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ABSTRACT

In this thesis various aspects about the dynamical stability of the toroidally symmetric Schwarzschild

AdS black hole are discussed and proven.

The first chapter of the thesis is a literature review. This covers the key relevant results within

the area and provides context for the results of the later chapters.

The second chapter concerns the Klein-Gordon equation with Dirichlet, Neumann and Robin
boundary conditions on the exterior of the toroidally symmetric Schwarzschild AdS black hole.
Through the vector field method energy estimates, and degenerating Morawetz estimates are
proven. From these it is seen that the energy of the solutions on these spacetimes are bounded
and decay polynomially in time. Furthermore, it is shown that there exist null geodesics on
this spacetime remain exterior to the event horizon boundary for arbitrary coordinate time.
Through a Gaussian beam argument, it follows that the degeneration in the Morawetz esti-

mates is necessary.

The third chapter proves the non-linear stability of the toroidally symmetric Schwarzschild AdS
black hole as a solution to the AdS-Einstein—Klein-Gordon system within the class of square
toroidal symmetries where the field satisfies Dirichlet or Neumann boundary conditions. This
is done through establishing wellposedness of the system in a region near null infinity. Then for
initial data ‘sufficiently small’ it is shown through bootstrap arguments that the energy remains
bounded by the initial data on the regular region exterior to the black hole. This is then used
to establish the orbital stability of the spacetime. Then through the vector field method,
exponential decay of the field on the regular region exterior to the black hole is established.
From this the asymptotic stability follows. Finally, a vacuum stability result is established in

the toroidal symmetry class where the periods of the torus are allowed to vary.
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INTRODUCTION

1.1 INTRODUCTION

In 1915 Albert Einstein published his revolutionary theory of general relativity. It is of a
geometric nature. The role of space and time is played by a four dimensional Lorentzian
manifold (M, g), where the metric g satisfies the Einstein field equations

1 8rG
R,uu — §Rguy + Agl“’ = FTMV' (11)

The left hand side of these equations consists of geometric quantities. 2, is the Ricci curvature
of the metric, R is the scalar curvature given by the trace of R, with respect to g, and A is a
scalar known as the cosmological constant. The right hand side consists of physical quantities.
T,, is the stress-energy tensor which describes the distribution of stress and energy of the
universe. G is the gravitational constant, and c is the speed of light. Typically one works in
geometrised units and takes G = ¢ = 1. The unification of these two, seemingly unrelated,
concepts was elegantly summarised by John Wheeler as: ‘Spacetime tells matter how to move;
matter tells spacetime how to curve’.

Specialising now to the case T},, = 0, (1.1) reduces to the Einstein vacuum equations
R, = Agp.. (1.2)

Imposing the further restriction A = 0, one can see that the manifold M = R* equipped with
the metric
n=—dt* + daz® + dy* + d2?, (1.3)

solves (1.2). This is not hugely surprising, as if we are to interpret gravity through the curvature
of a spacetime and reconcile this with the Newtonian notion that gravity is related to mass,

then one should expect the flat spacetime as a solution. This isn’t the only solution to (1.2),



in 1916 Karl Schwarzschild [Sch16] published his solution, M = R x (2M, o00) X S* with metric

-1
gu = — (1 - g) dt* + (1 - g) dr?® + r*dS?, (1.4)
which is a one parameter family (in M) of solutions to (1.2). It is thought to model spherically
symmetric static stars. Originally it was expected that the radius of the star would exceed
Tstar > 2M [Buch9] and a vacuum model was no longer appropriate in the region r < ry,,.. At
the time this would have appeared fortuitous as there appears to be a singularity at r = 2M.
However it turns out that this is only a coordinate singularity, and the solution can be extended
beyond r = 2M. Within this new region it can be seen that all future directed causal curves
remained trapped to r < 2M, forming what we now call a black hole. The surface H = {r =
2M} is known as the event horizon. This solution however does have a genuine singularity at
r = 0, which can be seen by the blow up of the Kretschmann scalar K = Rgp.q R, (For

Schwarzschild this takes the value Kgq, = 48% 2). Forty seven years later Kerr discovered a

larger family of solutions to (1.2) [Ker63]. These are rotating black holes with the additional
parameter g, where a represents the angular momentum of the black hole.

While these black hole solutions are mathematically interesting their physical relevance could
be contested. A popular idea in physics is that of gravitational collapse. It is believed the end
state of large stars can be modelled by a Kerr solution. However when solving for Schwarzschild
or Kerr solutions one imposes symmetry restrictions on the spacetime that a prior: the universe
may not exhibit (and is almost certainly not present in gravitational collapse). Furthermore,
there are currently no known explicit collapsing matter solutions with the Kerr exterior as
their final state [BC05]. Nevertheless objects resembling black holes have been observed in
experiments such as LIGO’s detection of gravitational waves [AealT7]. It is therefore apparent
that in order to explore the significance of these solutions within the physical theory one needs

to study (1.2) as a dynamical problem.

1.2 THE CAUCHY PROBLEM

When studying equations of motion of hyperbolic type as in (1.2) one typically considers a

Cauchy problem. An example would be given by the wave equation on R'? with coordinates
(t7 X) )

w(ovx) = fl(X>7 (15)

In order to have a well posed problem the function ¢ and its first time derivative at ¢ = 0 must
be specified.
Due to the geometrical nature of (1.2), it proved difficult to find a similar appropriate formula-

tion of the problem. This was resolved for the A = 0 case in the work of Choquet-Bruhat—Geroch



[CBG69]. One defines an initial data set as a spacelike three dimensional manifold 3, with a

Riemannian metric h, and a symmetric 2 tensor K, satisfying the Einstein constraint equations

Ry + (K2)? — KKy =0,

(1.6)
VyK! —V,K! =0.
Formulating the equations in the wave gauge
re =0, (1.7)

(I" are the connection coefficients) the equations form a system of quasilinear wave equations

1o 0%Gov
_ Zgha L Jov —
59" Sordme + N, (g9,09) = 0. (1.8)

The system is then solvable by standard methods, while checking the gauge condition (1.7) is
propagated. This leads to the result

Theorem 1.2.1 (Choquet-Bruhat-Geroch). For a smooth initial data set (X, h, K) satisfying
(1.6), there exists a unique smooth mazimal four dimensional Lorentzian manifold (M, g) satis-
fying (1.2) (A = 0) with a smooth embedding v : ¥ — M such that (M, g) is globally hyperbolic
with Cauchy surface 1(3) and h, K are the induced first and second fundamental forms on (%)

respectively.

In comparison to (1.5), one can think of A ~ 9|;—¢p and K ~ t/4|;—¢. The theorem proven is a
local wellposedness result, because while it implies the existence of spacetimes, it doesn’t tell us
about global properties, such as completeness or structure. These need to be inferred from other
methods. It is worth remarking that in establishing existence of the maximal development, the
original authors invoked Zorn’s lemma. This has since been shown to be unnecessary as seen
in [Shil6]. The regularity of the solution is also not optimal in this theorem; there has been
further work culminating in the proof of the bounded L? curvature conjecture [KRS15] which
shows wellposedness of (1.2) in a very low level of regularity. Scaling arguments suggest this

level of regularity is however still not optimal.

1.3 STABILITY PROBLEMS

With (1.2) now understood as a locally wellposed initial value problem for an initial data set
(3, h, K), one can start asking questions about global properties of the solution. One really
wants to know whether the black hole solutions can actually form from a large class of initial
data [Chr09], or if they are just artefacts of symmetry. It seems that this problem is beyond the
reach of the current methodology. A simpler question to understand their physical significance
is about their stability as solutions. Indeed if they aren’t stable as solutions to (1.2) then their
natural presence is cast into doubt. However before the stability of black holes is tackled, there

is the simpler, yet still highly non-trivial problem of the non-linear stability of Minkowski space.



This was proven in the work of Christodoulou-Klainerman [CK93|

Theorem 1.3.1. Consider a strongly asymptotically flat initial data set (3, h, K), assume it is
sufficiently close to Minkowski space in some weighted H* sense. The mazimal development is
geodesically complete and approaches Minkowski space in all directions. Furthermore a complete

null infinity can be attached to the spacetime.

The proof was later simplified in the work of [LR05] who worked in the wave gauge rather than
the more invariant formulation of [CK93]. This result has since been extended including the
addition of various matter fields [LM17], [Tayl17], [LT17], [Bie09], and to higher dimensional
theories of relativity [Wyal7]. It had already been established in the de-Sitter (A > 0) setting
[Fri86]. The extension of this result to black hole spacetimes without symmetry assumptions
remains largely still open. However there has been success for the slowly rotating (|a| < M)
Kerr de-Sitter black hole (A > 0) by Hintz and Vasy [HV16], who show that the solutions decay

exponentially fast to another Kerr de Sitter metric.

1.4 LINEAR WAVES ON BLACK HOLE SPACETIMES

While the full non-linear stability of black holes has not yet been proven, a typical approach
would be to work on linear problems, and to build up methodology from there. Perhaps the
simplest linearisation that can be attempted is to study the wave equation on the fixed target

black hole solution. The Cauchy problem is given by

D_W =0,
Y|y = Uy, (1.9)
n|2¢|z = Uy,

where n|y is the future directed unit normal to the spacelike surface 3, and O, is the wave

operator given by
1

Vldl

In view of (1.8) we may loosely think that ¢ is standing in for the metric tensor, and when

Oy = —=0, (VIglg"9,0) . (1.10)

g is a black hole spacetime, many of the difficulties seen in the non-linear stability problem
manifest themselves in proving boundedness and decay of . Indeed the decay of waves and
boundedness by initial data is akin to asymptotic and orbital stability in the non-linear problem

respectively.

1.4.1 VECTOR FIELD METHOD

A robust method to prove boundedness and decay of waves on black hole spacetimes is known as
the vector field method. The core idea is to define a quantity known as the energy momentum

tensor

Tlt] = Vi Vot = 50V 9V, (111)

4



which satisfies V#T,,[¢)] = 0 when [gip = 0. For a smooth vector field X one then defines the
vector field multiplier current as
Ty W] = T[] X", (1.12)

and its associated bulk term
EX[p) = X7 T, 9], (1.13)

where X7 = %E x¢g. Crucially the following identity holds
VeI ] = KX [y, (1.14)

which through the divergence theorem has many applications when integrating over spacetime

regions of the manifold.

BOUNDED ENERGY

Considering the case where the spacetime is Minkowski. Let ¥, to be the surface {t = 7} where

T is constant, and let X = J, which is Killing. The current is computed as
275 s, = (V) + (Vat))* + (Vy2)* + (V.0)°. (1.15)

So Jgn“|gt forms the energy density of ¢. Integrating (1.14) for the field decaying sufficiently

fast to spacelike infinity we derive the result

Jint|s,dSs, = [ Jln¥|s,dSs,, (1.16)

)3 Yo
which is nothing more than the classical conservation of energy. One can now extract pointwise
bounds on the field ¢ in terms of its initial data through commuting the equation with all
the Killing fields, elliptic estimates, and Klainerman-Sobolev inequalities [K1a87]. The same
methodology works in black hole spacetimes however there are additional issues. Many of these
can be seen on the Schwarzschild geometry. In order to have a regular horizon one uses the

Gullstrand-Painlevé coordinate system

oM [2M
g=— (1 — —) dt* 4+ 24/ ——dtdr + dr® + r*dS®. (1.17)
r T

In this setting 7' = 0, is still a timelike Killing field. Let ¥ be a Cauchy hypersurface (that
is every inextendible causal curve of the spacetime intersects ¥ precisely once), furthermore
let it be asymptotically flat. Then define ¥, to be ¢, (XN {r > 2M}) where ¢, is the one
parameter family of diffeomorphisms generated by T'. Noting that the flux along H is positive
and integrating (1.14) yields a result about a bounded energy

At (1 - g) ((th/J)? + (V) + ]y7¢|2> dSs, < 0/ JT 0|, dSs,, (1.18)

Yo



where C' > 0 is a uniform constant. While the same methodology as in Minkowski space can
still be applied, this estimate degenerates as r — 2M. Boundedness can only be obtained away
from the horizon. Fortunately this issue can be rectified by exploiting an interesting phenomena
of the black hole, known as the red shift effect. The idea being that if two observers A and
B are transmitting photons to each other, while falling into the black hole with B entering at
a later (coordinate) time, then the frequency of the light that B sees from A is exponentially
decaying (being shifted to the red). This suggests there is an additional decay mechanism in
a neighbourhood of the surface H. This is exploited by [DR08], [DR09b], and manifests itself
in the existence of a vector field N, which is timelike, acts like T away from the horizon and
importantly doesn’t have a degenerate current at the horizon. Combining this with the T
estimate as before, one can remove the degeneration in the estimates, [DR08] and apply the

same theory to prove boundedness as the Minkowski case.

ENERGY DECAY

To prove that the fields are decaying in time one turns to techniques pioneered by Morawetz
[Mor61], [Mor68], [Mor66]. The idea is to use the vector field method, but to also consider
vector fields that aren’t Killing. In the context of wave equation on the exterior of an obstacle,
the conformal Killing field K = t0; + r0, was used in [Mor61]. This choice of K leads to a ¢
weight appearing in (1.12) along with the standard energy density. From this time decay of the
energy can be inferred. In [Mor68] an alternative idea was seen for the non-linear Klein-Gordon
equation. The idea is to use vector fields of the form X = h(r)0,, for a radial function h(r).
This results in what are now known as Morawetz or integrated energy decay estimates (IED).
To illustrate the idea, consider a spherically symmetric, static, asymptotically flat spacetime
with a smooth time function ¢, area radius r, and polar angles 0, ¢. Let £,(t, 7,6, ¢) be a density
for E,(t) the energy of ¢ (associated to T'). A Morawetz estimate for 1) would typically take

the form

/ ' F(MEu(t,r,0,$)dSdt < CE,|0], (1.19)
0 3t

where C' > 0 is uniform and f : (0,00) — [0, 00). Typically f degenerates on certain surfaces of
the spacetime, or as r — oo. When this estimate is coupled with a bounded energy estimate,
providing the weight of the function f is sufficiently strong, one can then prove decay of the
energy on hyperboloidal slices [DR09a]. These decay rates are typically polynomial in nature
however in the instance where no degeneration of f occurs, exponential decay can be established.
The standard commutation methods and Sobolev estimates are then invoked to imply pointwise
estimates. In order to prove Morawetz type estimates, one returns to the vector field method
but instead of using 7" as a multiplier other more specialised choices are used. The idea is to
chose X in such a way the the bulk term KX[¢)] > 0 and JX[¢] is controllable by the energy
(which has been proven bounded typically through the vector fields 7" and N). In the case of
the Schwarzschild geometry, the work of [LS00], [BS06] employed these ideas in the context of
the non-linear Schrodinger equation. This was later extended to the wave equation in [DR09b],

[DRO7a], where the use of growing ¢ weights in X was seen to not be necessary. Uniform decay



|| < C77! was proven by using the more robust vector fields of the form f(r)d,. Locally
this was improved by [Luk10] and then later [AAG18] to || < C773 for r < R with R > 0.
In the case of the Kerr spacetime for the range |a| < M, uniform decay of rate 772 and for
bounded r, the rate 7720 was established in [DR10], and [DRSR14]. Alternatively [AB15]
proved Morawetz estimates, and uniform boundedness for slowly rotating Kerr, (|a| < M) by
using a more generalised version of the vector field method, exploiting Killing tensors. In the
case of Schwarzschild de-Sitter, polynomial decay was established in [DR0O7b] and extended to
exponential decay in [Dyal0], for the Kerr de-Sitter setting. With the strong cosmic censorship
conjecture in mind, there has also been a lot of work on linear waves for the Reissner-Nordstrom
spacetime; here the focus shifts towards studying the interior of the black hole in order to
understand the behaviour of the Cauchy horizon [Arell], [Fral6], [AAG1S].

TRAPPING AND THE PHOTON SPHERE

In the case of proving energy decay for black hole spacetimes, it is often the case that one
cannot prove a Morawetz estimate where f does not degenerate either on compact surfaces or
as r — 00. The key obstacle to decay that appears for black holes is the photon sphere. In
the case of Schwarzschild the surface r = 3M forms a surface of trapped null geodesics. Its
effect on the estimates can be seen by taking Reggie-Wheeler coordinates (r*,t), and choosing
a radial vector field of the form X = f(r*)d,« for a C! function f. From [DRO8] we get a bulk
term

r—2M

KX ] = _fw (Oretp)” + % <1 - %) V|~ 411 (2f’ A f) VoYV, (1.20)

r

With modification to J; [¢)] (adding terms of the form wV,(¥?) and ¢*V,(w) for a smooth
function w) it is possible to choose f so that this is positive semi-definite. There is the problem
of degeneration at r = 3M. This can resolved by commuting the equation with the angular

momentum operators, proving estimates of the form
T ~
/ 5¢(t,7“, X)det S CE¢[O] (121)
0o Ju

where Ew is a higher order energy. This is often referred to as ‘having to lose a derivative’. The
geometric optics approximation shows that high frequency disturbances propagate along null
geodesics hence the photon sphere is forming an obstacle for decay. In the work of [Sbil5] this
idea was made rigorous and it was proven that if there are trapped null geodesics in a region

of bounded radius on a spacetime then one cannot prove estimates of the form

T
0 Etﬁ{rSR}

To contradict an estimate of the form (1.22) one constructs Gaussian beams localised to null

geodesics, whose energy remains arbitrarily close to the geodesic’s energy. As Gaussian beams



approximately solve the wave equation, one can construct actual solutions that remain arbi-
trarily close the Gaussian beam (in the energy norm) for a given time. These solutions then
naturally decay very slowly in time. They have to overcome this trapping before the decaying

effects of the black hole event horizon or dispersion to infinity can occur.

1.5 SPACETIMES WITH SYMMETRY

When moving from the linear regime of the wave equation to non-linear problems, it is helpful to
first restrict to the spherical symmetry class. This reduces the dimensionality of the problem
to 1 + 1 dimensions, where more methodology for the study of PDE has been developed.
Unfortunately if one studies (1.2) within the class of spherical symmetry, through Birkhoff’s
theorem, they see the only solution is (an isometric subset of) the Schwarzschild solution.
As this solution is static there are no dynamics in the problem. To study a time dependent

problem, one has to revisit (1.1) where the system is coupled to a matter model.

1.5.1 SCALAR FIELD SYSTEM

The simplest matter model one can consider for A = 0 is to couple to a scalar field ¢). This is

done with the stress energy tensor

1
T;w[@b] = VmﬁVﬂ? - §QWVU¢VJ¢, (123)

as the LHS of (1.1) is divergence free, the stress energy tensor must also be. This implies the
field satisfies
Uy = 0. (1.24)

This system was studied comprehensively by Christodoulou. Through a series of papers a full
picture of the dynamics was established. In the paper [Chr86b|, Christodoulou shows that
Y governs the dynamics of (1.1) within this symmetry class, and that one can express the
system as a non-linear evolution equation for 1. Applying contraction map arguments, local
wellposedness for the system is established. The result is then extended to global existence
for small initial data, and it is shown that the spacetime converges to Minkowski space with
polynomial decay rates. Finally, it is shown that the Bondi mass converges to zero. (This
result could be thought of as a specialisation of stability of Minkowski space, for the scalar field
system under spherical symmetry). For larger data the existence of a generalised solution was
shown [Chr86a], uniqueness and the fact that generalised solutions extend classical solutions
was shown in [Chr87b]. Finally, in the paper [Chr87a], it was shown that if the Bondi mass
does not converge to zero, a black hole forms, surrounded by a vacuum. A similar result has
been proven for the de-Sitter setting [CAN13], where for small initial data the solution decays
back to de-Sitter exponentially.

An alternative to studying Schwarzschild as a 141 dimensional PDE but as a solution of



(1.2), is to move to five dimensional relativity and impose biaxial Bianchi IX symmetry. In
this setting Birkhoff’s theorem fails to hold. Orbital stability was shown in [DH06] and the
asymptotic in [Hol10b].

CosMIC CENSORSHIP AND OTHER MATTER MODELS

As well as being a simplified non-linear problem to study the stability of black holes, spher-
ically symmetric spacetimes have been studied in detail to understand the cosmic censorship

conjectures.

Conjecture 1.5.1 (Weak Cosmic Censorship). For admissible initial data to (1.1) there exists

a generic subclass in which future null infinity is complete.

The physical intuition behind this conjecture is that any singularities must form behind an

event horizon, and observers at future null infinity can exist for all time.

Conjecture 1.5.2 (Strong Cosmic Censorship). For admissible initial data to (1.1) there ex-
ists a generic subclass for which the the maximal future development of the solution is future

imextendible as a suitably reqular Lorentzian metric.

This conjecture is a statement about the determinism of general relativity as a physical theory.
In spite of their names the strong and weak cosmic censorship conjectures are logically indepen-
dent of each other. This can be seen when viewed from a PDE perspective. The weak cosmic
censorship is a statement about global existence, and the strong is about global uniqueness,
which are a priori independent concepts. In the case of the scalar field system under spherical
symmetry both of these conjectures have been proven to be true [Chr98].

There has been further work on these conjectures in other spherically symmetric spacetimes
notably in the work of Dafermos [Daf05]. The author shows that for spherically symmetric
spacetimes obeying certain conditions (notably, an energy condition and an extension principle
on the regular and marginally trapped regions) then they have a complete null infinity. In the
case of the Einstein-Maxwell-Klein-Gordon system, Kommemi [Kom13], was able to prove a
stronger extension principle which also holds in the trapped region. Price’s law (polynomial

decay rate along the horizon) has also been shown [DRO05].

Spherical symmetry is not the only symmetry studied in (1.1), the case of toroidal symmetries
leading to Gowdy spacetimes [Gow74], (which form toy models for big bang cosmology) has
also been studied in [LS15].

1.6 ANTI DE-SITTER SPACE

Historically, most of the theory in relation to (1.1) has been considering the case A > 0. There

are two main reasons for this. Firstly from a physical perspective these have been traditionally



thought of as the interesting cases, A = 0 models isolated gravitational systems. A > 0 models
an expanding universe, useful for inflation theories and the universe on a large scale. A < 0
would model a collapsing universe which seems unphysical. There is however now a great deal
of interest from the high energy physics community about these spacetimes, coming from the
AdS/CFT correspondence [Mal99]. Loosely speaking it is believed that conformal field theories
in n — 1 dimensions are in duality with n dimensional solutions to (1.1) with A < 0. The other
reason they were less studied is that they are qualitatively different to the A > 0 case. If we
look for a solution to (1.1) with A < 0 and 7}, = 0, with the maximal amount of symmetry,

one finds the anti de-Sitter spacetime. It is the manifold M = R* with metric

r2 r2 -1
g=— (1 + 5_2) dt* + (1 + 1—2) dr?® + r*dS?, (1.25)

where [ = _TS Inspecting the Penrose diagram of this solution [HE73],

ot

Figure 1.1: Penrose diagram of AdS

one can see that for any attempt to define a Cauchy hypersurface, one will run into trouble.
Past directed causal curves passing through points like p can intersect with null infinity (Z)
(which is now timelike). This means that AdS is not globally hyperbolic, and nor are spacetimes
with similar asymptotics known as asymptotically AdS spacetimes (aAdS). When looking at
the Cauchy problem in these spacetimes and applying the result from theorem 1.2.1, we cannot
expect to get AdS as the maximal development of any initial data set. In order to resolve this

issue one needs to discuss initial boundary value problems (IBVPs) [Fri95].

1.6.1 THE KOTTLER SOLUTIONS

The setting A < 0 also has its own analogue of the Schwarzschild solution, however in this
setting a curious new phenomenon occurs. It is no longer necessary that static black holes
with compact horizons must be spherical. The solutions are known as the Kottler metrics
[Kot18], [Lem95], [Bir99] or Schwarzschild AdS. Defining r, ; to be the unique real root of
f(r)y=k— ¥ - ;’—22 where k € {—1,0, 1}, the solutions are given by M =R x (r4 4, 00) x G,
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equipped with

oM 7 oM 2\
g=— (k: = ';—2) dt* + (k -+ %) dr? + r2dr?, (1.26)
and
S? for k =1,
Gr= %% for k=0, (1.27)
¥, for k= —1,

where S? is a sphere, % = R?/Z? is a torus, %, is a surface of genus g > 2 with a metric of

constant curvature —1, and d~? is the unit metric on these spaces.

The symmetries of the geometry are not tied to the staticity. There are static solutions to
(1.1) with A < 0, in which the geometry at Z of the above solutions is perturbed providing a
non-degeneracy condition holds [ACDO02]. A rigidity result (see [ACD02] for a precise formula-
tion) exists in the first two cases. If the topology at Z is given by R x S?, then the AdS metric
(1.25) or the regular region of the spherical Schwarzschild AdS (M > 0) are the unique static
globally hyperbolic (in a sense of manifold with boundary) solutions to (1.2), with boundary
metric at null infinity v = —dt*> + dy?. In the case of toroidal solutions, there is a similar
result where the regular region of the toroidal AdS Schwarzschild black hole and the AdS soli-
ton [HMO98], are the unique static, globally hyperbolic (in a sense of manifold with boundary)
solutions to (1.2), with boundary metric at null infinity v = —dt*+d~3. Due to the symmetries
of (3,,dy?;) only being local, a rigidity result in the hyperbolic case is still open.

EXTENSIONS AND COORDINATE TRANSFORMATIONS

As is typical in Schwarzschildean coordinates, it can be seen that the metric in (1.26) becomes
singular on the future and past event horizons, H" = {r = r, x,t > 0} and

H™ = {r =144t <0} respectively. The Penrose diagram for these solutions is given by

w

Figure 1.2: Penrose diagram of the Kottler solutions in Schwarzschildean coordinates.
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These coordinates are largely problematic for analysis. We will often want to study regions of
the spacetime containing the event horizon. In order to remedy this we will illustrate a maximal
extension of this solution which will include the event horizons and the black hole region. We
will then exhibit coordinate systems on restrictions of this extension. These restrictions will

cover the regions of interest considered in this thesis.

Kruskal-Szekeres extension
We follow a similar construction to that in [HemO4], generalising slightly for £ € {—1,0,1}.
We define

2M  X?
F(X):= (k i + l_2> , (1.28)
and the tortoise coordinate r, by
re(r) == / FHX)dX. (1.29)
2T+,k

A change of variable w = F'(X), shows us that lim,_,,, , 7.(r) = —oo. Now through a Taylor

expansion, we see that r, has the following behaviour near r j

1
F’(H,k)

re = (In(r—ryp)+O0(r—rep)). (1.30)

Now the metric (1.26), can be written as
g=—F(r)(dt* — dr}) + r*dy;. (1.31)
We change to null coordinates, defined by
u=t—r,, v=t+r,, (1.32)
where u,v € (—00,00). The metric now takes the Eddington-Finkelstein form
g = —F(r)dudv + rdy}. (1.33)
Through the chain rule we see the following relationships
—2r,=2r,=F. (1.34)

The metric still degenerates at r j, to remove this degeneration consider the change of coor-

dinates given by

U= —exp <—% : F'(r+7;€)> , V=exp (g . F'(T+7k)> . (1.35)
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where U € (—00,0), V € (0,00). The metric now takes the form

—4 —F'(rq )T«
g = mF(T’)@ Fire ) (U’V)dUdV + 7'2d"}/,§. (136)

We can now extend the spacetime so that U,V € (—o0, 00). Computing the limit

/ F i k 3r2 . + ki?
lim F(r)eiF (467 —  lim l — lim (Z 4 +k Lk _ Tk -0
r=TL TR T — Ty T4k [2 [2 2y T1k

(1.37)
We see the metric no longer degenerates at the horizon. The function (U, V') is now defined

implicitly through the relation
UV = _eF/(TJr,k)T‘*(T(U,V))_ (138)

We note that the sets {U = 0} and {V = 0} correspond to the set {r = r, x} the event horizons.
Now through the symmetry (U, V) — (=U, —V) we see now that r = const curves have two
solutions. So we deduce that the spacetime has two regions containing a singularity and two

causally disconnected exterior regions. This results in the Penrose diagram

U>0,V>0

U>0,V<0

Figure 1.3: Kruskal extension of the Kottler solution.

Region I is the exterior of the black hole. Region I1 is the black hole, in the sense that all
causal curves remained trapped in this region. Region 1] is also an exterior region and is
isometric to I but causally disconnected. In region IV we find that all causal curves must leave
this region in finite affine time, we refer to it as a white hole. This extension is maximal in the

sense that geodesics cannot be continued into other regions.

Extended Eddington-Finkelstein chart
As curious as regions 11 and IV of the maximal extension are, they would seem to be unphys-

ical. Furthermore, the metric given by (1.36), is poorly suited for identifying that the metric
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is indeed asymptotically AdS. For later applications in chapter three we remedy this by going
back to the form in (1.33). Recall these coordinates cover region I but degenerate at r = 14 .
To fix this we choose a surface {V = Vi > 0} and denote its past intersection with Z by (ug, Vp).

We now make the coordinate transformation in u along this surface given by the solution to

the ODE
i (k=245 (1.39)
du k;-|-§_§ ’ '

with @(ug) = wp. This metric is now regular at r = r, ; and the coordinates cover the region

shown in the Penrose diagram

(U(], ‘/0)

Figure 1.4: Penrose diagram for regularised Eddington Finkelstein chart.

We now have that the radial function satisfies

T2
— 2y = (k; + 1_2) : (1.40)

along this surface.
We can see through the chain rule that specifying r to satisfy these relations on this ray is
equivalent to fixing the u coordinate along it.
Gullstrand-Painlevé chart
An alternative to using the tortoise coordinate to remove the degeneration is to change the
time coordinate. This is done in the Gullstrand-Painlevé coordinate system.
Defining

te=1t— f(r), (1.41)
with

2M

_— 1.42
7“(/7{—}-’[“—;)]727 ( )

Fir)=-

then the metric (1.26) takes the non-diagonal form

2M r2
AM 1 (’f +5 —2>
g = —Fdi> + 224 drdt, + l
T

dr® + r2dn;. (1.43)
7,,2 r2 2 k
tE (k+ %)
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We see that at r = 74 ;, that there is no degeneration of the metric. The coordinates cover the

region given in the following Penrose diagram

Figure 1.5: Penrose diagram for Gullstrand-Painlevé chart.

This chart will be of use in chapter two.

1.6.2 LINEAR WAVES ON ADS

Due to the lack of global hyperbolicity of aAdS spacetimes the wellposedness of the wave

equation is now non-trivial. On AdS if one considers the Klein-Gordon equation
2a
Oy~ 49 =0, (1.44)

as in [BF82], and exploits the SO(2,3) symmetries of the spacetime, the equation separates.
The radial component of the field has a regular singular point at Z. It locally admits the

expansion

U(t,r,0,¢) = % (W (t.0,0)+ 0O (r %)) + % (V= (t,0,0)+ 0O (r?)), (1.45)

where f* = —% + \/% + 2a. Restricting to the range —% < a < 0, both of the branches decay
A_.’—/
towards Z. For a Well_blz)sed problem, conditions on the functions ¥* at Z must be imposed.
The case ¥~ = 0 would be the analogue of homogeneous Dirichlet boundary conditions. ™ =
0 would correspond to homogeneous Neumann boundary conditions. Combinations such as
YT + By~ = 0, where 8 is a function along Z, correspond to Robin boundary conditions.
The latter two boundary conditions are only wellposed in the range —% <a < —%. The
conditions on a have become known as the Breitenlohner-Freedman bounds. Using the vector
field method one can see that that the energy (or renormalised energy in the Neumann case),
is conserved for these boundary conditions. As these are reflective boundary conditions there
is no dissipation at Z. There are no obvious decay mechanisms in the spacetime and in general
for these boundary conditions one cannot expect decay. This is confirmed in [BF82] where time

periodic solutions are constructed. It is for this reason it is suspected that pure AdS is not
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stable in the full non-linear problem. Wellposedness of (1.44) at H? regularity was extended
to aAdS spacetimes with Dirichlet boundary conditions in [Hol12]. This was then extended in
[War13] to a H' level of regularity, but also to a much wider class of boundary conditions, such
as inhomogeneous Dirichlet/Neumann as well as Robin. The core difficulty of moving from
Dirichlet homogeneous boundary conditions to the others can be seen in (1.45). If ¥y~ # 0
then the slowly decaying branch of the solution is still present. Attempting to use X = 0; in
the vector field method one finds the energy flux is infinite on the surface Z. For all discussed
boundary conditions, with the exception of homogeneous Dirichlet, a renormalisation of the

energy is required. In [BF82] this was done by considering the tensor
T_IW =T + £ (9w — V,V, + Ry) ¢2> (1.46)

which satisfies

VT, = 5 (O.R) v, (1.47)

for pure AdS this will give a conserved renormalised energy. This new energy is related to the
classical Killing energy, differing only by a surface term (which is diverging for the classical
energy). This idea was exploited further in [War13] where the problem is rephrased in terms of
‘twisted derivatives’. Formally, one takes a function that captures the radial decay of the field

f, and then defines a new derivative operator by

Vb= fV, (f). (1.48)

Expressing the problems in terms of twisted derivatives one finds that the new energy arising
from the T Killing field is finite at Z. From here using standard techniques adapted to twisted

Sobolev spaces, one can show wellposedness in the class H' (the twisted equivalent of H').

The problem of boundedness and decay of linear waves on asymptotically AdS spacetimes
is more complex than in the asymptotically flat counter part. This is because the natural
boundary conditions (homogeneous Dirichlet or Neumann) don’t allow for the wave to disperse
at Z. In the case of pure AdS the existence of time periodic solutions means that we can’t
expect decay in general. In order to add a decay mechanism to the problem one can consider
spacetimes with a black hole. One would expect that energy would fall through the horizon pro-
viding a decay mechanism. In the cases of Robin boundary conditions, one might expect that
the energy may not even be bounded, as the Robin function may be permitting energy to enter
the system through Z. Energy boundedness for slowly rotating Kerr-AdS (and thus including
Spherical Schwarzschild-AdS) with Dirichlet boundary conditions was first proven in [Holl0al,
which used the vector field method, coupled with Hardy estimates to compensate for the fact
that T, no longer satisfies the dominant energy condition. The problem of the other boundary
conditions was addressed in [HW14]. It was shown that in the case of AdS Schwarzschild for
Dirichlet, Neumann, and Robin boundary conditions (either positive time independent Robin
function, or a negative Robin constant greater than a critical value) that the energy arising

from twisting is finite, non-increasing, and positive definite. This result can be extended to
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general aAdS black holes (with positive surface gravity), providing the smallest eigenvalue of
an associated bilinear form is strictly positive. It was shown that if the smallest eigenvalue was
the only one with negative sign, then there are solutions with energy growing faster than any
power of t. Finally in the case of Kerr-AdS, there exists boundary data depending on the black

holes parameters which gives rise to a linear hair solution (i.e. a non-trivial stationary solution).

As for decay of linear waves, in the paper [HS13a] Holzegel and Smulevici, show that un-
der: the Hawking-Reall bound r2 > |a|l? [HR99], slowly rotating Kerr AdS, or restrictions
on the Klein-Gordon mass, then the H! energy of a field arising from H? data decays loga-
rithmically in time. Compared to the results for asymptotically flat Schwarzschild and Kerr,
this is notably slower. The cause of this slower decay can be understood from the spherical
Schwarzschild case. Much like the asymptotically flat case there is a photon sphere at r = 3M.
However the asymptotically AdS end coupled with the boundary conditions provides a type of
reflective barrier for null geodesics. In this setting, a stable trapping like phenomenon occurs
and the only way the waves are able to decay is due to tunnelling through a potential barrier.
Another barrier for decay in the Kerr AdS setting is due to superradiance. If the Hawking-Reall
bound is violated this effect is present in Kerr AdS and corresponds to waves being amplified in
an ergoregion. Dold [Dol17b] showed in this setting it is possible to construct mode solutions to
(1.44) on Kerr-AdS with homogeneous Dirichlet or Neumann boundary conditions which grow
exponentially. This provides evidence that Kerr-AdS is also likely unstable, in the superradiant

regime.

An alternative problem for studying waves on AdS was undertaken in [HLSW15]. In this
setting one considers dissipative boundary conditions. This adds an alternative decay mecha-
nism where some of the energy of the wave leaves the spacetime through Z. In the case of the
conformal Klein-Gordon equation (¢ = —1), Maxwell’s equations, and the Bianchi equations
boundedness of the energy was established, along with a Morawetz estimate degenerating at
Z. This was then extended to a non-degenerate energy estimate with a derivative loss. It
was further shown that some derivative loss was necessary using the Gaussian beam method
of [Shil5]. These results have led to the belief that under an appropriate formulation of the

non-linear problem, AdS is stable if dissipative boundary conditions are imposed.

In chapter two of this thesis, we will consider the problem of linear waves on the toroidal
AdS Schwarzschild black hole. The key contrast to the spherical setting is best expressed in
terms of the null geodesics of the space time. Considering the geodesic equations one can see

the radial coordinate obeys the equation

d? oM  r?
JoC . S P e 1.4
" r? ( r + 12)’ (1.49)
v(r)
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where E and d are some quantities relating to the integrals of motion. Dot denotes differenti-
ation with respect to an affine parameter. Studying the null geodesics leads to the equation
, 2d?
0=V'(r)=— (3M —kr). (1.50)
r
We sketch the potential in Figure 1.6 and we see that there are only trapped null geodesics in
the spherical setting (r = 3M).

V()

k=1
k=0
k=-1

Figure 1.6: Plots of V(r) for the values of k.

Loosely one can think of the sign of & representing either an attractive (negative) or repulsive
(positive) force for the null geodesics. Approximating solutions of wave equations with Gaus-
sian beams [Sbil5], and recalling that for AdS spacetimes with Dirichlet/Neumann boundary
conditions there isn’t naturally a dissipative effect at Z, the plots indicate that for large r it
could take a photon a long time to fall into the black hole. This would be an obstacle for decay.
In the case of k£ = 1 with the lack of dissipation at Z we can interpret this confining effect in
the spirit of stable trapping. This provides a heuristic interpretation of the results in [HS13a].
In the case of k = 0 there is no photon sphere and the stable trapping-like effect appears to be
absent. One would expect a faster decay rate for the waves, and the quantification of such a

rate would be the first step in proving a non-linear stability result for an aAdS black hole.

In section 2.2 the IBVP is formulated, and wellposedness is established at a H' level for
Dirichlet, Neumann, and Robin boundary conditions using the results from [Warl3]. In section
2.3, using the vector field method but on an adapted version of the twisted energy momentum
tensor the problem of bounded energy from [Dunl4] is revisited. Then in section 2.4, we use
radial vector fields as multipliers and modified energy currents to construct Morawetz estimates
at a H' level. The degeneration lies only on the tangential and time derivatives of the field as
it approaches Z. Through commuting the equation with J;, a non-degenerate integrated decay
estimate is established, and ¢t~ decay is proven for H? regular initial data. Faster polynomial
decay is shown for more regular data. Finally in section 2.6 we establish through a Gaussian
beam method that some loss of derivative is necessary. This is done by constructing null
geodesics which remain outside the event horizon for arbitrarily long coordinate time. These

fast decay rates show that more investigation into the non-linear stability is warranted.

18



1.6.3 SYMMETRIC SPACETIMES

In much the same way as in the asymptotically flat case, if one wants to study a 1+1 system
of Einstein’s equations by imposing spherical symmetry, a Birkhoff theorem [SW10] forces
one to consider a non-trivial matter model for there to be any dynamics. Analogous to the
asymptotically flat case the simplest such matter field one can consider is given by the Klein-
Gordon equation. The first problem of studying this system is to prove it is locally wellposed

near Z. In a double null coordinate system the metric takes the form
g = —Q*(u,v)dudv + r*(u, v)dS?, (1.51)

where r(u,v) is the area radius of the sphere at point (u,v). The system then reduces to the

Einstein-Klein-Gordon system

O (%) = —47T7"?)2—§, (1.52)

Oy <%> = —47T7’;§—§, (1.53)

Py = —T“TT” n Q;I—frrw?fz? _ %m? _ Z_j’ (1.54)
(log€?),, = —4mhuth, + T;fz 49—;, (1.55)
Yuw = =2ty = “apy — 0%, (1L.56)

This was first studied in [HS12] where local wellposedness was proven for Dirichlet boundary
conditions at a H? level of regularity. As the spacetime is expected to be aAdS, the variables
are expected to become singular on the boundary Z. At the expense of clear geometric inter-
pretations an equivalent renormalised system is studied. Furthermore it is fruitful to consider

a new dynamical variable; the Hawking mass

T 4r,T r3
w:§(1+ 0z )—l—@ (1.57)

It satisfies the cleaner boundary conditions w|z = M, and is invariant under a change of null
coordinates, unlike Q2. From (1.52), (1.53) (the Raychaudhuri equations) and (1.54) it can be

seen that this variable satisfies

2
Ty 4mreq
Oyt = —8mr?—2q)?

SEAUIE

ra?, (1.58)

2
Tu drrea
Oyt = —8mr? ==

02 2
These equations can then be used to replace (1.52), and (1.53) for Q2. Furthermore, the trans-

ry?. (1.59)

port equations imply (after a Hardy inequality) that w forms a potential for the H' energy of
1. The authors show that to construct initial data one needs to provide r and i on constant

v null ray. As initial data sets for (1.1) must obey constraint equations, the other variables
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are determined by integrating transport equations. Furthermore, fixing r» on a v = const ray
is equivalent to specifying the u coordinate along the ray and thus the only free data is the
field ¢). This shows the advantage of working in the double null gauge. A contraction map
argument is then used to prove the existence of a solution. Higher regularity is then shown a
posteriori. The authors also provide further results for global analysis of the solution. A unique
maximal development of the solution is shown to exist. Crucially, the geometric invariance of
the boundary conditions is required to prove uniqueness. Extension principles are also proven:
firstly in the regions near Z where one needs future control over various quantities of the so-
lution, and secondly in the regions of bounded, non-zero r, and finite spacetime volume. This
extension principle is very much in the spirit of [Kom13] allowing one to fill in the spacetime
away from Z, and describe first singularity formation. Due to the work of [Warl3] it is possible
to pose the problem at a lower level of regularity, and with other boundary conditions. In the
paper [HW13], Holzegel and Warnick show that the system is locally wellposed for a wider
class of Dirichlet, Neumann, and Robin boundary conditions. The same energy flux issues ap-
pear in this problem, and the renormalisation scheme needs to be phrased in terms of twisted
derivatives. Another renormalisation of the Hawking mass is also required. Integrating along
characteristics and using energy estimates a contraction map argument can be formulated. The
result is then extended to consider non-linear potentials for the field (i.e. self interacting fields),
which is of interest in exploring the dynamics of hairy black holes. For smoother initial data,

H? solutions are also constructed.

The stability of spherical Schwarzschild AdS, under spherical symmetry, with Dirichlet bound-
ary conditions was proven in [HS13b]. Establishing orbital stability in this setting is non-trivial
as the energy conditions of [Daf05] no longer hold. The key idea of using the Hawking mass
as a potential is still retained, however the quantity is no longer monotonic. It is however
coercive in the regular region of the spacetime (in an integrated sense after establishing Hardy
inequalities). Proving this requires a complicated bootstrap argument on the location of the
horizon. The coercivity is then used to show that the Hawking mass is indeed bounded (for
small initial data). Coupled with a redshift argument, the H' norm along with pointwise norms
of the field, and metric functions, are shown to be bounded by initial data. Then using a vec-
tor field argument, a non-degenerate Morawetz estimate is constructed for the range a > —1
showing that the fields are decaying exponentially to zero. Commuting the equations with T,
the Kodama vector field [Kod80], higher regularity estimates are shown, and the completeness

of null infinity can be shown from the extension principle.

Motivated by these results, in chapter three we will consider the stability of toroidal AdS
Schwarzschild black holes, for homogeneous Dirichlet, and Neumann boundary conditions at a
H' level of regularity. The main interest being in if these results can be established in spite
of the slower decay from the Neumann conditions. The toroidal setting has an advantage over
spherical. This is that the ‘right’ twisting function is simpler. As previously stated, proving
orbital stability in the non-linear problem is similar to boundedness in the linear problem. The

twisting function for the spherical problem from [HW14], is comparatively complex to the one
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used in chapter two. The latter having a nicer relation to the standard derivative operator.

This simpler form is then exploited to see monotonicity properties.

In section 3.3 we state the problem and discuss the symmetry reduction. Wishing to maintain

a similar system to the spherical setting, a metric ansatz of the form
g = —Q%(u,v)dudv + r*(u,v) (dz* + dy?) , (1.60)

is posed. The topology is the product manifold QF x T2. Where QT is a two dimensional
Lorentzian manifold with boundary, and ¥ = R?*/Z?. Geometrically we are imposing a flat
square toroidal symmetry on our solution (see definition 3.3.2). In this symmetry reduction we

see that the toroidal Einstein-Klein-Gordon system takes the form

) _ o (0
To\ (0,1)?
9, <@) = —dmr 20, (1.62)
. Tuly 27T(ITQ2¢2 §£Qz (1.63)
oo =7, 2 AR ‘
(log ), = —dnd Wit + TTZ (1.64)
Tu Ty Q%a
0u0ph = _?wv - ?¢u - 2—l2¢ (165)

We can now see that these equations are similar to (1.52) - (1.56). The differing terms being
in (1.63) and (1.64). The terms are sub-leading in powers of r. In section 3.4 we discuss that
after a suitable modification to the renormalised Hawking mass of [HW13], the same proof of

wellposedness carries through. In section 3.4.3, geometric uniqueness of the solution is shown.

In section 3.5, we prove the analogues of the extension results from [HS12]. As the regularity
of the system is now posed at a lower level, the conditions for extension near Z are now simpler
(only requiring H' regularity to propagate). The local extension result is also similar, however
as 1, is now only in L?, appropriate modifications need to be made for local wellposedness and

the extension principle in the interior. This is included in appendix A and generalises for all

Ak, a.

Smallness of the initial data is vital for the stability results of chapter three. In section 3.6 we
quantify this smallness in terms of norms. We then use this to show the maximal development
contains a black hole region.

In section 3.7 we prove orbital stability for solutions arising from small initial data. This is done
by exploiting monotonicity of a new variable that we will call the final renormalised Hawking
mass. To illustrate why we do this, first consider the natural analogue of the Hawking mass as
in [HS12]

2r7ruTe r3

w1 = QQ +ﬁ

(1.66)
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For Neumann boundary conditions this leads to the expected divergent energy fluxes. As in
[HW13] this variable needs to be renormalised. If we consider the renormalisation used for local
existence in [HW13]

. ﬁwQ (1.67)
TWo = W1 ™ 9 K 2 y .

then the energy fluxes remain finite. However the equations now satisfy

Oy Ty = —87TT2T—U(@U1#)2 — 87 (—g + m) <?IJ2 + 27 (—g + Ii) T—3w2> AV,

02 [2
3 R (1.68)
- ) 3 2(@2—%2%(—5—1-/{)721/1)
4Amp=ry, ( 5 + Ii) " )
~ 3 ~
OyTog = —SWTQ%(VU’Q/))Q — 87 (—g + H) (wg + 27 (—g + m) %¢2) YV,
(1.69)

o (3 (w3 e
— Ampr, —§+/1

r

9

where the twisting is done with respect to r~3%%. There is no obvious monotonicity to these
equations or even integrated coercivity. In order to fix this, we consider another renormalisation
of the Hawking mass. The idea is to iteratively use the product rule on the cross terms involving
wﬁﬂw and ww@,ﬂ/z. At each iteration we move the total derivative term to the LHS and define

a new Hawking mass. This generates a series which can be summed to

2Ty ol ap(—34k) 02 r?
@ = e (=5+x) + 5 (1.70)
which satisfies
2p , A (=3 %y 2
o =~ (Tt ul Q;K) oy + D),
8121y = 3, V2 AT (—3—1-/4:)21” ryr? .
Oy — — - u(vvw)2€47r(—§+fi)¢ + 2T w? + 122 F(@?).

where f(1)?) are higher order terms of 1. From here establishing that @ > 0 shows monotonic-
ity, providing f > 0 (which we will show follows for ¢ < 1). In establishing this, we use a
bootstrap argument for the magnitude of the field. This is arguably simpler that the boot-
strap argument of [HS12] as bootstrapping on the location of the horizon is no longer needed.
Coupled with a redshift argument one finds that the H' energy of the field is controlled by
the initial data. This allows the bootstrap argument to be closed from the smallness of the
initial data. We then establish further estimates for the field and metric functions, and the
orbital stability follows for x € (0, 3
show exponential decay of the field, and a Penrose inequality for x € (0, %) This establishes
the stability of the toroidal Schwarzschild black hole within this symmetry class. It is worth

]. Then in section 3.8, we use vector field arguments to

contrasting this result to [HS13b] as under suitable modifications to that argument one expects

that the toroidal symmetry result would hold at a H? level for Dirichlet boundary conditions.
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This result is stronger in two senses. Firstly much rougher initial data can now be considered.
Secondly the scale of the perturbation can be thought of as larger (in a Sobolev sense). The
norms of [HS13b], would diverge for a subset of data admissible by these methods.

Finally in section 3.10 we show a vacuum result. Moving from constant square toroidal sym-
metry to varying rectangular, an extra field B(u,v) can be introduced. Posing a metric of the
form

g = —*(u,v)dudv + *(u, v) (e_\/gTTB(“’”)clx2 + emB(“’”)dyQ) , (1.72)

and considering the vacuum system (1.2), which reduces to (1.61) - (1.65), where B = 1, and
a = 0. A massless scalar field system. However from the work of [Warl3] this has currently
not been shown to be wellposed with Neumann boundary conditions, and the main result of
chapter three cannot be directly applied here. However we will have shown that many of the
key results from [HS12] and [HS13b] can be applied to the Dirichlet case, and this system is
stable within that regime. This shows a curious, intimate link between dynamics of the scalar

field and the vacuum system, within this symmetry setting.
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THE KLEIN-GORDON EQUATION ON THE
TOROIDAL ADS BLACK HOLE

2.1 THE RESULTS

In this chapter we discuss the Klein-Gordon equation on the toroidal AdS Schwarzschild black
hole (TAdSS), first seen in [DW16]. The goal of this chapter will be to prove a precise version
of four results. For brevity in the statements we make reference to some quantities that will
be later defined. Firstly let ¢ be a solution to the Klein-Gordon equation given by (2.23), sat-
isfying suitable Dirichlet, Neumann, or Robin boundary conditions. £[¢] is a non-degenerate
energy density of ¢ defined in (2.57).

The first result is a Morawetz estimate that holds at a purely H' level of regularity. It forms
the basis of energy decay estimates, and gives indication to a trapping like issue occurring in

the tangential directions.

Theorem 2.1.1 (Morawetz estimate). For Ty < Ty, there exists an open set of Klein-Gordon

masses, such that the following estimate holds

1
/ —EW]drdzdydt < CMJ’K/ EY)drdxdy, (2.1)
{7 {t=T}

<t<Ty} T

where Chary > 0.

Exploiting the staticity of the spacetime and commuting with the Killing field T' = 0, we extend

the Morawetz estimate to a full integrated decay estimate.

Theorem 2.1.2 (Integrated decay estimate with derivative loss). For T < Ty, there exists an
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open set of Klein-Gordon masses, such that the following estimate holds

/ E[Y]drdzdydt < CMJ’H/ (E[Y] + E[Yn]) drdxdy, (2.2)
{T1<t<T}

{t=T1}

where Chary > 0.

A corollary of theorem 2.1.2 is polynomial decay of the field.

Corollary 2.1.1 (Polynomial decay of energy). For T} < T, there ezists an open set of Klein-

Gordon masses, such that the following estimate holds

/ E[W]drdzdy < < Z / E[OFy]drdady, (2.3)
{t=T} t=T1}

where Cy ar1 > 0.

Finally we show that some degeneration in estimate (2.1) is necessary.

Theorem 2.1.3 (Necessity of derivative loss). There ezists no constant C > 0, independent of
T, such that the estimate

/ E)drdzdydt < C EW]drdzdy, (2.4)
(0<t<T} {t=0}

holds for all smooth solutions of (2.23).

2.2 THE SPACETIME AND THE KLEIN-GORDON EQUATION

2.2.1 THE TOROIDAL ADS SCHWARZSCHILD BLACK HOLE

Fix M,l > 0 and define the value r, := (2M 12)%, let T2 denote the two dimensional torus
R?/Z?. The exterior of the toroidal AdS Schwarzschild black hole is then defined to be the

manifold with boundary given by

M = tho X Rr2r+ X ‘12, (25)
with Lorentzian metric
—2M 2 AM? 2M 14 2
g=— D) a2y l dtdr + l l dr* 4+ r* (do” + dy?) . (2.6)
r l2 r3 7o r

Here we use Gullstrand—Painlevé coordinates as discussed in section 1.6.1. The parameter M
represents the mass of the black hole, [ the AdS radius. The set

H=A(trz,y) e M:r=r.} (2.7)
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forms the event horizon of this spacetime. The cometric takes the form

_ oM 2 AMI? —2M 7 1
91:_( 7“5 +ﬁ)8t2+70t8r+( ” +l—2)8f+ﬁ(0§+8§) (28)
Define the function .
F=_ 2.9
s (2.9

which is a boundary defining function for the null infinity Z of the spacetime. We attach the
set {¥ =0} as a boundary. Formally

T={(trz,y)€M:7=0}. (2.10)

2.2.2 HYPERSURFACES

Throughout this chapter we will make extensive use of the divergence theorem. As this relates
4-volume integrals to flux integrals across hypersurfaces it will be helpful to define various
geometric quantities related to this specific spacetime. This set up is similar to the spherical
problem in [HW14] but has been adapted to the toroidal setting.

We introduce the following slab of spacetime

M[ThTﬂ =Mn {t € [Tl, TQ]}, (211)
which has volume form
dV = r*dtdrdxdy =: r*dn. (2.12)
We will denote surfaces of constant ¢t by >;. These surfaces have future directed unit normal
given by
204M 12 2lM
=\/—+ =0 — ——=0, 2.13
" R N T3 Y g (213)
and surface measure
212M
dSy, = \/l2 < + r2> drdxdy. (2.14)
r
We see that 3, is a regular spacelike surface up to and including the horizon.
We define a subset of this surface by
SRl = 50 {r € [Ry, Ro]} (2.15)

We also denote the surfaces of constant r by 3. These surfaces have unit normal given by

202 M —2M 2
m=—————0+1/ ——+ %&», (2-16)
2
73 _iM + % "
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and surface measure

oM 12
dSs, =\ == + %drdxdy, (2.17)

while m becomes singular, and dSg degenerates as we approach the null surface H, we note
that the combination m#dS, is well defined on this surface, and gives the appropriate surface
measure.

We again define a subset of this surface by
S = 50 {r € [Ty, Te)} (2.18)
We will also define for fixed ¢t and r the associated torus
T, =505, (2.19)
This surface has induced measure
dSs = r2dxdy. (2.20)
THE DIVERGENCE THEOREM

We now state the divergence theorem for this spacetime.
Let
D:{(t,r,x,y) eM ’ t e [Tl,TQ],TE [Rl,RQ]}, (221)

be a region of the spacetime, then for J* a C! vector field on M, the following form of the

divergence theorem holds

/ VTV = / oy TS5, — / oy i A5,
D b2 b

(2.22)
M _ M
+ / oy T A5, / oy D A5,
Sk Sh

We may extend D to the set Mp, 1) by taking the limits R; — ry and Ry — oo, provided
they exist.
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Figure 2.1: Penrose diagram of the spacetime

2.2.3 THE KLEIN-GORDON EQUATION

We now turn to study the Klein-Gordon equation on this spacetime. It is given by

2a
Dy = 559 =0, (2.23)
where the constant 9
—a< 3’ (2.24)

obeys the Breitenlohner-Freedman bound [BF82]. It will be useful at this point to define the

parameter
9
K=/ 1 + 2a, (2.25)

the main reason for doing this will become apparent in the wellposedness section.
Expanding this equation in Gullstrand—Painlevé coordinates we see that the equation has the

following form

oMt 12 1. (,(—2M 2 AMP?
- ( 5T ﬁ) Yy + T—Qar (7’ ( —— Z—Q) @/)r) + T¢rt
_ 2M1? 1

) (2.26)
a
4 wt + ﬁA(I,y)¢ - l_zqu) = 0.

we see that as » — r, the second order radial derivatives are degenerating. Expressed in the
operator form

— Yy + By + Ly =0, (2.27)

where B is a first order spatial operator and L a second order spatial operator. It is clear
that L is not strongly elliptic on the set M. For this reason standard energy methods will
prove insufficient to prove boundedness of the full H' norm. This issue can be resolved by
exploiting the redshift effect for black holes [DR08], [DR09b]. Furthermore as the spacetime
is not globally hyperbolic we will need to provide boundary conditions to solve this equation
uniquely. With the exception of the class of Dirichlet boundary conditions the standard energy

fluxes associated to the Killing field 0; will not be finite. In order to resolve this issue we use a
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renormalisation process first developed in [Warl3].

THE TWISTED DERIVATIVE

The basis of the renormalisation scheme is the twisted derivative. The core idea being once
the Klein-Gordon equation is expressed with twisted derivatives, that when restricted to finite
spatial domains the associated ‘Killing’ energy differs to the standard one by only a surface
flux. It is this flux that that is diverging for the standard energy as the domain is expanded to
infinity, but the twisted Killing energy remains finite, and serves as a good quantity for energy
methods.

We define a twisting function f by the property

frer=1+002). (2.28)
The twisted derivative with respect to f is given by

V= [V, (f71), (2.29)
and the formal L? adjoint of V by

Vit =7V (f). (2.30)
We can bring the Klein-Gordon equation to the form

— ViVip — Vip = 0, (2.31)

where the potential function V' is given by

V=- (f—lvuv“f — ?—g) : (2.32)

2.2.4 BOUNDARY CONDITIONS

For this section we will study three classes of boundary conditions. For v € C*(M,R) we say
it obeys

e Dirichlet boundary conditions, if x > 0 and

r2=Fh — 0, as r — oo, (2.33)

e Neumann boundary conditions, if x € (0,1) and

rateVp = 0 as r — oo, (2.34)
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e Robin boundary conditions, if x € (0,1) and
retE 4 Bri i — 0, as r — oo. (2.35)

where 3 € CY(Z). We further will require that 9,8 = 0 and 8 > 0. We remark that this

constraint is not necessary for the wellposedness results.

2.2.5 TWISTED SOBOLEV SPACES, WELLPOSEDNESS, AND ASYMPTOTICS
TWISTED SOBOLEV SPACES

Let ¥ be a spacelike hypersurface extending to Z, which it intersects orthogonally. We define

the norms i
1l = | s (2.36)
.2 2
H¢||?{1(2,n):/2(‘vw +%> rdSy, (2.37)

and now define the space H (X, k) as the completion of smooth functions supported away from
Z. Different choices of twisting functions give rise to equivalent norms provided the function
satisfies (2.28).

We now also define the renormalised energy on a constant ¢-slice associated to this problem by

Bl = [ (—g“ Vi + g7 (o) + [0 + vwz) Pdrdedy
1,

3, \2
+ﬁ - <7“2 w) Bdxdy.

(2.38)

where ¥ denotes the connection of the induced metric on tori of constant ¢ and r, (in these
coordinates we see that |Y7”¢‘2 = %2 (1/{,% + wz)) We will often refer to Y as ‘tangential terms’.
The later integral is understood in the limiting sense as r — oo.

WELLPOSEDNESS

For completeness we summarise and state the wellposedness theorem, and asymptotic expansion
as found in [HW14] (theorem 1.1 and theorem 1.2 respectively), and proven in [Warl3] for (2.23).
We will denote by DT (X) the future Cauchy development of ¥ together with the subset of 7
lying in the future of 3. Let nyx be the future directed unit normal of ¥ and define

fLE =Tnx. (239)

Theorem 2.2.1. o Let k>0, and vy € Hy(Z, k), 1 € L'(X). Then there exists a unique
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weak solution 1 to the equation

1 /9
O, + B (Z - ;#) Y =0, (2.40)

in DT (X) with Dirichlet boundary conditions on I, such that ¥|s = 1y and n|sy) = ;.
Furthermore for a spacelike surface S C DV (X) intersecting T orthogonally we have that
u|5 - ﬁé(s,ﬁ),ﬁgiﬂg - Lz(S)

o Let k€ (0,1), 1o € H' (S, k), 11 € L'(X). Then there exists a unique weak solution 1 to

the equation
Dg¢+l—2(1—ﬁ>¢:0, (2.41)

in DY(X) with Neumann or Robin (for given ) boundary conditions on I, such that
Y|s = o and n|sp = 1. Furthermore for a spacelike surface S C DT (X) intersecting T
orthogonally we have that ¢|s € H'(S, k), nsv|s € L*(S).

If it is the case that the renormalised energy E[1)] is coercive and if

e ¢ satisfies Neumann or Robin boundary conditions with k € (0,1), and the initial data

satisfies

) 0| | 2y < 00 (2.42)

then 1 is locally C° and,

”¢‘<C<

where C' > 0 is a t independent constant.

)]

(ﬁzo)%l\LQ(zo)) , (2.43)

H(Z0,k)

e ) satisfies Dirichlet boundary conditions, k > 0, and the initial data satisfies

) || 2y < 00 (2.44)

then 1 is locally C° and for all € > 0 there exists a t independent C. > 0 such that

¢’<C<

By using higher order energies we can also gain umform control over derivatives of 1.
For sufficiently smooth initial data we have that ¥|s € HF (S), fistb|s € HEZH(S), and the field

loc.

ngo

(ﬁzo)QwHLQ(EO)> . (2.45)

Y admits the asymptotic expansion

o= P o + 0 ()]t 0 (), (246)
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where the functions ¥ € H*'"H(T) satisfy

e ), = 0 for Dirichlet boundary conditions,
e ) =0 for Neumann boundary conditions,
o 2k — By = 0 for Robin boundary conditions.

Remark 2.2.1. From (2.43) we can see that the twisting function f is capturing the decay of
the field.

Remark 2.2.2. For convenience we will now assume that our initial data is chosen such that
solutions to (2.23) are smooth. A density argument shows that this assumption can be removed
later. As such we will have asymptotic expansions to all orders which will allow us to quantify
the decay of the field and derivatives.

Corollary 2.2.1. For sufficiently smooth solutions to (2.23) for k € (0, 1), we have the following

asymptotics

Dirichlet:
s (). womo(rt) .
Yol =0 (ri), Fw=o0 (i),

and for Neumann and Robin:
pro). wwol). (2.48)

V| =0 <'r’%+”> L V=0 (r’%”) .

TWISTED ENERGY MOMENTUM TENSOR

Rather than working with the classical energy momentum tensor (1.11), we work with a tensor

adapted to the twisting. The twisted energy momentum tensor.

Definition 2.2.1. For ¢) € C'(M) we define the twisted energy momentum tensor as

- . 1 -
T[] = ViVt = S0 (vaww + WQ) , (2.49)

recalling that
V=- (f‘lv,N“f - ?—f) : (2.50)

In contrast to the classical twisted energy momentum tensor, this tensor does not satisfy the
property of vanishing divergence for when v is a solution (2.23). It does however satisfy some

useful algebraic relations.
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Corollary 2.2.2.
Taken from [HW1/]

o For ¢ € C*(M)

V0] = (~ViV'6 = Vo) V.6 + 5, [¢l, (2:51)
with - ;
S,[¢] = VVQ(;V) P* + VQ}f V.4V . (2.52)

For 1 a solution to (2.23) and X a smooth vector field.
We define the current

T[] = T [¥1X", (2.53)
the bulk term
KX [¢] = *m, T[] + XS, [¥], (2.54)
where . .
K = 5 (VX + VuX,) = 5 (£x9),, (2.55)
is the deformation tensor. Then
VEIX (W] = KX [, (2.56)

o [f the twisting function f is chosen such that V- > 0 then ?NTW satisfies the dominant

energy condition.

o If Z is a Killing field of the spacetime that satisfies Lz(f) = 0 then we have that jf[¢]

is a conserved current.

As S, and thus K¥ only depend on the 1—jet of ¢, we observe that JB( (4] is a compatible

current in the sense of Christodoulou [Chr16].

2.3 BOUNDED ENERGY

In this section we recall the bounded energy result first shown in [Dunl4].

Theorem 2.3.1. For ¢ a solution to (2.23), with k € (0,1), satisfying Dirichlet, Neumann or
Robin boundary conditions, for T\ < Tj there exists a uniform constant Chry,. > 0 such that

the renormalised energy density given by

Ly 4 (¢ 2 2 2 2
EWl =y +r (er) + (V) + 77 | Yy, (2.57)
satisfies the following energy inequality
/ E]drdzdy < CM,z,n/ E]drdzdy. (2.58)
Sr, Sr,
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Proof. First making the choice of twisting function

flr) =15+, (2.59)
yields that
(3 —2K)*M
We now consider the Killing field
T = 0y, (2.61)
it is trivial to see
Lr(f) =0, (2.62)

so we have that jg [¢] is a conserved quantity, that is
VHITW] = 0. (2.63)

Integrating over the spacetime slab D gives

/E[RI’RQ] jg[w]nudSZTQ_/[Rl’RQ} jg W}]nudSETl - /j[Tl’Tzl jff W]m#dsi@_/j:[Tl,Tz] jg [¢]m“d$2m.
it Ro R

>y :
(2.64)
expanding the constant ¢ slices in coordinates we see that
= 1 - 2
T H = — _ At 2 rr < ) 2 9 9
/Z e J, [Wn*dSs, 5 /E s ( g (Vo) + g7 (Vo) + |V + V(r)e ) r2drdzdy,
(2.65)

which we see due to the choice of f is a coercive quantity. We may also expand the contribution

on constant r surfaces to see
/ JT[lm*dSs, = / <g” (Vo) + g (Vab) (@Mp)) r2dtdzdy. (2.66)
ELTlaTzl r ELTlaTzl
Now taking the limit R; — r, we see that

/gml Ty [Whm*dSs, = / 9" (Vo) ridtdedy =: F(; [T, To]) > 0, (2.67)

Hiry, 1)

and taking Ry — oo we see that for Dirichlet and Neumann boundary conditions

lim | JIWIm"dSs, =0, (2.68)

&[Ty, T
r—00 E[rl P}

and for Robin

<r§“w>2 Bdwdy — — (rg“zﬂ)zﬂda:dy, (2.69)

: . 1
lim Jo[pm*dSy, = — / 55 [,
T T2, 00

r—=00 [$[T1,T3] 212 2
T Ty ,00

where ‘ZQTI,OO is the torus at infinity, and we understand the r terms in the integral to mean
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lim, r%*”w. We have shown the energy identity

En Y] = En [¢] — F(¢; [T1, T3)). (2.70)

An application of the redshift effect [DRO8] removes the degeneration in the g" term, and we
conclude
EWldrdzdy < Crryx E]drdzdy. (2.71)

Xy, X1y

O

Corollary 2.3.1. Pointwise bounds for the field can now be proven. For a sufficient smooth
solution we apply T, and the redshift vector field as commutators. Then coupled with elliptic

estimates, the result follows from a Sobolev embedding.

2.4 ENERGY DECAY RATES

Now that we have established bounds in time on the energy, we seek to show that it is decaying
to zero. In view of Dirichlet and Neumann boundary conditions this would imply that all the
energy of the field is falling into the black hole region. Proving decay of the field in this setting

will serve as a blueprint for the nonlinear problems of chapter three.

2.4.1 MORAWETZ ESTIMATE

Theorem 2.4.1. There exists £* € (2,1], such that for k € (0,k*), ¥ satisfying (2.23), with
Dirichlet, Neumann or Robin boundary conditions, and for Ty < Ty, the following estimate

holds

1 - 2
/ (—W + (Vﬂﬂ) (Wﬂ |W\ ) dtdredy < Chrix / E[W)drdzdy
Mz zy) N7 b

Ty
(2.72)
for some Cyry,. > 0.

To prove this we first prove three lemmas

Lemma 2.4.1 (Hardy Inequality). Let ¢ € C* ([ry,00),R) be such that lim, .o r2¢ = 0.
Then the following inequality holds

/T P <C (/ —dr+/ (V,0)*r er) : (2.73)

where C'= C(ry).

35



Proof. Define a cut off function by

0 iftr <2ry,
X('f’) = 1 ifr > 47’4”
Smooth if r € [2ry, 4r],

with the property that x/(r) < % for some C' > 0, and monotone. Now express

Nl Lo = [I(1 = 2)¥ + x¢l| 2

after an application of the triangle inequality we can estimate the terms separately.

[e'e) 4r+
(1 — )l = / (1 = )20%dr < / r L < ar, / “an

Ty Ty

and for the second term

o0

) B 0o ) B 00 ) B %_H 2 ,’,,—2-"-2%
XY L2, o) = /T+ (X)) dr = /2T+(Xl/)) dr = /%+ (wr ) O, (%_2) dr

= {%1_ 2(X¢)2rr +5 _2% /: XY (%W) rdr

2r4

1 -
< Illagr o ||Vt B

We then estimate the term

B2

- / " (9,3 dr
2

L2(2r4 ,00) ry

< C/ r (XV,0)? + r?(ud,x)*dr
2

T+

<C (/Tm(?rw)zﬂdr + /TOO w;dr) :

the result then follows from these estimates.

(2.74)

(2.75)

(2.76)

(2.77)

(2.78)

]

Lemma 2.4.2. Let ¢ satisfy (2.23) with Dirichlet, Neumann or Robin boundary conditions.

Define the modified energy current as

JHW] = T )XY + wi () Vi + wa(r)y® X*,

with
X =r0,,
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then following equality holds

7"2

Vol = (2raa(r) + (= 20 ) wtln)) 09+ Z 2wl )0
+ (rw;<r> +amur) + B 2N B _22[2,) Yo <r>> .

_ 2 2 5
+4 ((2 ;)l M lrf?\)fwl(r)> VbV + (1 — k) + wi (r)) [V

(G (R Y0 (9,0)

( (5— 2/<;)Z4M 204 M
- 5 o 5
T r

Proof. We proceed term by term. Recall the identity
V(T X*) = ¥mu T + X785,

We compute
(3 —2K) =

ST — 2 Vuwvﬂ¢> ’

?
S =

(- 0vire+

and deduce

XS, = (3 —r)V(r)? + @ _22“) V,pVHp.

Turning to the first term of (2.82), we first compute the deformation tensor as

dr?,

M 1’M 12(51°M + 13
Xﬁ_g_3_dt2 8 dtdr_u
r r3 rd

(2.81)

(2.82)

(2.83)

(2.84)

(2.85)

so we see that X is asymptotically conformally Killing. Contracting the metric into the twisted

energy momentum tensor we get
G T = =V, oV — 2V (r)e?,

we then combine this with the S terms

5 s 1—2 _
g T + X8, = (1= 1) V(r)p? + > %) g7,
Contracting with the remaining terms produces
6l2M I2(812M + )M 412M + 13~ M(3 — 2k
R

We now compute the divergence of the w; term

Vi (0 (Vi) = Vu(wn ) V) + w9,V

37

(2.86)

(2.87)



noting the relation for ¢ € C*
Vup = ¢Vil—Vig,

and that Vi1 = V,1, we now compute
V. Vi) = Vip + V, 1V .
(2.89) becomes
Vo (0 ()9 ) = WiV + w0y Y,V + g VYR,

which expands to

v, (w090) = v+ uf (5 - 2 o0+ LE00v0
2 2M ~ 2 204 M l2
<% - T) <V,¢D) T (_ P 7’2) (Ve
DAY
ru MO s [0

For the final term

Vot (wa? XH) = (rwh + 3wa) ¥ + 2rwp V,ap
= (1wl + 2Kwy) V* + 2rwah V,1h,

the result then follows.

(2.90)

(2.91)

(2.92)

(2.93)

(2.94)

O

Lemma 2.4.3. For solutions of (2.23) with Dirichlet, Neumann or Robin boundary conditions,

consider a current of the form

T = THIXY + wi (r)Y V9 + wa(r)* X ¥,
that satisfies

e X =10,

® W = —kl + f(r)
with f(r) € O(r=3) and k; > 0,

ko

737

with 0 < ky < G20 )7,

.w2:

It follows that
/ ~V,J*ldVol < C / E]drdzdy,
My, 1)

Er

for some constant C > 0 independent of T\ and T5.
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Proof. We start by studying surfaces of constant r, then take limits to evaluate the boundary

contributions. We compute

J,mtdSe =
/X‘J[TTLTz] # X

— . 4 2
/i[Tl 8 (Tgw“’”) - ) U M)+ (M + %) (Vo)
_ —7’2 |V¢‘ + w1 l2 (r — 2M[2) @Z’VMZ) + Miﬁvtwdtdxdy.

(2.97)

We study the terms at Z first. One can easily see from the decay in r for the field that most of

terms are converging to 0. For the non-obvious ones we compute

2

lim % (= 2M1%) (V)2 + wi (r ); (= 2M1%) ¥4}

rree ] - (2.98)
— =2k (AR 1 [ 3 54
Tlggo 2127“ (r2 Vﬂb) B (7"2 1/1) r27 "V, .

The first term is also clearly converging to 0, in the case of Dirichlet or Neumann conditions
we see that the latter term also converges to 0. In the case of Robin we find that it converges
to

2
lim —5( *—“1/;) . (2.99)
T—>00
We summarise this as
. IL *7.‘{
Tlg]élo s Jm*dS 5, = / /T2 r2 dxdydt, (2.100)

where 3 = 0 for Dirichlet and Neumann boundary conditions.

We now turn to the terms at the horizon, applying Young’s inequality with €, we see that

H <
rlgg $[T1.T2] Jum”dSs, <
3 . (3 — 2x)? 2 7"_2 3 2
rligi E[T1 T3] (T wz(r) 4 M e w + 2[2 (T 2Mi ) (V w)
BM P AMuw? 1 .
( . 77" 521(@) (Vi) = o1 Vol® + wl(r)l%(r3 —OMP)YV,dtdady

(2.101)

For ko < %M we can always find an € > 0, such that the integrand is negative. We thus

have
lim Jm'dSs, < CF(y;[Th, Ts)) < CEr[y). (2.102)

r—T4 E[TI»TQ]
™
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We now study the surfaces of constant ¢, we compute

jﬂn“ngt
¢
4
- / —2°M(V,9)° + (257# + z%) VoV + un(r) <2lriw 12> YV
¢
_ Mw@rwdrdxdy
r ~ o1 N (2.103)
- / —2M (V) + ( S z2r) VAV — b POV
3t
2
+ (214M (fr(;) — k) + l2f(7")) YVp — 27 Mun(r) M:h(r) YV, hdrdudy

= / =2 M (V) + hy (r) Vo) Viah — ki PV + ho(r) eV h — hy(r) ¥V, drdzdy,
pI

where we have hy € O(r), hy € O(r~1), and hy € O(r~!). We now apply Young’s inequality

jun“ngt
¢
1 kll4 1 9 1 1 )
= /2 <2_61 T2 T2 |h2(r)|> (Vo)™ + <§ [ha(r)] + 5 !h3(7’)l) Ydrdedy  (2.104)
o[ (2t Somn? - 20r) (90 + S ey

The first integral can clearly be controlled by a constant multiple of the energy at time T;. For

the latter one we invoke the Hardy estimate

/ J,ntdSs, < CEr,[¢)]
p

k214 ~ k214 k314
+/ <C2 L r? + |h3( )|+ %(hl(r)>2 - 2l2M) (Vr¢)2 + 17631?2 + 0212—;31/12de$@-
P
(2.105)
We now choose ¢;’s small enough such that
kltes 2
CQT |h3(’f’+)| + (hl(’r+)) < 2l M, (2106)
we may then find a C' > 0 independent of T} and 75 such that
/ JntdSs, < CEr ). (2.107)
P
From here we simply apply the divergence theorem
/ —V, JM)dV < CEr [y / B(r2")  dxdydt, (2.108)
Miry 1)
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from here the result follows. O

We are now able to prove theorem 2.4.1. From inspection of the of the bulk terms in lemma
2.4.2, we can see that tangential terms appear with the opposite sign to the higher order co-
efficients of the time derivative terms. In order to get a signed bulk term we cancel these off.
This gives us our first estimate. We can then reintroduce the tangential terms controlling the

negative terms by the first estimate.

Proof of theorem 2.4.1. Define the first current as
- - - —2k)M (1
Ji =TEXH 4+ (k — 1) VHY + % (5 + %) VEXH (2.109)

its easy to see that the current satisfies lemma 2.4.3, provided € < 2(1 — ). Then from lemma

2.4.2 we compute

~ 314 M AMI? - rt -
-V W] -t = 3 (Vep)? — ; Vo pVih + Z_Q(ery
2.110
(3 —2Kk)*Me , 1 ~ - ( )
+ B (3 - 20)(1+ OMUT, 0+ Mr(T,0).
Two applications of Young’s inequality give
~ I*M 4 4 1 2 ~
9t 20 (3= 5 ) @ (- o (0 B 1) ) (@
1 2
2.111
Mo (32 (2111)
r 2 2 ’
if we restrict to A . )
by < 2, 6> = 5+ LT —1<2, (2.112)
3 209
we have a positive bulk term. These conditions can be met provided
3¢* — 14e + 3 < 0, (2.113)

that is

ce (%(7—2@),% (7+2\/E)), (2.114)

with the constraint

K<l— % (2.115)

This provides the upper bound x < k* = % (2@ — 1) ~ (0.887, for which our result holds.

Choosing € = 1 — K, we see that we have positivity and boundedness for the range

k€ (0% (2\/1_0 - 1)) . (2.116)
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Within this range we may now find a constant ¢ = ¢(M, [, k), such that
1 2 1 2 oafe )\ 12
— VIt 2 e (V) 0t (Vo) 4 St (2.117)
We apply lemma 2.4.3 to deduce

/ (ls(vtw)z +r(V,)? + 11#2) dtdrdedy < C | E[Y]drdady. (2.118)
Mz 1) " r

X

To control the tangential terms, we consider the current
. . 1 .
Jy =ThXH — (ﬁ + (1 - /i)) YVH. (2.119)

Computing the divergence of this current we see

= 6M 3 ~ 612 M APM(r® — 1) ~
_VMJ§[¢] = (7 - Z_Z) YV, — o YV — %Vﬂﬂvtw
4 _ AN (353 — 2) — 1243
(St (r-3)) @ CREEEASE gy @)
ok M —
C 2*6)41\2’(7“ 2) g2, L V[
r T

From (2.117) we control all the non-tangential terms, and may deduce the estimate
1 2 Th 2 1 2, A y2, Lo
- Yo" < —V,J5[y] -1+ C S (Vi) + 1 (V)2 4 2 ) (2.121)

Integrating this estimate yields the result. O]

2.4.2 INTEGRATED DECAY ESTIMATE WITH DERIVATIVE LOSS

We now seek to improve the weights of the Morawetz estimate. Unfortunately this will require

‘losing’ a derivative that is
Theorem 2.4.2. For k € (0,x%) and ¢ a solution to (2.23) with Dirichlet, Neumann, or Robin

boundary conditions the following integral inequality holds

/ E]dtdrdzdy < C/ (E[Y] + E[Yr]) drdzdy, (2.122)
My, 1)

D2

for a constant C' = C(M,l, k) > 0.
Proof. An application of lemma 2.4.1 to the estimate in theorem 2.4.1 yields

/ Yrdtdrdzdy < C EY]drdzdy. (2.123)
Mty 15)

X
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We now exploit some symmetry of the spacetime. Noting that 0; is a Killing field we have the
commutator relation

2
{at, O, — l—ﬂ =0, (2.124)

which in turn implies, for smooth enough initial data, that

/ (Viap)? dtdrdzdy < C E]drdxdy, (2.125)
Mty 1)

P2

combining this estimate with theorem 2.4.1 yields

/ (Vi)? + 7 (W/J)Z + yRdtdrdady < C ( 1] + E[th]drdxdy) o (2.126)
M[TlaTQ]

X1y

All that remains is to recover the tangential derivatives. While we could at this point exploit
further symmetry of the spacetime by using the 0, and 9, Killing fields, we will favour a more
robust method. This allows these results to be applied to the perturbed solutions from [ACD02],

and will be more useful with non-linear applications in mind. Consider the current defined by
T = TU[IX” = (2 — k)pVH, (2.127)

which has divergence

—V, g r? = (i—y - l2> (Vib)*+ (2724 — Mr) (@T¢>2+M34;762R)2¢2+T2 Vo, (2.128)

This current satisfies the conditions of lemma 2.4.3 and as we control all the non tangential

terms we have

/ r2 WMJ}Q dtdrdxdy < C (/ EY] + 5[¢t]drdmdy) : (2.129)
Miry 1) X7y

and thus

/ (Veb)? + 1 (@T¢)2 4?4 |Y7¢‘2 dtdrdzxdy < C (/ El] + E[wt]drd:pdy) :
Mizy.1y) s

T1
(2.130)
[l

2.5 POLYNOMIAL ENERGY DECAY

We now extract a statement about energy decay from the integrated decay estimate. We prove

the following theorem

Corollary 2.5.1. For k € (0,£%), and ¢ a solution to (3.5) with Dirichlet, Neumann or Robin
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conditions. Then
C & 3
T ;—0: /Z Elofvldrdudy, (2.131)

/ E]drdzdy <
pI
for some C = C(n,M,l, k) > 0.

We proceed to prove this with two technical results. Firstly a Gronwall type estimate,

Lemma 2.5.1 (Gronwall type estimate). Let k > 0, and f € C'([T1,00)) satisfy

A
i) < —»f(t) + ATt=T)F (2.132)
for some A > 0. There exists C'= C(s,k) > 0 such that
T CA
f(t) < f(T)e 1) + (ET A (2.133)
Proof. From (2.132) we derive
d Ae™
— (f)et) < ————— 2.134
4 e )—(1+t—T1)k’ (2.134)
integrating this quantity gives
. T t e
e — f(T)e* 't < A ————ds. 2.135
et = et <A [ s (2.135)
A simple change of variable yields
=T e%s’
f(t)e%t — f(Tl)G%Tl < AG%Tl /0 mdSl, (2136)
and finally
st 5T, o e
f(t)@ — f(T1)€ ! S Ae 1m. (2137)
For the last estimate we have used
t e%s’ e%s’ t t e;«zs’
—ds = | ——— k| ——————ds
| s ) Lu ¥ >] ok AL+ )
it s
<% - 2.138
S or S e (2.158)
e;tt
<C—-—e.
T (14t
From here the result follows. O

Secondly, the following quantitative form of the red shift from [Warl5], theorem 3.8.

44



Lemma 2.5.2. There exists a modified energy E[1], the redshift energy such that we have a

uniform C > 0 such that

0*/8%%@@3&Msc/emwmw
N Xt

(2.139)

and for ¢ a solution to (2.23) with Dirichlet, Neumann or Robin boundary conditions then,

%Etw] < B[] + CE,[¥),

for some » > 0.

Proof of theorem 2.5.1. 1t is trivial to see from 2.38 that

&Msc/smmmw

pI

we then integrate in time and apply theorem 2.4.2 to see

/T B <C ( /E £l + E[wt]drdxdy) .

We now write

1+t —T)E[Y] = Ed] + ((s = Th) Ex[¢]) ds

+
N i
S &

= Ei[¢] W] + (s — Th) Eyy)ds

S EtWJ] + sw}]ds
<C < : EW] + E[wt]drd:cdy) :

Where we have used to monotonicity property of F;[t)]. We thus deduce

C

T

( g EY] +5[1/1t]drdxdy> :
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(2.141)
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(2.143)
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Now an application of lemma 2.5.1 to (2.140) gives

C
1+t -1

C
1+t—-1T;

Eit)] < Er, [hle ™) + ( E] + E[wt]drdxdy>
 r

< E[] + Elpy)dr dxdy)
o (2.145)

< Q=T / E[)drdzdy + _¢ / E[W] + E[by]drddy
ETl 1 + t — T1 ETl

C
11 -1, ( /Z . EW]+ € [%]drdwdy) :

from which we obtain

p

C
E]drdzdy < R ( o ElY] + 5[¢t]drdxdy> : (2.146)

From here we proceed inductively, noting that taking 77 = 0 proves the case n = 1. The rest
follows as in [HLSW15], lemma 5.8. O

2.6 GAUSSIAN BEAMS AND DERIVATIVE LOSS

The result of this section establishes that some derivative loss or degeneration of weights is

indeed necessary.

Theorem 2.6.1. There exists no constant C > 0, independent of T', such that the estimate

/ EY]dtdrdxdy < C’/ E)drdxdy, (2.147)
M1

o

holds for all smooth solutions of (2.23).

The proof is this is an adaptation of the Gaussian beam method of Sbhierski [Sbil5]. The idea
is to show the existence of null geodesics that remain outside the event horizon for arbitrary
amounts of coordinate time. One then constructs approximate solutions (Gaussian beams) to
(2.23), supported in a tubular neighbourhood A of these geodesics. The energy of the Gaussian
beam remains arbitrarily close to the Killing energy of the geodesic in a neighbourhood of N.
Furthermore it also remains close to a true solution of (2.23) in the energy norm. This true

solution is then used to contradict inequalities of the form (2.147).

Lemma 2.6.1. FizT > 0 then there exists a null geodesic vy such that Im(y) C Mo 1 ﬂ{%m <
r < R(T)} for some large R(T).

Proof. We proceed by using a Hamiltonian method. We construct integrals of motion from the
Killing fields 0, 0;, 0, and from the fact that 4 is null. That is there are three constants a, b, c
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such that

a=g(7,0),
b=9(3,0:), (2.148)
c=g(7,0y),
0=9(7,7)

Working in coordinates and taking 7 as an affine parameter, we get the following geodesic

equations

oM 1 :
o 2 (= = 2
" (d ( r 12) +a) ’ (2.149)

where d? = b>+c2. In order that we are heading towards the event horizon and not null infinity
we choose the negative root of 72. As we are interested in a photon moving in the tangential

directions at a distance R, we give the following initial conditions

r(0) = R,
(2.150)
7(0) =0
We solve for a )
1 2M\?

where we again choose the negative root. This is the geodesic is future directed i.e. ¢ > 0. The

geodesic equation becomes

. drl2 1 2M\? 2M 1 1\2
L LS N o VoM (= — =
r3 — 2M1? ((P R3 ) r3 (r3 R3) ) ’

. 1 1\:
r=—dv2M <ﬁ - _) ) (2.152)

R3
. b
.Cl]—ﬁ,
. cC
Z/—ﬁ-

So as long as R > r, we see all of these are signed (away from R), and ¢, 7, z, y are monotonic.
As 7 is monotonic and decreasing it never reaches Z. Furthermore ¢, 7, &, 1 are also monotonic.
We deduce that v is a smooth embedding.

We now turn to computing the coordinate time taken for the photon to fall a distance %,
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remaining on the exterior of the black hole. We proceed by computing the affine time TR, this

is done using (2.152)

1
1 Brro 1\ 2
Rescaling the integral we get
R3 ! Y3
TR = —dy. 2.154
H d\/zM/; Y (2.154)
Now
1 3 1 3 F(é)
Y Y 6
0</ ,dyg/ dy = /m < 00, 2.155
NT=FY S VT YT (215)

so this integral is simply some positive constant. We denote it as Kz and write

KpR>
dv2M

We use this to prove an estimate for the coordinate time. In order to do this we consider

(2.156)

TR =
2

bounding ¢ below on the interval r € [%, R]

Cd2 (1 2M\? AdI?
P B (16Ml2\/14]\/[),
= (F R3> (R® — 16MI2) RS ) (2.157)

g

=K

now fix € > 1, and set C'= [~ (1 — 1), then provided R*® > 2eMI?, we have

. di*C 4dI*’K
P> —
R R2(R3 — 16M1?)
- (2.158)
dI? 4K
- —2 C — 3 .
R R2(R3 — 16 M[?)
If we then choose € = 9, we have
L di? (8 AK
t> ——=————"-—1. 2.159
TR (91 RSQMP) (2159)
N2
Insisting R? > max {18Ml2, (%) } we find
. dl 1
t> ——. 2.160
S (2.160)
We thus have an inequality for the fall time (for large R)
g dI? 1
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Now fix T and let R = max{ (18M12)3 <—Mf(> }, we then have

4K2’

37T
Agt > - (2.162)
or in other words a geodesic with r > %m, for0 <t <T.
O

Remark 2.6.1. To visualise this geodesic it is helpful to return to equations (2.151) and rewrite

them as

(12

R —2MI*

From here we can see that the value of d (a tangential momentum) has to be non zero for the

d? = (2.163)

construction of the geodesic. We can think of these null geodesics as curves spiralling in towards

the horizon, typically starting at a distance far away.

We now need a result from Sbierski [Sbil5], it is slightly modified to requiring the geodesic
being a smooth embedding rather than working on a globally hyperbolic manifold (see comment
following definition 2.35 of [Shil5]).

Theorem 2.6.2. Let (M, g) be a time orientated Lorentzian manifold with time function t, and
foliated by the level sets 3, = {t = T7}. Furthermore let vy be a smooth geodesic embedding that
intersects Yo, and let N be a timelike, future directed vector field. Then for any neighbourhood
N of v and T > 0 with X7 N Im() # O there exists a Gaussian beam 1y of the form

Ua(z) = apne?@, (2.164)

such that the following hold
HDgw)\H]ﬂ(M[O’T]) < C(T)7 (2.165)

where C(T) depends on apr, ¢ and T but not on . Furthermore
Ei)] = 00, as A — oo, (2.166)

and
WPy is supported in N, (2.167)

provided that on Mg N JT(N N ),
|nE7-|_1 < C’7 g(N7 N) < —c< 07 _g(N’ nEr> < O? (2168)

and

‘g(vnzT N, nzr)

) |g(VHETNa 62)} ) |9(V6¢N7 ej)| S Cy (2169)

for 1 <i,j <3, ¢ and where C' are positive constants and {nx,_,e1,es,e3} are an orthonormal

frame.
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For our problem we use N = 9, and use the time coordinate ¢ as the time function. We also

use the result from [Sbil5]

Lemma 2.6.2.
I(ély) =3(Vel,y) =0 (2.170)

and
J(VV¢|,) is positive definite on a 3D subspace transversal to 5 (2.171)

where J denotes the imaginary part.

Combining this lemma with the fact that ay is independent of A we see that the L? norm of

1y is also independent of A\. That is

Lemma 2.6.3. Let 1\ be the Gaussian beam constructed in theorem 2.6.2 then there exists a
constant C(T') > 0 independent of \ such that the following estimate holds

||1/}>\||L2(M[O,T]) < C(T). (2.172)
We now show that we can approximate solutions of (2.23) in the energy norm with Gaussian
beams.

Lemma 2.6.4. For all € > 0 there exists a solution ¢ of (2.23) satisfying Dirichlet, Neumann

or Robin boundary conditions, and initial data supported away from the horizon, with
Bofu] =1, (2.173)

and a Gaussian beam 1y such that

E ] - B <e, YO<t<T. (2.174)

Proof. Construct v, from theorem 2.6.2, and use the geodesic from lemma 2.6.1. Then ensuring
that AV is bounded away from Z, and H we define

; ()

by = . (2.175)
V Eo[1h)]
It follows from the triangle inequality that
~ —2a
’ Ogton + l—2w,\ — 0, (2.176)
L2(Myo,71)

as A — oo.
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Now take 1) to be the solution to

2a
O — 59 =0,
77Z}|Zo = 775)\|207 (2177)
nx, ¥z, = nls¥a,
with Dirichlet, Neumann or Robin boundary conditions.
Applying the standard energy estimates to ¥, we get

2

Bl < Bl +|| (O - 40 ) Vi , (2.178)

L2(Mo,17)

using that A is bounded from Z, applying Cauchy Schwartz, taking supremums, and absorbing
with Young’s inequality we get

) ) (2.179)
L2(Myo,71)

Using this inequality on the difference 1 — 1, yields

, (2.180)

3 9 -
’Etw — %]’ < C(T) ’ Uty — Z—Q%\
L2(Myo,11)

then for e > 0 we simply choose a large enough A and the result follows. O]

We now quote theorem 2.36 from [Sbil5]. This tells us that the Gaussian beam energy is
localised around the geodesic Killing energy.

Lemma 2.6.5. For all € > 0 there exists a neighbourhood Ny of N such that
Ei[alno] = (9T ) ez | < € (2.181)
forall0 <t <T.

We now show that the constructed solutions to (2.23) are losing energy very slowly.

Lemma 2.6.6. Let T > 0 then for all € > 0 there exists a solution v of (2.23) with initial data

supported away from H, satisfying Dirichlet, Neumann or Robin boundary conditions with
Eofu] = 1, (2.182)

such that
B <1-c (2.183)

forall0 <t <T.
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Proof. 1t follows from 0; being Killing that —g(7’, ¥)| fim(+)ns, is a constant. We may renormalise

this to 1 when solving for . The result then follows from the triangle inequality. O
With these results we can now prove theorem 2.6.1

Proof of theorem 2.6.1. Assume there exists a constant C' independent of T', and v, such that

follow estimate holds for all solutions (2.23)

/ " Bt < CE]. (2.184)

As the energy is a decreasing function of ¢t we have

Tmmzlz%Mﬂ;KEMWSC%M. (2.185)

Choosing T' = 2C, and constructing ¢ from lemma 2.6.6, with the choice € = i we deduce

toce 2156)

A clear contradiction. We now extend this result to the non-degenerate energy by observing

that for ¢ supported away from H we have the estimate

EW] < CEy[y], (2.187)
3o
and the estimate .
| Blisc [ el (2.188)
0 M[O,T]
from which we construct the same contradiction. O
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THE EINSTEIN-KLEIN-(GORDON SYSTEM

3.1 INTRODUCTION

3.1.1 THE RESULTS

In this chapter the Einstein—Klein-Gordon system, within the class of square flat toroidal sym-

metry is presented (1.61)-(1.65), and five results are proven about its analysis.

Theorem 3.1.1 (Wellposedness). Given suitable initial data on a characteristic surface in-
tersecting null infinity, and Dirichlet or Neumann boundary conditions for the field 1. The
Finstein—Klein-Gordon system (1.61)-(1.65) (with k € (0, %)) has a unique toroidally symmet-

ric weak solution in a future neighbourhood of this surface.

Characteristic surface

Figure 3.1: Region of solution

Furthermore the maximal development of this solution is unique.
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Theorem 3.1.2 (Orbital Stability). Assume we are given initial data on a characteristic sur-
face intersecting null infinity that is ‘close’ to the TAdSS data, and Dirichlet or Neumann
boundary conditions for the field 1. The mazimal development for the Einstein—Klein-Gordon
system (with k € (0, %}) contains a black hole, and exterior region with complete null infinity.
The solution is qualitatively similar to TAdSS. Furthermore there exists a constant D > 0,

depending only on the initial data, Klein-Gordon ‘mass’, and AdS radius such that

r%_”w(u,v)‘ <D, (3.1)

holds on the intersection of the reqular region of the spacetime and the exterior of the black hole.
Where r is a radial function, and u, v are Eddington-Finkelstein coordinates on the spacetime

constructed as part of the proof.

Theorem 3.1.3 (Asymptotic Stability). Assume we are given initial data on a characteristic
surface intersecting null infinity that is ‘close’ to the TAdSS data, and Dirichlet or Neumann
boundary conditions for the field . On the mazimal development for the Einstein—Klein-
Gordon system (with r € (0,3)), we have constants C,D > 0 depending only on the initial
data, Klein-Gordon ‘mass’, and AdS radius such that

r%’“w(u,v)’ < Dexp(—Chv), (3.2)

holds on the intersection of the reqular region of the spacetime and the exterior of the black

hole. Where v is an Eddington-Finkelstein coordinate.

Theorem 3.1.4. We have that for k € (0, %), M the initial final renormalised Hawking mass
at null infinity, H the event horizon of the spacetime, and ry = (ZMZQ)% that the Lorentzian
Penrose inequality
supr < ry, (3.3)
H

holds. Furthermore we have along H that r converges to r exponentially in v an Eddington-

Finkelstein coordinate.

These can all be summarised in the following theorem

Theorem 3.1.5. Assume we are given initial data on a characteristic surface intersecting null
infinity that is ‘close’ to the TAdSS data, and Dirichlet or Neumann boundary conditions for
the field ¢. The associated mazimal development (with k € (0,3)), is a black hole spacetime

with a reqular future horizon, and a complete null infinity. Furthermore the estimate

r%*”w(u,v)‘ < Dexp(—Cv), (3.4)

holds on the intersection of the reqular region of the spacetime and the exterior of the black
hole. From which we may deduce that the metric 1s converging exponentially in v, uniformly in
u, to a toroidal AdS Schwarzschild solution with mass M, in the Eddington-Finkelstein gauge.
It is in this sense we say that the toroidal AdS Schwarzschild is stable within the class of square

flat toroidal symmetries.
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3.2 STRUCTURE OF THE ARGUMENT

The proofs of this chapter are quite long and complex; the following flowchart has been included

to help the reader understand the structure and dependences.

Einstein—Klein-Gordon System
(Definition 3.3.1)

v

Square Flat Toriodal Symmetry » System Reduction
(Definition 3.3.2) (Lemma 3.3.1)

v

Twisted Derivatives _ o Wellposedness of renormalised system at H' level
(Definition 3.4.1) (Theorem 3.4.1)

v

Geometric Boundary Conditions » Unique Maximal Development
(Definition 3.4.3 and 3.4.4) (Theorem 3.4.2)

v

Small Initial Data 5 Spacetime Contains A Trapped Region 4  Interior Extension Principle
(Definition 3.6.1) (Lemma 3.6.1) (Theorem 3.5.1)

, Closes

v v

Bootstrap Argument __ Degenerate Energy Estimates

DA (Lemma 3.7.7)
Closes ™ ~< - #
- Non-Degenerate Energy Estimates o Red Shift Estimates
(Lemma 3.7.14) (Theorem 3.7.4)

v

Extension Principle Near Infinity ——» Orbital Stability

(Theorem 3.5.2) (Theorem 3.7.1)
Morawetz Estimates » Exponential decay of Energy Red Shift Estimates
(Lemma 3.8.3 and Theorem 3.8.4) (Theorem 3.8.5) (Lemma 3.8.4)

v

Asymptotic Stability
(Theorem 3.9.1)

Figure 3.2: Structure of the arguments
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3.3 THE EINSTEIN-KLEIN-GORDON SYSTEM AND ITS RENORMALISATION

Definition 3.3.1. The FEinstein—Klein-Gordon system (EKG) in an asymptotically anti de-

Sitter space time is given by

1 3
R,uu - §guuR - Z_Q.g;w = 87TT;U/7
2a
0,6 — ¥ =0, (35)

1 a
VH¢VV¢ - §guuvawvow - guul_QwQ = T/w-

Here g, 1 are the Lorentzian metric and Klein-Gordon field which we are solving for respectively.
R, s the Ricci curvature, R the scalar curvature, | the AdS radius related the cosmological
constant of the system A through the relationship A = 7—23, a is a negative constant which can
be thought of as the mass of the Klein-Gordon equation. Keeping with the notation of [HW135]

we define a parameter k = \/% + 2a with k € (0,1).

SYSTEM REDUCTION

Label the spacetime coordinates (u, v, z,y). As seen in [Gow74], imposing a global T2 symmetry
on the spacetime enforces the product form M = Q x T2. Where Q7 is a two dimensional

Lorentzian manifold, and T2 = R?/Z2. Furthermore, the metric may be put into the form
g = — Q(u,v)dudv + r*(u, v) (A(u, v)dx + B(u,v)dy)* + (B(u,v)dz + C(u,v)dy)?,  (3.6)

where AC — B?> =1,and A+ C > 0.
Choosing A = C' = 1 and B = 0 retains similarity to the spherical problem. This gives the

torus the properties of being square and flat.

Definition 3.3.2. If a Lorentzian manifold has topology M = QF x T2, and a metric of the

form
g = —Q%(u,v)dudv + r*(u,v) (dz* + dy?) . (3.7)

We say the spacetime has a square flat toroidal symmetry.

Lemma 3.3.1. For a metric of the form (3.7), the system (3.5) reduces to

ru (9u)”
O <@> = —4nr a7 (3.8)
Ty (8)”
d, <§) = —dmr 20, (3.9)
_Tuly | 2mar 59 37T o
Fun = = T T gt (3.10)
TUT'U

(log ), = —4m0, 40,0 + (3.11)

)
7”2
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02a

Ty Ty

. (3.12)
Proof. To see this we need to compute the Ricci curvature. (3.8) and (3.9) are the uu and vv
components respectively. (3.10) comes from the uv component and (3.11), (3.12) follow from
the other components. Conversely for the metric and field given by a solution to (3.8)-(3.12),
the system of equations (3.5) holds. O

Renormalised Hawking mass:

We consider a suitable modification to [HW13], [HS12], and [HS13b]. We define the first

renormalised Hawking mass as
2 ror 13

w1 = Q2 =+ 2_l2
It can be seen that provided equations (3.8)-(3.12) hold, this quantity satisfies the transport

(3.13)

equations:
v 4mrr?
Ot = —8mr* = (0uth)? + $ru¢2, (3.14)
o T , Amrfa
Oy = —8mr*— (0,0)" + ). (3.15)

12
We may replace some of the equations in lemma 3.3.1 with these transport equations. This

follows from the following lemma (where we assume derivatives to be taken in a weak sense).

Lemma 3.3.2. Suppose (3.10), (3.12), (3.14) and (3.15), hold (where Q is defined through
(3.13)). Then we have that (3.8) and (3.9) holds. Furthermore if (3.10) can be differentiated
in u, then (3.11) holds.

We may also express the wave equation for r in terms of w; as

P /v 2ra
=—— (= + = )+ S22 1
rw=—5 (G + )+ @Y (3:16)
Similar to the system [HS13b], (3.14), and (3.15) imply that we can think of the Hawking mass
as potential for a weighted H! energy.

3.4 WELLPOSEDNESS OF THE INITIAL-BOUNDARY-VALUE PROBLEM

We will now discuss the wellposedness of the Einstein-Klein-Gordon system (3.8)-(3.12). This
section follows in a similar fashion to [HW13].

The variables in (3.8)-(3.12), while having a clear geometrical meaning, are inconvenient to
analyse the system. We anticipate the behaviour Q2 ~ r? ¢ ~ r~37% at the conformal bound-
ary (where we expect r — 00). Furthermore when we introduce Neumann boundary conditions
to the problem, the variable o; will no longer form a potential for a useful H' energy. The

quantity will diverge as r — oo. To rectify these issues we proceed by solving an equivalent
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system that has undergone a renormalisation scheme, as in [HW13]. It is worth remarking
that the modifications to the toroidal case are sub-leading, and the system behaves almost
identically in the analysis of wellposedness. We will assume for now that the solutions have
enough regularity for the (3.8) to (3.12) to be understood in a weak sense but will postpone

the discussion until section 3.4.3.

3.4.1 RENORMALISED SYSTEM

Motivated by [HW13] we introduce the twisted derivative.

Definition 3.4.1. Let f € C*, then the twisted derivative is defined as the differential operator
given by

V.= fV, (?) . (3.17)

Following [HW13], and considering the linear problem in [DW16], the canonical choice of twist-
ing function is

3
r?, where g = ~3 + K. (3.18)
We define the second renormalised Hawking mass to be
Wy = Wy — 27rg 1/12 (3.19)

The latter term has been introduced to cancel the diverging term as Z is approached.

Lemma 3.4.1. Define the variables

3

1 T
r=s W =m + 27Tgl—2¢2, (3.20)
then the EKG system is equivalent to
_ (wz + 27rg’l"—§1p2>
aufﬂ2 - _SWT QQ< zﬂ/J) - 87Tg (w2 + 27Tg 1/}2) wvuw 47”/}27%9 ) (3'21)
r
N o (3 ., 2mg?
022 2 2
Tuw = Q°F (§w2r - - Y > : (3.22)
- 1 - 02
Oy (TVULD) il G ru Vo) — ZTV@/), (3.23)
with auxiliary variables
A, T 21 1? 2g° Smag
92:_ u'v - __- — V = — 2 3.24
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and constraint equation

(WQ + QWQ?_;@/)z)

Tu = rs -
Oyg = —87TT2§(VU¢)2 — 8mg (wQ + 27rgl—2¢2) YV — Amp’r,g? . (3.25)
We remark that equation (3.23) can also be expressed as
- 1\ < 02
By (rvm) - (H _ 5) rVu = V. (3.26)

Proof. This is just calculation. We simply study the derivatives of the variables 7, ws, and use
the equations (3.8) - (3.12) to simplify. For the Klein-Gordon equation we substitute in the
definition of the twisted derivative and simplify. O

The domain
We define the triangular domain:

Asap = {(u,v) ER* 1 g < v < g+ 0,0 < u < ug + 9}, (3.27)
and the boundary piece

7 = Z&UO\AMO ={(u,v) € Z&uO cu=v}. (3.28)

R4

I={u=v}

Figure 3.3: Diagram of Ag ,,
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A solution to (3.21)-(3.23) obeying constraint (3.25) can be constructed on As,,,. We will need
to specify initial data, and boundary conditions for this system. We follow the generality of
[HW13], but keep in mind that we are mainly interested in perturbations of the TAdSS solution.

THE KLEIN-GORDON MASS

Throughout this chapter three quantities related to the Klein-Gordon mass are used fairly
interchangeably. This is largely to clean up the algebra. In order improve clarity we collect
them here

e a, denotes the Klein-Gordon mass,

e ¢, denotes the radial decay of the field, g = —% + \/% + 2a,

e k., denotes the radical part of g, Kk = w/% + 2a.

We now collect some of the key values of the quantities and how they relate in a table below

BF Lower Bound | Conformal | BF Upper Bound
-2 1 R
0 3 1
3 1 =

3.4.2 INITIAL DATA AND BOUNDARY CONDITIONS
INITIAL DATA

Definition 3.4.2. Let N' = (ug, u1] be a real interval. Then a free data set is a pair of functions

(7, 1h) € C2(N) x CH(N) such that:

e 7>0and v, >0 in N, as well as limy, s, Ty = % and 1imy,_,, T = 0.

e The following bounds hold on the initial data

wr,— N2
/ {(Vmﬂ) + wQ] (u — ug) " 2du < oo, (3.29)
ug
[ J
sup ‘E-?TM‘ + sup r%@uﬂ‘ < 00. (3.30)
N N

Where V., is a twisted derivative with twisting function: f = (%(u - uo)) 2

lwo
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With a free data set we are now able to construct a complete initial data set (7,
Let My > 0, we define 75 as the unique C'(N) solution to:

™[ 2@, T2 ™2\ = — 7?2\ -= —
aﬁazﬁf—(ntﬁ ———mWﬁwﬁ(vﬂm?—&m(ﬁa+%gﬁwﬁubuw

Tu T [? (3.31)
3.31
R T —2
_2 <w2 + 27rgl—§¢ )
- 47T¢ Fug2 — )
T
with boundary condition
lim %5 = My. (3.32)
uU—uUQ
We define 7, is a similar way, as the unique C*(N') solution of the ODE
P Ty 3 21g%—s
) L i P— (éﬁiz i ) , (3.33)
—ER 4 G —dngy Fr
with boundary condition
L= 1
ulgilg o = 5 (3.34)

Remark 3.4.1. The choice of T is equivalent to choosing the scale of the u coordinate along
N. It represe@s the gauge choice of this problem. Typically one will choose T = *Z°.

The choice of ¥ is free, providing the conditions (3.29), and (3.30) hold. The value My is free
provided it is strictly positive.

The choice of boundary condition for 7, is to ensure that initially 7, + 7, = 0, this will be

propagated along the boundary T boundary conditions on L as defined in the next section.

BOUNDARY CONDITIONS AND WEAK FORMULATIONS

Notation

We now define the function

= 3.35
p=—5 (3.35)
and the boundary coordinate
u—+wv
= , (3.36)
2
which we can see parametrises Z.
We denote twisting with the function p by
~ 3, .
Vit = p2 "V, (Pp 2 ). (3.37)

The H' norm over a set U C Asy, 1s given by

1l = [ (572 (|90 ) + 7202 due (3.39)
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The space Hj(As.,) is given by the completion of C°(As.,,,) in the H' norm.

Boundary conditions for r

In order that we produce a spacetime that is asymptotically AdS we will insist

7z = 0. (3.39)
As a consequence of T := 9, + 0, being tangent to Z, we see that

T(r) =0, (3.40)
along 7.

Weak formulations for v
We want to impose homogeneous Dirichlet and Neumann boundary conditions on the field. As
we will be solving at a C°H' level of regularity, following the weak formulation for hyperbolic

equations in [Lad85], we see this requires the following weak forms for (3.23).

Definition 3.4.3. We say 1 weakly solves (3.23) with Dirichlet boundary conditions if

/ (WWW - vw) dVol =0, (3.41)
A

S,uq

holds for all ¢ € Hy (As.,), and p’%“w =0 onZ in a trace sense.

Definition 3.4.4. We say ¢ weakly solves (3.23) with Neumann boundary conditions if

/A (WWW — vwap) dVol =0, (3.42)

S,uq
holds for all ¢ € H' (Asn,) with Plfv=uo} = @|{u=uo+sy = 0 in a trace sense.

Assuming higher regularity on the solution, we can define the following classical notions of
boundary conditions:

We will say a solution classically satisfies Neumann boundary conditions on Z if

pi (V) =0, (3.43)
We will say a solution classically satisfies Dirichlet boundary conditions on Z if

prrtY =0, (3.44)

3.4.3 WELLPOSEDNESS

Regularity

In this section we define the regularity we require for a weak solution to exist. We define the
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C°H' norm by

“ . 2
N (p (V) +p—2w2) i

(u,U)EA(g,uO
v N 2
+ sup / (p‘2 (Vmﬂ) —|—p_2¢2) dv'.
('U':U)EA(S,U.O vo

Definition 3.4.5. A weak solution to the renormalised EKG system is an element of the func-

(3.45)

tion space:

W = {(7, 09,0 : 7 € CL b € COH oy € Wi T, Py Y, (w2)0 € C2 3, (3.46)

oc’

that satisfies (3.21)-(3.23) in a weak sense. That is equations (3.21) and (3.22) hold classically,
(3.25) holds almost everywhere and (3.23) holds weakly in the sense of 3.41 or 3.42.

Remark 3.4.2. We note the mized reqularity of the solution. Notably v, € CP_ is allowing
some equations to hold pointwise. From this it follows that if we have a weak solution to the
EKG system we necessarily have that ¥y, Q, Q, € CY

loc.*

Lemma 3.4.2. If we have a weak solution to the renormalised EKG equations, then the EKG
equations (3.8)-(3.12) hold weakly. We say the metric (3.7) solves (3.5) weakly, and is C°.

Theorem 3.4.1. Fiz 0 < k < %, let (7,4) be a free data set on N = (ug,uy], and fix Neumann
or Dirichlet boundary conditions. Then there exists a § > 0, such that the following holds. There
exists a weak solution (7, w9, 1) € W, of the renormalised Einstein Klein-Gordon equations in

the triangle As,,, such that

e 7 — 0 as Z is approached,
e U satisfies either Dirichlet or Neumann boundary conditions weakly,

e The functions v and 7 agree as C functions with 1 and T, respectively when restricted
to {v =up}.

Proof. The proof of this theorem is essentially identical to that found in [HW13]. There is a
minor difference in that there is a slight change in sub-leading terms compared to the spherical
case. Largely this manifests as certain terms not being present so the argument is slightly
cleaner. It follows a Banach fixed point theorem argument of establishing a map whose fixed
point is a solution to (3.21)-(3.23) and then establishing that it is a contraction over a ball of

radius b in the space 2.
O

Remark 3.4.3. If more reqularity is assumed on the initial data then just as in [HW13] it
may be shown that we have a classical solution. The boundary conditions hold classically, and

T = —550,0 + G50, decays like p%_"‘, as the boundary is approached.
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Remark 3.4.4. As the field ) € COH?, it obeys energy estimates. These are shown by working
at this higher level of regularity, and recovered by a density argument (similar to proposition
8.1 in [HW13]). In later sections when deriving these energy estimates, we will see boundary
terms that wont make sense at the current level of reqularity. We can however see they vanish

at a higher level of reqularity, and thus may be dropped from the estimates.

FURTHER PROPERTIES OF THE LOCAL SOLUTION

Definition 3.4.6. We say a spacetime is asymptotically AdS if the metric has the following

form
1 1
9= ((1_2 +0 (f2+f)> didb + d‘22) : (3.47)

and weakly asymptotically AdS if it has the form

g~ ((%2 +0 (fﬁ)) dadi + d‘32> . (3.48)

72
for some € > 0.

Remark 3.4.5. We note that the 20 solution constructs an asymptotically AdS set. If one

makes the definitions:

f(u) = rulu,u),  g(v) =7y (v, 0), (3.49)
(these are bounded functions on As,, from the wellposedness proof), and then the coordinate
transformation
di dv
at_ o2 av _ _op ‘
o), = —2g(), (3.50)

then on I we have 7, = #, and 7, = —#. Furthermore from the analysis of [HW13], or

similarly in section 3.5.2 one can see that in this coordinate system

Fap = O (F772F) (3.51)
We deduce that ) )
o ~3—2K o ~3—2K 52
Tu 2l2+(’)(7’ ), T 2l2+(’)(r ), (3.52)
and the conformal factor satisfies
—4rtF 7, 1 3o
0 = e (1+0 (7)) . (3.53)
This implies the metric has the form
1 1 ~3—2K g 2
9=—=({g*t O (7°7*%) ) dado + d=* | . (3.54)

1 . . .
We remark that for k > 5 the spacetime is only weakly asymptotically AdS.
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Remark 3.4.6. We note that the local 20 solution will obey all the estimates of lemma 5.1 of
[HW13]. We list them here

et<lced, <o, < el <2, < |Ful<b
P 02 (3.55)
3 2~ 1_s
TH|<b-p, @ <CF, ‘—2 <G, WISB-F V| <G
r
We first note the estimate e™® < /f; < eb implies
lim 7 = 0. (3.56)
uU—v
We remark further that as Q? == % the estimate
T
2
immediately follows.
Remark 3.4.7. It follows that corollary 5.3 of [HW13] holds, that is
ST
Tu 2l <3pe (3.58)

T 2p

The proof is identical. We remark this result is important for establishing decay of the twisted
derivative with respect to r9
- . 3 T 1
Vo =V, - — el I 3.59
v 1”*1/’(2 “)(r 2p) 9%

This allows us to see that the decay of V1 is as strong as @uw, and that twisting with p and

T are equivalent.

Remark 3.4.8. For U C R we can define the following norm

2 - ~—2
Il = [ (7 (

We see that in Ns,, this is equivalent to the H' norm. We can equivalently define H, (1)7g(A5,uO)

as the completion of C° (Agy,) with the H, norm.
This norm can be promoted to subsets of R x T2 by also integrating over the toroidal variables.

We will slightly abuse notation and use it to mean both as all our functions are toroidally

WD + f—%?) dudv. (3.60)

symmetric and pose no change to its value.

We now define some important geometric quantities.
Definition 3.4.7. We define the Kodama vector field

Ty

Tu
—o By, (3.61)
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its orthogonal complement

Ty Ty
R = —5z0u— 500 = (dr)*, (3.62)
and the operators
To=T'V, R=R'V,. (3.63)
We also note
Ty =T (3.64)

Definition 3.4.8. [t is now convenient to define the final renormalised Hawking mass as

3
2ry Ty 4n g2 T

= T ) T (3.65)
it 1s clear that it s invariant under change in null coordinates.
Lemma 3.4.3. w satisfies the following differential equations
8r2r, . 47rg T ru7’2
B =~ (V) el + T by? 4 T () e
8mr3r, - 47rg T rvr2 '
Oy = =5 (Vi)™ + ——Lwy)® + o f(17),
where 5 5
f('ébQ) 47r9¢ (47‘(@1& - 5) — 27Tg2¢2 + 5 (367)
Proof. We begin by directly studying the u derivative of w
2ruryT Y\ gngy2 | 16gTryTer - 3 5
Oytw = 0, <T) eIV + Twwue CA 2—127’ Ty (3.68)
Equation (3.8) and (3.10) imply that
5 2ryryr\ g 2y n 4rria 0 3 (3.69)
5 02 = 8105 Y mTu STPHRAL .
SO
Ty o amoye . Amria 3 2 16gmr,r,r 23
_ v gy 2 4mgiyp? 2 4 gy u'v A g 2
Ouw = —8m g ™ + eI — ot e = T ot
(3.70)
Recalling the twisting function
f=r (3.71)
and the identity
2,.2
gr’u, g ru
U2 = (V) + Ly + Ly (3.72)
We see that
8wrr, 2 dmgy? 8TG* 2Ty o 4n w2 ATrta o g 3, Amg?
Oy = — 02 (V,1)2et™ +Tweg +3 r e —|—ﬁ'r7’u<l eg>.
(3.73)
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We turn to studying

8TG* 2Ty o 4mow? 47T7“ a. rg? | O m
Recalling
3
2 u'v
giving
4 2 v ” 4 3
L LT R g g ey A et oyt (1= et (3.76)

Expanding (3.76) reveals hows the twisting function removes the divergent terms

ATgPry rrtg? o Amrerta o Awrgra (oo -3 -drgy?
F= w® — 21 2 e+ 2 w—i—l—2<eg _1>+TTT“
3
+ ﬁ?ﬁru (1 + dmgy? — 64””’2) )
(3.77)
factoring
ArgPr, Arryr?
p AT ey —ru 2(—g® + 20— 3g) ¥* + # (e4”9¢2 - 1) b2
2
; v (3.78)
+ 2—l27“ Tu (1 + dmwgy? — 4“”2)1,
Nw4
recalling the relation
—¢*+2a—39=0, (3.79)
we see the divergent terms are no longer present, and
4t g*r, 47y, r? 2 2
p=2T97 wip? + 7rr127" ¢ (647@1/) > P2 + 7’ Tu <1 + drgip? — eIV ) : (3.80)
r
which factorises to
47 g®r, Wl 2 3 3
F=2T9 w2y rl—g < gy <47ra1/12 _ 5) —org?? + 5) . (3.81)
T

From here the result follows. By the symmetry of the equations the d,w result is analogous. [
Lemma 3.4.4. @ s constant along L.

Remark 3.4.9. The proof of this result is largely technical, and comes down to understanding

a reqularity issue. Formally as in [HW13] we could compute

Tw|r = lim drr*e* ™"V 0 - T4, (3.82)
p—
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which for Dirichlet or Neumann conditions can be seen to be 0, for ¢ € H?. However at a
H' level we do not have enough decay to infer this result. To get around this problem we use
the fact that we expect w to be an energy potential for 1. Performing energy methods with a
rescaling of the Kodama vector field gives rise to this expected energy equality. However in this
latter setting we can exploit the COH' reqularity of v to see this boundary term is zero. We
then integrate the curl of the divergence of w over a smaller triangle, bounded away from I and

take limits to recover the result.

Proof of lemma 3.4.4. From the wave equations (3.23) and (3.26) we derive the following for-

mula for multipliers

Ou (R(V)?) + 0, (w(Var ( ) Vv (S + )
#2 (ho = 20) (T +2 (G - ) (G 659
- ;vw (hVu0 + wV)

Where h,w are C!' functions. We expect that Kodama vector field T should give rise to a
conservation law. However from the modifications made to the Hawking mass we will choose
a rescaling of this vector field by X = 87r2¢*™9%* T This amounts to choosing the following

functions as multipliers

w = 8%?{ r2et™ 9 p =8 QT“ r2etmav’ (3.84)

From (3.83) we see the cross terms involving V.V ,1p cancel. We now study the term

2
Q—vw <hV b+ wvu@ = 2PV (< Vot + 1y Vath) (3.85)

the twisted derivative terms cancel here, (as we are effectively taking a T derivative but only

twist with ). Expanding the potential V' in terms of @ we have

942 2 8ra
V= r_gi))we—47rg¢2 ?2 6—47T9¢'2_+_'? + l2g¢2’ (386)

and thus we derive the equation

2 2

47T7“2€47rgw2V77/) (=r Vot + 1,V 1b) = —87rg—ruwwvv@/) + SW%rvwgqu@D

47r
g r ¢ (Tv u,éb - Tuvquz))
4 (3.87)
+ 7;5 P (1, V) = 1,V )
32m? 32m7ag ,

l 77Z}3 dmg* ( ¢ _Tu¢v)'
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Now let us define

F?) = e*mov? (4m¢2 — ;) — g + 3 (3.88)
and consider its T derivative
Tt —rr? L
o (s + o (T ). (389
it can be quickly seen this will cancel down to
ryr? 9 rur? 9
B0, (1) — 0, (£(67) (3.90)
Computing
Ou (f(1?)) = dmg?e'™V b, — AmgPynh, + 32m%age ™" Yy, (3.91)
we see that
ryr? Tul?
o (1) +a. (7 f(w2)> -
4”9 12 (o Vat) — 1o Vo)) + —2 1 24pe b0 (1, ) — 1, Vo)) (3.92)
327r 32m%ag ,

l 1/J3 g ( 1/1 - Tuwv) :

Returning to (3.87) we can now write this as a combination of flux terms and a bulk term as

follows

2
—Q—vw <hV b+ wvw) A2 I (ot + 1o V)

=0, (47rg;mww2) + Oy (—4779727“1,731/12)
2 2
+0, (—7";;" rw? >> +0, ( = (zﬁ))

2 92 2 92
—p*0, | 4n=r,w | +¢Y°0, | 4n=r, @ | .
r r

We then compute using the Hawking mass equations (and symmetry) that

(3.93)

2 2 32 2 .2,.0.2 ~ 2 5 2 2.2,...2 B 2 5
420, <479_Tuw) 0, <4W9_W) _B2mgtrry (w) ptnvt 32T (vuw) ey
T T

QZ QQ

(3.94)

We now compute the bulk terms

1 r 223 e e N2 32m2gPrrE oo
_ Y _ =27 1 Amgy _2eh g Ty dng?y? )2
2 (ihu . h) =—m ¢ 9 (Vﬁ/}) g7 ¢ 97, (3.95)
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and

V2 (3.96)

[\
7 N
| —
S
<
|
|%
S
N~
|
|
w
[\}
)
Do
<
w
i
3
Q
<
nN
/?]
2
<
=<

22,2
>2 N 327 gerry A%y
02

It follows from the choice of multipliers and (3.83) that

2 2 2 2
ol amgy? [ g9 2 Tl 2
au( srit e ™ (Vw) + dnrmy? + S f (v ))
2 5 [~ 2 2 2
+0, (— (—8#%—2647“” (Vmﬂ) + 47rg?ruww2 + —Tl; f(wz))> (3.97)

=0.

We now perform the energy estimate by integrating over the domain Ay,

t(up+9,u0+9) 5 ~

0= / Arr? et ™V o - Tt
t(uo,uo)

2

uo+9 2 5 [~ 2 2
+ / (—8#—7;”22 e (V) +dnrmy® + 2 f(wQ)) (u, ug) du (3.98)
U

[2
2 2

uo+9 ryr? 2 [~ 2 rul’
- /uO (SWWe“gw (Vuw) —47rg77‘uw¢2 - f(¢2)) (uo + 6, v)dv,

here we have used that T'(7) = 0 on the boundary.

From the boundary conditions we get the energy estimate

ug+0 2 5 [~ 2 2 2
/ (—87r£e4”9w <VU7,D> +47rg?rvw¢2 + il f(@DQ)) (u, ug)du

0 QQ 12
uo+d Por? e [ 2 g2 ,  rur? , (3.99)
— /uo (871'@@ gy (Vqﬂb) - 47T7Tuw¢ - 12 f(@b )) (UO =+ 5, U)dv‘

Now to show the Hawking mass is constant along this surface we consider a smaller triangle

As,,. where u, > uy so we are bounded away from null infinity. We thus see that

t(ux+9)
w(ug + 8, ug + ) — w(ug, up) = lim Twdt. (3.100)

Ux—>UQ t(u*)

Now define a vector field
X = —w,0, + @, 0, (3.101)

we then see from the divergence theorem and lemma 3.4.3 that

2

t(ux+9) Us+0 ror2 Y /o~ 2 g ror2

0 :/ T@dt‘i‘/ (—871'#647@1/) (vvw> +47T77’1;w1/}2+ 122 f(¢2)) (U,U*)du
t(us) Us

2

Us+0 ror2 o2 [ 2 g ror2
_ vt Awmgy _ J 2 Tu 2
/u * (&r e (vm) arr oy — Dy )) (s + 6,0)dv.

(3.102)
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Sending u, — ug we see the second two integrals cancel from the energy estimate leaving us to
conclude that
’W(UO—F(S, U0+(5> = W(Uo,U(]). (3103)

As ¢ is arbitrary we see that the Hawking mass is constant along the boundary, and equal to
its initial value. One can now also make the interpretation that w forms a potential for the
energy of the system. m

GEOMETRIC UNIQUENESS

When solving system (3.21) - (3.26) it is important to note that we have made a choice of gauge
to define the boundary of the space-time. Thus a priori we might expect our solution to be
dependant on this gauge. This is essentially the problem of geometric uniqueness as discussed
in [Fri09]. In order to address this issue we note that the weak formulations of the Klein-Gordon

equation are invariant under a change of null coordinates.

Lemma 3.4.5. Let D = (7,v) be a data set satisfying the initial and boundary conditions of
section 3.4.2. Let (M, g;, ;) be two developments of D. Then both (M, g;,1;) are extensions

of a common development.

Theorem 3.4.2. A data set D = (7,1)) satisfying the initial and boundary conditions of section

3.4.2 admits a maximal development. This development is unique up to isometry.

We remark at this point that the following proof follows similarly to [HS13b]. In this vein we

make the following definition

Definition 3.4.9. Let N be an interval of the form N = (ug,u1]. Given an initial data
set (7,v) satisfying the initial conditions in section 3.4.2 we say a development © is a triple
(M, g,1) such that (M, g) is a smooth Lorentzian manifold with C° metric, 1 is C°H' function
on M, and the following hold

o (M,qg,v) is a square flat toroidally symmetric weak solution to the EKG system, with

area radius r being a C* function with r > 0.

e The quotient manifold @ = M /T* with its induced Lorentzian metric is a manifold with
boundary Ng which is a null ray, diffeomorphic to a subset N of the form (ug, ug+€), for
some € > 0. If ¢ is such a diffeomorphism: ¢ : No — (ug, ug+€), then 1o = | (uguo+o)

and 7o p = 7:|(u0+u0+6)'

o O admits a a system of global bounded null coordinates, and may be embedded conformally
into a subset of R'™1. The boundary of Q with respect to the topology of R is composed
of a future boundary Nz, a past boundary which coincides with Ng and a C' time-like
boundary I given by the level set T = {(u,v) € R : #(u,v) = 0}. The metric g is
asymptotically AdS in the sense of (3.47).

o The field ¢ is in C°H', and satisfies the following weak formulations of (3.23)
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— Dirichlet

/M (quw _ vw) dVol =0, (3.104)

holds for all ¢ € ﬂ(l),g (M), and 73R =0 on T in a trace sense.

— Neumann

/ (WWW - quﬁ) dVol = 0, (3.105)
M
holds for all ¢ € ﬂ; (M) with ¢|ny, = ¢|nr = 0 in a trace sense.

e ‘Global hyperbolicity” holds in the sense that all past directed inextendible causal curves in

Q either intersect Ng, or have a limit point on T.

o The field v satisfies the following integrability conditions:

For each constant v ray, R, C Q we have:

rt o< 7ul o,
/ —(Vu))* + 7¢ du < oo, (3.106)
R

N |7

and each constant u ray, R, C Q we have:

J.

It follows from the definition that the Penrose diagram of ® has the form:

r2ry,

02

(Voth)? + ‘Z—v’dev < o0. (3.107)

Figure 3.4: Penrose diagram of a development.

We now define what we mean by an extension of a development. Let (M;, g;,1;), be develop-
ments with associated null ray diffeomorphisms @; mapping No, — N for i = 1,2. We say
that (M1, g1,%1) is an extension of (Ma, go,19) if there exists an isometric embedding ¢ of
(My, g2) into (M, g1) which maps 1y to 11, and o7 " o @ oy is the identity map on N .

This definition makes the set of developments into a partially ordered set. The maximal de-
velopment is the maximal element. We remark at the stage that while we are invoking Zorn’s

lemma the work of [Sbil6] means this is likely unnecessary.
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We now prove lemma 3.4.5:

Proof. Let (M, g,1) be a development with N' = (ug, u;]. Let Ng be the initial null ray as
in definition 3.4.9. We thus may apply a change of u coordinate so that Nlg may be identified
with (ug, ug + €) of N'. In this coordinate system we have 7, = 7, Vi = @_uﬂ etc on Ng. As
7 is a C' boundary we can find a function f with f > 0 such that u = f(v), on Z, defining
V = f(v) we see that in the (u, V') coordinate system Z = u =V, and the boundary has been
straightened out. As this is a C! coordinate transform the invariant norms of v remain finite.
We thus have the metric is at least C°. Hence the variables (7, w5, 1) of the development satisfy
(3.21) - (3.23) in the coordinates used in the proof of theorem 3.4.1. Furthermore they have the
same regularity and satisfy the same weak formulations of the theorem as these are invariant
under a change of double null coordinates. By the uniqueness property of solutions to theorem

3.4.1 the solutions must agree in the intersection of their domain of definitions, notably in a
neighbourhood of N NZ. O

3.5 EXTENSION PRINCIPLES

We now wish to control aspects of the maximal development’s geometry, in particular how

singularities may form. For this we prove two extension principles for the space time.

3.5.1 INTERIOR EXTENSION PRINCIPLE

Theorem 3.5.1. Let (Q" x T2, g,%) denote the mazimal 2T extension of an asymptotically
AdS initial data set for the system (3.8)-(3.12). Suppose p = (U,V) € QF. If the set

D=[U U x [V ,VI\{p} CQ", (3.108)
18 non-empty, has finite spacetime volume, and there exist constants
O<ro<r<R<oo, forall(uv)eD, (3.109)
then p € QF.

Proof. The proof of this is similar to [Kom13] and [HS12]. The key difference is that we are
working with a slightly lower level of regularity. In particular the function 1, is in L? but may
not also be in C°. This means that standard contraction map argument cannot be done in
just C* spaces. The extension principle then follows in the same manner but exploiting the

absolute continuity of ¢). The proofs for this can be found as an appendix to this thesis.
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Corollary 3.5.1. For a free data set that contains a (marginally) trapped surface (that is a
point on N such that 7, < 0), the quotient of the mazimal development of the initial data set

contains a subset as shown in the Penrose diagram:

Here uy is the boundary of u-constant null rays on which ¥ — 0 on. Furthermore this set is
belongs to Q.

]

Proof. The local wellposedness gives us a solution in a small triangle where 7 — 0 along a
constant u ray. Now the initial data contains points where r, < 0. From the Raychaudhuri
equation (3.9) we see that this inequality propagates in v, hence there are points in the spacetime
that cannot reach Z. As we have a solution in a small triangle in which 7 — 0 along any
u = const ray, there exists some ug such that for u < wuy, 7 /4 0 along these rays. Finally
we can see that that the ray u = uy is regular, as r is monotonic, the extension principle (for

finite v) forbids singularities along it. m

3.5.2 EXTENSION PRINCIPLE NEAR INFINITY

Theorem 3.5.2. For a 20 solution to (3.5)-(3.12) in a triangular region Ag,,, assume that

we have:

o The corner condition
lim 7(up+d,v)=0. (3.110)

v—ug+d

e For any constant v-ray (N (v)) contained Ay, and intersecting I, there exists a constant
K >0

u 4
/ (Vut)2(, ) = r? (@, v)dii+ sup
ur ~Tu N (v)

5
- Vot r%*“zli‘—l—sup ]w—M\%<K.
N(v)

_T'U,

+sup
N(v)

(3.111)
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These are all geometric quantities which will be used to form an initial data set on the

ray (N'(v)).
e A non-degeneracy condition

1 2w

min ( inf R

d,uq

o There exists a constant Ty, > 0 such that in Ag,,

r 2 Tmin-

Then there exists a 6* > 0 such that the solution can be extended to the set Agis uy-

Proof. We proceed with the following three lemmas.

Lemma 3.5.1. In A4, we have the following estimates

=0, and lim 7(u,v) = 0.
u—v

1
Fu,0) > 0,7y (w,0) > 0, lim |7, — o5

Proof. Recall from the boundary conditions

lim 7(u,v) = 0,
uU—v
We now prove estimates for the quantity 7.

Using the wave equation for the radial component (3.10) (rewritten in terms of Q%)

Tw =

— 37T iQQ 27T_a¢2Q2

r 42 ¢ 2 gy

we may express this as the first order equation

avfu = 7:u : f(ua U)?"U,

6w 3r _dr 6w [ 4 87a edrgv?
f(u;v> = (T_2+l_2 (1—6 4 g1f12> "‘7 <€ dmgy? —]_> —Z—QTwz) 2 om

For fixed u, integrating (3.116) in v from v = vy, we see

R 1 r(v)
Fu = 575 €XD ( . f(u,v)dr) :

We now wish to show that f is integrable. Elementary estimation and noting that

_ 2 _
‘1 _ pimgy ’ < Ciyr B+2
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(3.113)

(3.114)

(3.115)

(3.116)

(3.117)

(3.118)

(3.119)

(3.120)



shows

15 2w| (\6M7~—2\ T [Cugr ] + [Caragr*+2] +

Due to the given inequality

we see that
|f] < Cargr 2"

We thus have a constant Cs; 4 such that

1 r@) . 1
3z &P ( Chig /T(UO) r 4+2”dr> <7y < 3z &P (CMZ

which integrates to

1

IE exp (—CM,z,g (7’*3+2n _ 773+2/ﬁ)) <F <t

(T*3+2H

QW(_G) KT,—2+2n

l2

From here we can clearly see (from continuity) that as u — v, we have

1
Mm T = 5| =0
So we can find a constant such that
0< —C” <7, < LC"
202 R—E

We may also integrate the above inequality in u to see that

#(u,v) > 7(u) > 0.

Lemma 3.5.2. In Ag,, we have the following estimates

1111211) Tuu(u, v) = 0.

)

_ r73+2n> ) _

(3.121)

(3.122)

(3.123)

(3.124)

(3.125)

(3.126)

(3.127)

(3.128)

(3.129)

The idea s to integrate the quantity Ty, in v, this however requires control over more asymp-

totics of the solution, and its derivatives in the region Ag,, .

showing the required decay.

Proof. FEstimates for r,:

It follows from

fu’I + 7:11|I = Oa
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that
1

2_12.

Returning to the evolution equation for 7, (3.10) (rewritten in terms of Q?)

_7:’[)|Z:

—3r, 302 2ma 20
r 412 r 2 r 7

fuv =
we are in the similar situation of the previous lemma
OuTy = Ty - f(u,v)ry,

where

6 3 2 6 5 8 47791/)2
e e R A () I e

72

Integrating in along u for fixed v, and using the estimates on the value at Z

1 </oo ~ 1 oo
— —exp f(u, v)dr) <7y < ———exp </ f(u, v)dr) :
24 () 24 )

|f] < Cappgr 25,

Recalling that

we deduce the bound
— Oy <7y < —Cryyg-

Estimates for QZ:
Recall that

02 —4r, T pAmgu?
r? _ 2w ’
12 r

so using our previous estimates we can quickly see for some constants C,C>0
Cr? < 0% < Cr?

Estimates for ws:

First note
e = we—47rg¢2 + (1 _ 47Tg¢2 o e—47rg¢2) -

and that
1— 47rg1/12 _ p—imgy? < —47r292¢4 +0 (,r,—9+6n) < CgKQT_6+4H‘

So we easily see

|| < Cym-

Estimates for 0,ws:
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(3.132)

(3.133)

(3.135)

(3.136)

(3.137)

(3.138)

(3.139)

(3.140)

(3.141)

(3.142)



Recalling the equation (3.25)

302
5 _ _g 27"_7)@ 2 _ g 9 r_g 2 @ — 4? 2<w2+27r.912¢>
wWo = —OTT QQ( ) g\ w2 + 27y le UVt mYTug ’

r
(3.143)
we can now estimate all these quantities pointwise to deduce
|0uma| < Chrgr. (3.144)
Estimates for T,,:
Rewriting 7, equation (3.22) as
~ A 2 3 1 3 —4r 2 3
Tuv = ’WQ2€ dmgy @ - mﬂz (16 Amgy” _ Z + 27Ta¢2> 3 (3145)
estimating the bracketed term
3 —4mgyp? 3 2 2 12 —6+4k —3+42k
1€ 1 + 2rayt| = ‘Wg Ve + O (r )| < Cyr , (3.146)
so from here we can conclude that
Fuo| < Crgar 212 3.147
7g7
Estimates for wy:
We now prove that
- M
'wer‘ < Oty (3.148)

(The motivation for the 7~2* term is to ensure a finiteness of this quantity as we approach Z.)

We recall the estimates

M-K<w<M+K, (3.149)
and note
— O3 < — et <, (3.150)
Then we expand
wl—M 1 —drau? —drau? p3T2k
TT:TTH<WG4Q¢ —M>—|-<1—€4gw) o2 (3151)
estimating we see
@ —M < M <6—4ﬂgw2 _ 1) + £€—4ﬂgw2 < Chpo (3.152)
r2K — 2k r26 — g
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In the other direction

w1 — M 1 _dra?
TT—@((M—K)e o —M) —Cig
M (o2 K o
zﬁ(e 4” _1)_,E€ = Cig
M —3+2kK K
Zﬁ'cg’l“ + _EOK_CZ’Q
Z _CM,g,la
thus concluding the proof.
Estimates for T,,:
Recalling
_r? 2wy
Ml - l2 r 9

We easily see from (3.112) and estimates for w; it follows that
C?“2 S M1 S Cl,M,g (7"2 -+ 7"2,{71) S Cl’Mg?”z.

We will prefer the form

~ 1
C’l,Mng_Q < = <er?
H1

We will also need to bound |9,1|. We start with

|auwl| = )

TS 2
au Wy — 27Tgl—2¢

preserving only the powers of r terms we get

(3.153)

(3.154)

(3.155)

(3.156)

(3.157)

3 ~
Ou (zDQ — 2wg%¢2) ~ Oywg + 121 0 + 13UV + rPrgap? ~ e T 2 e (3 158)

so the dominant behaviour is 727" and thus
\auwﬂ S CM’1797’2+H.

We then deduce the following bound for |0, ]|

2rr, 2wy, 2o

‘8%“1‘ = — —+ S CMJ,g (7“3 + 7"1+"i + T'72+25) S CM,l,grg-

[2 r 72

We now need to study 7., it will be worthwhile recalling the relation

02 47,7,

2 72y
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Then we compute

- 0? -9 g’ 2
Tuou :au <7"_2 (3@27” — W ))

_4~u ~v 2
e re)
= i (3.162)
. A4r, g*m 9 —ATyTue ATy Tl 4 g*m 9
:—’f’uuu 3@2——’¢J + -+ - 3@2——@/J

I 1 pi s

— 47, 7, 1 37,
<3w2,u + Qw?ﬂuf—?) - —¢2) .

7’14

We thus have a first order equation of the form

Oy (Fuu) + Fyy = G, (3.163)
where 4 ,
_ T gm 9
and
_4~u~uv 4~u~v U 2 _4~u~v 1 3~u
G:( Tul’ + TT2M17)(3?D2_% 2)+ Tul (3w2,u+2¢¢u73_~_2 2)7
M1 25 731 %51 T T
(3.165)
with initial data
Fuy =0 (3.166)

We solve for

Tuu(U, V) = €xp (—/ de) / exp (/ de) Gdv, (3.167)
|Twu| < exp (/ |F|dv) / exp (/ |F|dv) |G| dv. (3.168)

Term by term we estimate

and estimate by

47, 2
|F| = il (3w2 — 5’3—12 2> < Chpggr 212, (3.169)
S0 v v T
/ |F|dv < Chray / r 22 dy = / r 2 dr < Chy g (3.170)
Vo V0 To

So the asymptotics of G will determine those of 7,,. We examine the terms of G separately

_4~u~uv 4~u~v u 1-1- 3
( Tl n T 7“2M1, ) < Cuiig (7"2 22 _47’) < Cragr ™, (3.171)
1 M r
then we have ,
gm K K
(3w2 - WW) < Cug (14 777) < Copyer®, (3.172)
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so we have for the first term

_4Fu7zuv 4fu7:v,u1,u 2 —142k
( T ) (3 2_Tl2w> o
Then for

—4T T 2T —47 T Tu 2ru
m (Mw——w?)— m (wvmﬁzw?g - w2)

CMI
— g (r—2+m,’ﬂ3 +r 3+2n 2
r2
—142k
S CM,l,gT )

r 4 3y 3+2“)

thus
|G| S CM,l,gT_H_m{-

Finally we see

v v v
/ |G|dv§/ C’MJ,gT_HQ”dv < OM,l,g/ P32 du
V0

vo vo

S CM,l,g (T,72+2H . —72+2H) < C 2+2/{.

Proving

lim |7y, = 0.
uU—v

Furthermore, we can find a constant such that

|fuu| S C’M,l,g-

Lemma 3.5.3. There exists a constant Cyy > 0 such that

|
2 1 <C,u
7 2p’ 9.M1

(3.173)

(3.174)

(3.175)

(3.176)

(3.177)

(3.178)

(3.179)

Proof. We split the proof into two parts. The first part is to provide estimates on the radial

function and its 7T derivative. These are then used to estimate a solution to a differential

equation.
Estimates for r:
Recalling that 7|7 = 7(u,u) = 7(v,v) =0,

7(u,v) = / rudu < Cy(u —v) = Cp,

and similarly

7(u,v) = / rudu > Ci(u —v) = Cip.
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Thus

FEstimates for T'(7):
Noting that
T 0) =0+ [ o+ P (3.183)
we deduce "
’T(f)‘ S / ’fuu’ —+ ’ﬁuu‘ du S CMJ’g(u - ’U) = CM,l,gp S CMJ’gf. (3184)
Now consider the following equation
. L. L. . -
&, (p?"u — 57’) = —iT(r) + 0 Tuw, (3185)

not that the bracketed term on the LHS is 0 on the boundary Z. Integrating

u 1 u
/ Oy (pfu - 577) dv < / C - pdv < Cp?, (3.186)

we thus conclude that

=
v 2 <c? (3.187)
2p r
Similarly
b (3.188)
roo2p T T '
Finally from (3.182)
T
_~lcc (3.189)
T 2p
O

Corollary 3.5.2. We have that there exists a constant Cy g > 0 such that

() ) o < (90) ) o < o ((90) 4 02) 072 (00

Cynm

That is twisting with v and p are equivalent in H* type norms.

We now have the relevant estimates to prove the theorem:

Proof of the Theorem 3.5.2.  From the interior wellposedness results we can extend to the
set A5, N < uo+d+ 0 — €}, for some 0 > 0, which depends on € from the continuity.
We now extend to a triangle Agys+,,. We note that from the previous lemmas we have on
each v = const ray in Ay, that the function 7 restricted to this space is admissible as part
of an initial data set. Lemma 3.5.1, and corollary 3.5.2 show us that 1 restricted to the ray
is also admissible as part of an initial data set. Now let § be the time of existence of a so-

lution using this data set, but with K replaced by 2K and ¢ by 5. Now by choosing the ray
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Ve = Ug+d — g. By the above argument (and using continuity), we can extend our solution to

the ray (ug +d — § +6*] x {ug + d — £} for some 6* < $ such that the conditions (3.111), and

(3.112) hold on (ug +d — § + 6*] x {ug + d — §} with K replaced by 2K and ¢ by £. We then
apply the local existence result to extend the solution to Agys« 4,- ]

3.6 PERTURBED TOROIDAL ADS SCHWARZSCHILD DATA AND MAXIMAL DEVELOPMENT

In view of Birkhoff’s theorem we know that if we choose ¢V = 0, then we will solve for an
isometric subset of the TAdSS solution. We thus choose initial data for ¢ that is quantifiably
close to 0 and considered to be small. Under this smallness assumption we will then prove
various estimates about the derived quantities on the initial data ray that we will need in the

evolution.

3.6.1 INITIAL DATA
THE FREE DATA

Let b > 0, we will later take this to be a sufficiently small quantity.

Definition 3.6.1. Let N = (ug, u1] x {vo}. We define our initial radial function

U — Ug

() = —5 (3.191)
The free data consists of a C* (N') function + such that
N S e
(Wdﬂ) + 9 ) Pdu +Sup‘¢r2 +sup |rath (vuwﬂ — 5, (3.192)
N N N

where 0 < s < 1. (The choice of s is technical and we only expect to see rz decay of the u
derivative propagating in the system, we do however need this initial smallness in the problem

in order to prove various results about the spacetime).
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DEDUCED QUANTITIES

From v and 7, we can define the following derived quantities for our system:

Initial Hawking mass:
We define @ as the unique C'(A\) solution to

272 (T2 28\ = —. 47T, —
0.7 =— (T———“) (Vif) + =m0

- 2 = —

= 72 . ., 3 L, 3 (3.193)
+ 2 (" (dmar)” — =) +27(3g — 2a)0" + = |,
[? 2 2
with boundary condition
lim @ = M. (3.194)
u—uQ
From this we then define
L, 3 _ .
= = 56—47@]1#2 o ;n_p <6—47T97/12 + 47-‘-977/]2 — ]_) , (3195)

(recall we need to define T, to solve the system but we’d like T to have certain properties).
The quantity 7,:

Recall equation (3.8) holds classically. Defining the variable

Q2
we can rewrite (3.8) as
47r 2
Oy log x = (V). (3.197)
T’LL
Solving this ODE and using the definition of the Hawking mass, one gets the following expres-
sion for r,
—2w T\ grgu? Y Amr 9
Ty = X|I . — 4+ —]e g exp _(Vuw) du ) (3198)
r [? w Tu
we will later on make a gauge choice where x|z = % We choose
1 /(=2 7\ L3 AT, —
_— TGy 2
T =5 ( = + l_z) e exp (/uo = (Vu) du) : (3.199)

we remark that while we have not used a twisted derivative in the definition of 7,, the initial
data choices allow us to see that is indeed an integrable quantity. It is also easy to see that 7,

is independent of choice of u-coordinate on the data.
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The quantity Q%

We finally define the C''(N') quantity

3.6.2 CONSEQUENCES OF THE SMALLNESS

Defining the regular and marginally trapped region of the initial data ray to be
Ry U Ay =N N{ueN :7(u) >0} U{ueN :7(u) =0}.

Lemma 3.6.1. We have that for b > 0 sufficiently small, on £, U Ay,

sup [ — M| < Cuyl?,
UER vy UA,

so for small inital data @ s positive.
For the toroidal AdS Schwarzschild value

we have

—_— —5 2
sup |7 —7%°| < Cramb”.
UE R vy UAvy

For small enough initial data there exists points on N such that
T, < 0.
Furthermore there is a unique u* € N such that
o(u”) = 0.

Defining 7y := T(u*) we have
|Tmin - T+| S C(b)a

where C(b) = 0 as b— 0. Where o := (2MI%)3.

(3.200)

(3.201)

(3.202)

(3.203)

(3.204)

(3.205)

(3.206)

(3.207)

Proof. We will perform a bootstrap argument along A. Define a bootstrap region to be

By i= %y U Ay 0 {12 5}

(3.208)

Clearly this set is closed, non empty, and connected. We need to show it’s open to complete

the bootstrap argument.
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We define 5 3
— —2 — —
f (J) _ (e“w (4m¢2 - 5) +21(3g — 2a)9" + §> . (3.209)
The equation for @ (3.193) is thus
=2

0,5 = 2 (l - 25) Ty + T T )

Tu 2
-2

_ w( AnT (T ) 47Tg7‘u ) +2l7;7“u (Tu¢> TuT f(¢2) 3.210)

h
=Twh — 47rr< u>2—{—

Solving this equation

ww — M exp (/ hdu>
uo

(3.211)
We estimate h by
ATT (= —\? 47Tg?u—2
= (-2 (%3 + 2 w)
ATr (= —\? 47w
= —Tu|-= ( uz/z) 95
_ - Anr (T E)Q 47rg
N (3.212)
167l% /= —\2 4
=Ty |— _7r ( ulp) Wg
— 1671° a2k =3k 2
= ~Tu |~ 7irs ( iV @/}) + 4dmgr (r ¢>
< Clgb2 ( —4+s +F74+2n) (_Tu)
We see that in B,,
u b2
/ |h| du < Cpg—. (3.213)
uo T4
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As |h| = h, we have

w— M >% — M exp </ hdu)

= exp (/ hdu) / Oy, (ﬁexp (/ hdu)) du

=exp (/ hdu) (/ — AT S( 35V E) exp( / hdu)
uQ uo uo

T, — u
+ 2 f(z/JQ) exp (— /uo hdu) du)

" " 512 b TuT? |, —2 "

> exp hdu — 477 ~*bh” exp C’lg o + B f@W)exp|— [ hdu)du.

(3.214)

(Note 7' ~*du ~ 7~'7*dr hence the need for our initial data to have the additional s smallness).

Continuing the estimation

o u u L aio b2 FUFQ _9 u
W — M >exp hdu — 477 b exp Cl,g— +—f(@ )exp| — [ hdu|du
uQ # uQ b2 Ty l uQ
> — 4mexp </ hdu) b% exp <C’lg ) / o du
uQ Ty

uo
U U = =2 u
+ exp (/ hdu) / 7“7;“ f(¢2) exp (—/ hdu) du
uo ug uo
u b2 T
= — 8nl%exp (/ hdu) b% exp (Cl7g—> / T
() Ty 0o
u YT T, — "
+ exp </ hdu) / 2 f(")exp (—/ hdu) du
uo uo uo

2 _s u U= =2 . U
> — C)4exp (C’lg b ) <7+> b% + exp (/ hdu) / 7”7;“ f(v,bz) exp (—/ hdu) du.
-‘r uo (%) uo

(3.215)

For b? small
f(@°) < 8ragi’, (3.216)
SO
u YT T —2 B v T
exp hdu —5—f( ) exp | — hdu | du > —C,; exp C’lg r dr
uo uo l uo b—;— o)
> —Cyexp (Chg_) bl A,
r+

(3.217)

And thus

b? b?
w—M > —Cygexp (Cl,gr_> T—T—SbQ — Cguexp (Cl,gr_> bl 3+4N > =0’ f(b), (3.218)
+ +
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where f(b) goes to a positive constant as b — 0.

Estimating the other direction

0, < hto, (3.219)
we quickly see
ﬁ—MSM(exp(/ hdu) —1)
uQ b2
<M (exp (Clyg—) - 1) (3.220)
T+
< Grtiagn
T+
We conclude that
= — M| < FO), (3.221)

where f(b) - C > 0as b— 0.
We now show the second statement (3.204). Recall that

1(-2m 7 _ w82,
Fo= = —= 4+ ) exp (4mgd” + / T (Vu¥)2du ) | (3.222)
2 r [ w T
SO
o /2= 7 — v =8rl* _ —, 1 /—2M 72
To —To'| = ’5 (—r + l—z) exp (4#91/1 +/u0 = (V1)) du> —3 (—r + Z_Q)‘
112 -2 T2 — v _8rl?2
=5z (M —7) + ( i T—2> (exp (47rgw2 —i—/ = (Vuw)zdu) — 1)’
T T [ w T
1 2T T2 — v —8ml? —
< —|lw- M|+ = T—2 (exp (4ﬂg¢2 + / i (Vu@/))Qdu) - 1) '
T T l w T
a 2 T2 — R l—
< Cia b ’ w4 7‘_2 (exp (47rgw2 +/ 8_7T (Vuw)Zdu> - 1> ‘ .
r r l w T
(3.223)
Noting the estimate
V0| < O b, (3.224)
we quickly can see that for b < 1
—2 " —8rl? 2 2342k
exp | dmgy” + = (Vy)odu | —1 )| < Cyib°F : (3.225)
ug
From here it follows that
CiMa
7 — 7| < b2 ( lf’ + Ogﬁ—1+2“> . (3.226)
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Restricting to x € (0, %] we can find a constant Cyy;, > 0, such that
7o — 7% < Chrugh? (3.227)

proving (3.204).
For statements (3.205) and (3.206), define ut by 7(u™) = r.. Now in our coordinate system

we have P
. T

showing that 7,* is monotone on N. For € > 0 consider & = u" + € so
7" (1) <0, (3.229)
coupled with the estimate
755 (1) — Ob® < 7p() < Cb? + 7% (), (3.230)

implies for small initial data there is a point on N where 7, < 0. Clearly we can repeat this
argument and find a b* and u value say u,, where 7, (u,,) > 0.
From continuity we know that there exists at least one value of u € [u,,, @] such that 7, (u) = 0.

Viewing the radial equation in terms of w

P27 2\ T g7 | 2Ta s
()= (2% (3 - e“WQ) + F—fe‘“wg) + %QW <0, (3.231)

for small b. We have 7, is monotonic, and this zero is unique. Let u* denote this value, and

denote it’s 7 value by r,,;,. Recalling the definition of 7, we see that for this value of u the

relationship
Tin = 25T (u”). (3.232)
So
|72 — 1| =20 [@(u*) — M| < CH*. (3.233)
This implies the inequality
Pain > (1} — Cb?)?, (3.234)
and we deduce that
T'min 2 ry — O(b); (3235)

where C'(b) — 0 as b — 0. From here we see that for b chosen small enough, the inequality in
B,
r+
T > Tpin > 10 — C(b) > o (3.236)

holds. Hence B,, is open and

Ry U Ay, {r > %} = By U Asy. (3.237)
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MAXIMAL DEVELOPMENT AND SET UP

We let Q@ C R? denote the quotient by T2, of the maximal development from perturbed TAdSS
data. From the geometric uniqueness statement we know that this is unique up to diffeomor-
phism.

We then denote the regular region Z = {(u,v) € Q : r,(u,v) > 0}, and let N(u) C Q denote

the outgoing characteristic null-line u = const emanating from the initial data.

Lemma 3.6.2. In the maximal development we have the following properties

o The set
{u>ug: N(u) CZ and 7 — 0 along N(u)} # 0. (3.238)
o for
uy = sup{u: N(u) C Z and 7 — 0 along N(u)}, (3.239)
u>ug
and
Ry = RN {ug <u<uy}, and Ry :=RyUN(uy), (3.240)
we have that
supv = sup v. (3.241)
K N(un)

e Define ‘null infinity’ T = {(u, voo(u))|ug < u < uz}, where vo(u) is the value of v such

that: lim,_,, . 7(u,v) = 0. Which we can reparametrise by {uz(v),v|v € Q}, where

(u)
uz(v) is the u coordinate of the past limit point where the v = const ray intersects T.
Then there ezists a double null system (u,v) covering %y, such that

1 - 1
Xz=3, 7u=g5 (3.242)

Proof. From continuity the data set contains a point where r, < 0, then we simply apply
corollary 3.5.1. As N(uy) is regular (3.241) follows from the fact that a first singularity cannot

form along it. Letting
= h(u), 0=gv), (3.243)

we see that under these transforms we have that

N X
= == 3.244
X _47"11 g/7 ( )
and
— 7y = o (3.245)
So choosing
QZ
g () = 5 (v,v) = 2x(v,v), (3.246)



and

f'(u) = _2:22” (u, v0), (3.247)
we then have that at 7
X = 1, (3.248)
2
and on the initial data ray v = vy ,
r
—Ta = o (3.249)

We then switch to these coordinates and drop the hats.
In these coordinates null infinity is no longer a straight line and the future limit point of the
ray u = ug is not included as a part of null infinity, as it is a priori possible for 7 — 0 along

this ray. We will, as part of the proof of orbital stability, show this not to be the case. m

Figure 3.5: Depiction of (a subset of) the Penrose diagram

Lemma 3.6.3. In %+ we have that
T 2 Tmins (3250)

Proof. We can write

r(u,v) =7(u) + /U 7o (u, 0)d0, (3.251)

vo
as we are in the regular region we know the integral is positive (r, > 0), and lower bounds on
the initial data (T > 7, > 0) prove the result. n

Lemma 3.6.4. We have in QF that
ry < 0. (3.252)

Proof. Integrating equation (3.8) from Z yields the inequality

TU
R
2_

: (3.253)

N | —

the result follows. O



Curves of constant ry and ry

We define rx to be the solution to

oM 12
-4 Xy,
rx l2
where d > 0 has been chosen small enough so that
log ~X <
0 —_—
& Tmin  2]al
This may be chosen from the continuity of r.
Now we define ry to be the solution to
2M i
- ? + l_2 = C,

with ¢ < d. So ry < rx. Our Penrose diagram looks like:

Figure 3.6: Penrose diagram of spacetime depicting » = const curves.
Geometric norms

e The H! norm

02 r

(3.254)

(3.255)

(3.256)

1612y (u,0) = / T gy 4+ T g2 / v—%(vvw)2+%¢2d@. (3.257)

ur

vo

This is the standard degenerate energy norm one expects to see from exploiting the

Kodama vector field 7 of the system (in context of the energy momentum tensor of

the field). It is however not finite for our boundary conditions but will be useful when

considering regions of bounded 7.
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e The H norm

U .2 - v 2 5
18] 3 (u,0) = / Ty ) + ST y2ag 4 / —TQZ“(va)er%“wzd@. (3.258)

This norm naturally arises from considering the renormalised Hawking mass as an energy
potential. It suffers from degeneration on the first order terms at the apparent horizon
(where 7, = 0), and a sub optimal weight on the zeroth order terms. This norm will be

the basis of our estimates.

e The Hi norm

2 vt e o, (=) 5o e o T o

|3 (u,v) = (Vo) + —==du + ——5 (Vo)™ + —1*dv.  (3.259)
= ur ~Tu r Vo Q r

After the redshift estimates we will be able to show control of this norm on the spacetime.

It does not suffer degeneration at the apparent horizon. In fact it actually offers more

control on for the weights of the zeroth order term but this is only clear after exploiting

a Hardy type inequality.

e The H' norm

U 4

19112 (u,0) = / T (V)? — raPda + / T+ e, (3.260

r " Tu Vo

After a Hardy inequality we will be able to see this is equivalent to the H} norm. We will

however find this form more useful.

e The L? norm

||¢||zz (u,v) = /u —r pdu + /U :—U¢2d@. (3.261)

Uz Vo

e For convenience we also define the flux quantity
F(u,v) = [[9/[g1 (u,0) + ||l (u, vo). (3.262)

It is worth noting that these norms are all independent of change of double null coordinates

and are thus geometric in their nature.

Boundary conditions

In the maximal development with enough regularity the Dirichlet boundary conditions are
FatRh =0, on Z, (3.263)
and the Neumann boundary conditions are

TRy =0, on 7. (3.264)
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Furthermore we may also deduce

Lemma 3.6.5.
wlr = M. (3.265)

Proof. This is the same argument as in lemma 3.4.4. We see that 7T is transverse to r =
const > 0 surfaces and integrate the curl of w over a triangular domain with boundary {7 =

const} U {u = const} U {v = const}. The boundary contribution on {7 = const} is given by
Tw = 8w ™V PRy T . (3.266)

which is the term that vanishes in the energy estimates for ¥. So we take the limit 7 — 0 to
deduce the result. O

3.7 ORBITAL STABILITY AND COMPLETENESS OF NULL INFINITY

The goal of this section is to prove the two key theorems:

Theorem 3.7.1. (Orbital Stability: Basic Estimates)
In %y, for k < %, for b > 0 sufficiently small, such that we have the following estimates

5

LV (u,v)

u

5
,),,*2*.‘4
+

Yo (u,v)| +

r%_”@b(u,v)‘

w\)) |

(3.267)

12x(u, v) = 1|2 + |w(u,v) — M|? +

u

Vat

_l_

I(vo) —Ty

rs
+ U]l (w,v) < Ciare <||¢HH1 (up, vo) + sup (‘

Where b was defined in (3.6.1).

Theorem 3.7.2. (Completeness of Null Infinity)
Let
Um = sup{v|(uy,v) € Q}. (3.268)

V>0

Then it is the case that v,, = 00.

We will use a bootstrap argument to establish these results. The core idea is to bootstrap on
the size of the field .

3.7.1 DBASIC ESTIMATES
THE BOOTSTRAP
Let 4 € [ug, uy] we then define the region
B(@) = Ry N {ug < u < a}. (3.269)
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We will bootstrap on the condition

r%*“¢4 <b. (3.270)
So we let
3
Upaz := SUP {u EX : ri_“w‘ < b} , (3.271)
the bootstrap region is then defined as
B = B(tmaes) C Ry (3.272)

We aim to prove that B = %4 = B(UH) It is clear that B is open, connected, and non empty.
Hence we aim to show that B is a closed subset of %#3;. For this we assume that ,,,, < uy is
fixed, and that in B we can improve the bound (3.270) (it trivially holds at u = wug as this is
an initial data point).

THE RENORMALISED HAWKING MASS

Definition 3.7.1. Recall that we defined the final renormalised Hawking mass as

2ruTol yoou2  TO
WZT?%M¢+ﬁu (3.273)

The final renormalised Hawking mass provides a potential for the H' geometric energy, and
for small enough v it satisfies monotonicity properties. Coupled with a redshift estimate this
leads to an energy estimate for ). From here Sobolev embeddings can be used to recover the
bootstrap assumption.

Monotonicity and boundedness for small 1)

In order to get a sign for the derivatives of @ we need to see that the function f(¢?) is indeed

positive in the region B. Plotting the curve shows the following global behaviour.

v%)

Figure 3.7: Plot of f(¢?).

We now seek to quantify the local positive behaviour in B with the following lemma.
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Lemma 3.7.1 (Bounds for f(¢)?)).

For
F0?) = €m0 g — ;emw? — omghy? + g (3.274)
we have that in B
f@?) >0, (3.275)
and
f(?) < 8n?agy*. (3.276)
Proof. Define
f(z) = "™ 4raz — ;647@190 —org*r + g, (3.277)

and consider its values for z > 0. As f(0) = 0, we proceed to study the functions behaviour
near this point.
We compute

f'(z) = 167 gaze* ™ + 2rg*e'™* — 27g?, (3.278)

so f'(0) = 0. Further computation shows

f"(z) = 1672¢* (4max + k) ™7, (3.279)
which remains positive for z < 2 = %ﬁ

We thus have the following differential inequality that for x € [0 iL}

f(x) =0, f(0)=f"(0)=0. (3.280)

Solving this differential inequality yields the first result.
For the second result consider
g(x) == f(x) — 87aga?, (3.281)

again we see that g(0) = 0. Compute
¢'(z) = 167°gaz ('™ — 1) + 2mg® (e — 1) <0, (3.282)

solving this differential inequality yields that

f(z) < 8n%aga?, (3.283)

for non-negative x. m
Corollary 3.7.1. In B we have

w(u,v) < w(ur,v) = M. (3.284)
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Proof. Estimating the 0,w from (3.7.1) we have

A g®r,
O, < g

wi)?.

A Gronwall estimate then implies

w(u,v) < w(uz,v)exp (/ 47 g? deu> < w(ug,v) = M.

uz

Remark 3.7.1. We have in B

M
w(u,vy) :=wp =2 > M — C'Lgb2 > 5 > 0.

for b* small enough.

Proof. We use the smallness of b, and our initial data estimate (3.202).

Corollary 3.7.2. In B we have
M
2

0< <w

(3.285)

(3.286)

(3.287)

(3.288)

Proof. Identical to the proof of corollary 3.7.1, we estimate d, and use the lower bound for

wo.

Corollary 3.7.3. In B we have

B, > 81y ar,r? o 87r? rv< T.0)? + 47rg Ty A9 p 2,
4 2
0, < 87 ‘”;;r W — 87}2 D (Vo) + L a2,

Proof. This follows immediately from the lemmas 3.4.3, 3.7.1 and corollary 3.7.1.

Corollary 3.7.4. In B we have that

87rr T
Oy < — Y

(Vut)’e

47rg Tw
—My* <0,
T My

8mr? ru 47rg Ty

—L My > 0.

(Voth)® +

Opyto > —

Proof. This follows immediately from the lemmas 3.4.3, 3.7.1 and corollary 3.7.2.

Corollary 3.7.5. We have in B

o = M| < Caa (119135 (w0) +8)
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Proof. The bound from above follows trivially from corollary 3.7.4, from below we integrate
Oyw and use estimate (3.289)

v 8mrir, - 47 g®r, ryr?
@ M= - wluz,) = [ T @ T gyt 4 B
uz
u 8 2 . 2 2 » u 8 2
> [ IO+ T g [t
ur Q r uy L
— Camr “1,/)”2&(11 (u,v) — Caylb‘l/ ror Ty
uz
> ~Caara (11113 () +5°)
(3.294)
O
w; estimates:
Lemma 3.7.2. We have, in B,
- M
'wlr% ‘ < Chygab? (3.295)
Proof. Expanding
w1 - M o 1 _47rg¢2 M _47rg,¢2 T3_2H
L L
and applying the estimates
M — Chgib® < w < M, (3.297)
and (for small b)
8mgy? < 1— e 4" < Argy? < 0. (3.298)
We get
w1 ; M S g <6—47rg1p2 o 1)
r K r K
M
< S Sm(—g)r (3.299)
r K

< 8tM(—g)r 3 b* < C’M7gb2.

min
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In the other direction

w, — M 1 — 87 gri—2r)?
2 2 ((M — Caggab?)e™ %" — M) T op
> % <6_4ﬂ_g,¢}2 . 1) . CMLg’le 6—471'9"1)2 + 87Tg7"3_2liw2
- r2n T.Zn 2[2
M 2y Cugah®  4mg, 3.300
Z m ' (_477'9’17@ ) - r2e 12 b ( )
Chr.gib? 4
> —Mangb*r—3 — Mol? o4 9 p2
r?n l2
> _CM,g,lb27
thus concluding the proof. m

Lemma 3.7.3. Let a+ 3 > 2k be non negative numbers, and D > 0, a positive constant. The

following estimate holds in B (for b small enough)

L Drf > D1+ e > Drf >0, (3.301)
T'Oé
where 0 < € < %r;gﬁ*“) — g ab®.
Proof.
w

M
—1 + DT’B Z DT’B —+ T_O‘ - CM,g,lb2T2H_a

ro
Mo Cargi?
> D,r,ﬂ (1 Tm’(ig-‘ra) _ YMyg,l 7,2){—(04-‘1-13))

) (3.302)
M _ Crrgib® o._
> DrP (1 + 5rmgi+a) — —Ml’g’l ri;n(a+ﬁ)>
> D(1+€)r® > Dr? > 0.
n

Remark 3.7.2. This result is purely technical, while we know that w > 0 we didn’t a prior:
have positivity for wy in %v. Estimates for wy are useful due to how the quantity algebraically
interacts with the system. It is often coupled with a term like Dr? which we will want to keep

m our estimates.

ESTIMATES FOR 1,

We now seek to control the growth of function r,.
Theorem 3.7.3. In the bootstrap region B, there exists a uniform constant C' = C(l,g) > 0
such that

1
67“2 < =7y (3.303)

We split the proof into three lemmas.
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Lemma 3.7.4. In the region BN {rpm < r < rx}, we have that there exists C = C([, X) >0

such that

2,42
ry Cre < —ry.

Proof. We restrict ourselves to the region 7,,;, <1 < rx, and consider (3.10),

rule  2Tar 3r

Ty = — + Q% — 02
r 2 v 412
It follows that
TUT’U
Tuv S - )
r
which we integrate and estimate
1. .
> =T TS > R (O ()
r — 2%rx

We extend to

We now study the set where r is unbounded.

(3.304)

(3.305)

(3.306)

(3.307)

(3.308)

Lemma 3.7.5 (Region Splitting). We have on the region BN{r > ry}, the following inequality

2

T 2M
— — = > Oy mr?.
[2 r ”

Proof. Let Cy,; = min(5, -%) and define
Y

SRR
=" -2y
[2 r VLMY
Then
f(ry)=d— Cy,yr3y >0,
and

1(r? 2M 1
f/(T) = - (l_2 + T) + 2r (2_l2 — CY,l,M) >0,

whence the result follows.

Lemma 3.7.6. We have in the region BN {r > ry} that

1

Cy.my

r? < —r, < COyar?

Proof. Using the wave equation for the radial function

N =37 T 3 0% 2may?Q?
Tuww = 10 T T35

r 412 r 2 r 7
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we may write this as

fuv = fu ' f(u7 U)T’U, (3315)
where
6w 3r Can 6w [ 4. 8ra eimov?
f(U,U> = (T_2 + l_2 (1 — € 4 g¢2> -+ ? <6 Amg? _ 1) — l_zer) 2 Dy (3.316)
2z T

We have that

1 7(v)

Tw = —= €xp flu,v)dr | . (3.317)
2[2 T‘(’UO)

We now wish to show that f is integrable. Elementary estimation, and noting that

‘1 _ 6*4”91/’2‘ < —8rgy?, (3.318)

for b? small, we see

1 -2 2477(_9)b2 —242k 2 —3+2k 2m(—a) —242k
\f|§—‘§_j_¥ <|6Mr ‘+‘—l2 r +|487r(—g)b7° |+ 5 br )
(3.319)
We now restrict to » > ry, here we have
|f| < Cy pr= 212 (3.320)

So there exists a constant Cy such that

1 (v) 1 (v)
—exp | —Cyur r e | <7, < —exp | Cy i r 2R | (3.321)
202 R . 217 " Jrwo)

Integrating gives

573 5D (Crar (7772 = F92)) < iy < oxp (O (P57 — 7 947)) L (3.322)

and we deduce the bound

1 _ 1 1ok
5z &P (—=Cyuryit?®) <7, < 3z &P (Cymrat ) (3.323)
From here the result follows. O

From these three lemmas the proof of theorem 3.7.3 follows.
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ENERGY ESTIMATES

Degenerate energy estimates from the Hawking mass:

Lemma 3.7.7. In B we have there exists a Cyary > 0, such that
ol (u,0) < Conrny <I|¢I|ﬂé (g, vo) + b4) . (3.324)

Proof. We start by noting

Uy u
/ —auw(a,vo)dﬂzf — 0z (u, vo)du

ur ur

=wl|r — w(u,v) + w(u,v) — w(u,v)

:/ —8uw(u,v)du+/ Oyw(u,v)do

vo

>/ 8712 rv( u?/f)Q 4 27rg2(—ru)Mw2da
uz r

02

QZ

v 2
>Cgm ( / TQZW W)+ i :“)de / TQQ (Voth)? +%¢2dv>.
(3.325)

v 8 2u~ 2 .
+/—WTT(VU¢)Q WierQd’
Vo

This gives us control of the H} norm from initial data, providing we can prove the LHS integral
is controlled by the H} norm. Recall

8mwr3r, A g°ry,

-
- uw< Q2 ( uw)Z 4mgy

— Myt — 87r agy?, (3.326)

l2

we see the first two terms form the H norm. We need to control the final term.

From the bootstrap assumption we form the bound
Pl < prp—iTn, (3.327)

using this in the integral

/ — 87 2 CLTu w4du < b4C / _4Ra (r73+4n) du
ur

_ b, [ b'Cy  —s+an (3.328)
3 — 4k uz 3— 4k
1
<C b < Cg,rmmb4

9;"min 3 4/4}

We conclude un
/ — By (i1, v0) i < Cagg 011 (e, ) + Cyb. (3.320)

ur

The result then follows. O]
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Energy estimates in {r > ry}

We now wish to improve our estimates to the H' norm and recover pointwise estimates. We

begin in the region away from the degenerative issues of r,. We will see that the standard

theory of Hardy and Sobolev estimates can be recovered with twisted derivatives.

Lemma 3.7.8 (Norm equivalence away from degeneration).
For BN {r > ry} we have that

Col[9 1z (u,0) < N9l (w,0) < Cuy |11l (u, 0).

Proof. Note that on the domain {r > ry} N B

[2 r

T‘QTU r? 205\ e4mgv? 9
02

’
—Ar,

estimating from either side

4 2 —dmgip? 2 2 4
r T 20\ e Y T 2M T T

C > <— — —) r? > (— — —) > Cry .
r

Lemma 3.7.9 (Hardy Inequality). We have in B

1

c, 1201173 (s 0) < [[9[p (u,v) < Cy [l (u,v).

(3.330)

(3.331)

(3.332)

(3.333)

Proof. Fix u; < ug < uz € B, and let x be a bump function with the following properties

0 U S Uy,
x(r(u)) =<1 u > ug,
Smooth and bounded by 1  otherwise.

Then

u vy, vy,
10001 = [ ralt =02 < s e [T < Gy [T
u2 uz

u2 (u2 7“) r

Looking at

s u1l gfn 2 T72+2n
el = [ (xort =) 0, (=5 ) du

ur

27 UL Uy 1 i
- [Q@RL * / TNV ) rde

< il ([ (Fuo)’ judu)% ,

uz
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we have

9 1 ur o, 2 T2
Y .
Il < s | (Futw) 2o
uy ~ 2 2 (3.337)
< Ci / K (Vath)? — + — (¥0ux)" du.
Studying the latter term
r’ 2 r? "2 2 2/ N2
—— 0ux)” = — (rx')” = = () (3.338)

note that due to regularity of y and compactness, there exists a C' > 0, such that

/ —r 1 p?r? (Opx)*du = / —r 1?1 (0,x)?du < C / _Trudzgdu. (3.339)

u2 ur

This then implies

1 ulr 7,2 U —r,
K (7% u uz
combining all the results
9 u ur 7,2 u —ry
1l]z2 = / —ryp?du < Cy (/ (V) —du +/ ¢2du> : (3.341)
B uz uz —Tu ur r
The result follows. O

Lemma 3.7.10 (Sobolev Inequality). We have in for 1 € H'(B) there exists Cypy > 0. such
that

1o ) < Conna (119112 (,0) + 10l g2 (e, 0) ) (3342

Proof. We begin by writing

=

W, v)du’) 5 ( / ) (o) v)du’) ’

AN
/O~
:\
N g

<
| =
3
g\ ~—
(Y]
\3»
—~
g\
\ =
QU
g\

V)
VRS
:\
N e

—~
=
L
[N~}
S}
S
e
N
=
=
QU
N
~_
(M)
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Now as

/u (=) (W', v)du’ = [ﬂ} " = i7"_2”””(u v) (3.344)
iy ’ —-3-29]. 2K T
we have
!r‘gw(u, v)| < |r_9¢(z,v)| + %r‘“(u,v} ||@Z)||ﬁ1 (u,v). (3.345)
Integrating z over the whole u ray
un un un
9 (u, v)/ dz < / (2, v) dz + Cr~"(u, v) [|Y|| g (u, v)/ dz. (3.346)
uz uz uz

As fqu” dz = Cyom. a domain dependant constant. We need only worry about

/r*g

/u:”r—w(z,vﬂdz: L:Hm|¢<z,v>r- —

< < / :H —Tsz(z,v)dz)% < / :H r_:g (2, v)dz) (3.347)

< 1]l (30, v) ( / o (z,v)dz>2 |

(z,v)dz

[V

T z

Estimating the latter term

un =29 UM =29 0 =29 r—29—3
/ (z,v)dz = / 5 —r(z,v)dz = / —dr < C [— < Cyr2e,
uy Tz I S —29—3 .
(3.348)
(recalling the results of theorem 3.7.3). We thus conclude
o, )| < Conna (1101 () + 1l g2 (e, v) ) (3349)
where Cy s, is a positive constant depending on the domain. The result then follows. O
Corollary 3.7.6. For ) € H ({r > ry} N B) we have that
2k
P37 (w,0) < Conra (11913 (0 0) + (1] 2 (w30,0) ) (3.350)
Proof. This is just an application of lemma 3.7.8, 3.7.9 and 3.7.10. n

Red shift estimates in {r <rx}

In this region we are bounded away from Z. As such we are not worried about divergent
fluxes there, and we do not need to work within the twisted framework. Primarily we are
concerned by the degenerative properties of r,. To combat this we use a redshift argument
from [HS13b] adapted to this setting.
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Lemma 3.7.11. In the region {r < rx} N B we have a constant Cx , > 0, such that

1
Cxgq

1911 gy, (s 0) <[l gy (u,0) < Cxeg 9] gy (). (3.351)

Proof. The first key estimate is that

_ 27"2
(V) < 2oV + 2Ly (3.352)
Estimating
P’y e e rir e 2
v < u Ty
TQTU 2 2w\ 4w
< 2" (V) - 20, (l—2 -= ) oty
r2r, 2
< 2705 (V) = 2eg°ru 70 (3.353)
rir, 9° 5 —Tu
< 2w(vu¢)2 2€l—27’§< P?
271, T
< CXQ < 02 (vuw)2 + ¢2)
Similarly
(V) < 2T, + 2L 202 (3.354)
We simply repeat the previous argument. O

Lemma 3.7.12. We have in the region {r <rx}NB

gr;b“ < Cxy <|%%w + ri—%]). (3.355)
Proof.
P _ —2( u¢+£¢) < Cx, (‘ U vV 7"2_”%). (3.356)
Ty U r Ty
O

Lemma 3.7.13 (Basic Red Shift Estimate). We have that in the region {r < rx}NB

= (u, v)

Ty

7’2 + sup (r:2

I(vo)

< Cuix

sup, 1] gy, + sup +|a| [¢] (u,v).  (3.357)

D(uyw I(vo) Tu

Proof. We adapt the proof of [HS13b] and [DRO05] to this setting. We express the Klein-Gordon
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equation in the following form

u 2 u
Oy (r;ﬂ (u,v)) = —th + a;X?ﬁ _m : (3.358)
where
(7] T a
0= 2y [F + 5 — 8] (3.359)
Now using lemma 3.7.3 we see that
w1 r 3
= + B > TR (3.360)
we see that for b sufficiently small enough that
P 3Tmin
= 0. 3.361
N T (3.361)
Integrating (3.358) using the Duhamel formula gives
o) = (")) e ([ ot vyie)
“ . v (3.362)

+ / [exp (— / ’ p(u,@)d@) (—wv+%f—f¢(um)ﬂ i,

The first term is bounded by initial data, so we concern ourselves with the latter inhomogeneous

term. We start with the 1, term
[ e (— [ ot @)d@) "
o) v

(/v X v ( ) % v 2 2( ) %
< - exp (—2/ p(u, v d@)) ( “r*(u,v d@) i
Vo T2 v V0 X

The latter integral can be clearly controlled by the H} energy. Turning to the other integral

(3.363)

we may rewrite the integrand as

/UO 5—2 - —exp (—Q/U p(u,@)d@) = /UO ﬁ - Oy exp (—Z/U p(u,@)d@) dv. (3.364)

We note the bound 2

2 )
ArpinT%

‘ X (3.365)

2012
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and estimate (3.364) by

v v 12 v v
/vo %-exp (—2/v p(u,@)dﬁ) dv < T /UO Jy exp (—2/U p(ua@)d@>
1 v !
- 4Tminr§( V0 aﬁ P <_2/U p(u’@)d@) dﬁ

I ! o\ gn
= PP (1 — exp (—2 /vo p(u,v)dv))

l2
<
47 pin®

dv

(3.366)

5

We note that evaluating the derivative 0y exp (—2 f; p(u, ﬁ)d@), shows that the quantity has a

positive sign. We now study the term

v v 2
/ exp (—/ p(u,@)dﬁ) %de, (3.367)
V0 v

v v 2
/ 3y exp <— / p(u,@)d@)- ngwdv. (3.368)

Integrating this by parts, and studying the surface terms we see that

/“ (u, 0)di 2ryay 1" 2rxaw| /” (u, 0)di 2rxaw|
exp | — w,0)do | - = =T —exp|— w,0)do | - —==—=,
p . p ) pl2 ” pl2 p v p pl2 0
ar 1
< o
_wl2 %+l%—47rrl%¢2
< lay| + |azp] [y,

<lay| + sup C, x
N(vo)

which we rewrite as

1/}617“ 1 |
2 S+ 5 —Anrgy?™

T%_“@/J‘ .
(3.369)

Where we note we have have invoked lemma (3.7.3) to control the =t < term.
2

1
77 —dmr 52
Turning to the bulk terms, first we compute

) e (2 (B S (2

rl2

p P r "X
(3.370)
Noting that
2
%,w,wl (3.371)

are bounded above and below on this domain. We clean up (3.370) to an expression of the form

e

"X

2
d. (w ”‘) < Cy [tho] + Ca [¥] s + Cy (3.372)

p
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The C} term can be dealt with as in (3.363). We look at the Cy term, firstly recalling

—2w;  r? —4r,T,

=t = (3.373)

SO
H1X = Ty. (3.374)

From lemma 3.7.3 we have that p is bounded on this domain. We estimate term by term

/ v {exp (— / p(u,’&)d@) 1| rv}
(5 ([ a2 sem)

As r, and pu, are bounded, the latter term can be estimated by

sup (,ul%)/ Oy exp (—2/ p(u,f})d@) dv, (3.376)

thus this term can be controlled by ||| |E5.

(3.375)

For the C3 term we need only apply the pointwise bound on ¢ to get ||| i control (after
bounding the r weights).
]

Theorem 3.7.4 (Red Shift Estimate). In the region {r < rx}NB we have a constant Cy; x > 0
such that

P )| < Gy | sup (16,1 + sup |13 i | (3.377)
u D(u,v) I(vo) u I(vo
furthermore we also have
P70 (0,0) < Cyaxe | sup [l +sup |3 E w]] (3.378)
D(u,) = I(wo) I(vo

Proof. We want to drop the ¢ term on the right hand side of lemma 3.7.13, this is done by

integrating from the rx curve toward the horizon in w.

by | —r

Ty

61 0.0) < [0l 0)] + [ ' " du (3.379)

uTX

For clarity we quickly remark that from (3.255) we can construct the estimate

u ” 1
/ gy =tn () <[ ) < —. (3.380)
R r(u,v) Tmin 2 |al

X
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Inserting (3.380) into lemma 3.7.13, we see

] (1, 0) < [ty 0)] + Casx | sup [[h]] g + sup |r3 " || + 5 1ol (0.
D(u,w) o I(vo) w I(vo
(3.381)
Absorbing the 1 term on the LHS gives
6] (,0) < [(tn, 0)] + Copx | sup ||l + sup |3 & | BCE )
D(u,v) I(vo) U I(vo
Which in this region implies
5T
r%_“w’ (u,v) < r%_”¢(urx,v)‘ + Coux | sup ||[¢]|g + sup 7"% + sup |r ”1/1‘
D(u) = () I(vo)
(3.383)
Recalling that {r <rx} C {r <ry}, and invoking corollary 3.7.6
P37 (,0) < Cugx | sup ([l + sup 13 || (3.384)
D(u,v) = I(wp) u I(vo
showing (3.378). (3.377) then follows. O

Corollary 3.7.7. In the region {r < rx} N B we have a constant C,; x > 0, such that

5
r2 ~ 37
— V| < Cuyx | sup ||1Z)||H1 + sup r2 ”w‘ (3.385)
u D(u,v) I(vo) u I(vo
Proof. We trivially estimate by
3 3
r2 ~ 2 1
— V= u + gree
5 (3.386)
r2 = 3 3
‘ V| < Cx 13222 4 [griy)
Whence the result follows. O
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Estimates in the whole bootstrap region

Lemma 3.7.14 (Energy estimate). We have in B

9]l g1 (u,0) < C

D(u,v)

i
sup Nl g + S(up) <‘

riw‘)] . (3.387)
Proof. Firstly let us note

[ L@ E i [y (L@ + Y

_/r*u

4z A (3.388)
“ T o (=) o
+ ]l{rgrx} (Vu@/)) + »* ) du.
ur —Tu T
Now from lemma 3.7.8 we have
“ o< o (=Tu) o
Lz | () + 207 ) du < O il (0 0), (3.359)
ur u

and from lemma 3.7.11

u 4 _ _ u 4
/ Lir<ry} (—rru(v“w)Z + wqﬂ?) du < CX7g/ T<ryy < (Vuth)? %1#2) du.
: ‘ (3.390)

Using the results of theorem 3.7.4 we see

“ rd s Ty~ —Tu
/ Lip<ry—— ( W) du —/ Lir<ry} ( " ) " du
ur ur u

2
< sup |3 ¥ ln( X ) (3.391)
r<rx Ty Tmin
TPy 3_
< Cyux | sup [|¢]| g + sup |r? v + sup |12 “1/}‘ :
D(u,v) = (o) u I(vo)

An application of corollary 3.7.7 gives

5 5
P _< u¢+ﬂ¢) <|—T Vath| + riﬁwD, (3.392)
Tu Tu —Ty
and the result follows. O

Corollary 3.7.8. We have in the bootstrap region

] g (u,0) < Cyare <||¢||H1 (up, vo) + sup ( 7“2_”1/)D + b4> : (3.393)

I(vo)

r%@ulﬁ‘ +

Corollary 3.7.9. In the region B we have that for b sufficiently small

r%*w‘ < b, (3.304)
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Proof. From lemma 3.7.10 we have that

P (0,0) < Cpnra (1l (.0 + 10112 ()

5
r2

Vat)

) (3.395)
+ 7"2_’%)) —|—b4> :

< Gy (IWIIHl (3, vo) + sup (

I(vo) —Tuy

so from the smallness of the initial data we conclude that

r%—w‘ < Cyarb? < b3 (3.396)

Theorem 3.7.5. We have that B = %+.

Proof. We know that B is an open non empty subset of %,. Now fix a point (u*,v*) € B, and
take a sequence (u,,v,) — (u*,v*), as n — oo, from the continuity of r and ¢ we must have
that

r%—w‘ (u*,v*) < b3 <b. (3.397)
So we conclude that (u*,v*) € B. B is then closed, and hence B = Z. O

Remark 3.7.3. It follows from theorem 3.7.5 that

| (u, v) — M|Z + |r35(u, v)

+ [Pl g (u, )

rz -~
=< Ciig <|I¢I|H1 (w3, vo) + sup ( Vi

_|_

I(vo) —Ty

, (3.398)
r?‘”zﬁ‘)) )

holds in %y .

CONSEQUENCE OF THE BOOTSTRAP ESTIMATES

Metric function estimates

Lemma 3.7.15. We have in the regular region the estimate

+

I(vo)

5
1 T2 =
[2x = 1> < T nre <Hw|\H1 (w3, vo) + sup (' — V¥

rzﬁ‘)) . (3.399)

Proof. Recall that xy = % satisfies the equation

4
O (Inx) = —— (0,0)". (3.400)
Ty
Integrating this equation gives
o Anr 2
X = x|z exp ———(0) du . (3.401)
ur u
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Using a Young estimate in one direction

4

(Fuo) 2 < (2 (Fur)

_/r’u

TwZSQT

—Tu —Tu

and the negativity of the integrand in the other, we have

1

S exp (= Il (w))) < x <

1
2 2

The result now follows from the energy estimate (3.398).

Corollary 3.7.10. There exists a constant Cy > 0 such that in the regular region

—2(1+ Cyb®) 1y < Q° < =27,

Corollary 3.7.11. In the set {r > ry} N %y we have from lemma 3.7.6 that

QQ S CyT‘2.
Lemma 3.7.16. We have that )
7“1)’1 = _2_l2

Proof. Recall that from the definition of the Hawking mass

0? 22
Ty = ——— (% — _w> 6*47T9¢2'

—4r, r

Which implies

| 1
To -
T
Lemma 3.7.17. In %y
1 2\ .2

Proof. Firstly it is possible to rewrite the 7, equation (3.22) as

3 3

4rt 7l 4 4

3 1
Fup = w2 4m90° 2 _ —292 (—6_4”9¢2 - =+ 2%@1&2) :

For 1% small

3 3
0< 16_4“91”2 1 + 2ray?® < wg?.
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(3.405)

(3.406)

(3.407)
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(3.409)
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(3.411)

(3.412)



So in (3.411) we drop the positive terms, and bound by

1 3 2 3
Fuy > ——= 2 (—e‘“gw - =+ 27Ta¢2>
ri2 \4 4 (3.413)
> _Og,lb27n_4+2ﬁ(_ru)-
We then integrate this inequality, and use lemma 3.7.16 to see
. 1 9
o2 =55 (14 Cyab?). (3.414)
The result then follows. O]
Lemma 3.7.18. In %y
1
sy (14 Cv) Q. (3.415)
Proof. Integrating (3.9) shows
r T 1/r?2 2w\ e imo¥’
a0 < ) = (- 22) )
2 2 2 _
¢ ? 2 ANE 71”“ (3.416)
w —4m
:§<1—7)6 49¢2(U,U0)§§(1+Ob2).
From here the result follows. m

We now collect these estimates in the convenient corollary:

Corollary 3.7.12 (Global Estimates). There exists constants C; > 0 depending on g, M, such
that in Xy
Tv S 017"2 S —CQTu S CgQQ S —C4Tu. (3417)

Lemma 3.7.19. In the region {r > ry} N %3 we have

Q* < Cyyr. (3.418)
Proof.
-4 ulv
Q2 = %647@#}2 S OyJT’U. (3419)
ErE
[

Corollary 3.7.13. In the region {r > ry} N % we have
r? < Oy ry. (3.420)

Corollary 3.7.14 (Stronger estimates away from the degeneration). In the region %y N {r >
ry}, there exists constants C; > 0, depending on'Y, g, M, such that

7‘2 S OlTU S _CQTu S 0392 S 047”2. (3421)
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Lemma 3.7.20. In %4 we have

= e~y (3.422)
Proof. This follows from the observation
—dmgy? r? —dmgy?
w, = we ~op (e — 1) : (3.423)
O
Corollary 3.7.15. In %3, we have
ep > jy > . (3.424)

Pointwise u—derivative decay
To complete our estimates we need to control V,¢ in the region containing Z. We proceed by

integrating the Klein-Gordon equation in this region.

Lemma 3.7.21. We have in {r > ry} %

r

a
2
<

r%@uw

< Coatny (kum (1,0) + sup (

I(vg

)) . (3.425)

Proof. Recall equation (3.23)

- 1 - 02
8, (Nuw) — (—5 + K) Vi — =1V, (3.426)
where 02 q
g mag
V=—"Zm+—] P2 (3.427)

Using the results of the bootstrap arguments, and the metric function estimates we can easily

see

Corollary 3.7.16. In {r > ry} NZ

2g°M
‘V -2 ’ < Oy g b3+, (3.428)
r
From which the following estimate follows
(V| < Cppggr >t (3.429)

Integrate equation (3.23) to get

‘T@uw(u,v)‘ < ‘r@uw(u,vg)‘ + + . (3.430)

v 1 5
/ —Ty (—5 + R) V. dv

v QZ
/vo —erwdv
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Estimating term by term, working from left to right

P rdV(u )| < sup
I(vo)

’T@u?ﬂ(ua Uo)‘ =

As we are in the regular region we have that r(u,v) > r(u,vg). Thus

T%@uiﬁ(u, V)| -

r@uw(u,vo)‘ < C'sup

I(vo)

For the next term

[ (<3 ) Fur - | -
(s

SQC;Hdﬂh@(u,v)(J/ —nas)

v QQ v
/ —ru—zdv < CMJ’g/ 7pdv
) r Vo

< C’M,l,g"ﬂ-

/ —Ty (—% + I<&> Vo du

For the final term we compute

7o) ((3) ) 2

N

From theorem 3.7.3

So we have

1
< Cargr® 13 (. ).

v Q2 v
/ —Irv¢dv < CM,l,g/ rvr_2+2“wdv
V0 Vo

scMw(/’—¢d) (/ﬁw—%%m)Q
<cMwwwmluv(/’ s, )2
(

< CMZQT_H% ||¢||H1 u, )

< Caragr® (1]l ().

=

Combining all these estimates we have

I(vo)

V@MNUJOMSCMAMé<H¢mp(uv)+8m)

mu,v)]) ,

from which we deduce the result.
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2 . ) ([ )

(3.431)

(3.432)

(3.433)

(3.434)

(3.435)

(3.436)

(3.437)



Corollary 3.7.17. Using theorem 3.7.3 we see this estimate is equivalent to

ri—wD) , (3.438)
rg"wD) . (3.439)

5
r2

Vo) +

5
rz -~
< Cymy <|I¢I|H1 (u,v) + sup (‘ V)

I(vo) —Ty

_ru
or alternatively

5k

T2

Vu +

—Ty 1(vo) -

rs -
< Comiy (||¢||H1 (u,v) + sup (‘ Vb

Concluding the proof of theorem 3.7.1.

3.7.2 COMPLETENESS OF NULL INFINITY
Proposition 3.7.1. Let vy, = sup,s, {v|(uy,v) € Q}. Then it is the case that v,, = oo.

Proof. This result is an adaptation of the proof in [HS13b] to this setting. Consider curves of

constant . In %Z3 we have that these are timelike and foliate %. We now have two cases:

e None of the constant r curves have a future limit (us,vy,), (i.e. they all intersect the

horizon).

e There is an R, such that » = R has a future limit point (us;, v,,). (And hence also true
for all r = R’ with R’ > R).

We deal with the latter case first.

Consider the infinite ‘zig-zag’ curve as depicted below:

P

Now we see that the v-length of each constant u-piece U; is uniformly bounded below. This is

done by checking the bounds on x, and £5 < l% for large enough R. In this case we have

N P (3.440)
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Recalling that xu; = r,, we derive

I ? [, 2

M1
dv > — —dv=— | —dv> —. 3.441
/uiv_Q/Xr?U 2 ] 2% =3R ( )

There are infinity many U; in the zig-zag curve. (If there were a finite number then there must
be some N € N such that Uy is the ray 7 : (uz,v),v € (vy,v,). This ray is bounded to right

of r = R, so we must have that » = R has become null, a contradiction). It follows that v,, = co.

We now deal with the first case, here we must have that lim,_,,, 7(uy,v) = co. We will
assume that v,, = V < oo, and contradict that u = uy is the last u-ray in which r = oo
can be reached. First pick » = R very large, in view of the bounds on w, w;, ¥ we have that
g1 > ¢ >0, and g > e 'c hold in #. This is trivial in %y N {r > R} by computation. For
Py N {r < R} we have its true by compactness, (since r, = 0 cannot hold, as this would con-
tradict that » — oo along any u = const ray in %y ). Note that p > e 'y = %“e_l >ce ! > 0.
Thus showing (3.112) holds. By a change of u coordinate we can locally straighten out the
boundary and achieve u = v there. We now satisfy the conditions of the extension principle

near infinity. We extend our spacetime to the depicted triangle

This contradicts the assumption that uy is the last ray along which » — oo can be reached.

[]

3.8 ASYMPTOTIC STABILITY

We have now established that we have a complete black hole spacetime, which is asymptotically
AdS. We seek now to prove that the H' norm of the field v is decaying exponentially in the
v-coordinate to 0. From here we can see that across any u = const slice, that metric is decaying
uniformly to a toroidal AdS Schwarzschild solution of mass M. This is in contrast to what was
seen the linear problem of the previous chapter. In that setting it was proven that polynomial
decay of the field held, but exponential decay did not. The barrier to exponential decay was
shown to be linked to null geodesics being far away from the horizon, and possessing non zero
angular momentum. For solutions to our toroidally symmetric problem we now show that this

is no longer the case. The symmetry restrictions no longer allow us to construct null geodesics
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with this property, and we will see the field decays exponentially. We establish asymptotic
stability through Morawetz estimates. The core result we aim to prove in this section is

- —rur?

/ r (Vuh)? + (=r)t® + 02 (Voth)? + %@Ndudv < CrgmF(u,v). (3.442)
D

_ru

From this we can extract exponential decay of a key flux quantity, implying decay of the field.
We follow the vector field method of the previous chapter. However due to the complexities
from the non-linearities and the ungeometrical nature of twisting, we prefer to work with the
standard energy-momentum tensor. We use this to prove a global but low weighted integrated
decay estimate. The low weights ensure that the technicalities of infinite fluxes are not present,
and twisting is not needed. We then optimise the weights by directly multiplying the Klein-
Gordon equation in twisted form, as seen in the classical methods of Morawetz [Mor61].

It will be fruitful in this section to make and remind ourselves of the following definitions

02 02
4, T ary

X = (3.443)

In order to make the proof of this result more manageable we split it into three theorems

Theorem 3.8.1 (Low Weighted Degenerate Global Estimate). In %y, for k < %, we have the

following estimate

B 1 1 Q22 1—la 0?
Laeg[¥)] := /Dr 6 (?ﬂji + ng) 5 dudv —|—/D (%) ¢27r2dudv < CrgmF(u,v).
(3.444)

Remark 3.8.1. While this estimate is low weighted it has the advantage of hold globally on
the spacetime. It is insufficient to prove exponential decay of 1, due the degeneration at the
boundary of the regqular region appearing in the v factor, and that the powers of r are too low to
control an integrated H' norm. However it allow us to localise estimates to either a region near
Z, or to a region {r < rx}, where more specialised vector fields can be used. The proof of this
theorem is inspired from §5.3 of [HS13b] but has been expanded into more detail (in particular

towards the boundary terms and generalised to cover more choices of multiplier).

Theorem 3.8.2 (Red Shift estimate). In %y for k < 3, we have the following estimate

[ % (- + S @) duao

(3.445)
—I—/ (1 —=lal)7) (=r)® + (1 = |a]) ) rydudv < Cy 4y F(u,v).

D
Remark 3.8.2. With the global estimate proven we use smoothed cut-off functions in order
to remove the degeneration coming from the v term. This is done using a redshift vector field
localised to the region {r < rx}. We may also convert back to using twisted derivatives. This
estimate implies local energy decay, that is in any compact region we have the field is decaying

exponentially but it is insufficient for a global decay statement.
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Theorem 3.8.3 (Morawetz Estimate). In %y, for k < % 5, we have the following estimate

4 _
/ L (Vuth)? + (—ru)? + (V V) + deudv < ChgmF(u,v). (3.446)

D ~Tu 92

Remark 3.8.3. To show this, we localise a vector field to a region near I where the spacetime
18 behaving like AdS. In this region the estimates of corollary 3.7.14 hold. With these estimates
we can sharpen the r weights of theorem 3.8.2 to a global integrated decay estimate. Exponential

decay of the fields follows from this estimate.

3.8.1 USEFUL ESTIMATES AND IDENTITIES
Lemma 3.8.1 (Hardy estimate in v). In {r > ry} N %y the following estimate holds
/ VPrydv < Cyy F(u,v). (3.447)
vo
Proof.
—242K
/ VPrydv —/ (@UT% ) (—r2 " 2/{) dv

s 1 ! /v -
- {w Trvox), Taoan ), YV

v (3.448)
r ~
<C 1 2 5 —V, ¥ | d
< G, [l (. 00) + / ) (g T ) @
C, 11l d L o) d
< U, V rydv + — — ( v > v,
Ol (o) / v’ €(4—4k)> Ju To v
choosing € < 1 and using corollary 3.7.14 completes the proof. O
VECTOR FIELD IDENTITIES
Let X be a vector field of the following form, X*(u,v)d, + X" (u, v)0,.
We define the deformation tensor as
2X7% = Vo XP 4 VX = g0, XP + ¢%0s X + g°797 g5, XM (3.449)
We'll usually suppress the X in the notation for convenience.
We compute the non zero components
T = —ﬁﬁ X o= —ma XY, (3.450)
2 [(Q Q
W= X" X" — S 22X 22X 451
T (8 + 0, X") 02 ( q + 0 ) ; (3.451)
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1 1
= S XX, T = S (X X

Defining the energy momentum tensor

1
T,uu[w] - ud]v guu J¢VU¢ - %¢29uua

The non zero components are

QZ
Tuu - (Vu¢)27 vau — (vvd])Qa Tuv - (127 2;
Ta:x = Tyy 2vu¢vv¢ - ¢2-

Qz
Computing the divergence of T, we get the usual relation

VLI = (V0) (D0 - o) =0

Now, defining the energy current
X _ mX v
Ju W] - T,uVX )

and the associated bulk term
KX[yp] =VFIX =T, 7.
We can expand K% as
X 2 u 2 2 v 2
KX[u] = = 250X 0u0)? — 5(0.X") (D)
4ru dry, .
#00)00) (X + i)

a u Tu Qu u v Ty QU v
-5 (8){ <27+26)X +0,X +<2T+2Q)X).

(3.452)

(3.453)

(3.454)

(3.455)

(3.456)

(3.457)

(3.458)

(3.459)

Motivated heavily by the linear theory in chapter 2 (X = F(r)R), we consider a vector field of

the form

Where F' is bounded and sufficiently smooth. We thus compute

u (avl/})2 2
0u X" = dmr = Q2F’
v (au¢)2 121
O X" = Amr=o—F - QQF’
u QU u v Qv vo_ TuTy Tuw
0. X +26X + 0, X +2§X =2 0 F’ —2§F.

121

(3.460)

(3.461)

(3.462)

(3.463)



Then we express K~ as

KX = Kr)riain + Kjﬁrcr’ (3464)
where the terms are defined by
KX i = 2F" (S5t + Lo )2
mawn Qz u Q2 v
4r,To 2
‘l‘wud}v (_ Q4 (F,+ ;F>>
3.465
_ng _2f_2mru F’—i—gF _QTMF ( )
[2 02 r 02 ’
—16
Kgrm’ = Wﬂr¢5¢gF

3.8.2 LOW WEIGHTED GLOBAL ENERGY ESTIMATE

We now prove the low weighted degenerate global Morawetz estimate. To do this we will study

multipliers of the form
F(r)=—r. (3.466)

We need several lemmas to construct the estimate.

Lemma 3.8.2. In %y for k < %
/ VHIY < CgnF(u,v). (3.467)
D(u,v)xT?

Proof. Studying the surface terms

u

/ ij’ = / (T VY + T X“) r?(u, v)dv + / (Tyu X" + T X ) 72 (u, v)du
D(u,v)x%2

o “r (3.468)
_ / (Tyu X" + Ty X*) 12(8, v0)dTi — / T, X" doy.
uQ A

7 surface

The metric restricted to constant 7 surfaces is given by

h= =P dv® 47 (da® + dy?) (3.469)
The surface form is given by
A0 5—comst = ‘92_7"—;7«4 dvdady, (3.470)
and the unit normal
h= 52: 0, — 5;; 0, (3.471)
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As this surface is timelike we consider the inward pointing unit vector. We compute

] = r2 ’";j By — 120,. (3.472)

—lu

Exploring the flux terms we see

T, X" dor = (Tuu X" + TuoX?) —12 — (TypX? + Tuo X") 72

—Tu

rv o aQQ oTu —n\ To ru o aQQ 9oTo _n\ o
_(< W e o et )—ru <( WY et gV >T

QQ u v u'v
([ s )

(3.473)

(we may neglect the latter terms on the boundary through the density argument). Now using

the relationship
29T uTy

R = Rap — s

v, (3.474)

we see that all these terms vanish on the boundary.

Fixed u, v surfaces
We study the flux on the surface of fixed u. Splitting the region into a section where r < ry.
We see

Y-y a

/ (T X? + Ty X*) (u v)dv = / 22 w?) ~ S Tu¢2dv
o

vo

v=2r, = —2r, ¢*r? a
< U vv 2 U vo2 ; 2d '
- /vv0 927’”_2( ¢) + QQ rn w 2l2rn—2r w v

(3.475)
The middle term of the integrand can be estimated by
—2r, g*r? To
0z grnvd) OMlgT "y < CYMlg — 2. (3.476)
The final term of the integrand, for n > 3 we can bound by
a 9 a Ty, o
— ) < —— 2. 3.477
222" vis 202 r ( )
For n < 3 we can estimate by
—n+3
a 9 ary""ry o
— )t < ——=—— ). 3.478
o2z LS 212 ¥ ( )
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In the region r > ry, assuming n < 2

—2r,
02

92r2
. r_nvw < Cygr* "rp® < Cyy groth®. (3.479)

We can control this by the initial energy using lemma (3.8.1). We thus see that

/ (Tpo XY + Ty X*) 72 (u, 0)dv < C g 0 F(u, v). (3.480)
0

As the integrand for the other surface is of the form

QQT"_Q

2 a

T X% + Ty X?) 12

STt (3.481)

it may be treated in the same way.

Lemma 3.8.3. In %y, for k < %, we have the following global integrated decay estimate

_ 1 1 Q27"2 1—la QQ
Lieg[¥)] = /D = (?‘Z’i*?ﬁ) 5 dudv + /D (%) PP dudy < Cpy v (u, v).
(3.482)

Proof.
Bulk terms
We now look at the bulk term

KX, =@+ (e + o)
42— n)%—?r*”*lwuwv + l%zp%f" <2(n -9ty ot
=@+ ) (it )+ (0= 2 (g - D)
+ l%¢2r_” (2(71 —2) Tl rW)

—9
—(2+n)r (R A+ (n =2 (T)? + % 2o (2 - 2) 20y - 2k,

TuTy Tuv >

r{)2 Q2

r)? 0?2
(3.483)
so the first order terms have a good sign for n > 2.
As for the zeroth order terms
a o 7n712(n — 2)TUTU 2a 2 _nTw
l_21p r — —Z—Zw e (3.484)

-~

>0

The first term has a good sign for (n > 2). For the second term we analyse through the r,

equation (3.10). We recall this may be expressed as

2
e P (3 r ) 59

2 \r2 2P
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The term thus has the form

2 Tw\ a (w v dmar 5\
w( >—Z2Tn(§+l—2— 2 w)w, (3.486)

-~

>0

so it has a negative sign. We proceed by proving a Hardy type inequality to absorb it.

First note that from the () Hawking mass equations we can show that

1 SWTTU w; 4mar
and . g A
TrTy, wl Tar
%81,/11 TU ( vw) 7“_2 - 2 ¢2. (3488)

We now integrate (3.486) (recall /g = %72)

a (w r Amar , 0%
— + = - r dud
/D(W) rm (ﬂ e > v rdudy

1 a 4mrr,
=3 / L <—x i — (3u¢)2> dudy (3.489)
p r r

u

1 a o 4mrr, 9
+ 5 /; l2rn_2¢ <,y : :ul,’u - r (81177Z)) > dUdU

v

Integrating the first term by parts and recalling the following relation

—4r,ry
= (3.490)
and from the Raychaudhuri equations
QQ
OuX = ——Tﬂl/}u, (3.491)
and
QZ
Dpy = r—rme (3.492)
We can then compute
2 4
a0y (xr~"2y?) = (Mdz? + 2r i+ —— wi) , (3.493)
and )
— Mlav (,YT—3¢2) _ T—n+2 (M@Z) + 2Tu’¢¢v 7;7"7“u¢3) . (3494)
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We see that

4 2
[ () o
D(

ww) 2y r2 [2 12

—4a 1 1 (2—n)a 2 Y oa 2 _ _
/D l2rn—27Xulw (Bwu - —X?/Jv) + 21 rulu dudv — /uo l2r”—2w (—rw) (@, vo)du

u a ) ) v a o
+/ ZQTn—2w2(_Tu)(u7v)du_/ WwQTU(’U,,U>dU,
uz

(3.495)
We rewrite as
—a (@ v Awar 5\ .07,
— =+ = - —r dudv =
/D(W)Prn (ﬂ TR w>w g
—4a 1 1 (n—2)a 9
/DWVX,Ulw (Bwu - &%) + ZQTT'MTM/J dudv (3.496)
U g ) - - v, ) - - v g ) o
— 2 — (=) (@, vo)du + ¥ (=) (W, v)du — 55V (U, 0)do.
wo 12T up PP w 1T
Now using Young’s inequality we see that
4 al 1 1
— )y — —1y, | dud
| s (= o) dude
la| o (7 @ drrayp?\ r?Q?
< — 4+ — — dud
_/DQZQan mt 2 B 5 dudv (3.497)
+/ Pl o -~ + = dmray” B Yu _ P 2 Q—2dudv
p2rn—2  Qf 2 72 12 4y 4y ) 2 '
Noting the relation
2.2,,2
Yxpr 1
= — A4
04 16’ (3.498)
we see that
4al 1 1
-7 WYu T %o dud
/Dl%n_muw (Mw M) udv
la| 5 (7T @ Amrray?\ r?Q?
< =+ — — dud
_/D 212741’(/} l2 + 7,2 l2 2 uav (3499)
2al (1 @ Ama?\ ' (Y. 0.\ Q2
=+ —— — — — | —dudv.
+/Dl?r”—1 <z2 T by 1y ) e
For ease we now define
w1l2 -t
= <1+ ; —4mw2> , (3.500)
r
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substituting (3.499) into (3.496) gives

2n — 2 dmray?
D

[2yn— 2 r2 [2

4al o 0?
—l—/D o (@%_&%) —dudv.

(3.501)
Now
2(n —2)a ) (n—2)a [ 1 (2w 1\ ,0%?
/;_MTTUTV@Z) dudv = l—2/;r_” 2 + l_2 @Z) 9 dudv. (3502)
We then rewrite (3.499) as the following Hardy estimate
2(n —2)a ) —a ,(r w1 dra? )
/DWTUT‘U’Q/) dudv — /D l2r"¢ B —I— 2T n 77“ dudv
—a rin—1) @ (5—2n) 47rraw2
—~ / Tl ( Ean — Pl B " Pdudv < CrgmF(u,v)  (3.503)
D

4 a| 2 QQ 2
+ /D o (R) dudv.
The LHS is clearly non negative for 1 < n < Z. Examining the integral of K* we have

Q2 2
2 dudv

X,0 Q*r? —n+1 o (2 —n—1
/K dudv dudv:/(2—|—n)r (Ry) 7dud’u+/(n 2)r (T%)
D D D

¢2 1 — 2)ryrydudy

a (w1 2mar ,\ 0%,
— 4+ 5 — —r-dud
+/D(uﬂ))l2r”(r2+l2 E w)w g

z/ (n+2 - 4]a|a)r ™ (R))? —dudv
D

2,2
+ / (n—2)r "1 (Ty)? L dudv
D 2

¢2 1= (n = 2)ryrydudv — Cp gy F(u,v)

:/ (n+2—4]a|a)r ™ (R))? —dudv
D

QZ 2
dudv

+ [ =2 Ty

n—2)a [ 1 (=2 Q?r?
+%/_( T;D1+l_2)¢ dudv — Cp g yF(u,v).
D
(3.504)
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That is

2,.2

QO
Oy niF(u, v) + / KXOdudy—-
D

Q?r? (n—=2)a [ 1 (2w r Q?r?
—n— 2 1 2
+ /D(n —2)r " (T 5 dudv + —op /D — < + l_2) (0 5 dudv.

rn ,,a2

2 Q27”2

dudv > / (n+2—4la|a)r " (Ry) dudv
D

(3.505)

1 — o estimates

12

wql? -1 1—la = _ Arag?
1—a=1—|a|(1+ 1 —4m¢2) e T s
r 1+ =5 —4dwag 1—|———47raqb

> 1 ( la| + w1l2) (3.506)
| + Mlj—é—cbz :
S 1 ( | | + W1l2>
Sl |
Then recalling r, = 2M1[? using the estimate
L = Toin| < C, (3.507)

Wwe see

wl? - 1 wl?
1-— |a| (1 + F - 47TCL¢2> > WViE B2 (1 - |CL| + 7)
73

2
1 (1 lal+ f_l) (3.508)

v

n = 2 estimate

If we choose n = 2 and restrict to |a| < 1, then we have

922

/D(l — |a)) r73 (Ry)? dudv < Cy 4 yF(u,v), (3.509)

and the L? estimate 2
/ (1—lal) ’r’lw27r2dudv < CpgmF(u,v). (3.510)
D
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Low weighted estimates for |a| < 1

Choosing n = 5 in (3.505) gives

Q2'I“2 927“2
CrgmF(u,v) +/ K~ dudv dudv > / (7 —4lal) r=5 (Rep)* dudv
o sa 1/ 02,2 2 (3.511)
6 o Q01 a 2wy 1T\ L%
+/D3r (T) 5 dudv + 2 | ( > + 1—2) (% 5 dudv.
Then using estimate (3.510)
QQ 2
CLgVMIF(u,v)%—/ KX dudv 5 dudv

P ) (3.512)

022

6 2 6 2
Z/Dr (Rv) 5 dudv—i—/Dr (TY)

022 1— 02
! dudv+/ ﬂiﬁ—ﬁdudv,
2 D r 2

allows us to recover the 71 term. Expressing in terms of u and v derivatives

1 1 O2r2 1— 02
Jre (vt ) Symnan e [ (S v e < ). 3519

]

Remark 3.8.4. This lemma s the origin of the restriction Kk < % This is due to the choice

2

of n = 2, it produces terms of the form r™* which will only decay for k < % for the boundary

conditions we are considering. If one were to choose n < 2 to remedy this problem, the issue
of positivity from (3.505) arises. The bulk term can’t be seen to be positive. However as in

[HS13b] we expect faster decay for Dirichlet boundary conditions. If one were to follow that
1

5.
Beyond this value seems to out of reach technically. It is expected to require more sophisticated

scheme in the toroidal setting at the H?, level they would expect to extend the result to Kk =

multipliers.

3.8.3 THE REDSHIFT VECTOR FIELD

We now seeking to remove the degeneration in the estimates due to the 'y% factor. To do
this we localise a vector field to a region near the horizon, and exploit a red shift effect. The
result of lemma 3.8.4 is an adapted version of [HS13b] to this setting.

Lemma 3.8.4. In %3 we have the following estimate for k € (0, %)

4 L2
| = (_TT (V) + 5 <vvw>2> dudy

(3.514)
+/D (1= lal)r) (=r)¥® + (1 = lal) r) rop*dudv < CrgmF(u,v).
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Proof. Firstly fix ry > rx and define

Y = (—Tu)_lﬁ(r)ﬁu, (3515)
where
0 for ry <,
n(r) = § smooth, monotonic with bounded derivative for ry <r < ry, (3.516)
1 for r <ry.
We see that
2 —4 2a 4a7r 2 a
KY = (=350, (50) @u + 0u) @) gy + 510+ 2 ruid ) i) + (vt 4 50 ) ),
(3.517)
The first term is equal to
)2 2r Wy 1 a 52
— — Y, + =Y - ) 51
<2r2 o) - 2) o rxw +vto ) (3.518)
We also can quickly compute that
Y MQL Y ax o
asymptotically it is clear that these terms are 0 at Z. Estimating (3.518), we see
Ve @Du 22
(27"2 2 + l2 %—'— ¢ r n(r)
32 i, | ,2
> z » — 3.520
- (4[27“3 - lry szw + 77/} r n(r) ( )
r2 121 2 ]a\ N
> uo - :
(4127’3 2 r3y? %U w7 ) ()
Integrating K" this gives the estimate
/ ¢ —ry) (U, v ndu+/ w“Q%“ *ndudo
<C’Mla/ Ui +"¢_2 n(r)§22r2dudv—l—/ 3¢2+g"¢)2 n (r)Q*r?dudv (3.521)
— o\t o p \ Q2" 2
C Y1 e di v, o on)di
+ CmMia l—2X¢ r*(u, v)ndv + 7”_2r (=ru)n (i, vo)d.
V0 ur u
It is clear from corollary 3.7.14 that
2 a _
/D (mwi + Z—szz?) 0 (1) QPr?dudv < Curg gy Laeg V0] (u, v). (3.522)
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Now the first term on the right hand side of (3.521), we already control from lemma 3.8.3, the
last term is the an initial data norm that we control after a few trivial estimates. We are left
to deal with the third term

/ lzx@/z (u, v)ndo —/ dud, / lzx@er ndo. (3.523)

Where v*(u) is the v-value where the ray of constant u intersects either Z, or the constant v

ray. We pass the derivative through

v 2 1 1
lXWTQ w, 0)ndo = - ¢ - 110% — —* | nQPr?dudo + [ —x*r*n'rodudo,
[? 7 D "z ! pl?
vo
(3.524)

The second integrand is estimated using corollary 3.7.12. The 7’ allows us to disregard the r
weights. The first integrand may be estimated by dropping the negative terms, and a Young

inequality

v 1 2,20 =\, 3- W?L 1 ¢2 2.2

—2X¢ r (’U,7 U)?]d'l} S 6—2 + — T]Q dudv + CM l,g, Y]Ideg [w] (U, U)' (3525)
w ! p\ 1 16er

We can an absorb an € amount of the the derivative terms with the left hand side. Control of

the zeroth order terms has already been established.

This leaves us with

u 2 wQ
T;‘TQ( o) (U, v ndu+/
uz (3.526)

<Chrallaeq[V](u, v) + / %TQ(—ru)ndﬁ.
Combining this with the global estimate we have that

2 0272
/r (W + zp?) = du dv+/( |“|)w2 rdudv < CxyignF(u,v).  (3.527)
D Tu 2 D
We now show this holds in a twisted setting. We estimate
2 29 = 1
4% > C ( Lt ) C (:—2( W)+ r—nguw + ;9%2) : (3.528)

2
Ty Tu

We apply Young’s inequality to get

2 roo~ 1
2 0 (T - ). (3.520)
We thus have
1 ~ 1
[ 5 (5 Fa? = 202 02w, oydade < Cryaibu,0), (3.530)
D u
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Adding a multiple of the zeroth order terms of (3.527) to get

1 - 2 1— 02
/DE <:—2(Vu¢)2 + %) Q*r?(u, v)dudv +/ (ﬂ) ¢27r2dﬂd@ < CxyigmF(u,v).

D r
(3.531)
With the use of corollary 3.7.12 we estimate the 1, terms by
2 C16rE (= o, 297, = r2 o,
v 2 Jv v
X2 — 7,3 Q4 (Vzﬂ/}) + r wvvw—i_ T2¢
—Tu [ 1 =~ 9 29Ty = 7“5 9
> it (5 (Vo + L0+ 2y
r r r
. 2 (3.532)
AN 2 Ty 2
= Ol QQ (27"3 (VMD) r577b >
=1y (1 5 1 5
> () oF (2—703(Vv¢) ;@b )
This allows us to conclude that
1 [/ r —ryr? <
/ =T < . (V) + 02 (VU¢)2) O?*r?(u, v)dudv
1 al 02 (3.533)
—f-/ (T) ¢27T2dﬂd@ S CZM%MIF(U, U),
D
or as
1 rt - —r,r? - o
/ 7“_7 (—7" (Vu¢)2 + 02 (vv¢)2> dudv
b " (3.534)
+/ (1= |a]) (=)t + (1 — |a]) rrogdads < Cuy aF(u, v).
D
O
3.8.4 MORAWETZ ESTIMATE
Theorem 3.8.4. In %y, for k < %, the following Morawetz estimate holds
e 2 o, T s o To o
D —Tu (Vuw) + (_Tu)d} + 02 (va) + 777Z) dudv < Cl,g,MF<u7U)' (3535)

Proof. Fix oo > ry; > ryz > ry, (we will specify the conditions they need to satisfy later) and
let n(r) be the cut off function defined by

0 for ry > r,
1(r) = { smooth with bounded derivative ~for rp; > r > ry, (3.536)
1 for r > ry;.
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From equations (3.23) and (3.26) we derive

50 (V0?) + 50, (F(Vu0)?) = <n - 1) Vvt (“h+ 2 )

(gt 0 (G0 (G = ) (Fun? - 59)

0?2 ~ ~
-y (hvm + fvu¢> .
We now make the choice
Ty Ty
f= ' h = —q (3.538)

Flux estimates

Applying the divergence theorem and examining the flux terms

) e

)
1 ! / /
:5/ —@mﬂ( Vo 0)? (u, v")dv' + = / Q2777“ 2 (u',v)du

( (Vuv) +

)du dv’

SCM,l,gIF(uv ) 12 /

The latter term then vanishes due to the boundary conditions (it decays like 772%). The cross
terms are written in terms of 7 and R derivatives which can be seen to be 0 on the boundary,
from the density argument and boundary conditions.

Bulk terms

Defining f and h through

f=1fn h=hn (3.540)

and noting the identity

30 (1h(F,0) + 50, (nf(T.07) :’7@ (12%) + 50 (170 >> (3.541)
of (rb (T, 4 o f (T.0))

We see there are two regions of interest r > ry,, and ryy > r > ryz.
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We deal with the former first
1 A~ 1 .
n(§m(mvw¥)+§@(ﬂvaﬁ)
1\ = = ToTu
A P

N (1 r2 N 27rr2w3) (ﬁvl/ff N (1 72 N 2712 2) <@uw)2

202 Q2 202 Q2 " (3.542)

1 . N
+ erw (Tuvv¢ + TUVMD)
I\ = = vl 1 12L = 1 3 v
> 2 <n - 5) Vvt (o) + (5%) (Voth)? + (5%) (Vath)?

+ iﬂ/@b (ru@v@b + TU@U@D) .

We apply Young’s inequality to see

1 S g 1 PP 1

i t > Z_
za(mvmo)+2@(ﬂvwo)_((2

+ iﬂ/w (ru@vw + rv@uw> .

(3.543)
So the first row terms are manifestly positive. We then estimate
1 v v Lo 1, 2 (& 2 2 (¢ 2
erdj <Tuvv¢ + Tvvu@b) S gr 'QZJ + gv Ty (VU’QZ)) + Ty (Vu’(/)>
(3.544)

<oy (0 (90) + (920)') )

Using the estimates in corollary (3.7.14), we have in this region for 7, chosen large enough

7’4 —T 7’2 ~ T
/ (Vuw)Q + <—7’u)w2 —+ - (Vv¢)2 + ?vadudv S C’l,g,MIF(u, ’U). (3545)
D

—Ty Q2

Then in the latter region

1 . 1 P ~ = A=

/ . <§au (h(w/;)?) + 50, ( f(Vu¢)2)> +of <ruh(va)2 Y, f(Vuzp)2> dv.  (3.546)
D

We see that as the derivative of 7 is bounded, and r is bounded above and below in the region

where the stronger estimates (3.7.14) hold. We can then trivially bound these terms above by

the global estimate (3.8.3). We then combine this higher weighted estimate with the global one

to see

4 2
/ TT (Vuh)? + (—ru)v® + g;r (Vo) + %deudv < ChgmF(u,v). (3.547)
D lu

[]
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3.8.5 EXPONENTIAL DECAY

Theorem 3.8.5. Defining the v-flux,

o= [ (L@ + (re?) (wojaa

_/ru

and the region D(vy,vs) = D(ug, va) N {v > v1}. Then for k < 3,

F(v) < C’M,l,g}"(vo)e_a”.

for some uniform a > 0.

Proof. Applying the estimate (3.535) on the region D(v,, v,11) yields the estimate

F(Vnt1) +

Now take v < v, < v,41 and thus

Un+1
F(v)d
implying
e (Upg1 — vp) - . inf

Choosing v, = 2" + v yields

Un+1
1 F(’D)d@ S CM7l7g.F(’l)n).

Un

Un+1
v < F(v)dv < %}‘(v),
v CM 1
Un+1
]F(y) < ey F(v)dv < CppygF ().
+1 Un

inf Fv) < %}"(v).

vE[2n+v,2n o] CMJQn

Now take V' € (v,00), find n € Z such that 2" < v — V < 2""2 then

JT:(‘/) S C’M,l,g

As we have V — v < 272 we deduce

F(V) <

which holds for 0 < v < V.

Now define K =

4C2,

CMZ
inf Fv) < —22F(v
vE[2n+v, 27t o] ( ) CMJQn ( )

4C3 0,
==

—Ls “and choose V = eK. We then have

CM,1

Fo+V)< %]-'(v).
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(3.549)

(3.550)

(3.551)

(3.552)

(3.553)

(3.554)

(3.555)

(3.556)



Now assume that the following holds for n € N

Flu+nV) < ~F), (3.557)

(&

so we see that

1 1
Fo+n+1)V)=F(v+V)+nV) < e—n]-"(v +V) < en+1]~"(v) (3.558)
Hence we have that .
Fo+nV) < —F(v), (3.559)

e
holds by induction.
Now take v > 0 write it as v = nV + v, where 0 < v < V. We then have that

1 C C . -
Flv) < 1 f) £ =250 F(wg) = 2 F(u) < CarggF(vo)e™ ¥ < Copg g F(vo)e ™ (3.560)
ev %
for some o > 0. O

Corollary 3.8.1. We have in Xy for k < %, there exists a constant o > 0 such that

sup |2x(u, v) — 1| 4 sup |w(u, v) — M| < Crrpgexp (—a - v), (3.561)

and
I (u, v)| < Chrrgr— 2 exp (—a- ). (3.562)
Proof. This follows from (3.267) and (3.549). O

Remark 3.8.5. [t is in this sense that we say the metric is converging to a Toroidal Schwarzschild-

AdS metric of mass M, exponentially in v, in the Eddington Finkelstein gauge.

Corollary 3.8.2. In %4, for k < %, there exists a constant o > 0 such that

< Crrpgexp (—a-v). (3.563)

/r2li

‘wl(u,v) — M’

Proof. Write

@ (v, 12]2 M =2 (w(u,v) — M)
" 5o 2 (3.564)
4 ((3_4”91!’2 — 1> P <€—47r9¢ — 1> .
Taking absolute values the result then follows from theorem 3.7.1 and corollary 3.8.1. O
Corollary 3.8.3. We have that for k < %, the Lorentzian Penrose inequality
s%pr <r,. (3.565)

Furthermore we have along H that r converges to ry exponentially in v.
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Proof. This is an adaptation of the proof of proposition 3.7 in [HS13b] to this setting.
Assume for contradiction that » > r, + ¢ for some § > 0, held along H. Then by corollary

3.8.2 we have the existence of a v; > vy such that

p1 1 2M 2|M — |
2 > <1_2 T3 ) - 3 > ¢, (3.566)
holds on H N {v > v;}. Now integrating r,r > we see
Yr 1 1
—dv = ——— <C 3.567
[ ==+ g < (3567

holds for some uniform C' > 0. However from (3.566) we have

Tv ,,,.U B v ,LL -
/vv 200 = / XU 2 Caggd - (v = i), (3.568)

which is clearly a contradiction.
Now that we have seen r is bounded along H, we can prove the exponential decay through an

integrated decay estimate.

/ (T+ - T’(UH, 77)) dv < CM,l / ,uld’ﬁ + éM,l,ge(_BM’lvgv)
< Cuy / 7odT + Cypg ge” Bt (3.569)
< Chpy (14 — r(ugg,v)) + Caggge” Brte®.

From the positivity of r, — r(uy,v) we derive the integrated decay statement

/ (r —r(up, 0)) do < Cury (14 — r(ugg, v1)) 4+ Capgge” Prta, (3.570)

v1

Exponential decay follows in a similar manner to theorem 3.8.5. O]

3.9 THE MAIN THEOREM

Theorem 3.9.1. Consider a weak solution of the Finstein—Klein-Gordon system arising from
small initial data, within the class of square flat toroidal symmetries with 1 satisfying Dirichlet
or Neumann boundary conditions and a Klein-Gordon mass bound xk < % The associated
mazimal development of the solution is a black hole spacetime, with a reqular future horizon
and a complete null infinity. Furthermore for k < § the estimates of (3.267) and (3.442) hold
for any (u,v) in the regular region exterior to the apparent horizon. This implies that v decays

exponentially in v on this region.

We may remark that we can use these techniques to study toroidally symmetric solutions of the

Klein-Gordon equation on a fixed toroidal AdS Schwarzschild background. In this decoupled
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setting we have y = v = % and T = 0, and the following corollary.

Corollary 3.9.1. Let (M, g) be a fized toroidal Schwarzschild AdS spacetime with Eddington
Finkelstein coordinate system (u,v). Let k < % then the toroidally symmetric solutions of the

Klein-Gordon equation decay exponentially in the v coordinate on the black hole exterior.

It is worth contrasting this with the non symmetric results of chapter where only polynomial

decay can be established.

3.10 VACUUM RESULT

So far the restriction to a square flat toroidal symmetry was to emulate the spherical symmetry
situation of a Birkhoff theorem. As seen in [Gow74] there are more degrees of freedom to a flat
metric on a torus than a round metric on a sphere. We can evade trivial vacuum dynamics

within a rectangular flat toroidal symmetry class by making the following metric ansatz
g = —(u,v)dudv + r*(u,v) (6_‘/55(“’”)(1:152 + e\/gB(”’”)dyQ) : (3.571)

Here the periods of tori are allow to vary under a scalar field B. At different points (u,v),
we get rectangular tori which, unlike the case B = constant we cannot scale back to a unit

torus through coordinate transformations of x and y. If we study the now dynamical vacuum

equations
1 3
R;w - §g,u1/R - l_29,u1/ = 07 (3572)
with this ansatz, they reduce to
Ty (B,)?
8, <§> =~ (3.573)
To (B,)?
d, (ﬁ) = —drr 2, (3.574)
TuTy 3T o
Tuw = — , - ZﬁQ s (3575)
ruT’U
(log),, = o 4B, By, (3.576)
Buw = — B, — *B,. (3.577)
r r

We notice this system is equivalent to (3.8) - (3.12) where the Klein-Gordon field is massless
(a = 0). In contrast to the Bianchi IX system as studied in [Doll7al, the scalar curvature
of the group orbits is 0. Consequently (3.577) is a linear wave equation, making the analysis
much simpler. However as a = 0 corresponds to k = %, we cannot currently hope to pose any
other boundary conditions other than Dirichlet. Intuitively this makes sense, imposing Dirichlet
boundary conditions would mean fixing the periods of the torus at null infinity. Unfortunately
the main results of this thesis cannot be directly used. However as discussed there are only

very minor differences between the spherical and toroidal systems (at the reduced equation
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level). One could study this system in the same way as in [HS12], and [HS13b], (many of the

similarities have already been exhibited) to deduce stability.

Theorem 3.10.1. Consider an initial free data set (7, B), obeying the e-perturbed Schwarzschild-
AdS data set conditions (as defined in [HS13b]) with a = 0 on a null ray N(vy), and Dirichlet
boundary conditions. The associated maximal development is a black hole spacetime with a

reqular future horizon, and a complete null infinity. Furthermore the estimate

r%_“B(u, v)

< Dexp(—Chv), (3.578)

holds on the intersection of the reqular region of the spacetime and the exterior of the black
hole. From which we may deduce that the metric is converging exponentially in v, uniformly in

u, to a toroidal AdS Schwarzschild solution with mass M, in the Eddington-Finkelstein gauge.

Thus the toroidal AdS black hole is indeed a stable solution to the vacuum equations within

the symmetry class imposed by the metric ansatz.

139



[AAG18]

[AB15]

[ACD02]

[Aeal7]

[Arell]

[BCOS]

[BFS2]

[Bie09]

[Bir99]

[BS06]

[Buch9|

[CAN13]

REFERENCES

Y. Angelopoulos, S. Aretakis, and D. Gajic. Late-time asymptotics for the wave
equation on spherically symmetric, stationary spacetimes. Advances in Mathemat-
i1cs, 323:529-621, January 2018.

L. Andersson and P. Blue. Hidden symmetries and decay for the wave equation on
the Kerr spacetime. Annals of Mathematics, 182(3):787-853, November 2015.

M. Anderson, P. T. Chrusciel, and E. Delay. Non-trivial, static, geodesically com-
plete, vacuum space-times with a negative cosmological constant. Journal of High
Energy Physics, 2002(10):063-063, October 2002.

B. P. Abbott et al. GW170814: A Three-Detector Observation of Gravitational
Waves from a Binary Black Hole Coalescence. Physical Review Letters, 119(14),
October 2017.

S. Aretakis. Stability and instability of extreme Reissner-Nordstrom black hole
spacetimes for linear scalar perturbations 1. Communications in mathematical
physics, 307(1):17, 2011.

R. Beig and P. T. Chrusciel. Stationary Black Holes. arXiv:gr-qc/0502041, February
2005. arXiv: gr-qc/0502041.

P. Breitenlohner and D. Freedman. Stability in gauged extended supergravity. An-
nals of Physics, 144(2):249-281, December 1982.

L. Bieri. An extension of the stability theorem of the Minkowski space in general
relativity. J. Differential Geom. 86 (2010), no. 1, 17-70., April 2009.

D. Birmingham. Topological black holes in anti-de Sitter space. Classical and
Quantum Gravity, 16(4):1197-1205, April 1999.

P. Blue and A. Soffer. Errata for “Global existence and scattering for the nonlinear
Schrodinger equation on Schwarzschild manifolds”, “Semilinear wave equations on
the Schwarzschild manifold I: local decay estimates”, and “The wave equation on
the Schwarzschild metric II: Local decay for the spin 2 Regge Wheeler equation”.
arXiv:0608073 [gr-qc], August 2006.

H. A. Buchdahl. General relativistic fluid spheres. Phys. Rev., 116, November 1959.

L. Costa, A. Alho, and J. Natario. The problem of a self-gravitating scalar field
with positive cosmological constant. Annales Henri Poincaré, 14(5):1077-1107, July
2013.

140



[CBG69]

[Chr86al

[Chr86b]

[Chr87al

[Chr87b]

[Chr9g]

[Chr09]

[Chr16]

[CK93]

[Daf05)

[DHO6]

[Dol17a]

[Dol17b)

[DRO5)

[DRO7a]

Y. Choquet-Bruhat and R. Geroch. Global aspects of the Cauchy problem in general
relativity. Communications in Mathematical Physics, 14(4):329-335, 1969.

D. Christodoulou. Global existence of generalized solutions of the spherically sym-

metric Einstein-scalar equations in the large. Communications in Mathematical
Physics, 106(4):587-621, 1986.

D. Christodoulou. The problem of a self-gravitating scalar field. Communications
in Mathematical Physics, 105(3):337-361, 1986.

D. Christodoulou. A mathematical theory of gravitational collapse. Communica-
tions in Mathematical Physics, 109(4):613-647, 1987.

D. Christodoulou. The structure and uniqueness of generalized solutions of the

spherically symmetric Einstein-scalar equations. Communications in Mathematical
Physics, 109(4):591-611, 1987.

D. Christodoulou. The instability of naked singularities in the gravitational collapse
of a scalar field. Annals of Mathematics, Second Series, Vol. 149, No. 1 (Jan.,
1999):183-217, December 1998.

D. Christodoulou. The formation of black holes in general relativity. European
Mathematical Society, 2009.

D. Christodoulou. The action principle and partial differential equations. (AM-146).
Princeton University Press, March 2016.

D. Christodoulou and S. Klainerman. The global nonlinear stability of the Minkowsk:i

space. Princeton : Princeton University Press, 1993.

M. Dafermos. Spherically symmetric spacetimes with a trapped surface. Classical
and Quantum Gravity, 22(11):2221-2232, June 2005.

M. Dafermos and G. Holzegel. On the nonlinear stability of higher-dimensional
triaxial Bianchi IX black holes. Adv. Theor. Math. Phys. 10 (2006), pages 503-523,
2006.

D. Dold. Global dynamics of asymptotically locally AdS spacetimes with negative
mass. arXiv:1711.06700 [gr-qc, physics:hep-th], November 2017.

D. Dold. Unstable mode solutions to the Klein-Gordon equation in Kerr-anti-de Sit-
ter spacetimes. Communications in Mathematical Physics, 350(2):639-697, March
2017.

M. Dafermos and I. Rodnianski. A proof of Price’s law for the collapse of a self-
gravitating scalar field. Inventiones mathematicae, 162(2):381-457, 2005.

M. Dafermos and I. Rodnianski. A note on energy currents and decay for the wave
equation on a Schwarzschild background. arXiv:0710.0171 [gr-qc/, September 2007.

141



[DRO7D)

[DROS]

[DR09a|

[DRO9D]

[DR10]

[DRSR14]

[Dunl14]

[DW16]

[Dyal0]

[Fral6]

[Frig6]

[Fri95)]

[Fri09]

[Gow 4]

M. Dafermos and I. Rodnianski. The wave equation on Schwarzschild-de Sitter
spacetimes. arXiv:0709.2766 [gr-qc], September 2007.

M. Dafermos and I. Rodnianski. Lectures on black holes and linear waves.
arXiw:0811.0354 [gr-qc, physics:math-ph/, November 2008.

M. Dafermos and I. Rodnianski. A new physical-space approach to decay for the
wave equation with applications to black hole spacetimes. XVIth International
Congress on Mathematical Physics, pages 421-433, October 2009.

M. Dafermos and I. Rodnianski. The red-shift effect and radiation decay on black
hole spacetimes. Communications on Pure and Applied Mathematics, 62(7):859—
919, July 20009.

M. Dafermos and I. Rodnianski. Decay for solutions of the wave equation on Kerr
exterior spacetimes I-II: The cases |a] << M or axisymmetry. arXiv:1010.5132
[gr-qc], October 2010.

M. Dafermos, I. Rodnianski, and Y. Shlapentokh-Rothman. Decay for solutions of
the wave equation on Kerr exterior spacetimes III: The full subextremal case |a|<
M. Annals of Mathematics, 183(3):787-913, 2014.

J. Dunn. Stability problems in AdS spacetimes. Master’s thesis, The University of
Warwick, August 2014.

J. Dunn and C. Warnick. The Klein—Gordon equation on the toric AdS-
Schwarzschild black hole. Classical and Quantum Gravity, 33(12):125010, 2016.

S. Dyatlov. Exponential energy decay for Kerr-de Sitter black holes beyond event
horizons. Mathematical Research Letters, 18(5), October 2010.

A. Franzen. Boundedness of massless scalar waves on Reissner-Nordstrom inte-
rior backgrounds. Communications in Mathematical Physics, 343(2):601-650, April
2016.

H. Friedrich. On the existence of n-geodesically complete or future complete solu-
tions of Einstein’s field equations with smooth asymptotic structure. Communica-
tions in Mathematical Physics, 107(4):587-609, 1986.

H. Friedrich. Einstein equations and conformal structure: existence of anti-de Sitter-
type space-times. Journal of Geometry and Physics, 17(2):125-184, 1995.

H. Friedrich. Initial boundary value problems for Einstein’s field equations and
geometric uniqueness. General Relativity and Gravitation, 41(9):1947-1966, 2009.

R. Gowdy. Vacuum spacetimes with two-parameter spacelike isometry groups and
compact invariant hypersurfaces: Topologies and boundary conditions. Annals of
Physics, 83(1):203-241, March 1974.

142



[HET73]

[Hem04]

[HLSW15]

[HMOg]

[Hol10a]

[Hol10D)

[Hol12]

[HR99)

[HS12]

[HS13a]

[HS13b)

[HV16]

[HW13]

[HW14]

S. W. Hawking and G. F. R. Ellis. The large scale structure of space-time, volume
Cambridge Monographs on Mathematical Physics, No. 1. Cambridge University
Press, London-New York, 1973.

S. Hemming. Aspects of quantum fields and strings on AdS black holes. PhD Thesis,
University of Helsinki, 2004.

G. Holzegel, J. Luk, J. Smulevici, and C. Warnick. Asymptotic properties of linear
field equations in anti-de Sitter space. arXiwv preprint arXiw:1502.04965, 2015.

Gary T. Horowitz and Robert C. Myers. AdS-CFT correspondence and a new
positive energy conjecture for general relativity. Physical Review D, 59(2):026005,
December 1998.

G. Holzegel. On the massive wave equation on slowly rotating Kerr-AdS spacetimes.
Communications in Mathematical Physics, 294(1):169, February 2010.

G. Holzegel. Stability and decay-rates for the five-dimensional Schwarzschild metric

under biaxial perturbations. Advances in Theoretical and Mathematical Physics,
14(5):1245-1372, 2010.

G. Holzegel. Well-posedness for the massive wave equation on asymptotically anti-de
Sitter spacetimes. Journal of Hyperbolic Differential Equations, 09, June 2012.

S. W. Hawking and H. S. Reall. Charged and rotating AdS black holes and their
CFT duals. Physical Review D, 61(2), December 1999.

G. Holzegel and J. Smulevici. Self-gravitating Klein—Gordon fields in asymptotically
anti-de-Sitter spacetimes. Annales Henri Poincaré, 13(4):991-1038, May 2012.

G. Holzegel and J. Smulevici. Decay properties of Klein-Gordon Fields on Kerr-AdS
spacetimes. Communications on Pure and Applied Mathematics, 66(11):1751-1802,
November 2013.

G. Holzegel and J. Smulevici. Stability of Schwarzschild-AdS for the spherically sym-
metric Einstein-Klein-Gordon system. Communications in Mathematical Physics,
317(1):205-251, January 2013.

P. Hintz and A. Vasy. The global non-linear stability of the Kerr-de Sitter family
of black holes. arXiw:1606.04014 [gr-qc, physics:math-ph/, June 2016.

G. Holzegel and C. Warnick. The Einstein-Klein-Gordon-AdS system for general
boundary conditions. Journal of Hyperbolic Differential Equations, 12, December
2013.

G. Holzegel and C. Warnick. Boundedness and growth for the massive wave equa-
tion on asymptotically anti-de Sitter black holes. Journal of Functional Analysis,
266(4):2436-2485, February 2014.

143



[Ker63]

[K1a87]

[Kod80]

[Kom13]

[Kot18]

[KRS15]

[Lads?]

[Lem95]

[LM17]

[LRO5]

[LSO0]

[LS15]

[LT17]

[Luk10]

[Mal99)]

R. Kerr. Gravitational field of a spinning mass as an example of algebraically special
metrics. Physical Review Letters, 11(5):237-238, September 1963.

S. Klainerman. Remarks on the global sobolev inequalities in the minkowski space
Rn+1. Communications on Pure and Applied Mathematics, 40(1):111-117, January
1987.

H. Kodama. Conserved energy flux for the spherically symmetric system and the
backreaction problem in the black hole evaporation. Progress of Theoretical Physics,
63(4):1217-1228, April 1980.

J. Kommemi. The global structure of spherically symmetric charged scalar field
spacetimes. Communications in Mathematical Physics, 323(1):35-106, August 2013.

F. Kottler. Uber die physikalischen Grundlagen der Einsteinschen Gravitationsthe-
orie. Annalen der Physik, 361(14):401-462, January 1918.

S. Klainerman, I. Rodnianski, and J. Szeftel. The bounded L2 curvature conjecture.

Inventiones mathematicae, 202(1), August 2015.

O. Ladyzhenskaya. The boundary value problems of mathematical physics, volume 49

of Applied mathematical sciences. Springer-Verlag, 1985.

J. Lemos. Two-dimensional black holes and planar general relativity. Classical and
Quantum Gravity, 12(4):1081-1086, April 1995.

P. LeFloch and Y. Ma. The global nonlinear stability of Minkowski space. Einstein
equations, f(R)-modified gravity, and Klein-Gordon fields. arXiv:1712.10045 [gr-qc],
December 2017.

H. Lindblad and I. Rodnianski. Global existence for the Einstein vacuum equations
in wave coordinates. Communications in Mathematical Physics, 256(1):43-110, May
2005.

I. Laba and A. Soffer. Global existence and scattering for the nonlinear Schrodinger
equation on Schwarzschild manifolds. arXiv:math-ph/0002030, February 2000.

P. LeFloch and J. Smulevici. Weakly regular T2 symmetric spacetimes. The global
geometry of future developments. Journal of the European Mathematical Society,
17(5):1883-1292, 2015.

H. Lindblad and M. Taylor. Global stability of Minkowski space for the Einstein—
Vlasov system in the harmonic gauge. arXiv:1707.06079 [gr-qc], July 2017.

J. Luk. Improved decay for solutions to the linear wave equation on a Schwarzschild
black hole. Annales Henri Poincaré, 11(5):805-880, October 2010.

J. Maldacena. The large N limit of superconformal field theories and supergravity.
International Journal of Theoretical Physics, 38(4):1113-1133, 1999.

144



[Mor61] C. Morawetz. The decay of solutions of the exterior initial-boundary value prob-
lem for the wave equation. Communications on Pure and Applied Mathematics,
14(3):561-568, August 1961.

[Mor66] C. Morawetz. Exponential decay of solutions of the wave equation. Communications
on Pure and Applied Mathematics, 19(4):439-444, November 1966.

[Mor68] C. Morawetz. Time decay for the nonlinear Klein-Gordon equation. Proc. R. Soc.
Lond. A, 306(1486):291-296, September 1968.

[Sbil5] J. Sbierski. Characterisation of the energy of Gaussian beams on Lorentzian man-
ifolds: with applications to black hole spacetimes. Anal. PDE, 8(6):1379-1420,
2015.

[Sbil6] J. Sbierski. On the existence of a maximal Cauchy development for the Einstein
equations - a Dezornification. Annales Henri Poincaré, 17(2):301-329, February
2016.

[Sch16] K. Schwarzschild. Uber das Cravitationsfeld einer Kugel aus inkompressibler
Fliissigkeit nach der Einsteinschen Theorie. Sitzungsber. d. Preuss. Akad. d. Wis-
senschaften, 1916.

[SW10] K. Schleich and D. Witt. A simple proof of Birkhoff’s theorem for cosmological
constant. Journal of Mathematical Physics, 51(11):112502, November 2010.

[Tay17] M. Taylor. The global nonlinear stability of Minkowski space for the massless
Einstein—Vlasov system. Annals of PDE, 3(9), June 2017.

[Warl3] C. Warnick. The massive wave equation in asymptotically AdS spacetimes. Com-
munications in Mathematical Physics, 321(1):85-111, July 2013.

[Warl5] C. Warnick. On quasinormal modes of asymptotically anti-de Sitter black holes.
Communications in Mathematical Physics, 333(2):959-1035, January 2015.

[Wyal7] Z. Wyatt. The weak null condition and Kaluza-Klein spacetimes. arXiv:1706.00026
[gr-qc/, May 2017.

145



APPENDIX

A.1 INTRODUCTION

In this appendix we consider a slightly lower regularity local wellposedness result, and extension
principle for the Einstein—Klein-Gordon system. This extension principle is motivated heavily
by the work of Kommemi [Kom13], however for the problem of interest we need to relax the

regularity of 1, to being in L? as opposed to in C°.

A.2 LocAL WELLPOSEDNESS IN THE INTERIOR

A.2.1 THE SYSTEM

We will consider the system

1
R, — éng, + Agy = 87T,

1 m
Ty = VTt = L0 VotV — 2 g7, 1)

2
Uy —myp =0,
where m and A are real parameters. We then further restrict to a metric of the form
g = —(u,v)dudv + r*(u, v)do}, (A.2)

where

df? +sin? (0) dp?>  for k=1
dop = { da? + dy? for k=10 (A.3)
dp? +sinh? (p) dp?  for k= —1
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and u, v are null coordinates.

The system then reduces to

Tu 1#3
2
T\ _ ¥y
&, (@) = 471'7’92, (A5)
Tl 002, N 2
= — Q —r) — k— A.
Tuw " + mmryQ° + il k4r’ (A.6)
TuTo 0?2
Ty T m
Vuy = ——y — —thy, — — Q%P (A.8)
r r 4
We remark that a choice of 5 5
— a
A:l—Q, m:l—27 l{?ZO, (Ag)

reduces us to the AdS system we are interested in.

A.2.2 THE DOMAIN

Define X = [0,d] x {0} U{0} x [0, d], the two null rays emanating from the origin. We then let
0 < d <d, and define
Os = [0,4] x [0, 4], (A.10)

to be our domain.

(d,0)

Figure A.1: Diagram of the sets.

Then we denote the restricted initial data rays as
X' =[0,0] x {0} U {0} x [0,4]. (A.11)

Proposition A.2.1 (Local Wellposedness). Consider the set X = [0,d] x {0}U{0} x [0,d]. Let
r € CY(X) be a positive function with the additional property Ty, 1w, € C°(X). Let Q € C°(X)
also be a positive function with Q, € C°(X). Let v € C°HY(X) with ¢, € C°(X). Suppose
that the equations (3.8) and (3.9) hold on [0,d] x {0}, and {0} x [0,d] respectively. And let
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Cr denote the C™(u) norm on [0,d] x {0} and CJ' denote the C™(v) norm on {0} x [0,d]. We
adopt a similar notation for the Sobolev norms. For a domain D define the following norm

N(D) = Sup{llecm MNlegms s Woullog s (Woullog s [Irlley s Nlrlloy s llruulleg s lTrulleg

Puellg » el log 11 g > 17 e - 190y » 19l - 12l lg > 12l » 1197 g » 1127 g } -
(A.12)
Where all the norms are taken to be over D.
Further more assume that )
— < Q<N, A.13
=< (A1)
and
0<ro<r<R<oo. (A.14)

Then there exists a & > 0 depending only on N, such that the Einstein—Klein-Gordon system
has a unique 20 solution (as defined in definition 3.4.5) on the set [0,0] x [0,0].

A.2.3 FUNCTION SPACES

We define the metrics

04 Q
do(Q1,9s) = ||log < ) + Hlog <—1) : (A.15)
QQ Q2 wllco
dr(rh 7'2) = Hrl - TQHCO + Hrl,u - TZ,UHCO + Hrl,v - TZ,UHCO +‘|r1,uv - TZ,uvHCO + Hrl,uu - r2,uuHCO )
(A.16)
and finally
dy(V1,92) = |[1 — Vallcogn + [|[¥1 — Vallco + 110 — V2ullco 5 (A.17)
where we recall that
1¢1lGom = sup / Vi + P du + S / P2+ P2dv. (A.18)
(u,v)e0s (u,v)e0s

For notational ease we will define 3; = (r;, 22, ¢;) to be a solution triple, and denote the metric

on this space by
d(21, %) = dp(r1,72) + da(Q1,Q2) + dy (1, ¥2). (A.19)

We then define
Q(u, 0)Q2(0, v)

Q= A2
we will insist on Q > % > 0. Where N is a constant.
Furthermore define
=r(0,v) 4+ r(u,0) —r(0,0), (A.21)
— 1
Y= (¥(0,v) +9(u,0)). (A.22)
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We now define C!*(Os) to be the space of positive functions r € C*(0s), such that 7,
ruu € C°(0;), and agree with 7 on X’. We define C})" H'(Os) as the space of continuously
differentiable in u functions, that agree with ¢ on X', and are both continuous in v with values
in H!(Os) and continuous in v with values in H!((s). We also define C5"(Os)as the space of
real valued functions €2, such that Q are C° in Oy agree with 2 on X’, and are such that the u
derivative exists and is continuous. We then define C = C}(0;) x CF H (Os) x C&F(0s) and
equip it with the the metric d(X;,¥s). This is then a complete metric space.

We then define the ball of radius b by these norms and centre it at (7,2,v). We denote it by
By.

DOMAIN RESTRICTION

We from continuity we can restrict d, such that on the restricted initial data ray we have

b
’W(Oav)”com([o,a}) < 3 (A.23)
b
[ (w, 0| co g o5y < g (A.24)
b
[u(w, 0)] copo,5) < 3 (A.25)
19l eocxny + 1[Rullcogen < M- (A.26)
A.2.4 THE MAP
We define a map from C}*(0s) x CptHY(Os) x CH (D) by
TUTU 0?
log Q(u, v) = log Q + —47mpu¢v + kpdvdu (A.27)
A 02
(u,v —7‘—1—/ / 4 rQ? /{;4Tdudv (A.28)
¥ = unique H' solution of: 8,0,1 = —T—”wu — r—"wv — TQ%ﬁ
) r r 4 (A.29)
with initial data |—o} =: 12 and boundary data v|q,—o} =: 1.
A.2.5 USEFUL LEMMAS
Lemma A.2.1. let ¢ € C)"H'(Os) then
| [ vt < 3110120 (A.30)
0o Jo
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Proof. By the Cauchy Schwartz inequality we have

/Ou /OU Vutbydvdu < (/Ou /vaidvdu>é (/Ou /vagdvdu>é
(L wid“d“)i () ) 21 (A31)
< (/OU|I¢||250H1 dv>2 (/Ou||¢||?;om d“)2

= 0 [1¢llcom -
O
A.2.6 MAPPING BACK TO THE BALL
() ESTIMATES
log() estimates
As Q € By, we get the following estimate
Q
«(3) (A32)
This implies that
Ne "< Qe <Q<Qe® < Nev. (A.33)
From directly studying the map, applying lemma A.2.1, and ML inequalities we see that
Q 5 k
log =| <4 | 4rm ||¢||éoH1 + =5 |Irullco |Irollco + |—|25N262b = 0C,. (A.34)
Q U 4rg
For ¢ sufficiently small we map back to the ball.
The following inequality then follows
1 A -
N e 00 < ) < NeP@ =: G, (A.35)
log(€2),, estimates
Differentiating (A.27)
(10g0) = (10g9), + / w5 (A.36)
g “ - g u 0 u v 7”2 47“2 ’ .
we deduce
Q 1 52 k|
<1og => < 6} (zm 0l allgo + 22 1ral o lIrulloo + '—L&N%%) (A3
Q o 4rg
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providing the  required smallness.

ESTIMATES

>

7 estimate

It is fairly easy to see from the map, and continuity estimates that

. _ 1 bz 22 A 22

=71 < 8% ( = liraleo lmsllen + 7 il l101120 g7 + B 1 2
64 4

(A.38)

I Ve ||w||co) -

7, and 7, estimates
We can compute these quantities by differentiating (A.28). As the integrand is continuous
and the set compact we get that it is in L', and we may use Fubini’s theorem. Applying the

fundamental theorem of calculus, we see

U,y A 0?
T(u,v), =Ty + / _7“: + Tmry?Q? + ZTQQ — l{:4—rdv, (A.39)
0
u A QQ
7(u, ), = Ty + / - PPQ? + ZTQZ — k4—rdu, (A.40)
0
from which
o 1 2 U pce
[Py —Tu| <0 — H?“uHco Irolleo +m[ml {lrllco ¥ llco e
(A.41)
' T IFlles N2 8 4 [ N2 100
and
~ _ 1 2 b 5202
Fo =Tl <0 | — H?“uHco rollgo + 7 [m] [|r[lco [[¥l]co =€
64 (A.42)
+ W o 22 1 i) = ety |
< 64 4rg 64° )
follow.
Twu and 7,, estimates
As Q € B, we have
Q
’ (log 5) < b, (A.43)
this implies ~
Q,
Q, < (b+ Q)ﬁ < (b+ Ne'). (A.44)
Writing 7, and 7, as
Py = / O (Tuw) du, (A.45)
0
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and

Tuu = / ) Oy (Tuy) dv. (A.46)
0
We then compute
Puvw = — TuaTol + — Tuluo? * + 120,02+ mmr 0 Q2 4 2mmrp, Q% + 2rmr? QA
+ %ruQQ + %TQQu - gQQur_l + §Q27’_2Tu, (A47)

Recall the 2 and €2, terms are bounded. All the other functions are continuous, and we can

put these in the supremum norms. Integrating over the domain we get the § smallness.

) ESTIMATES

C'H! and C° estimates

Lemma A.2.2. For F € L*(TJ;) there exists a sequence of functions F, € C*(LJ3) such that
F.— F in L?.

Now define
(1), (0,0) = 9y % 1c(0,v), (A.48)
where 7). is the standard smoothing kernel, then define
00.0) = 0(0.0)+ [ (), (0.0)a', (A.49)
Similarly
(%) (1, 0) = Py * ne(u, 0), (A.50)
and Y
e(u,0) =1(0,0) +/0 (1), (U, 0)dud, (A.51)

from this construction it is standard theory to see that

Ve =0, W)y = Yuy,  (Ye)o = o, (A.52)

in L? as € — 0 with ¥ (u,0) € C>(]0,0)), ¥(0,v) € C>= ([0, 9)).
We remark that these functions have been constructed to agree at (0,0) are are therefore
admissible

Now we solve the equation
0,0, = F, (A.53)

with initial data .(u,0) and boundary data 1.(0,v). As we have a smooth solution we derive

the following estimates (see section A.4.1) after passing € — 0

N 3
[9]] . < 1y + el agny + 0 izl lagaey = 8 Wallagun + 203 [1Fll oy - (A54)

COH!
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Showing

b 3
<42 6 lnallagn + O 1l g + 20 I Fllage, (A.55)

b - 9|

cogl

As F can quite clearly be put into L?, We have for small §, that we map back to the ball.
From the Sobolev inequality

[ = o < |[¢]

we immediately see that we map back to the ball.

A.56
copt’ (A.56)

Finally for the v, we use the following lemma:

Lemma A.2.3. For F € COL!(Us) we can find a sequence of functions F. € C*(0J3) such that
F.— F in COL..

(See section A.4.1 for proof).
Studying equation
Oy (V) = F, (A.57)

by integrating and taking the limit as e — 0,
— 1
ku(uvv) - %(Ua U)Hcg < 5 ||¢1,uHCO(/\//) + HFHCEL}J(D(;) : (A'58)
Evaluating the norm of F, we see
1 m 2 1 1
1Fllegryop < 0 lrolleo [1¥ullco + 07 118010 [1¥llco + 0> lrulloo [1¥olleom (A59)

so for ¢ small enough we map back to the ball.

A.2.7 CONTRACTION MAP

Throughout the contraction map argument we will often make use of the following estimates.

Lemma A.2.4. There exists a constant Cy, > 0 such that

Q
2

Proof.

|Ql o QQ| — ‘elogﬂl - elogﬂg‘

elogQQ (elog(g;> — 1)’ <A61)

] i
og o, )|

<

S 6N6b+0b
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Lemma A.2.5. Let A;, Ay > 0, and By, By be functions. The following inequalities hold

|A1 By — Ao By| < |Ay| |B1 — Bs| + | B2| |A1 — A,
|AT — A3| < (JA1] + |As]) | A — Asf,
‘ 1 1 1

— < — A, — A,
Ay Ay T |A1A2|| ! 2

(A.62)

CONTRACTION FOR )

log () estimates

We can see the contraction for this directly

Ql /u /v (Tl AR T uTQU) ( Q? Q% )
log —| = AT + ATy i) (it — 220 4 (L — kL) dudul,
g o, A (=4 i, Voutha) 72 2 PTER

(A.63)

we have three terms to deal with. The second two are fairly simple, estimating with (A.61),
(A.62), and that we map back to the ball. From the integrals we get a §% smallness here. The
first term requires more care, due to the regularity.

Firstly factor
— A 1 + AT ey = AT (V10 (V1,0 — Vo) + Va0 (V10 — Y2u)) - (A.64)
Then performing ML, and Cauchy Schwartz inequalities we estimate
| [ minin + amim ot < rlon [ [ 1 = ol dude

+ / / |1/}2,v| dUdU le,u - wQ,uHco
0 0

. (A.65)
< 0247 |[Yh1,ullco |1 — Y2ll o
3
+ 0247 |[Y2] | co g [[¥1,0 — Y2l o
<620 - d(S, D).
We thus have R
Q
log —| < 62Cy - d(Zy, Ta). (A.66)
Qs
log (), estimates
Recall the map for this variable is
. — v TuTo 02
<log Q) = (logQ), + | —4mduir, + "5+ ko dv. (A.67)
u 0
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This is a similar argument as the map for log Q, only the integral in u is not present. (This

corresponded to a higher power of §). We immediately see that

0
log | =
Qs y

<620, d(S), D) (A.68)

CONTRACTION FOR 7T

The maps for 7 and its derivatives only contain continuous functions. This means the estimates
(A.61), and (A.62), will suffice to estimate the integrand in the desired form. Integrating then
gets us the required § or 6% smallness factor

d(’f’Al, 722) < min (5, (52) de(zl, 22) (A69)

For clarity we include that we may write

Puow = — TuuTvT_l — rurwr_l + 7’37“1,7’_2 + eru¢292 + Qerl/zquQ + 27rm7“@/)QQQu
A A k k (A.70)
—r, 0% 4+ =rQQ, — =QQrt+ =Q% 2,
—|—47’u +2ru2 7“+47’7“,
as
Fuvw = — TuaTol + — TuTusl © + 7“37%7“72 + mmr * Q2 4+ 2rmrn), Q% + 2rmrp*Q? log (),
A A k k
+ =1, Q% + =rQ%log (), — =2 log (), r~ ' + = Q> ?r,.
4 2 2 4
(A.71)
CONTRACTION FOR @Z)
Contraction in the C°H' norm
It follows from the energy estimates that
X 2 5 o
2
) — |, < /0 /0 (F\ — Fy)*dudv. (A.72)

Expanding the RHS integrand we see

Tu /ru m TU ,ru m
Fi—Fy=— wm—l—wm—zaiwl—( 2w2u—2—w2v—zaiw2), (A.73)

which we regroup into the low regularity terms L and the continuous terms C.

2.0 ,u T2, (AR?
F—F = (j—’%,v - ;—’@Dl,v) ( 20 g — — ¢1u +— Q 12, — 9%1/11) : (A.74)
2 1

[ J/

L C
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Estimating with Cauchy’s inequality we see we can estimate by

(Fy — F5)* < 2L% + 207, (A.75)
the C' terms are all continuous, and thus trivial to deal with. We look at L terms which require
more care. First write the L terms by

B 762_: (1/}2 v ¢1 U) + ¢1 (7"2 w— T u) + wl Url_7u (7"1 B TQ) ’ <A76)

rira

Using Cauchy’s inequality iteratively we have

L? T2 2 2 1)’ 2 2 T ’ 2
4 < ( ) (¢2 v ¢1,U) + ’(/)171] ( ) (TQ,u - rl,u) + ,lvbl,v ( ) (Tl - TQ) : (A77)
T 9

2 r1To

Estimating term by term

// (T) (Y20~ ¢1,U)2dudv§’T2_

)
sup [ s = o <
co u Jo

2oy — |2
CO

T2
78)
5 6 12\2 5
/ / U (— ) (rou — rlﬁu)Q dudv < 0 sup (/ 3 vdv) 71,0 — 7”2,u||200= (A.79)
0o Jo T \T2 T2||co w 0 ’
r r 2 Y
/ / ( 1”) (ry —74)* dudv < 6 ( 1’”) sup (/ w%vdv) || — r2||éo . (A.80)
1T "r2/) |l v \ooo
Thus we are able to conclude that
. 12
b1 =4[, < Cuad - d(S1,52)" (A81)
COH!
Contraction in C° for 1
By the fundamental theorem of calculus
él(u U) u (% ‘ - / wlu w2udu
([(100) (] (o))
< ([ 1au) ([ (i) du)
0 0 (A.82)
< 82 ||¢h — @@2‘
COH!

< Cb,l,afsg d(Xq, ).

Contraction in C° for for v,

The wave equation implies the following estimate

T2u Tlu T2v Tlv

—ww - —z/m wlu + — Q Sy — wal dv.

(A.83)

w2u_

Pra(u,v) = Vo, )| < /0 5
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From the continuity of the functions, only the first two terms in the integrand are non trivial.

s
dv—i—/
0

1 1
62 |1y — ¢2||COH1 + 62 [|r1 — 7”2,u||oo

( / w%m)
co \Jo

Explicitly we are dealing with

b P
/ dv</ T2u
0 0

: (1/J2,'U - wl,v) ¢1,U

)

T2u Tu

T u
1/12u——¢1v +(7“1—7”2) L ?/fl,v dv

([ )

(A.84)

(T2,u - Tl,u)

T2

T2

<

CO

+ 0% ||r1 — 7| o

It thus follows that

~

¢1,u(u’ U) - 1&2,11(“7 U)

)CO < Chrad® - d(S1, ). (A.85)

Hence for § sufficiently small we have a contraction. A unique solution of the desired regularity

follows from Banach’s fixed point theorem.

A.2.8 PROPAGATION OF CONSTRAINTS

By calculation it follows from equations (A.6)-(A.8) that the following equations hold

0, (900 (55) + dmrut) = =" (= 2n gt 4 amra) = = (000, ({g) + 4mrat),
(A.86)

and
2 2) _ _Tu (2 2
a, (Qa (92)+47mp) 7(&28 (QQ)+4W¢) (A.87)
These are homogeneous equations, as the constraint holds on the initial data rays by assump-

tion, they must propagate. That is

To :
(% (@) = —471'7"@, (A88)
holds almost everywhere and that
T 2
D, (@) = —dmr . (A.89)

holds classically.
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A.3 EXTENDIBILITY CRITERION

Definition A.3.1. Define the timelike future/past of a point p

I*(p) == pU{q € M|Fy:[0,1] = M,~5(0) = p,y(1) = q|¥ future(+) or past(-) directed, timelike}
(A.90)
and the causal future/past of p

JE(p) = pU{g € M|y : [0,1] = M, (0) = p, (1) = gl future(+) or past(-) directed, causal}.
(A.91)

Proposition A.3.1 (Extendibility criterion). Let p = (U,V) € Q*\Q*, and ¢ = (U, V') €
(I=(p) N Q") \{p} be such that the set

D= (J"a)NnJ (p) \{p} C QF, (A.92)

then we have that
N(D) = . (A.93)

Proof. Assume the contrapositive. Suppose that N = 2N (D) < co. Now corresponding to this
N there is a 6 > 0, from the previous proposition that we can solve on a domain [ls. Consider
the point (U — %5, V— %5) Take ¢ small enough so this point is in Q. Translate so this point
is at the origin (0,0). As Q7 is open we have from continuity the existence of 6* € (14, ) such
that
X*={0} x [0,8*]U[0,6"] x {0} C QF, (A.94)
and that the assumptions of the previous proposition hold. Thus there exists a unique solution
in
E =10,0"] x [0,07]. (A.95)

By uniqueness this coincides with previous solution on the subset DN E. As €U QT is the
quotient of a maximal development of initial data, we get from the maximality of QT that
EUQT C Q. So we have that p € Q7. ]

A.4 INTERIOR EXTENSION PRINCIPLE

Let G be either §?, T2 or &,.

Proposition A.4.1. Let (QT x G, g,v) denote the maximal 20 extension of an asymptotically
AdS initial data set as defined in 3.4.2. Suppose p = (U, V) € QF. If

D=[U Ul x[V,V\{p} cQ, (A.96)

has finite spacetime volume,
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o and there exist constants

0<rg<r<R<oo, forall(u,v)eD, (A.97)

then p € QF.

Proof. Firstly defining y = %. Write the Raychaudhuri equation (3.8) as

Arr

(Out)? ~ ryr ™2, (A.98)

Oy log x =

u

we know that at Z, we have r, < 0 (spacetime is aAdS) so we have that x|z < 0. This implies

!
X = X|u1 exXp (/I :-T (3u¢)2du) > (A99)

u

and thus r, < 0 in the maximal development.

Now from our assumptions on D we have
VU
/ / Q*dUdV < O, (A.100)

and .
c <ro<r(u,v) <R<C, (A.101)

for some constant C' > 0. Continuity and compactness tells us that on [U’, U] x {V'} and
{U"} x [V', V] we have the estimates

1
N<—TTU<N, lrro| < N, |rp] < N, || < N, |rwa] < N, |rw| <N,

(A.102)
I, <N, |logf] < N.
for some constant N. We now write (A.6) in the form
2202 0 N age
Oy (r7y) = Tmro=Q° + i 0 — /CZ (A.103)

Integrating the above twice, and using our bounds on the spacetime volume and r, we get
VU R
/ V2P dudv < C. (A.104)
! Ul
Where C' depends only on C,m, A and k. We can also form the pointwise estimate

1 U U
sup |rr,| < N + —/ (|k] + |Ar?) Q*du +/ ™ |m| r**QPdu. (A.105)
[U7,U] 4 Jur v’
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We integrate this to

.
/ sup |rry|dv < N(V = V') +C, (A.106)
7 [U,U]
and similarly
U
/ sup |rry|du < N(U -=U") +C. (A.107)
U (V]

We now partition D into sub diamonds given by
Dji = [uj, ujr1] X [vk, vps1] J,k=0,..., N, (A.108)

with ug = U', uy = U, vg = V', vy =V, and such that for a given ¢ > 0 we have

Vk+1 Uj+1 Vk+1 Uj+1 Vk+1 Uj+1
/ / Q*p? dudv —i—/ / Q*dudv +/ sup |rr,| dv +/ sup |rry| du < e.
ok uj vk uj v U] w  [V9V]

J

(A.109)
This is possible in view of the uniform bounds we proved. n
Define
Pjr = sup [rp(u, v)|, (A.110)
Djk
and pick an arbitrary point (u*,v*) € Dji, and consider (A.8) written as
m._ 2

au (T¢) - ¢au (Tv) - _TQ w; (Alll)

4

as the right hand side is continuous we note that this holds almost everywhere. We now wish

to integrate this in both variables, we first study

/ / %erwdudngijk'e, (A.112)
Vg, Uj

as for the term

[ s
IR

this estimate is obviously true for all the terms on the RHS with the exception of the first. We

(A.113)

LA 02
+7 rQ)? — kz) dudv < Pj - Cp e,

can estimate this by:

/ / =D dudy < k/ / —= |rry| dudv
Vg U r

v* C
< ij/ sup |rry| dv/ — - €.
v [ugsuga] u; g

J

(A.114)

160



So integrating (A.111), in u and v for sufficiently small €, yields the the uniform bound

Py, <2 < sup  |r|+  sup }|r1/1|> 2(Pjj—1+ Pj_1x). (A.115)

[uj,uj+1]x{vk} {ug }x [vg,vg 41

Inductively step back to [ and P, yielding a uniform bound for Pj; in terms of the initial

data. Taking a maximum over all the sub diamonds thus yields
sup 1| < C. (A.116)
D

The next step is to prove a pointwise bound for log (£2). Recalling the equation (A.7) the only

term we don’t yet know how to deal with is

u pv u pv 1
|| vendudo= [ [ 2000 (0) v (<20, = "0, - 0%0) dud
v v (A.117)

vorvi T
_ / 50,0 (87) + S0P 4 24, (0*) + 120, (u*) dudv.

/ Vl 2

We control the first two terms of the integral by previous estimates. We turn to look at the
third (the fourth is analogous),

/, / 2 (V) dUdU:/, [ W ,dv+/, / TW rm)fb?dudv. (A.118)

We can control the surface terms in view of (A.106) and the bounds on 7. As for the other

terms

A 02
/ | / ““’ Tum)@bdudv— / | / | W”zp + AmrgtQ? + S0 — kv dude,
(A.119)

term by term we can see that we control this from previous estimates. We conclude that

llog (Q)| < C. (A.120)
So we have uniform constants cg, ¢; such that

co < <cy. (A.121)
With this estimate reviewing (A.105) we thus can control

sup |r7y| + sup |rr,| < C. (A.122)
D D

Where the C' depends on the domain values. A uniform estimate for 7, now immediately
follows from the definition. Integrating (A.111) in v we get that 1, is uniformly bounded.
With these bounds we can thus integrate (A.4), and (A.5), to see that we have H' control of
1. Using this and the uniform bound on v we can upgrade this to full C°H* control. Now
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integrating (3.11) in v, estimating the 1,1, term by bounding v, uniformly, and applying the
Cauchy-Schwartz estimate on the 1, term, we see that we control €2, uniformly. Finally the r,,
estimate follows from expanding the derivative of (3.8). We thus have that in D the existence
of a0 < M < oo, where

M = sup {HM’H& , ||¢||Hg ’ ||1/’u||cg ) ||¢u||09 ) ||T||c}t ) HTH(Jg ’ ||7’uu||cg ; ||7’uu|’cg g

||7”uv||cg ) ||7”uv||cg ) T_IHCS ) |7"_1H(;3 ) ||Q||Cg ) ||Q||cg ) ||Qu||og ) ||Qu||03 ) |Q_1Hcg ) | Q_IHCg} .
(A.123)
An application of proposition A.3.1 shows us that we are done.
A.4.1 WAVE EQUATION THEORY, AND TECHNICAL RESULTS
Lemma A.4.1. For any 6 >0 and F € C>(03) the equation
0pOytp = F. (A.124)

With initial data ¥ (u,0) = 1o, and boundary data ¥(0,v) = 11, which satisfy the compatibility
condition 1y(0) = ¥1(0) and are C*. We have the following energy estimates for ¢

3
llosre < oallaguer + 12l Loy + 6 Iezall o + 8 1erall o + 262 11l 2y - (A.125)

Proof. Firstly we define the quantity

E,(u) = /Ov V2 (u,v")dv'. (A.126)
Now by multiply (A.124) by v, to get the equality
;%wazwﬁt (A.127)
Integrating twice gives
/Ov V2 (u,v') — 20,0 )dv = 2/0v /Ou Fu', 0", (u',v")dudv. (A.128)

We apply Fubini’s theorem, and write the expression as

/vai(u,v’)dv’—/va(o,v’)dv’zz/ou /OUF(u’,v’)wv(u’,v’)dvdu. (A.129)
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Taking derivatives in u we see
(A.130)

So we have )
d ) v 2
—FE,(u)z < </ F(u,v')Zdv) : (A.131)
du 0

integrating back in v we have

1
2

ol (0.0) < ol 0.0+ [ ([ Fwwtas) " ao

1
<20l 2 (0,0) + 62 || Fll L2 2 (u,0).

(A.132)

We repeat this in the u variable to deduce the inequality
Wl (1 0) + 1eull s (1,0) < ol s (0, 0) + 1l s (1, 0) +20% ||z (). (A133)
Which extends to
[l 2 (1, 8) + [[ull 2 (8,0) < [[2ll 2 (0,0) + [[¥nall 5 (6,0) + 252 [| Pl a5 (6,0). (A.134)
Taking C° norms gives
Wl logrz oy + 1allogra @y < 1¥20ll 2 + 101l 2 + 267 [1Fll 2oy - (A.135)

We now need the first order terms. From the fundamental theorem of calculus

[, v)| = ‘@D(O,U) e

(A.136)
< [¢(0,0)] 4 62 ([l 2 (u, v),

hence

[t (u, 0)l o < 1190, 0)ll g + 02 [[¢hull o2 (u,v). (A.137)
Thus from estimating

|7 (u,v :/ W(u, )| do’

|1[Zs (u,0) i |9 (u, v")] (A.138)

< 8 11(0,0)[72 + 0% |9l (u,v),

we conclude

2 (w,v) < 62 [[90(0,0)]| 2 + 0 [[Yullcora (u,v). (A.139)
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Similarly
1]l (u,0) <02 [l9(w, 0)[| 5 + O [[ull gz (usv). (A.140)

From here we can then see

1 1 3
||¢||03H,}(Dé)+||¢||03H5(D(;) <62 ||77/}1||L2(N’)+52 ||¢2||L2(/\/)+5 ||¢2,v||L2(N)+5 ||¢1,u||L2(N/)+252 ||F||L2(D5)‘
(A.141)
Finally

1 1 3
||w”COH1(D5) <02 leHLQ(N'/) + 02 ||w2‘|L2(/\/’) +0 szv“p(/\/) +0 le,uHm(M) + 20> ||F||L2(E|5) :

(A.142)
O
Lemma A.4.2.
W) _EHCO < [¥llcogn s (A.143)
Proof. From the fundamental theorem of calculus we see
() = 0(0.0)] = | [ bulu, )i
0
< 8% [[4hull g (u0) (A.144)
< [¥llcop
and
o(u,0) = 6(0.0)| = | [ vl )a
0
< 6% ||z (u,v) (A-145)

<[l -

Applying the triangle inequality we get

901, 0) = $(0,0)]+ 5 1 (,0) — 9w, 0)l < Wl cun - (A146)

N | —

W(Ua U) - E(u7 U)} <

We conclude

Hl/) _EHCO < ¥l cogn - (A.147)

Lemma A.4.3. We also have the following estimate for the u derivative
— 1
19w, v) = (u,0)|| g < 5 Wrallogney + 1Fllograoy) - (A.148)
Proof. First integrate (A.8) to get
1 1 v
Py (u,v) — 51/Ju(u,0) = §¢u(u,0) —i—/ Fdv. (A.149)
0
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From taking absolute values the result follows. ]

Lemma A.4.4. Let F € CVLL(0s) then there exists an F. € C*(Us) such that F. — F in
COLN(O, = [-9,20] x [—4,24]).

Proof. First fix 1 > € > 0 we then extend F' by for (u,v) € O,

Fo(u+6,v) =F(6 — u,v)
F.(u—46,v) =F(u,v) (A.150)
F.(u,v+9) =F(u,v),

(i.e. periodic in v and reflections in u). So F, € C°L?(CJ,), and agrees with F' on [;. Now let
v, be the standard smoothing kernel, and define on [,

F.(u,v) = / (V) Fe(u, v — v") X(e.5-2¢) (V') dV". (A.151)
R
Thus F, € C*(0.). We now extend to all of C%° (R?) by using a smooth cut-off function to 0

in the annular set [—26,360] x [—20,30]\L,, and 0 on the set [3d,00) X [3d,00). It is now our
goal to show that when restricted to (s we have that F. — F in CYL!(0,). We compute

1P ) = P o, = [ 5
/ /Iwe ) (F(u,v = 0")X(e5-20 (V') — F(u,v))| dv'dv
// |0 (V)| |(F (w0 — v')X(e5-20 (V) — F(u,v))| dvd/
/ e (V)] / Fu,v — V) X(e5-20 (V) — Fu,v))| dvdv’

~ [ lew) / | (F(

As F € C°L}(T,) we have that

/@a( N (F(u,v — v")X(e5-20 (V') — Fu,v)) dv'| dv

U,V — €W)X(e5—20) (€w) — F(u,v))] edvdw.
(A.152)

| (F(u,v — ew)X(es-20 (ew) — F(u,v))] |L% € CY([—46,20)). (A.153)
From compactness there exists a u* € [—0d, 20], such that

| (F(u,v — ew)X(es-20 (ew) — F(u,v))] |L% < |[(F(u*,v — ew)x(es-2)(€w) — F(u*,v))
(A. 154)
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By Fatou’s lemma

sup |[Fe(u, ) = F(u, )|y S/R\w(w)l sup |[Fe(u, ) = F(u, )|y dw

u€[0,0] u€(0,0]

< /haj(w sup HTew F(“‘?’)X(2E,5*2E)(.)) - F(ua)HL}) dw7

u€[0,0]
(A.155)
where 7 is the translation operator. The goal now is to show that
lim sup ||F.(u,-) — F(u,-)||;. =0. (A.156)
=0 u€(0,6] v
Assume the contrapositive. Then we may find 5 > 0, ¢, — 0, and u; such that
HTew (F(’LL, ')X(Ze,é—Ze)(')) - F(u, >HL11) > B (A157)

Since u € [0,0], we can assume (after extracting a subsequence) that u; — u* with u* € [0, d].

Now note the following inequality

HTew (F(uis )X 2e.5-20 () — F(us, - HL1 < HT““ (E (i, )X 2ei-260 () = T
7w (F G D200 () = F 20 Oy
+ || F(u*, )X 2er,6-261) ()—F(U*f)HL}J

+F () = Fui, )l

) -
= HF(’LL“ )X (2€;,0—2¢;) ( ) - F(U*7 .)X(26176726i)(.)”L%

+ HTeZw F(u ) ) X (2¢€;,0— 261)( )) - F(u*7')X(26¢,6726i)(.)”[/%

+HF ’)X?E&QQ()_F(U*?.)HL%
)=

+[F () = Fui, )|y -
(A.158)
Examining each norm one by one. For the first term
HF(Uu VX (26,6-2¢) (1) — F(u”, ')X(?ei,é—Zei)(')HL% — 0, (A.159)
this follows from F € C°L} and that u; — u*. For the second
[|7ew (F (", )X @er6-260 () = F(u", )X 2er 5260 ()| 1 = 0, (A.160)
this follows from the continuity of the translation map from L' — L'. For the third
[[F )X aeni-2e () — F )], 0, (A161)

the follows as integrand is dominated by 2 |F'(u*,-)|, and that the indicator function will con-
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verge pointwise to unity. Finally for the fourth
[[F(u”, ) = F(ui, )|l — 0,
this follows from F' € CYL} and that u; — u*. So we have shown that

HTE’U} (F(U“ ')X(26¢,5726)(')) - F(uu )‘ ‘L}) — Oa

which is a contradiction.
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