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Abstract:

In this paper, we study the scalar fields evolving on a FRW brane embedded in a five-dimensional de Sitter

bulk. The scale function and the warp factor, solutions of the Einstein equations, are employed in the five-
dimensional Gordon equation describing the massive scalar field, whose wave function depends on the
cosmic time and on the extra-dimension. We point out the existence of bounded states and find a minimum
value of the effective four-dimensional mass. For the test (scalar) field envelope along the extra-dimension,
we derive the corresponding Schrddinger-like equation which is formally that for the Pdschl-Teller potential.
Accordingly, we have obtained the quantization law for the mass parameter of the tested scalar field.
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1. Introduction

From a cosmological view point, theories formulated on
more than four dimensions, with ordinary matter trapped
on the brane and gravitation only propagating through
the entire bulk, that emerged from the pioneering work
of Randall and Sundrum (RS) [1, 2], have offered an al-
ternative scenario for explaining the late-time accelerated
expansion of the universe [3-8].

In contrast to the standard RS setup with empty bulk
(apart of the cosmological constant), and fields confined on
the brane, it has been assumed that matter might evolve in

*E-mail: marina@uaic.ro

the entire bulk and research has recently been dedicated
to the cosmological consequences of this [9].

A particular form of bulk or brane matter, which is believed
to have played an important role both in the early universe
and in late-time acceleration, is the scalar field, with min-
imal or suitable choices of non-minimal couplings [10, 11].
Supported by data from high redshift Type la supernovae,
these fields are seen as natural models of matter with
negative pressure, called quintessence [12-16].

The revolutionary concept of inflation, as an early stage
of the accelerated expansion of the universe, has offered
a solution not only to the classic problems raised by the
standard big bang cosmology, but also to the one related
to the mechanism of structures formation in the universe.
By assuming that the scalar field, with the corresponding
energy density and pressure, is the only source of gravity,
in some scenarios, the cosmic acceleration is driven by the
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four-dimensional field confined to the brane [17], while in
others the massive scalar is filling the entire bulk [18-20].
In contrast to the localized zero scalar mode and a con-
tinuum of arbitrary light states, provided by the RS back-
ground, once one allows for a small (non-zero) mass, the
massless bound state is replaced by a quasi-localized
state with finite mass and width. The latter being related
to the probability of state’s decay into the bulk [21].

This paper follows previous investigations into a FRW
brane embedded in a five-dimensional de Sitter bulk [22].
The derived scale function and warp factor are employed
in the five-dimensional Klein—-Gordon equation describing
the massive scalar field whose wave function will depend
on the cosmic time and on the extra-dimension.

Our results agree with those obtained by Langlois and
Sasaki [23], who considered a test scalar field on a given
background configuration and solved the Klein—-Gordon
equation in the bulk. They found an interesting rela-
tionship between the effective four-dimensional mass of
the scalar states localized on the de Sitter brane and the
five-dimensional mass.

2. The geometry

Let us start with the warped five-dimensional line element
with an induced 3—brane with k = 0—FRW cosmological
background

dsz = e dxtdx* +(dQ)? , i, k=14, (1)

where the function F in the warp factor depends on the
conformal time 7 and on the extra-dimension coordinate,
x> = ¢, varying from —oo to co.

—e?F [2"::44 +(Fa )2] +3 [F,55 +2(F 5 )2]
3¢ (Fu)’ =3 [Fiss +2(Fs)’]

=3¢ [Fuaa+(Fu)’| + 6(Fs)
_3F154

For a conformally flat brane (as it actually stands for the
case of (k = 0)-RW models), the most natural choice of
the warp function F is

F(t.¢) = f(7) + h(C), )

In terms of the orthonormal tetradic frames
eq = {ei =eF0;, es= 85} and  w’ =
{wi =ef dx', W’ = d(}, the Cartan formalism leads to

the connection coefficients
lata = Flay Tasa =F5, Tasa =—Fp5, ()

where a = 1,3, Fl, = e,F, which furthermore leads
to the following five-dimensional Einstein tensor compo-
nents [22]

Gop = {_ [2F|44 +3(F|4)2] +3[F‘55 +2(F|5)2]} Oa
G = 3 ()’ =3[ Fiss + 2 (Fi)°]

Gss = =3 [Fua +2(Fa)*] + 6 (Fs)”

Gis = —3 Fpss. )
For a scalar field supporting this geometry, described by
the energy-momentum tensor

1
Tab = PlaPp — inab [nCd¢|c¢|d + 2V(¢)] ,
the Einstein equations,
Gab = KTub ,

where « is Einstein’s constant in five-dimensions, do ex-
plicitly read

e—ZF (¢’4 )2 _

e (¢a) +

(@) +2v]:
(@) +2v]:

= S e (gal 45 [(8s) —2V];
= Kdu b )

X NIX NI X
NIXNIX NI X

N

(

so that the non-diagonal component of the Einstein’s ten-
sor, Gys, vanishes and the relationships in (2) become

r0,40, = e"e"’64f , ra5a = 85h , I_454 = —65h B (6)
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where 0;f = 9.f =" and dsh = d:h = h'".

With respect to the scalar source, in view of the last equa-
tion in (4), this can be taken either as a function of the
extra-dimension, ¢, or of time [22].

In the first case, ie.

o(x*, 7, ¢) = ¢(¢),

by switching to the proper time, t, by f,4 = ef, where dot
denotes the derivative with respect to t, the system (4)
takes the explicit form

—e2h [27 +3 (f')z] +3 [h.ss +2(h,s )2]

==L [s)+2v];
3e2h (f)z _3 [h,55 +2(h,5)2] _ g [(¢’5)2 +2V];
—3e % ['f+2('f)2] +6 (h,5)2:§[(¢'5)2_2\/]'

(/)

By summing up the first two equations, one finds f = 0,
t.e. f = Ht and thus the cosmological dynamics of the
(k = 0)-RW brane will be too simple, being turned into a
permanently de Sitter one.

Secondly, let us consider the other important case which
has been discussed in [22], Le.

(% 7.¢) = (7).

The Einstein—-Gordon equations (4) read

_e-20r+h) [2,(,44 +(F,4 )2] +3 [h,55 +2(h,s )2]
_ g e 2 (¢4 2 —«kV;

3e~ 2+ (£,,)2 3 [h,55 +2(h,s )2]
_ g e 20 (g, 2+ «kV;

_3p20+h) [f,44 +(fa )2] +6(hs)°

K
= 5 e () v, )

and they lead to the following relationship between the
metric functions f and h [22]

e [f,44 +2(f.q )2] +3e”hs =0,

satisfied by [22, 24]

(@) A() = In [& cos(oom];

(b) f(t) = % In [% slnh(3wt)], (9)

and kV = 60&, so that the scale factor of the brane is
b 13
=/ = | — sj
a(t)=-e [Zw smh(3wt)] . (10)

The constants Qp and w are respectively proportional to
the cosmological constant of the dSs bulk, A, and to the
one on the visible brane, Ay, by [24]

I\ [ No
Q = 6’ w = §,

while the parameter b can be related by b = v2wa? to
the definite special value of the scale function

b 1/3
0. = a(t) = [EJ , (1)

for which the acceleration parameter

SV S (12)
(f)? cosh”(3wt)

vanishes and the expansion of the universe gets acceler-
ated.
Thus, the scale factor (10) can be written as

1 13
a(t) = a, [TZSmh (\/ﬂt)] . (13)

3. Bosons in the bulk

In this section, we are going to construct the wave func-
tions of the bosons, considered as test particles evolving
in the five-dimensional bulk characterized by the line el-
ement (1), with the metric functions (9).
The real scalar field minimally coupled to bulk gravity is
described by the following Lagrangian,

£[0] = J07 b,y + U(O), (14)
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where the effective potential

2
A
U(d) = —%qﬂ +39", (15)

has two degenerate minima, Uy = —u4/(4)\). For 2 > 0,
the zero KK Higgs mode has a non-vanishing vacuum ex-
pectation value and turns from a massless into a massive
degree of freedom, as in the usual four-dimensional Higgs
mechanism. After the Z,-symmetry got spontaneously bro-
ken, near one of the degenerated vacua, ® = ¢ + ¢, we
are going to keep only the mass term contribution, so that
the potential is

Ulg) = 179" + ... (16)
Thus, the Gordon-type equation

ou

ab ab c
N @ap =07 = 5
| | b a(P

in the pseudo-orthonormal frame with (6), where

0’ of o 0
N @y = e =2 [A(p ¢ <P] \4

Co9t2 ' odtor]  d?
and
5 o, Of 0@ oh de
ab c 2f i SR Ittt &
N7y = 3677 e dt ot 40505'
reads
R of de ohdp d%¢
—2f —2h Ap— —L _p__~"1T 4_— - 7:22 .
e e [(p a12 ot ot 6505+d(2 e

(18)
The bulk equation (18) is separable for functions ¢ of the
form

¢ =9g(1)2(0), (19)

where g is a function of the time alone. We switch from 7
to t, by

o 0 & _ez,[az 0f0]

gt ot' ar2 |or ' atat

and we come to the following system of decoupled equa-

tions:
d’qg df dg
@ G T3grar = C9
d*z  dhdZ
b) —— +4—— —2i°Z =Ce?"Z, 20
(b) i acac 2 e (20)

where the sign of the constant C will be discussed below.
With the metric function (9.b) and the new variable n =
3wt, the first equation in system (20) becomes
d’qg dg C

— thn— — —g=0. 21
dn2+co ndr] 92 Y (21)
As in the case for spherical functions, considering com-
plex duality reasons, 6 ~ =*in, it can be proven that the
following quantized value of the separation constant C,
namely

C, = 9? nz—1 ., n=123... 22
4

is the only one which leads to the mathematically well-
behaved set of linearly independent functions, namely the
thorus functions [25]

g+(n) = {Pa-1p2(coshn) , Qn-12(coshn)}. (23)

These are “bounded”, actual decaying states with no free
particle interpretation, since, with the change of function

1
g+(n) = Tnhin ui(n),

the new functions v, satisfy the Schrodinger-like form

d? 1 1
|- (2 5]+ Geomtalu =0

with negative energy parameter and negative potential
1 2
Vs = — 7 coth” n, (25)
with v, being the Legendre functions

uy(n) = {P;”z(coth n) . Q;"%(coth /7)}

In the opposite situation where C is negative, one can
define a positive constant k = —C > 0 which acts in
(20.a) as an effective four-dimensional mass. The function
u_ is a solution of the equation

d’u_ k 1 1
— — coth? _=
e +[(9w2 2)—i-4cot n]u 0,

highlighting the inflection value ko of k, for |n| — oo in
the previous equation, i.e.

ko 1 1

9w? 2 4~
The following condition for the parameter k,
9w? 3

k2k0=T=Z/\0 (26)

leads to the lower limit of the effective four-dimensional
mass.
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4. Mass spectrum and localization

Let us now focus on the second equation of (20) and dis-
cuss the two cases corresponding to the opposite signs of
C.

Using the relations (22) and (9.a), introducing the new
variable w = Qy{ and the “mass” parameter

N
N
=
[N}

&= 27)
the second equation in (20) becomes
2. gtanw m_[gz + 9("2_1/4)] Z.=0.(28)
dw? dw cos? w
Let us consider a solution of the form Z,(w) = cos™>/?(w)-

vy, where the function v, satisfies the following differen-
tial equation:

2 2
dv+—tanwdv++ E—az n vi = 0.
dw? w

P35 (sinw) = =

(T—=v) \1—sinw

Q3,(sihw) =

b
2sin(v) [

with

—_

+V4—g?.

Vig = — 7
When the mass reaches the value corresponding to € =
15/4, the order v, vanishes and the associated Legendre
functions (31) simply become Legendre functions of first
and second kind, respectively.

The condition €2 = 4 leads to a special value of the mass
parameter p, related to the dSs cosmological constant by

py =

’

A
3

which, as in the RS model where

A_ (M
6 \M3)

1 (1—i—slnw)"/2

P3, cos(vr) —

For

E—e’:zzv(v—i—'l),

leading to the spectrum

2 = (§_v2—v) oz, (30)

the two linearly-independent solutions of (29) are the Leg-
endre functions

vi(w) = {P3,(sinw)), Q3,(sinw))}, (31)

which can be expressed in terms of hypergeometric func-
tions [25] as

2F1(—3n,3n+1;1—v;1_¥
FGn+1+v)

v 32
Fr3n+1-—v) 3"] (32)

(

can be expressed in terms of the five-dimensional grav-
itational mass scale, Ms, and the effective Planck mass
by
M3
Ho = \ﬁ 7/\/’25 .
P

In this particular case, for which the functions (31) are

Wi = {P3)sinw) Pil(sinw) |, (33)

6n +1

we obtain, using the first relation in (32), the periodic
functions

W(w) = VE 2 ! sin on +1 (W—E)
+ N 7 6n+1,/cosw 2 21|

/E 2 1 cos 6n +1 (w—ﬁ)
26n+1+/cosw 2 2
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and is always above the energy parameter 4 — &2, for n # 0.

Thus, one may conclude by stating that the decaying

0 2 2 1 6n +1 T states on the brane, described by the wave functions (23),
2w = 112 5 (w-5)].

760 +1cos2w s are not traveling in the bulk between the branes.

Finally, for a negative value of the separation constant,

115 2 ! cos [6n +1 (w— E)]} C = —k, in equation (20.b), the equivalent of equation

2 1 cos? 2 2
6n + 1 cos? w (36) is
(35)
K
For a particle (along the extra-dimension) interpreta- d’s_ + (4—52) _ 2- s =0 (37)
tion, let us perform the change of function Z.(w) = dw? cos? w
s.(w)/cos?w, so that equation (28) casts in the
Schrodi -like f
chrodinger-ike form highlighting the potential
d? 1_9p?
i l(a-e) + 2 s, =0, (36) )k
dw? cos? w Vs(w) = W?
cos?w '’
where the positive potential
which is negative, in view of condition (26).
92 _ 1 The solution is expressed in terms of hypergeometric func-
Vs(w) = oz tions as
(cos w) 2™ ,F. 1 _Va-¢e _io 1+V4_82—£ 1= io: cosw
s cos 2Fil g 5 503 > F 5 1Fi0;cos ,
(
where the quantity Le.
ﬂ+[E —Verw)]y =0
k 9 dW2 n PT =Y,
o=\ — — =
w? 4 once the constant A is the root of the equation
is positive, in view of (26), and there are no restrictions
on the parameter &2. 2 k —
P A=A+ 5 -2=0.

The definition range of the solution is a union of domains
of the typical form w € (=%, Z).

For the inflection value ko = 9w?/4, the hypergeometric
function is periodic and real (o = 0), for € either smaller

In order to obtain the first non-negative value for A, one
has to impose k = ko = 9w?/4 so that A = 1/2. Therefore,

or greater than 2. the bound state “energy” eigenvalues of the potential (38),

Finally, let us notice that the Schrédinger equation (37), generally given by [27]

by the duality switch 4 — £ — €2 —4 of the formal eigen-

value A = &+ (52 - 4), can be written in the generic form E, = —A*+ (2n + A)? (39)
of the Schrodinger-like equation in the bulk,

5 K lead to the following quantization law
s el 44 2 0
dw? cos?2w [T ,
a=4 ~ 1.
which can be identified with that for the Péschl-Teller En n 4 +
potential [26]
AA—1) For large values of n, the above relation becomes ¢, = 2n,

2
Vpr(w) = —A"+ “wo2w (38) so that the mass parameter (corresponding to the effective
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mass-squared on the brane ko = m3 = 3/A¢/4) is a multiple

of de Sitter quanta,
tp =1/ % n. (40)

5. Conclusions

For a five-dimensional de Sitter bulk with an induced
k = 0—FRW brane, the system of Einstein’s equations
with a massless scalar field depending on time as its mat-
ter source, is satisfied by the warp factor (9.a), highlight-
ing the typical domain Qp¢ € (=%, 3) and the scale
function (10).

The massive scalar evolving in this given background, seen
as a test particle, with no backreaction on the geometry,
is described by the Klein—Gordon equation (18). For the
wave function depending on time and on extra-dimension,
we have derived the massive scalar modes, both in the
bulk and on the brane.

Special attention has been given to their spectrum and its
interpretation, particularly with respect to their localiza-
tion.

We have found general massive bound states, whose mass
parameter, corresponding to the effective four-dimensional
mass-squared m = 3A¢/4, is a multiple of de Sitter
quanta.

When k > 9w?/4, the corresponding five-dimensional
Péschl-Teller energy parameter (39) has an imaginary
part, meaning that the corresponding states are decay-
ing back into the brane.
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