + d− δ
2
. By the above argument (and using continuity), we can extend our solution to

the ray (u0 + d− δ
2

+ δ∗]× {u0 + d− δ
2
} for some δ∗ < δ

2
such that the conditions (3.111), and

(3.112) hold on (u0 + d− δ
2

+ δ∗]× {u0 + d− δ
2
} with K replaced by 2K and c by c

2
. We then

apply the local existence result to extend the solution to ∆d+δ∗,u0 .

3.6 Perturbed toroidal AdS Schwarzschild data and maximal development

In view of Birkhoff’s theorem we know that if we choose ψ = 0, then we will solve for an

isometric subset of the TAdSS solution. We thus choose initial data for ψ that is quantifiably

close to 0 and considered to be small. Under this smallness assumption we will then prove

various estimates about the derived quantities on the initial data ray that we will need in the

evolution.

3.6.1 Initial data

The free data

Let b > 0, we will later take this to be a sufficiently small quantity.

Definition 3.6.1. Let N = (u0, u1]× {v0}. We define our initial radial function

r̃(u) =
u− u0

2l2
. (3.191)

The free data consists of a C1 (N ) function ψ such that

(∫
N

((
∇̃uψ

)2

+ ψ
2
)
r2du

) 1
2

+ sup
N

∣∣∣ψr 3
2
−κ
∣∣∣+ sup

N

∣∣∣r 1
2

+ s
2

(
∇̃uψ

)∣∣∣ =: b2, (3.192)

where 0 < s < 1. (The choice of s is technical and we only expect to see r−
1
2 decay of the u

derivative propagating in the system, we do however need this initial smallness in the problem

in order to prove various results about the spacetime).
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Deduced quantities

From ψ and r̃, we can define the following derived quantities for our system:

Initial Hawking mass:

We define $ as the unique C1(N ) solution to

∂u$ =
2πr2

ru

(
r2

l2
− 2$

r

)
(∇̃uψ)2 +

4πg2ru
r

$ψ
2

+
rur

2

l2

(
e4πgψ

2
(

4πaψ
2 − 3

2

)
+ 2π(3g − 2a)ψ

2
+

3

2

)
,

(3.193)

with boundary condition

lim
u→u0

$ = M. (3.194)

From this we then define

$2 = $e−4πgψ
2

− r3

2l2

(
e−4πgψ

2

+ 4πgψ
2 − 1

)
, (3.195)

(recall we need to define $2 to solve the system but we’d like $ to have certain properties).

The quantity rv:

Recall equation (3.8) holds classically. Defining the variable

χ := − Ω2

4ru
, (3.196)

we can rewrite (3.8) as

∂u logχ =
4πr

ru
(∇uψ)2 . (3.197)

Solving this ODE and using the definition of the Hawking mass, one gets the following expres-

sion for rv

rv = χ|I ·
(−2$

r
+
r2

l2

)
e4πgψ2

exp

(∫ u

u0

4πr

ru
(∇uψ)2du

)
, (3.198)

we will later on make a gauge choice where χ|I = 1
2
. We choose

rv =
1

2

(−2$

r
+
r2

l2

)
e4πgψ

2

exp

(∫ u

u0

4πr

ru
(∇uψ)2du

)
, (3.199)

we remark that while we have not used a twisted derivative in the definition of rv, the initial

data choices allow us to see that is indeed an integrable quantity. It is also easy to see that rv

is independent of choice of u-coordinate on the data.
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The quantity Ω2:

We finally define the C1(N ) quantity

Ω
2

= − 4rurv(
−2$
r

+ r2

l2

)e4πgψ
2

. (3.200)

3.6.2 Consequences of the smallness

Defining the regular and marginally trapped region of the initial data ray to be

Rv0 ∪ Av0 = N ∩ {u ∈ N : rv(u) > 0} ∪ {u ∈ N : rv(u) = 0}. (3.201)

Lemma 3.6.1. We have that for b > 0 sufficiently small, on Rv0 ∪ Av0,

sup
u∈Rv0∪Av0

|$ −M | ≤ Cl,gb
2, (3.202)

so for small inital data $ is positive.

For the toroidal AdS Schwarzschild value

rv
s(u) :=

1

2

(
− 2M

r(u)
+
r(u)2

l2

)
, (3.203)

we have

sup
u∈Rv0∪Av0

|rv − rvs| ≤ Cl,a,Mb
2. (3.204)

For small enough initial data there exists points on N such that

rv ≤ 0. (3.205)

Furthermore there is a unique u∗ ∈ N such that

rv(u
∗) = 0. (3.206)

Defining rmin := r(u∗) we have

|rmin − r+| ≤ C(b), (3.207)

where C(b)→ 0 as b→ 0. Where r+ := (2Ml2)
1
3 .

Proof. We will perform a bootstrap argument along N . Define a bootstrap region to be

Bv0 := Rv0 ∪ Av0 ∩
{
r ≥ r+

2

}
, (3.208)

Clearly this set is closed, non empty, and connected. We need to show it’s open to complete

the bootstrap argument.
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We define

f
(
ψ

2
)

=

(
e4πgψ

2
(

4πaψ
2 − 3

2

)
+ 2π(3g − 2a)ψ

2
+

3

2

)
. (3.209)

The equation for $ (3.193) is thus

∂u$ =
2πr2

ru

(
r2

l2
− 2$

r

)
(∇̃uψ)2 +

4πg2ru
r

$ψ
2

+
rur

2

l2
f(ψ

2
)

= $

(
−4πr

ru

(
∇̃uψ

)2

+
4πgru
r

ψ
2
)

︸ ︷︷ ︸
=:h

+
2πr4

l2ru

(
∇̃uψ

)2

+
rur

2

l2
f(ψ

2
)

= $h− 4πr
(
r∇̃uψ

)2

+
rur

2

l2
f(ψ

2
).

(3.210)

Solving this equation

$ −M exp

(∫ u

u0

hdu

)
= exp

(∫ u

u0

hdu

)∫ u

u0

−4πr
(
r

1
2 ∇̃uψ

)2

exp

(
−
∫ u

u0

hdu

)
+
rur

2

l2
f(ψ

2
) exp

(
−
∫ u

u0

hdu

)
du.

(3.211)

We estimate h by

|h| =
∣∣∣∣(−4πr

ru

(
∇̃uψ

)2

+
4πgru
r

ψ
2
)∣∣∣∣

= −ru
∣∣∣∣−4πr

r2
u

(
∇̃uψ

)2

+
4πg

r
ψ

2
∣∣∣∣

= −ru
∣∣∣∣−4πr

r2
u

(
∇̃uψ

)2

+
4πg

r
ψ

2
∣∣∣∣

= −ru
∣∣∣∣−16πl2

r3

(
∇̃uψ

)2

+
4πg

r
ψ

2
∣∣∣∣

= −ru
∣∣∣∣−16πl2

r4+s

(
r

1
2

+ s
2 ∇̃uψ

)2

+ 4πgr−4+2κ
(
r

3
2
−κψ

)2
∣∣∣∣

≤ Cl,gb
2
(
r−4+s + r−4+2κ

)
(−ru).

(3.212)

We see that in Bv0 ∫ u

u0

|h| du ≤ Cl,g
b2

r+

. (3.213)
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As |h| = h, we have

$ −M ≥$ −M exp

(∫ u

u0

hdu

)
= exp

(∫ u

u0

hdu

)∫ u

u0

∂u

(
$ exp

(∫ u

u0

hdu

))
du

= exp

(∫ u

u0

hdu

)(∫ u

u0

−4πr1−s
(
r

1
2

+ s
2 ∇̃uψ

)2

exp

(
−
∫ u

u0

hdu

)
+
rur

2

l2
f(ψ

2
) exp

(
−
∫ u

u0

hdu

)
du

)
≥ exp

(∫ u

u0

hdu

)∫ u

u0

−4πr1−sb2 exp

(
Cl,g

b2

r+

)
+
rur

2

l2
f(ψ

2
) exp

(
−
∫ u

u0

hdu

)
du.

(3.214)

(Note r1−sdu ∼ r−1−sdr̄ hence the need for our initial data to have the additional s smallness).

Continuing the estimation

$ −M ≥ exp

(∫ u

u0

hdu

)∫ u

u0

−4πr1−sb2 exp

(
Cl,g

b2

r+

)
+
rur

2

l2
f(ψ

2
) exp

(
−
∫ u

u0

hdu

)
du

≥− 4π exp

(∫ u

u0

hdu

)
b2 exp

(
Cl,g

b2

r+

)∫ u

u0

r1−sdu

+ exp

(∫ u

u0

hdu

)∫ u

u0

rur
2

l2
f(ψ

2
) exp

(
−
∫ u

u0

hdu

)
du

=− 8πl2 exp

(∫ u

u0

hdu

)
b2 exp

(
Cl,g

b2

r+

)∫ r

∞
r−1−sdr

+ exp

(∫ u

u0

hdu

)∫ u

u0

rur
2

l2
f(ψ

2
) exp

(
−
∫ u

u0

hdu

)
du

≥− Cl,g exp

(
Cl,g

b2

r+

)(r+

2

)−s
b2 + exp

(∫ u

u0

hdu

)∫ u

u0

rur
2

l2
f(ψ

2
) exp

(
−
∫ u

u0

hdu

)
du.

(3.215)

For b2 small

f(ψ
2
) ≤ 8πagψ

4
, (3.216)

so

exp

(∫ u

u0

hdu

)∫ u

u0

rur
2

l2
f(ψ

2
) exp

(
−
∫ u

u0

hdu

)
du ≥ −Cg,l exp

(
Cl,g

b2

r+

)
b4

∫ r

∞
r−4+4κdr

≥ −Cg,l exp

(
Cl,g

b2

r+

)
b4r−3+4κ

+ .

(3.217)

And thus

$ −M ≥ −Cl,g exp

(
Cl,g

b2

r+

)
r−s+ b2 − Cg,l exp

(
Cl,g

b2

r+

)
b4r−3+4κ

+ ≥ −b2f(b), (3.218)
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where f(b) goes to a positive constant as b→ 0.

Estimating the other direction

∂u$ ≤ h$, (3.219)

we quickly see

$ −M ≤M

(
exp

(∫ u

u0

hdu

)
− 1

)
≤M

(
exp

(
Cl,g

b2

r+

)
− 1

)
≤ CM,l,g

r+

b2.

(3.220)

We conclude that

|$ −M | ≤ f(b)b2, (3.221)

where f(b)→ C > 0 as b→ 0.

We now show the second statement (3.204). Recall that

rv =
1

2

(−2$

r
+
r2

l2

)
exp

(
4πgψ

2
+

∫ u

u0

−8πl2

r
(∇uψ)2du

)
, (3.222)

so

|rv − rvs| =
∣∣∣∣12
(−2$

r
+
r2

l2

)
exp

(
4πgψ

2
+

∫ u

u0

−8πl2

r
(∇uψ)2du

)
− 1

2

(−2M

r
+
r2

l2

)∣∣∣∣
=

1

2

∣∣∣∣2r (M −$) +

(−2$

r
+
r2

l2

)(
exp

(
4πgψ

2
+

∫ u

u0

−8πl2

r
(∇uψ)2du

)
− 1

)∣∣∣∣
≤ 1

r
|$ −M |+

∣∣∣∣−2$

r
+
r2

l2

∣∣∣∣ ∣∣∣∣(exp

(
4πgψ

2
+

∫ u

u0

−8πl2

r
(∇uψ)2du

)
− 1

)∣∣∣∣
≤ Cl,M,a

r
b2 +

∣∣∣∣−2$

r
+
r2

l2

∣∣∣∣ ∣∣∣∣(exp

(
4πgψ

2
+

∫ u

u0

−8πl2

r
(∇uψ)2du

)
− 1

)∣∣∣∣ .
(3.223)

Noting the estimate ∣∣∇uψ
∣∣2 ≤ Cl,gb

2r−3+2κ, (3.224)

we quickly can see that for b < 1∣∣∣∣(exp

(
4πgψ

2
+

∫ u

u0

−8πl2

r
(∇uψ)2du

)
− 1

)∣∣∣∣ ≤ Cg,lb
2r−3+2κ. (3.225)

From here it follows that

|rv − rvs| ≤ b2

(
Cl,M,a

r
+ Cg,lr

−1+2κ

)
. (3.226)
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Restricting to κ ∈ (0, 1
2
] we can find a constant CM,l,a > 0, such that

|rv − rvs| ≤ CM,l,gb
2, (3.227)

proving (3.204).

For statements (3.205) and (3.206), define u+ by r(u+) = r+. Now in our coordinate system

we have

(rv
s)u = −M

l2
− r3

l4
< 0, (3.228)

showing that rv
s is monotone on N . For ε > 0 consider ũ = u+ + ε so

rv
s(ũ) < 0, (3.229)

coupled with the estimate

rv
s(ũ)− Cb2 ≤ rv(ũ) ≤ Cb2 + rv

s(ũ), (3.230)

implies for small initial data there is a point on N where rv ≤ 0. Clearly we can repeat this

argument and find a b2 and u value say um where rv(um) ≥ 0.

From continuity we know that there exists at least one value of u ∈ [um, ũ] such that rv(u) = 0.

Viewing the radial equation in terms of $

(rv)u = −Ω2

2

(
r

2l2

(
3− e4πgψ

2
)

+
$

r2 e
4πgψ2

)
+

2πa

l2
Ω2ψ

2
< 0, (3.231)

for small b. We have rv is monotonic, and this zero is unique. Let u∗ denote this value, and

denote it’s r value by rmin. Recalling the definition of rv we see that for this value of u the

relationship

r3
min = 2l2$(u∗). (3.232)

So ∣∣r3
min − r3

+

∣∣ = 2l2 |$(u∗)−M | ≤ Cb2. (3.233)

This implies the inequality

rmin ≥
(
r3

+ − Cb2
) 1

3 , (3.234)

and we deduce that

rmin ≥ r+ − C(b), (3.235)

where C(b)→ 0 as b→ 0. From here we see that for b chosen small enough, the inequality in

Bv0

r ≥ rmin ≥ r+ − C(b) >
r+

2
, (3.236)

holds. Hence Bv0 is open and

Rv0 ∪ Av0 ∩
{
r ≥ r+

2

}
= Rv0 ∪ Av0 . (3.237)
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Maximal development and set up

We let Q ⊂ R2 denote the quotient by T2, of the maximal development from perturbed TAdSS

data. From the geometric uniqueness statement we know that this is unique up to diffeomor-

phism.

We then denote the regular region R = {(u, v) ∈ Q : rv(u, v) > 0}, and let N(u) ⊂ Q denote

the outgoing characteristic null-line u = const emanating from the initial data.

Lemma 3.6.2. In the maximal development we have the following properties

• The set

{u > u0 : N(u) ⊂ R and r̃ → 0 along N(u)} 6= ∅. (3.238)

• For

uH := sup
u>u0

{u : N(u) ⊂ R and r̃ → 0 along N(u)}, (3.239)

and

RH := R ∩ {u0 < u < uH}, and RH := RH ∪N(uH), (3.240)

we have that

sup
RH

v = sup
N(uH)

v. (3.241)

• Define ‘null infinity’ I = {(u, v∞(u))|u0 < u < uH}, where v∞(u) is the value of v such

that: limv→v∞(u)
r̃(u, v) = 0. Which we can reparametrise by {uI(v), v|v ∈ Q}, where

uI(v) is the u coordinate of the past limit point where the v = const ray intersects I.

Then there exists a double null system (u, v) covering RH, such that

χ|I =
1

2
, r̃u =

1

2l2
. (3.242)

Proof. From continuity the data set contains a point where rv < 0, then we simply apply

corollary 3.5.1. As N(uH) is regular (3.241) follows from the fact that a first singularity cannot

form along it. Letting

û = h(u), v̂ = g(v), (3.243)

we see that under these transforms we have that

χ̂ :=
Ω̂2

−4rû
=
χ

g′
, (3.244)

and

− rû =
−ru
h′

. (3.245)

So choosing

g′(v) =
Ω2

−2ru
(v, v) = 2χ(v, v), (3.246)
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and

f ′(u) =
−2l2ru
r2

(u, v0), (3.247)

we then have that at I
χ̂ =

1

2
, (3.248)

and on the initial data ray v = v0

− rû =
r2

2l2
. (3.249)

We then switch to these coordinates and drop the hats.

In these coordinates null infinity is no longer a straight line and the future limit point of the

ray u = uH is not included as a part of null infinity, as it is a priori possible for r̃ → 0 along

this ray. We will, as part of the proof of orbital stability, show this not to be the case.

v = v0

u = uH

I

Figure 3.5: Depiction of (a subset of) the Penrose diagram

Lemma 3.6.3. In RH we have that

r ≥ rmin, (3.250)

Proof. We can write

r(u, v) = r(u) +

∫ v

v0

rv(u, v̂)dv̂, (3.251)

as we are in the regular region we know the integral is positive (rv > 0), and lower bounds on

the initial data (r ≥ rmin > 0) prove the result.

Lemma 3.6.4. We have in Q+ that

ru < 0. (3.252)

Proof. Integrating equation (3.8) from I yields the inequality

ru
Ω2
≤ −1

2
, (3.253)

the result follows.
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Curves of constant rX and rY

We define rX to be the solution to

− 2M

rX
+
r2
X

l2
= d, (3.254)

where d > 0 has been chosen small enough so that

log
rX
rmin

<
1

2 |a| . (3.255)

This may be chosen from the continuity of r.

Now we define rY to be the solution to

− 2M

rY
+
r2
Y

l2
= c, (3.256)

with c < d. So rY < rX . Our Penrose diagram looks like:

v = v0

u = uH

I
r = rY

r = rX

Figure 3.6: Penrose diagram of spacetime depicting r = const curves.

Geometric norms

• The H1
d norm

||ψ||2H1
d

(u, v) =

∫ u

uI

r2rv
Ω2

(∇uψ)2 +
(−ru)
r

ψ2dū+

∫ v

v0

−r
2ru
Ω2

(∇vψ)2 +
rv
r
ψ2dv̄. (3.257)

This is the standard degenerate energy norm one expects to see from exploiting the

Kodama vector field T of the system (in context of the energy momentum tensor of

the field). It is however not finite for our boundary conditions but will be useful when

considering regions of bounded r.
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• The H1
d norm

||ψ||2H1
d

(u, v) =

∫ u

uI

r2rv
Ω2

(∇̃uψ)2 +
(−ru)
r

ψ2dū+

∫ v

v0

−r
2ru
Ω2

(∇̃vψ)2 +
rv
r
ψ2dv̄. (3.258)

This norm naturally arises from considering the renormalised Hawking mass as an energy

potential. It suffers from degeneration on the first order terms at the apparent horizon

(where rv = 0), and a sub optimal weight on the zeroth order terms. This norm will be

the basis of our estimates.

• The H1
1 norm

||ψ||2H1
1

(u, v) =

∫ u

uI

r4

−ru
(∇̃uψ)2 +

(−ru)
r

ψ2dū+

∫ v

v0

−r
2ru
Ω2

(∇̃vψ)2 +
rv
r
ψ2dv̄. (3.259)

After the redshift estimates we will be able to show control of this norm on the spacetime.

It does not suffer degeneration at the apparent horizon. In fact it actually offers more

control on for the weights of the zeroth order term but this is only clear after exploiting

a Hardy type inequality.

• The H1 norm

||ψ||2H1 (u, v) =

∫ u

uI

r4

−ru
(∇̃uψ)2 − ruψ2dū+

∫ v

v0

−r
2ru
Ω2

(∇̃vψ)2 +
rv
r
ψ2dv̄. (3.260)

After a Hardy inequality we will be able to see this is equivalent to the H1
1 norm. We will

however find this form more useful.

• The L2 norm

||ψ||2L2 (u, v) =

∫ u

uI

−ruψ2dū+

∫ v

v0

rv
r
ψ2dv̄. (3.261)

• For convenience we also define the flux quantity

F(u, v) = ||ψ||2H1 (u, v) + ||ψ||2H1 (u, v0). (3.262)

It is worth noting that these norms are all independent of change of double null coordinates

and are thus geometric in their nature.

Boundary conditions

In the maximal development with enough regularity the Dirichlet boundary conditions are

r̃−
3
2

+κψ = 0, on I, (3.263)

and the Neumann boundary conditions are

r̃−
1
2
−κR̃ψ = 0, on I. (3.264)
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Furthermore we may also deduce

Lemma 3.6.5.

$|I = M. (3.265)

Proof. This is the same argument as in lemma 3.4.4. We see that T is transverse to r̃ =

const > 0 surfaces and integrate the curl of $ over a triangular domain with boundary {r̃ =

const} ∪ {u = const} ∪ {v = const}. The boundary contribution on {r̃ = const} is given by

T $ = 8πe4πgψ2

r2R̃ψT ψ. (3.266)

which is the term that vanishes in the energy estimates for ψ. So we take the limit r̃ → 0 to

deduce the result.

3.7 Orbital stability and completeness of null infinity

The goal of this section is to prove the two key theorems:

Theorem 3.7.1. (Orbital Stability: Basic Estimates)

In RH, for κ ≤ 1
2
, for b > 0 sufficiently small, such that we have the following estimates

|2χ(u, v)− 1| 12 + |$(u, v)−M | 12 +

∣∣∣∣∣ r
5
2

−ru
∇̃uψ(u, v)

∣∣∣∣∣+

∣∣∣∣∣r
5
2
−κ

−ru
ψu(u, v)

∣∣∣∣∣+
∣∣∣r 3

2
−κψ(u, v)

∣∣∣
+ ||ψ||H1 (u, v) ≤ Cl,M,κ

(
||ψ||H1 (uH, v0) + sup

I(v0)

(∣∣∣∣∣ r
5
2

−ru
∇̃uψ

∣∣∣∣∣+
∣∣∣r 3

2
−κψ

∣∣∣)) .
(3.267)

Where b was defined in (3.6.1).

Theorem 3.7.2. (Completeness of Null Infinity)

Let

vm = sup
v≥v0

{v|(uH, v) ∈ Q}. (3.268)

Then it is the case that vm =∞.

We will use a bootstrap argument to establish these results. The core idea is to bootstrap on

the size of the field ψ.

3.7.1 Basic estimates

The bootstrap

Let ũ ∈ [u0, uH] we then define the region

B̂(ũ) = RH ∩ {u0 < u < ũ}. (3.269)
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We will bootstrap on the condition ∣∣∣r 3
2
−κψ

∣∣∣ < b. (3.270)

So we let

umax := sup
u

{
u ∈ R :

∣∣∣r 3
2
−κψ

∣∣∣ < b
}
, (3.271)

the bootstrap region is then defined as

B = B̂(umax) ⊂ RH. (3.272)

We aim to prove that B = RH = B̂(uH). It is clear that B is open, connected, and non empty.

Hence we aim to show that B is a closed subset of RH. For this we assume that umax < uH is

fixed, and that in B we can improve the bound (3.270) (it trivially holds at u = u0 as this is

an initial data point).

The renormalised Hawking mass

Definition 3.7.1. Recall that we defined the final renormalised Hawking mass as

$ =
2rurvr

Ω2
e4πgψ2

+
r3

2l2
. (3.273)

The final renormalised Hawking mass provides a potential for the H1 geometric energy, and

for small enough ψ it satisfies monotonicity properties. Coupled with a redshift estimate this

leads to an energy estimate for ψ. From here Sobolev embeddings can be used to recover the

bootstrap assumption.

Monotonicity and boundedness for small ψ

In order to get a sign for the derivatives of $ we need to see that the function f(ψ2) is indeed

positive in the region B. Plotting the curve shows the following global behaviour.

ψ2

f ψ2

Figure 3.7: Plot of f(ψ2).

We now seek to quantify the local positive behaviour in B with the following lemma.
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Lemma 3.7.1 (Bounds for f(ψ2)).

For

f(ψ2) = e4πgψ2

4πaψ2 − 3

2
e4πgψ2 − 2πg2ψ2 +

3

2
, (3.274)

we have that in B
f(ψ2) ≥ 0, (3.275)

and

f(ψ2) ≤ 8π2agψ4. (3.276)

Proof. Define

f(x) = e4πgx4πax− 3

2
e4πgx − 2πg2x+

3

2
, (3.277)

and consider its values for x ≥ 0. As f(0) = 0, we proceed to study the functions behaviour

near this point.

We compute

f ′(x) = 16π2gaxe4πgx + 2πg2e4πgx − 2πg2, (3.278)

so f ′(0) = 0. Further computation shows

f ′′(x) = 16π2g2 (4πax+ κ) e4πgx, (3.279)

which remains positive for x ≤ −κ
4πa

= 1
2π

κ
9
4
−κ2 .

We thus have the following differential inequality that for x ∈
[
0, 1

2π
κ

9
4
−κ2

]
f ′′(x) ≥ 0, f(0) = f ′(0) = 0. (3.280)

Solving this differential inequality yields the first result.

For the second result consider

g(x) := f(x)− 8π2agx2, (3.281)

again we see that g(0) = 0. Compute

g′(x) = 16π2gax
(
e4πgx − 1

)
+ 2πg2

(
e4πgx − 1

)
≤ 0, (3.282)

solving this differential inequality yields that

f(x) ≤ 8π2agx2, (3.283)

for non-negative x.

Corollary 3.7.1. In B we have

$(u, v) ≤ $(uI , v) = M. (3.284)
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Proof. Estimating the ∂u$ from (3.7.1) we have

∂u$ ≤
4πg2ru
r

$ψ2. (3.285)

A Gronwall estimate then implies

$(u, v) ≤ $(uI , v) exp

(∫ u

uI

4πg2 ru
r
ψ2du

)
≤ $(uI , v) = M. (3.286)

Remark 3.7.1. We have in B

$(u, v0) := $0 = $ ≥M − Cl,gb2 ≥ M

2
> 0. (3.287)

for b2 small enough.

Proof. We use the smallness of b, and our initial data estimate (3.202).

Corollary 3.7.2. In B we have

0 <
M

2
≤ $. (3.288)

Proof. Identical to the proof of corollary 3.7.1, we estimate ∂v$ and use the lower bound for

$0.

Corollary 3.7.3. In B we have

∂u$ ≥ 8π2g
arur

2

l2
ψ4 − 8πr2rv

Ω2
(∇̃uψ)2 +

4πg2ru
r

Mψ2, (3.289)

∂v$ ≤ 8π2g
arvr

2

l2
ψ4 − 8πr2ru

Ω2
(∇̃vψ)2 +

4πg2rv
r

Mψ2. (3.290)

Proof. This follows immediately from the lemmas 3.4.3, 3.7.1 and corollary 3.7.1.

Corollary 3.7.4. In B we have that

∂u$ ≤ −
8πr2rv

Ω2
(∇̃uψ)2e+

4πg2ru
r

Mψ2 ≤ 0, (3.291)

∂v$ ≥ −
8πr2ru

Ω2
(∇̃vψ)2 +

4πg2rv
r

Mψ2 ≥ 0. (3.292)

Proof. This follows immediately from the lemmas 3.4.3, 3.7.1 and corollary 3.7.2.

Corollary 3.7.5. We have in B

|$ −M | ≤ Ca,M,l

(
||ψ||2H1

d
(u, v) + b4

)
. (3.293)
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Proof. The bound from above follows trivially from corollary 3.7.4, from below we integrate

∂u$ and use estimate (3.289)

$ −M = $ −$(uI , v) =

∫ u

uI

−8πr2rv
Ω2

(∇̃uψ)2e4πgψ2

+
4πg2ru
r

$ψ2 +
rur

2

l2
f(ψ2)du

≥
∫ u

uI

−8πr2rv
Ω2

(∇̃uψ)2 +
2πg2ru
r

Mψ2du+

∫ u

uI

8π2ag

l2
ψ4r2rudu

− Ca,M ||ψ||2H1
d

(u, v)− Ca,lb4

∫ u

uI

rur
−4+2κdu

≥ −Ca,M,l

(
||ψ||2H1

d
(u, v) + b4

)
.

(3.294)

$1 estimates:

Lemma 3.7.2. We have, in B, ∣∣∣∣$1 −M
r2κ

∣∣∣∣ ≤ CM,g,lb
2. (3.295)

Proof. Expanding

$1 −M
r2κ

=
1

r2κ

(
$e−4πgψ2 −M

)
+
(

1− e−4πgψ2
) r3−2κ

2l2
, (3.296)

and applying the estimates

M − CM,g,lb
2 ≤ $ ≤M, (3.297)

and (for small b)

8πgψ2 ≤ 1− e−4πgψ2 ≤ 4πgψ2 < 0. (3.298)

We get

$1 −M
r2κ

≤ M

r2κ

(
e−4πgψ2 − 1

)
≤ M

r2κ
· 8π(−g)r−3+2κb2

≤ 8πM(−g)r−3
minb

2 ≤ CM,gb
2.

(3.299)
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In the other direction

$1 −M
r2κ

≥ 1

r2κ

(
(M − CM,g,lb

2)e−4πgψ2 −M
)

+
8πgr3−2κψ2

2l2

≥ M

r2κ

(
e−4πgψ2 − 1

)
− CM,g,lb

2

r2κ
e−4πgψ2

+
8πgr3−2κψ2

2l2

≥ M

r2κ
· (−4πgψ2)− CM,g,lb

2

r2κ
e+

4πg

l2
b2

≥ −M4πgb2r−3 − CM,g,lb
2

r2κ
e+

4πg

l2
b2

≥ −CM,g,lb
2,

(3.300)

thus concluding the proof.

Lemma 3.7.3. Let α+ β > 2κ be non negative numbers, and D > 0, a positive constant. The

following estimate holds in B (for b small enough)

$1

rα
+Drβ ≥ D(1 + ε)rβ ≥ Drβ > 0, (3.301)

where 0 < ε ≤ M
D
r
−(β+α)
min − cM,g,lb

2.

Proof.

$1

rα
+Drβ ≥ Drβ +

M

rα
− CM,g,lb

2r2κ−α

≥ Drβ
(

1 +
M

D
r
−(β+α)
min − CM,g,lb

2

D
r2κ−(α+β)

)
≥ Drβ

(
1 +

M

D
r
−(β+α)
min − CM,g,lb

2

D
r

2κ−(α+β)
min

)
≥ D(1 + ε)rβ ≥ Drβ > 0.

(3.302)

Remark 3.7.2. This result is purely technical, while we know that $ > 0 we didn’t a priori

have positivity for $1 in RH. Estimates for $1 are useful due to how the quantity algebraically

interacts with the system. It is often coupled with a term like Drβ which we will want to keep

in our estimates.

Estimates for ru

We now seek to control the growth of function ru.

Theorem 3.7.3. In the bootstrap region B, there exists a uniform constant C = C(l, g) > 0

such that
1

C
r2 ≤ −ru. (3.303)

We split the proof into three lemmas.
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Lemma 3.7.4. In the region B ∩ {rmin ≤ r ≤ rX}, we have that there exists C = C(l, X) > 0

such that

r−2
X Cr2 ≤ −ru. (3.304)

Proof. We restrict ourselves to the region rmin ≤ r ≤ rX , and consider (3.10),

ruv = −rurv
r

+
2πar

l2
Ω2ψ2 − 3

4

r

l2
Ω2. (3.305)

It follows that

ruv ≤ −
rurv
r
, (3.306)

which we integrate and estimate

− ru ≥ −ru · r ·
1

r
≥ r3

min

2l2rX
=: C > 0. (3.307)

We extend to

r−2
X Cr2 ≤ −ru. (3.308)

We now study the set where r is unbounded.

Lemma 3.7.5 (Region Splitting). We have on the region B∩{r ≥ rY }, the following inequality

r2

l2
− 2M

r
≥ CY,l,Mr

2. (3.309)

Proof. Let CY,l = min( 1
2l2
, d
r2
Y

) and define

f(r) =
r2

l2
− 2M

r
− CY,l,Mr2. (3.310)

Then

f(rY ) = d− CY,l,Mr2
Y ≥ 0, (3.311)

and

f ′(r) =
1

r

(
r2

l2
+

2M

r

)
+ 2r

(
1

2l2
− CY,l,M

)
≥ 0, (3.312)

whence the result follows.

Lemma 3.7.6. We have in the region B ∩ {r ≥ rY } that

1

CY,M,l

r2 ≤ −ru ≤ CY,M,lr
2. (3.313)

Proof. Using the wave equation for the radial function

r̃uv =
−3r̃urv
r

+
3

4l2
Ω2

r
− 2πa

l2
ψ2Ω2

r
, (3.314)
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we may write this as

r̃uv = r̃u · f(u, v)rv, (3.315)

where

f(u, v) =

(
6$

r2
+

3r

l2

(
1− e−4πgψ2

)
+

6$

r2

(
e−4πgψ2 − 1

)
− 8πa

l2
rψ2

)
e4πgψ2

r2

l2
− 2$

r

. (3.316)

We have that

r̃u =
1

2l2
exp

(∫ r(v)

r(v0)

f(u, v)dr

)
. (3.317)

We now wish to show that f is integrable. Elementary estimation, and noting that∣∣∣1− e−4πgψ2
∣∣∣ ≤ −8πgψ2, (3.318)

for b2 small, we see

|f | ≤ 1∣∣ r2

l2
− 2M

r

∣∣
(∣∣6Mr−2

∣∣+

∣∣∣∣24π(−g)b2

l2
r−2+2κ

∣∣∣∣+
∣∣48π(−g)b2r−3+2κ

∣∣+

∣∣∣∣2π(−a)

l2
b2r−2+2κ

∣∣∣∣) .
(3.319)

We now restrict to r ≥ rY , here we have

|f | ≤ CY,Mr
−4+2κ. (3.320)

So there exists a constant CY such that

1

2l2
exp

(
−CY,M

∫ r(v)

r(v0)

r−4+2κdr

)
≤ r̃u ≤

1

2l2
exp

(
CY,M

∫ r(v)

r(v0)

r−4+2κdr

)
. (3.321)

Integrating gives

1

2l2
exp

(
CY,M

(
r−3+2κ − r−3+2κ

))
≤ r̃u ≤

1

2l2
exp

(
CY,M

(
r−3+2κ − r−3+2κ

))
, (3.322)

and we deduce the bound

1

2l2
exp

(
−CY,Mr−3+2κ

min

)
≤ r̃u ≤

1

2l2
exp

(
CY,Mr

−3+2κ
min

)
. (3.323)

From here the result follows.

From these three lemmas the proof of theorem 3.7.3 follows.
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Energy estimates

Degenerate energy estimates from the Hawking mass:

Lemma 3.7.7. In B we have there exists a Cg,M,κ,Y > 0, such that

||ψ||H1
d

(u, v) ≤ Cg,M,κ,Y

(
||ψ||H1

d
(uH, v0) + b4

)
. (3.324)

Proof. We start by noting∫ uH

uI

−∂ū$(ū, v0)dū ≥
∫ u

uI

−∂ū$(u, v0)dū

=$|I −$(u, v0) +$(u, v)−$(u, v)

=

∫ u

uI

−∂ū$(ū, v)dū+

∫ v

v0

∂v̄$(u, v̄)dv̄

≥
∫ u

uI

8πr2rv
Ω2

(∇̃uψ)2e−1 +
2πg2(−ru)

r
Mψ2dū

+

∫ v

v0

−8πr2ru
Ω2

(∇̃vψ)2 +
2πg2rv
r

Mψ2dv̄

≥Cg,M
(∫ u

uI

r2rv
Ω2

(∇̃uψ)2 +
(−ru)
r

ψ2dū+

∫ v

v0

−r
2ru
Ω2

(∇̃vψ)2 +
rv
r
ψ2dv̄

)
.

(3.325)

This gives us control of the H1
d norm from initial data, providing we can prove the LHS integral

is controlled by the H1
d norm. Recall

− ∂u$ ≤
8πr2rv

Ω2
(∇̃uψ)2e4πgψ2 − 4πg2ru

r
$ψ2 − rur

2

l2
8π2agψ4, (3.326)

we see the first two terms form the H1
d norm. We need to control the final term.

From the bootstrap assumption we form the bound

ψ4r2 ≤ b4r−4+4κ, (3.327)

using this in the integral∫ u

uI

−8π2g
arur

2

l2
ψ4du ≤ b4Cg

∫ u

uI

ru
3− 4κ

∂u
(
r−3+4κ

)
du

=
b4Cg

3− 4κ

[
r−3+4κ

]u
uI

=
b4Cg

3− 4κ
r−3+4κ

≤ Cg,rmin
1

3− 4κ
b4 ≤ Cg,rminb

4.

(3.328)

We conclude ∫ uH

uI

−∂ū$(ū, v0)dū ≤ CM,g ||ψ||2H1
d

(uH, v0) + Cgb
4. (3.329)

The result then follows.
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Energy estimates in {r ≥ rY }

We now wish to improve our estimates to the H1 norm and recover pointwise estimates. We

begin in the region away from the degenerative issues of rv. We will see that the standard

theory of Hardy and Sobolev estimates can be recovered with twisted derivatives.

Lemma 3.7.8 (Norm equivalence away from degeneration).

For B ∩ {r ≥ rY } we have that

Cl ||ψ||2H1
d

(u, v) ≤ ||ψ||2H1
1

(u, v) ≤ Cl,Y ||ψ||2H1
d

(u, v). (3.330)

Proof. Note that on the domain {r ≥ rY } ∩ B

r2rv
Ω2

=

(
r2

l2
− 2$

r

)
e−4πgψ2

−4ru
r2, (3.331)

estimating from either side

Cl
r4

−ru
≥
(
r2

l2
− 2$

r

)
e−4πgψ2

−4ru
r2 ≥

(
r2

l2
− 2M

r

)
r2

−4ru
≥ Cl,Y

r4

−ru
. (3.332)

Lemma 3.7.9 (Hardy Inequality). We have in B

1

Cg
||ψ||2H1

1
(u, v) ≤ ||ψ||2H1 (u, v) ≤ Cg ||ψ||2H1

1
(u, v). (3.333)

Proof. Fix u1 < u2 < uI ∈ B, and let χ be a bump function with the following properties

χ(r(u)) =


0 u ≤ u1,

1 u ≥ u2,

Smooth and bounded by 1 otherwise.

(3.334)

Then

||(1− χ)ψ||2L2 =

∫ u

u2

−ru(1− χ)2ψ2du ≤ sup
(u2,u)

r ·
∫ u

u2

−ru
r
ψ2du ≤ Cr(u2)

∫ u

uI

−ru
r
ψ2du. (3.335)

Looking at

||χψ||2L2 =

∫ u1

uI

(
χψr

3
2
−κ
)2

∂u

(
r−2+2κ

2− 2κ

)
du

=

[
r(χψ)2

2− 2κ

]u1

uI

+

∫ u1

uI

1

1− κχrψ∇̃u (χψ) rdu

≤ 1

1− κ ||χψ||L2 ·
(∫ u1

uI

(
∇̃u (χψ)

)2 r2

−ru
du

) 1
2

,

(3.336)
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we have

||χψ||2L2 ≤ 1

(1− κ)2

∫ u1

uI

(
∇̃u (χψ)

)2 r2

−ru
du

≤ Cκ

∫ u1

uI

χ2(∇̃uψ)2 r2

−ru
+

r2

−ru
(ψ∂uχ)2 du.

(3.337)

Studying the latter term

r2

−ru
(ψ∂uχ)2 =

r2

−ru
(ruψχ

′)
2

= −ruψ2r2(χ′)2, (3.338)

note that due to regularity of χ and compactness, there exists a C > 0, such that∫ u1

uI

−ruψ2r2(∂rχ)2du =

∫ u1

u2

−ruψ2r2(∂rχ)2du ≤ C

∫ u

uI

−ru
r
ψ2du. (3.339)

This then implies
1

Cκ
||χψ||2L2 ≤

∫ u1

uI

(∇̃uψ)2 r2

−ru
du+

∫ u

uI

−ru
r
ψ2du, (3.340)

combining all the results

||ψ||2L2 =

∫ u

uI

−ruψ2du ≤ Cκ

(∫ u1

uI

(∇̃uψ)2 r2

−ru
du+

∫ u

uI

−ru
r
ψ2du

)
. (3.341)

The result follows.

Lemma 3.7.10 (Sobolev Inequality). We have in for ψ ∈ H1(B) there exists Cg,M,l > 0. such

that ∣∣r−gψ∣∣ (u, v) ≤ Cg,M,l

(
||ψ||H1 (u, v) + ||ψ||L2 (uH, v)

)
. (3.342)

Proof. We begin by writing

r−gψ(u, v)− r−gψ(z, v) =

∫ u

z

∂u′(r
−gψ)(u′, v)du′ =

∫ u

z

(∇̃u′ψ)r−gdu′

=

∫ u

z


(
∇̃u′ψ

)
r2

√−ru′
· r−2−g√−ru′

 (u′, v)du′

≤
(∫ u

z

(
(∇̃u′ψ)2r4

−ru′

)
(u′, v)du′

) 1
2 (∫ u

z

(
−r−4−2gru′

)
(u′, v)du′

) 1
2

≤
(∫ u

uI

(
(∇̃u′ψ)2r4

−ru′

)
(u′, v)du′

) 1
2 (∫ u

uI

(
−r−4−2gru′

)
(u′, v)du′

) 1
2

≤ ||ψ||H1 (u, v)

(∫ u

uI

(
−r−4−2gru′

)
(u′, v)du′

) 1
2

.

(3.343)
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Now as ∫ u

uI

(
−r−4−2gru′

)
(u′, v)du′ =

[
r−3−2g

−3− 2g

]r(u,v)

∞
=

1

2κ
r−2κ(u, v), (3.344)

we have ∣∣r−gψ(u, v)
∣∣ ≤ ∣∣r−gψ(z, v)

∣∣+
1

2κ
r−κ(u, v) ||ψ||H1 (u, v). (3.345)

Integrating z over the whole u ray

r−gψ(u, v)

∫ uH

uI

dz ≤
∫ uH

uI

r−g |ψ(z, v)| dz + Cr−κ(u, v) ||ψ||H1 (u, v)

∫ uH

uI

dz. (3.346)

As
∫ uH
uI

dz = Cdom. a domain dependant constant. We need only worry about∫ uH

uI

r−g |ψ(z, v)| dz =

∫ uH

uI

√−rz |ψ(z, v)| · r−g√−rz
(z, v)dz

≤
(∫ uH

uI

−rzψ2(z, v)dz

) 1
2
(∫ uH

uI

r−2g

−rz
(z, v)dz

) 1
2

≤ ||ψ||L2 (uH, v)

(∫ uH

uI

r−2g

−rz
(z, v)dz

) 1
2

.

(3.347)

Estimating the latter term∫ uH

uI

r−2g

−rz
(z, v)dz =

∫ uH

uI

r−2g

r2
z

· −rz(z, v)dz =

∫ ∞
rH

r−2g

r2
z

dr ≤ C

[
r−2g−3

−2g − 3

]∞
rH

< Cgr
−2κ
min .

(3.348)

(recalling the results of theorem 3.7.3). We thus conclude∣∣r−gψ(u, v)
∣∣ ≤ Cg,M,l

(
||ψ||H1 (u, v) + ||ψ||L2 (uH, v)

)
. (3.349)

where Cg,M,l is a positive constant depending on the domain. The result then follows.

Corollary 3.7.6. For ψ ∈ H1
d ({r ≥ rY } ∩ B) we have that∣∣∣r 3

2
−κψ

∣∣∣ (u, v) ≤ Cg,M,l

(
||ψ||H1

d
(u, v) + ||ψ||L2 (uH, v)

)
. (3.350)

Proof. This is just an application of lemma 3.7.8, 3.7.9 and 3.7.10.

Red shift estimates in {r ≤ rX}

In this region we are bounded away from I. As such we are not worried about divergent

fluxes there, and we do not need to work within the twisted framework. Primarily we are

concerned by the degenerative properties of rv. To combat this we use a redshift argument

from [HS13b] adapted to this setting.
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Lemma 3.7.11. In the region {r ≤ rX} ∩ B we have a constant CX,g > 0, such that

1

CX,g
||ψ||H1

d
(u, v) ≤ ||ψ||H1

d
(u, v) ≤ CX,g ||ψ||H1

d
(u, v). (3.351)

Proof. The first key estimate is that

(∇̃uψ)2 ≤ 2(∇uψ)2 + 2
g2r2

u

r2
ψ2 (3.352)

Estimating

r2rv
Ω2

(∇̃uψ)2 ≤ 2
r2rv
Ω2

(∇uψ)2 + 2g2 r
2
urv
Ω2

ψ2

≤ 2
r2rv
Ω2

(∇uψ)2 − 2g2ru

(
r2

l2
− 2$

r

)
e−4πgψ2

ψ2

≤ 2
r2rv
Ω2

(∇uψ)2 − 2eg2ru
r2

l2
ψ2

≤ 2
r2rv
Ω2

(∇uψ)2 − 2e
g2

l2
r3
X

−ru
r
ψ2

≤ CX,g

(
r2rv
Ω2

(∇uψ)2 +
−ru
r
ψ2

)
.

(3.353)

Similarly

(∇uψ)2 ≤ 2(∇̃uψ)2 + 2
g2r2

u

r2
ψ2. (3.354)

We simply repeat the previous argument.

Lemma 3.7.12. We have in the region {r ≤ rX} ∩ B∣∣∣∣r 3
2
rψu
ru

∣∣∣∣ ≤ CX,g

(∣∣∣∣∣ r
5
2

−ru
∇̃uψ

∣∣∣∣∣+
∣∣∣r 3

2
−κψ

∣∣∣) . (3.355)

Proof. ∣∣∣∣r 3
2
rψu
ru

∣∣∣∣ =

∣∣∣∣∣r
5
2

ru

(
∇̃uψ +

gru
r
ψ
)∣∣∣∣∣ ≤ CX,g

(∣∣∣∣∣ r
3
2

−ru
∇̃uψ

∣∣∣∣∣+
∣∣∣r 5

2
−κψ

∣∣∣) . (3.356)

Lemma 3.7.13 (Basic Red Shift Estimate). We have that in the region {r ≤ rX} ∩ B∣∣∣∣rψuru (u, v)

∣∣∣∣ ≤ Ca,l,X

[
sup
D(u,v)

||ψ||H1
d

+ sup
I(v0)

∣∣∣∣r 3
2
rψu
ru

∣∣∣∣+ sup
I(v0)

∣∣∣r 3
2
−κψ

∣∣∣]+ |a| |ψ| (u, v). (3.357)

Proof. We adapt the proof of [HS13b] and [DR05] to this setting. We express the Klein-Gordon

106



equation in the following form

∂v

(
rψu
ru

(u, v)

)
= −ψv +

2arχψ

l2
− rψu

ru
ρ, (3.358)

where

ρ := 2χ
[$1

r2
+
r

l2
− 8πr

a

l2
ψ
]
. (3.359)

Now using lemma 3.7.3 we see that

$1

r2
+
r

l2
≥ 3

4l2
r, (3.360)

we see that for b sufficiently small enough that

ρ

χ
>

3rmin

2l2
> 0. (3.361)

Integrating (3.358) using the Duhamel formula gives

rψu
ru

(u, v) =

(
rψu
ru

(u, v0)

)
· exp

(∫ v

v0

−ρ(u, v̄)dv̄

)
+

∫ v

v0

[
exp

(
−
∫ v

v̄

ρ(u, v̂)dv̂

)(
−ψv +

2rχaψ

l2
(u, v̄)

)]
dv̄.

(3.362)

The first term is bounded by initial data, so we concern ourselves with the latter inhomogeneous

term. We start with the ψv term ∫ v

v0

exp

(
−
∫ v

v̄

ρ(u, v̂)dv̂

)
ψv

≤
(∫ v

v0

χ

r2
· exp

(
−2

∫ v

v̄

ρ(u, v̂)dv̂

)) 1
2
(∫ v

v0

ψ2
v

χ
r2(u, v̄)dv̄

) 1
2

.

(3.363)

The latter integral can be clearly controlled by the H1
d energy. Turning to the other integral

we may rewrite the integrand as∫ v

v0

χ

r2
· − exp

(
−2

∫ v

v̄

ρ(u, v̂)dv̂

)
=

∫ v

v0

χ

2ρr2
· ∂v̄ exp

(
−2

∫ v

v̄

ρ(u, v̂)dv̂

)
dv̄. (3.364)

We note the bound ∣∣∣∣ χ

2ρr2

∣∣∣∣ < l2

4rminr2
X

, (3.365)
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and estimate (3.364) by∫ v

v0

χ

r2
· exp

(
−2

∫ v

v̄

ρ(u, v̂)dv̂

)
dv <

l2

4rminr2
X

∫ v

v0

∣∣∣∣∂v̄ exp

(
−2

∫ v

v̄

ρ(u, v̂)dv̂

)∣∣∣∣ dv̄
=

l2

4rminr2
X

∫ v

v0

∂v̄ exp

(
−2

∫ v

v̄

ρ(u, v̂)dv̂

)
dv̄

=
l2

4rminr2
X

(
1− exp

(
−2

∫ v

v0

ρ(u, v̂)dv̂

))
≤ l2

4rminr2
X

.

(3.366)

We note that evaluating the derivative ∂v̄ exp
(
−2
∫ v
v̄
ρ(u, v̂)dv̂

)
, shows that the quantity has a

positive sign. We now study the term∫ v

v0

exp

(
−
∫ v

v̄

ρ(u, v̂)dv̂

)
2rχaψ

l2
dv, (3.367)

which we rewrite as ∫ v

v0

∂v̄ exp

(
−
∫ v

v̄

ρ(u, v̂)dv̂

)
· 2rχaψ

ρl2
dv̄. (3.368)

Integrating this by parts, and studying the surface terms we see that[
exp

(
−
∫ v

v̄

ρ(u, v̂)dv̂

)
· 2rχaψ

ρl2

]v
v0

=
2rχaψ

ρl2
|v − exp

(
−
∫ v

v0

ρ(u, v̂)dv̂

)
· 2rχaψ

ρl2
|v0

≤ ψ
ar

l2
· 1
$1

r2 + r
l2
− 4πr a

l2
ψ2

+

∣∣∣∣ψarl2 · 1
$1

r2 + r
l2
− 4πr a

l2
ψ2
|v0

∣∣∣∣
≤ |aψ|+ |aψ| |v0

≤ |aψ|+ sup
N(v0)

Ca,X

∣∣∣r 3
2
−κψ

∣∣∣ .
(3.369)

Where we note we have have invoked lemma (3.7.3) to control the 1
$1
r2

+ r
l2
−4πr a

l2
ψ2 term.

Turning to the bulk terms, first we compute

∂v

(
ψ

2rχ

ρ

)
=

2rχ

ρ

(
1 +

2rχ

ρ

8πa

l2
ψ2

)
ψv +

(
2rχ

ρ

)2(
3$1

r4
− 4πa

rl2
ψ2

)
ψrv −

(
2rχ

ρ

)2

2π
ψ

r

ψ2
v

χ
.

(3.370)

Noting that
2rχ

ρ
, ψ,$1 (3.371)

are bounded above and below on this domain. We clean up (3.370) to an expression of the form

∂v

(
ψ

2rχ

ρ

)
≤ C1 |ψv|+ C2 |ψ| rv + C3

∣∣∣∣ψr ψ2
v

χ

∣∣∣∣ . (3.372)
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The C1 term can be dealt with as in (3.363). We look at the C2 term, firstly recalling

µ1 =
−2$1

r
+
r2

l2
=
−4rurv

Ω2
, (3.373)

so

µ1χ = rv. (3.374)

From lemma 3.7.3 we have that µ1 is bounded on this domain. We estimate term by term∫ v

v0

dv̄

[
exp

(
−
∫ v

v̄

ρ(u, v̂)dv̂

)
|ψ| rv

]
≤
(∫ v

v0

ψ2

r
rv

) 1
2

·
(∫ v

v0

rχµ1 · exp

(
−2

∫ v

v0

ρ(u, v̂)dv̂

)) 1
2

.

(3.375)

As r, and µ1, are bounded, the latter term can be estimated by

sup

(
µ1
rχ

ρ

)∫ v

v0

∂v̄ exp

(
−2

∫ v

v0

ρ(u, v̂)dv̂

)
dv̄, (3.376)

thus this term can be controlled by ||ψ||H1
d
.

For the C3 term we need only apply the pointwise bound on ψ to get ||ψ||H1
d

control (after

bounding the r weights).

Theorem 3.7.4 (Red Shift Estimate). In the region {r ≤ rX}∩B we have a constant Cg,l,X > 0

such that ∣∣∣∣r 3
2
rψu
ru

(u, v)

∣∣∣∣ ≤ Cg,l,X

[
sup
D(u,v)

||ψ||H1
d

+ sup
I(v0)

∣∣∣∣r 3
2
rψu
ru

∣∣∣∣+ sup
I(v0)

∣∣∣r 3
2
−κψ

∣∣∣] , (3.377)

furthermore we also have

∣∣∣r 3
2
−κψ

∣∣∣ (u, v) ≤ Cg,l,X

[
sup
D(u,v)

||ψ||H1
d

+ sup
I(v0)

∣∣∣∣r 3
2
rψu
ru

∣∣∣∣+ sup
I(v0)

∣∣∣r 3
2
−κψ

∣∣∣] . (3.378)

Proof. We want to drop the ψ term on the right hand side of lemma 3.7.13, this is done by

integrating from the rX curve toward the horizon in u.

|ψ| (u, v) ≤ |ψ(urX , v)|+
∫ u

urX

∣∣∣∣rψuru
∣∣∣∣ −rur du. (3.379)

For clarity we quickly remark that from (3.255) we can construct the estimate∫ u

urX

−ru
r
du = ln

(
rX

r(u, v)

)
≤ ln

(
rX
rmin

)
<

1

2 |a| . (3.380)
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Inserting (3.380) into lemma 3.7.13, we see

|ψ| (u, v) ≤ |ψ(urX , v)|+ Ca,l,X

[
sup
D(u,v)

||ψ||H1
d

+ sup
I(v0)

∣∣∣∣r 3
2
rψu
ru

∣∣∣∣+ sup
I(v0)

∣∣∣r 3
2
−κψ

∣∣∣]+
1

2
|ψ| (u, v).

(3.381)

Absorbing the ψ term on the LHS gives

|ψ| (u, v) ≤ |ψ(urX , v)|+ Ca,l,X

[
sup
D(u,v)

||ψ||H1
d

+ sup
I(v0)

∣∣∣∣r 3
2
rψu
ru

∣∣∣∣+ sup
I(v0)

∣∣∣r 3
2
−κψ

∣∣∣] . (3.382)

Which in this region implies

∣∣∣r 3
2
−κψ

∣∣∣ (u, v) ≤
∣∣∣r 3

2
−κψ(urX , v)

∣∣∣+ Ca,l,X

[
sup
D(u,v)

||ψ||H1
d

+ sup
I(v0)

∣∣∣∣r 3
2
rψu
ru

∣∣∣∣+ sup
I(v0)

∣∣∣r 3
2
−κψ

∣∣∣] .
(3.383)

Recalling that {r ≤ rX} ⊂ {r ≤ rY }, and invoking corollary 3.7.6

∣∣∣r 3
2
−κψ

∣∣∣ (u, v) ≤ Ca,l,X

[
sup
D(u,v)

||ψ||H1
d

+ sup
I(v0)

∣∣∣∣r 3
2
rψu
ru

∣∣∣∣+ sup
I(v0)

∣∣∣r 3
2
−κψ

∣∣∣] , (3.384)

showing (3.378). (3.377) then follows.

Corollary 3.7.7. In the region {r ≤ rX} ∩ B we have a constant Ca,l,X > 0, such that∣∣∣∣∣r
5
2

ru
∇̃uψ

∣∣∣∣∣ ≤ Ca,l,X

[
sup
D(u,v)

||ψ||H1
d

+ sup
I(v0)

∣∣∣∣r 3
2
rψu
ru

∣∣∣∣+ sup
I(v0)

∣∣∣r 3
2
−κψ

∣∣∣] . (3.385)

Proof. We trivially estimate by

r
3
2

−ru
∇̃uψ =

r
3
2

−ru
∇uψ + gr

1
2ψ∣∣∣∣∣ r

3
2

−ru
∇̃uψ

∣∣∣∣∣ ≤ CX

∣∣∣∣r 3
2
rψu
ru

∣∣∣∣+
∣∣∣gr 3

2ψ
∣∣∣ . (3.386)

Whence the result follows.
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Estimates in the whole bootstrap region

Lemma 3.7.14 (Energy estimate). We have in B

||ψ||H1
1

(u, v) ≤ C

[
sup
D(u,v)

||ψ||H1
d

+ sup
I(v0)

(∣∣∣∣∣ r
5
2

−ru
∇̃uψ

∣∣∣∣∣+
∣∣∣r 3

2
−κψ

∣∣∣)] . (3.387)

Proof. Firstly let us note∫ u

uI

r4

−ru
(∇̃uψ)2 +

(−ru)
r

ψ2du =

∫ u

uI

1{r≥rX}

(
r4

−ru
(∇̃uψ)2 +

(−ru)
r

ψ2

)
du

+

∫ u

uI

1{r≤rX}

(
r4

−ru
(∇̃uψ)2 +

(−ru)
r

ψ2

)
du.

(3.388)

Now from lemma 3.7.8 we have∫ u

uI

1{r≥rX}

(
r4

−ru
(∇̃uψ)2 +

(−ru)
r

ψ2

)
du ≤ Cl,Y ||ψ||H1

d
(u, v), (3.389)

and from lemma 3.7.11∫ u

uI

1{r≤rX}

(
r4

−ru
(∇̃uψ)2 +

(−ru)
r

ψ2

)
du ≤ CX,g

∫ u

uI

1{r≤rX}

(
r4

−ru
(∇uψ)2 +

(−ru)
r

ψ2

)
du.

(3.390)

Using the results of theorem 3.7.4 we see∫ u

uI

1{r≤rX}
r4

−ru
(∇uψ)2du =

∫ u

uI

1{r≤rX}

(
r

3
2
rψu
ru

)2 −ru
r
du

≤ sup
r≤rX

∣∣∣∣r 3
2
rψu
ru

∣∣∣∣2 ln

(
rX
rmin

)
≤ Cg,l,X

[
sup
D(u,v)

||ψ||H1
d

+ sup
I(v0)

∣∣∣∣r 3
2
rψu
ru

∣∣∣∣+ sup
I(v0)

∣∣∣r 3
2
−κψ

∣∣∣] .
(3.391)

An application of corollary 3.7.7 gives∣∣∣∣r 3
2
rψu
ru

∣∣∣∣ =

∣∣∣∣∣r
5
2

ru

(
∇̃uψ +

gru
r
ψ
)∣∣∣∣∣ ≤ Cg

(∣∣∣∣∣ r
5
2

−ru
∇̃uψ

∣∣∣∣∣+
∣∣∣r 3

2
−κψ

∣∣∣) , (3.392)

and the result follows.

Corollary 3.7.8. We have in the bootstrap region

||ψ||H1 (u, v) ≤ Cg,M,κ

(
||ψ||H1 (uH, v0) + sup

I(v0)

(∣∣∣r 1
2 ∇̃uψ

∣∣∣+
∣∣∣r 3

2
−κψ

∣∣∣)+ b4

)
. (3.393)

Corollary 3.7.9. In the region B we have that for b sufficiently small∣∣∣r 3
2
−κψ

∣∣∣ < b
3
2 . (3.394)
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Proof. From lemma 3.7.10 we have that∣∣∣r 3
2
−κψ

∣∣∣ (u, v) ≤ Cg,M,l

(
||ψ||H1 (u, v) + ||ψ||L2 (uH, v)

)
≤ Cg,M,l

(
||ψ||H1 (uH, v0) + sup

I(v0)

(∣∣∣∣∣ r
5
2

−ru
∇̃uψ

∣∣∣∣∣+
∣∣∣r 3

2
−κψ

∣∣∣)+ b4

)
,

(3.395)

so from the smallness of the initial data we conclude that∣∣∣r 3
2
−κψ

∣∣∣ < Cg,M,κb
2 < b

3
2 . (3.396)

Theorem 3.7.5. We have that B = RH.

Proof. We know that B is an open non empty subset of RH. Now fix a point (u∗, v∗) ∈ B, and

take a sequence (un, vn) → (u∗, v∗), as n → ∞, from the continuity of r and ψ we must have

that ∣∣∣r 3
2
−κψ

∣∣∣ (u∗, v∗) ≤ b
3
2 < b. (3.397)

So we conclude that (u∗, v∗) ∈ B. B is then closed, and hence B = RH.

Remark 3.7.3. It follows from theorem 3.7.5 that

|$(u, v)−M | 12 +
∣∣∣r 3

2
−κψ(u, v)

∣∣∣+ ||ψ||H1 (u, v)

≤ Cl,M,g

(
||ψ||H1 (uH, v0) + sup

I(v0)

(∣∣∣∣∣ r
5
2

−ru
∇̃uψ

∣∣∣∣∣+
∣∣∣r 3

2
−κψ

∣∣∣)) . (3.398)

holds in RH.

Consequence of the bootstrap estimates

Metric function estimates

Lemma 3.7.15. We have in the regular region the estimate

|2χ− 1| 12 ≤ Cg,M,κ

(
||ψ||H1 (uH, v0) + sup

I(v0)

(∣∣∣∣∣ r
5
2

−ru
∇̃uψ

∣∣∣∣∣+
∣∣∣r 3

2
−κψ

∣∣∣)) . (3.399)

Proof. Recall that χ = Ω2

−4ru
satisfies the equation

∂u (lnχ) =
4πr

ru
(∂uψ)2 . (3.400)

Integrating this equation gives

χ = χ|I exp

(∫ u

uI

− 4πr

−ru
(∂uψ)2 du

)
. (3.401)
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Using a Young estimate in one direction

r

−ru
ψ2
u ≤ 2

r

−ru

(
∇̃uψ

)2

+
2g2(−ru)

r
ψ2 ≤ Cg

(
r4

−ru

(
∇̃uψ

)2

+
−ru
r
ψ2

)
, (3.402)

and the negativity of the integrand in the other, we have

1

2
exp

(
−Cg ||ψ||2H1 (u, v))

)
≤ χ ≤ 1

2
. (3.403)

The result now follows from the energy estimate (3.398).

Corollary 3.7.10. There exists a constant Cg > 0 such that in the regular region

− 2
(
1 + Cgb

2
)
ru ≤ Ω2 ≤ −2ru. (3.404)

Corollary 3.7.11. In the set {r ≥ rY } ∩RH we have from lemma 3.7.6 that

Ω2 ≤ CY r
2. (3.405)

Lemma 3.7.16. We have that

r̃v|I = − 1

2l2
. (3.406)

Proof. Recall that from the definition of the Hawking mass

rv =
Ω2

−4ru

(
r2

l2
− 2$

r

)
e−4πgψ2

. (3.407)

Which implies

r̃v = −χ
(

1

l2
− 2$

r3

)
e−4πgψ2

. (3.408)

Taking the limit r →∞, we have that

r̃v|I = − 1

2l2
. (3.409)

Lemma 3.7.17. In RH

rv ≤
1

2l2
(
1 + Cg,lb

2
)
r2. (3.410)

Proof. Firstly it is possible to rewrite the r̃uv equation (3.22) as

r̃uv = $Ω2e−4πgψ2 3

4r4
− 1

rl2
Ω2

(
3

4
e−4πgψ2 − 3

4
+ 2πaψ2

)
. (3.411)

For ψ2 small

0 ≤ 3

4
e−4πgψ2 − 3

4
+ 2πaψ2 ≤ πg2ψ2. (3.412)
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So in (3.411) we drop the positive terms, and bound by

r̃uv ≥ −
1

rl2
Ω2

(
3

4
e−4πgψ2 − 3

4
+ 2πaψ2

)
≥ −Cg,lb2r−4+2κ(−ru).

(3.413)

We then integrate this inequality, and use lemma 3.7.16 to see

r̃v ≥ −
1

2l2
(
1 + Cg,lb

2
)
. (3.414)

The result then follows.

Lemma 3.7.18. In RH

rv ≤
1

2

(
1 + Cb2

)
Ω2. (3.415)

Proof. Integrating (3.9) shows

rv
Ω2

(u, v) ≤ rv
Ω2

(u, v0) =
1

4

(
r2

l2
− 2$

r

)
e−4πgψ2

−ru
(u, v0)

=
1

2

(
1− l2$

r3

)
e−4πgψ2

(u, v0) ≤ 1

2

(
1 + Cb2

)
.

(3.416)

From here the result follows.

We now collect these estimates in the convenient corollary:

Corollary 3.7.12 (Global Estimates). There exists constants Ci > 0 depending on g,M, l such

that in RH

rv ≤ C1r
2 ≤ −C2ru ≤ C3Ω2 ≤ −C4ru. (3.417)

Lemma 3.7.19. In the region {r ≥ rY } ∩RH we have

Ω2 ≤ CY,lrv. (3.418)

Proof.

Ω2 =
−4rurv

−2$
r

+ r2

l2

e4πgψ2 ≤ CY,lrv. (3.419)

Corollary 3.7.13. In the region {r ≥ rY } ∩RH we have

r2 ≤ CY,lrv. (3.420)

Corollary 3.7.14 (Stronger estimates away from the degeneration). In the region RH ∩ {r ≥
rY }, there exists constants Ci > 0, depending on Y, g,M, l such that

r2 ≤ C1rv ≤ −C2ru ≤ C3Ω2 ≤ C4r
2. (3.421)
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Lemma 3.7.20. In RH we have

µ1 = e−4πgψ2

µ. (3.422)

Proof. This follows from the observation

$1 = $e−4πgψ2 − r3

2l2

(
e−4πgψ2 − 1

)
. (3.423)

Corollary 3.7.15. In RH we have

eµ ≥ µ1 ≥ µ. (3.424)

Pointwise u−derivative decay

To complete our estimates we need to control ∇̃uψ in the region containing I. We proceed by

integrating the Klein-Gordon equation in this region.

Lemma 3.7.21. We have in {r ≥ rY } ∩R

∣∣∣r 1
2 ∇̃uψ

∣∣∣ ≤ Cg,M,κ,Y

(
||ψ||H1 (u, v) + sup

I(v0)

(∣∣∣r 1
2 ∇̃uψ

∣∣∣)) . (3.425)

Proof. Recall equation (3.23)

∂v

(
r∇̃uψ

)
= −ru

(
−1

2
+ κ

)
∇̃vψ −

Ω2

4
rV ψ, (3.426)

where

V =
2g2

r3
$1 +

8πag

l2
ψ2. (3.427)

Using the results of the bootstrap arguments, and the metric function estimates we can easily

see

Corollary 3.7.16. In {r ≥ rY } ∩R∣∣∣∣V − 2g2M

r3

∣∣∣∣ ≤ CM,g,lb
2r−3+2κ. (3.428)

From which the following estimate follows

|V | ≤ CM,l,gr
−3+2κ. (3.429)

Integrate equation (3.23) to get∣∣∣r∇̃uψ(u, v)
∣∣∣ ≤ ∣∣∣r∇̃uψ(u, v0)

∣∣∣+

∣∣∣∣∫ v

v0

−ru
(
−1

2
+ κ

)
∇̃vψdv

∣∣∣∣+

∣∣∣∣∫ v

v0

−Ω2

4
rV ψdv

∣∣∣∣ . (3.430)
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Estimating term by term, working from left to right∣∣∣r∇̃uψ(u, v0)
∣∣∣ =

∣∣∣r 1
2 · r 1

2 ∇̃uψ(u, v0)
∣∣∣ ≤ sup

I(v0)

∣∣∣r 1
2 ∇̃uψ(u, v)

∣∣∣ · C · r 1
2 (u, v0). (3.431)

As we are in the regular region we have that r(u, v) ≥ r(u, v0). Thus∣∣∣r∇̃uψ(u, v0)
∣∣∣ ≤ C sup

I(v0)

∣∣∣r 1
2 ∇̃uψ(u, v)

∣∣∣ · r 1
2 (u, v). (3.432)

For the next term∫ v

v0

−ru
(
−1

2
+ κ

)
∇̃vψ =

∫ v

v0

−ru ·
( r

Ω
∇̃vψ

)((
−1

2
+ κ

)
Ω

r

)
dv

≤ Cκ

(∫ v

v0

−rur2

Ω2

(
∇̃vψ

)2

dv

) 1
2
(∫ v

v0

−ru
Ω2

r2
dv

) 1
2

≤ Cκ ||ψ||H1
d

(u, v)

(∫ v

v0

−ru
Ω2

r2
dv

) 1
2

.

(3.433)

From theorem 3.7.3 ∫ v

v0

−ru
Ω2

r2
dv ≤ CM,l,g

∫ v

v0

rvdv

≤ CM,l,gr.

(3.434)

So we have ∣∣∣∣∫ v

v0

−ru
(
−1

2
+ κ

)
∇̃vψdv

∣∣∣∣ ≤ CM,l,gr
1
2 ||ψ||H1

d
(u, v). (3.435)

For the final term we compute∫ v

v0

−Ω2

4
rV ψdv ≤ CM,l,g

∫ v

v0

rvr
−2+2κψdv

≤ CM,l,g

(∫ v

v0

rv
r
ψ2dv

) 1
2
(∫ v

v0

rvr
−3+4κdv

) 1
2

≤ CM,l,g ||ψ||H1
d

(u, v)

(∫ v

v0

r−3+4κrvdv

) 1
2

≤ CM,l,gr
−1+2κ ||ψ||H1

d
(u, v)

≤ CM,l,gr
1
2 ||ψ||H1

d
(u, v).

(3.436)

Combining all these estimates we have

∣∣∣r∇̃uψ(u, v)
∣∣∣ ≤ CM,l,gr

1
2

(
||ψ||H1

d
(u, v) + sup

I(v0)

∣∣∣∇̃uψ(u, v)
∣∣∣) , (3.437)

from which we deduce the result.

116



Corollary 3.7.17. Using theorem 3.7.3 we see this estimate is equivalent to∣∣∣∣∣ r
5
2

−ru
∇̃uψ

∣∣∣∣∣ ≤ Cg,M,l,Y

(
||ψ||H1 (u, v) + sup

I(v0)

(∣∣∣∣∣ r
5
2

−ru
∇̃uψ

∣∣∣∣∣+
∣∣∣r 3

2
−κψ

∣∣∣)) , (3.438)

or alternatively∣∣∣∣∣r
5
2
−κ

−ru
ψu

∣∣∣∣∣ ≤ Cg,M,l,Y

(
||ψ||H1 (u, v) + sup

I(v0)

(∣∣∣∣∣ r
5
2

−ru
∇̃uψ

∣∣∣∣∣+
∣∣∣r 3

2
−κψ

∣∣∣)) . (3.439)

Concluding the proof of theorem 3.7.1.

3.7.2 Completeness of null infinity

Proposition 3.7.1. Let vm = supv≥v0
{v|(uH, v) ∈ Q}. Then it is the case that vm =∞.

Proof. This result is an adaptation of the proof in [HS13b] to this setting. Consider curves of

constant r. In RH we have that these are timelike and foliate RH. We now have two cases:

• None of the constant r curves have a future limit (uH, vm), (i.e. they all intersect the

horizon).

• There is an R, such that r = R has a future limit point (uH, vm). (And hence also true

for all r = R′ with R′ > R).

We deal with the latter case first.

Consider the infinite ‘zig-zag’ curve as depicted below:

u = uH

v = v0

Ir = R

Now we see that the v-length of each constant u-piece Ui is uniformly bounded below. This is

done by checking the bounds on χ, and µ1

r2 ≤ 2
l2

for large enough R. In this case we have

l2

2
χ
µ1

r2
≤ 1

2
< 1. (3.440)
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Recalling that χµ1 = rv, we derive∫
Ui
dv ≥ l2

2

∫
χ
µ1

r2
dv =

l2

2

∫
rv
r2
dv ≥ l2

2R
. (3.441)

There are infinity many Ui in the zig-zag curve. (If there were a finite number then there must

be some N ∈ N such that UN is the ray γ : (uH, v), v ∈ (vN , vm). This ray is bounded to right

of r = R, so we must have that r = R has become null, a contradiction). It follows that vm =∞.

We now deal with the first case, here we must have that limv→vm r(uH, v) = ∞. We will

assume that vm = V < ∞, and contradict that u = uH is the last u-ray in which r = ∞
can be reached. First pick r = R very large, in view of the bounds on $,$1, χ we have that

µ1 > c > 0, and µ ≥ e−1c hold in RH. This is trivial in RH ∩ {r ≥ R} by computation. For

RH ∩ {r ≤ R} we have its true by compactness, (since rv = 0 cannot hold, as this would con-

tradict that r →∞ along any u = const ray in RH). Note that µ ≥ e−1µ1 = rv
η
e−1 > ce−1 > 0.

Thus showing (3.112) holds. By a change of u coordinate we can locally straighten out the

boundary and achieve u = v there. We now satisfy the conditions of the extension principle

near infinity. We extend our spacetime to the depicted triangle

u = uH

I

v = v0

r = R

This contradicts the assumption that uH is the last ray along which r →∞ can be reached.

3.8 Asymptotic stability

We have now established that we have a complete black hole spacetime, which is asymptotically

AdS. We seek now to prove that the H1 norm of the field ψ is decaying exponentially in the

v-coordinate to 0. From here we can see that across any u = const slice, that metric is decaying

uniformly to a toroidal AdS Schwarzschild solution of mass M . This is in contrast to what was

seen the linear problem of the previous chapter. In that setting it was proven that polynomial

decay of the field held, but exponential decay did not. The barrier to exponential decay was

shown to be linked to null geodesics being far away from the horizon, and possessing non zero

angular momentum. For solutions to our toroidally symmetric problem we now show that this

is no longer the case. The symmetry restrictions no longer allow us to construct null geodesics
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with this property, and we will see the field decays exponentially. We establish asymptotic

stability through Morawetz estimates. The core result we aim to prove in this section is∫
D

r4

−ru
(∇̃uψ)2 + (−ru)ψ2 +

−rur2

Ω2
(∇̃vψ)2 +

rv
r
ψ2dudv ≤ Cl,g,MF(u, v). (3.442)

From this we can extract exponential decay of a key flux quantity, implying decay of the field.

We follow the vector field method of the previous chapter. However due to the complexities

from the non-linearities and the ungeometrical nature of twisting, we prefer to work with the

standard energy-momentum tensor. We use this to prove a global but low weighted integrated

decay estimate. The low weights ensure that the technicalities of infinite fluxes are not present,

and twisting is not needed. We then optimise the weights by directly multiplying the Klein-

Gordon equation in twisted form, as seen in the classical methods of Morawetz [Mor61].

It will be fruitful in this section to make and remind ourselves of the following definitions

χ :=
Ω2

−4ru
, γ :=

Ω2

4rv
. (3.443)

In order to make the proof of this result more manageable we split it into three theorems

Theorem 3.8.1 (Low Weighted Degenerate Global Estimate). In RH, for κ < 1
2
, we have the

following estimate

Ideg[ψ] :=

∫
D

r−6

(
1

γ2
ψ2
u +

1

χ2
ψ2
v

)
Ω2r2

2
dudv +

∫
D

(
1− |a|
r

)
ψ2 Ω2

2
r2dudv ≤ Cl,g,MF(u, v).

(3.444)

Remark 3.8.1. While this estimate is low weighted it has the advantage of hold globally on

the spacetime. It is insufficient to prove exponential decay of ψ, due the degeneration at the

boundary of the regular region appearing in the γ factor, and that the powers of r are too low to

control an integrated H1 norm. However it allow us to localise estimates to either a region near

I, or to a region {r ≤ rX}, where more specialised vector fields can be used. The proof of this

theorem is inspired from §5.3 of [HS13b] but has been expanded into more detail (in particular

towards the boundary terms and generalised to cover more choices of multiplier).

Theorem 3.8.2 (Red Shift estimate). In RH for κ < 1
2
, we have the following estimate∫

D

1

r7

(
r4

−ru
(∇̃uψ)2 +

−rur2

Ω2
(∇̃vψ)2

)
dūdv̄

+

∫
D

((1− |a|) r) (−ru)ψ2 + ((1− |a|) r) rvψ2dūdv̄ ≤ Cl,g,MF(u, v).

(3.445)

Remark 3.8.2. With the global estimate proven we use smoothed cut-off functions in order

to remove the degeneration coming from the γ term. This is done using a redshift vector field

localised to the region {r ≤ rX}. We may also convert back to using twisted derivatives. This

estimate implies local energy decay, that is in any compact region we have the field is decaying

exponentially but it is insufficient for a global decay statement.
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Theorem 3.8.3 (Morawetz Estimate). In RH, for κ < 1
2
, we have the following estimate∫

D

r4

−ru
(∇̃uψ)2 + (−ru)ψ2 +

−rur2

Ω2
(∇̃vψ)2 +

rv
r
ψ2dudv ≤ Cl,g,MF(u, v). (3.446)

Remark 3.8.3. To show this, we localise a vector field to a region near I where the spacetime

is behaving like AdS. In this region the estimates of corollary 3.7.14 hold. With these estimates

we can sharpen the r weights of theorem 3.8.2 to a global integrated decay estimate. Exponential

decay of the fields follows from this estimate.

3.8.1 Useful estimates and identities

Lemma 3.8.1 (Hardy estimate in v). In {r ≥ rY } ∩RH the following estimate holds∫ v

v0

ψ2rvdv ≤ CY,l,gF(u, v). (3.447)

Proof.∫ v

v0

ψ2rvdv =

∫ v

v0

(
ψr

3
2
−κ
)2

∂v

(
r−2+2κ

−2 + 2κ

)
dv

=

[
rψ2 1

−2 + 2κ

]v
v0

+
1

2− 2κ

∫ v

v0

rψ∇̃vψdv

≤ Cg ||ψ||H1 (u, v0) +

∫ v

v0

2 (
√
rvψ)

(
r√

rv (2− 2κ)
∇̃vψ

)
dv

≤ Cg ||ψ||H1 (u, v0) + ε

∫ v

v0

ψ2rvdv +
1

ε (4− 4κ)2

∫ v

v0

r2

rv

(
∇̃vψ

)2

dv,

(3.448)

choosing ε < 1 and using corollary 3.7.14 completes the proof.

Vector field identities

Let X be a vector field of the following form, Xu(u, v)∂u +Xv(u, v)∂v.

We define the deformation tensor as

2Xπαβ = ∇αXβ +∇βXα = gαγ∂γX
β + gβδ∂δX

α + gαγgβδgγδ,µX
µ. (3.449)

We’ll usually suppress the X in the notation for convenience.

We compute the non zero components

πuu = − 2

Ω2
∂vX

u, πvv = − 2

Ω2
∂uX

v, (3.450)

πuv = − 1

Ω2
(∂vX

v + ∂uX
u)− 2

Ω2

(
Ωu

Ω
Xu +

Ωv

Ω
Xv

)
, (3.451)
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πxx =
1

r3
(ruX

u + rvX
v) , πyy =

1

r3
(ruX

u + rvX
v) . (3.452)

Defining the energy momentum tensor

Tµν [ψ] = ∇uψ∇ν −
1

2
gµν∇σψ∇σψ − a

l2
ψ2gµν , (3.453)

The non zero components are

Tuu = (∇uψ)2, Tvv = (∇vψ)2, Tuv =
aΩ2

2l2
ψ2, (3.454)

Txx = Tyy =
2

Ω2
r2∇uψ∇vψ −

a

l2
r2ψ2. (3.455)

Computing the divergence of T, we get the usual relation

∇µTµν [ψ] = (∇νψ)

(
�gψ −

2a

l2
ψ

)
= 0. (3.456)

Now, defining the energy current

JXµ [ψ] = TXµνXν , (3.457)

and the associated bulk term

KX [ψ] =∇µJXµ = Tµνπµν . (3.458)

We can expand KX as

KX [ψ] =− 2

Ω2
(∂vX

u)(∂uψ)2 − 2

Ω2
(∂uX

v)(∂vψ)2

+ (∂uψ)(∂vψ)

(
4ru
Ω2r

Xu +
4rv
Ω2r

Xv

)
− a

l2
ψ2

(
∂uX

u +

(
2
ru
r

+ 2
Ωu

Ω

)
Xu + ∂vX

v +

(
2
rv
r

+ 2
Ωv

Ω

)
Xv

)
.

(3.459)

Motivated heavily by the linear theory in chapter 2 (X = F (r)R), we consider a vector field of

the form

X = − rv
Ω2
· F (r)∂u +− ru

Ω2
· F (r)∂v. (3.460)

Where F is bounded and sufficiently smooth. We thus compute

∂vX
u = 4πr

(∂vψ)2

Ω2
F − r2

v

Ω2
F ′, (3.461)

∂uX
v = 4πr

(∂uψ)2

Ω2
F − r2

u

Ω2
F ′, (3.462)

∂uX
u + 2

Ωu

Ω
Xu + ∂vX

v + 2
Ωv

Ω
Xv = −2

rurv
Ω2

F ′ − 2
ruv
Ω2

F. (3.463)

121



Then we express KX as

KX = KX
main +KX

error, (3.464)

where the terms are defined by

KX
main = 2F ′

( rv
Ω2
ψu +

ru
Ω2
ψv

)2

+ ψuψv

(
−4rurv

Ω4

(
F ′ +

2

r
F

))
− a

l2
ψ2

(
−2f − 2

rvru
Ω2

(
F ′ +

2

r
F

)
− 2ruv

Ω2
F

)
,

KX
error =

−16

Ω4
πrψ2

uψ
2
vF.

(3.465)

3.8.2 Low weighted global energy estimate

We now prove the low weighted degenerate global Morawetz estimate. To do this we will study

multipliers of the form

F (r) = −r−n. (3.466)

We need several lemmas to construct the estimate.

Lemma 3.8.2. In RH for κ < 1
2∫
D(u,v)×T2

∇µJXµ ≤ Cl,g,MF(u, v). (3.467)

Proof. Studying the surface terms∫
D(u,v)×T2

∇µJXµ =

∫ v

v0

(TvvV v + TuvXu) r2(u, v)dv +

∫ u

uI

(TuuXu + TuvXv) r2(u, v)du

−
∫ u

u0

(TuuXu + TuvXv) r2(u, v0)du−
∫
I
TµνXµn̂νdσI .

(3.468)

I surface

The metric restricted to constant r̃ surfaces is given by

h = −Ω2 rv
−ru

dv2 + r2
(
dx2 + dy2

)
. (3.469)

The surface form is given by

dσr̃=const =

√∣∣∣∣Ω2
rv
−ru

r4

∣∣∣∣dvdxdy, (3.470)

and the unit normal

n̂ =

√
−rv
Ω2ru

∂u −
√
−ru
Ω2rv

∂v. (3.471)
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As this surface is timelike we consider the inward pointing unit vector. We compute

n̂
√
|h| = r2 rv

−ru
∂u − r2∂v. (3.472)

Exploring the flux terms we see

TµνXµn̂νdσI = (TuuXu + TuvXv)
rv
−ru

r2 − (TvvXv + TuvXu) r2

=

(
(∇uψ)2 rv

Ω2
r−n +

aΩ2

2l2
ψ2 ru

Ω2
r−n
)

rv
−ru

r2 −
(

(∇vψ)2 ru
Ω2
r−n +

aΩ2

2l2
ψ2 rv

Ω2
r−n
)
r2

=r2−n Ω2

−ru

(
(Rψ)2 −

(
ru + rv

Ω2

)
∇uψ∇vψ +

a

l2
rurv
Ω2

ψ2

)
=r2−n Ω2

−ru
(Rψ)2 ,

(3.473)

(we may neglect the latter terms on the boundary through the density argument). Now using

the relationship

Rψ = R̃ψ − 2grurv
rΩ2

ψ, (3.474)

we see that all these terms vanish on the boundary.

Fixed u, v surfaces

We study the flux on the surface of fixed u. Splitting the region into a section where r ≤ rY .

We see∫ v

v0

(TvvXv + TuvXu) r2(u, v̄)dv̄ =

∫ v

v0

−ru
Ω2rn−2

ψ2
v −

a

2l2rn−2
rvψ

2dv

≤
∫ v

v0

−2ru
Ω2rn−2

(∇̃vψ)2 +
−2ru
Ω2
· g

2r2
v

rn
ψ2 − a

2l2rn−2
rvψ

2dv.

(3.475)

The middle term of the integrand can be estimated by

−2ru
Ω2
· g

2r2
v

rn
ψ2 ≤ CM,l,gr

2−nrvψ
2 ≤ CY,M,l,g

rv
r
ψ2. (3.476)

The final term of the integrand, for n ≥ 3 we can bound by

− a

2l2rn−2
rvψ

2 ≤ − a

2l2
rv
r
ψ2. (3.477)

For n < 3 we can estimate by

− a

2l2rn−2
rvψ

2 ≤ −ar
−n+3
Y

2l2
rv
r
ψ2. (3.478)
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In the region r ≥ rY , assuming n ≤ 2

−2ru
Ω2
· g

2r2
v

rn
ψ2 ≤ CY,l,gr

2−nrvψ
2 ≤ CY,l,grvψ

2. (3.479)

We can control this by the initial energy using lemma (3.8.1). We thus see that∫ v

v0

(TvvXv + TuvXu) r2(u, v̄)dv̄ ≤ Cl,g,MF(u, v). (3.480)

As the integrand for the other surface is of the form

(TuuXu + TuvXv) r2 =
−rv

Ω2rn−2
ψ2
u +

a

2l2rn−2
ruψ

2, (3.481)

it may be treated in the same way.

Lemma 3.8.3. In RH, for κ < 1
2
, we have the following global integrated decay estimate

Ideg[ψ] :=

∫
D

r−6

(
1

γ2
ψ2
u +

1

χ2
ψ2
v

)
Ω2r2

2
dudv +

∫
D

(
1− |a|
r

)
ψ2 Ω2

2
r2dudv ≤ Cl,g,MF(u, v).

(3.482)

Proof.

Bulk terms

We now look at the bulk term

KX,0
main =(2 + n)r−n−1

( rv
Ω2
ψu +

ru
Ω2
ψv

)2

− 4(2− n)
rurv
Ω4

r−n−1ψuψv +
a

l2
ψ2r−n

(
2(n− 2)

rurv
rΩ2
− 2

ruv
Ω2

)
=(2 + n)r−n−1

( rv
Ω2
ψu +

ru
Ω2
ψv

)2

+ (n− 2)r−n−1
( rv

Ω2
ψu −

ru
Ω2
ψv

)2

+
a

l2
ψ2r−n

(
2(n− 2)

rurv
rΩ2
− 2

ruv
Ω2

)
=(2 + n)r−n−1 (Rψ)2 + (n− 2)r−n−1 (T ψ)2 +

a

l2
ψ2r−n

(
2(n− 2)

rurv
rΩ2
− 2

ruv
Ω2

)
,

(3.483)

so the first order terms have a good sign for n ≥ 2.

As for the zeroth order terms

a

l2
ψ2r−n−1 2(n− 2)rurv

Ω2︸ ︷︷ ︸
≥0

−2a

l2
ψ2r−n

ruv
Ω2

. (3.484)

The first term has a good sign for (n ≥ 2). For the second term we analyse through the ruv

equation (3.10). We recall this may be expressed as

ruv = −Ω2

2

(
$1

r2
+
r

l2
− 4πar

l2
ψ2

)
. (3.485)
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The term thus has the form

− a

l2
r−nψ2

(
2
ruv
Ω2

)
=

a

l2rn

(
$1

r2
+
r

l2
− 4πar

l2
ψ2

)
︸ ︷︷ ︸

≥0

ψ2, (3.486)

so it has a negative sign. We proceed by proving a Hardy type inequality to absorb it.

First note that from the ($1) Hawking mass equations we can show that

1

2ru
∂uµ1 −

8πrrv
ruΩ2

(∂uψ)2 =
r

l2
+
$1

r2
− 4πar

l2
ψ2, (3.487)

and
1

2rv
∂vµ1 −

8πrru
rvΩ2

(∂vψ)2 =
r

l2
+
$1

r2
− 4πar

l2
ψ2. (3.488)

We now integrate (3.486) (recall
√
g = Ω2

2
r2)∫

D(u,v)

a

l2rn

(
$1

r2
+
r

l2
− 4πar

l2
ψ2

)
ψ2 Ω2

2
r2dudv

=
1

2

∫
D

a

l2rn−2
ψ2

(
−χ · µ1,u −

4πrrv
ru

(∂uψ)2

)
dudv

+
1

2

∫
D

a

l2rn−2
ψ2

(
γ · µ1,v −

4πrru
rv

(∂vψ)2

)
dudv.

(3.489)

Integrating the first term by parts and recalling the following relation

µ1 =
−4rurv

Ω2
, (3.490)

and from the Raychaudhuri equations

∂uχ = −Ω2

r2
u

rπψ2
u, (3.491)

and

∂vγ =
Ω2

r2
v

rπψ2
v . (3.492)

We can then compute

µ1∂u
(
χr−n+2ψ2

)
= r−n+2

(
(2− n)rurv

r
ψ2 + 2rvψψu +

4πrrv
ru

ψ2
u

)
, (3.493)

and

− µ1∂v
(
γr−3ψ2

)
= r−n+2

(
(2− n)rurv

r
ψ2 + 2ruψψv +

4πrru
rv

ψ2
v

)
. (3.494)
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We see that∫
D(u,v)

a

l2rn

(
$1

r2
+
r

l2
− 4πar

l2
ψ2

)
ψ2 Ω2

2
r2dudv =∫

D

4a

l2rn−2
γχµ1ψ

(
1

4γ
ψu −

1

4χ
ψv

)
+

(2− n)a

l2rn−1
rurvψ

2dudv −
∫ u

u0

a

l2rn−2
ψ2(−ru)(ū, v0)dū

+

∫ u

uI

a

l2rn−2
ψ2(−ru)(ū, v)dū−

∫ v

v0

a

l2rn−2
ψ2rv(u, v̄)dv̄.

(3.495)

We rewrite as∫
D(u,v)

−a
l2rn

(
$1

r2
+
r

l2
− 4πar

l2
ψ2

)
ψ2 Ω2

2
r2dudv =∫

D

−4a

l2rn−2
γχµ1ψ

(
1

4γ
ψu −

1

4χ
ψv

)
+

(n− 2)a

l2rn−1
rurvψ

2dudv

−
∫ u

u0

−a
l2rn−2

ψ2(−ru)(ū, v0)dū+

∫ u

uI

−a
l2rn−2

ψ2(−ru)(ū, v)dū−
∫ v

v0

−a
l2rn−2

ψ2rv(u, v̄)dv̄.

(3.496)

Now using Young’s inequality we see that∫
D

4 |a|
l2rn−2

γχµ1ψ

(
1

4γ
ψu −

1

4χ
ψv

)
dudv

≤
∫
D

|a|
2l2rn

ψ2

(
r

l2
+
$1

r2
− 4πraψ2

l2

)
r2Ω2

2
dudv

+

∫
D

32 |a|
l2rn−2

γ2χ2µ2
1

Ω4

(
r

l2
+
$1

r2
− 4πraψ2

l2

)−1(
ψu
4γ
− ψv

4χ

)2
Ω2

2
dudv.

(3.497)

Noting the relation
γ2χ2µ2

1

Ω4
=

1

16
, (3.498)

we see that ∫
D

4 |a|
l2rn−2

γχµψ

(
1

4γ
ψu −

1

4χ
ψv

)
dudv

≤
∫
D

|a|
2l2rn

ψ2

(
r

l2
+
$1

r2
− 4πraψ2

l2

)
r2Ω2

2
dudv

+

∫
D

2 |a|
l2rn−1

(
1

l2
+
$1

r
− 4πaψ2

l2

)−1(
ψu
4γ
− ψv

4χ

)2
Ω2

2
dudv.

(3.499)

For ease we now define

α :=

(
1 +

$1l
2

r3
− 4πaψ2

)−1

, (3.500)
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substituting (3.499) into (3.496) gives

−
∫
D

2(n− 2)a

l2rn−1
rurvψ

2dudv +

∫
D

−a
l2rn

ψ2

(
r

l2
+
$1

r2
− 4πraψ2

l2

)
Ω2

2
r2dudv ≤ CX,Y,l,g,MF(u, v)

+

∫
D

4 |a|α
rn−1

(
1

4γ
ψu −

1

4χ
ψv

)2
Ω2

2
dudv.

(3.501)

Now ∫
D

−2(n− 2)a

l2rn−1
rurvψ

2dudv =
(n− 2)a

l2

∫
D

1

rn

(−2$1

r2
+
r

l2

)
ψ2 Ω2r2

2
dudv. (3.502)

We then rewrite (3.499) as the following Hardy estimate∫
D

2(n− 2)a

l2rn−1
rurvψ

2dudv −
∫
D

−a
l2rn

ψ2

(
r

l2
+
$1

r2
− 4πraψ2

l2

)
Ω2

2
r2dudv

=

∫
D

−a
l2rn

ψ2

(
r(n− 1)

l2
+
$1(5− 2n)

r2
− 4πraψ2

l2

)
Ω2

2
r2dudv ≤ Cl,g,MF(u, v)

+

∫
D

4 |a|α
rn+1

(Rψ)2 Ω2r2

2
dudv.

(3.503)

The LHS is clearly non negative for 1 ≤ n ≤ 7
2
. Examining the integral of KX we have∫

D

KX,0dudv
Ω2r2

2
dudv =

∫
D

(2 + n)r−n+1 (Rψ)2 Ω2

2
dudv +

∫
D

(n− 2)r−n−1 (T ψ)2 Ω2r2

2
dudv

+

∫
D

a

l2
ψ2r1−n(n− 2)rurvdudv

+

∫
D(u,v)

a

l2rn

(
$1

r2
+
r

l2
− 2πar

l2
ψ2

)
ψ2 Ω2

2
r2dudv

≥
∫
D

(n+ 2− 4 |a|α) r−n+1 (Rψ)2 Ω2

2
dudv

+

∫
D

(n− 2)r−n−1 (T ψ)2 Ω2r2

2
dudv

−
∫
D

a

l2
ψ2r1−n(n− 2)rurvdudv − Cl,g,MF(u, v)

=

∫
D

(n+ 2− 4 |a|α) r−n+1 (Rψ)2 Ω2

2
dudv

+

∫
D

(n− 2)r−n−1 (T ψ)2 Ω2r2

2
dudv

+
(n− 2)a

2l2

∫
D

1

rn

(−2$1

r2
+
r

l2

)
ψ2 Ω2r2

2
dudv − Cl,g,MF(u, v).

(3.504)

127



That is

Cl,g,MF(u, v) +

∫
D

KX,0dudv
Ω2r2

2
dudv ≥

∫
D

(n+ 2− 4 |a|α) r−n−1 (Rψ)2 Ω2r2

2
dudv

+

∫
D

(n− 2)r−n−1 (T ψ)2 Ω2r2

2
dudv +

(n− 2)a

2l2

∫
D

1

rn

(−2$1

r2
+
r

l2

)
ψ2 Ω2r2

2
dudv.

(3.505)

1− α estimates

1− α = 1− |a|
(

1 +
$1l

2

r3
− 4πaφ2

)−1

=
1− |a|

1 + $1l2

r3 − 4πaφ2
+

$l2

r3 − 4πaφ2

1 + $l2

r3 − 4πaφ2

≥ 1

1 + Ml2+cb2

r3

(
1− |a|+ $1l

2

r3

)
≥ 1

1 + Ml2

r3
min

+ cb2

r3
min

(
1− |a|+ $1l

2

r3

)
.

(3.506)

Then recalling r+ = 2Ml2 using the estimate∣∣r3
+ − r3

min

∣∣ ≤ Cb2, (3.507)

we see

1− |a|
(

1 +
$l2

r3
− 4πaφ2

)−1

≥ 1

1 + Ml2

r3
min

+ cb2

r3
min

(
1− |a|+ $l2

r3

)
≥ 1

1 + 1
2

+ cb2

r3
min

(
1− |a|+ $l2

r3

)
≥ 1

2

(
1− |a|+ Ml2

4r3

)
.

(3.508)

n = 2 estimate

If we choose n = 2 and restrict to |a| < 1, then we have∫
D

(1− |a|) r−3 (Rψ)2 Ω2r2

2
dudv ≤ Cl,g,MF(u, v), (3.509)

and the L2 estimate ∫
D

(1− |a|) r−1ψ2 Ω2

2
r2dudv ≤ Cl,g,MF(u, v). (3.510)
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Low weighted estimates for |a| < 1

Choosing n = 5 in (3.505) gives

Cl,g,MF(u, v) +

∫
D

KXdudv
Ω2r2

2
dudv ≥

∫
D

(7− 4 |a|) r−6 (Rψ)2 Ω2r2

2
dudv

+

∫
D

3r−6 (T ψ)2 Ω2r2

2
dudv +

3a

2l2

∫
D

1

r5

(−2$1

r2
+
r

l2

)
ψ2 Ω2r2

2
dudv.

(3.511)

Then using estimate (3.510)

Cl,g,MF(u, v) +

∫
D

KXdudv
Ω2r2

2
dudv

≥
∫
D

r−6 (Rψ)2 Ω2r2

2
dudv +

∫
D

r−6 (T ψ)2 Ω2r2

2
dudv +

∫
D

(1− |a|)
r

ψ2 Ω2

2
r2dudv,

(3.512)

allows us to recover the T ψ term. Expressing in terms of u and v derivatives∫
D

r−6

(
1

γ2
ψ2
u +

1

χ2
ψ2
v

)
Ω2r2

2
dudv +

∫
D

(
1− |a|
r

)
ψ2 Ω2

2
r2dudv ≤ Cl,g,MF(u, v). (3.513)

Remark 3.8.4. This lemma is the origin of the restriction κ < 1
2
. This is due to the choice

of n = 2, it produces terms of the form rnψ2 which will only decay for κ < 1
2

for the boundary

conditions we are considering. If one were to choose n < 2 to remedy this problem, the issue

of positivity from (3.505) arises. The bulk term can’t be seen to be positive. However as in

[HS13b] we expect faster decay for Dirichlet boundary conditions. If one were to follow that

scheme in the toroidal setting at the H2, level they would expect to extend the result to κ = 1
2
.

Beyond this value seems to out of reach technically. It is expected to require more sophisticated

multipliers.

3.8.3 The redshift vector field

We now seeking to remove the degeneration in the estimates due to the
(

1
γ2

)
factor. To do

this we localise a vector field to a region near the horizon, and exploit a red shift effect. The

result of lemma 3.8.4 is an adapted version of [HS13b] to this setting.

Lemma 3.8.4. In RH we have the following estimate for κ ∈ (0, 1
2
)∫

D

1

r7

(
r4

−ru
(∇̃uψ)2 +

−rur2

Ω2
(∇̃vψ)2

)
dūdv̄

+

∫
D

((1− |a|) r) (−ru)ψ2 + ((1− |a|) r) rvψ2dūdv̄ ≤ Cl,g,MF(u, v).

(3.514)
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Proof. Firstly fix rW > rX and define

Y = (−ru)−1η(r)∂u, (3.515)

where

η(r) =


0 for rW ≤ r,

smooth, monotonic with bounded derivative for rX ≤ r ≤ rW ,

1 for r ≤ rX .

(3.516)

We see that

KY =

(
− 2

Ω2
∂v

(−1

ru

)
(∂uψ)2 + (∂uψ)(∂vψ)

−4

Ω2r
+

2a

l2
ψ2 +

4aπ

r2
u

rψ2ψ2
u

)
η(r) +

(
2

Ω2
ψ2
u +

a

l2
ψ2

)
η′(r).

(3.517)

The first term is equal to(
ψ2
u

2r2
u

(
$1

r2
+

2r

l2

)
+
ψu
ru

1

rχ
ψv +

a

l2
ψ2 2

r

)
η(r). (3.518)

We also can quickly compute that

JY [ψ](Y, ∂u) =
ψ2
u

−ru
η, JY [ψ](Y, ∂v) =

aχ

l2
ηψ2, (3.519)

asymptotically it is clear that these terms are 0 at I. Estimating (3.518), we see(
ψ2
u

2r2
u

(
$1

r2
+

2r

l2

)
+
ψu
ru

1

rχ
ψv +

a

l2
ψ2 2

r

)
η(r)

≥
(

3rψ2
u

4l2r2
u

+
r

1
2ψu
lru

l

r
3
2χ
ψv +

a

l2
ψ2 2

r

)
η(r)

≥
(
rψ2

u

4l2r2
u

− l2

2

1

r3χ2
ψ2
v −

2 |a|
r
ψ2

)
η(r).

(3.520)

Integrating KY this gives the estimate∫ u

uI

ψ2
u

r2
u

r2(−ru)(ū, v)ηdū+

∫
D

rψ2
u

r2
u

Ω2r2ηdūdv̄

≤CM,l,a

∫
D

(
ψ2
v

r3χ2
+
ψ2

r

)
η(r)Ω2r2dūdv̄ +

∫
D

(
2

Ω2
ψ2
u +

a

l2
ψ2

)
η′(r)Ω2r2dūdv̄

+ CM,l,a

∫ v

v0

1

l2
χψ2r2(u, v̄)ηdv̄ +

∫ u

uI

ψ2
u

r2
u

r2(−ru)η(ū, v0)dū.

(3.521)

It is clear from corollary 3.7.14 that∫
D

(
2

Ω2
ψ2
u +

a

l2
ψ2

)
η′(r)Ω2r2dūdv̄ ≤ CM,l,g,Y Ideg[ψ](u, v). (3.522)
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Now the first term on the right hand side of (3.521), we already control from lemma 3.8.3, the

last term is the an initial data norm that we control after a few trivial estimates. We are left

to deal with the third term∫ v

v0

1

l2
χψ2r2(u, v̄)ηdv̄ =

∫ u

v0

dū∂u

∫ v∗(u)

v0

1

l2
χψ2r2ηdv̄. (3.523)

Where v∗(u) is the v-value where the ray of constant u intersects either I, or the constant v

ray. We pass the derivative through∫ v

v0

1

l2
χψ2r2(u, v̄)ηdv̄ =

∫
D

(
−rπψ

2
u

r2
u

ψ2 − 1

2
ψ
ψu
ru
− 1

2r
ψ2

)
ηΩ2r2dūdv̄ +

∫
D

1

l2
χψ2r2η′rudūdv̄,

(3.524)

The second integrand is estimated using corollary 3.7.12. The η′ allows us to disregard the r

weights. The first integrand may be estimated by dropping the negative terms, and a Young

inequality∫ v

v0

1

l2
χψ2r2(u, v̄)ηdv̄ ≤

∫
D

(
ε
rψ2

u

r2
u

+
1

16ε

ψ2

r

)
ηΩ2r2dūdv̄ + CM,l,g,Y Ideg[ψ](u, v). (3.525)

We can an absorb an ε amount of the the derivative terms with the left hand side. Control of

the zeroth order terms has already been established.

This leaves us with ∫ u

uI

ψ2
u

r2
u

r2(−ru)(ū, v)ηdū+

∫
D

rψ2
u

r2
u

ηΩ2r2dudv

≤CM,l,aIdeg[ψ](u, v) +

∫ u

uI

ψ2
u

r2
u

r2(−ru)ηdū.
(3.526)

Combining this with the global estimate we have that∫
D

r−6

(
r4ψ

2
u

r2
u

+
1

χ2
ψ2
v

)
Ω2r2

2
dudv +

∫
D

(1− |a|)
r

ψ2 Ω2

2
r2dūdv̄ ≤ CX,Y,l,g,MF(u, v). (3.527)

We now show this holds in a twisted setting. We estimate

r4ψ
2
u

r2
u

≥ C

(
r
ψ2
u

r2
u

)
= C

(
r

r2
u

(∇̃uψ)2 +
2g

ru
ψ∇̃uψ +

1

r
g2ψ2

)
. (3.528)

We apply Young’s inequality to get

r4ψ
2
u

r2
u

≥ C

(
r

2r2
u

(∇̃uψ)2 − 1

r
g2ψ2

)
. (3.529)

We thus have ∫
D

1

r6

(
r

2r2
u

(∇̃uψ)2 − 1

r
g2ψ2

)
Ω2r2(ū, v̄)dūdv̄ ≤ Cl,g,MF(u, v). (3.530)

131



Adding a multiple of the zeroth order terms of (3.527) to get∫
D

1

r6

(
r

r2
u

(∇̃uψ)2 +
ψ2
v

χ2

)
Ω2r2(ū, v̄)dūdv̄ +

∫
D

(
1− |a|
r

)
ψ2 Ω2

2
r2dūdv̄ ≤ CX,Y,l,g,MF(u, v).

(3.531)

With the use of corollary 3.7.12 we estimate the ψv terms by

ψ2
v

χ2
≥ C

r3

16r2
u

Ω4

(
(∇̃vψ)2 +

2grv
r
ψ∇̃vψ +

r2
v

r2
ψ2

)
≥ Cl

−ru
Ω2

(
1

r3
(∇̃vψ)2 +

2grv
r4

ψ∇̃vψ +
r2
v

r5
ψ2

)
≥ Cl

−ru
Ω2

(
1

2r3
(∇̃vψ)2 − r2

v

r5
ψ2

)
≥ Cl

−ru
Ω2

(
1

2r3
(∇̃vψ)2 − 1

r
ψ2

)
.

(3.532)

This allows us to conclude that∫
D

1

r11

(
r4

−ru
(∇̃uψ)2 +

−rur2

Ω2
(∇̃vψ)2

)
Ω2r2(ū, v̄)dūdv̄

+

∫
D

(
1− |a|
r

)
ψ2 Ω2

2
r2dūdv̄ ≤ Cl,g,MF(u, v),

(3.533)

or as ∫
D

1

r7

(
r4

−ru
(∇̃uψ)2 +

−rur2

Ω2
(∇̃vψ)2

)
dūdv̄

+

∫
D

(1− |a|) r(−ru)ψ2 + (1− |a|) rrvψ2dūdv̄ ≤ Cl,g,MF(u, v).

(3.534)

3.8.4 Morawetz estimate

Theorem 3.8.4. In RH, for κ < 1
2
, the following Morawetz estimate holds∫

D

r4

−ru
(∇̃uψ)2 + (−ru)ψ2 +

−rur2

Ω2
(∇̃vψ)2 +

rv
r
ψ2dudv ≤ Cl,g,MF(u, v). (3.535)

Proof. Fix ∞ > rM > rZ > rY , (we will specify the conditions they need to satisfy later) and

let η(r) be the cut off function defined by

η(r) =


0 for rZ ≥ r,

smooth with bounded derivative for rM ≥ r ≥ rZ ,

1 for r ≥ rM .

(3.536)
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From equations (3.23) and (3.26) we derive

1

2
∂u

(
h(∇̃vψ)2

)
+

1

2
∂v

(
f(∇̃uψ)2

)
=

(
κ− 1

2

)
∇̃uψ∇̃vψ

(rv
r
h+

ru
r
f
)

+

(
1

2
hu −

ru
r
h

)
(∇̃vψ)2 +

(
1

2
fv −

rv
r
f

)
(∇̃uψ)2

− Ω2

4
V ψ

(
h∇̃vψ + f∇̃uψ

)
.

(3.537)

We now make the choice

f = − rv
Ω2
rη, h = − ru

Ω2
rη. (3.538)

Flux estimates

Applying the divergence theorem and examining the flux terms∫
D

1

2
∂u

(
h(∇̃vψ)2

)
+

1

2
∂v

(
f(∇̃uψ)2

)
du′dv′

=
1

2

∫ v

v0

− ru
Ω2
ηr(∇̃vψ)2(u, v′)dv′ +

1

2

∫ u

uI

rv
Ω2
ηr(∇̃uψ)2(u′, v)du′

+
1

2

∫ u

u0

rv
Ω2
ηr(∇̃uψ)2(u′, v0)du′ +

∫
I

1

2

Ω2

−ru
rη

(
r2
v

Ω4

(
∇̃uψ

)2

+
r2
u

Ω2

(
∇̃vψ

)2
)

≤CM,l,gF(u, v) +
1

12

∫
I

Ω2

−ru
r
(
R̃ψ
)2

.

(3.539)

The latter term then vanishes due to the boundary conditions (it decays like r−2κ). The cross

terms are written in terms of T and R̃ derivatives which can be seen to be 0 on the boundary,

from the density argument and boundary conditions.

Bulk terms

Defining f̂ and ĥ through

f = f̂η, h = ĥη, (3.540)

and noting the identity

1

2
∂u

(
ηĥ(∇̃vψ)2

)
+

1

2
∂v

(
ηf̂(∇̃uψ)2

)
= η

(
1

2
∂u

(
ĥ(∇̃vψ)2

)
+

1

2
∂v

(
f̂(∇̃uψ)2

))
+ η′

(
ruĥ(∇̃vψ)2 + rvf̂(∇̃uψ)2

)
.

(3.541)

We see there are two regions of interest r ≥ rM , and rM ≥ r ≥ rZ .
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We deal with the former first

η

(
1

2
∂u

(
ĥ(∇̃vψ)2

)
+

1

2
∂v

(
f̂(∇̃uψ)2

))
=− 2

(
κ− 1

2

)
∇̃uψ∇̃vψ

(rvru
Ω2

)
+

(
1

2

r2
u

Ω2
+

2πr2

Ω2
ψ2
u

)
(∇̃vψ)2 +

(
1

2

r2
v

Ω2
+

2πr2

Ω2
ψ2
v

)
(∇̃uψ)2

+
1

4
rV ψ

(
ru∇̃vψ + rv∇̃uψ

)
≥− 2

(
κ− 1

2

)
∇̃uψ∇̃vψ

(rvru
Ω2

)
+

(
1

2

r2
u

Ω2

)
(∇̃vψ)2 +

(
1

2

r2
v

Ω2

)
(∇̃uψ)2

+
1

4
rV ψ

(
ru∇̃vψ + rv∇̃uψ

)
.

(3.542)

We apply Young’s inequality to see

1

2
∂u

(
ĥ(∇̃vψ)2

)
+

1

2
∂v

(
f̂(∇̃uψ)2

)
≥
((

1

2
−
∣∣∣∣κ− 1

2

∣∣∣∣) r2
u

Ω2

)
(∇̃vψ)2 +

((
1

2
−
∣∣∣∣κ− 1

2

∣∣∣∣) r2
v

Ω2

)
(∇̃uψ)2

+
1

4
rV ψ

(
ru∇̃vψ + rv∇̃uψ

)
.

(3.543)

So the first row terms are manifestly positive. We then estimate

1

4
rV ψ

(
ru∇̃vψ + rv∇̃uψ

)
≤ 1

8
r2ψ2 +

1

8
V 2

(
r2
u

(
∇̃vψ

)2

+ r2
u

(
∇̃uψ

)2
)

≤ CY,l,M,g

(
r2ψ2 + r−2+4κ

((
∇̃uψ

)2

+
(
∇̃vψ

)2
))

.

(3.544)

Using the estimates in corollary (3.7.14), we have in this region for rM chosen large enough∫
D

r4

−ru
(∇̃uψ)2 + (−ru)ψ2 +

−rur2

Ω2
(∇̃vψ)2 +

rv
r
ψ2dudv ≤ Cl,g,MF(u, v). (3.545)

Then in the latter region∫
D

η

(
1

2
∂u

(
ĥ(∇̃vψ)2

)
+

1

2
∂v

(
f̂(∇̃uψ)2

))
+ η′

(
ruĥ(∇̃vψ)2 + rvf̂(∇̃uψ)2

)
dv. (3.546)

We see that as the derivative of η is bounded, and r is bounded above and below in the region

where the stronger estimates (3.7.14) hold. We can then trivially bound these terms above by

the global estimate (3.8.3). We then combine this higher weighted estimate with the global one

to see ∫
D

r4

−ru
(∇̃uψ)2 + (−ru)ψ2 +

−rur2

Ω2
(∇̃vψ)2 +

rv
r
ψ2dudv ≤ Cl,g,MF(u, v). (3.547)
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3.8.5 Exponential decay

Theorem 3.8.5. Defining the v-flux,

F(v) =

∫ uH

uI

(
r4

−ru
(∇̃uψ)2 + (−ru)ψ2

)
(ū, v)dū, (3.548)

and the region D̃(v1, v2) = D(uH, v2) ∩ {v ≥ v1}. Then for κ < 1
2
,

F(v) ≤ C̃M,l,gF(v0)e−αv. (3.549)

for some uniform α > 0.

Proof. Applying the estimate (3.535) on the region D̃(vn, vn+1) yields the estimate

F(vn+1) + cM,l

∫ vn+1

vn

F(v̄)dv̄ ≤ CM,l,gF(vn). (3.550)

Now take v ≤ vn ≤ vn+1 and thus∫ vn+1

vn

F(v̄)dv̄ ≤
∫ vn+1

v

F(v̄)dv̄ ≤ CM,l,g

cM,l

F(v), (3.551)

implying

cM,l(vn+1 − vn) · inf
ν∈[vn,vn+1]

F (ν) ≤ cM,l

∫ vn+1

vn

F(v)dv ≤ CM,l,gF(v). (3.552)

Choosing vn = 2n + v yields

inf
ν∈[2n+v,2n+1+v]

F(ν) ≤ CM,l,g

cM,l2n
F(v). (3.553)

Now take V ∈ (v,∞), find n ∈ Z such that 2n+1 < v − V ≤ 2n+2, then

F(V ) ≤ CM,l,g inf
ν∈[2n+v,2n+1+v]

F(ν) ≤
C2
M,l,g

cM,l2n
F(v). (3.554)

As we have V − v ≤ 2n+2, we deduce

F(V ) ≤
4C2

M,l,g

cM,l(V − v)
F(v), (3.555)

which holds for 0 ≤ v < V .

Now define K =
4C2

M,l,g

cM,l
, and choose V = eK. We then have

F(v + V ) ≤ 1

e
F(v). (3.556)
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Now assume that the following holds for n ∈ N

F(v + nV ) ≤ 1

en
F(v), (3.557)

so we see that

F(v + (n+ 1)V ) = F((v + V ) + nV ) ≤ 1

en
F(v + V ) ≤ 1

en+1
F(v). (3.558)

Hence we have that

F(v + nV ) ≤ 1

en
F(v), (3.559)

holds by induction.

Now take ν ≥ 0 write it as ν = nV + v, where 0 ≤ v ≤ V . We then have that

F(ν) ≤ 1

en
f(v) ≤ CM,l,g

en
F(v0) =

CM,l,g

e
ν
V
− v
V

F(v0) ≤ CM,l,gF(v0)e−
ν
V

+1 ≤ C̃M,l,gF(v0)e−αν (3.560)

for some α > 0.

Corollary 3.8.1. We have in RH for κ < 1
2
, there exists a constant α > 0 such that

sup
u
|2χ(u, v)− 1|+ sup

u
|$(u, v)−M | ≤ C̃M,l,g exp (−α · v) , (3.561)

and

|ψ(u, v)| ≤ C̃M,l,gr
− 3

2
+κ exp (−α · v) . (3.562)

Proof. This follows from (3.267) and (3.549).

Remark 3.8.5. It is in this sense that we say the metric is converging to a Toroidal Schwarzschild-

AdS metric of mass M , exponentially in v, in the Eddington Finkelstein gauge.

Corollary 3.8.2. In RH, for κ < 1
2
, there exists a constant α > 0 such that∣∣∣∣$1(u, v)−M
r2κ

∣∣∣∣ ≤ C̃M,l,g exp (−α · v) . (3.563)

Proof. Write

$1(u, v)−M
r2κ

=r−2κ ($(u, v)−M)

+ r−2κ
(
e−4πgψ2 − 1

)
$ − r3−2κ

2l2

(
e−4πgψ2 − 1

)
.

(3.564)

Taking absolute values the result then follows from theorem 3.7.1 and corollary 3.8.1.

Corollary 3.8.3. We have that for κ < 1
2
, the Lorentzian Penrose inequality

sup
H
r ≤ r+. (3.565)

Furthermore we have along H that r converges to r+ exponentially in v.
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Proof. This is an adaptation of the proof of proposition 3.7 in [HS13b] to this setting.

Assume for contradiction that r ≥ r+ + δ for some δ > 0, held along H. Then by corollary

3.8.2 we have the existence of a vi > v0 such that

µ1

r2
≥
(

1

l2
− 2M

r3

)
− 2 |M −$1|

r3
≥ cM,lδ, (3.566)

holds on H ∩ {v ≥ vi}. Now integrating rvr
−2 we see∫ v

vi

rv
r2
dv̄ = − 1

r(v)
+

1

r(vi)
≤ C, (3.567)

holds for some uniform C > 0. However from (3.566) we have∫ rv

vi

rv
r2
dv̄ =

∫ v

vi

µ

r2
χdv̄ ≥ CM,lδ · (v − vi) , (3.568)

which is clearly a contradiction.

Now that we have seen r is bounded along H, we can prove the exponential decay through an

integrated decay estimate.∫ ∞
v

(r+ − r(uH, v̄)) dv̄ ≤ CM,l

∫ ∞
v

µ1dv̄ + C̃M,l,ge
(−BM,l,gv)

≤ CM,l

∫ ∞
v

rvdv̄ + C̃M,l,ge
−BM,l,gv

≤ CM,l (r+ − r(uH, v)) + C̃M,l,ge
−BM,l,gv.

(3.569)

From the positivity of r+ − r(uH, v) we derive the integrated decay statement∫ v2

v1

(r+ − r(uH, v̄)) dv̄ ≤ CM,l (r+ − r(uH, v1)) + C̃M,l,ge
−BM,l,gv1 . (3.570)

Exponential decay follows in a similar manner to theorem 3.8.5.

3.9 The main theorem

Theorem 3.9.1. Consider a weak solution of the Einstein–Klein-Gordon system arising from

small initial data, within the class of square flat toroidal symmetries with ψ satisfying Dirichlet

or Neumann boundary conditions and a Klein-Gordon mass bound κ ≤ 1
2
. The associated

maximal development of the solution is a black hole spacetime, with a regular future horizon

and a complete null infinity. Furthermore for κ < 1
2

the estimates of (3.267) and (3.442) hold

for any (u, v) in the regular region exterior to the apparent horizon. This implies that ψ decays

exponentially in v on this region.

We may remark that we can use these techniques to study toroidally symmetric solutions of the

Klein-Gordon equation on a fixed toroidal AdS Schwarzschild background. In this decoupled
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setting we have χ = γ = 1
2

and T = ∂t and the following corollary.

Corollary 3.9.1. Let (M, g) be a fixed toroidal Schwarzschild AdS spacetime with Eddington

Finkelstein coordinate system (u, v). Let κ < 1
2

then the toroidally symmetric solutions of the

Klein-Gordon equation decay exponentially in the v coordinate on the black hole exterior.

It is worth contrasting this with the non symmetric results of chapter where only polynomial

decay can be established.

3.10 Vacuum result

So far the restriction to a square flat toroidal symmetry was to emulate the spherical symmetry

situation of a Birkhoff theorem. As seen in [Gow74] there are more degrees of freedom to a flat

metric on a torus than a round metric on a sphere. We can evade trivial vacuum dynamics

within a rectangular flat toroidal symmetry class by making the following metric ansatz

g = −Ω2(u, v)dudv + r2(u, v)
(
e−
√

8πB(u,v)dx2 + e
√

8πB(u,v)dy2
)
. (3.571)

Here the periods of tori are allow to vary under a scalar field B. At different points (u, v),

we get rectangular tori which, unlike the case B = constant we cannot scale back to a unit

torus through coordinate transformations of x and y. If we study the now dynamical vacuum

equations

Rµν −
1

2
gµνR−

3

l2
gµν = 0, (3.572)

with this ansatz, they reduce to

∂u

( ru
Ω2

)
= −4πr

(Bu)
2

Ω2
, (3.573)

∂v

( rv
Ω2

)
= −4πr

(Bv)
2

Ω2
, (3.574)

ruv = −rurv
r
− 3

4

r

l2
Ω2, (3.575)

(log Ω)uv =
rurv
r2
− 4πBuBv, (3.576)

Buv = −ru
r
Bv −

rv
r
Bu. (3.577)

We notice this system is equivalent to (3.8) - (3.12) where the Klein-Gordon field is massless

(a = 0). In contrast to the Bianchi IX system as studied in [Dol17a], the scalar curvature

of the group orbits is 0. Consequently (3.577) is a linear wave equation, making the analysis

much simpler. However as a = 0 corresponds to κ = 3
2
, we cannot currently hope to pose any

other boundary conditions other than Dirichlet. Intuitively this makes sense, imposing Dirichlet

boundary conditions would mean fixing the periods of the torus at null infinity. Unfortunately

the main results of this thesis cannot be directly used. However as discussed there are only

very minor differences between the spherical and toroidal systems (at the reduced equation
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level). One could study this system in the same way as in [HS12], and [HS13b], (many of the

similarities have already been exhibited) to deduce stability.

Theorem 3.10.1. Consider an initial free data set (r̄, B̄), obeying the ε-perturbed Schwarzschild-

AdS data set conditions (as defined in [HS13b]) with a = 0 on a null ray N(v0), and Dirichlet

boundary conditions. The associated maximal development is a black hole spacetime with a

regular future horizon, and a complete null infinity. Furthermore the estimate∣∣∣r 3
2
−κB(u, v)

∣∣∣ ≤ D exp(−Cv), (3.578)

holds on the intersection of the regular region of the spacetime and the exterior of the black

hole. From which we may deduce that the metric is converging exponentially in v, uniformly in

u, to a toroidal AdS Schwarzschild solution with mass M , in the Eddington-Finkelstein gauge.

Thus the toroidal AdS black hole is indeed a stable solution to the vacuum equations within

the symmetry class imposed by the metric ansatz.
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[Sch16] K. Schwarzschild. Über das Gravitationsfeld einer Kugel aus inkompressibler

Flüssigkeit nach der Einsteinschen Theorie. Sitzungsber. d. Preuss. Akad. d. Wis-

senschaften, 1916.

[SW10] K. Schleich and D. Witt. A simple proof of Birkhoff’s theorem for cosmological

constant. Journal of Mathematical Physics, 51(11):112502, November 2010.

[Tay17] M. Taylor. The global nonlinear stability of Minkowski space for the massless

Einstein–Vlasov system. Annals of PDE, 3(9), June 2017.

[War13] C. Warnick. The massive wave equation in asymptotically AdS spacetimes. Com-

munications in Mathematical Physics, 321(1):85–111, July 2013.

[War15] C. Warnick. On quasinormal modes of asymptotically anti-de Sitter black holes.

Communications in Mathematical Physics, 333(2):959–1035, January 2015.

[Wya17] Z. Wyatt. The weak null condition and Kaluza-Klein spacetimes. arXiv:1706.00026

[gr-qc], May 2017.

145



A
Appendix

A.1 Introduction

In this appendix we consider a slightly lower regularity local wellposedness result, and extension

principle for the Einstein–Klein-Gordon system. This extension principle is motivated heavily

by the work of Kommemi [Kom13], however for the problem of interest we need to relax the

regularity of ψv to being in L2 as opposed to in C0.

A.2 Local Wellposedness in the Interior

A.2.1 The system

We will consider the system

Rµν −
1

2
Rgµν + Λgµν = 8πTµν ,

Tµν = ∇µ∇νψ −
1

2
gµν∇σψ∇σψ − m

2
gµνψ

2,

�gψ −mψ = 0,

(A.1)

where m and Λ are real parameters. We then further restrict to a metric of the form

g = −Ω2(u, v)dudv + r2(u, v)dσ2
k, (A.2)

where

dσ2
k =


dθ2 + sin2 (θ) dϕ2 for k = 1

dx2 + dy2 for k = 0

dρ2 + sinh2 (ρ) dϕ2 for k = −1

(A.3)
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and u, v are null coordinates.

The system then reduces to

∂u

( ru
Ω2

)
= −4πr

ψ2
u

Ω2
(A.4)

∂v

( rv
Ω2

)
= −4πr

ψ2
v

Ω2
, (A.5)

ruv = −rurv
r

+ πmrψ2Ω2 +
Λ

4
rΩ2 − kΩ2

4r
, (A.6)

(log Ω)uv = −4πψuψv +
rurv
r2

+ k
Ω2

4r2
, (A.7)

ψuv = −rv
r
ψu −

ru
r
ψv −

m

4
Ω2ψ. (A.8)

We remark that a choice of

Λ =
−3

l2
, m =

2a

l2
, k = 0, (A.9)

reduces us to the AdS system we are interested in.

A.2.2 The domain

Define X = [0, d]×{0} ∪ {0}× [0, d], the two null rays emanating from the origin. We then let

0 < δ ≤ d, and define

�δ = [0, δ]× [0, δ], (A.10)

to be our domain.

(0, 0)

(δ, 0)

(d, 0)

(0, δ)

(0, d)

(δ, δ)

vu

Figure A.1: Diagram of the sets.

Then we denote the restricted initial data rays as

X ′ = [0, δ]× {0} ∪ {0} × [0, δ]. (A.11)

Proposition A.2.1 (Local Wellposedness). Consider the set X = [0, d]×{0}∪{0}× [0, d]. Let

r ∈ C1(X) be a positive function with the additional property ruv, ruu ∈ C0(X). Let Ω ∈ C0(X)

also be a positive function with Ωu ∈ C0(X). Let ψ ∈ C0H1(X) with ψu ∈ C0(X). Suppose

that the equations (3.8) and (3.9) hold on [0, d] × {0}, and {0} × [0, d] respectively. And let
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Cn
u denote the Cn(u) norm on [0, d]× {0} and Cn

v denote the Cn(v) norm on {0} × [0, d]. We

adopt a similar notation for the Sobolev norms. For a domain D define the following norm

N(D) = sup
{
||ψ||C0

vH
1
u
, ||ψ||C0

uH
1
v
, ||ψu||C0

u
, ||ψu||C0

v
, ||r||C1

u
, ||r||C1

v
, ||ruu||C0

u
, ||ruu||C0

v
,

||ruv||C0
u
, ||ruv||C0

v
,
∣∣∣∣r−1

∣∣∣∣
C0
u
,
∣∣∣∣r−1

∣∣∣∣
C0
v
, ||Ω||C0

u
, ||Ω||C0

v
, ||Ωu||C0

u
, ||Ωu||C0

v
,
∣∣∣∣Ω−1

∣∣∣∣
C0
u
,
∣∣∣∣Ω−1

∣∣∣∣
C0
v

}
.

(A.12)

Where all the norms are taken to be over D.

Further more assume that
1

N
≤ Ω ≤ N, (A.13)

and

0 < r0 ≤ r ≤ R <∞. (A.14)

Then there exists a δ > 0 depending only on N , such that the Einstein–Klein-Gordon system

has a unique W solution (as defined in definition 3.4.5) on the set [0, δ]× [0, δ].

A.2.3 Function spaces

We define the metrics

dΩ(Ω1,Ω2) =

∣∣∣∣∣∣∣∣log

(
Ω1

Ω2

)∣∣∣∣∣∣∣∣
C0

+

∣∣∣∣∣∣∣∣log

(
Ω1

Ω2

)
u

∣∣∣∣∣∣∣∣
C0

, (A.15)

dr(r1, r2) = ||r1 − r2||C0
+ ||r1,u − r2,u||C0

+ ||r1,v − r2,v||C0
+ ||r1,uv − r2,uv||C0

+ ||r1,uu − r2,uu||C0
,

(A.16)

and finally

dψ(ψ1, ψ2) = ||ψ1 − ψ2||C0H1 + ||ψ1 − ψ2||C0 + ||ψ1,u − ψ2,u||C0 , (A.17)

where we recall that

||ψ||2C0H1 = sup
(u,v)∈�δ

∫ u

0

ψ2
u + ψ2du+ sup

(u,v)∈�δ

∫ v

0

ψ2
v + ψ2dv. (A.18)

For notational ease we will define Σi = (ri,Ω
2
i , ψi) to be a solution triple, and denote the metric

on this space by

d(Σ1,Σ2) = dr(r1, r2) + dΩ(Ω1,Ω2) + dψ(ψ1, ψ2). (A.19)

We then define

Ω =
Ω(u, 0)Ω(0, v)

Ω(0, 0)
, (A.20)

we will insist on Ω̄ > 1
N
> 0. Where N is a constant.

Furthermore define

r = r(0, v) + r(u, 0)− r(0, 0), (A.21)

ψ =
1

2
(ψ(0, v) + ψ(u, 0)) . (A.22)
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We now define C1+
r (�δ) to be the space of positive functions r ∈ C1(�δ), such that ruv,

ruu ∈ C0(�δ), and agree with r on X ′. We define C0+
ψ H1(�δ) as the space of continuously

differentiable in u functions, that agree with ψ̄ on X ′, and are both continuous in u with values

in H1
v (�δ) and continuous in v with values in H1

u(�δ). We also define C0+
Ω (�δ)as the space of

real valued functions Ω, such that Ω are C0 in �δ agree with Ω̄ on X ′, and are such that the u

derivative exists and is continuous. We then define C = C1+
r (�δ)×C0+

ψ H1(�δ)×C0+
Ω (�δ) and

equip it with the the metric d(Σ1,Σ2). This is then a complete metric space.

We then define the ball of radius b by these norms and centre it at (r,Ω, ψ̄). We denote it by

Bb.

Domain restriction

We from continuity we can restrict δ, such that on the restricted initial data ray we have

||ψ(0, v)||C0H1([0,δ]) <
b

8
, (A.23)

||ψ(u, 0)||C0H1([0,δ]) <
b

8
, (A.24)

||ψu(u, 0)||C0([0,δ]) <
b

8
, (A.25)∣∣∣∣Ω∣∣∣∣

C0(X′)
+
∣∣∣∣Ωu

∣∣∣∣
C0(X′)

< N. (A.26)

A.2.4 The map

We define a map from C1+
r (�δ)× C0+

ψ H1(�δ)× C0+
Ω (�δ) by

log Ω̂(u, v) = log Ω̄ +

∫ u

0

∫ v

0

−4πψuψv +
rurv
r2

+ k
Ω2

4r2
dvdu, (A.27)

r̂(u, v) = r̄ +

∫ u

0

∫ v

0

−rurv
r

+ πmrψ2Ω2 +
Λ

4
rΩ2 − kΩ2

4r
dudv, (A.28)

ψ̂ = unique H1 solution of: ∂u∂vψ̂ = −rv
r
ψu −

ru
r
ψv −

m

4
Ω2ψ

with initial data ψ̄|{v=0} =: ψ2 and boundary data ψ̄|{u=0} =: ψ1.
(A.29)

A.2.5 Useful lemmas

Lemma A.2.1. let ψ ∈ C0+
ψ H1(�δ) then∫ u

0

∫ v

0

ψuψvdvdu ≤ δ ||ψ||2C0H1 . (A.30)
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Proof. By the Cauchy Schwartz inequality we have

∫ u

0

∫ v

0

ψuψvdvdu ≤
(∫ u

0

∫ v

0

ψ2
udvdu

) 1
2
(∫ u

0

∫ v

0

ψ2
vdvdu

) 1
2

=

(∫ v

0

∫ u

0

ψ2
ududv

) 1
2
(∫ u

0

∫ v

0

ψ2
vdvdu

) 1
2

≤
(∫ v

0

||ψ||2C0H1 dv

) 1
2
(∫ u

0

||ψ||2C0H1 du

) 1
2

= δ ||ψ||2C0H1 .

(A.31)

A.2.6 Mapping back to the ball

Ω̂ Estimates

log(Ω̂) estimates

As Ω ∈ Bb, we get the following estimate∣∣∣∣log

(
Ω

Ω

)∣∣∣∣ < b. (A.32)

This implies that

Ne−b ≤ Ωe−b ≤ Ω ≤ Ωeb < Neb. (A.33)

From directly studying the map, applying lemma A.2.1, and ML inequalities we see that∣∣∣∣∣log
Ω̂

Ω̄

∣∣∣∣∣ ≤ δ

(
4π ||ψ||2C0H1 +

δ

r2
0

||ru||C0 ||rv||C0 +
|k|
4r2

0

δN2e2b

)
= δCb. (A.34)

For δ sufficiently small we map back to the ball.

The following inequality then follows

1

N
· e−δCb ≤ Ω̂ ≤ NeδCb =: C̃b. (A.35)

log(Ω̂)u estimates

Differentiating (A.27)

(
log Ω̂

)
u

=
(
log Ω

)
u

+

∫ v

0

−4πψuψv +
rurv
r2

+ k
Ω2

4r2
dv, (A.36)

we deduce∣∣∣∣∣
(

log
Ω̂

Ω

)
u

∣∣∣∣∣ ≤ δ
1
2

(
4π ||ψ||C0H1 ||ψu||C0 +

δ
1
2

r2
0

||ru||C0 ||rv||C0 +
|k|
4r2

0

δ
1
2N2e2b

)
, (A.37)
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providing the δ required smallness.

r̂ estimates

r̂ estimate

It is fairly easy to see from the map, and continuity estimates that

|r̂ − r| ≤ δ2

(
1

r0

||ru||C0 ||rv||C0 + π |m| ||r||C0 ||ψ||2C0

b2

64
eδ

2C2
b +
|Λ|
4
||r||C0 N

2eδ
2C2

b

+ |k| 1

4r0

N2eδ
2C2

b ||ψ||C0

)
.

(A.38)

r̂u and r̂v estimates

We can compute these quantities by differentiating (A.28). As the integrand is continuous

and the set compact we get that it is in L1, and we may use Fubini’s theorem. Applying the

fundamental theorem of calculus, we see

r̂(u, v)u = r̄u +

∫ v

0

−rurv
r

+ πmrψ2Ω2 +
Λ

4
rΩ2 − kΩ2

4r
dv, (A.39)

r̂(u, v)v = r̄v +

∫ u

0

−rurv
r

+ πmrψ2Ω2 +
Λ

4
rΩ2 − kΩ2

4r
du, (A.40)

from which

|r̂u − ru| ≤ δ

(
1

r0

||ru||C0 ||rv||C0 + π |m| ||r||C0 ||ψ||2C0

b2

64
eδ

2C2
b

+
|Λ|
4
||r||C0 N

2eδ
2C2

b + |k| 1

4r0

N2eδ
2C2

b ||ψ||C0

)
,

(A.41)

and

|r̂v − rv| ≤ δ

(
1

r0

||ru||C0 ||rv||C0 + π |m| ||r||C0 ||ψ||2C0

b2

64
eδ

2C2
b

+
|Λ|
4
||r||C0

b2

64
eδ

2C2
b + |k| 1

4r0

b2

64
eδ

2C2
b ||ψ||C0

)
,

(A.42)

follow.

r̂uu and r̂uv estimates

As Ω ∈ Bb we have ∣∣∣∣(log
Ω

Ω̄

)
u

∣∣∣∣ < b, (A.43)

this implies

Ωu ≤ (b+ Ω)
Ω̄u

Ω̄
≤
(
b+Neb

)
. (A.44)

Writing r̂uv and r̂uu as

r̂uv =

∫ u

0

∂u (r̂uv) du, (A.45)
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and

r̂uu =

∫ v

0

∂u (r̂uv) dv. (A.46)

We then compute

r̂uvu =− ruurvr−1 − ruruvr−1 + r2
urvr

−2 + πmruψ
2Ω2 + 2πmrψψuΩ

2 + 2πmrψ2ΩΩu

+
Λ

4
ruΩ

2 +
Λ

2
rΩΩu −

k

2
ΩΩur

−1 +
k

4
Ω2r−2ru,

(A.47)

Recall the Ω and Ωu terms are bounded. All the other functions are continuous, and we can

put these in the supremum norms. Integrating over the domain we get the δ smallness.

ψ̂ estimates

C0H1 and C0 estimates

Lemma A.2.2. For F ∈ L2(�δ) there exists a sequence of functions Fε ∈ C∞(�◦δ) such that

Fε → F in L2.

Now define

(ψv)ε (0, v) = ψv ∗ ηε(0, v), (A.48)

where ηε is the standard smoothing kernel, then define

ψε(0, v) = ψ(0, 0) +

∫ v

0

(ψv)ε (0, v′)dv′. (A.49)

Similarly

(ψu)ε (u, 0) = ψu ∗ ηε(u, 0), (A.50)

and

ψε(u, 0) = ψ(0, 0) +

∫ u

0

(ψu)ε (u′, 0)du′, (A.51)

from this construction it is standard theory to see that

ψε → ψ, (ψε)u → ψu, (ψε)v → ψv, (A.52)

in L2 as ε→ 0 with ψε(u, 0) ∈ C∞ ([0, δ)), ψε(0, v) ∈ C∞ ([0, δ)).

We remark that these functions have been constructed to agree at (0, 0) are are therefore

admissible

Now we solve the equation

∂v∂uψε = Fε, (A.53)

with initial data ψε(u, 0) and boundary data ψε(0, v). As we have a smooth solution we derive

the following estimates (see section A.4.1) after passing ε→ 0∣∣∣∣∣∣ψ̂∣∣∣∣∣∣
C0H1

≤ ||ψ1||L2(N ′) + ||ψ2||L2(N ) + δ ||ψ2,v||L2(N ) + δ ||ψ1,u||L2(N ′) + 2δ
3
2 ||F ||L2(�δ)

. (A.54)
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Showing ∣∣∣∣∣∣ψ̂ − ψ∣∣∣∣∣∣
C0H1

≤ 4 · b
8

+ δ ||ψ2,v||L2(N ) + δ ||ψ1,u||L2(N ′) + 2δ
3
2 ||F ||L2(�δ)

. (A.55)

As F can quite clearly be put into L2, We have for small δ, that we map back to the ball.

From the Sobolev inequality ∣∣∣∣ψ − ψ∣∣∣∣
C0 ≤

∣∣∣∣∣∣ψ̂∣∣∣∣∣∣
C0H1

, (A.56)

we immediately see that we map back to the ball.

Finally for the ψu we use the following lemma:

Lemma A.2.3. For F ∈ C0
uL

1
v(�δ) we can find a sequence of functions Fε ∈ C∞(�◦δ) such that

Fε → F in C0
uL

1
v.

(See section A.4.1 for proof).

Studying equation

∂v (ψε) = Fε, (A.57)

by integrating and taking the limit as ε→ 0,

∣∣∣∣ψu(u, v)− ψu(u, v)
∣∣∣∣
C0
u
≤ 1

2
||ψ1,u||C0(N ′) + ||F ||C0

uL
1
v(�δ)

. (A.58)

Evaluating the norm of F , we see

||F ||C0
uL

1
v(�δ)

≤ δ
1

r0

||rv||C0 ||ψu||C0 + δ
m

4
||Ω||2C0 ||ψ||C0 + δ

1
2

1

r0

||ru||C0 ||ψv||C0H1 (A.59)

so for δ small enough we map back to the ball.

A.2.7 Contraction map

Throughout the contraction map argument we will often make use of the following estimates.

Lemma A.2.4. There exists a constant Cb > 0 such that

|Ω1 − Ω2| ≤ Cb

∣∣∣∣log

(
Ω1

Ω2

)∣∣∣∣ . (A.60)

Proof.

|Ω1 − Ω2| =
∣∣elog Ω1 − elog Ω2

∣∣
≤
∣∣∣∣elog Ω2

(
e

log
(

Ω1
Ω2

)
− 1

)∣∣∣∣
≤ eNe

b+Cb

∣∣∣∣log

(
Ω1

Ω2

)∣∣∣∣ .
(A.61)
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Lemma A.2.5. Let A1, A2 > 0, and B1, B2 be functions. The following inequalities hold

|A1B1 − A2B2| ≤ |A1| |B1 −B2|+ |B2| |A1 − A2| ,∣∣A2
1 − A2

2

∣∣ ≤ (|A1|+ |A2|) |A1 − A2| ,∣∣∣∣ 1

A1

− 1

A2

∣∣∣∣ ≤ 1

|A1A2|
|A1 − A2| .

(A.62)

Contraction for Ω̂

log Ω̂ estimates

We can see the contraction for this directly∣∣∣∣∣log
Ω̂1

Ω̂2

∣∣∣∣∣ =

∣∣∣∣∫ u

0

∫ v

0

(−4πψ1,uψ1,v + 4πψ2,uψ2,v) +

(
r1,ur1,v

r2
1

− r2,ur2,v

r2
2

)
+

(
k

Ω2
1

4r2
1

− k Ω2
1

4r2
1

)
dvdu

∣∣∣∣ ,
(A.63)

we have three terms to deal with. The second two are fairly simple, estimating with (A.61),

(A.62), and that we map back to the ball. From the integrals we get a δ2 smallness here. The

first term requires more care, due to the regularity.

Firstly factor

− 4πψ1,uψ1,v + 4πψ2,uψ2,v = 4π (ψ1,u (ψ1,v − ψ2,v) + ψ2,v (ψ1,u − ψ2,u)) . (A.64)

Then performing ML, and Cauchy Schwartz inequalities we estimate∫ u

0

∫ v

0

−4πψ1,uψ1,v + 4πψ2,uψ2,vdvdu ≤ ||ψ1,u||C0

∫ u

0

∫ v

0

|ψ1,v − ψ2,v| dudv

+

∫ u

0

∫ v

0

|ψ2,v| dudv ||ψ1,u − ψ2,u||C0

≤ δ
3
2 4π ||ψ1,u||C0 ||ψ1 − ψ2||C0H1

+ δ
3
2 4π ||ψ2||C0H1 ||ψ1,u − ψ2,u||C0

≤ δ
3
2Cb · d(Σ1,Σ2).

(A.65)

We thus have ∣∣∣∣∣log
Ω̂1

Ω̂2

∣∣∣∣∣ ≤ δ
3
2Cb · d(Σ1,Σ2). (A.66)

log Ω̂u estimates

Recall the map for this variable is(
log Ω̂

)
u

=
(
log Ω

)
u

+

∫ v

0

−4πψuψv +
rurv
r2

+ k
Ω2

4r2
dv. (A.67)
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This is a similar argument as the map for log Ω̂, only the integral in u is not present. (This

corresponded to a higher power of δ). We immediately see that∣∣∣∣∣log

(
Ω̂1

Ω̂2

)
u

∣∣∣∣∣ ≤ δ
1
2Cb · d(Σ1,Σ2) (A.68)

Contraction for r̂

The maps for r̂ and its derivatives only contain continuous functions. This means the estimates

(A.61), and (A.62), will suffice to estimate the integrand in the desired form. Integrating then

gets us the required δ or δ2 smallness factor

d(r̂1, r̂2) ≤ min
(
δ, δ2

)
Cbd(Σ1,Σ2). (A.69)

For clarity we include that we may write

r̂uvu =− ruurvr−1 − ruruvr−1 + r2
urvr

−2 + πmruψ
2Ω2 + 2πmrψψuΩ

2 + 2πmrψ2ΩΩu

+
Λ

4
ruΩ

2 +
Λ

2
rΩΩu −

k

2
ΩΩur

−1 +
k

4
Ω2r−2ru,

(A.70)

as

r̂uvu =− ruurvr−1 − ruruvr−1 + r2
urvr

−2 + πmruψ
2Ω2 + 2πmrψψuΩ

2 + 2πmrψ2Ω2 log (Ω)u

+
Λ

4
ruΩ

2 +
Λ

2
rΩ2 log (Ω)u −

k

2
Ω2 log (Ω)u r

−1 +
k

4
Ω2r−2ru.

(A.71)

Contraction for ψ̂

Contraction in the C0H1 norm

It follows from the energy estimates that

∣∣∣∣∣∣ψ̂1 − ψ̂2

∣∣∣∣∣∣2
C0H1

≤
∫ δ

0

∫ δ

0

(F1 − F2)2dudv. (A.72)

Expanding the RHS integrand we see

F1 − F2 = −r1,v

r1

ψ1,u −
r1,u

r1

ψ1,v −
m

4
Ω2

1ψ1 −
(
−r2,v

r2

ψ2,u −
r2,u

r2

ψ2,v −
m

4
Ω2

1ψ2

)
, (A.73)

which we regroup into the low regularity terms L and the continuous terms C.

F1 − F2 =

(
r2,u

r2

ψ2,v −
r1,u

r1

ψ1,v

)
︸ ︷︷ ︸

L

+

(
r2,v

r2

ψ2,u −
r1,v

r1

ψ1,u +
m

4
Ω2

1ψ2.−
m

4
Ω2

1ψ1

)
︸ ︷︷ ︸

C

. (A.74)
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Estimating with Cauchy’s inequality we see we can estimate by

(F1 − F2)2 ≤ 2L2 + 2C2, (A.75)

the C terms are all continuous, and thus trivial to deal with. We look at L terms which require

more care. First write the L terms by

L =
r2,u

r2

(ψ2,v − ψ1,v) + ψ1,v
1

r2

(r2,u − r1,u) + ψ1,v
r1,u

r1r2

(r1 − r2) . (A.76)

Using Cauchy’s inequality iteratively we have

L2

4
≤
(
r2,u

r2

)2

(ψ2,v − ψ1,v)
2 + ψ2

1,v

(
1

r2

)2

(r2,u − r1,u)
2 + ψ2

1,v

(
r1,u

r1r2

)2

(r1 − r2)2 . (A.77)

Estimating term by term∫ δ

0

∫ δ

0

(
r2,u

r2

)2

(ψ2,v − ψ1,v)
2 dudv ≤

∣∣∣∣∣∣∣∣r2,u

r2

∣∣∣∣∣∣∣∣
C0

δ sup
u

∫ δ

0

|ψ2,v − ψ1,v|2 dv ≤ δ

∣∣∣∣∣∣∣∣r2,u

r2

∣∣∣∣∣∣∣∣
C0

||ψ1 − ψ2||2C0H1 ,

(A.78)∫ δ

0

∫ δ

0

ψ2
1,v

(
1

r2

2
)2

(r2,u − r1,u)
2 dudv ≤ δ

∣∣∣∣∣∣∣∣ 1

r2

∣∣∣∣∣∣∣∣
C0

sup
u

(∫ δ

0

ψ2
1,vdv

)
||r1,u − r2,u||2C0 , (A.79)

∫ δ

0

∫ δ

0

ψ2
1,v

(
r1,u

r1r2

)2

(r1 − r2)2 dudv ≤ δ

∣∣∣∣∣
∣∣∣∣∣
(
r1,u

r1r2

)2
∣∣∣∣∣
∣∣∣∣∣
C0

sup
u

(∫ v

0

ψ2
1,vdv

)
||r1 − r2||2C0 . (A.80)

Thus we are able to conclude that∣∣∣∣∣∣ψ̂1 − ψ̂1

∣∣∣∣∣∣2
C0H1

≤ Cl,b,aδ · d(Σ1,Σ2)2. (A.81)

Contraction in C0 for ψ

By the fundamental theorem of calculus∣∣∣ψ̂1(u, v)− ψ̂2(u, v)
∣∣∣ =

∣∣∣∣∫ u

0

ψ̂1,u − ψ̂2,udu

∣∣∣∣
≤
(∫ u

0

1du

) 1
2
(∫ u

0

(
ψ̂1,u − ψ̂2,u

)2

du

) 1
2

≤ δ
1
2

∣∣∣∣∣∣ψ̂1 − ψ̂2

∣∣∣∣∣∣
C0H1

≤ Cb,l,aδ
3
2 · d(Σ1,Σ2).

(A.82)

Contraction in C0 for for ψu

The wave equation implies the following estimate

∣∣∣ψ̂1,u(u, v)− ψ̂2,u(u, v)
∣∣∣ ≤ ∫ δ

0

∣∣∣∣r2,u

r2

ψ2,v −
r1,u

r1

ψ1,v +
r2,v

r2

ψ2,u −
r1,v

r1

ψ1,u +
m

4
Ω2

2ψ2 −
m

4
Ω2

1ψ1

∣∣∣∣ dv.
(A.83)
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From the continuity of the functions, only the first two terms in the integrand are non trivial.

Explicitly we are dealing with∫ δ

0

∣∣∣∣r2,u

r2

ψ2,v −
r1,u

r1

ψ1,v

∣∣∣∣ dv ≤ ∫ δ

0

∣∣∣∣r2,u

r2

(ψ2,v − ψ1,v)

∣∣∣∣ dv +

∫ δ

0

∣∣∣∣(r2,u − r1,u)
ψ1,v

r2

+ (r1 − r2)
r1,u

r1r2

ψ1,v

∣∣∣∣ dv
≤
∣∣∣∣∣∣∣∣r2,u

r2

∣∣∣∣∣∣∣∣
C0

δ
1
2 ||ψ1 − ψ2||C0H1 + δ

1
2 ||r1,u − r2,u||C0

∣∣∣∣∣∣∣∣ 1

r2

∣∣∣∣∣∣∣∣
C0

sup
u

(∫ δ

0

ψ2
1,vdv

) 1
2

+ δ
1
2 ||r1 − r2||C0

∣∣∣∣∣∣∣∣ r1,u

r1r2

∣∣∣∣∣∣∣∣
C0

(∫ v

0

ψ2
1,vdv

) 1
2

.

(A.84)

It thus follows that ∣∣∣∣∣∣ψ̂1,u(u, v)− ψ̂2,u(u, v)
∣∣∣∣∣∣
C0
≤ Cb,l,aδ

1
2 · d(Σ1,Σ2). (A.85)

Hence for δ sufficiently small we have a contraction. A unique solution of the desired regularity

follows from Banach’s fixed point theorem.

A.2.8 Propagation of constraints

By calculation it follows from equations (A.6)-(A.8) that the following equations hold

∂v

(
Ω2∂u

( ru
Ω2

)
+ 4πrψ2

u

)
= −rv

r

(
ruu − 2ru

Ωu

Ω
+ 4πrψ2

u

)
= −rv

r

(
Ω2∂u

( ru
Ω2

)
+ 4πrψ2

u

)
,

(A.86)

and

∂u

(
Ω2∂v

( ru
Ω2

)
+ 4πrψ2

v

)
= −ru

r

(
Ω2∂v

( rv
Ω2

)
+ 4πrψ2

v

)
. (A.87)

These are homogeneous equations, as the constraint holds on the initial data rays by assump-

tion, they must propagate. That is

∂v

( rv
Ω2

)
= −4πr

ψ2
v

Ω2
, (A.88)

holds almost everywhere and that

∂u

( ru
Ω2

)
= −4πr

ψ2
u

Ω2
, (A.89)

holds classically.
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A.3 Extendibility criterion

Definition A.3.1. Define the timelike future/past of a point p

I±(p) := p∪{q ∈M|∃γ : [0, 1]→M, γ(0) = p, γ(1) = q|γ̇ future(+) or past(-) directed, timelike}
(A.90)

and the causal future/past of p

J±(p) := p∪{q ∈M|∃γ : [0, 1]→M, γ(0) = p, γ(1) = q|γ̇ future(+) or past(-) directed, causal}.
(A.91)

Proposition A.3.1 (Extendibility criterion). Let p = (U, V ) ∈ Q+\Q+, and q = (U ′, V ′) ∈
(I−(p) ∩Q+) \{p} be such that the set

D =
(
J+(q) ∩ J−(p)

)
\{p} ⊂ Q+, (A.92)

then we have that

N(D) =∞. (A.93)

Proof. Assume the contrapositive. Suppose that N = 2N(D) <∞. Now corresponding to this

N there is a δ > 0, from the previous proposition that we can solve on a domain �δ. Consider

the point (U − 1
2
δ, V − 1

2
δ). Take δ small enough so this point is in Q+. Translate so this point

is at the origin (0, 0). As Q+ is open we have from continuity the existence of δ∗ ∈ (1
2
δ, δ) such

that

X∗ = {0} × [0, δ∗] ∪ [0, δ∗]× {0} ⊂ Q+, (A.94)

and that the assumptions of the previous proposition hold. Thus there exists a unique solution

in

E = [0, δ∗]× [0, δ∗]. (A.95)

By uniqueness this coincides with previous solution on the subset D ∩ E . As E ∪ Q+ is the

quotient of a maximal development of initial data, we get from the maximality of Q+ that

E ∪ Q+ ⊂ Q+. So we have that p ∈ Q+.

A.4 Interior extension principle

Let G be either S2, T2 or Σg.

Proposition A.4.1. Let (Q+×G, g, ψ) denote the maximal W extension of an asymptotically

AdS initial data set as defined in 3.4.2. Suppose p = (U, V ) ∈ Q+. If

•
D = [U ′, U ]× [V ′, V ]\{p} ⊂ Q+, (A.96)

has finite spacetime volume,
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• and there exist constants

0 < r0 ≤ r ≤ R <∞, for all (u, v) ∈ D, (A.97)

then p ∈ Q+.

Proof. Firstly defining χ = Ω2

4ru
. Write the Raychaudhuri equation (3.8) as

∂u logχ =
4πr

ru
(∂uψ)2 ∼ rur

−4+2κ, (A.98)

we know that at I, we have ru < 0 (spacetime is aAdS) so we have that χ|I < 0. This implies

χ = χ|uI exp

(∫ u

I

4πr

ru
(∂uψ)2du

)
, (A.99)

and thus ru < 0 in the maximal development.

Now from our assumptions on D we have∫ V

V ′

∫ U

U ′
Ω2dUdV < C, (A.100)

and
1

C
< r0 ≤ r(u, v) ≤ R < C, (A.101)

for some constant C > 0. Continuity and compactness tells us that on [U ′, U ] × {V ′} and

{U ′} × [V ′, V ] we have the estimates

1

N
< −rru < N, |rrv| < N, |rψ| < N, |ψu| < N, |ruu| < N, |ruv| < N,

|Ωu| < N, |log Ω| < N.
(A.102)

for some constant N . We now write (A.6) in the form

∂u (rrv) = πmr2ψ2Ω2 +
Λ

4
r2Ω2 − kΩ2

4
. (A.103)

Integrating the above twice, and using our bounds on the spacetime volume and r, we get∫ V

V ′

∫ U

U ′
ψ2Ω2dudv ≤ C̃. (A.104)

Where C̃ depends only on C,m,Λ and k. We can also form the pointwise estimate

sup
[U ′,U ]

|rrv| ≤ N +
1

4

∫ U

U ′

(
|k|+ |Λ| r2

)
Ω2du+

∫ U

U ′
π |m| r2ψ2Ω2du. (A.105)
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We integrate this to ∫ V

V ′
sup

[U ′,U ]

|rrv| dv ≤ N(V − V ′) + C̃, (A.106)

and similarly ∫ U

U ′
sup

[V ′,V ]

|rru| du ≤ N(U − U ′) + C̃. (A.107)

We now partition D into sub diamonds given by

Djk = [uj, uj+1]× [vk, vk+1] j, k = 0, . . . , N, (A.108)

with u0 = U ′, uN = U , v0 = V ′, vN = V , and such that for a given ε > 0 we have∫ vk+1

vk

∫ uj+1

uj

Ω2ψ2dudv +

∫ vk+1

vk

∫ uj+1

uj

Ω2dudv +

∫ vk+1

vk

sup
[U ′,U ]

|rrv| dv +

∫ uj+1

uj

sup
[V ′,V ]

|rru| du < ε.

(A.109)

This is possible in view of the uniform bounds we proved.

Define

Pjk = sup
Djk
|rψ(u, v)| , (A.110)

and pick an arbitrary point (u∗, v∗) ∈ Djk, and consider (A.8) written as

∂v∂u (rψ) = ψ∂u (rv)−
m

4
rΩ2ψ, (A.111)

as the right hand side is continuous we note that this holds almost everywhere. We now wish

to integrate this in both variables, we first study∫ v∗

vk

∫ u∗

uj

m

4
rΩ2ψdudv ≤ CmPjk · ε, (A.112)

as for the term∫ v∗

vk

∫ u∗

uj

ψ∂u (rv) dudv =∫ v∗

vk

∫ u∗

uj

ψ

(
−rurv

r
+ πmrψ2Ω2 +

Λ

4
rΩ2 − kΩ2

4r

)
dudv ≤ Pjk · Cl,r0ε,

(A.113)

this estimate is obviously true for all the terms on the RHS with the exception of the first. We

can estimate this by:∫ v∗

vk

∫ u∗

uk

−rurv
r
ψdudv ≤ Pjk

∫ v∗

vk

∫ u∗

uk

−ru
r3
|rrv| dudv

≤ Pjk

∫ v∗

vk

sup
[uj ,uj+1]

|rrv| dv
∫ u∗

uj

−ru
r3

du ≤ Pjk ·
Cl
r2

0

· ε.
(A.114)
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So integrating (A.111), in u and v for sufficiently small ε, yields the the uniform bound

Pjk < 2

(
sup

[uj ,uj+1]×{vk}
|rψ|+ sup

{uj}×[vk,vk+1]

|rψ|
)
< 2 (Pj,k−1 + Pj−1,k) . (A.115)

Inductively step back to P0,k and Pj,0, yielding a uniform bound for Pjk in terms of the initial

data. Taking a maximum over all the sub diamonds thus yields

sup
D
|rψ| < C̃. (A.116)

The next step is to prove a pointwise bound for log (Ω). Recalling the equation (A.7) the only

term we don’t yet know how to deal with is∫ U

U ′

∫ V

V ′
ψuψvdudv =

∫ U

U ′

∫ V

V ′

1

2
∂v∂u

(
ψ2
)
− ψ

(
−rv
r
ψu −

ru
r
ψv −

m

4
Ω2ψ

)
dudv

=

∫ U

U ′

∫ V

V ′

1

2
∂v∂u

(
ψ2
)

+
m

4
Ω2ψ2 +

ru
2r
∂v
(
ψ2
)

+
rv
2r
∂u
(
ψ2
)
dudv.

(A.117)

We control the first two terms of the integral by previous estimates. We turn to look at the

third (the fourth is analogous),∫ V

V ′

∫ U

U ′

ru
2r
∂v
(
ψ2
)
dudv =

∫ V

V ′

[ ru
2r
ψ2
]U
U ′
dv +

∫ V

V ′

∫ U

U ′

(ruv
r
− rurv

r

)
ψ2dudv. (A.118)

We can control the surface terms in view of (A.106) and the bounds on r. As for the other

terms∫ V

V ′

∫ U

U ′

(ruv
r
− rurv

r

)
ψ2dudv =

∫ V

V ′

∫ U

U ′
−2

rurv
r
ψ2 + πmrψ4Ω2 +

Λ

4
rΩ2ψ2 − kΩ2

4r
ψ2dudv,

(A.119)

term by term we can see that we control this from previous estimates. We conclude that

|log (Ω)| < C̃. (A.120)

So we have uniform constants c0, c1 such that

c0 < Ω2 < c1. (A.121)

With this estimate reviewing (A.105) we thus can control

sup
D
|rru|+ sup

D
|rrv| < C̃. (A.122)

Where the C̃ depends on the domain values. A uniform estimate for ruv now immediately

follows from the definition. Integrating (A.111) in v we get that ψu is uniformly bounded.

With these bounds we can thus integrate (A.4), and (A.5), to see that we have Ḣ1 control of

ψ. Using this and the uniform bound on ψ we can upgrade this to full C0H1 control. Now
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integrating (3.11) in v, estimating the ψuψv term by bounding ψu uniformly, and applying the

Cauchy-Schwartz estimate on the ψv term, we see that we control Ωu uniformly. Finally the ruu

estimate follows from expanding the derivative of (3.8). We thus have that in D the existence

of a 0 < M <∞, where

M = sup
{
||ψ||H1

u
, ||ψ||H1

v
, ||ψu||C0

u
, ||ψu||C0

v
, ||r||C1

u
, ||r||C1

v
, ||ruu||C0

u
, ||ruu||C0

v
,

||ruv||C0
u
, ||ruv||C0

v
,
∣∣∣∣r−1

∣∣∣∣
C0
u
,
∣∣∣∣r−1

∣∣∣∣
C0
v
, ||Ω||C0

u
, ||Ω||C0

v
, ||Ωu||C0

u
, ||Ωu||C0

v
,
∣∣∣∣Ω−1

∣∣∣∣
C0
u
,
∣∣∣∣Ω−1

∣∣∣∣
C0
v

}
.

(A.123)

An application of proposition A.3.1 shows us that we are done.

A.4.1 Wave equation theory, and technical results

Lemma A.4.1. For any δ > 0 and F ∈ C∞(�◦δ) the equation

∂v∂uψ = F. (A.124)

With initial data ψ(u, 0) = ψ0, and boundary data ψ(0, v) = ψ1, which satisfy the compatibility

condition ψ0(0) = ψ1(0) and are C∞. We have the following energy estimates for ψ

||ψ||C0H1 ≤ ||ψ1||L2(N ′) + ||ψ2||L2(N ) + δ ||ψ2,v||L2(N ) + δ ||ψ1,u||L2(N ′) + 2δ
3
2 ||F ||L2(�δ)

. (A.125)

Proof. Firstly we define the quantity

Ev(u) =

∫ v

0

ψ2
v(u, v

′)dv′. (A.126)

Now by multiply (A.124) by ψv to get the equality

1

2
∂u
(
ψ2
v

)
= ψvF. (A.127)

Integrating twice gives∫ v

0

ψ2
v(u, v

′)− ψ2
v(0, v

′)dv′ = 2

∫ v

0

∫ u

0

F (u′, v′)ψv(u
′, v′)dudv. (A.128)

We apply Fubini’s theorem, and write the expression as∫ v

0

ψ2
v(u, v

′)dv′ −
∫ v

0

ψ(0, v′)dv′ = 2

∫ u

0

∫ v

0

F (u′, v′)ψv(u
′, v′)dvdu. (A.129)
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Taking derivatives in u we see

d

du
Ev(u) = 2

∫ v

0

F (u, v′)ψv(u, v
′)dv

≤ 2E
1
2
v (u)

(∫ v

0

F (u, v′)2dv

) 1
2

.

(A.130)

So we have
d

du
Ev(u)

1
2 ≤

(∫ v

0

F (u, v′)2dv

) 1
2

, (A.131)

integrating back in u we have

||ψv||L2
v

(u, v) ≤ ||ψ2,v||L2
v

(0, v) +

∫ u

0

(∫ v

0

F (u, v′)2dv

) 1
2

dv

≤ ||ψ2,v||L2
v

(0, v) + δ
1
2 ||F ||L2

vL
2
u

(u, v).

(A.132)

We repeat this in the u variable to deduce the inequality

||ψv||L2
v

(u, v) + ||ψu||L2
u

(u, v) ≤ ||ψ2,v||L2
v

(0, v) + ||ψ1,u||L2
u

(u, 0) + 2δ
1
2 ||F ||L2

vL
2
u

(u, v). (A.133)

Which extends to

||ψv||L2
v

(u, δ) + ||ψu||L2
u

(δ, v) ≤ ||ψ2,v||L2
v

(0, δ) + ||ψ1,u||L2
u

(δ, 0) + 2δ
1
2 ||F ||L2

vL
2
u

(δ, δ). (A.134)

Taking C0 norms gives

||ψv||C0
uL

2
v(�δ)

+ ||ψu||C0
vL

2
u(�δ)

≤ ||ψ2,v||L2(N ) + ||ψ1,u||L2(N ′) + 2δ
1
2 ||F ||L2(�δ)

. (A.135)

We now need the first order terms. From the fundamental theorem of calculus

|ψ(u, v)| =
∣∣∣∣ψ(0, v) +

∫ u

0

ψu(u
′, v)du′

∣∣∣∣
≤ |ψ(0, v)|+ δ

1
2 ||ψu||L2

u
(u, v),

(A.136)

hence

||ψ(u, v)||C0
v
≤ ||ψ(0, v)||C0

v
+ δ

1
2 ||ψu||C0

vL
2
u

(u, v). (A.137)

Thus from estimating

||ψ||2L2
v

(u, v) =

∫ v

0

|ψ(u, v′)|2 dv′

≤ δ ||ψ(0, v)||2L2
v

+ δ2 ||ψu||2C0
vL

2
u

(u, v),

(A.138)

we conclude

||ψ||L2
v

(u, v) ≤ δ
1
2 ||ψ(0, v)||L2

v
+ δ ||ψu||C0

vL
2
u

(u, v). (A.139)
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Similarly

||ψ||L2
u

(u, v) ≤ δ
1
2 ||ψ(u, 0)||L2

u
+ δ ||ψu||C0

uL
2
v

(u, v). (A.140)

From here we can then see

||ψ||C0
uH

1
v (�δ)

+||ψ||C0
vH

1
u(�δ)

≤ δ
1
2 ||ψ1||L2(N ′)+δ

1
2 ||ψ2||L2(N )+δ ||ψ2,v||L2(N )+δ ||ψ1,u||L2(N ′)+2δ

3
2 ||F ||L2(�δ)

.

(A.141)

Finally

||ψ||C0H1(�δ)
≤ δ

1
2 ||ψ1||L2(N ′) + δ

1
2 ||ψ2||L2(N ) + δ ||ψ2,v||L2(N ) + δ ||ψ1,u||L2(N ′) + 2δ

3
2 ||F ||L2(�δ)

.

(A.142)

Lemma A.4.2. ∣∣∣∣ψ − ψ∣∣∣∣
C0 ≤ ||ψ||C0H1 , (A.143)

Proof. From the fundamental theorem of calculus we see

|ψ(u, v)− ψ(0, v)| =
∣∣∣∣∫ u

0

ψu(u
′, v)du′

∣∣∣∣
≤ δ

1
2 ||ψu||L2

u
(u, v)

≤ ||ψ||C0H1 ,

(A.144)

and

|ψ(u, v)− ψ(0, v)| =
∣∣∣∣∫ v

0

ψu(u, v
′)dv′

∣∣∣∣
≤ δ

1
2 ||ψv||L2

v
(u, v)

≤ ||ψ||C0H1 .

(A.145)

Applying the triangle inequality we get

∣∣ψ(u, v)− ψ(u, v)
∣∣ ≤ 1

2
|ψ(u, v)− ψ(0, v)|+ 1

2
|ψ(u, v)− ψ(u, 0)| ≤ ||ψ||C0H1 . (A.146)

We conclude ∣∣∣∣ψ − ψ∣∣∣∣
C0 ≤ ||ψ||C0H1 . (A.147)

Lemma A.4.3. We also have the following estimate for the u derivative

∣∣∣∣ψu(u, v)− ψu(u, v)
∣∣∣∣
C0
u
≤ 1

2
||ψ1,u||C0(N ′) + ||F ||C0

uL
1
v(�δ)

, (A.148)

Proof. First integrate (A.8) to get

ψu(u, v)− 1

2
ψu(u, 0) =

1

2
ψu(u, 0) +

∫ v

0

Fdv. (A.149)
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From taking absolute values the result follows.

Lemma A.4.4. Let F ∈ C0
uL

1
v(�δ) then there exists an Fε ∈ C∞(�δ) such that Fε → F in

C0
uL

1
v(�ε := [−δ, 2δ]× [−δ, 2δ]).

Proof. First fix 1 > ε > 0 we then extend F by for (u, v) ∈ �ε

Fe(u+ δ, v) =F (δ − u, v)

Fe(u− δ, v) =F (u, v)

Fe(u, v ± δ) =F (u, v),

(A.150)

(i.e. periodic in v and reflections in u). So Fe ∈ C0
uL

2
v(�ε), and agrees with F on �δ. Now let

ϕε be the standard smoothing kernel, and define on �ε

Fε(u, v) =

∫
R
ϕε(v

′)Fe(u, v − v′)χ(ε,δ−2ε)(v
′)dv′. (A.151)

Thus Fε ∈ C∞(�ε). We now extend to all of C∞c (R2) by using a smooth cut-off function to 0

in the annular set [−2δ, 3δ] × [−2δ, 3δ]\�ε, and 0 on the set [3δ,∞) × [3δ,∞). It is now our

goal to show that when restricted to �δ we have that Fε → F in C0
uL

1
v(�ε). We compute

||Fε(u, ·)− F (u, ·)||L1
v(�δ)

=

∫ δ

0

∣∣∣∣∫
R
ϕε(v

′)
(
F (u, v − v′)χ(ε,δ−2ε)(v

′)− F (u, v)
)
dv′
∣∣∣∣ dv

≤
∫ δ

0

∫
R
|ϕε(v′)|

∣∣(F (u, v − v′)χ(ε,δ−2ε)(v
′)− F (u, v)

)∣∣ dv′dv
=

∫
R

∫ δ

0

|ϕε(v′)|
∣∣(F (u, v − v′)χ(ε,δ−2ε)(v

′)− F (u, v)
)∣∣ dvdv′

=

∫
R
|ϕε(v′)|

∫ δ

0

∣∣(F (u, v − v′)χ(ε,δ−2ε)(v
′)− F (u, v)

)∣∣ dvdv′
=

∫
R
|ϕε(w)|

∫ δ
ε

0

∣∣(F (u, v − εw)χ(ε,δ−2ε)(εw)− F (u, v)
)∣∣ εdvdw.

(A.152)

As F ∈ C0
uL

1
v(�ε) we have that∣∣∣∣(F (u, v − εw)χ(ε,δ−2ε)(εw)− F (u, v)

)∣∣∣∣
L1
v
∈ C0

u([−δ, 2δ]). (A.153)

From compactness there exists a u∗ ∈ [−δ, 2δ], such that∣∣∣∣(F (u, v − εw)χ(ε,δ−2ε)(εw)− F (u, v)
)∣∣∣∣

L1
v
≤
∣∣∣∣(F (u∗, v − εw)χ(ε,δ−2ε)(εw)− F (u∗, v)

)∣∣∣∣
L1
v
.

(A.154)
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By Fatou’s lemma

sup
u∈[0,δ]

||Fε(u, ·)− F (u, ·)||L1
v
≤
∫
R
|ψ(w)| sup

u∈[0,δ]

||Fε(u, ·)− F (u, ·)||L1
v
dw

≤
∫
R
|ψ(w)| sup

u∈[0,δ]

∣∣∣∣τεw (F (u, ·)χ(2ε,δ−2ε)(·)
)
− F (u, ·)

∣∣∣∣
L1
v
dw,

(A.155)

where τ is the translation operator. The goal now is to show that

lim
ε→0

sup
u∈[0,δ]

||Fε(u, ·)− F (u, ·)||L1
v

= 0. (A.156)

Assume the contrapositive. Then we may find β > 0, εi → 0, and ui such that∣∣∣∣τεw (F (u, ·)χ(2ε,δ−2ε)(·)
)
− F (u, ·)

∣∣∣∣
L1
v
≥ β. (A.157)

Since u ∈ [0, δ], we can assume (after extracting a subsequence) that ui → u∗ with u∗ ∈ [0, δ].

Now note the following inequality∣∣∣∣τεw (F (ui, ·)χ(2εi,δ−2ε)(·)
)
− F (ui, ·)

∣∣∣∣
L1
v
≤
∣∣∣∣τεiw (F (ui, ·)χ(2εi,δ−2εi)(·)

)
− τεiw

(
F (u∗, ·)χ(2εi,δ−2εi)(·)

)∣∣∣∣
L1
v

+
∣∣∣∣τεiw (F (u∗, ·)χ(2εi,δ−2εi)(·)

)
− F (u∗, ·)χ(2εi,δ−2εi)(·)

∣∣∣∣
L1
v

+
∣∣∣∣F (u∗, ·)χ(2εi,δ−2εi)(·)− F (u∗, ·)

∣∣∣∣
L1
v

+ ||F (u∗, ·)− F (ui, ·)||L1
v

=
∣∣∣∣F (ui, ·)χ(2εi,δ−2εi)(·)− F (u∗, ·)χ(2εi,δ−2εi)(·)

∣∣∣∣
L1
v

+
∣∣∣∣τεiw (F (u∗, ·)χ(2εi,δ−2εi)(·)

)
− F (u∗, ·)χ(2εi,δ−2εi)(·)

∣∣∣∣
L1
v

+
∣∣∣∣F (u∗, ·)χ(2εi,δ−2εi)(·)− F (u∗, ·)

∣∣∣∣
L1
v

+ ||F (u∗, ·)− F (ui, ·)||L1
v
.

(A.158)

Examining each norm one by one. For the first term∣∣∣∣F (ui, ·)χ(2εi,δ−2εi)(·)− F (u∗, ·)χ(2εi,δ−2εi)(·)
∣∣∣∣
L1
v
→ 0, (A.159)

this follows from F ∈ C0
uL

1
v and that ui → u∗. For the second∣∣∣∣τεiw (F (u∗, ·)χ(2εi,δ−2εi)(·)

)
− F (u∗, ·)χ(2εi,δ−2εi)(·)

∣∣∣∣
L1
v
→ 0, (A.160)

this follows from the continuity of the translation map from L1 → L1. For the third∣∣∣∣F (u∗, ·)χ(2εi,δ−2εi)(·)− F (u∗, ·)
∣∣∣∣
L1
v
→ 0, (A.161)

the follows as integrand is dominated by 2 |F (u∗, ·)|, and that the indicator function will con-
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verge pointwise to unity. Finally for the fourth

||F (u∗, ·)− F (ui, ·)||L1
v
→ 0, (A.162)

this follows from F ∈ C0
uL

1
v and that ui → u∗. So we have shown that∣∣∣∣τεw (F (ui, ·)χ(2εi,δ−2ε)(·)

)
− F (ui, ·)

∣∣∣∣
L1
v
→ 0, (A.163)

which is a contradiction.
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