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1 Introduction

There is compelling evidence for the existence of dark matter (DM), a non-baryonic component
of the Universe. This unknown form of matter has a significant abundance, exceeding the
amount of ordinary baryonic matter by a factor of five [1, 2]. The most commonly assumed
production mechanism for DM in the early Universe is the freeze-out paradigm, with a
WIMP (weakly interacting massive particle) as a candidate for DM. In this framework, DM
interacts with the standard model (SM) particles of the thermal plasma, achieving thermal
equilibrium in the early Universe. As the Universe expands and cools, these interactions
become less frequent, leading to thermal decoupling also known as the freeze-out process,
which accounts for the observed DM relic abundance today [3–5]. To align with observations,
a thermally averaged annihilation cross-section O(10−26) cm3/s is generally needed [6]. In
the past decade, this mechanism gained significant popularity within the scientific community.
However, negative results from various experiments, including direct and indirect detection,
as well as collider searches, have greatly weakened support for this paradigm and forced
the community to look for other horizons.

From a particle physics perspective, other DM production mechanisms exist. For example,
DM can be generated from the SM bath by non-thermal processes, as in the case of freeze-
in, with FIMPs (feebly interacting massive particles) as candidates for DM [7–13]. Very
suppressed interaction rates between the dark and visible sectors, resulting in a lack of
thermalization, can occur in the context of renormalizable portals with couplings of the order
O(10−11), as in the case of infrared (IR) FIMPs. Alternatively, ultraviolet (UV) FIMPs appear
in the context of nonrenormalizable interactions, suppressed by a large energy scale [12],
typically higher than the maximal temperature reached by the SM thermal bath.

Interestingly, from a cosmological perspective, there is also a vast margin to play with.
The so-called standard cosmology is sustained by the usual assumptions: i) the SM entropy
was conserved, and ii) the Hubble expansion rate of the Universe was dominated by SM
radiation; both valid from the end of inflationary reheating until the onset of Big Bang
nucleosynthesis (BBN) at t ∼ 1 s. Nevertheless, even though this picture is appealing due
to its minimalistic approach, there is actually no strong observational evidence to support

– 1 –



J
C
A
P
0
3
(
2
0
2
5
)
0
0
3

it, and there exist many reasonable scenarios leading to departures from these assumptions
(see ref. [14] for a review). For example, the existence of a heavy long-lived particle could
lead to an early matter domination (EMD) era, violating both of the assumptions above.
Taking into account that the energy density of nonrelativistic matter scales as a−3 (with
a being the cosmic scale factor of the Universe) while the energy density of free radiation
scales as a−4, one can argue that the former could eventually dominate over the latter even if
initially subdominant, provided that the massive particle is sufficiently long-lived. In this
case, the only strong constraint on the long-lived heavy particle is that it must decay before
the onset of BBN, that is, the EMD period must end before BBN starts, implying an early
injection of entropy into the SM plasma.

DM production during EMD eras has been intensively studied in the literature, usually
triggered by a long-lived massive particle [15–33], or by primordial black holes [34–57].
However, it can also modify baryogenesis [15, 58–65] or the expected spectrum of primordial
gravitational waves [66–72]. In this paper, we investigate the genesis of DM in the early
Universe, during a period of EMD. In particular, we focus on the WIMP and IR FIMP
production mechanisms and their variations owing to the changes in the Hubble expansion
rate and the injection of entropy. As a working example, we consider the scalar singlet
DM model [73–75], where DM is stable due to Z2 parity and communicates with the SM
through the Higgs portal. Interestingly, we find that in the context of EMD scenarios, there
is a continuous and smooth transition between the WIMP and FIMP solutions that greatly
broadens the parameter space that fits the observed DM abundance. Large regions of the
favored parameter space could be probed by next-generation experiments, even in the case
of the elusive FIMP scenario.

The manuscript is organized as follows. In section 2, we introduce EMD scenarios and
the production of DM through the WIMP and FIMP mechanisms in this non-standard
cosmological setup. Then, in section 3, we characterize and study the role of the coupling
portal strength and the effect of EMD in determining the relic density and DM nature, in
the WIMP and FIMP paradigms. Finally, the conclusions are given in section 4.

2 Early matter-dominated Universe scenario

In the period between the end of inflationary reheating and the matter-radiation equality, we
assume a Universe with an energy density dominated by SM radiation and a non-relativistic
field ϕ. The corresponding Boltzmann equations for the evolution of the energy densities
ρϕ and ρR for ϕ and the SM, respectively, are given by

dρϕ

dt
+ 3 H ρϕ = −Γϕ ρϕ , (2.1)

dρR

dt
+ 4 H ρR = +Γϕ ρϕ . (2.2)

Here, Γϕ is the total decay width of ϕ into radiation, and H is the Hubble expansion rate,
given by the Friedmann equation

H2 = ρR + ρϕ

3 M2
P

, (2.3)
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with MP ≃ 2.4 × 1018 GeV being the reduced Planck mass. It is important to note that we
neglect the DM energy density in eq. (2.3) as its contribution to the background is negligible.1

The SM energy density is defined as a function of the temperature T of the SM photons as

ρR(T ) = π2

30 g⋆(T ) T 4, (2.4)

with g⋆(T ) being the effective number of relativistic degrees of freedom contributing to the
energy density ρR [77].

For DM production out of the SM bath, the evolution of the DM number density ns

can be studied with the transport Boltzmann equation
dns

dt
+ 3 H ns = −⟨σv⟩

(
n2

s − n2
eq

)
, (2.5)

where ⟨σv⟩(T ) is the 2-to-2 thermally-averaged cross-section for the pair annihilation of DM
particles into a couple of SM states, and neq(T ) corresponds to the equilibrium DM number
density. In the freeze-in scenario, eq. (2.5) reduces to

dns

dt
+ 3 H ns = ⟨σv⟩ n2

eq , (2.6)

as DM never reaches thermal equilibrium with the SM bath and the annihilation term can
be safely neglected.

For non-relativistic DM particles of mass ms with a single internal degree of freedom

neq(T ) ≃
(

ms T

2π

)3/2
e−ms/T . (2.7)

In eq. (2.5), two rates compete: the production rate Γ ≡ ⟨σv⟩ neq between the dark and
visible sectors, and the expansion rate H. If at some point we have Γ ≫ H, the two sectors
equilibrate and DM is called a WIMP. The departure from chemical equilibrium occurs at
a temperature Tfo that can be estimated by the equality

Γ
H

∣∣∣∣
T =Tfo

≃ 1 . (2.8)

In the usual freeze-out scenario Tfo ≃ ms/25, with a small logarithmic mass dependence.
Alternatively, if for all temperatures Γ ≪ H, DM never reaches chemical equilibrium with
the SM model. This non-thermal mechanism is known as freeze-in. Even if DM is gradually
generated throughout the history of the early Universe, the peak of its production occurs
at a temperature Tfi which typically corresponds to the maximum between the DM mass
and the mediator mass.

In order to agree with the total observed DM relic density, the asymptotic value of the
DM yield at low temperatures Y0 ≡ n0/s0, where n0 is the present DM number density and
s0 ≃ 2.69 × 103 cm−3 is the present entropy density [78], must satisfy

ms Y0 = Ωh2 ρc

s0 h2 ≃ 4.3 × 10−10 GeV, (2.9)

where ρc ≃ 1.05 × 10−5 h2 GeV/cm3 is the critical energy density of the Universe and
Ωh2 ≃ 0.12 is the observed DM relic abundance [1].

1We disregard possible direct ϕ decays into DM particles s with mass ms, which is a good assumption as
long as the corresponding branching fraction Brϕ→ss ≲ 10−4 ms/(100 GeV) [22, 76].
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2.1 Stages in the evolution of the early Universe

As commented previously, here we assume that at some point in the history of the Universe
an EMD era existed. The evolution of the background can be followed by solving eqs. (2.1)
and (2.2), this can be done by analytical approximations followed by a full-numerical solution
in order to ensure consistency.2 However, before this, we divide the evolution into four
characteristic stages, which will be explained below. The evolution of the background can be
followed by solving numerically eqs. (2.1) and (2.2). However, before this is done, we divide
the evolution into four characteristic stages, which will be explained below, to analytically
understand the dynamics of the background.

In the first stage (Stage 1), ϕ is subdominant with respect to the SM, and therefore the
Universe follows a standard expansion era driven by ρR with conservation of the SM entropy,
which implies that ρR(a) ∝ a−4, H(a) ∝ a−2 and T (a) ∝ a−1. However, the energy density
of ϕ continuously increases as ρϕ(a) ∝ a−3 with respect to ρR, as it is a non-relativistic
species. It is important to note that the BICEP/Keck bound on the tensor-to-scalar ratio
implies an upper bound on H < HCMB

I = 2.0 × 10−5 MP [79]. This can be used to derive an
upper limit on the maximum temperature reached by the SM plasma T ≲ 2.5 × 1015 GeV
under the assumption of instantaneous reheating [80], and therefore the production from
the SM plasma of heavier particles.

The second stage (Stage 2) starts at a temperature T = Ti, defined by the equality
ρR(ai) ≡ ρϕ(ai), where ai ≡ a(Ti) is the corresponding scale factor. As in this period, the
Hubble expansion rate is dominated by ϕ, H(a) ∝

√
ρϕ(a) ∝ a−3/2. In this era ϕ is not

effectively decaying, so the SM entropy is still conserved and hence the SM radiation is
free: ρR(a) ∝ a−4 and T (a) ∝ a−1.

Stage 3 starts at T = Tc, when ϕ begins to effectively decay into SM particles. As
SM is sourced, instead of scaling as free radiation, it scales as ρR(a) ∝ a−3/2, which implies
that the SM temperature scales as T (a) ∝ a−3/8. In this nonadiabatic era, the entropy
of the SM is not conserved. Additionally, the Universe is still dominated by ϕ and then
H(a) ∝ a−3/2 is still valid. Stage 3 ends at a temperature Tend that can be estimated by
the equality Γϕ ≡ H(Tend), corresponding to

Γϕ = π

3

√
g⋆(Tend)

10
T 2

end
MP

. (2.10)

To avoid spoiling the success of BBN, the end of Stage 3 must satisfy Tend > TBBN ≃ 4 MeV [81–
85]. Stages 2 and 3 are usually referred to as the EMD era, the former adiabatic, while
the latter nonadiabatic.

In the final stage (Stage 4), the standard cosmological evolution of the Universe is
recovered because ϕ decays exponentially fast (ρϕ ∝ e−Γϕ/H). The Hubble expansion rate
is driven by SM radiation, and the SM entropy is again conserved.

2The energy density of DM is subleading compared to ρϕ and ρR, and as ϕ does not decay into DM, the
background given by eqs. (2.1) and (2.2) can be solved independently.
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Figure 1. Left: Evolution of the energy densities of SM radiation ρR and matter ρϕ for two different
values of Ti (left panel) and the Hubble parameter H and temperature T of the SM radiation bath
(right panel) as a function of the scale factor a. Right: The faint lines represent the standard scenario
dominated by SM radiation, for Ti ≃ 1011 GeV. In both panels Tend = 1 GeV. The values for the scale
factor a = ai, ac and aend are overlaid and meant for Ti ≃ 1011 GeV.

All in all, the evolution of the Hubble expansion rate can be approximated as

H(a) ∝



a−2 for a < ai (Stage 1),

a−3/2 for ai < a < ac (Stage 2),

a−3/2 for ac < a < aend (Stage 3),
a−2 for aend < a (Stage 4),

(2.11)

while the temperature of the SM bath is

T (a) ∝



a−1 for a < ai (Stage 1),
a−1 for ai < a < ac (Stage 2),

a−3/8 for ac < a < aend (Stage 3),
a−1 for aend < a (Stage 4).

(2.12)

Having understood the evolution of the background analytically, we now solve it numeri-
cally, using the 4th-order Runge-Kutta method, to obtain the evolution of ρϕ and ρR as a
function of the scale factor a. The results are shown in figure 1. The left panel shows the
evolution of ρϕ (solid red line) and ρR (solid blue line), as a function of the scale factor a,
for a specific value of Tend = 1 GeV, and two values of Ti. Note that the curves have been
normalized with the scaling corresponding to free radiation. As expected, ρϕ(a) × a4 ∝ a

during Stages 1 to 3, and is exponentially suppressed during Stage 4. In turn, ρR(a) × a4

deviates from flat in Stage 3, where the entropy injection is sizable. An important point to
note is that the entropy injection that characterizes Stage 3 brings ρR to the expected value at
Tend. Thus, it can be understood that the entropy injected for the curve with Ti = 1011 GeV
will be higher than that for the curve with Ti = 700 GeV. Thus, having fixed Tend, one can
view Ti as a measure of the change in entropy in the system.

The right panel of figure 1 shows the evolution of T (dashed red line) and H (solid blue
line), taking Tend = 1 GeV and fixing Ti ≃ 1015 GeV. Both are independently normalized,
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so they appear flat3 when following the scaling of standard cosmology (shown in faint red
and blue, respectively). We also show the four aforementioned stages, with boundaries
in a = ai, ac, aend. The scaling of H and T follows the expected behavior described in
eqs. (2.11) and (2.12), respectively.

2.2 Dark matter genesis

For definiteness, we use the scalar singlet DM model [73–75]. This expands the SM by
including a real singlet scalar field, s, and a Z2 parity, where only s is odd. The most general
renormalizable scalar potential of the model is

V = −µH |H|2 + λH |H|4 + µ2
s s2 + λs s4 + λhs |H|2 s2, (2.13)

under which H is the SM Higgs doublet. Due to the Z2 symmetry, s does not acquire a vev
and is stable. The mass of s, after electroweak symmetry breaking, is

m2
s = 2 µ2

s + λhs

λH
µ2

H . (2.14)

The parameter λhs corresponds to the Higgs portal coupling, which is the only connection
(besides gravity) between the dark and visible sectors. Finally, the DM quartic coupling
λs does not play a role in this analysis.

The phenomenology of the singlet scalar model as a candidate for DM has been extensively
explored in the literature, particularly when the Higgs portal is greater than 0.1 (λhs ≳ 0.1),
allowing DM to have been thermally produced in the primordial Universe. In this scenario,
the model can be tested in collider experiments [86–96], through direct and indirect DM
searches [97–102], or by combining different experimental approaches [103–112]. Specifically,
combined analyses assuming standard cosmology [113–116] suggest that the scalar s could
still serve as a viable thermal DM candidate, but only within a very narrow region of its
parameter space. However, if the Higgs portal coupling is significantly smaller, around
λhs ∼ O(10−11), the singlet scalar DM could have been produced through the non-thermal
mechanism [20, 24, 117–124]. Alternatively, the scalar singlet could have been produced
thermally, if the DM quartic coupling is sizable λs ∼ O(1), but from self-production and
cannibalization reactions [125–129]. We note that this model has also been studied in the
framework of nonstandard cosmology [14, 20, 23, 24, 32, 130], and in the context of Hawking
evaporation of primordial black holes [48].

The evolution of the DM number density within the SSDM framework is derived by
solving eq. (2.5). For this purpose, we employ the code initially developed in ref. [32], which
solves the Boltzmann equation by using an implicit Euler technique, spanning from the
early stages to the current state of the Universe.4 The thermally-averaged cross-section ⟨σv⟩

3Flat up to changes of the relativistic number of degrees of freedom. An observable bump is seen at
T ∼ 0.3 GeV, due to the QCD phase transition, which leads to a sudden decrease in the effective relativistic
degrees of freedom in the thermal plasma.

4We note that other codes that solve the evolution of the DM density in the context of non-standard
cosmologies exist (although they do not explore the reheating scenario), such as the ones presented in
refs. [55, 57, 131, 132].
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is evaluated using the standard relation [133]

⟨σv⟩(T ) =
∫ ∞

4m2
s

ds
(s − 4m2

s)
√

s K1 (
√

s/T ) σ(s)
8 T m4

s K2
2 (ms/T )

, (2.15)

where Ki is the modified Bessel function of the second kind of ith order. Given a total
DM annihilation cross-section σ(s), we perform a numerical integration of eq. (2.15) using
the adaptive Simpson’s method and obtain ⟨σv⟩ as a function of the temperature T of
the SM radiation plasma.

We compute all relevant tree-level amplitudes using the standalone subroutine within
MadGraph [134]. With the model specified, we included the UFO created using SARAH [135–137]
and the required param_card files have been generated through SPheno [138–140]. For the
calculation of the cross section, since the squared matrix elements |M|2 depend only on the
center-of-mass energy

√
s and not on the solid angle, the integration of the phase space is

straightforward, obtaining σ(s) after combining all relevant processes. Finally, we include
this cross section into the eq. (2.15).

3 Impact of the EMD on DM abundance

The effect of having an EMD depends on whether the DM is generated via freeze-out (thermal)
or freeze-in (non-thermal) mechanisms, and when exactly does the DM genesis happen. Let us
first assume that DM production occurs at any point before Stage 4, that is, before reaching
the temperature Tend. For both freeze-in and freeze-out, posterior injection of the entropy
from decay of ϕ suppresses the prediction of the present yield Y0. Then, to reproduce the
observed relic density, it is necessary to generate more DM than in the standard cosmological
scenario. For freeze-in this means that one must increase the production cross section, which
implies that the DM coupling to SM radiation λhs must be larger. For freeze-out, in contrast,
one would need DM to decouple earlier, requiring a smaller coupling.

The picture described in the previous paragraph is sufficient to broadly understand our
results. However, further intricacies depend on which stage of the evolution of the Universe
DM was mainly produced. To this end, in figure 2 we show the evolution of the DM yield
Y relative to the inverse of the SM temperature, for the freeze-in (blue) and freeze-out
(red) scenarios that occur within each of the four stages described in section 2.1. In all
panels, the solid gray band shows the equilibrium yield, while the thick blue horizontal
line represents the value of ms Y corresponding to the observed relic density, Ωh2 ≃ 0.12.
Furthermore, vertical dashed black lines denote temperatures Ti, Tc, and Tend, associated
with scale factors ai, ac, and aend, respectively.

We start our description with the upper left panel, where DM either decouples from the
SM radiation plasma or concludes its production within Stage 1, that is, before the ϕ field
attains dominance (T > Ti). Due to the very early DM genesis, the final value of the yield is
not affected by the modified expansion rate of the Universe, being only altered by the decay
of ϕ at Stage 3 (Tc > T > Tend). Thus, both thermal and non-thermal scenarios must obtain
the same overabundance of DM at T ∼ Ti, which is then equally diluted by the maximal
injection of entropy. It is interesting to note that the benchmark point used corresponds to a
DM mass ms ≃ 106 GeV. In the standard cosmological scenario, masses larger than ∼ 130 TeV
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Figure 2. Evolution of the DM yield Y as a function of the inverse of the SM temperature T for
Tend = 1 GeV. The solid gray line represents the equilibrium yield Yeq, while the solid red and blue
lines represent the DM yield for the thermal and non-thermal cases, respectively. The thick solid
purple line shows the yield that reproduces the observed relic density.

are in tension with the unitarity bound [141], however, as can be seen here, larger masses (up
to ms ∼ O(1011) GeV) are allowed in non-standard cosmological scenarios [27, 28, 142–146].

In the upper right panel, DM decouples or ends production during the Stage 2, at
Ti > T > Tc. Here, the main difference is that the Hubble parameter is modified by EMD, as
shown in eq. (2.3) and illustrated on the right panel of figure 1. Given a fixed temperature,
the Hubble parameter scaling as a−3/2 instead of a−2 would be larger than that in radiation
dominance. This has consequences for both freeze-out and freeze-in scenarios.

For freeze-out, in addition to the entropy injection effect, the decoupling temperature
is slightly higher compared to Stage 1. This is because the change in the slope of the
Hubble parameter causes the ratio ⟨σv⟩ neq/H to be smaller, requiring a stronger coupling
compared to Stage 1.

To understand the effect of the modified Hubble parameter in freeze-in, it is useful to
rewrite eq. (2.5) in terms of the scale factor a and N ≡ ns × a3:

dN

da
≃ ⟨σv⟩

a4 H
N2

eq , (3.1)
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with Neq ≡ neq × a3. As can be seen, a different scaling of H implies that a4H ≫ ⟨σv⟩N2
eq

would be reached earlier (higher temperatures). Consequently, there is a lower yield at the
peak of DM production. To reproduce the observed relic density, it is then necessary to
increase the coupling beyond what is required by entropy injection.

In the lower left panel, DM ceases production within the temperature range Tc > T > Tend.
This corresponds to Stage 3, where ϕ decays and injects radiation entropy, with T now scaling
as a−3/8 instead of a−1. It is important to note that even though both freeze-in and freeze-out
depend on the radiation temperature, their predictions for the present yield do not depend
on how T scales with a. Thus, in this stage, the main modifications to DM production
still come from entropy injection and the different scaling of H. However, the dilution
of the yield is now applied after the end of the DM production, so it is not as strong as
expected if T ≳ Tc. This implies that the overabundance does not have to be as large as in
the previous stages. For freeze-out (freeze-in) this means that the coupling must be larger
(smaller) than in the previous stage.

Finally, the last scenario is shown in the lower right panel. In this case, DM ends
production at Stage 4 (T < Tend), marking a return to the standard case, with the present
yield unaffected by the EMD era.

Let us now explore how these different behaviors are reflected in the parameter space
of the model. Our results for Tend = 1 GeV are shown in figure 3, which corresponds to
Γϕ ≃ 2 × 10−17 GeV, and different values for Ti. Here, we scan the DM mass ms and the
Higgs portal coupling λhs, showing only perturbative couplings within a mass range of
1 MeV < ms < 1015 GeV (for WIMPs, smaller masses pose challenges with BBN [147, 148]).
The figure shows curves reproducing the present relic density, eq. (2.9), which will be described
in detail below. In addition, we show the constraint from the invisible Higgs decay [149–151],
in the yellow region, labeled “LHC”. The green region represents a straightforward combi-
nation of these experiments, labeled “Comb. DD”. This includes data from XENON1T [152],
LUX-ZEPLIN (LZ) [153], CDMSlite [154], EDELWEISS [155], and XENONnT [156]. Ad-
ditionally, the blue regions, marked with the label “Proj. DD”, display the projections
of the XLZD consortium [157]. Finally, the red region, labeled “Comb. ID”, combines
various limits on the indirect detection of DM, including observations from MAGIC and
Fermi-LAT [158] as well as H.E.S.S. [159]. We also incorporate constraints from analyses
based on CMB observations [160] and antiproton data from AMS-02 [161]. In the pur-
ple region, marked as “Proj. ID”, we emphasize the projected limits for CTA [162] and
SWGO [163].5

We first identify the curves leading to the correct Ωh2 in the freeze-out and freeze-in
scenarios of standard cosmology, which appear as solid black lines at the top and bottom
of the figure. These curves can also be associated with DM production occurring during
Stage 4, that is, well after the EMD era. As is well known, the freeze-out mechanism for this
model is essentially ruled out, while the freeze-in scenario presents major challenges, even
for next-generation experiments. Furthermore, the maximal WIMP mass is ms ∼ 130 TeV
due to the unitarity bound [141].

5The constraints of direct and indirect detection experiments on our parameter space is evaluated using
micrOMEGAs [164].
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Figure 3. Parameter space of the model, for Tend = 1 GeV. The dashed blue lines reproduce the
observed abundance of DM for DM production before Tc, for different possible values of Ti. The solid
blue line corresponds to production after Tc. The thick black lines correspond to standard cosmology.
Constraints from Higgs invisible decays, direct and indirect detection, as well as future projections,
are shown shaded on various colors.

In the figure, the present relic density is obtained on the gray lines, which are our main
result. For different values of Ti, the thin gray lines correspond to a DM production that
occurs before Tc, that is, during either Stage 1 or Stage 2, while the thick gray line corresponds
to a production during Stage 3 (Tend < T < Tc). The figure also includes a dashed purple
line, under which we have non-thermal production (freeze-in), that is, the ⟨σv⟩ neq/H ratio is
never greater than unity. Above this dashed line, the DM production is thermal (freeze-out),
and the ratio is larger than unity at some point in the history of the early Universe.

We start our description under the dashed purple line, specifically, at very large masses
and small couplings, corresponding to the freeze-in paradigm. In the lower right corner
of the figure, we find that for the smallest evaluated λhs the present relic density can be
obtained only if production happens during Stage 1. The reason for this is that we have
a very large Tfi ∼ ms. If we were to have production in Stage 2, then Ti would be larger
than Tfi (smaller ai), which would imply a significant injection of entropy, as commented
when discussing the left panel of figure 1. This means that we would need to generate a
considerable overabundance, which in turn can only be achieved by λhs much larger than
those in this corner of the figure. In fact, for much larger couplings, one effectively finds that
obtaining the observed Ωh2 in Stage 2 becomes possible. Similarly, one can argue that for a
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fixed λhs, a smaller ms implies a smaller Tfi, such that at some point Tfi < Ti without having
a too large entropy injection, allowing DM production in Stage 2.

The above arguments explain the blue dotted line that separates both stages, which has
a constant slope as long as the DM is heavier than the Higgs (ms ≳ MHiggs). If ms is smaller,
then Tfi becomes independent of the mass of DM and is fixed around MHiggs/2. Thus, in the
small-mass region of parameter space we find that we will have DM production in Stage 2
only if Ti > MHiggs/2, leading to the line separating Stages 1 and 2 becoming vertical at
some point, and then following the Ti ≃ MHiggs/2 line.

Having understood how the Stages 1 and 2 production regions are defined, let us analyze
the solid curves that lead to the correct relic density. For DM production during Stage 1, we
find several values of Ti leading to the correct Ωh2, where for a larger Ti (larger injection of
entropy) we need larger couplings. These are shown until a maximum value of Ti = 1015 GeV,
above which eventually H ≳ HCMB

I . Moreover, as in standard cosmology, once Ti is fixed,
the required coupling is independent of ms. Thus, the lines for Stage 1 are parallel to those
for standard cosmology. In contrast, for DM production during Stage 2, the ϕ field is no
longer subdominant and has a significant effect on the evolution of the Hubble parameter.
As explained in the discussion around eq. (3.1), this requires an increase in λhs with respect
to the one in Stage 1. Thus, in the region for Stage 2 we observe a change in the slope of
the curves, which requires greater couplings as ms and Tfi decrease.

On Stage 3, DM ceases its production within a temperature range Tc > T > Tend. The
parameter space leading to the present relic density for this stage collapses to the thick gray
line. As explained in section 3, two main effects are relevant: first, the change in the evolution
of the Hubble parameter, and second, the smaller impact of the injection of entropy due to
the decay of the field ϕ. The net effect is that λhs does not have to be as large as in Stage 2.

Interestingly, all the curves in Stage 2 merge with the single Stage 3 curve. The
exact point where a Stage 2 curve merges occurs for Tfi ≃ Tc, with a specific ms and
λhs. For the same Ti and smaller masses, we have Tfi < Tc, giving the lesser impact as
aforementioned from entropy injection and allowing for a smaller coupling with respect to
Stage 2. This means that a single point in Stage 3 can correspond to a specific Ti leading
to Tfi ≃ Tc, or to any larger Ti corresponding to Tfi < Tc. Thus, unlike Stages 1 and 2,
any point in Stage 3 becomes infinitely degenerate with respect to the possible values of Ti
compatible with it, meaning that if ms and λhs lie within this curve, it is not possible to
derive any information regarding Ti and Tc. Moreover, it is important to note that these
effects in Stage 3 are consistent with the results presented in ref. [32], which correspond
to Tc → ∞.

Regarding the region enclosed by the Stage 3 curve, we find no scenario capable of
reproducing the observed relic density. The reason is straightforward: since the Stage 3
curve determines the coupling required to get the correct Ωh2, any coupling above it will
generate an overabundance beyond the injection of entropy.

Finally, let us comment that in the figure the standard cosmology curve corresponds
to a Stage 1 boundary. In particular, the Stage 1 curves are drawn towards the standard
cosmology curve as Ti decreases. At the boundary, we actually have Ti → Tend, meaning
that the DM dilution becomes negligible and thus approaches a standard cosmology scenario.

– 11 –



J
C
A
P
0
3
(
2
0
2
5
)
0
0
3

Notice that, strictly speaking, this does not correspond to the Stage 4 situation portrayed
on the lower right panel of figure 2, but is equivalent to it.

Similar arguments hold for the freeze-out scenario, which occurs above the dashed purple
line. In this case, Stages 1, 2 and 3 always require suppressed couplings with respect to
standard cosmology, with Stage 1 (Stage 3) requiring the largest (smallest) suppression. This
drives similar changes in slopes as in the freeze-in scenario, albeit weaker. Interestingly, we
emphasize that larger WIMP masses up to ms ∼ O(1011) GeV are allowed in this case with
an EMD era. Furthermore, EMD eras help us to evade the unitarity limit of ∼ 130 TeV
for WIMP DM masses in the standard cosmological scenario [141], allowing masses up to
∼ 1010 GeV [143–146].

An interesting observation is that for very large Ti (Ti ≳ 1010 GeV) there exist non-thermal
Stage 2 curves that do not merge into the corresponding Stage 3 curve, but rather merge
with thermal Stage 2 curves. This implies that for these extreme values for Ti, large (small)
couplings needed to have Tfi\fo = Tc lead the non-thermal curves into the thermal regime
and vice versa. However, this does not mean that such values of Ti do not allow DM to be
produced within Stage 3, as commented earlier, for masses and couplings within the Stage 3
curve it is possible to have Tfi\fo < Tc, which allows arbitrarily large values of Ti. In other
words, for very large Ti there exist two disconnected solutions that provide the present relic
density: the thermal and non-thermal merging scenarios, and the disconnected Stage 3 curve.

With regard to the observability of this kind of framework, it is important to note that
the present experimental techniques are already testing parts of the favored parameter space,
while future direct- and indirect-detection experiments will be able to probe even larger
regions of the parameter space. For this case, with Tend = 1 GeV, future experiments can
test regions corresponding to thermal production during all stages.

Now that we understand the main consequences of the EMD scenario on the scalar singlet
DM model, we study the consequences of varying Tend. The results are shown in figures 4
and 5, for Tend = 10 TeV and 4 MeV, respectively. As before, we will explain our results in
terms of the freeze-in scenario since it occurs in a larger part of the parameter space.

If we increase Tend to 10 TeV (figure 4), we find that the Stage 1 and Stage 2 curves
have a behavior similar to that of figure 3, but are now valid for higher values of Ti. In
fact, every point in these regions has an ms and λhs combination implying a specific DM
overproduction, which then has to be diluted by a specific amount of injection of entropy.
Increasing Tend then requires an increment of Ti, such that the difference in temperatures
leads to a similar amount of entropy dilution. Furthermore, since we are now in a scenario
where Ti is generally larger, it is possible to have DM production during Stage 2 (Tfi < Ti)
for smaller values of λhs, which lowers the blue dotted line separating Stages 1 and 2. Finally,
having overall larger values of Ti implies that the shaded area ruled out by HCMB

I will,
of course, increase.

Similarly, increasing Tend leads to a shift to the right for the Stage 3 curve. This happens
because no Stage 1-3 solutions are allowed for Tfi < Tend. Thus, no Stage 3 solution is allowed
if ms ∼ Tfi < Tend. For a smaller mass of DM, the only possibility is to have DM production
during Stage 4, leading to a scenario similar to that shown on the lower right panel of figure 2,
that is, indistinguishable from standard cosmology.
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Figure 4. Same as figure 3, but for Tend = 10 TeV.
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In figure 5 we decrease Tend to TBBN = 4 MeV, which is the lowest possible value of
Tend consistent with BBN. Similarly to the previous case, with the decrease in Tend we also
find an overall lowering of Ti, shifting in turn the dotted line separating Stages 1 and 2
towards larger values of λhs, and reducing the shaded region ruled out by HCMB

I . Since
now we always have Tend < Tfi, the Stage 3 curve is shifted toward smaller values of the
DM mass. It is interesting to note that, here again, regions of the favored by the EMD
scenario are already in tension with direct and indirect detection data, and broader regions
will be probed with next-generation experiments.

4 Conclusions

Over the last few decades, significant experimental efforts have been made to understand
DM, yet it remains one of the most challenging and fundamental issues in particle physics
and cosmology. Concerning its origin in the early Universe, it is often assumed that DM
is formed either thermally or non-thermally as a WIMP or a FIMP. From a cosmological
standpoint, the common assumption is that the early Universe’s energy density was dominated
by radiation from the SM after inflationary reheating stopped, up until the era of BBN.
Additionally, it is assumed that reheating concludes at a very high energy scale, leading to
the production of DM when SM radiation dominates the Universe.

In this work, we have explored the impact of an early matter-dominated (EMD) era on
DM genesis using the singlet-scalar DM (SSDM) model. By considering the evolution of a
non-relativistic matter field ϕ alongside SM radiation, we identified four distinct stages in
the Universe expansion history. In the initial stage (T > Ti), SM radiation is the dominant
component of the Universe. In the second stage (Ti > T > Tc), the field ϕ dominates, governing
the behavior of the Hubble parameter. Throughout the third stage (Tc > T > Tend), ϕ

still dominates but now efficiently decays, injecting entropy into the SM plasma. Finally,
in the last stage (T < Tend), SM radiation once again becomes the dominant factor in the
evolution of the Universe. The effects of each stage on the DM yield can be compensated for
by modifying the portal coupling, thereby expanding the parameter space that reproduces
the observed relic density, as shown in figures 3, 4, and 5. In particular, the WIMP paradigm
can be realized with couplings much smaller than in the standard cosmological scenario, while
much larger couplings are required in the FIMP case. This fact is particularly interesting, as
it relaxes the experimental tension of WIMPs and increases the perspectives for a detection
in the FIMP case. Additionally, sizable regions of the favored by the EMD scenario are
already in tension with direct and indirect detection data, and even broader regions will
be probed with next-generation experiments.

For this paper, we used the SSDM model and explored the parameter space that
reproduces the observed relic density and the smooth transition between the WIMP and
FIMP paradigms. We used this model already implemented in SARAH and generated all
allowed annihilations using MadGraph. Finally, we numerically solved the Boltzmann equation
for DM. Although our results are derived from the SSDM model, the conclusions are expected
to be applicable to a broader class of DM models.
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