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Introduction (English version)

One of the main issues in physics today is the reconciliation of general relativity
(GR) and quantum mechanics (QM). An attempt to reach this goal is proposed by
loop quantum gravity (LQG) whose most accurate model was defined quite recently,
in 2008 in [Engle et al., 2008]. However, this study is the result of a 50-year-old
development that merged considerations from mathematics and physics, the BF
theory being a step arising at their intersection.

In 1961, T. Regge proposed to express GR without coordinates but using a
cellular decomposition of space-time [Regge, 1961]. A while after, Regge studied
with G. Ponzano the large spins limit of Racah coefficients [Ponzano and Regge,
1968]. Racah coefficients are, up to a sign, connected with the 6j-symbols defined
byWigner which have interesting symmetry properties that are represented in Figure
1. In this picture, the jαβ represent angular momenta, refering to indices of SU(2)
representations related to the 6j-symbol, but they can be regarded as the lengths of
the edges of the tetrahedron.

The relation between tetrahedra and 6j-symbols is much deeper than a simple
mnemotechnical trick. Indeed, in their work, Ponzano and Regge showed that a
6j-symbol is related to the volume of its corresponding tetrahedron by:

®
a b c
d e f

´
= F√

12πV
, (1)

where V is the volume of the tetrahedron and F is a rapidly oscillating function
of the dihedral angles of the tetrahedron and of the angular momenta so that the
average of F 2 is 1

2 .
Moreover, in an analogous way, the 3nj-symbols are associated with more com-

plicated polyhedra P3nj . They can also be written as a function of 3mj-symbols
with m < n. Those 3mj-symbols are themselves associated with polyhedra P3mj
and the decomposition of the 3nj according to the 3mj is connected with the geo-
metrical decomposition of the P3nj into P3mj pieces. Formalizing this idea, Ponzano
and Regge were led to consider sums of 6j-symbols that represent elementary tetra-
hedra that stick together to give a more complicated polyhedron associated with a
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Introduction (English version)

•P1

•
P2

•P3

•P4

a + 1
2 = j12 e + 1

2 = j24

b + 1
2 = j13 d + 1

2 = j34

c + 1
2 = j14

f + 1
2 = j23

Figure 1: Symmetry of the 6j-symbols.

3nj-symbol. The unicity of a given 3nj-symbol implies that these sums have to be
independent of the decomposition of P3nj in elementary tetrahedra.

To stick together along a face, two tetrahedra have to carry the same charge
on their edges. Summing over all the configurations allowed should then produce
a quantity independent of the triangulation of the polyhedron P3nj . Sadly, such a
sum over all representations of SU(2) is infinite.

However, conducting a formal study of its large spin, limit Ponzano and Regge
recognized, thanks to the result obtained by Regge a few years before, a discretization
of the partition function for Euclidean GR in dimension 3. The partition function
is also ill-defined since it represents a sum over the infinite dimensional space of all
the cellular decompositions of space-time.

Euclidean GR in dimension 3 is trivial in the sense that, for an empty space,
Euler-Lagrange (EL) equations lead to a flat space-time. Nevertheless, this was the
first step towards an attempt of quantizing GR by quantizing space-time itself. This
story slept nearly 20 years before emerging back under different shapes.

In 1992, V. Turaev and O. Viro defined the so-called state-sum invariant of 3-
manifolds or Turaev-Viro (TV) invariant using the same idea as Ponzano and Regge
of labeled edges of a triangulation of the manifold considered [Turaev and Viro,
1992]. The construction is based on modular categories but the weaker hypothesis
of finite semisimple spherical categories can be considered [Barrett and Westbury,
1996]. In both finite semisimple spherical and modular categories, a constraint,
called domination axiom, makes it possible to construct the invariant with a finite
set of objects. The expression of the TV invariant is then formally very similar to
the formula of Ponzano and Regge in the case of a realization of the category by
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representations of Uq(sl2) (quantum deformation of the universal enveloping algebra
of sl2 at a root of unity q). Contrary to the formula of Ponzano and Regge, the TV
invariant is a well-defined quantity, since the domination axiom imposes the sum to
be taken over a period of the cyclic representations of Uq(sl2). It can be therefore
considered as a regularization of Ponzano-Regge formula.

Modular categories are also at the root of the construction of the so-called
Reshetikhin-Turaev (RT) invariant, which has been shown to be related to the TV
invariant built along the same modular category C:

∣∣∣ZRTC
Ä
M (3)ä∣∣∣2 = ZTVC

Ä
M (3)ä . (2)

It must be borne in mind that this equality is not correct anymore with the weaker
hypothesis that C is only a finite semisimple spherical category. The RT invariant
is built from a framed knot associated with the manifold considered via a surgery
procedure. What is interesting is that in the case of Uq(sl2) this invariant has been
shown to be equivalent to the Jones polynomial of this surgery knot [Reshetikhin and
Turaev, 1991], and thus, according to E. Witten, related to the SU(2) Chern-Simons
(CS) partition function as shown further.

In 1978 A. S. Schwarz was the first to introduce the idea that topological invari-
ants could be recovered with the partition function Z of some quantum field theories
founded on a gauge invariant classical action S [Schwarz, 1978], that is, a formal
integral written as:

Z = 1
N

ˆ
H

DϕeiS(ϕ), (3)

where the integration domain H is the space of configurations ϕ of the theory and
D is a measure on this space. Mathematicians assert that a non-zero measure in-
variant under translation over H cannot exist. J. Baez proposed nevertheless an
alternative that consists in considering linear functionals over specific subspaces of
H [Baez, 1993]. However, there exists no practical method analogous to primitive
computation to obtain an exact result. Such a partition function is actually written
by analogy with statistical physics. A perturbative expansion, together with formal
manipulations, makes it possible to find Feynman rules without using Wick con-
tractions on field operators that live in the Fock space of quantum states associated
with the system. The normalization N has to enable the extraction of relevant
quantities absorbing intrinsic divergency of the integral arising for example because
of gauge invariance of the action (but not only).

In 1982, Witten showed relations between Morse theory and supersymmetric
QM [Witten, 1982], giving a second example of a mathematical development thanks
to physics tools. The year after, S. Donaldson used some considerations on gauge
theories to produce some results in four dimensional topology [Donaldson, 1983].
Specially collecting the results of Witten and Donaldson, M. Atiyah showed in 1987
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Introduction (English version)

that the study of the infinite dimensional manifold of flat connections of trivial
bundles over a manifold M (3) of dimension 3 was of central interest to study the
topological properties of M (3) itself as well as topological properties of manifolds
that bound M (3) and manifolds that are bounded by M (3) [Atiyah, 1987].

More rigourously, in the mathematics literature, a connection is a global 1-form
on a principal fiber bundle. Its pullback by a local section defines on the base
manifold local 1-forms with coefficients in a Lie algebra. In the intersections of their
respective domain of definition, two such local 1-forms stick together up to a gauge
transformation. Hence, by a misuse of language a family of such local 1-forms will be
called connection as well. Such a family modelizes a physical field whose strength,
or curvature from the mathematicians’ point of view, is the measurable quantity like
an electromagnetic field for example.

This subject now known as topological quantum field theory (TQFT) has been
since then intensively treated in the community of both mathematicians and physi-
cists and tools familiar to physicists such as functional integrals turned out to be a
relevant approach. The definition and the classification of TQFTs are provided in
particular in [Birmingham et al., 1991], a TQFT being defined as:

• a collection of fields (which are Grassmann graded) defined on a Riemannian
manifold

Ä
M (n), g

ä
,

• a nilpotent operator Q, which is odd with respect to the Grassmann grading,

• physical states defined to be Q-cohomology classes,

• an energy-momentum tensor which is Q-exact: Tαβ = {Q,Vαβ} for some func-
tional Vαβ of the fields and the metric.

In most examples treated along the years, Q is the BRST operator, but such a
statement is not mandatory. Those criteria imply in particular that the partition
function Z defined as in equation (3) is a topological invariant of M (n). Hence, Z
will be noted Z

Ä
M (n)

ä
whereM (n) is the manifold over which the TQFT is defined.

Still according to [Birmingham et al., 1991], TQFTs are classified according to two
families. Schwarz type theories, in opposition to Witten type theories, are described
by a local action which is independent of the metric as well as the correlators, which
implies in particular that the energy-momentum tensor vanishes. As a consequence,
for an observable O : ϕ 7→ O (ϕ), which is a functional over the space of fields H ,
its expectation value, defined as:

〈O〉 = 1
N

ˆ
H

DϕO(ϕ) eiS(ϕ), (4)

is also a topological invariant. It should not be forgotten that functional integration
is an ill-defined operation. It is a formal intermediary of computations. The results
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of these computations are expected to be dominated by the contributions of flat
connections, since flat connections are the classical solutions of the theory, that is,
the solutions of EL equations. Hence, the partition function and the expectation
value of observables are topological invariants in the sense that so is the result of
their underlying computations.

From now on, this study will exclusively focus on Schwarz type TQFT. A theory
which is, stricto sensu, a BF theory, was studied in 1978 by Schwarz and related
with Ray-Singer torsion [Schwarz, 1978]. However, it is often considered that BF
theory appeared for the first time in the work of G. Horowitz [Horowitz, 1989] who
was investigating a class of TQFT that can be defined in any dimension.

Using the “dreibein” variables, the action of GR in dimension 3 can be written
as 1:

SBFg (A,B) = g

4π

ˆ
M(3)

Tr(B ∧ FA) , (5)

where FA = dA+A∧A is the curvature 2-form associated with a SU(2)-connection
A and B is a su(2)-valued 1-form2. The normalization g

4π has been chosen this way
for later convenience and differs from a lot of publications which prefer to absorb it
completely by a redefinition of B. This action is invariant under the transformation:

{
A −→ Ag = g−1Ag + g−1 dg ⇒ FA −→ FAg = g−1FAg,

B −→ Bg = g−1Bg,
(6)

with g ∈ SU(2). It should be noted that actions of the same kind on a manifoldM (n)

of any dimension n can be built just taking B to be a su(2)-valued (n− 2)-form.
The BF action is quite similar to CS action which is given by1:

SCSk (A) = k

4π

ˆ
M(3)

Tr
Å
A ∧ dA+ 2

3A ∧A ∧A
ã
, (7)

where A is a SU(2)-connection2. The normalization here cannot be absorbed prop-
erly by a redefinition of A. It is actually part of the definition as explained further
(up to a 2π factor1). Under a gauge transformation, that is:

A −→ Ag = g−1Ag + g−1 dg, (8)

with g ∈ SU(2), this action transforms as:

SCSk (A) −→ SCSk (Ag) = SCSk (A) + SWZ (g) , (9)
1 Several conventions of normalization of the action S are possible. If the normalization of S

is 1
4π , then S is invariant up to 2πn with n ∈ Z under gauge transformation. With this choice,

the quantity strictly invariant under gauge transformation is eiS . If the normalization of S is 1
8π2 ,

then S is invariant up to n ∈ Z under gauge transformation. With this choice, the quantity strictly
invariant under gauge transformation is e2iπS .

2The theory can be defined as well with SU(N) instead of SU(2).
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where SWZ (g) is a so-called Wess-Zumino term and is actually an integer. Thus, CS
action is well-defined on gauge classes of fields only in R/Z . Contrary to BF, this
is a purely quantum action, in the sense that it cannot be regarded simply in R as
any classical action. One of the most remarkable uses of CS action is due to Witten
who proved that the SU(2) CS theory was related to the invariant of knots called
Jones polynomial [Witten, 1989]. Of course, Witten never performed a functional
integration which remains an ill-defined operation, but proved his result by indirect
arguments related in particular to conformal field theory (CFT).

It is possible, thanks to a surgery procedure, to relate the computation in M (3)

with a computation in S3 which is completely similar to R3. In R3, the standard
procedures of quantum field theory (QFT) like gauge fixing and perturbative expan-
sion can be used, which has been done by E. Guadagnini et al. [Guadagnini et al.,
1990]. Their perturbative result is compatible with Witten’s result.

The expression (7) is not absolutely rigorous. Indeed, writing the integral this
way implies that A is an object globally defined, which is not true in general. Ac-
cording to the theorem of stepwise extension of a section of a fiber bundle [Steen-
rod, 1999], since for any integer N , the Lie group SU(N) is arcwise connected and
π1 (SU(N)) = π2 (SU(N)) = 0 (which is not the case of U(1)), then any princi-
pal SU(N)-bundle over a closed manifold of dimension 3 is trivializable. Hence,
a representative that is globally defined can be found in the gauge class of any
SU(N)-connection. Therefore, in this formula, A should actually be this particular
representative. It should be noted that fixing a globally defined representative is the
same as focusing on the trivial SU(N)-bundle over M (3).

Moreover, when considering a gauge theory like SU(N) CS theory and claiming
to perform functional integrals such as equation (3) implies summing over all the
connections, or equivalently, all the principal bundles over the manifold considered
M (3). However, the gauge invariance of the action induces an infinite redundancy.
To deal with this issue, two approaches can be considered. Firstly, a gauge can be
fixed, that is, a constraint that should guarantee that one and only one representative
in each gauge class is to be considered, which is the usual approach in physics.
Secondly, the gauge classes can be considered directly. If the principal fiber bundle
associated with the theory is trivializable, then those two approaches are equivalent.
This is the case when the gauge group is SU(N) or when the manifold considered is
R3 or S3. However, if the principal bundle is not trivializable, there is a priori no
reason, from the physicists’ point of view, to restrict to the connections of the trivial
principal bundle. It should be pointed out, however, that introducing a matter
field or equivalently considering a vector bundle on which the principal bundle of
the theory acts modifies the properties of gauge invariance and actually fixes the
principal bundle of the theory. This study will develop the second approach for the
U(1) CS and BF theories on a connected closed manifold of dimension 3 without
any matter field. Until now, this approach, initiated in [Bauer et al., 2005], has
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been developed since then by very few authors [Guadagnini and Thuillier, 2013],
[Mathieu and Thuillier, 2016a]. The fact that the fiber bundles considered here are
not trivializable is a crucial difference with the usual SU(N) case due to the specific
topological structure of U(1).

In the 3-dimensional BF theory, a cosmological term can be incorporated in the
action:

SBFg,κ (A,B) = g

4π

ˆ
M(3)

Tr
Ç
B ∧ FA + κ2

3 B ∧B ∧B
å
, (10)

as done by Horowitz in his derivation of 3 + 1-dimensional Einstein-Hilbert action
[Horowitz, 1989].

If the normalization is absorbed by rescaling B in B̃ = g
4πB and κ redefined as

κ̃ = 4πκ
g , then:

S̃BFg,κ (A,B) = SBFκ̃
Ä
A, B̃

ä
=
ˆ
M(3)

Tr
Ç
B̃ ∧ FA + κ̃2

3 B̃ ∧ B̃ ∧ B̃
å
, (11)

and κ̃ is nothing but the cosmological constant analogous in dimension 3 of the one
defined by Einstein in dimension 3 + 1.

In 1998 A. Cattaneo et al. showed that the SU(N) the partition functions of
BF and CS theories could be related performing formal manipulations on functional
integrals [Cattaneo et al., 1998]:

∣∣∣ZCSk
Ä
M (3)ä∣∣∣2 = ZBF4kκ,κ

Ä
M (3)ä . (12)

Such expression of the result justifies the choice to express the BF theory with two
parameters g and κ.

Beyond the scope of this study, and in order to complete the current genealogy of
the BF theory in quantum gravity, L. Crane and D. Yetter studied what an analog
of the TV invariant should be in dimension 4 keeping in mind the idea expressed
by Ponzano and Regge and its regularization by the TV invariant using a quantum
group [Crane and Yetter, 1993]. They wrote:

ˆ
M(4)

Tr(B ∧ FA) , (13)

with B a 2-form su(2)-valued. This is again a topological action. Unfortunately
EL equations constrain the Riemann tensor which is too strong to be relevant in
quantum gravity. Another attempt by J. Barrett and Crane in [Barrett and Crane,
1998] consisted in writing the action as:

ˆ
M(4)

e ∧ e ∧ FA, (14)
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introducing new degrees of freedom and constraining this time the Ricci tensor in
EL equations. This should have been more adapted to a theory of quantum gravity
but was actually wrong. A correction of this led to the EPRL model defined in
[Engle et al., 2008], which is the most up-to-date model of LQG which has no UV
divergence and controlled IR divergence, the limit with large spins being thus of
course the GR.

Hence, understanding the regularization of the Ponzano-Regge model and its
relation to the TV invariant and the SU(2) BF theory turned out to be relevant
as a step towards the definition of a quantum theory of gravitation. S. Mizoguchi
and T. Tada showed in 1992 that the quantum deformation parameter q had to
be related to the cosmological constant κ̃ [Mizoguchi and Tada, 1992]. C. Rovelli
showed in 1993 the equivalence of the so-called loop representation in LQG and the
combinatorics underlying the quantum gravity in the work of Ponzano, Regge, H.
Ooguri, Turaev and Viro [Rovelli, 1993]. This question has been under consideration
until recently for example with the works of K. Krasnov, D. Louapre and L. Freidel
[Freidel and Krasnov, 2005, Freidel and Louapre, 2004, Freidel and Louapre, 2005]
or the works of V. Bonzom and M. Smerlak [Bonzom and Smerlak, 2012]. Research
on the CS and BF theories for themselves is also still active ([Cattaneo et al., 2017]
for example).

So far, the state of the art can be summed up in the following diagram:

|ZCSk |2 = ZBF4kκ,κ

= =

∣∣∣ZRTq(k)

∣∣∣
2

= ZTVq(k)

The index q (k) is the root of unity that appears in Uq(sl2) and is built from the
coupling constant of CS theory k. On the TV side, q = q (κ̃) but κ̃ = 4πκ

g = π
k since

g = 4kκ to satisfy the equality of the partition functions. Hence q = q (κ̃) = q (k).
The lower equality relates two perfectly defined quantities. This is a theorem,

established by Reshetikhin, Turaev and Viro in the general framework of modular
categories. On the contrary, the other equalities deal with ill-defined objects. The
upper equality has been established by formal manipulations and the two vertical
equalities have been proved by indirect arguments.

The aim of the present study is to investigate the abelian BF theory on a manifold
M (3) of dimension 3 by computing the partition function and the expectation value of
observables, starting from formal functional integrals. Several differences with usual
studies on the subject have to be underlined. The abelian BF theory under study
here is a TQFT, in the sense that the action considered is completely independent
of any metric on M (3). It is even a cohomological TQFT in the sense that it will
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be written, not as usual in terms of U(1)-connections, but in terms of gauge classes
of U(1)-connections that will be proved to be Deligne-Beilinson (DB) cohomology
classes. The structure of the space of DB cohomology classes will make it possible
to extract the quantities of interest exactly from formal functional integrals, as
done for the abelian CS theory [Guadagnini and Thuillier, 2013]. This approach
is thus non-perturbative. In the present study, the computations will rely on DB
cohomology and will not be restricted to gauge classes arising from the trivial U(1)-
bundle over M (3). Indeed, physicists interpret gauge theories in the following way:
Observers perform a measurement of a physical quantity in their neighbourhood. If
two observers compare their respective result, there is no reason for them to have
the same one, but their results will be related by a gauge transformation. Hence,
there is no reason for restricting to the configurations where the measurement is the
same for each observer. As a consequence, in some sense, the partition functions
and expectation value of observables will be considered to be specific sums over all
the U(1)-bundles over M (3).

Beyond the computations of the partition function and the expectation value
of observables, which had never been treated this way before, this study aims at
highlighting the relations between the abelian BF and CS theories as well as the
relations between those theories and TQFT in the formalism of categories as de-
scribed mostly by N. Reshetikhin, V. Turaev and O. Viro. Some subtleties have to
be mentioned. First, to get correct relations between all those theories, the normal-
ization of the RT and TV invariants will be taken to be S3 and not S1×S2 contrary
to the usual convention appearing in the mathematics literature. Then, the weaker
hypothesis of finite semisimple spherical category regarding the RT theory has to
be considered in order to obtain a relation between the abelian CS and RT theories.
This weaker hypothesis is, in some sense, that of H. Murakami, T. Ohtsuki and M.
Okada [Murakami et al., 1992] and is also evocated by Turaev [Turaev, 2010]. This
is a fundamental difference with the non-abelian (mainly SU(2)) case. Finally, as
already stated, the SU(2) CS theory is related to the RT theory built on a quantum
group. This cannot be directly extended to the abelian case since no quantum de-
formation of U (1) is possible. This is another crucial difference with the SU(2) case
due to the specific topological structure of U(1). As in the SU(2) case, the point is
actually to consider objects satisfying the domination axiom. In the cases consid-
ered, this will consist in an infinite set of objects with a periodic structure so that
sums can be restricted to a period without losing any information carried by those
objects. It will be contended that, in the abelian case, the correct objects to consider
are representations of Zk. Before this study, such class of examples had never been
exhibited, probably because of their seeming triviality. However, it will be shown
further that they actually constitute a subtle class of examples with interesting links
with abelian BF and CS theory.

The first part of this dissertation focuses on fundamental notions of TQFT from a
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mathematical approach. This approach is based on the theory of categories. The first
chapter introduces the main definitions and abelian realizations are derived. The
second chapter presents the abelian RT invariant founded on the abelian modular
category derived in the first chapter, following the work of Reshetikhin and Turaev.
The extension studied in particular by Murakami, Ohtsuki and Okada [Murakami
et al., 1992] is also considered. Likewise, the RT invariant founded on the abelian
Drinfeld center is presented, as well as associated new developments [Turaev and
Virelizier, 2013]. The third chapter of this part presents the abelian TV invariant
based on the abelian finite semisimple spherical category derived in the first chapter.
Its definition is founded on the work of B. Balsam and A. Kirillov [Balsam and
Kirillov, 2010] which generalizes the original construction on triangulations to any
cellular decomposition. Within the abelian framework, several results relating the
TV theory to the RT theory that have been established in the general case can
thus be verified. The main original contribution of this part is the derivation of
an abelian version of all those notions and the discussion about the subtleties that
occur. Also, comparing the shape of abelian RT and TV invariants with abelian CS
and BF partition function given in the next part led to introduce expectation value
of observables in abelian RT and TV theories, which had never been done before
strictly speaking.

The second part focuses on the abelian CS and BF theories from a physical
approach. Those theories are defined by classical actions, that is, fonctionals over
the space of classical fields. The quantities computed are extracted from functional
integrals, but the aim of this study is neither to give a rigorous definition nor to per-
form any computation of such kind of formal objects. The first chapter is a review
on DB cohomology whose classes will be precisely the gauge classes of fields. The
structure of the space of DB cohomology classes and some properties are derived for
further use, following [Mathieu, 2017]. In the second chapter, the abelian CS par-
tition function and the expectation value of observables are defined and computed.
Those results are related to the abelian RT theory presented in the previous part.
In the third chapter, the abelian BF partition function and the expectation value of
observables are defined and computed. Those results are related to the abelian TV
theory presented in the previous part and with the results on abelian CS theory ob-
tained in the previous chapter concerning the partition functions following [Mathieu
and Thuillier, 2016a] and concerning the expectation value of observables following
[Mathieu and Thuillier, 2016b]. It is often asserted that the main contributions to
functional integrals come from the neighbourhood of the solutions of the classical
EL equations which are the flat connections, that is, the connections A such that
FA = 0. Using DB cohomology implies that this assertion is correct and even proved
by direct computations. The results established in the last chapter of this part, and
in particular the links between the quantities defined and computed in this chapter
and in the previous ones, constitute the main original production of this study.
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Those two parts provide a complete and quite closed set of definitions and results
concerning abelian RT, TV, CS and BF theories on closed manifolds of dimension
3. Those results are beyond the initial aim of this study.

The third part gathers new developments slightly out of the scope of the main
theme of this study, without being totally unrelated. The first chapter introduces
a completely new method founded on Heegaard diagrams to compute SU(2) CS
invariant following [Guadagnini et al., 2017]. In the second chapter, the propagator
of abelian CS theory in R4l+3 in an anisotropic metric is computed. Several limits
are studied and geometric interpretations are proposed, completing the particular
cases studied in [Gallot et al., 2018].
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Introduction (version française)

L’un des principaux problèmes de la physique aujourd’hui consiste en la réconcilia-
tion de la relativité générale (GR) et de la mécanique quantique (QM). Une tentative
d’atteindre ce but est proposée par la gravitation quantique à boules (LQG) dont
le modèle le plus abouti a été défini relativement récemment, en 2008 [Engle et al.,
2008]. Cependant, ce modèle est le résultat de travaux développés durant près de 50
ans, mélangeant des considérations à la fois mathématiques et physiques, la théorie
BF se situant à l’intersection.

En 1961, T. Regge proposa d’exprimer la GR sans coordonées en utilisant une
décomposition cellulaire de l’espace-temps [Regge, 1961]. Un peu plus tard, Regge
étudia avec G. Ponzano la limite des grands spins des coefficients de Racah [Ponzano
and Regge, 1968]. Les coefficients de Racah sont, à un signe près, reliés aux symboles
6j définis par Wigner qui ont des propriétés de symétrie représentées sur la Figure
1. Sur ce schéma, les jαβ sont des indices de représentations de SU(2) liées aux
symboles 6j qui représentent donc des moments angulaires, mais ils peuvent être
considérés comme les longueurs des arêtes du tétraèdre.

La relation entre tétraèdres et symboles 6j est bien plus profonde qu’un simple
moyen mnémotechnique. En effet, dans leur travail, Ponzano et Regge ont montré
qu’un symbole 6j est lié au volume de son tétraèdre associé par:

®
a b c
d e f

´
= F√

12πV
, (1)

où V est le volume du tétraèdre et F est une fonction des angles diédraux du
tétraèdre et des moments angulaires oscillant rapidement de sorte que la moyenne
de F 2 est égale à 1

2 .
De plus, de façon analogue, les symboles 3nj sont associés à des polyèdres plus

compliqués P3nj . Ils peuvent aussi s’écrire comme fonctions des symboles 3mj avec
m < n. Ces symboles 3mj sont eux-mêmes associés à des polyèdres P3mj et la
décomposition des symboles 3nj en fonction des symboles 3mj est reliée à la décom-
position géométrique des P3nj en P3mj . Formalisant cette idée, Ponzano et Regge
ont été conduits à considérer des sommes de symboles 6j représentant des tétraèdres
élémentaires qui se recollent pour donner un polyèdre plus compliqué associé à un
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•P1

•
P2

•P3

•P4

a + 1
2 = j12 e + 1

2 = j24

b + 1
2 = j13 d + 1

2 = j34

c + 1
2 = j14

f + 1
2 = j23

Figure 1: Symmetry of the 6j-symbols.

symbole 3nj. L’unicité du symbole 3nj en question implique que ces sommes doivent
être indépendantes de la décomposition du polyèdre P3nj en tétraèdres élémentaires.

Pour se recoller le long d’une face, deux tétraèdres doivent porter les mêmes
charges sur leurs arêtes. Faire la somme sur toutes les configurations autorisées
doit donc produire une quantité indépendante de la triangulation du polyèdre P3nj .
Malheureusement, une telle somme sur les représentations de SU(2) est infinie.

Cela étant, menant une étude formelle de la limite des grands spins, Ponzano
et Regge reconnurent, grâce aux résultats obtenus par Regge quelques années au-
paravant, une discrétisation de la fonction de partition associée à la GR euclidienne
en dimension 3. La fonction de partition est aussi mal définie puisqu’elle représente
une somme sur l’espace de dimension infinie de toutes les décompositions cellulaires
de l’espace-temps.

La GR euclidienne en dimension 3 est triviale en ce sens que, pour un espace vide,
les équations d’Euler-Lagrange (EL) conduisent à un espace-temps plat. Néanmoins,
c’est une première étape d’une tentative de quantification de la GR par quantification
de l’espace-temps lui-même. Cette histoire a dormi pendant près de 20 ans avant de
réémerger sous différentes formes.

En 1992, V. Turaev and O. Viro ont défini un invariant dit de somme d’états
associé aux variétés de dimension 3, ou invariant de Turaev-Viro (TV), utilisant la
même idée que Ponzano et Regge consistant à associer des représentations aux arêtes
d’une triangulation de la variété considérée [Turaev and Viro, 1992]. La construction
est basée sur les catégories modulaires, mais l’hypothèse plus faible de catégorie
sphérique semisimple finie peut aussi être considérée [Barrett and Westbury, 1996].
Dans les deux cas, la contrainte dite axiome de domination permet de construire
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l’invariant avec un ensemble fini d’objets. L’expression de l’invariant TV est alors
formellement très similaire à la formule de Ponzano et Regge dans le cas d’une
réalisation de la catégorie par des représentations de Uq(sl2) (déformation quantique
de l’algèbre enveloppante de sl2 en une racine de l’unité q). Contrairement à la
formule de Ponzano et Regge, l’invariant TV est bien défini, puisque l’axiome de
domination impose à la somme d’être prise sur une période des représentations
cycliques de Uq(sl2). Il peut en ce sens être considéré comme une régularisation de
la formule de Ponzano-Regge.

Les catégories modulaires sont aussi au cœur de la construction de l’invariant
dit de Reshetikhin-Turaev (RT), dont il a été prouvé qu’il est lié à l’invariant TV
construit sur la même catégorie modulaire C par la relation :

∣∣∣ZRTC
Ä
M (3)ä∣∣∣2 = ZTVC

Ä
M (3)ä . (2)

Il faut garder en tête que cette égalité n’est plus valable avec l’hypothèse plus
faible selon laquelle C ne serait que sphérique semisimple finie. L’invariant RT
est construit à partir d’un nœud encadré associé à la variété considérée par une
procédure de chirurgie. Il est intéressant de noter que, dans le cas de Uq(sl2), il a
été prouvé que cet invariant est équivalent au polynôme de Jones de ce nœud de
chirurgie [Reshetikhin and Turaev, 1991], et par conséquent, d’après E. Witten, il
est lié à la fonction de partition associée à une théorie de Chern-Simons (CS) SU(2)
comme discuté plus loin.

En 1978, A. S. Schwarz fut le premier à introduire l’idée que des invariants
topologiques pouvaient être retrouvés avec la fonction de partition Z d’une théorie
quantique des champs construite à partir d’une action classique S invariante de jauge
[Schwarz, 1978], c’est-à-dire, avec une intégrale formelle pouvant s’écrire comme :

Z = 1
N

ˆ
H

DϕeiS(ϕ), (3)

où le domaine d’intégration H est l’espace des configurations ϕ de la théorie et D est
une mesure sur cet espace. Les mathématiciens affirment qu’une mesure non-triviale
invariante par translation sur H ne peut exister. J. Baez proposa néanmoins une
alternative consistant à considérer des fonctionnelles linéaires sur des sous-espaces
particuliers de H [Baez, 1993]. Cependant, il n’existe aucune méthode pratique
analogue au calcul de primitives permettant d’obtenir un résultat exact. Une telle
fonction de partition est en réalité écrite par analogie avec la physique statistique.
Un développement perturbatif et des manipulations formelles permettent de trouver
les règles de Feynman sans passer par des contractions de Wick sur les opérateurs
de champs qui vivent dans l’espace de Fock des états quantiques associés au sys-
tème. La normalisation N doit permettre l’extraction des quantités pertinentes en
absorbant les divergences intrinsèques de l’intégrale, survenant par exemple à cause
de l’invariance de jauge de l’action (mais pas seulement).
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En 1982, Witten établit des relations entre théorie de Morse et QM super-
symétrique [Witten, 1982], donnant un deuxième exemple de développement mathé-
matique réalisé grâce à des outils issus de la physique. L’année d’après, S. Donaldson
utilisa des considérations relatives aux théories de jauge afin de produire des résul-
tats de topologie en dimension 4 [Donaldson, 1983]. Rassemblant en particulier
les résultats de Witten et Donaldson, M. Atiyah montra en 1987 que l’étude de la
variété de dimension infinie des connections plates du fibré trivial au dessus d’une
variétéM (3) de dimension 3 était particulièrement intéressante pour l’étude des pro-
priétés topologiques deM (3) elle-même, de même que les propriétés topologiques des
variétés qui bordent M (3) et des variétés qui sont bordées par M (3) [Atiyah, 1987].

Plus rigoureusement, dans la littérature mathématique, une connexion est une
1-forme globale sur un fibré principal. Son image par l’application tangente d’une
section locale définit sur la variété de base des 1-formes locales à coefficients dans une
algèbre de Lie. Dans les intersections de leurs domaines de définition respectifs, deux
telles 1-formes locales se recollent par transformation de jauge. Ainsi, par abus de
langage, une famille de telles 1-formes locales sera également appelée connexion. Une
telle famille modélise un champ physique dont l’intensité, ou la coubure d’un point de
vue mathématique, est la quantité mesurable, comme un champ électromagnétique
par exemple.

Ce sujet désormais appelé théorie quantique des champs topologique (TQFT)
a été étudié intensivement depuis lors, tant par les mathématiciens que par les
physiciens et des outils familiers des physiciens tels que les intégrales fonctionnelles
se sont avérés pertinents. La définition et la classification des TQFT sont notamment
fournies dans [Birmingham et al., 1991], une TQFT étant définie par :

• une collection de champs (Grassmann-gradués) définis sur une variété riman-
nienne

Ä
M (n), g

ä
,

• un opérateur nilpotent Q, impair relativement à la Grassmann-graduation,

• des états physiques définies comme étant des classes de Q-cohomologie,

• un tenseur énergie-impulsion Q-exact: Tαβ = {Q,Vαβ}, les Vαβ étant des
fonctionnelles des champs et de la métrique.

Dans la plupart des exemples traités au fil du temps, Q est l’opérateur BRST,
mais il ne s’agit pas là d’une contrainte supplémentaire. Ces critères impliquent en
particulier que la fonction de partition Z définie comme dans l’équation (3) est un
invariant topologique de M (n). Ainsi, Z sera notée Z

Ä
M (n)

ä
où M (n) est la variété

sur laquelle la TQFT est définie. Toujours selon [Birmingham et al., 1991], les TQFT
sont classifiées en deux familles. Les théories de type Schwarz, par opposition aux
théories de type Witten, sont décrites par une action locale indépendante de la
métrique, de même que les corrélateurs, ce qui implique en particulier que le tenseur
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énergie-impulsion est nul. Par conséquent, pour une observable O : ϕ 7→ O (ϕ), qui
est une fonctionnelle sur l’espace des champs H , sa valeur moyenne, définie par :

〈O〉 = 1
N

ˆ
H

DϕO(ϕ) eiS(ϕ), (4)

est également un invariant topologique. Il ne doit pas être oublié que l’intégration
fonctionnelle est une opération mal définie. Il s’agit d’un intermédiaire formel de
calculs. Une domination des résultats de ces calculs par les contributions des con-
nexions plates est attendue étant donné que les connexions plates sont les solutions
classiques de la théorie, c’est-à-dire, les solutions des équations EL. Ainsi, la fonction
de partition et les valeurs moyennes d’observables sont des invariants topologiques
en ce sens qu’il en est ainsi pour les résultats des calculs sous-jacents.

Ce manuscrit porte exclusivement sur des TQFT de type Schwarz. Une théorie
qui est, stricto sensu, une théorie BF, a été étudiée en 1978 par Schwarz et reliée à
la torsion de Ray-Singer [Schwarz, 1978]. Cependant, il est souvent considéré que
la théorie BF est apparue pour la première fois dans les travaux de G. Horowitz
[Horowitz, 1989] qui portaient sur une classe de TQFT pouvant être définies en
n’importe quelle dimension.

Utilisant des “triades”, l’action de la GR en dimension 3 peut s’écrire comme1 :

SBFg (A,B) = g

4π

ˆ
M(3)

Tr(B ∧ FA) , (5)

où FA = dA+A∧A est la 2-forme de courbure associée à la connexion SU(2) A et B
est une 1-forme à valeurs dans su(2)2. La normalisation g

4π a été choisie de la sorte
pour des raisons pratiques qui apparaitront ultérieurement et diffère de nombreuses
publications qui préfèrent l’absorber complètement en redéfinissant B. Cette action
est invariante par transformation de jauge :

{
A −→ Ag = g−1Ag + g−1 dg ⇒ FA −→ FAg = g−1FAg,

B −→ Bg = g−1Bg,
(6)

avec g ∈ SU(2). Il est à noter que des actions du même type sur des variétés M (n)

de dimension n quelconque peuvent être construites simplement en considérant B
comme étant une (n− 2)-forme à valeurs dans su(2).

1 Plusieurs conventions de normalisation de l’action S sont possibles. Si la normalisation de S
est 1

4π , alors S est invariante à 2πn près avec n ∈ Z par transformation de jauge. Avec ce choix,
la quantité invariante par transformation de jauge est eiS strictement parlant. Si la normalisation
de S est 1

8π2 , alors S est invariante à n ∈ Z près par transformation de jauge. Avec ce choix, la
quantité invariante par transformation de jauge est e2iπS strictement parlant.

2La théorie peut être définie aussi bien avec SU(N) qu’avec SU(2).
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Introduction (version française)

L’action BF est relativement similaire à l’action CS donnée par1:

SCSk (A) = k

4π

ˆ
M(3)

Tr
Å
A ∧ dA+ 2

3A ∧A ∧A
ã
, (7)

où A est une connexion SU(2)2. La normalisation ici ne peut être absorbée par une
redéfinition de A. Elle fait en réalité partie de la définition comme expliqué plus
loin (à un facteur 2π près1). Par transformation de jauge, c’est-à-dire :

A −→ Ag = g−1Ag + g−1 dg, (8)

avec g ∈ SU(2), cette action se transforme comme :

SCSk (A) −→ SCSk (Ag) = SCSk (A) + SWZ (g) , (9)

où SWZ (g) est le terme dit de Wess-Zumino et s’avère être un entier. Ainsi, l’action
CS n’est bien définie sur les classes de jauge de champs que dans R/Z . Contraire-
ment à BF, cette action est purement quantique, en ce sens qu’elle ne peut être
considérée simplement dans R comme n’importe quelle action classique. L’une des
applications les plus remarquables de l’action CS est due à Witten, qui prouva que la
théorie CS SU(2) était reliée à l’invariant de nœuds appelé polynôme de Jones [Wit-
ten, 1989]. Bien sûr, Witten n’a jamais effectué d’intégration fonctionnelle qui reste
une opération mal définie, mais il prouva son résultat par des arguments indirects
liés aux théories de champs conformes (CFT).

Il est possible, par une procédure de chirurgie, de relier le calcul dans M (3) à
un calcul dans S3 qui est complètement similaire à celui dans R3. Dans R3, les
procédures standard de théorie quantique des champs (QFT) comme la fixation de
jauge et les développements perturbatifs peuvent être utilisées, ce qui a été fait par
E. Guadagnini et al. [Guadagnini et al., 1990]. Leur résultat est compatible avec le
résultat de Witten.

L’expression (7) n’est pas tout à fait rigoureuse. En effet, écrire l’intégrale de
cette manière suppose que A est un objet globalement défini, ce qui n’est pas nécess-
sairement le cas en général. D’après le théorème d’extension progressive des sections
d’un fibré [Steenrod, 1999], étant donné que pour tout entier N , le groupe de Lie
SU(N) est connexe par arc et π1 (SU(N)) = π2 (SU(N)) = 0 (ce qui n’est pas le cas
pour U(1)), tout fibré principal SU(N) au-dessus d’une variété fermée de dimension
3 est trivialisable. Ainsi, il est possible de trouver un représentant globalement défini
dans la classe de jauge de n’importe quelle connexion SU(N). Par conséquent, dans
cette formule, A devrait être en fait ce représentant particulier. Il est à noter que
fixer un représentant défini globalement revient à considérer le fibré SU(N) trivial
au-dessus de M (3).

De plus, considérer une théorie de jauge comme CS SU(N) et prétendre cal-
culer des intégrales fonctionnelles telles que l’expression (3) suppose de sommer sur
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l’ensemble des connexions, ou, de façon équivalente, sur l’ensemble des fibrés prin-
cipaux au-dessus de la variété M (3). Cependant, l’invariance de jauge de l’action
induit une redondance infinie. Pour gérer ce problème, deux approches sont pos-
sibles. Premièrement, il est possible de fixer une jauge, c’est-à-dire, de poser une
contrainte permettant de sélectionner un représentant et un seul dans chaque classe
de jauge, ce qui est l’approche usuelle en physique. Deuxièmement, il est possible de
considérer directement les classes de jauge. Si le fibré principal associé à la théorie
est trivialisable, alors ces deux approches sont équivalentes. C’est le cas quand le
groupe de jauge est SU(N) ou quand la variété considérée est R3 ou S3. Cependant,
si le fibré principal n’est pas trivialisable, il n’y a a priori aucune raison, d’un point
de vue de physicien, de se restreindre aux connexions du fibré trivial. Il est à signaler
cependant qu’introduire un champ de matière, ou, de façon équivalente, considérer
un fibré vectoriel sur lequel le fibré principal agit, modifie les propriétés d’invariance
de jauge et fixe en fait le fibré principal de la théorie. Ce travail présente la deuxième
approche dans le cas des théories CS et BF U(1) sur une variété fermée connexe de
dimension 3 sans champ de matière. Jusqu’à présent, cette approche, initiée dans
[Bauer et al., 2005], a été développée depuis lors par très peu d’auteurs [Guadagnini
and Thuillier, 2013], [Mathieu and Thuillier, 2016a]. Le fait que les fibrés consid-
érés ici sont non-trivialisables est une différence cruciale avec le cas SU(N) usuel,
différence due à la structure topologique spécifique de U(1).

Pour la théorie BF en dimension 3, un terme cosmologique peut être incorporé
à l’action :

SBFg,κ (A,B) = g

4π

ˆ
M(3)

Tr
Ç
B ∧ FA + κ2

3 B ∧B ∧B
å
, (10)

comme proposé par Horowitz dans son calcul de l’action d’Einstein-Hilbert en di-
mension 3 + 1 [Horowitz, 1989].

Si la normalisation est absorbée en changeant B en B̃ = g
4πB et κ en κ̃ = 4πκ

g ,
alors :

SBFg,κ (A,B) = S̃BFκ̃
Ä
A, B̃

ä
=
ˆ
M(3)

Tr
Ç
B̃ ∧ FA + κ̃2

3 B̃ ∧ B̃ ∧ B̃
å
, (11)

et κ̃ n’est rien d’autre que la constante cosmologique analogue en dimension 3 de
celle définie par Einstein en dimension 3 + 1.

En 1998 A. Cattaneo et al. ont montré que les fonctions de partition des théories
CS et BF SU(N) pouvaient être reliées par des manipulations formelles sur les
intégrales fonctionnelles [Cattaneo et al., 1998] :

∣∣∣ZCSk
Ä
M (3)ä∣∣∣2 = ZBF4kκ,κ

Ä
M (3)ä . (12)

Cette expression du résultat justifie le choix d’exprimer la théorie BF avec deux
paramètres g et κ.
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Au-delà du cadre de ce travail, et afin de compléter cette généalogie de la théorie
BF en gravité quantique, L. Crane and D. Yetter étudièrent ce qui devrait être
un analogue de l’invariant TV en dimension 4, gardant en tête l’idée exprimée par
Ponzano et Regge et sa régularisation par l’invariant TV en utilisant un groupe
quantique [Crane and Yetter, 1993]. Ils ont écrit :ˆ

M(4)
Tr(B ∧ FA) , (13)

avec B une 2-forme à valeurs dans su(2). C’est encore une action topologique.
Malheureusement, les équations EL contraignent le tenseur de Riemann, ce qui est
trop fort pour être pertinent en gravité quantique. Une autre tentative par J. Barrett
et Crane dans [Barrett and Crane, 1998] consista à écrire l’action comme :ˆ

M(4)
e ∧ e ∧ FA, (14)

introduisant ainsi de nouveaux degrés de liberté et contraignant cette fois le tenseur
de Ricci dans les équations EL. Ceci aurait été plus adapté à une théorie de la gravité
quantiqu mais s’avère en fait faux. Une correction de ce modèle a mené néanmoins
au modèle EPRL defini dans [Engle et al., 2008], qui est le modèle de LQG le plus
abouti actuellement, qui n’a pas de divergences UV et dont les divergences IR sont
controlées, la limite des grands spins étant bien sûr la GR.

Par conséquent, comprendre la régularisation du modèle de Ponzano-Regge et sa
relation avec l’invariant TV et la théorie BF SU(2) semble être une étape pertinente
dans la recherche d’une théorie quantique de la gravitation. S. Mizoguchi et T. Tada
ont montré en 1992 que le paramètre de déformation quantique q devait être relié
à la constante cosmologique κ̃ [Mizoguchi and Tada, 1992]. C. Rovelli a montré en
1993 l’équivalence de la représentation dite en boucle en LQG et la combinatoire
sous-jacente dans la gravité quantique présentée dans les travaux de Ponzano, Regge,
H. Ooguri, Turaev and Viro [Rovelli, 1993]. Cette question a été considérée jusqu’à
récemment par exemple avec les travaux de K. Krasnov, D. Louapre et L. Freidel
[Freidel and Krasnov, 2005, Freidel and Louapre, 2004, Freidel and Louapre, 2005] ou
les travaux de V. Bonzom et M. Smerlak [Bonzom and Smerlak, 2012]. La recherche
sur les théories CS et BF pour elles-mêmes est également toujours active ([Cattaneo
et al., 2017] par exemple).

Jusqu’à présent, l’étendue actuelle des connaissances peut être résumée sur le
diagramme suivant :

|ZCSk |2 = ZBF4kκ,κ

= =

∣∣∣ZRTq(k)

∣∣∣
2

= ZTVq(k)
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L’indice q (k) est la racine de l’unité apparaissant dans Uq(sl2) et est construite à
partir de la constante de couplage k de la théorie CS. Du côté de TV, q = q (κ̃) mais
κ̃ = 4πκ

g = π
k puisque g = 4kκ afin de satisfaire l’égalité des fonctions de partition.

Par conséquent q = q (κ̃) = q (k).
L’égalité du bas relie deux quantités parfaitement définies. Il s’agit d’un théorème

établi par Reshetikhin, Turaev et Viro dans le cadre général des catégories mod-
ulaires. Au contraire, les autres égalités mettent en jeu des objets mal définis.
L’égalité du haut a été établie par des manipulations formelles et les deux égalités
verticales ont été prouvées par des arguments indirects.

Le but de ce travail est d’étudier la théorie BF abélienne sur une variétéM (3) de
dimension 3 en calculant la fonction de partition et les valeurs moyennes d’observa-
bles, en partant d’intégrales fonctionnelles formelles. Plusieurs différences avec les
études habituelles du sujet doivent être soulignées. La théorie BF abélienne con-
sidérée ici est une TQFT, en ce sens que l’action considérée est complètement in-
dépendante de toute métrique sur M (3). C’est même une TQFT cohomologique en
ce sens qu’elle sera écrite, non pas, comme d’habitude, en termes de connexions
U(1), mais en termes de classes de jauges de connexions U(1) qui correspondent
en fait à des classes de cohomologie de Deligne-Beilinson (DB). La structure de
l’espace des classes de cohomologie DB permettra d’extraire d’une manière exacte
les quantités pertinentes des intégrales fonctionnelles, comme cela a été fait pour
la théorie CS abélienne [Guadagnini and Thuillier, 2013]. Cette approche est donc
non-perturbative. Dans ce travail, les calculs reposeront sur la cohomologie DB et
ne se limiteront pas aux classes de jauge associées au fibré U(1) trivial au-dessus de
M (3). En effet, les physiciens interprètent les théories de jauge de la façon suivante
: les observateurs font une mesure d’une quantité physique dans leur voisinage. Si
deux observateurs comparent leurs résultats respectifs, il n’y a pas de raison pour
qu’ils soient identiques, mais ils seront reliés par une transformation de jauge. Ainsi,
il n’y a pas de raison de se restreindre aux configurations dans lesquelles les mesures
de tous les observateurs sont identiques. Par conséquent, en un certain sens, les fonc-
tions de partition et valeurs moyennes d’observables seront des sommes particulières
sur tous les fibrés U(1) au-dessus de M (3).

Au-delà des calculs de la fonction de partition et des valeurs moyennes d’observa-
bles qui n’avaient jamais été traités de cette façon auparavant, ce travail vise à mettre
en lumière les relations entre les théories BF et CS abéliennes de même que les re-
lations entre ces théories et les TQFT dans le formalisme des catégories telles que
décrites notamment par N. Reshetikhin, V. Turaev et O. Viro. Quelques subtilités
doivent être mentionnées. Tout d’abord, pour obtenir des relations correctes entre
toutes ces théories, la normalisation des invariants RT et TV sera S3 et non S1×S2

contrairement à la convention usuelle dans la littérature mathématique. Ensuite,
l’hypothèse plus faible de catégorie sphérique semisimple finie doit être considérée
pour la théorie RT afin d’obtenir une relation entre les théories CS et RT abéliennes.
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Cette hypothèse plus faible est, en un certain sens, celle de H. Murakami, T. Ohtsuki
et M. Okada [Murakami et al., 1992] et est également évoquée par Turaev [Turaev,
2010]. Il s’agit d’une différence fondamentale avec le cas non-abélien (notamment
SU(2)). Finalement, comme mentionné précédemment, la théorie CS SU(2) est re-
liée à la théorie RT construite sur un groupe quantique. Cette idée ne peut être
directement étendue au cas abélien étant donné qu’aucune déformation quantique
de U (1) n’est possible. C’est une autre différence cruciale avec le cas SU(2) due à
la structure topologique spécifique de U(1). Comme dans le cas SU(2), le problème
est en fait de considérer des objets satisfaisant l’axiome de domination. Dans les
cas considérés, cela consiste en un ensemble infini d’objets avec une structure péri-
odique de sorte que les sommes peuvent être restreintes à une période sans perdre
d’information portée par ces objets. Il sera montré que, dans le cas abélien, les ob-
jets corrects à considérer sont les représentations de Zk. Avant ce travail, une telle
classe d’exemples n’avait jamais été exhibée, probablement à cause de leur trivialité
apparente. Cependant, il sera montré plus loin qu’ils constituent en fait une classe
subtile d’exemples ayant des liens intéressants avec les théories BF et CS abéliennes.

La première partie de ce manuscrit se concentre sur des notions fondamentales
de TQFT d’un point de vue mathématique. Cette approche repose sur la théorie
des catégories. Le premier chapitre introduit les définitions principales et des réal-
isations abéliennes sont présentées. Le deuxième chapitre présente l’invariant RT
abélien fondé sur la catégorie modulaire abélienne présentée dans le premier chapitre,
suivant le travail de Reshetikhin et Turaev. L’extension étudiée en particulier par
Murakami, Ohtsuki et Okada [Murakami et al., 1992] est aussi considérée. De
façon similaire, l’invariant RT fondé sur la version abélienne du centre de Drinfeld
est présenté, ainsi que des développements récents associés [Turaev and Virelizier,
2013]. Le troisième chapitre de cette partie présente l’invariant TV abélien fondé
sur la catégorie sphérique semisimple finie présentée dans le premier chapitre. Sa
définition est fondée sur les travaux de B. Balsam et A. Kirillov [Balsam and Kir-
illov, 2010] qui généralisent la construction originale reposant sur les triangulations
aux décompositions cellulaires quelconques. Dans le cadre abélien, certains résul-
tats reliant la théorie TV et la théorie RT établis dans le cas général peuvent ainsi
être vérifiés. La principale contribution originale de cette partie est la détermina-
tion d’une version abélienne de toutes ces notions et la discussion des subtilités qui
apparaissent alors. Aussi, la comparaison entre la forme des invariants RT et TV
abéliens et les fonctions de partition CS et BF données dans la partie suivante con-
duit à introduire des valeurs moyennes d’observables dans les théories RT et TV
abéliennes, ce qui n’avait jamais été fait auparavant à proprement parler.

La deuxième partie se concentre sur les théories CS et BF abéliennes dans une
approche physique. Ces théories sont définies par des actions classiques, c’est-à-dire,
des fonctionnelles sur l’espace des champs classiques. Les quantités calculées sont
extraites d’intégrales fonctionnelles, mais le but de ce travail n’est pas de donner une
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définition rigoureuse ni d’effectuer des calculs de tels objets. Le premier chapitre
présente la cohomologie DB dont les classes seront précisément les classes de jauge
de champs. La structure de l’espace des classes de cohomologie DB et quelques pro-
priétés sont détaillées en vue d’une utilisation ultérieure en suivant [Mathieu, 2017].
Dans le deuxième chapitre, la fonction de partition CS et les valeurs moyennes
d’observables sont définies et calculées. Ces résultats sont reliés à la théorie abéli-
enne RT présentée dans la partie précédente. Dans le troisième chapitre, la fonction
de partition BF et les valeurs moyennes d’observables sont définies et calculées. Ces
résultats sont reliés à la théorie abélienne TV présentée dans la partie précédente
et aux résultats relatifs à la théorie CS abélienne obtenus dans le chapitre précé-
dent concernant les fonctions de partition en suivant [Mathieu and Thuillier, 2016a]
et concernant les valeurs moyennes d’observables suivant [Mathieu and Thuillier,
2016b]. Il est souvent affirmé que les contributions principales aux intégrales fonc-
tionnelles proviennent d’un voisinage des solutions des équations EL qui sont les
connexions plates, c’est-à-dire, les connexions A telles que FA = 0. L’utilisation de
la cohomologie DB implique que cette assertion est correcte, et même prouvée par
un calcul direct. Les résultats établis dans le dernier chapitre de cette partie, en
particulier les liens entre les quantités définies et calculées dans ce chapitre et dans
les précédents, constituent la principale production originale de ce travail.

Ces deux parties fournissent un ensemble complet et relativement fermé de défi-
nitions et de résultats concernant les théories RT, TV, CS et BF sur des variétés de
dimension 3. Ces résultats vont au-delà de l’objectif initial de ce travail.

La troisième partie rassemble des résultats nouveaux sortant légèrement du cadre
central de ce travail, sans pour autant qu’ils soient complètement hors de propos.
Le premier chapitre introduit une méthode complètement nouvelle fondée sur des
diagrammes de Heegaard afin de calculer l’invariant CS SU(2) suivant [Guadagnini
et al., 2017]. Dans le deuxième chapitre, le propagateur de la théorie CS abéli-
enne dans R4l+3 muni d’une métrique anisotrope est calculé. Plusieurs limites sont
étudiées et des interprétations géométriques sont proposées, complétant ainsi les cas
particuliers traités dans [Gallot et al., 2018].
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Some preliminary remarks

In this study, if no opposite assumption is pointed out, a manifold M (n) will be as-
sumed to be n-dimensional (most of the time n = 3), oriented, connected and closed,
that is, compact without a boundary. For further convenience, such a manifold will
always be supposed to be provided with a good covering, that is, a covering of
contractible open sets, whose intersections are also contractible or empty. Such a
good covering always exists. The results obtained will be independent of the good
covering in question.

Still if no opposite assumption is pointed out, the homology groups Hp (respec-
tively the cohomology groups Hp) will have integer coefficients and will be regarded
as Z-modules. As abelian groups, they will be decomposed in the direct sum of
their free part Fp (respectively F p) and their torsion part Tp (respectively T p). To
avoid any confusion later on, it is important to remind that the cohomology group
Hp
Ä
M (n),Z

ä
of a manifold M (n) with integer coefficients is not the dual of the

homology group Hp

Ä
M (n),Z

ä
of the same manifold M (n) with integer coefficients,

that is:
Hp
Ä
M (n),Z

ä
��ZZ' Hom

Ä
Hp

Ä
M (n),Z

ä
,Z
ä
. (15)

However, the duality exists between the chains and cochains, the cycles and cocyles
and the boundaries and coboundaries:

Cp
Ä
M (n),Z

ä
= Hom

Ä
Cp
Ä
M (n),Z

ä
,Z
ä
, (16)

Zp
Ä
M (n),Z

ä
= Hom

Ä
Zp
Ä
M (n),Z

ä
,Z
ä
, (17)

Bp
Ä
M (n),Z

ä
= Hom

Ä
Bp
Ä
M (n),Z

ä
,Z
ä

(18)

and:
Hp
Ä
M (n),Z

ä
= Zp

Ä
M (n),Z

ä¿
Bp
Ä
M (n),Z

ä
. (19)
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Hence, this reminder just means that, in general:

Hom
Ä
Zp
Ä
M (n),Z

ä
,Z
ä¿

Hom
Ä
Bp
Ä
M (n),Z

ä
,Z
ä

��ZZ' Hom
Ä
Zp
Ä
M (n),Z

ä¿
Bp
Ä
M (n),Z

ä
,Z
ä
. (20)

However, the universal coefficients theorem claims that, for any abelian group G
[Mac Lane, 1994]:

Hp
Ä
M (n), G

ä
' Hom

Ä
Hp

Ä
M (n),Z

ä
, G
ä
⊕ Ext

Ä
Hp−1

Ä
M (n),Z

ä
, G
ä
. (21)

Several particular cases can then be considered. First, in general, if G is divisible,
then Ext

Ä
Hp−1

Ä
M (n),Z

ä
, G
ä
is trivial and as a consequence:

Hp
Ä
M (n), G

ä
' Hom

Ä
Hp

Ä
M (n),Z

ä
, G
ä
. (22)

A case of divisible group of particular interest for this dissertation is R/Z [Harvey
et al., 2003]. Another particular case of interest for this dissertation is p = 1 and
G = Zk. Indeed, since M (n) is supposed to be connected, then H0

Ä
M (n),Z

ä
= Z

and thus Ext
Ä
H0
Ä
M (n),Z

ä
,Zk
ä
is trivial [Bott and Tu, 1982] and as a consequence:

H1 ÄM (n),Zk
ä
' Hom

Ä
H1
Ä
M (n),Z

ä
,Zk
ä
. (23)

The universal coefficients theorem provides other useful isomorphisms:

Hp

Ä
M (n),Z

ä
' Hn−p ÄM (n),Z

ä

' '

T p+1
Ä
M (n),Z

ä
⊕ F p

Ä
M (n),Z

ä
' Tn−p−1

Ä
M (n),Z

ä
⊕ Fn−p

Ä
M (n),Z

ä
.

��Z Z' ��Z Z'

Hp
Ä
M (n),Z

ä
' Hn−p

Ä
M (n),Z

ä
(24)

However, with real coefficients, that is, taking the tensor product of those groups
by R, the torsion is trivialized and as a consequence:

Hp

Ä
M (n),R

ä
' Hn−p ÄM (n),R

ä

' ' .
Hp
Ä
M (n),R

ä
' Hn−p

Ä
M (n),R

ä (25)

More generally, for a given field K, by the universal coefficients theorem:

Hp
Ä
M (n),K

ä
' Hom

Ä
Hp

Ä
M (n),K

ä
,K
ä
⊕ Ext

Ä
Hp−1

Ä
M (n),K

ä
,K
ä
, (26)

and it happens that, in that case also, Ext
Ä
Hp−1

Ä
M (n),K

ä
,K
ä
is trivial so that:

Hp
Ä
M (n),K

ä
' Hom

Ä
Hp

Ä
M (n),K

ä
,K
ä
. (27)
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If, moreover, Hp

Ä
M (n),K

ä
is a vector space of finite dimension, then it is isomorphic

to its dual and then:

Hp
Ä
M (n),K

ä
' Hp

Ä
M (n),K

ä
. (28)

When no confusion is possible, Hp

Ä
M (n),Z

ä
= Tp

Ä
M (n),Z

ä
⊕ Fp

Ä
M (n),Z

ä
and

Hp
Ä
M (n),Z

ä
= T p

Ä
M (n),Z

ä
⊕ F p

Ä
M (n),Z

ä
will be simply denoted Hp

Ä
M (3)

ä
=

Tp
Ä
M (n)

ä
⊕Fp

Ä
M (n)

ä
andHp

Ä
M (3)

ä
= T p

Ä
M (n)

ä
⊕F p

Ä
M (n)

ä
or evenHp = Tp⊕Fp

and Hp = T p ⊕ F p.
Otherwise, a link L in a manifold of dimension 3 will always be provided with

a framing for each component and supposed to have his components ordered. The
framing of a component is an integer that can be interpreted in the following way: a
component is actually not a 1-dimensional closed strand, but a closed strip twisted
n times, with n ∈ Z being the so-called framing (the sign occuring according to a
conventional sense of twist).

Finally, in this study, “abelian gauge theory” will be considered as a terminology
equivalent to “U(1) gauge theory”.
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Chapter 1. Notions on categories

Introduction (English version)
Originally, the theory of categories was founded in the 40s mostly by Eilenberg and
Mac Lane in the context of algebraic topology before spreading to the other branches
of mathematics, as well as in mathematical physics and theoretical computer science.
The interest in the theory of categories became bigger as it turned out to be a
unifying framework. It was developed notably under the influence of works by
Grothendieck in the 70s.

A category C consists of:

• A collection of objects Ob(C).

• For every two objectsX and Y in C, a set of morphisms or arrows HomC(X,Y ).

• For any triple of objects X, Y and Z a composition law:

◦ : HomC(Y, Z) × HomC(X,Y ) −→ HomC(X,Z)
g , f 7−→ g ◦ f,

subject to the following conditions:

1. The composition is associative: if f ∈ HomC(X,Y ), g ∈ HomC(Y,Z) and
h ∈ HomC(Z, T ), then h ◦ (g ◦ f) = (h ◦ g) ◦ f .

2. For every object X in C there is an identity morphism IdX : X → X with
the property that, for any morphism f ∈ HomC(X,Y ) and any morphism
g ∈ HomC(Z,X):

f ◦ IdX = f and IdX ◦ g = g.

3. The sets HomC(X,Y ) and HomC(X ′, Y ′) are disjoint unless X = X ′ and
Y = Y ′.

As a group can be sent to another group, a category can be sent to another category.
For this purpose, let C and D be categories. A (covariant) functor F : C −→ D
consists of:

• For every object X in C an object F (X) in D.

• For every morphism f : X −→ Y in C a morphism F (f) : F (X) −→ F (Y ) in
D subject to the following conditions:

1. For any pair of morphisms f ∈ HomC(X,Y ) and g ∈ HomC(Y,Z), F (g) ◦
F (f) = F (g ◦ f).

2. For any object X in C, F (IdX) = IdF (X).

6



The definitions of categories and functors are so general that they make it possible
to relate different branches of mathematics and consider them in a unified systematic
way. For instance, homology can be seen as a functor that relates a category of
topological spaces and a category of algebraic objects. What mathematicians define
as a TQFT is also a functor that transforms a category of topological space into a
category of algebraic quantities. This is the particular case developed in this first
part.

In this chapter, several notions of the theory of categories that are involved
in the framework of TQFT from the mathematics point of view are defined. At
the same time abelian realizations of the notions defined are presented and a few
properties are derived. The following definitions come from [Turaev, 2010] but they
have been refined more recently [Turaev and Virelizier, 2013]. Those refinements
have no incidence on the present study. The lecture notes [Berglund, 2009] give a
concise overview of the basics of the theory of categories and the website https:
//ncatlab.org/ proposes a nice tree view of all the advanced notions presented in
this chapter. Some materials can also be found in general perspective in [Mac Lane,
1998] and in the perspective of quantum groups in [Chari and Pressley, 1994].

7
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Chapter 1. Notions on categories

Introduction (version française)

À l’origine, la théorie des catégories a été fondée dans les années 1940 par Eilen-
berg et Mac Lane dans le contexte de la topologie algébrique avant de toucher
aux autres branches des mathématiques, ainsi qu’à la physique mathématique et à
l’informatique théorique. L’intérêt pour la théorie des catégories est allé croissant à
mesure qu’il s’est avéré être un cadre unificateur. Elle a été développée notamment
sous l’influence des travaux de Grothendieck dans les années 1970.

Une categorie C consiste en :

• Une collection d’objets Ob(C).

• Pour toute paire d’objets X et Y de C, un ensemble de morphismes ou
flèches HomC(X,Y ).

• Pour tout triplet d’objets X, Y et Z, une loi de composition :

◦ : HomC(Y, Z) × HomC(X,Y ) −→ HomC(X,Z)
g , f 7−→ g ◦ f,

soumise aux contraintes suivantes :

1. La composition est associative : si f ∈ HomC(X,Y ), g ∈ HomC(Y,Z) et
h ∈ HomC(Z, T ), alors h ◦ (g ◦ f) = (h ◦ g) ◦ f .

2. Pour tout objet X de C il existe un morphisme identité IdX : X → X
tel que, pour tout morphisme f ∈ HomC(X,Y ) et tout morphisme g ∈
HomC(Z,X) :

f ◦ IdX = f et IdX ◦ g = g.

3. Les ensembles HomC(X,Y ) et HomC(X ′, Y ′) sont disjoints à moins que
X = X ′ et Y = Y ′.

Tout comme un groupe peut être envoyé dans un autre groupe, une catégorie peut
être envoyée dans une autre catégorie. Pour cela, soit C et D deux catégories. Un
foncteur (covariant) F : C −→ D consiste en la donnée :

• Pour tout objet X de C, un objet F (X) de D.

• Pour tout morphisme f : X −→ Y de C, un morphisme F (f) : F (X) −→
F (Y ) de D soumis aux contraintes suivantes :

1. Pour toute paire de morphismes f ∈ HomC(X,Y ) et g ∈ HomC(Y,Z),
F (g) ◦ F (f) = F (g ◦ f).
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2. Pour tout objet X de C, F (IdX) = IdF (X).

Les définitions de catégories et de foncteurs sont tellement générales qu’elles per-
mettent de relier différentes branches des mathématiques et de les considérer d’une
façon systématique et unifiée. Par exemple, l’homologie peut être vue comme un
foncteur envoyant une catégorie d’espaces topologiques dans une catégorie d’objets
algébriques. Ce que les mathématiciens définissent comme une TQFT est aussi un
foncteur qui transforme une catégorie d’espaces topologiques en une catégorie de
quantités algébriques. C’est le cas particulier qui est développé dans cette première
partie.

Dans ce chapitre, plusieurs notions de théorie des catégories utiles dans le cadre
des TQFT d’un point de vue mathématique sont définies. Des réalisations abéliennes
de ces notions sont également définies et quelques propriétés sont présentées. Les
définitions suivantes proviennent de [Turaev, 2010] mais celles-ci ont été raffinées
récemment [Turaev and Virelizier, 2013]. Ces raffinements n’ont pas d’incidence sur
ce travail. Les notes de cours [Berglund, 2009] donnent un aperçu large et concis
des bases de la théorie des catgéories et le site web https://ncatlab.org/ propose
une belle arborescence de toutes les notions avancées présentées dans ce chapitre.
Quelques éléments peuvent également être trouvés dans une perspective générale
dans [Mac Lane, 1998] et dans la perspective des groupes quantiques dans [Chari
and Pressley, 1994].
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Chapter 1. Notions on categories

1.1 The category CZk of representations of Zk
The point of this section is to define a set of objects of a category that are represen-
tations related to U(1). Those representations will have to verify some properties so
that it will be possible later to consider only a finite set of those objects. This has
been achieved by Reshetikhin and Turaev with SU(2). They considered cyclic rep-
resentations of a quantum deformation of SU(2) at a root of unity. Unfortunately,
the same procedure cannot be used for U(1) which cannot be deformed since it is
abelian. A way to solve the problem is to consider representations of a discrete and
finite subgroup of U(1) which is isomorphic to Zk for k ∈ Z.

Like any group, the group Zk can be regarded as the set of morphisms of a
category CZk that would have only one object and whose morphisms would all be
invertible. This holds also for Gl(C) with a category CGl(C). An irreducible repre-
sentation R : p ∈ Zk 7−→ Rp = e2iπ p

k ∈ Gl(C) of Zk over C can thus be considered
as a functor between CZk and CGl(C). The set of functors can be itself regarded as
the set of objects of a category CZk whose morphisms are natural transformations,
that is, in this case, the linear transformations ηp,q : Rp −→ Rq such that:

Rq ◦ ηp,q = ηp,q ◦Rp, (1.1)

or, acting on a complex z:

Rq (ηp,q (z)) = ηp,q (Rp (z)) , (1.2)

which can be written explicitly:

e2iπ q
k ηp,q (z) = ηp,q

Ä
e2iπ p

k z
ä

= e2iπ p
k ηp,q (z) , (1.3)

since for any p ∈ Zk, Rp = e2iπ p
k . Hence:

ηp,q = δ[k]
p,qzp,q, (1.4)

where zp,q ∈ C and δ[k]
p,q = 1 if p ≡ q [k] or δ[k]

p,q = 0 otherwise.
Strictly speaking, the index p of Rp is an element of Zk and in that case there

is a finite number of objects Rp. It is also possible to consider that p is an element
of Z and in that case, there is an infinite number of objects Rp with a periodicity k.
This is the case considered from now on. The family of objects {Rp, p ∈ J0 ; k − 1K}
is finite and contains all the information carried by the Rp, p ∈ Z. This idea will be
formalized later in particular with the axiom of domination.

To sum up, explicitly, the objects of the category CZk are the Rp = e2iπ p
k , p ∈ Z

and its morphisms are the natural transformations ηp,q = δ
[k]
p,qzp,q : Rp −→ Rq, p, q ∈

Z12.
1When there is no ambiguity, this integer index will be used to refer to objects or morphisms.
2The composition of morphisms is just the product in C.
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1.2. The category CZk as a monoidal category

1.2 The category CZk as a monoidal category
The category CZk can be endowed with a tensor product ⊗ : CZk × CZk −→ CZk

explicitly defined to be the usual product in C:

Rp ⊗Rq = Rp+q (1.5)

regarding the objects and:

δ[k]
p,qzp,q ⊗ δ[k]

r,szr,s = δ[k]
p,qδ

[k]
r,szp,qzr,s (1.6)

regarding the morphisms.
Such a tensor product has several properties:

• It admits a neutral element:

– R0 concerning the objects:

Rp ⊗R0 = R0 ⊗Rp = Rp, (1.7)

– δ
[k]
0,0z0,0 = 1 concerning the morphisms:

δ[k]
p,qzp,q ⊗ 1 = 1⊗ δ[k]

p,qzp,q = δ[k]
p,qzp,q. (1.8)

• It is associative:

– regarding the objects:

Rp ⊗ (Rq ⊗Rr) = Rp+q+r = (Rp ⊗Rq)⊗Rr, (1.9)

– regarding the morphisms:

δ[k]
p,qzp,q ⊗

Ä
δ[k]
r,szr,s ⊗ δ[k]

u,vzu,v
ä

=
Ä
δ[k]
p,qzp,q ⊗ δ[k]

r,szr,s
ä
⊗ δ[k]

u,vzu,v. (1.10)

This tensor product, together with this set of properties, endows CZk with the
structure of monoidal category [Turaev, 2010]. It is commutative and thus en-
codes a priori less information than a non-commutative tensor product would.

1.3 The category CZk as a braided and twisted category
Among the morphisms of CZk , two particular families of morphisms can be identified.
A family of morphisms c = {cp,q : Rp ⊗Rq −→ Rq ⊗Rp = Rp ⊗Rq, cp,q = e2iπ pq

k } is
called braiding if it verifies:

cp,q⊗r = (Idq ⊗ cp,r) ◦ (cp,q ⊗ Idr) , (1.11)
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Chapter 1. Notions on categories

see the diagrams in Figure 1.1,

cp⊗q,r = (cp,r ⊗ Idq) ◦ (Idp ⊗ cq,r) , (1.12)

see the diagrams in Figure 1.2,

(Idr ⊗ cp,q) ◦ (cp,r ⊗ Idq) ◦ (Idp ⊗ cq,r)
= (cq,r ⊗ Idp) ◦ (Idq ⊗ cp,r) ◦ (cp,q ⊗ Idr) , (1.13)

(Yang-Baxter equation) see the diagrams in Figure 1.3. A family verifying this
set of properties endows CZk with a structure of braided category [Turaev and
Virelizier, 2013].

A family of morphisms θ = {θp : Rp −→ Rp, θp = e2iπ p
2
k } is called twist if it

verifies:
θp⊗q = cq,p ◦ cp,q ◦ (θp ⊗ θq) , (1.14)

see the diagrams in Figure 1.4. A family verifying this set of properties endows CZk

with a structure of twisted category .

Rp ⊗ Rq ⊗ Rr Rq ⊗ Rr ⊗ Rp

Rq ⊗ Rp ⊗ Rr

cp,q⊗r

cp,q ⊗ Idr Idq ⊗ cp,r

(a) Commutative diagram.

p q r

pq r

=

p q r

pq r

(b) Braid diagram.

Figure 1.1: Diagrams associated with equation (1.11).

1.4 The category CZk as a ribbon and spherical category
So far, the information of a braiding has been encoded. However, the purpose here
is to encode information on links. It is therefore necessary to encode the information
of the closure of a braid. This is done by introducing a notion of duality3: for any

3More rigorously, the duality is given by two families of morphisms, the evaluations evX :
X⊗X∗ −→ 1 and the coevaluations coevX : 1 −→ X∗⊗X for objects X. Consider two branches
of same weight , one oriented downward, the other upward. The evaluation (respectively the
coevaluation) related to that weight is the operators that closes the loop at the top (respectively at
the bottom) of the diagram. In this abelian context, those morphisms are trivial since Rp⊗(Rp)∗ =
(Rp)∗ ⊗Rp = 1. See Figure 2.1.
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1.4. The category CZk as a ribbon and spherical category

Rp ⊗ Rq ⊗ Rr Rr ⊗ Rp ⊗ Rq

Rp ⊗ Rr ⊗ Rq

cp⊗q,r

Idp ⊗ cq,r cp,r ⊗ Idq

(a) Commutative diagram.

p q r

p qr

=

p q r

r qp

(b) Braid diagram.

Figure 1.2: Diagrams associated with equation (1.12).

Rp ⊗ Rr ⊗ Rq Rr ⊗ Rp ⊗ Rq

Rp ⊗ Rq ⊗ Rr Rr ⊗ Rq ⊗ Rp

Rq ⊗ Rq ⊗ Rr Rq ⊗ Rr ⊗ Rp

Idp ⊗ cq,r

cp,r ⊗ Idq

Idr ⊗ cp,q

cp,q ⊗ Idr

Idq ⊗ cp,r

cq,r ⊗ Idp

(a) Commutative diagram.

p q r

r q p

=

p q r

r q p

(b) Braid diagram.

Figure 1.3: Diagrams associated with equation (1.13).

Rp ⊗Rq Rp ⊗Rq

Rp ⊗Rq Rq ⊗Rp

θp⊗q

θp ⊗ θq

cp,q

cq,p

(a) Commutative diagram.

=

p q p q

(b) Braid diagram.

Figure 1.4: Diagrams associated with equation (1.14).
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Chapter 1. Notions on categories

object Rp the dual (Rp)∗ of Rp is defined as:

(Rp)∗ = Rk−p. (1.15)

Further, (Rp)∗ will be denoted Rp∗ or simply p∗ if no confusion is possible. The
duality makes it possible to materialize the idea of orientation of a branch on a
braid diagram.

It should be noted that the twist verifies the so-called compatibility constraint
expressed in that case as:

θp∗ = θp, (1.16)

where θp∗ = e2iπ (k−p)2
k : Rp∗ −→ Rp∗ .

Duality, together with compatibility, turns CZk into a ribbon category. Inter-
estingly, if k = 2l then there are two self dual objects: R0 and Rl.

In the specific example of CZk endowed with the structure of braided and twisted
category provided together with a duality, given a morphism fp : Rp −→ Rp, its
trace is defined as:

Tr(fp) = cp,p∗ ◦ ((θp ◦ fp)⊗ Idp) = fp, (1.17)

and the dimension of an object Rp of CZk to be:

dim(Rp) = Tr(Idp) = 1. (1.18)

With such a definition of the trace, CZk is a spherical category [Barrett and
Westbury, 1996]. In a more general context, the difference between a left and a
right trace should be made. However, a spherical category is the particular case
where the left and right traces are the same.

1.5 The category CZk as a modular category?

Considering a period of objects of CZk with k odd, that is, {Rp, p ∈ J0 ; k−1K}, then
this family of objects verifies:

• R0 ∈ {Rp, p ∈ J0 ; k − 1K} (normalization axiom),

• if Rq ∈ {Rp, p ∈ J0 ; k − 1K} then (Rq)∗ = Rk−q ∈ {Rp, p ∈ J0 ; k − 1K} (duality
axiom),

• for any object Rq of CZk , Idq = δ
[k]
q,q = δ

[k]
q,q′δ

[k]
q′,q with q′ the representative of the

class of q modulo k so that Rq′ ∈ {Rp, p ∈ J0 ; k − 1K} (axiom of domination),
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1.5. The category CZk as a modular category?

• (Sp,q)0≤p,q≤k−1 = (cp,q ◦ cq,p)0≤p,q≤k−1 =
Ä
e4iπ pq

k

ä
0≤p,q≤k−1 is invertible4 (non-

degeneracy axiom).

It is fundamental to note that the last property is verified if and only if k is odd.
In that case and only in that case, CZk is a modular category [Turaev, 2010].

It shall be noted also that the domination axiom implies dealing with a finite
set of representations. Hence, summing over that set does not cause any problem of
convergence. This axiom is thus fundamental in the construction of the RT and TV
invariants. The choice of considering p ∈ Z has been done to highlight this axiom
which would have been rather trivial with p ∈ Zk.

If only the last property is not verified but the others are, that is, here, if k
is even, then the category is said to be a finite semisimple spherical category
[Barrett and Westbury, 1996] and it will be seen that this is sufficient to build the
abelian TV invariant. The objects of the set {Rp, p ∈ J0 ; k − 1K} are called simple
objects.

For a finite semisimple spherical category, and in particular, for a modular cat-
egory, the global dimension Dk of CZk is defined such that:

D2
k =

k−1∑

p=0
(dim(Rp))2 = k (1.19)

In general, several choices are possible and the invariants that will be defined later
on will depend on this choice. The convention adopted here consists in choosing the
positive root:

Dk =
√
k (1.20)

In the quest of an abelian realization of a modular category CU(1) could have
been considered instead of CZk but it would have not been modular in any case, in
particular because the domination axiom would have been violated. The modularity
is a fundamental property that will be required when using an important theorem
from Turaev.

The example of CZk had a priori never been derived following the construction of
Turaev. This may be explained by its seeming triviality or the fact that no quantum
deformation is possible in this case, whereas it was the key point of the examples
using quantum groups. However, it appears here that some subtleties arise. Those
subtleties are not trifling as it will be shown later on.

4This is actually nothing but a Vandermonde matrix:

det(Sp,q) =
∏

1≤p<q≤k

Ä
e

4iπq
k − e

4iπp
k

ä
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Chapter 1. Notions on categories

1.6 Drinfeld center of CZk

The Drinfeld center Z
Ä
CZk
ä
related to CZk consists in a category whose objects

are couples (Rp, σ) where Rp is an object of CZk and σ is a collection of morphisms
σp : Rp ⊗Rq −→ Rq ⊗Rp such that:

σq⊗r = σq+r = (Idq ⊗ σr) ◦ (σq ⊗ Idr) = σqσr, (1.21)

in this specific case of Z
Ä
CZk
ä
(the general construction can be found in [Turaev

and Virelizier, 2013]).
Equation (1.21) implies that:

σq = σ(u)
q = e2iπ qu

k , (1.22)

with u ∈ Zk.
Let us underline that the set of objects of Z

Ä
CZk
ä
is thus isomorphic to Zk×Zk

and that each σ(u)
q is a braiding for CZk .

A morphism f :
Ä
Rp, σ

(u)
ä
−→

Ä
Rq, σ

(v)
ä
of Z

Ä
CZk
ä
is a morphism Rp −→ Rq

such that:
(Idr ⊗ f) ◦ σ(u)

r = σ(v)
r ◦ (Idr ⊗ f) , (1.23)

which implies in this specific case of Z
Ä
CZk
ä
that:

f = δ[k]
p,qδ

[k]
u,vzp,qzu,v. (1.24)

The category Z
Ä
CZk
ä
endowed with the tensor product ⊗ such that:

Ä
Rp, σ

(u)ä⊗
Ä
Rq, σ

(v)ä =
Ä
Rp+q, σ

(u+v)ä (1.25)

is a monoidal category with unit object
Ä
R0, σ(0)

ä

Consider the morphism of Z
Ä
CZk
ä
given by:

c(p,u),(q,v) = σ(v)
p = e2iπ pv

k . (1.26)

It verifies:

c(p,u),(q,v)⊗(r,w) =
Ä
Id(q,v) ⊗ c(p,u),(r,w)

ä
◦
Ä
c(p,u),(q,v) ⊗ Id(r,w)

ä
, (1.27)

c(p,u)⊗(q,v),(r,w) =
Ä
c(p,u),(r,w) ⊗ Id(q,v)

ä
◦
Ä
Id(p,u) ⊗ c(q,v),(r,w)

ä
(1.28)

and:
Ä
Id(r,w) ⊗ c(p,u),q

ä
◦
Ä
c(p,u),(r,w) ⊗ Id(q,v)

ä
◦
Ä
Id(p,u) ⊗ cq,(r,w)

ä

=
Ä
c(q,v),(r,w) ⊗ Id(p,u)

ä
◦
Ä
Id(q,v) ⊗ c(p,u),(r,w)

ä
◦
Ä
c(p,u),q ⊗ Id(r,w)

ä
. (1.29)

16



1.6. Drinfeld center of CZk

It is thus a braiding in Z
Ä
CZk
ä
. It should be pointed out that:

c(p,u),(q,v) 6= c(q,v),(p,u). (1.30)

Consider also the morphism of Z
Ä
CZk
ä
given by:

θ(p,u) = σ(u)
p = e2iπ pu

k . (1.31)

It verifies:
θ(p,u)⊗(q,v) = c(q,v),(p,u) ◦ c(p,u),(q,v) ◦

Ä
θ(p,u) ⊗ θ(q,v)

ä
. (1.32)

It is therefore a twist in Z
Ä
CZk
ä

The Drinfeld center Z
Ä
CZk
ä
can also be endowed with a duality:

Ä
Rp, σ

(u)ä∗ =
Ä
Rk−p, σ

(k−u)ä , (1.33)

verifying the (abelian) compatibility constraint:

θ(p,u)∗ = θ(p,u). (1.34)

Hence, the category Z
Ä
CZk
ä
is a ribbon category.

Consider now the k2 × k2 matrix S defined as:

S =
Ä
c(p,u),(q,v) ◦ c(q,v),(p,u)

ä
0≤p,q,u,v≤k−1 =

(
e2iπ pv+qu

k

)
0≤p,q,u,v≤k−1

, (1.35)

then:
det(S) = ±det(A⊗A) , (1.36)

with:
A =

Ä
e2iπ pq

k

ä
0≤p,q≤k−1 . (1.37)

Finally:

det(S) = ±
Ñ

k−1∏

0≤u<v≤k−1
e2iπ v

k − e2iπ u
k

é2k

6= 0, (1.38)

which means that Z
Ä
CZk
ä
is modular for any k.

Also, for any object
Ä
Rp, σ

(u)
ä
:

dim
ÄÄ
Rp, σ

(u)ää = 1, (1.39)

and thus the global dimension DZ(CZk) of Z
Ä
CZk
ä
is such that:

D2
Z(CZk) =

k−1∑

p,u=0

Ä
dim
ÄÄ
Rp, σ

(u)äää2 = k2. (1.40)
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Chapter 1. Notions on categories

Therefore, according to the convention fixed previously:

DZ(CZk) = k = D2
k. (1.41)

As a consequence, this construction makes it possible to extract a modular cat-
egory from a finite semisimple spherical one. This fact will be exploited later on.
Although the general construction and properties of the Drinfeld center of a cat-
egory have been known for a few years, a priori no abelian realization had been
exhibited.
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Chapter 2. Abelian Reshetikhin-Turaev invariant

Introduction (English version)
Any manifold M (3) of dimension 3 can be represented by a framed link L in S3

thanks to a so-called surgery procedure. This procedure will be developed in the
main body of this chapter. The Reshetikhin-Turaev (RT) invariant [Reshetikhin and
Turaev, 1990] relies on such a link. The graphical information carried by a diagram
of L is encoded by labeling the branches with objects of a modular category. The
specific elements of the diagram like the braiding of branches will be encoded by
morphisms acting on the objects associated with the concerned branches. The RT
invariant is obtained by summing over the set of objects (which implies that this
set has to be chosen so that the sum will converge). For this algebraic quantity to
be a true invariant of M (3), it has to keep the same value if some manipulations
on the diagram that produce a manifold homeomorphic to M (3) are performed.
Those manipulations are called Kirby moves. As shown mostly by Reshetikhin
and Turaev, the correct framework is the one provided by modular categories.

In this chapter, an abelian realization of the RT invariant founded on CZk is
derived. As shown previously, the modularity imposes k = 2l + 1 but it will be
shown that this hypothesis can be weakened and that k = 4l can also lead to a
RT-like invariant. This case has actually been presented by Murakami, Ohtsuki and
Okada [Murakami et al., 1992]. An abelian realization of the RT invariant founded
on Z

Ä
CZk
ä
will be derived for any k since Z

Ä
CZk
ä
is always modular. Finally, the

expectation value of observables related to the abelian RT theory founded on CZ4l

and Z
Ä
CZk
ä
will be defined. Surprisingly, the modular case CZ2l+1 will not appear

later.
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Introduction (version française)
Toute variété M (3) de dimension 3 peut être représentée par un entrelac encadré
L dans S3 grâce à une procédure dite de chirurgie. Cette procédure sera détaillée
dans ce chapitre. L’invariant de Reshetikhin-Turaev (RT) [Reshetikhin and Turaev,
1990] se construit à partir d’un tel entrelac. L’information graphique contenue dans
un diagramme de L est encodée en associant aux branches du diagramme des ob-
jets d’une catégorie modulaire. Les éléments particuliers du diagramme tels que
les croisements de branches seront encodés par des morphismes agissant sur les ob-
jets associés aux branches concernées. L’invariant RT est obtenu en sommant sur
l’ensemble des objets (ce qui implique que cet ensemble doit être choisi de sorte à
ce que la somme converge). Afin que cette quantité algébrique soit effectivement
un invariant de M (3), elle doit conserver la même valeur si des manipulations du
diagramme qui produisent une variété homéomorphe sont effectuées. Ces manipula-
tions sont appelées mouvements de Kirby. Comme démontré principalement par
Reshetikhin et Turaev, le cadre correct est celui fourni par les catégories modulaires.

Dans ce chapitre, une réalisation abélienne de l’invariant RT fondée sur CZk est
présentée. Comme montré précédemment, la modularité impose que k = 2l+1 mais
il sera montré que cette hypothèse peut être affaiblie et que k = 4l peut aussi mener
à un invariant de type RT. Ce cas a en fait été présenté par Murakami, Ohtsuki et
Okada [Murakami et al., 1992]. Une réalisation abélienne de l’invariant RT fondée
sur Z

Ä
CZk
ä
sera présentée pour k quelconque puisque Z

Ä
CZk
ä
est toujours mod-

ulaire. Enfin, les valeurs moyennes d’observables liées aux théories RT abéliennes
fondées sur CZ4l et Z

Ä
CZk
ä
seront définies. De façon surprenante, le cas modulaire

CZ2l+1 n’interviendra pas dans la suite.
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Chapter 2. Abelian Reshetikhin-Turaev invariant

2.1 Generalities
Surgery. Consider a knot K in a manifold X(3) of dimension 3. Let N (K) be
a tubular neighbourhood of K. Then N (K) can be identified with the solid torus
D2 × S1 so that ∂

Ä
X(3) \N (K)

ä
= ∂N (K) = ∂

(
D2 × S1) =

(
∂D2) × S1 = T 2.

Taking away N (K) from X(3) then gluing it back thanks to a homeomorphism
h : T 2

s −→ T 2
t generates a manifold M (3) = N (K) ∪h

Ä
X(3) \N (K)

ä
. The map

h is completely determined by the image of the longitude ls of the source torus
T 2
s (boudary of N (K)). This image can be decomposed on the target torus T 2

t

(boundary of X(3) \N (K)) along its longitude lt and its meridian mt. Necessarily:

h (ls) = p ·mt + q · lt, (2.1)

with (p, q) a pair of integers that can be chosen coprime. Hence, the fraction p/q
called the framing of K completely determines h1. The manifold M (3) is said to
be generated from X(3) by rational surgery along K. A rational surgery is said
to be an integral surgery when q = 1, the relevant information being therefore
carried by p. Rational (respectively integral) surgery along a link L is defined to
be the rational (respectively integral) surgery along each link component. Then the
following theorem holds:

Theorem ([Lickorish, 1962, Wallace, 1960]). Every closed orientable manifoldM (3)

of dimension 3 can be obtained from S3 by an integral surgery on a link L ⊂ S3.

A more recent presentation of this result can be found in [Saveliev, 2012].

Definition of abelian RT invariant. Let M (3) be a manifold of dimension 3
generated from S3 by integral surgery along a link L = L1∪. . .∪Lm ofm components
Li carrying a charge pi ∈ Zk so that p =

(
p1 . . . pm

) ∈ Zmk . The linking matrix LL =
(Lij)1≤i,j≤m = (`kS3 (Li,Lj))1≤i,j≤m has a signature σ (LL), that is σ (LL) = m−n
where m is the number of strictly positive eigenvalues and n the number of strictly
negative eigenvalues.

The abelian RT invariant of M (3) is defined from a modular category. In the
abelian context, that means that k = 2l + 1 as shown previously.

Hence, for k = 2l + 1 the abelian RT invariant of M (3) is given by:

ZRTk
Ä
M (3)ä = ∆σ(LL)

k D−σ(LL)−m
k

∑

p∈Zm
k

FRTk (L,p) , (2.2)

∆k being a normalization factor and FRTk representing the transformation of the
graphical information into algebraic information of L.

1It should be pointed out that the pair (1, 0) is allowed so that a framing written as 1/0 is
formally allowed.
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2.1. Generalities

More precisely:

∆k =
∑

p∈Zk
(θp)−1 (dim(Rp))2 =

∑

p∈Zk
e−2iπ p

2
k . (2.3)

The value of this sum as a function of k is known to be [Loo Keng, 1983]:




∆k = k for k = 1,
∆k =

√
k − i

√
k for k ≡ 0 [4] ,

∆k =
√
k for k ≡ 1 [4] ,

∆k = 0 for k ≡ 2 [4] ,
∆k = −i

√
k for k ≡ 3 [4] .

(2.4)

So for k = 2l + 1: 



∆k = k for k = 1,
∆k =

√
k for k ≡ 1 [4] ,

∆k = −i
√
k for k ≡ 3 [4] .

(2.5)

Such a derivation had a priori never been studied under this shape before [Math-
ieu and Thuillier, 2016a]. Clearly, the definition of the abelian RT invariant cannot
be extended to the case where k is purely even (that is, when k = 2 (2l + 1)). In-
deed, if the signature σ (LL) of LL is negative then ZRTk

Ä
M (3)

ä
is ill-defined. But,

given an oriented manifold M (3) with linking matrix LL, the manifold with reversed
orientation −M (3) has a linking matrix −LL. Hence, in the case k = 2 (2l + 1),
ZRTk

Ä
M (3)

ä
is ill-defined or 0. Therefore, the hypothesis of modularity of CZk is

sufficient to avoid that case. However, it is not necessary. Indeed, as treated fur-
ther, the definition can be extended to the case where k = 4l. However, even if
the construction of an abelian RT invariant is possible for k = 4l some results that
assume the modularity of the category do not extend to the case where k = 4l.
Conversely, some results established for k = 4l are not extensions of the modular
case. In particular, it will be shown that the abelian RT theory for k = 4l is related
to the abelian CS theory with a coupling constant l whereas no abelian CS theory
will be associated with the abelian RT theory for k = 2l + 1.

The operation FRTk is the transformation of the graphical information into al-
gebraic information of L reading, by convention, for example, the link diagram of
the surgery link from the top to the bottom. The set of link diagrams can actually
be regarded as objects of a category, and the various classes of movements of the
strands of a diagram as morphisms of this category. Hence, the operation FRTk can
be proved to be a covariant functor from this category of diagrams into the abelian
realization of a modular category defined previously.
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Chapter 2. Abelian Reshetikhin-Turaev invariant

Thanks to the properties of CZk imposed in the previous sections, it is possible
to encode the graphical information as:

FRTk
Ä
X+
p,q, (p, q)

ä
= cp,q,

FRTk
Ä
X−p,q, (p, q)

ä
= (cp,q)−1 ,

FRTk
Ä
Y +
p,q, (p, q)

ä
= (cq,k−p)−1 ,

FRTk
Ä
Y −p,q, (p, q)

ä
= ck−p,q,

FRTk
Ä
Z+
p,q, (p, q)

ä
= (ck−q,p)−1 ,

FRTk
Ä
Z−p,q, (p, q)

ä
= cp,k−q,

FRTk
Ä
T+
p,q, (p, q)

ä
= ck−p,k−q,

FRTk
Ä
T−p,q, (p, q)

ä
= (ck−q,k−p)−1 ,

FRTk
Ä
ϕ+
p , p
ä

= θp,

FRTk
Ä
ϕ−p , p

ä
= (θp)−1 ,

FRTk
Ä
∩+
p , p
ä

= 1,
FRTk

Ä
∩−p , p

ä
= 1,

FRTk
Ä
∪+
p , p
ä

= 1,
FRTk

Ä
∪−p , p

ä
= 1,

FRTk (↓p, p) = 1,
FRTk (↑p, p) = 1.

(2.6)

following the notations of Turaev [Turaev, 2010] reminded in Figure 2.1. The functor
FRTk is covariant and built such that it preserves the tensor product, that is:

FRTk (A ◦B) = FRTk (A) ◦ FRTk (B) (2.7)

and:
FRTk (A⊗B) = FRTk (A)⊗FRTk (B) . (2.8)

Hence, the diagram of the surgery link can be cut into horizontal slices and its image
by FRTk is the composition of the image of each slice.

Thus, it can be shown that:

FRTk (L,p) =
∏

1≤i<j≤m

Ä
cpj ,picpi,pj

äLij m∏

i=1

Ä
cpi,pi

äLii
, (2.9)

which can be actually rewritten as:

FRTk (L,p) =
∏

1≤i<j≤m

Ä
Spi,pj

äLij m∏

i=1

Ä
θpi
äLii = (c1,1)

m∑
i,j=1

piLijp
j

(2.10)

so finally:
FRTk (L,p) = e

2iπ
k

(p,LLp), (2.11)

and:
ZRTk

Ä
M (3)ä = ∆σ(LL)

k

√
k
−σ(LL)−m ∑

p∈Zm
k

e
2iπ
k

(p,LLp). (2.12)
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2.2. Extension of abelian RT construction

It should be noted that contrary to the convention often taken in the mathematics
community2, the abelian RT invariant is normalized by S3 (as it will be shown in
the examples). With this normalization, it will be shown later on that:

∣∣∣ZRT2l+1

Ä
M (3)ä∣∣∣2 =

∣∣∣H1 ÄM (3),Z2l+1
ä∣∣∣ . (2.13)

From this last formula, it appears that the topological invariant obtained, that is,
mainly

∣∣∣H1
Ä
M (3),Z2l+1

ä∣∣∣ (up to a phase), is not very accurate but not trivial at
all. The determination of the phase is not obvious and can contain more than the
information of the homology group, as shown in the examples given further.

Considering ZRTk
Ä
M (3)

ä
for several values of k should make it possible to get

a better knowledge of the topology of M (3) than considering only one value of k.
However, the accuracy of this knowledge is limited. Indeed, for example, the abelian
RT theory cannot make the difference between S3 and the Poincaré homology sphere,
whatever k. It is also noteworthy that having the order of the homology group does
not provide the group structure itself.

2.2 Extension of abelian RT construction
As explained in the previous section, the modularity of CZk is a sufficient condition
for the existence of ZRTk

Ä
M (3)

ä
. Indeed, in the non-modular case, some ill-defined

cases would occur because ∆k = 0. However, this would happen only in the purely
even case, that is, in the case where k = 2 (2l + 1). In the case where k = 4l
the definition (2.12) in itself makes sense and can be adapted in order to produce
a true invariant of M (3), taking into account in particular the periodicity of the
exponentials which is 2l in that case and not 4l. Indeed:

((p + 2lm) ,LL (p + 2lm)) ≡ (p,LLp) [4l] . (2.14)

Hence: ∑

p∈Zm4l
FRT4l (L,p) = 2m

∑

p∈Zm2l
FRT4l (L,p) . (2.15)

The new definition is then:

Z̃RT4l

Ä
M (3)ä = ∆̃σ(LL)

4l D̃−σ(LL)−m
4l

∑

p∈Zm2l
e

2iπ
4l (p,LLp), (2.16)

with:
∆̃4l =

∑

p∈Z2l

e−2iπ p
2

4l = 1
2∆4l (2.17)

2In the mathematics literature, in particular in [Turaev, 2010], the normalization is most of the
time taken to be S1 × S2. This detail does not change anything in this study.
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Chapter 2. Abelian Reshetikhin-Turaev invariant

and:
D̃4l =

√
2l = D4l√

2
. (2.18)

Therefore:

Z̃RT4l

Ä
M (3)ä =

Ñ
∆̃4l∣∣∣∆̃4l

∣∣∣

éσ(LL) ∣∣∣∆̃4l
∣∣∣
−m ∑

p∈Zm2l
e

2iπ
4l (p,LLp). (2.19)

This quantity has been shown by Murakami, Ohtsuki and Okada to be an invariant
of M (3). Its original construction is related to quasi-triangular Hopf algebras and
Z2l-fusion rules [Murakami et al., 1992].

Furthermore, taking into account that:

∆̃4l = 1
2∆4l =

Ä√
l − i
√
l
ä
, (2.20)

then:
∆̃4l∣∣∣∆̃4l

∣∣∣
= e−i

π
4 (2.21)

and Z̃RT4l

Ä
M (3)

ä
can be rewritten as:

Z̃RT4l

Ä
M (3)ä =

√
2l−me−i

π
4 σ(LL) ∑

p∈Zm2l
e

2iπ
4l (p,LLp), (2.22)

which is another formulation widespread in the mathematics literature3. This new
definition of Z̃RT4l

Ä
M (3)

ä
differs from the definition (2.12) taken with k = 4l by

a factor
√

2m+σ(LL) that might be irrelevant, but the choice to take the version of
Murakami will appear particularly adapted further to use the reciprocity formula
due to F. Deloup and V. Turaev [Deloup and Turaev, 2007] and to establish a
relation with abelian CS theory.

Also, it can be noted that the modulus square of Z̃RT4l

Ä
M (3)

ä
can be expressed

as [Murakami et al., 1992, Mathieu and Thuillier, 2016a]:

∣∣∣Z̃RT4l

Ä
M (3)ä∣∣∣2=

{∣∣∣H1
Ä
M (3),Z2l

ä∣∣∣ if ∀α ∈ H1
Ä
M (3),Z2l

ä
, α∪α∪α = 0

0 otherwise.
(2.23)

The piece of information contained in this extension is then similar to the piece of
information contained in the modular case. However, it appears that there exists a
degeneracy.

3The complex conjugation can also be found in the mathematics literature but would correspond
to the same manifold with a reversed convention of orientation.
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2.3. Abelian RT invariant associated with Z
Ä
CZk
ä

2.3 Abelian RT invariant associated with Z
(
CZk

)

In section 1.6 the Drinfeld center Z
Ä
CZk
ä
has been shown to be a modular cate-

gory for any k4. Hence, the abelian RT invariant ZRTZ(CZk)
Ä
M (3)

ä
associated with

Z
Ä
CZk
ä
is:

ZRTZ(CZk)
Ä
M (3)ä

= ∆σ(LL)
Z(CZk)D

−σ(LL)−m
Z(CZk)

∑

(p,u)∈Zm
k
×Zm

k

FRTZ(CZk) (L, (p,u)) . (2.24)

Moreover, on the one hand:
DZ(CZk) = k (2.25)

and on the other hand:

∆Z(CZk) =
∑

(p,u)∈Zk×Zk
e2iπ pu

k = k = DZ(CZk). (2.26)

The operation FRTZ(CZk) (L, (p,u)) is given here by:

FRTZ(CZk) (L, (p,u)) = e
2iπ
k

(p,LLu), (2.27)

so that finally:

ZRTZ(CZk)
Ä
M (3)ä = 1

km

∑

(p,u)∈Zm
k
×Zm

k

e
2iπ
k

(p,LLu). (2.28)

Otherwise:

ZRTZ(CZk)
Ä
M (3)ä =

∑

u∈Zm
k

δ
[k]
LLu,0 =

∣∣∣KerL[k]
L
∣∣∣ , (2.29)

where L[k]
L : Zmk −→ Zmk is the morphism canonically induced by LL : Zm −→ Zm.

On the other hand, it is known that the sequence:

0 −→ Ker (LL) −→ Zm LL−→ Zm −→ Coker (LL) −→ 0 (2.30)

is exact, and hence, applying the functor Hom(·,Zk) the sequence:

0 −→ Ker
(
L[k]
L
)
−→ (Zk)m

L[k]
L−→ (Zk)m −→ Coker

(
L[k]
L
)
−→ 0 (2.31)

4Of course it would be more correct to exclude the trivial case k = 0.
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is also exact since:

Ker
Ä
L[k]ä ' Hom

Ä
Coker

Ä
L[k]ä ,Zk

ä
. (2.32)

Furthermore:
Coker (L) ' H1

Ä
M (3)ä (2.33)

and:

H1 ÄM (3),Zk
ä
' Hom

Ä
H1
Ä
M (3)ä ,Zk

ä
⊕ Ext

Ä
H0
Ä
M (3)ä ,Zk

ä
, (2.34)

so:
H1 ÄM (3),Zk

ä
= Hom

Ä
H1
Ä
M (3)ä ,Zk

ä
. (2.35)

As a conclusion:
ZRTZ(CZk)

Ä
M (3)ä =

∣∣∣H1 ÄM (3),Zk
ä∣∣∣ . (2.36)

Here also, such a derivation had a priori never been exhibited before [Mathieu and
Thuillier, 2017]. The invariant ZRTZ(CZk)

Ä
M (3)

ä
is defined for any k but, com-

pared to the two previous cases studied, there is no phase carrying potentially more
information. In this sense, ZRTZ(CZk)

Ä
M (3)

ä
is weaker than ZRT2l+1

Ä
M (3)

ä
and

Z̃RT4l

Ä
M (3)

ä
when α∪α∪α = 0 for any α ∈ H1

Ä
M (3),Z2l

ä
.

2.4 Abelian expectation values of observables
Consider a manifold M (3) obtained from S3 by integral surgery along a link L. Let
γ be a framed loop with framing q in M (3) whose preimage in S3 by the surgery
procedure is γ̃. For the modular case k = 2l + 1 the quantity:

〈γ〉RTk,M(3) = ∆σ(LL)
k

√
k
−σ(LL)−m ∑

p∈Zm
k

e
2iπ
k ((p,q),LL∪γ̃(p,q)) (2.37)

has been shown by Turaev to be a topological invariant of the pair
Ä
M (3), γ

ä
[Turaev,

2010]. This quantity will be called the expectation value of the observable γ
according to the RT theory defined on CZ2l+1 .

Such a result is a priori not relevant in the scope of this study since the abelian
CS theory for a coupling l ∈ Z will be shown to be associated with the abelian RT
theory for k = 4l and the abelian BF theory for a coupling k to the Drinfeld center
Z
Ä
CZk
ä
for any k ∈ Z.

However, it has been shown also for k = 4l that the following quantity is a
topological invariant of the pair

Ä
M (3), γ

ä
[Deloup, 2001]:

〈γ〉RT4l,M(3) =

Ñ
∆̃4l∣∣∣∆̃4l

∣∣∣

éσ(LL) ∣∣∣∆̃4l
∣∣∣
−m ∑

p∈Zm2l
e

2iπ
4l ((p,q),LL∪γ̃(p,q)). (2.38)
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2.4. Abelian expectation values of observables

that is:
〈γ〉RT4l,M(3) = e−i

π
4 σ(LL)√2l−m

∑

p∈Zm2l
e

2iπ
4l ((p,q),LL∪γ̃(p,q)). (2.39)

Hence, the previous terminology extends to the non-modular case k = 4l: this
quantity will be called the expectation value of the observable γ according to
the RT theory defined on CZ4l . The origin of this terminology will become clearer
comparing the shape of (2.4) with the shape of expectation value of observables
in the abelian CS theory presented in chapter 2 of the second part. Although,
as mentioned before, the quantities (2.37) and (2.4) were known to be topological
invariants of the pair

Ä
M (3), γ

ä
, they had never been interpreted in terms of what

physicists call expectation value of observables.
Another convenient definition of the expectation value that will be useful is:

〈〈γ〉〉RT4l,M(3) =
〈γ〉RT4l,M(3)

Z̃RT4l

(
M (3)) . (2.40)

All those formulæ presented for a loop γ extend naturally to links.
In the case of the Drinfeld center, let γ1 and γ2 be a pair of loops with framing

q and v respectively together with their respective preimage in S3 by the surgery
procedure γ̃1 and γ̃2. Then:

〈γ1, γ2〉RTZ(CZk),M
(3) =∆σ(LL)

Z(CZk)D
−σ(LL)−m
Z(CZk)

∑

p∈Zm
k

∑

u∈Zm
k

e
2iπ
k ((p,q,0),LL∪γ̃1∪γ̃2 (u,0,v))

= 1
km

∑

p∈Zm
k

∑

u∈Zm
k

e
2iπ
k ((p,q,0),LL∪γ̃1∪γ̃2 (u,0,v)), (2.41)

or:
〈γ1, γ2〉RTZ(CZk),M

(3) = 1
km

∑

p∈Zm
k

∑

u∈Zm
k

e
2iπ
k ((p,q),LC1,C2 (u,v)), (2.42)

with LC1,C2 = `kS3
(C1i, C2j

)
and C1 = L ∪ γ̃1 and C2 = L ∪ γ̃2.

This formula presented for two loops γ1 and γ2 extends naturally to links.
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Chapter 2. Abelian Reshetikhin-Turaev invariant

2.5 Examples
Lens spaces. The so-called lens spaces L (p, q) with (p, q) a pair of coprime
integers provide here a convenient class of examples. Consider the sphere S3 as a
subset of C2 and the group action (z1, z2) −→

Å
e

2iπ
p · z1, e

2iπq
p · z2

ã
. The lens space

L (p, q) is the quotient of S3 by this group action.
It is known that π1 (L (p, q)) = H1 (L (p, q)) = Zp and πi (L (p, q)) = πi

(
S3) for

i > 1. Moreover, L (p, q1) and L (p, q2) are homeomorphic if and only if q2 = ±q±1
1

in Zp. This family of manifolds of dimension 3 is thereby interesting in the context
of algebraic topology since it provides examples where the homotopy groups are not
classifying.

The lens space L (p, 1) can be obtained from S3 by integral surgery along the
unknot with a framing −p [Saveliev, 2012] as represented in Figure 2.2.

With this representation, the linking matrix LL is simply:

LL = −p (2.43)

The specific case p = 0 and q = 1 corresponds to L (0, 1) = S1 × S2 which is
the only lens space to have no torsion part and a free part Z in its homology. The
signature is then σ (LL) = 0 and:

ZRT2l+1

Ä
S1 × S2ä = 1√

2l + 1
(2l + 1) =

√
2l + 1 (2.44)

and:
Z̃RT4l

Ä
S1 × S2ä = 1√

2l
(2l) =

√
2l. (2.45)

If p ≥ 1 then its signature is σ (LL) = −1 and:

ZRT2l+1 (L (p, 1)) = 1
∆2l+1

∑

u∈Z2l+1

e−
2iπ

2l+1pu
2

(2.46)

and:
Z̃RT4l (L (p, 1)) = ei

π
4√
2l

∑

u∈Z2l

e−
2iπ
4l pu

2
. (2.47)

A particular case arises when p = 1 which corresponds to L (1, 1) = S3 by
definition of a lens space and it happens that:

ZRT2l+1 (L (1, 1)) = 1 (2.48)

and:
Z̃RT4l (L (1, 1)) = 1. (2.49)
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2.5. Examples

The lens space L (p = qr − 1, q) (q and r strictly positive) can be obtained from
S3 by integral surgery along the Hopf link with a framing −r on the first component
and a framing −q on the second component [Saveliev, 2012] as represented in Figure
2.3. With this representation, the linking matrix LL is:

LL =
Ç
−r 1
1 −q

å
(2.50)

then its signature is σ (LL) = −2 and:

ZRT2l+1 (L (p = qr − 1, q)) = 1
∆2

2l+1

∑

u,v∈Z2l+1

e−
2iπ

2l+1(−qu2+2uv−rv2) (2.51)

and:
Z̃RT4l (L (p = qr − 1, q)) = i

2l
∑

u,v∈Z2l

e−
2iπ
4l (−qu2+2uv−rv2). (2.52)

A particular case arises when r = 2 and q = 1 which corresponds to L (1, 1) = S3

by definition of a lens space and the same result as previously is found:

ZRT2l+1 (L (1, 1)) = 1 (2.53)

and:
Z̃RT4l (L (1, 1)) = 1. (2.54)

More generally, L (p, q) is obtained from S3 by integral surgery along the link
represented in Figure 2.4, the xi are the element of the continued fraction decom-
position of p/q :

p

q
= x1 −

1
x2 − 1

...− 1
xn

. (2.55)

With this representation, the linking matrix LL is:

LL =




−x1 1 0 · · · · · · · · · 0
1 −x2 1 0

...
0 1 −x3 1 0

...
... . . . . . . . . . . . . . . . ...
... 0 1 −xn−2 1 0
... 0 1 −xn−1 1
0 · · · · · · · · · 0 1 −xn




(2.56)
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Chapter 2. Abelian Reshetikhin-Turaev invariant

then its signature is σ (LL) = −n and:

ZRT2l+1 (L (p, q)) = 1
∆n

2l+1

∑

u∈Zn2l+1

e−
2iπ

2l+1(−x1u2
1−...−xnu2

n+2u1u2+...+2un−1un) (2.57)

and:

Z̃RT4l (L (p, q)) = ei
π
4 n√
2ln

∑

u∈Zn2l
e−

2iπ
4l (−x1u2

1−...−xnu2
n+2u1u2+...+2un−1un). (2.58)

For further use, it should be mentioned that, when CZk is modular, that is, when
k = 2l + 1, then: ∣∣∣ZRT2l+1 (L (p, q))

∣∣∣
2

= gcd (2l + 1, p) (2.59)

for any positive p (even p = 0 and p = 1). Taking into account equation (2.57), the
phase of ZRT2l+1 (L (p, q)) should depend on k = 2l + 1, p and q.

Poincaré homology sphere. Thanks in particular to the lens spaces, it is known
that the fundamental group cannot classify the manifolds of dimension 3 up to
homeomorphism. It is also known that the homology cannot classify them as well.
For example, the Poincaré homology sphere is not homeomorphic to S3 but has the
same homology groups.

The Poincare homology sphere is obtained from S3 by integral surgery along the
link L represented in Figure 2.5. With this representation, the linking matrix LL is:

LL =




−2 1 0 0 0 0 0 0
1 −2 1 0 0 0 0 0
0 1 −2 1 0 0 0 0
0 0 1 −2 1 0 0 0
0 0 0 1 −2 1 0 1
0 0 0 0 1 −2 1 0
0 0 0 0 0 1 −2 0
0 0 0 0 1 0 0 −2




(2.60)

and its signature is σ (LL) = −8. It can be shown that, as a consequence:

ZRT2l+1

Ä
M (3)ä = 1 (2.61)

and:
Z̃RT4l

Ä
M (3)ä = 1. (2.62)
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p q

q p

(a) X+
p,q

p q

q p

(b) X−p,q

p q

q p

(c) Y +
p,q

p q

q p

(d) Y −p,q

p q

q p

(e) Z+
p,q

p q

q p

(f) Z−p,q

p q

q p

(g) T+
p,q

p q

q p

(h) T−p,q

0

p p∗ = k − p

(i) ∩+
p

0

p∗ = k − p p

(j) ∩−p

0

p∗ = k − p p

(k) ∪+
p

0

p
p∗ = k − p

(l) ∪−p

p

(m) ϕ+
p

p

(n) ϕ−p

p

(o) ↓p

p∗ = k − p

(p) ↑p

Figure 2.1: Notations associated with equations (2.6).
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−p

Figure 2.2: Surgery link of L (p, 1).

−q −r

•

Figure 2.3: Surgery link of L (p = qr − 1, q).

−x1 −x2 −x3 −x4 −xn−1 −xn

• • • • • •

Figure 2.4: Surgery link of L (p, q).

−2 −2 −2 −2 −2 −2 −2

−2

•

Figure 2.5: Surgery link of the Poincaré homology sphere.
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Chapter 3. Abelian Turaev-Viro invariant

Introduction (English version)
The Turaev-Viro (TV) invariant originally relies on a triangulation of the manifold
M (3) considered [Turaev and Viro, 1992]. However, the construction can be general-
ized to cellular decomposition of M (3) [Balsam and Kirillov, 2010]. The topological
information is thus given by the set of the cells and how the cells are glued together.
The edges will then be labeled by objects of a finite semisimple spherical category
and morphisms will encode the gluing rule. The TV invariant is obtained by sum-
ming over the set of objects (which implies that this set has to be chosen so that
the sum will converge). For this algebraic quantity to be a true invariant of M (3),
it has to keep the same value if the cellular decomposition that represents M (3) is
refined. As shown mostly by Turaev and Viro, then refined by Barrett and Westbury
[Barrett and Westbury, 1996], the correct framework is the one provided by finite
semisimple spherical categories which are less constrained than modular categories.

In this chapter, an abelian realization of the TV invariant founded on CZk is
derived. Contrary to the RT case, there will be no obstruction on k for the invariant
to be defined. This invariant will be related to the cardinal of the first homology
group H1

Ä
M (3)

ä
of the manifoldM (3) considered. In the modular case, the theorem

which claims that the modulus square of the RT invariant coincides with the TV
invariant will be verified. Finally, observables related to the abelian TV theory
and their expectation value will be introduced. They define an invariant of links in
manifolds of dimension 3 that had a priori never been considered before [Mathieu
and Thuillier, 2016b].
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Introduction (version française)
L’invariant de Turaev-Viro (TV) se construit à l’origine à partir d’une triangulation
de la variété M (3) considérée [Turaev and Viro, 1992]. Cependant, la construction
peut être généralisée aux décompositions cellulaires de M (3) [Balsam and Kirillov,
2010]. L’information topologique est ainsi donnée par l’ensemble des cellules et la
manière dont les cellules se recollent entre elles. Aux arêtes seront associés des
objets d’une catégorie sphérique semisimple finie et des morphismes encoderont la
règle de recollement. L’invariant TV est obtenu en sommant sur l’ensemble des
objets (ce qui implique que cet ensemble doit être choisi de sorte à ce que la somme
converge). Afin que cette quantité algébrique soit effectivement un invariant deM (3),
elle doit conserver la même valeur si la décomposition cellulaire de M (3) est raffinée.
Comme démontré principalement par Turaev et Viro, puis raffiné par Barrett et
Westbury [Barrett and Westbury, 1996], le cadre correct est celui fourni par les
catégories sphériques semisimples finies qui sont moins contraintes que les catégories
modulaires.

Dans ce chapitre, une réalisation abélienne de l’invariant TV fondée sur CZk

est présentée. Contrairement au cas RT, il n’y aura pas de contrainte sur k pour
que l’invariant soit défini. Cet invariant sera relié au cardinal du premier groupe
d’homologie H1

Ä
M (3)

ä
de la variété M (3) considérée. Dans le cas modulaire, le

théorème qui affirme que le module carré de l’invariant RT coïncide avec l’invariant
TV sera vérifié. Enfin, des observables liées à la théorie TV abélienne et leurs valeurs
moyennes seront introduites. Elles définissent des invariants d’entrelacs dans les
variétés de dimension 3 qui n’ont a priori jamais été considérés auparavant [Mathieu
and Thuillier, 2016b].
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3.1 Generalities
Let M (3) be a manifold of dimension 3 provided with an oriented cellular decompo-
sition C = (P,F , E ,V) where P is the set of 3-cells (polyhedra), F the set of 2-cells
(faces), E the set of 1-cells (edges) and V the set of 0-cells (vertices). These sets are
given by:

P = (Pα)α=1,...,P , F = (Sa)a=1,...,F ,

E = (ei)i=1,...,E , V = (xµ)µ=1,...,V .
(3.1)

As M (3) is closed, let C∗ = (P∗,F∗, E∗,V∗) be a dual oriented decomposition of
C given by:

V∗ = (xα)α=1,...,P , E∗ = (ea)a=1,...,F ,

F∗ =
(
Si
)
i=1,...,E , P∗ = (Pµ)µ=1,...,V ,

(3.2)

in such a way that:

Pα � xβ = δβα, Sa � eb = δba,

ei � Sj = δji , xµ � P ν = δνµ,
(3.3)

with � denoting the intersection number in M (3). The decompositions C and C∗ are
naturally endowed with the structure of abelian graded groups.

Boundary operator. Let ∂ (respectively ∂∗) be boundary operator on C (respec-
tively C∗) such that:





∂Pα = ∂aαSa,

∂Sa = ∂iaei,

∂ei = ∂
µ
i xµ,

∂xµ = 0,

and





∂∗Pµ = ∂∗µi S
i,

∂∗Si = ∂∗iae
a,

∂∗ea = ∂∗aαx
α,

∂∗xα = 0,

(3.4)

with:
∂ ◦ ∂ = 0 = ∂∗ ◦ ∂∗ , (3.5)

all matrix elements of ∂ and ∂∗ being integers. By introducing the notations:




∂(3) = (∂aα)1≤a≤F
1≤α≤P

,

∂(2) =
Ä
∂ia
ä

1≤i≤E
1≤a≤F

,

∂(1) = (∂µi )1≤µ≤V
1≤i≤E

,

∂(0) = (0, . . . , 0)︸ ︷︷ ︸
V

,

and





∂∗(3) =
Ä
∂(1)
ä†
,

∂∗(2) =
Ä
∂(2)
ä†
,

∂∗(1) =
Ä
∂(3)
ä†
,

∂∗(0) = (0, . . . , 0)︸ ︷︷ ︸
P

.

(3.6)
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The boundary operator ∂ can be regarded as a matrix operator:

∂ =

á
∂(3) 0 0 0
0 ∂(2) 0 0
0 0 ∂(1) 0
0 0 0 ∂(0)

ë

. (3.7)

The boundary operators ∂ and ∂∗ turn C and C∗ into differential groups thus
yielding homology groups H•(C) and H•(C∗). The decomposition C will always be
assumed to be good, which means that:

H• (C) ' H•
Ä
M (3)ä . (3.8)

By construction the dual decomposition C∗ is good too.

Cochains and differentials. Relations (3.3) lead to the following correspon-
dences: 




Pµ → P̂µ ∈ Hom(V,Z) ≡ C0
C | P̂µ(xν) = δµν

Si → Ŝi ∈ Hom(E ,Z) ≡ C1
C | Ŝi(ej) = δij ,

ea → êa ∈ Hom(F ,Z) ≡ C2
C | êa(Sb) = δab ,

xα → x̂α ∈ Hom(P,Z) ≡ C3
C | x̂α(Pβ) = δαβ ,

(3.9)

and once (C∗)∗ has been canonically identified with C the following additional cor-
respondences can be done:





Pα → P̂α ∈ Hom(V∗,Z) ≡ C0
C∗ | P̂α(xβ) = δβα,

Sa → Ŝa ∈ Hom(E∗,Z) ≡ C1
C∗ | Ŝa(eb) = δba,

ei → êi ∈ Hom(F∗,Z) ≡ C2
C∗ | êi(Sj) = δji ,

xµ → x̂µ ∈ Hom(P∗,Z) ≡ C3
C∗ | x̂µ(P ν) = δνµ.

(3.10)

A cochain of C and C∗ is then a linear combination of these fundamental cochains.
Let C•C (respectively C•C∗) be the graded group of cochains of C (respectively C∗).

Then C•C (respectively C•C∗) is turned into a differential group by endowing it with
the endomorphism d : C•C → C•C (respectively d∗ : C•C∗ → C•C∗) defined by:

∀û ∈ C•C , d ◦ û = û ◦ ∂,
(respectively ∀v̂ ∈ C•C∗ , d∗ ◦ v̂ = v̂ ◦ ∂∗) . (3.11)

This induces therefore the matrix relations:




d(0) =
Ä
∂(1)
ä†
,

d(1) =
Ä
∂(2)
ä†
,

d(2) =
Ä
∂(3)
ä†
,

and





Ä
d(0)
ä∗ =

Ä
d(2)
ä† = ∂(3),

Ä
d(1)
ä∗ =

Ä
d(1)
ä† = ∂(2),

Ä
d(2)
ä∗ =

Ä
d(0)
ä† = ∂(1).

(3.12)
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Since the decomposition C is good the cohomology groups of (C•C , d) and (C•C∗ ,d∗)
coincide with those of M (3).

Cap and cup. The symmetric non-degenerate pairings defined by:




¨
P̂α, x̂

β
∂
≡ P̂α

Ä
xβ
ä

= Pα � xβ = δβα,¨
Ŝa, ê

b
∂
≡ Ŝa

Ä
eb
ä

= Sa � eb = δba,¨
êi, Ŝ

j
∂
≡ êi

Ä
Sj
ä

= ei � Sj = δji ,¨
x̂µ, P̂

ν
∂
≡ x̂µ (P ν) = xµ � P ν = δνµ

(3.13)

yield the following cap products:




M (3) ∩ P̂α = Pα,

M (3) ∩ Ŝa = Sa,

M (3) ∩ êi = ei,

M (3) ∩ x̂µ = xµ,

and





M (3) ∩ P̂µ = Pµ,

M (3) ∩ Ŝi = Si,

M (3) ∩ êa = ea,

M (3) ∩ x̂α = xα.

(3.14)

These relations are nothing but the Poincaré duality. For instance, for a 1-chain
c = ciei then its Poincaré dual is just ĉ = ciêi ∈ C2

C∗ . It shall be noted that starting
with a chain in C implies ending with a cochain in C∗.

The cup products associated with the previous cap products are:




Ä
P̂α ∪ x̂β

ä Ä
M (3)ä ≡ P̂α

Ä
M (3) ∩ x̂β

ä
= x̂β

Ä
M (3) ∩ P̂α

ä
= P̂α

Ä
xβ
ä

= δβα,Ä
Ŝa ∪ êb

ä Ä
M (3)ä ≡ Ŝa

Ä
M (3) ∩ êb)

ä
= êb

Ä
M (3) ∩ Ŝa

ä
= Ŝa

Ä
eb
ä

= δba,Ä
êi ∪ Ŝj

ä Ä
M (3)ä ≡ êi

Ä
M (3) ∩ Ŝj

ä
= Ŝj

Ä
M (3) ∩ êi

ä
= êi

Ä
Sj
ä

= δji ,Ä
x̂µ ∪ P̂ ν

ä Ä
M (3)ä ≡ x̂µ

Ä
M (3) ∩ P̂ ν

ä
= P̂ ν

Ä
M (3) ∩ x̂µ

ä
= x̂µ (P ν) = δνµ.

(3.15)

Labelings and gaugings. The previous construction extends to Zk-valued cochains
of C and C∗ the differential groups of which are denoted Ck,•C and Ck,•C∗ . In the con-
text of the TV theory elements of Ck,1C (respectively Ck,1C∗ ) are called Zk labelings
of C (respectively C∗) whereas elements of Ck,0C (respectively Ck,0C∗ ) are called Zk
gaugings of C (respectively C∗). By construction, the differential of a Zk gauging
is a Zk labeling.

Consider l̂ ∈ Ck,1C and m̂ ∈ Ck,1C∗ such that:

l̂ = liŜ
i and m̂ = maŜa, (3.16)

with li,ma ∈ Zk. The 2-cochains dl̂ ∈ Ck,2C and d∗m̂ ∈ Ck,2C∗ are defined by:

dl̂ = li ∂
i
aê
a =
Ä
dl̂
ä
a
êa and d∗m̂ = ma∂∗iaêi = (d∗m̂)i êi. (3.17)
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3.1. Generalities

It should be noted that (dl̂)a ∈ Zk since ∂ia ∈ Z and Zk is a Z-module. Thanks to
the ring structure of Zk the cup products can be extended to Zk-valued cochains.
In particular:

Ä
m̂∪ dl̂

ä Ä
M (3)ä = ma

Ä
dl̂
ä
b

Ä
Ŝa ∪ êb

ä Ä
M (3)ä = ma (dl)a . (3.18)

As Ck,1C = Hom(E ,Zk) ' ZEk and Ck,1C∗ = Hom(E∗,Zk) ' ZFk there are canonical
bijections:

l̂ = liŜ
i ∈ Ck,1C −→ l = (li)1≤i≤E ∈ ZEk ,

m̂ = maŜa ∈ Ck,1C∗ −→m = (ma)1≤a≤F ∈ ZFk ,
(3.19)

leading to:
dl̂ ∈ Ck,2C −→ dl = ((dl)a)1≤a≤F ∈ ZFk ,

d∗m̂ ∈ Ck,2C∗ −→ d∗m =
Ä
(d∗m)i

ä
1≤i≤E ∈ ZEk .

(3.20)

The Poincaré duality implies that a chain has the same components as its Poincaré
dual regardless of the fact that these components are taken in Z or Zk. For in-
stance the Poincaré dual of c = ciei is the 2-cochain ĉ = ciêi since M (3) ∩

(
ciêi

)
=

ci
Ä
M (3) ∩ êi

ä
= ciei.

Using correspondences (3.19) and (3.20), equation (3.18) can be rewritten as:
Ä
m̂∪ dl̂

ä Ä
M (3)ä = m · dl =

Ä
d∗m̂∪ l̂

ä Ä
M (3)ä , (3.21)

where the · denotes the euclidian scalar product.

Definition of abelian TV invariant. Let S0 be an oriented face with bounding
edges

(
e0
i

)
1≤i≤n. Given a labeling l̂ of C that induces a labeling l̂0 = l0i Ŝ

i,0 dualizing
the edges

(
e0
i

)
1≤i≤n, the state space of S0 is defined as:

FTVk
Ä
S0, l̂

ä
= Hom

Ä
R0, Rl01 ⊗ · · · ⊗Rl0n

ä
= Hom

Å
R0, RΣl̂

S0

ã
= δ

[k]
Σl̂
S0 ,0

, (3.22)

where the Ri are the representations associated with i ∈ Zk according to the nota-
tions introduced in chapter 1 of this part and Σl̂

S0 =
n∑
i=1

l0i =
n∑
i=1

l̂
(
e0
i

)
, the edges e0

i

being canonically oriented with respect to S0. Having S0 running over the set of
oriented faces of C, the sums Σl̂

S0 generate a linear map:

Σl̂ : F → Zk. (3.23)

The total state space of C with labeling l̂ is defined as:

FTVk (C, l) =
⊗

S∈F

Ä
FTVk

Ä
S, l̂
ä
⊗FTVk

Ä
−S, l̂

ää
=
∏

S∈F

Å
δΣl̂S ,0

δΣl̂−S ,0

ã
, (3.24)
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where S is arbitrarily oriented and −S denotes S endowed with the opposite orien-
tation. However, as Hom(R0, Rp)∗ ' Hom

Ä
R0, R∗p

ä
and δ[k]

k−p,0 = δ
[k]
p,0, then:

FTVk
Ä
S, l̂
ä∗ = FTVk

Ä
−S, l̂

ä
= δ

[k]
k−Σl̂S ,0

= δ
[k]
Σl̂S ,0

= FTVk
Ä
S, l̂
ä

(3.25)

and hence the total state space of C for the finite semisimple spherical category CZk

takes the simpler form:

FTVk
Ä
C, l̂
ä

=
(∏

S∈F
δΣl̂S ,0

)
=
∏

S∈F
δ

[k]
dl̂(S), (3.26)

where Σl̂
S is computed by using any of the two possible orientations of S.

The abelian TV invariant ofM (3) corresponding to the finite semisimple spherical
category CZk (no specific constraint on k for this invariant) is defined as1:

ZTVk
Ä
M (3)ä = D−2(V−1)

k

∑

l̂∈Ck,1C

FTVk
Ä
C, l̂
ä
, (3.27)

that is:
ZTVk

Ä
M (3)ä = 1

kV−1
∑

l̂∈Ck,1C

∏

S∈F
δ

[k]
dl̂(S). (3.28)

This formula can be exponentiated:

ZTVk
Ä
M (3)ä = 1

kV+F−1
∑

l̂∈Ck,1C

∑

m̂∈Ck,1C∗

e
2iπ
k (m̂∪ dl̂)(M(3)) (3.29)

and a convenient formulation is also:

ZTVk
Ä
M (3)ä = 1

kV+F−1
∑

l̂∈Ck,1C

∑

m̂∈Ck,1C∗

e
2iπk
Ä
( m̂k )∪ d

Ä
l̂
k

ää
(M(3))

. (3.30)

Alternatively:
ZTVk

Ä
M (3)ä = 1

kV−1
∑

l∈ZE
k

δ
[k]
dl (3.31)

and:
ZTVk

Ä
M (3)ä = 1

kV+F−1
∑

l∈ZE
k

∑

m∈ZF
k

e
2iπ
k

m·dl. (3.32)

1The TV invariant of M (3) is computed from a cellular decomposition C of M (3) but it does not
depend on the choice of this cellular decomposition.
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3.2. Abelian expectation values of observables

It can be shown that [Mathieu and Thuillier, 2016a]:

ZTVk
Ä
M (3)ä =

∣∣∣H1
Ä
M (3),Zk

ä∣∣∣ = kb1
n∏

i=1
gcd (pi, k) , (3.33)

where b1 is the first Betti number of M (3) and the pi are the torsion indices of M (3),
that is:

H1
Ä
M (3),Z

ä
= F1 ⊕ T1, (3.34)

where F1 = Zb1 and T1 = Zp1 ⊕ . . .⊕ Zpn .
It should be borne in mind that, as well as for the RT invariant, contrary to the

convention often applied in the mathematics community, the abelian TV invariant
is normalized here by S32.

3.2 Abelian expectation values of observables
The expression (3.30) can be likened to a Zk gauge theory on a lattice. Hence for
a physicist it is tempting to define observables and the expectation value for these
observables.

The observables for such a theory would be simply the product of two Wilson
loops for two Zk-connections, that is, the product of two Zk holonomies:

WM(3)

(
l̂

k
, γ1

)
WM(3)

Å
m̂

k
, γ2

ã
= e

2iπ
Ä
l̂
k
∪ γ̂1+ m̂

k
∪ γ̂2
ä
(M(3))

, (3.35)

provided the loops γ1 and γ2 are built respectively with elements of E and elements
of E∗. In what follows it will always be assumed that it is true. The expectation
value of those observables would be:

〈
WM(3)

(
l̂

k
, γ1

)
WM(3)

Å
m̂

k
, γ2

ã〉

TVk,M(3)

= 1
kF+V−1

∑

l̂∈Ck,1C

∑

m̂∈Ck,1C∗

e
2iπ
Ä
k
Ä
m̂
k
∪ d l̂

k

ä
+ l̂
k
∪ ẑ1+ m̂

k
∪ ẑ2
ä
(M(3))

, (3.36)

or alternatively:
≠
WM(3)

Å l
k
, γ1

ã
WM(3)

Åm
k
, γ2

ã∑
TVk,M(3)

= 1
kV+F−1

∑

l∈ZE
k

∑

m∈ZF
k

e2iπk( m
k
·d l
k

+ l
k
·z1+ m

k
·z2), (3.37)

2In the mathematics literature, the normalization is most of the time taken to be S1 ×S2. This
detail does not change anything in this study.
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with z1 such that l · z1 = l̂∪ ẑ1
Ä
M (3)

ä
and z2 such that m · z2 = m̂∪ ẑ2

Ä
M (3)

ä
.

This defines a topological invariant of the triplet
Ä
M (3), γ1, γ2

ä
that has a priori

never been studied. However, it is important to note that γ1 and γ2 have to be
contained in the cellular decomposition chosen to compute their expectation value
although the final result does not depend on this choice.

Another convenient definition of the expectation value is:
≠≠
WM(3)

Å l
k
, γ1

ã
WM(3)

Åm
k
, γ2

ã∑∑
TVk,M(3)

=
〈WM(3)

Ä
l
k , γ1

ä
WM(3)

(m
k , γ2

)〉TVk,M(3)

ZTVk
(
M (3)) , (3.38)

which implies in particular that:
≠≠
WM(3)

Å l
k
, 0
ã
WM(3)

Åm
k
, 0
ã∑∑

TVk,M(3)
= 1, (3.39)

since: ≠
WM(3)

Å l
k
, 0
ã
WM(3)

Åm
k
, 0
ã∑

TVk,M(3)
= ZTVk

Ä
M (3)ä . (3.40)

All those formulæ presented for two loops γ1 and γ2 extend naturally to links.

3.3 Examples

The case of the lens spaces can be considered once again as examples. For this
purpose, a cellular decomposition is required. The following construction provides
a convenient one. This choice is arbitrary and will not affect the result.

Heegaard splittings. Consider two identical genus g handle bodies Hg,L and
Hg,R glued together on their surface ∂Hg,L and ∂Hg,R via a homeomorphism h :
∂Hg,L −→ ∂Hg,R. This construction called Heegaard splitting generates a closed
manifold M (3) of dimension 3. Moreover:

Theorem. Any manifold of dimension 3 admits a Heegaard splitting.

A proof of this classical result is presented in [Saveliev, 2012]. It stems directly
from the triangulability of the manifolds of dimension 3.

The relevant information lies on the gluing surface and is just the image of the
meridians µi,L of ∂Hg,L (which is contractible inside Hg,L) on ∂Hg,R as a function of
its meridians µi,R and longitudes λj,R. If ∂Hg,R is cut and unfolded, keeping in mind
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3.3. Examples

the identifications separated by the cutting, a planar representation of the splitting
called a Heegaard diagram is obtained3.

Consider now a manifold M (3) of dimension 3 and a genus g Heegaard splitting
M (3) = Hg,L∪Hg,R. As the interior of a n-cell of a cellular decomposition of a given
manifold must be homeomorphic to an open n-ball, if g = 0 then H0,L and H0,R
can be regarded as 3-cells of a cellular decomposition of M (3) since their interior
are open 3-balls. However, ∂H0,R = ∂H0,L = S2 cannot be regarded as a 2-cell
since it has no boundary and is not an open 2-ball, that is, an open disk. It is
necessary to cut it. Consider for example a loop γ on this S2. Then S2 is cut into
two halves whose interior can be regarded as 2-cells since they are homeomorphic
to open disks. In its turn, γ cannot be regarded as a 1-cell since it has no boundary
and is not homeomorphic to an open 1-ball, that is, a segment. Consider a point on
γ. Then γ is cut and its interior is homeomorphic to a segment. If g 6= 0 then Hg,L

and Hg,R cannot be regarded as 3-cells of a cellular decomposition of M (3) since
their interior are not open 3-balls. It is necessary to cut them with their meridian
disks. The procedure is then analogous to the case g = 0. What is interesting
is that the boundary of the meridian disks is precisely what is represented on the
Heegaard diagram. Hence, in some sense, a Heegaard diagram of M (3) provides a
planar representation of a cellular decomposition of M (3).

Lens spaces. A Heegaard splitting of L (p, q) is given by two solid tori with the
homeomorphism h represented by the matrix:

|h] =
Ç
q −s
p r

å
(3.41)

with det([h]) = p · s + q · r = 1 in the basis (µR, λR) as a function of the basis
(µL, λL), that is: {

h (µL) = q · µR + p · λR,
h (λL) = −s · µR + r · λR.

(3.42)

A Heegaard diagram processing the right torus (for example) is obtained the
following way indicated in Figure 3.1. The diagram given in Figure 3.2 is obtained
for L (p, q) considering on the right torus the image of the trace of the left meridian.

From this decomposition ZTVk (L (p, q)) can be computed in general as:

ZTVk (L (p, q)) = gcd (k, p) , (3.43)

with the specific case L (0, 1) = S1 × S2:

ZTVk (L (0, 1)) = ZTVk
Ä
S1 × S2ä = k. (3.44)

3It should be pointed out that all the curves are defined up to isotopy, thus continuous distortions
of those curves can be performed for convenience.

45



Chapter 3. Abelian Turaev-Viro invariant

Figure 3.1: Cellular decomposition from a (genus 1) Heegaard splitting.

x1 x2 x3
• • •

e1 e2
xq+1 xq+2 xq+3

• • •

eq+1 eq+2
xp−1 xp x1

• • •

ep−1 ep

x1 x2 x3
• • •

e1 e2
xq+1 xq+2 xq+3

• • •
eq+1 eq+2

xp−1 xp x1
• • •
ep−1 ep

µ1

µ1
µ2

µ2

Figure 3.2: Cellular decomposition of L (p, q) from a genus 1 Heegaard splitting.

Concerning the sphere S3:

ZTVk
Ä
S3ä = 1, (3.45)

where a cellular decomposition is, for example, given in Figure 3.3.

Poincaré homology sphere. The Poincaré homology sphere is not homeomor-
phic to S3 but has the same homology groups. Thus, its abelian TV invariant is
expected to be 1. A Heegaard splitting can be considered in order to build a cellular
decomposition. A Heegaard diagram of the Poincaré homology sphere will be any-
way provided in chapter 1 of the last part of this study. However, to emphasize the
fact that a Heegaard splitting is not the only way to build a cellular decomposition,
another decomposition is used and represented in Figure 3.4. It is actually the tem-
plate of a dodecahedron, each face being identified to its opposite after a rotation
of an angle π/5.
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•A

i

i∗

Figure 3.3: Cellular decomposition of S3 from a genus 0 Heegaard splitting.

According to the rules defined in the previous sections, the abelian TV invariant
of the Poincaré homology sphere can be expressed as:

ZTVk
Ä
M (3)ä =

k−1∑

a,b,c,d,e,
f,g,h,i,j=0

δ
[k]
a+b+c+d+eδ

[k]
a+j+d+h−iδ

[k]
c+i+e−j−g

δ
[k]
b+g+d−i−fδ

[k]
a+f+c+h−gδ

[k]
h+j+f−b−e (3.46)

and finally:
ZTVk

Ä
M (3)ä = 1, (3.47)

as expected.

3.4 Relations between abelian RT and TV theories
From the studies of Reshetikhin, Turaev and Viro it appears that:

Theorem ([Turaev, 2010]). If C is a modular category, then:
∣∣∣ZRTC

Ä
M (3)ä∣∣∣2 = ZTVC

Ä
M (3)ä . (3.48)

It shall be borne in mind that in the present case the theorem can be applied
for C = CZk with k = 2l + 1 which is the only case where CZk is modular. Indeed,
for k = 2l + 1, the theorem is verified:

∣∣∣ZRT2l+1

Ä
M (3)ä∣∣∣2 =

∣∣∣H1 ÄM (3),Z2l+1
ä∣∣∣ = ZTV2l+1

Ä
M (3)ä . (3.49)
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Figure 3.4: Cellular decomposition of the Poincaré homology sphere.

This is a first example of a relation between a quantity computed in S3 (via a surgery
link of M (3) in S3) and a quantity computed in M (3) (via a cellular decomposition
of M (3)). It establishes a relation between a pair of lattices

Ä
ZE2l+1,ZF2l+1

ä
on which

a non-symmetric operator d acts bilinearly and a lattice Zm2l+1 on which a symmetric
operator LL acts quadratically. The lattices here have not the same dimension but
the same periodicity. The importance of the modularity can be understood at this
point: it ensures that ZRT2l+1

Ä
M (3)

ä
is well-defined and that no sub-periodicity

appears.
Concerning the extension for k = 4l:

∣∣∣Z̃RT4l

Ä
M (3)ä∣∣∣2=

{∣∣∣H1
Ä
M (3),Z2l

ä∣∣∣ if ∀α ∈ H1
Ä
M (3),Z2l

ä
, α∪α∪α = 0

0 otherwise
(3.50)

and thus, if ∀α ∈ H1
Ä
M (3),Z2l

ä
, α∪α∪α = 0:

∣∣∣Z̃RT4l

Ä
M (3)ä∣∣∣2 = ZTV2l

Ä
M (3)ä . (3.51)

Hence, it shall be noted that this formula relates an abelian RT theory to an abelian
TV theory with different k. This is because of the sub-periodicity that arises in the
abelian RT theory when k = 4l.

It could be interesting also to verify if the formulæ (3.49) and (3.51) extend to
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the expectation value of observables as something like:
∣∣∣〈〈γ〉〉RT2l+1,M(3)

∣∣∣
2

=
≠≠
WM(3)

Å l
k
, γ

ã
WM(3)

Åm
k
, γ

ã∑∑
TV2l+1,M(3)

(3.52)

and:
∣∣∣〈〈γ〉〉RT4l,M(3)

∣∣∣
2

=
≠≠
WM(3)

Å l
k
, γ

ã
WM(3)

Åm
k
, γ

ã∑∑
TV2l,M(3)

(3.53)

up to some restrictions for this last case.
Another theorem due to V. Turaev and A. Virelizier claims:

Theorem ([Turaev and Virelizier, 2013]). If C is a finite semisimple spherical cate-
gory, then:

ZRTZ(C)

Ä
M (3)ä = ZTVC

Ä
M (3)ä , (3.54)

which is verifed since:

ZRTZ(CZk)
Ä
M (3)ä =

∣∣∣H1
Ä
M (3),Zk

ä∣∣∣ = ZTVk
Ä
M (3)ä . (3.55)

Strictly speaking, the hypotheses of Turaev and Virelizier are slightly different
since their work refined again the vocabulary. However, for the present purpose,
these approximations do not lead to any mistake. The formula (3.54) means actually
that, given a category that makes it possible to build a TV invariant, it can be
extracted from this category a new category that makes it possible to build a RT
invariant. Those TV and RT invariants are then equal.

The previous result extends to the expectation value of observables:

〈γ1, γ2〉RTZ(CZk),M
(3) =

≠
WM(3)

Å l
k
, γ1

ã
WM(3)

Åm
k
, γ2

ã∑
TVk,M(3)

, (3.56)

that is:
1
km

∑

p∈Zm
k

∑

u∈Zm
k

e
2iπ
k ((p,q),LC1,C2 (u,v))

= 1
kV+F−1

∑

l∈ZE
k

∑

m∈ZF
k

e
2iπ
k

(m·dl+l·z1+m·z2). (3.57)

This is the first reciprocity formula appearing in this study. The proof is not pub-
lished but is provided by a straightforward adaptation of the proof of the reciprocity
formula for abelian BF and TV theories [Mathieu and Thuillier, 2016b] by replacing
the operator d by the linking matrix LL. It follows that:

〈γ1, γ2〉RTZ(CZk),M
(3) = kb1

p1 . . . pn
〈WM(3) (A, γ1)WM(3) (B, γ2)〉BFk,M(3) , (3.58)
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(see chapter 3 of the next part) and the reciprocity formula for abelian BF and TV
theories itself makes it possible to conclude. The main ingredients that are needed
in the proof are the fact that:

CokerLL ' Zm/ImLL ' H1
Ä
M (3)ä (3.59)

and:
KerLL ' H2

Ä
M (3)ä . (3.60)

As a consequence, because of equations (3.55) and (3.56):

〈〈γ1, γ2〉〉RTZ(CZk),M
(3) =

≠≠
WM(3)

Å l
k
, γ1

ã
WM(3)

Åm
k
, γ2

ã∑∑
TVk,M(3)

. (3.61)

To conclude, the abelian TV theory can be considered as weaker than the abelian
RT theory, in the sense that the information contained in the phase of the abelian
RT invariant is lost in the abelian TV invariant. However, in compensation, the
abelian TV theory is defined for any k. It has also been shown that the abelian TV
theory coincides actually with the abelian RT theory defined on the Drinfeld center
of CZk .
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Chapter 1. Deligne-Beilinson cohomology

Introduction (English version)
In this chapter Deligne-Beilinson (DB) cohomology is introduced as in [Mathieu,
2017]. Consider the abelian holonomy (which will be the observable of the abelian
CS and BF theories) along a loop γ:

hγ (A) = e2iπ
¸
γ A, (1.1)

where A is a U(1) connection. This is the observable involved the Aharonov-Bohm
effect. The classical gauge transformation A −→ A+dΛ where Λ is a function leaves
hγ invariant. However, the invariance of hγ is more general. Indeed, it turns out
that the most general gauge transformation is A −→ A + ωZ where ωZ is a closed
1-form with integral periods. In any manifoldM (3) such that H1

Ä
M (3)

ä
= 0, like S3

for example, this transformation comes down to the previous classical one since, by
Poincaré lemma, there exists a function Λ such that ωZ = dΛ. IfH1

Ä
M (3)

ä
6= 0, then

this reduction happens only locally in contractible open sets that define a covering
of M (3) (such a covering always exist). Hence, this quantum gauge transformation
generalizes on any closed manifold of dimension 3 the classical gauge transformation
that usually appears in S3.

In this chapter the equivalence classes according to this quantum gauge transfor-
mation are considered. These classes classify U(1)-bundles over M (3) endowed with
connections and their collection is the so-called first DB cohomology group of M (3).
Some properties of DB classes are shown and to be used later on to extract relevant
quantities from functional integrals.

56



Introduction (version française)
La cohomologie de Deligne-Beilinson (DB) est introduite dans ce chapitre comme
dans [Mathieu, 2017]. L’holonomie abélienne (qui sera l’observable des théories CS
et BF abéliennes) le long d’une boucle γ est définie par :

hγ (A) = e2iπ
¸
γ A, (1.1)

où A est une connexion U(1). C’est l’observable qui est en jeu dans l’effet Aharonov-
Bohm. La transformation de jauge classique A −→ A+ dΛ, où Λ est une fonction,
laisse hγ invariante. Cependant, l’invariance de hγ est bien plus générale. En ef-
fet, la transformation de jauge la plus générale est A −→ A + ωZ où ωZ est une
1-forme à périodes entières. Dans toute variété M (3) telle que H1

Ä
M (3)

ä
= 0,

comme S3 par exemple, cette transformation se réduit à la transformation classique
puisque, d’après le lemme de Poincaré, il existe une fonction Λ telle que ωZ = dΛ.
Si H1

Ä
M (3)

ä
6= 0, alors cette réduction ne survient que localement, sur les ouverts

contractiles qui définissent un recouvrement de M (3) (un tel recouvrement existe
toujours). Ainsi, cette transformation de jauge quantique généralise sur toute var-
iété de dimension 3 la transformation de jauge classique qui apparaît usuellement
dans S3.

Dans ce chapitre sont considérées les classes d’équivalence modulo cette transfor-
mation de jauge quantique. Ces classes classifient les fibrés U(1) au-dessus de M (3)

munis de connexions et leur collection définit le premier groupe de cohomologie DB
de M (3). Quelques propriétés des classes de cohomologie DB sont montrées afin de
servir plus loin à extraire les quantités pertinentes des intégrales fonctionnelles.
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1.1 Definition of DB cohomology

In the following, M (3) is a closed and compact manifold of dimension 3 provided
with a good covering, that is, some contractible open sets Uα covering M (3) and
such that the multiple (but finite) intersections Ui0...in = Ui0 ∩ . . . ∩ Uin are also
contractible or empty. In particular the Poincaré lemma can be applied inside these
open sets and intersections. Dimension 3 is not a necessary assumption but is the
main framework of this dissertation.

In general, a U(1) gauge potential, or U(1)-connection, is defined only locally.
Thus, the most general data to start with are local potentials A(1)

α , that is, local
1-forms with coefficients in the Lie algebra of U (1). The upper index (1) indicates
the de Rham degree of A(1)

α and the lower index α is a Čech index, meaning that
A

(1)
α is defined in the open set Uα.
To define a global field, the gluing rule between A(1)

α and A(1)
β in the intersection

Uαβ has to be given. This, by definition, is done thanks to a gluing relation:

A
(1)
β = A(1)

α + d(0)Λ(0)
αβ in Uαβ, (1.2)

the indices of Λ(0)
αβ being thus ordered. The antisymmetry of this relation in α and

β implies that d(0)
(
Λ(0)
αβ + Λ(0)

βγ + Λ(0)
γα

)
= 0, making Λ(0)

αβ + Λ(0)
βγ + Λ(0)

γα a constant in
Uαβγ which is an integer:

Λ(0)
αβ + Λ(0)

βγ + Λ(0)
γα = n

Z
(−1)
αβγ ∈ Z in Uαβγ . (1.3)

Indeed, considering gαβ = e2iπΛαβ , equation (1.3) becomes nothing but the cocy-
cle condition for a U(1) fiber bundle, the gαβ being the transition functions. The
subscript Z has been put under n

Z
(−1)
αβγ in order to insist on the fact that the family

Å
n
Z

(−1)
αβγ

ã
has to be a family of integers. The de Rham degree of pure integers is

considered here by convention to be (−1). The symmetry in α, β and γ of this last
relation implies that:

n
Z

(−1)
αβγ − nZ

(−1)
αβδ + n

Z
(−1)
αγδ − nZ

(−1)
βγδ = 0 (1.4)

Thus, the case where the potential can be globally defined in the manifold under
consideration generalizes to the case where it can only be defined locally by con-

sidering the collection
Ç(
A

(1)
α

)(0)
,
(
Λ(0)
αβ

)(1)
,

Å
n
Z

(−1)
αβγ

ã(2)å
constituted of the family

of the local potentials
(
A

(1)
α

)(0)
whose elements A(1)

α are defined in the open sets
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Uα, the family of functions
(
Λ(0)
αβ

)(1)
whose elements Λ(0)

αβ are defined in the inter-
sections Uαβ and ensure the gluing of the local potentials A(1)

α and the family of

integers
Å
n
Z

(−1)
αβγ

ã(2)
whose elements n

Z
(−1)
αβγ are defined in the intersections Uαβγ and

constraint the functions Λ(0)
αβ . Equations (1.2), (1.3) and (1.4) summarize the gluing

of the potentials and the consistency of this operation. For each family, the interior
upper index indicates the form or de Rham degree of its elements and the exterior
upper index indicates the Čech degree of the family. The lower indices of the ele-
ments of each family indicate in which open sets or intersections those elements are
defined.

Consider δ(p) to be the Čech operator of cohomology transforming a Čech p-
cochain, that is, a collection

Ä
ωα0...αp

ä(p) of elements ωα0...αp defined in the intersec-
tions Uα0...αp , into a Čech (p+ 1)-cochain, that is, a collection

Ä
ωα0...αp+1

ä(p+1) of
elements ωα0...αp+1 defined in the intersections Uα0...αp+1 . Then δ(p) acts as:

δ(p) Äωα0...αp

ä(p) =
Ä
ωα0...αpαp+1

ä(p+1)
, (1.5)

with:

ωα0...αpαp+1 =
p+1∑

i=0
(−1)i ωα0...α̌i...αp+1 , (1.6)

where α̌i means that αi is omitted. It shall be underlined that, as a consequence,
the indices are ordered and:

ωα0...αiαi+1...αp = −ωα0...αi+1αi...αp . (1.7)

It can be shown that the operators δ(p) are group morphisms and, according to their
definition:

δ(p) ◦ δ(p−1) = 0. (1.8)

The elements of Žp = Ker δ(p) are called the Čech p-cocycles and the elements of
B̌p = Ker δ(p−1) are called the Čech coboundaries. According to equation (1.8), B̌p

is a subgroup of Žp. The Čech cohomology group Ȟp
Ä
M (3),Z

ä
of degree p of M (3)

with coefficients in Z is then:

Ȟp
Ä
M (3),Z

ä
= Žp

¿
B̌p . (1.9)

The elements of the collection of the families
Ç(
A

(1)
α

)(0)
,
(
Λ(0)
αβ

)(1)
,

Å
n
Z

(−1)
αβγ

ã(2)å
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are related by:




A
(1)
β = A

(1)
α + dΛ(0)

αβ in Uαβ,

Λ(0)
αβ + Λ(0)

βγ + Λ(0)
γα = n

Z
(−1)
αβγ ∈ Z in Uαβγ ,

n
Z

(−1)
αβγ − nZ

(−1)
αβδ + n

Z
(−1)
αγδ − nZ

(−1)
βγδ = 0,

(1.10)

which can be rewritten as:




δ(0)
(
A

(1)
α

)(0)
−
(
d(0)Λ(0)

αβ

)(1)
= 0 in the Uαβ,

δ(1)
(
Λ(0)
αβ

)(1)
−
Å

d(−1)n
Z

(−1)
αβγ

ã(2)
= 0 in the Uαβγ ,

δ(2)
Å
n
Z

(−1)
αβγ

ã(2)
= 0,

(1.11)

where it is understood that d(−1) simply transforms an integer into the constant
function equal to this integer and d(p) for p ≥ 0 is the usual de Rham differential
operator. In a more compact form, this reads:

D
[1]
DBA

[1] = 0, (1.12)

with:

D
[1]
DB =

Ö
δ(0) −d(0) 0
0 δ(1) −d(−1)

0 0 δ(2)

è

(1.13)

and:

A[1] =

â (
A

(1)
α

)(0)

(
Λ(0)
αβ

)(1)

Å
n
Z

(−1)
αβγ

ã(2)

ì

. (1.14)

A collection A[1] such that D[1]
DBA

[1] = 0 is called a DB 1-cocycle. The set of DB 1-
cocycles will be denoted Z [1]

DB. By definition, Z [1]
DB = KerD[1]

DB. The same reasoning
starting from local p-forms makes it possible to define the DB p-cocycles Z [p]

DB =
KerD[p]

DB. It can be shown that Z [p]
DB can be endowed with a structure of Z-module.

The particular case that will also be used further is the set of DB 3-cocycles

Z
[3]
DB. A collection

Ç(
V

(3)
α

)(0)
,
(
S

(2)
αβ

)(1)
,
(
L

(1)
αβγ

)(2)
,
(
P

(0)
αβγδ

)(3)
,

Å
n
Z

(−1)
αβγδε

ã(4)å
is a
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DB 3-cocycle if the families of the collection verify:




δ(0)
(
V

(3)
α

)(0)
−
(
d(2)S

(2)
αβ

)(1)
= 0 in the Uαβ,

δ(1)
(
S

(2)
αβ

)(1)
−
(
d(1)L

(1)
αβγ

)(2)
= 0 in the Uαβγ ,

δ(2)
(
L

(1)
αβγ

)(2)
−
(
d(0)P

(0)
αβγδ

)(3)
= 0 in the Uαβγδ,

δ(3)
(
P

(0)
αβγδ

)(3)
−
Å

d(−1)n
Z

(−1)
αβγδε

ã(4)
= 0 in the Uαβγδε,

δ(4)
Å
n
Z

(−1)
αβγδε

ã(4)
= 0,

(1.15)

or in a more compact form:
D

[3]
DBV

[3] = 0, (1.16)
with:

D
[3]
DB =

â
δ(0) −d(2) 0 0 0
0 δ(1) −d(1) 0 0
0 0 δ(2) −d(0) 0
0 0 0 δ(3) −d(−1)

0 0 0 0 δ(4)

ì

(1.17)

and:

V [3] =




(
V

(3)
α

)(0)

(
S

(2)
αβ

)(1)

(
L

(1)
αβγ

)(2)

(
P

(0)
αβγδ

)(3)

Å
n
Z

(−1)
αβγδε

ã(4)




. (1.18)

It shall be reminded that the family
(
V

(3)
α

)(0)
is a family of 3-forms V (3)

α defined

in the open sets Uα, the family
(
S

(2)
αβ

)(1)
is a family of 2-forms S(2)

αβ defined in the

intersections Uαβ, the family
(
L

(1)
αβγ

)(2)
is a family of 1-forms L(1)

αβγ defined in the

intersections Uαβγ , the family
(
P

(0)
αβγδ

)(3)
is a family of functions P (0)

αβγδ defined in

the intersections Uαβγδ and finally, the family
Å
n
Z

(−1)
αβγδε

ã(4)
is a family of integers

n
Z

(−1)
αβγδε defined in the intersections Uαβγδε.

Now, perform a gauge transformation of the A(1)
α :

A(1)
α −→ A(1)

α + d(0)q(0)
α in Uα, (1.19)

61



Chapter 1. Deligne-Beilinson cohomology

where the family
(
q

(0)
α

)(0)
is a family of functions q(0)

α defined in the Uα. This implies
that the Λ(0)

αβ have to transform according to:

Λ(0)
αβ −→ Λ(0)

αβ + q
(0)
β − q(0)

α +m
Z

(−1)
αβ in Uαβ, (1.20)

where the family
Å
m
Z

(−1)
αβ

ã(1)
consists in integers m

Z
(−1)
αβ defined in the intersections

Uαβ. Finally, the n
Z

(−1)
αβγ have to transform according to:

n
Z

(−1)
αβγ −→ n

Z
(−1)
αβγ +m

Z
(−1)
βγ −m

Z
(−1)
αγ +m

Z
(−1)
αβ . (1.21)

Hence, the collection
Ç(
q

(0)
α

)(0)
,

Å
m
Z

(−1)
αβ

ã(1)å
together with the set of transfor-

mation rules:




A
(1)
α −→ A

(1)
α + d(0)q

(0)
α in Uα,

Λ(0)
αβ −→ Λ(0)

αβ + q
(0)
β − q

(0)
α +m

Z
(−1)
αβ in Uαβ,

n
Z

(−1)
αβγ −→ n

Z
(−1)
αβγ +m

Z
(−1)
βγ −m

Z
(−1)
αγ +m

Z
(−1)
αβ in Uαβγ ,

(1.22)

generalize the idea of gauge transformation from the case where the potential is
globally defined to the case where it is only locally defined. The set of rules (1.22)
can be written as:




(
A

(1)
α

)(0)
−→

(
A

(1)
α

)(0)
+
(
d(0)q

(0)
α

)(0)
in the Uα,

(
Λ(0)
αβ

)(1)
−→

(
Λ(0)
αβ

)(1)
+ δ(0)

(
q

(0)
α

)(0)
+
Å

d(−1)m
Z
αβ

ã(1)
in the Uαβ,

Å
n
Z

(−1)
αβγ

ã(2)
−→

Å
n
Z

(−1)
αβγ

ã(2)
+ δ(1)

Å
m
Z

(−1)
αβ

ã(1)
in the Uαβγ .

(1.23)

In a more compact form, this reads:

A[1] −→ A[1] +D
[0]
DBq

[0], (1.24)

with:

D
[0]
DB =

Ö
d(0) 0
δ(0) d(−1)

0 δ(1)

è

(1.25)

and:

q[0] =

Ü (
q

(0)
α

)(0)

Å
m
Z

(−1)
αβ

ã(1)

ê

. (1.26)
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A collection that can be written as D[0]
DBq

[0] is called a DB 1-coboundary. The set of
DB 1-coboundaries will be denoted B[1]

DB. By definition, B[1]
DB = ImD

[0]
DB. The same

reasoning studying the transformation of local p-forms makes it possible to define
the DB p-coboundary B[p]

DB = ImD
[p−1]
DB . It can be shown that B[p]

DB can be endowed
with a structure of Z-module.

The particular case that will also be used further is B[p]
DB. A DB 3-coboundary

arises from the transformation rules of the families of a DB 3-cocycle:




(
V

(3)
α

)(0)
−→

(
V

(3)
α

)(0)
+
(
d(2)Σ(2)

α

)(0)
in the Uα,

(
S

(2)
αβ

)(1)
−→

(
S

(2)
αβ

)(1)
+δ(0)

(
Σ(2)
α

)(0)
+
(
d(1)Θ(1)

αβ

)(1)
in the Uαβ,

(
L

(1)
αβγ

)(2)
−→

(
L

(1)
αβγ

)(2)
+δ(1)

(
Θ(1)
αβ

)(1)
+
(
d(0)Π(0)

αβγ

)(2)
in the Uαβγ ,

(
P

(0)
αβγδ

)(3)
−→

(
P

(0)
αβγδ

)(3)
+δ(2)

(
Π(0)
αβγ

)(2)
+
Å

d(−1)m
Z

(−1)
αβγδ

ã(3)
in the Uαβγδ,

Å
n
Z

(−1)
αβγδε

ã(4)
−→
Å
n
Z

(−1)
αβγδε

ã(4)
+δ(3)

Å
m
Z

(−1)
αβγδ

ã(3)
in the Uαβγδε,

(1.27)

or in a more compact form:

V [3] −→ V [3] +D
[2]
DBΣ[2], (1.28)

with:

D
[2]
DB =

âd(2) 0 0 0
δ(0) d(1) 0 0
0 δ(1) d(0) 0
0 0 δ(2) d(−1)

0 0 0 δ(3)

ì

(1.29)

and:

Σ[2] =




(
Σ(2)
α

)(0)

(
Θ(1)
αβ

)(1)

(
Π(0)
αβγ

)(2)

Å
m
Z

(−1)
αβγδε

ã(3)




. (1.30)

It shall be reminded that the family
(
Σ(2)
α

)(0)
is a family of 2-forms Σ(2)

α defined

in the open sets Uα, the family
(
Θ(1)
αβ

)(1)
is a family of 1-forms Θ(1)

αβ defined in the

intersections Uαβ, the family
(
Π(0)
αβγ

)(2)
is a family of functions Π(0)

αβγ defined in the
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intersections Uαβγ and finally, the family
Å
m
Z

(−1)
αβγδ

ã(3)
is a family of integers m

Z
(−1)
αβγδ

defined in the intersections Uαβγδ.
It can be verified that the operators D[p]

DB are morphisms of modules and:

D
[p+1]
DB ◦D[p]

DB = 0. (1.31)

As a consequence, B[p] is a submodule of Z [p]. The Z-module arising from the
quotient of the DB p-cocycles by the DB p-coboundaries is the DB cohomology
group H

[p]
DB
Ä
M (3),Z

ä
of degree p. The degrees 1 and 3 will be the most relevant

for the present purpose but higher degree generalizations are possible. Taking the
previous construction into account, the elements of H [1]

DB
Ä
M (3),Z

ä
are nothing but

the gauge classes of U(1) gauge potentials over M (3), or equivalently the gauge
classes of U(1)-connections over M (3).

What has been presented in this section is actually just a realization of DB
cohomology from the Čech-de Rham bicomplex [Bott and Tu, 1982] by a truncation
and imposing the pure Čech components to be integers. This makes it possible to
access the torsion ofM (3) contrary to the Čech-de Rham cohomology. The complete
construction of DB cohomology from the Čech-de Rham bicomplex can be found in
[Bauer et al., 2005].

It is important to remark that the degree of a DB class is considered here to be
the de Rham degree of the first component of its representatives. This convention
has been chosen because this first component is the most important from the point
of view of physics (the local potentials for the degree 1 and the Lagrangian for
the degree 3). However, this is not the usual convention in mathematics regarding
differential cohomology [Bunke, 2013].

For convenience, from now on, the parenthesis around the elements of the fami-
lies, as well as the de Rham, the Čech and the DB degrees will be omitted.

1.2 Structure of the space of DB cohomology classes

H
[1]
DB is naturally endowed with a structure of Z-module1. It can be described in

particular through two exact sequences. The first one is:

0 −→ Ω1¿Ω1
Z

δ−→ H
[1]
DB

i−→ Ȟ2 −→ 0, (1.32)

with:
δ

∣∣∣∣∣
Ω1/Ω1

Z −→ H
[1]
DB

ω 7−→ (δω, 0, 0)
(1.33)

1It must be borne in mind that, as a consequence, a DB class cannot be divided in general.
However, a class that admits a representative (ωα, 0, 0) can be divided by any non-zero number a,
producing a new class which admits a representative

(
ωα
a
, 0, 0

)
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•• •
•

• •

•

•

•

×

×

Ω1/Ω1
Z

H
[1]
DB

Ȟ2

Figure 1.1: First representation of H [1]
DB.

and:

i

∣∣∣∣∣∣∣

H
[1]
DB −→ Ȟ2Å

Aα,Λαβ, n
Z
αβγ

ã
7−→ n

Z
αβγ ,

(1.34)

where Ω1/Ω1
Z is the quotient of the 1-forms by the closed 1-forms with integal periods

and Ȟ2 is the space of Čech cohomology classes of the manifold M (3) considered.
This is an abelian group, which can thus be decomposed as a direct sum of a free
part F̌ 2 = Zb2 and a torsion part Ť 2 = Zp1 ⊕ · · · ⊕ Zpn .

This exact sequence shows that the space of DB cohomology classes can be
thought as a set of connected fibers over the discrete net constituted by Ȟ2 and
inside which it is possible to move thanks to the elements of Ω1/Ω1

Z (see Figure
1.1).

Another important remark that can be made at this step is that the gauge classes
of flat connections are in bijection with the elements of Ȟ2 ' H1 [Guadagnini and
Thuillier, 2014]. The correspondence between the gauge classes of flat connections
and the elements of H1 will be made explicit further.

The second exact sequence through which H [1]
DB can be represented is:

0 −→ Ȟ1 ÄM (3), R/Z
ä j−→ H

[1]
DB

d−→ Ω2
Z −→ 0, (1.35)

with:
j

∣∣∣∣∣
Ȟ1
Ä
M (3), R/Z

ä
−→ H

[1]
DB

mαβ 7−→ (0, dmαβ, δmαβ)
(1.36)
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×0dµ
×

×
Ω1

0/Ω1
Z×

×

T 2

H1
D

Figure 1.2: Second representation of H [1]
DB.

and:

d

∣∣∣∣∣∣∣

H
[1]
DB −→ Ω2

ZÅ
Aα,Λαβ, n

Z
αβγ

ã
7−→ F | δF = dAα,

(1.37)

where Ȟ1
Ä
M (3), R/Z

ä
is the first Čech cohomology (multiplicative) group R/Z -

valued and Ω2
Z is the set of closed 2-forms with integral periods. The classes of

Ȟ1
Ä
M (3), R/Z

ä
can be regarded as the classes of equivalent U(1) coordinates bun-

dles, since they are actually the classes of equivalent transition functions of U(1)
coordinates bundles. The group Ȟ1

Ä
M (3), R/Z

ä
is actually isomorphic to the group

Ȟ2
Ä
M (3),Z

ä
.

This exact sequence shows that the space of DB cohomology classes can be
thought as clusters of cylinders, each cluster being indexed by an integer arising
from F̌ 2. Moving from one cylinder to another of the same cluster can be performed
thanks to an element of Ť 2 and inside a given cylinder it is possible to move radially
thanks to exact 1-forms and along the axis thanks to an element of Ω1/Ω1

0 (see
Figure 1.2).

Note that the gauge classes of flat connections are the elements of Ker d in
this second exact sequence, and thus, they are in bijection with the elements of
Ȟ1
Ä
M (3), R/Z

ä
.

Figure 1.3 shows how those two exact sequences carry the same information.

1.3 Operations and duality on DB cohomology classes

It is possible to define a product ? : H [p]
DB × H

[q]
DB −→ H

[p+q+1]
DB that is graded-

commutative, that is, if α ∈ H [p]
DB and β ∈ H [q]

DB, then α ? β = (−1)(p+1)(q+1) β ? α,
which means that, to be commutative, at least one of the classes should be of odd
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1.3. Operations and duality on DB cohomology classes

0 Ω1/Ω1
Z H

[1]
DB Ȟ2 0

' '

(
Ω1

0/Ω1
Z
)
×
(
Ω1/Ω1

0
)

Ť 2 × F̌ 2

(
Ω1

0/Ω1
Z
)
× Ť 2 (

Ω1/Ω1
0
)
× F̌ 2

' '
0 Ȟ1 (R/Z) H

[1]
DB Ω2

Z 0

Figure 1.3: Information carried by the two exact sequences.

degree.
Given a DB cohomology class A ∈ H

[1]
DB with representative (Aα,Λαβ, nαβγ)

and a DB cohomology B ∈ H [1]
DB with representative (Bα,Θαβ,mαβγ), the product

A ? B ∈ H [3]
DB is defined to be the class that admits:

(Aα ∧ dBα,Λαβ dBβ, nαβγBγ , nαβγΘγρ, nαβγmγρσ) (1.38)

as representative.
Let z be a cycle in M (3), and pick in each intersection Uαβ a point zαβ of z.

Denote zα the portion of z lying in Uα and connecting two points zαβ. Such a
decomposition of z is of course not unique. The integral of a DB cohomology class
A with representative (Aα,Λαβ, nαβγ) over the cycle z is defined by:

˛
z
A =

Z

∑

α

ˆ
zα

Aα −
∑

αβ

ˆ
zαβ

Λαβ, (1.39)

where the =
Z
means that the equality is satisfied in R/Z , that is, up to an integer.

Changing the decomposition of z produces an integer and as a consequence does
not change the result in R/Z . This integral is well defined on the DB classes
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Chapter 1. Deligne-Beilinson cohomology

thanks to equations (1.19) and (1.20) in particular. The first term is nothing but
the local usual holonomy in R3. The following terms ensure the quantum gauge
invariance, that is the invariance of the complex exponential of this integral under
gauge transformation. In other words, they ensure that local expressions of the
holonomy stick together. This integral is thus a generalized holonomy on M (3),
which will be the observable of the CS and BF theories generalized on M (3). This
definition ensures quantum gauge invariance, that is, invariance of the complex
exponential of the holonomy under gauge transformations of the local fields Aα.

The integral over M (3) of A ? B is defined as:
ˆ
M(3)

A ? B =
Z

∑

α

ˆ
Uα

Aα ∧ dBα −
∑

αβ

ˆ
Uαβ

Λαβ dBβ,

+
∑

αβγ

ˆ
Uαβγ

nαβγBγ −
∑

αβγρ

ˆ
Uαβγρ

nαβγΘγρ. (1.40)

This integral is also well defined on the DB classes. The first term is nothing but
the the local BF classical action (or CS if A = B) in R3. The following terms ensure
the quantum gauge invariance. In other words, they ensure that local expressions of
the action stick together. This integral provides thus a generalized action on M (3).

It should be noted that:
∣∣∣∣∣
Z1 ×H [1]

DB −→ R/Z
(z,A) 7−→

¸
z A

(1.41)

defines a bilinear pairing from the space Z1 of 1-cycles and the space of DB coho-
mology classes (both considered as Z-modules) in R/Z as well as:

∣∣∣∣∣
H

[1]
DB ×H

[1]
DB −→ R/Z

(A,B) 7−→
´
M(3) A ? B.

(1.42)

Starting from that remark, and for later convenience, the Pontrjagin dual (X)# =
Hom (X, R/Z) of a group X has to be considered. Regarding Hom as a functor, it
can be shown that the following sequences are exact:

0−→
Ä
Ȟ2ä#−→

(
H

[1]
DB

)#
−→
Ä

Ω1¿Ω1
Z
ä#−→0 (1.43)

and:
0−→

Ä
Ω2
Z
ä#−→

(
H

[1]
DB

)#
−→
Ä
Ȟ1 ÄM (3), R/Z

ää#−→0. (1.44)

Moreover, the information of the first two exact sequences is included in those
two new ones, as shown in Figure 1.4. The Pontrjagin dual is a generalization to
distributional objects. Finally, Z1 ⊂

(
H

[1]
DB

)#
in the sense of equation (1.41).
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Hence, given a cycle γ its associated class in
(
H

[1]
DB

)#
is defined to be the unique

element ηγ such that:

∀A ∈ H [1]
DB,

ˆ
γ
A =

Z

ˆ
M(3)

A ? ηγ . (1.45)

More details on this construction can be found in [Bauer et al., 2005].
Consider two such classes ηγ1 and ηγ2 in

(
H

[1]
DB

)#
associated with two cycles γ1

and γ2. The so-called zero regularization consists in setting:ˆ
M(3)

ηγ1 ? ηγ2 =
Z

0. (1.46)

Indeed, such a DB product comes down to an ill-defined product of distributions.
A convention is thus required to be able to perform computations.

0 Ω1/Ω1
Z H

[1]
DB Ȟ2 0

⊂ ⊂

'

0
(
Ω2

Z
)# Ä

H
[1]
DB

ä# Ä
Ȟ1 (R/Z)

ä#
0

0 Ȟ1 (R/Z) H
[1]
DB Ω2

Z 0

'

⊂ ⊂

0
Ä
Ȟ2
ä# Ä

H
[1]
DB

ä# (
Ω1/Ω1

Z
)# 0

Figure 1.4: Inclusion of the two exact sequences in their dual.

1.4 Decomposition of DB cohomology classes
The structure of DB cohomology classes is such that each class A can be decomposed
as the sum of an origin indexed on the cohomology of M (3) (basis of the discrete
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Chapter 1. Deligne-Beilinson cohomology

fiber bundle of DB cohomology classes) and a translation taken in Ω1/Ω1
Z :

A = A0
a + ω, a ∈ Ȟ2. (1.47)

In this equality ω denotes the DB cohomology class that admits (ωα, 0, 0) as repre-
sentative, ωα being ω restricted to the open set Uα.

The result of functional integrals over the space of DB cohomology classes will
not depend on the choice of the origins, but the complexity of the computations will.
Thus, the goal is to find convenient origins with algebraic properties that will make
it possible to perform computations easily.

Concerning the translations, Ω1/Ω1
Z can be included in a short exact sequence:

0 −→ Ω1
0
¿

Ω1
Z −→ Ω1¿Ω1

Z −→ Ω1¿Ω1
0 −→ 0. (1.48)

Hence, it can be decomposed (non canonically) as:

Ω1¿Ω1
Z '

Ä
Ω1¿Ω1

0
ä
×
Ä

Ω1
0
¿

Ω1
Z
ä
, (1.49)

where Ω1
0 denotes the set of closed 1-forms. Furthermore:

Ω1
0
¿

Ω1
Z ' (R/Z)b1 , (1.50)

b1 being the first Betti number. The elements ω0 ∈ Ω1
0
/
Ω1
Z will be called zero

modes. This terminology has been chosen since it will appear in the next chap-
ter that the functional measure considered is invariant under translation of those
elements. With this decomposition:

∀ (ω0, ω) ∈
Ä

Ω1
0
¿

Ω1
Z
ä
×
Ä

Ω1¿Ω1
Z
ä
,

ˆ
M(3)

ω ? ω0 =
Z

0. (1.51)

As shown further, the zero modes will consist in a residual invariance of the func-
tional measure that will be used in path integrals. Moreover:

ω0 ∈ Ω1
0
¿

Ω1
Z ' (R/Z)b1 ' F̌ 1 ' F2 = H2, (1.52)

F̌ 1 being the free part of Ȟ1 and F2 being the free part of H2. The last equality
occurs since H2 has no torsion. This part has actually no volume, in the sense that
the integral over this part is not infinite but simply 1. The zero modes are of capital
importance. In the computation of the partition functions, they impose the free part
to be 0 so that it does not couple to the elements ω⊥ ∈ Ω1/Ω1

0 . In the computation
of the expectation value observables, they impose a decoupling between the free part
and the torsion part of the links.

Consider generators za of the free part of the homology of M (3). Then, by
Pontrjagin duality, consider the unique class ηza in

(
H

[1]
DB

)#
associated with za in
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1.4. Decomposition of DB cohomology classes

the sense of equation (1.45). Thus, for a fiber over m = ∑
a
maza ∈ F1 ' F̌ 2 the

origin of the fiber will be the element:

A0
m =

∑

a

maηza ∈
(
H

[1]
DB

)#
. (1.53)

Thanks to the zero regularization introduced before in equation (1.46):
ˆ
M(3)

A0
m ? A0

n =
Z

0. (1.54)

Finally, decomposing ω0 ∈ Ω1
0
/
Ω1
Z as ω0 = ∑

b
θbρ

b with
¸
za
ρb = δba, then:

ˆ
M(3)

A0
m ? ω0 =

Z
m · θ. (1.55)

Consider now a generator τa of the component Zpa of the torsion part of the
homology of M (3). This means that τa is the boundary of no surface, but paτa is.
Consider now the element η̃τa ∈

(
H

[1]
DB

)#
which admits as representative2:

Å
0, mαβ

pa
, nαβγ

ã
, (1.56)

where panαβγ = mβγ −mαγ + mαβ. Thus, for a fiber over κ = ∑
a
κaτa ∈ T1 ' Ť 2

the element:
A0

κ =
∑

a

κaη̃τa ∈
(
H

[1]
DB

)#
(1.57)

will be considered as origin. This choice has several advantages. Indeed, the defini-
tion of the product over DB cohomology classes (1.40) leads to:

ˆ
M(3)

A0
κ1 ? A

0
κ2 =

Z
−Q (κ1,κ2) , (1.58)

where Q is the so-called linking form, which is a quadratic form over the torsion of
the cohomology. Also: ˆ

M(3)
A0

κ ? A
0
m =

Z
0 (1.59)

for any free origin A0
m and: ˆ

M(3)
A0

κ ? ω =
Z

0 (1.60)

2It should be pointed out that η̃τa on the one hand and ητa as defined by equation (1.45) on the
other hand are not the same DB cohomology class.
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for any translation ω.
The correspondence between the elements of H1 and the gauge classes of flat

connections can be presented at this step. With z = ∑
a
maza ∈ F1 is associated the

DB class that admits (ω0, 0, 0) as representative, with ω0 = ∑
a
mbρb ∈ Ω1

0
/
Ω1
Z and

ρb ∈ Ω1
0
/
Ω1
Z such that

¸
za
ρb = δba. With τ ∈ T1 is simply associated the origin A0

τ .
Now, a few remarks can be made about the zero regularization. This convention

is also called regularization by framing for the following reason. Consider a
trivial cycle γ and its associated class ηγ according to equation (1.45). Then by zero
regularization: ˆ

M(3)
ηγ ? ηγ =

Z
0. (1.61)

But: ˆ
M(3)

ηγ ? ηγ =
Z

ˆ
M(3)

jγ ∧ djγ , (1.62)

jγ being de Rham current associated with γ. Hence, this quantity can be interpreted
as a self-linking as the linking between two trivial cycles γ1 and γ2 is defined to be:

`kM(3) (γ1, γ2) =
ˆ
M(3)

jγ1 ∧ djγ2 , (1.63)

jγ1 and jγ2 being de Rham currents associated with γ1 and γ2 respectively. Consider
γ not to be a cycle but a (closed) ribbon, that is, a 2-dimensional object. Then,
this ribbon can be twisted. The self-linking can be defined to be this twist as the
width of the ribbon goes to zero. According to this attempt to find a definition, the
self-linking is ill-defined, but it is anyway an integer. Hence, in R/Z , it is zero.

An analogous consideration can be proposed for a pure torsion cycle τ . A rep-
resentative of its associated class ητ according to equation (1.45) is:

Å
jτα,

mαβ

p
, nαβγ

ã
, (1.64)

jτα being the de Rham current associated with τ restricted to the open set Uα. Hence,
by definition of the DB product (1.40):

ˆ
M(3)

ητ ? ητ =
Z

∑

α

ˆ
Uα

jτα ∧ djτα −
nαβγ ∪mαβ

p
(1.65)

and as a consequence, zero regularization implies:

∑

α

ˆ
Uα

jτα ∧ djτα =
Z

nαβγ ∪mαβ

p
, (1.66)
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1.4. Decomposition of DB cohomology classes

that is: ∑

α

ˆ
Uα

jτα ∧ djτα =
Z
Q (τ , τ ) , (1.67)

according to equation (1.58).
Taking those properties into account, it is remarkable that very few contributions

remain in the computation of the integral of the product of two DB classes. Indeed,
if A = A0

m1 +A0
κ1 + α⊥ + α0 and B = B0

m2 +B0
κ2 + β⊥ + β0, then:

ˆ
M(3)

A ? B =
Z

ˆ
M(3)

A0
m1 ? β⊥ +

ˆ
M(3)

B0
m2 ? α⊥

+ m1 · θβ + m2 · θα −Q (κ1,κ2) + α⊥ ? β⊥ (1.68)

In the computation of the partition functions, the (functional) integral over the zero
modes will ensure the complete decoupling between the remaining terms. Indeed, it
will impose m1 = m2 = 0, so that only −Q (κ1,κ2)+

´
M(3) α⊥ ?β⊥ will remain. The

topological quantities of interest will be the contributions provided by −Q (κ1,κ2),
in the sense that these contributions will be linked to the RT invariant in the case
of the abelian CS partition function and to the TV invariant in the case of the
abelian BF partition function. The contributions provided by

´
M(3) α⊥ ? β⊥ will

be eliminated by normalization. Hence, taking into account the correspondence
established earlier, the gauge classes of flat connections is of fundamental importance
for such a computation.
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Chapter 2. Abelian Chern-Simons theory

Introduction (English version)
In the 70s, the works of J. Cheeger, S. S. Chern and J. Simons on secondary classes
[Chern and Simons, 1974, Cheeger and Simons, 1985, Chern, 1979, Koszul, 1975] led
them to introduce what is called now the Chern-Simons (CS) invariant, that can be
written in the SU(N) case as:

SCS (A) = 1
8π2

ˆ
M(3)

Tr
Å
A ∧ dA+ 2

3A ∧A ∧A
ã
, (2.1)

where A is a SU(N)-connection andM (3) is a closed manifold of dimension 3. Actu-
ally, to be written this way, A has to be an object which is globally defined, that is,
which is a global 1-form with coefficients in the Lie algebra of SU(N). Given a gauge
class, finding such a representative is always possible since SU(N) fiber bundles over
a closed manifold of dimension 3 are all trivializable. The theory of secondary classes
is out of purpose here, but it should be mentioned that SCS (A) is a primitive of
the quadratic term in FA that appears in the expansion of det

Ä
Id + iFA

2π
ä
where

FA = dA+ 1
2A ∧A.

Considered as an element of R/Z , SCS (A) does not depend on the (globally
defined) representative of the gauge class of A, that is:

A→ Ag = g−1Ag + g−1 dg ⇒ SCS (A)→ SCS (Ag) = SCS (A) + n, (2.2)

with n ∈ Z. This integer n arises as:

n = − 1
24π2

ˆ
M(3)

LWZ (g) , (2.3)

where:
LWZ (g) = Tr

Ä
g−1 dg ∧ g−1 dg ∧ g−1 dg

ä
. (2.4)

is a so-called Wess-Zumino (WZ) Lagrangian. The integer n actually labels the
homotopy class of g.

Still in the 70s, physicists as R. Jackiw, C. Rebbi [Jackiw and Rebbi, 1976] or
W. Marciano and H. Pagels [Marciano and Pagels, 1978] noticed the appearance
of SCS (A) in the theory of instantons of Yang-Mills theory in S3. Indeed, if the
configuration A is an instanton, then SCS (A) labels its homotopy class. The CS
invariant and its properties have then been studied carefully as well as the WZ
term. Considering those properties, it has been tried to use the CS invariant to
introduce a mass term in gravity in dimension 3 [Deser et al., 1982].

Since SCS (A) ∈ R/Z then SCSk (A) = kSCS (A) ∈ R/Z with coupling constant
k ∈ Z can be considered as a quantum action as well. In 1989, Witten showed that
a QFT using such a quantum action is related to Jones polynomials [Witten, 1989].
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Since then, various extensions of the SU(N) CS theory have been deeply studied
such as supersymmetric versions, in various fields of physics.

However, the abelian case, that is to say, replacing SU(N) by U(1), has often
been considered as trivial and has rarely been treated carefully. Yet, this case is
very different from the non-abelian one and, to keep the original ideas of secondary
classes, its definition cannot be considered to be the simple abelianization of the
SU(N) case. Indeed, the determinant det

Ä
Id + iFA

2π
ä
is just 1+ iFA

2π in the abelian case
and thus has no quadratic term, hence the obligation to define CS action carefully
following another rule and keeping the idea of secondary classes. It should not be
forgotten also that U (1) fiber bundles over a closed manifold of dimension 3 are
not trivializable which means that, in general, it is not possible to select an element
globally defined in the gauge class of a given connection.

Consider first the abelian holonomy1:

hγ (A) = e2iπ
¸
γ A, (2.5)

where the integral
¸
γ A has to be understood regarding DB theory2 presented in

chapter 1 of this part, that is, A is actually a DB cohomology class. This cohomology
class is associated with a curvature 2-form F with integral periods. The square of
F is thus a 4-form, still with integral periods. Hence, consider a manifold N (4) of
dimension 4 divided in two parts N (4) = N

(4)
L ∪ N (4)

R such that ∂N (4)
R = M (3) =

−∂N (4)
L . Consider then a good covering (Uα)α∈I of M (3) and extend it to a good

covering (Vα)α∈I of N (4) so that ∀α ∈ I, ∂Vα,R = Uα = −∂Vα,L. Consider now
local gauge potentials Aα in each Uα and assume that they admit a continuation in
the Vα,R and Vα,L. Then:





∑

α∈I

ˆ
Uα=∂Vα,R

Aα ∧ dAα =
∑

α∈I

ˆ
Vα,R

Fα ∧ Fα,

∑

α∈I

ˆ
Uα=∂Vα,L

Aα ∧ dAα =
∑

α∈I

ˆ
Vα,L

Fα ∧ Fα.
(2.6)

Comparing the results obtained looking from the right side and looking from the
left side, then:

∆ =
∑

α∈I

ˆ
Vα,R

Fα ∧ Fα −
∑

α∈I

ˆ
Vα,L

Fα ∧ Fα =
ˆ
N(4)

F ∧ F ∈ Z. (2.7)

1This is actually the observable that arises in Aharonov-Bohm effect.
2Usually, hγ

(
Ã
)

= ei
¸
γ Ã. It must be borne in mind that because of the structure of the space

of DB cohomology classes, a class cannot be devided by any number. This choice of normalization
is not a simple division of the class A by 2π that would have no meaning. The factor 2π arises
because of the definition of DB cohomology classes.
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Therefore, ∑
α∈I

´
Uα=bVα Aα∧dAα has to be considered in R/Z and this is the starting

point of the construction of the relevant quantity studied here. Constraining this
quantity to be gauge invariant (up to an integer) has been treated in chapter 1 of this
part and finally, for any closed manifold M (3) of dimension 3, the correct quantity
to consider is:

SCS (A) =
ˆ
M(3)

A ? A ∈ R/Z , (2.8)

where A is a DB cohomology class associated with the gauge class of a U (1) con-
nection and the operation ? is the DB product3.

The purpose of the first section is to compute mainly the partition function of
the abelian CS theory, that is:

ZCSk
Ä
M (3)ä = 1

NCSk

ˆ
H

DAe2iπSCSk (A), (2.9)

where:
SCSk (A) = kSCS (A) = k

ˆ
M(3)

A ? A (2.10)

and k ∈ Z since
´
M(3) A ? A ∈ R/Z . It is remarkable that the local expression of

A?A is nothing but Aα∧dAα which is the expression of the abelian CS Lagrangian
in R3. The space H should be the space of abelian connections on fiber bundles
over M (3), that is, as shown previously, the space H [1]

DB. However, to use the origins
defined in chapter 1 of this part,

(
H

[1]
DB

)#
or at least a subspace of

(
H

[1]
DB

)#
that

contains H [1]
DB and Z1 has to be considered. The measure D is purely formal and a

few properties will be postulated to be able to perform the computation of ZCSk , the
normalization NCSk being here to cancel the intrinsic divergency of the functional
integral. This will make it possible then to relate this result with the abelian RT
invariant.

In the second section, the expectation value of observables are computed and
related to that of the abelian RT theory. At this point the so-called surgery formula
which relates computations performed in S3 and computations performed directly
in M (3) will be reminded.

This chapter gathers the results that can be found with proofs and details in
[Guadagnini and Thuillier, 2013]. Those results are presented here with unified
notations in order to propose through this study an overview as complete as possible.

3If the abelian CS theory is defined in S3, then A can be chosen to be an abelian connection
globally defined and SCSk (A) = k

´
S3 A∧dA = k

4π2
´
S3 Ã∧dÃ (see previous footnote). This means

that the abelian case and the non-abelian case have different normalizations. The abelian case
cannot therefore be deduced by an abelianization of the non-abelian case, provided this abelian
case is built following the same idea as the non-abelian one regarding the theory of secondary
classes.
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Introduction (version française)

Dans les années 1970, le travail de J. Cheeger, S. S. Chern et J. Simons sur les
classes secondaires [Chern and Simons, 1974, Cheeger and Simons, 1985, Chern,
1979, Koszul, 1975] a amené ceux-ci à introduire ce qui est maintenant appelé
l’invariant de Chern-Simons (CS), qui peut s’écrire, dans le cas SU(N) comme :

SCS (A) = 1
8π2

ˆ
M(3)

Tr
Å
A ∧ dA+ 2

3A ∧A ∧A
ã
, (2.1)

oùA est une connexion SU(N) etM (3) est une variété fermée de dimension 3. En fait,
pour s’écrire de cette manière, A doit être un objet globalement défini, c’est-à-dire,
une 1-forme globale à coefficients dans l’algèbre de Lie de SU(N). Étant donnée une
classe de jauge, trouver un tel représentant est toujours possible puisque les fibrés
SU(N) au-dessus des variétés fermées de dimension 3 sont tous trivialisables. La
théorie des classes secondaires est hors de propos ici, mais il doit être mentionné
que SCS (A) est une primitive du terme quadratique en FA qui apparaît dans le
développement de det

Ä
Id + iFA

2π
ä
où FA = dA+ 1

2A ∧A.
Considéré comme un élément de R/Z , SCS (A) ne dépend par du représentant

(globalement défini) de la classe de jauge de A, c’est-à-dire :

A→ Ag = g−1Ag + g−1 dg ⇒ SCS (A)→ SCS (Ag) = SCS (A) + n, (2.2)

avec n ∈ Z. Cet entier n survient comme :

n = − 1
24π2

ˆ
M(3)

LWZ (g) , (2.3)

où :
LWZ (g) = Tr

Ä
g−1 dg ∧ g−1 dg ∧ g−1 dg

ä
. (2.4)

est le lagrangien dit de Wess-Zumino (WZ). L’entier n caractérise en fait la classe
d’homotopie de g.

Toujours dans les années 1970, des physiciens tels que R. Jackiw, C. Rebbi
[Jackiw and Rebbi, 1976] ou W. Marciano et H. Pagels [Marciano and Pagels, 1978]
ont noté l’apparition de SCS (A) dans la théorie des instantons des théories de Yang-
Mills dans S3. En effet, si la configuration A est un instanton, alors SCS (A) carac-
térise sa classe d’homotopie. L’invariant CS et ses propriétés ont alors été étudiées
soigneusement de même que le terme WZ. Considérant ces propriétés, l’invariant CS
a été utilisé pour tenter d’introduire un terme de masse dans la gravité en dimension
3 [Deser et al., 1982].

Étant donné que SCS (A) ∈ R/Z , il s’en suit que SCSk (A) = kSCS (A) ∈ R/Z ,
avec une constante de couplage k ∈ Z, peut être également considérée comme action
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quantique. En 1989, Witten montra qu’une QFT utilisant une telle action quantique
était liée aux polynômes de Jones [Witten, 1989].

Depuis lors, divers extensions de la théorie CS SU(N) ont été étudiées en pro-
fondeur telles que des extensions supersymétriques, dans divers domaines de la
physique.

Cependant, le cas abélien, c’est-à-dire, en remplaçant SU(N) par U(1), a souvent
été considéré comme trivial et a rarement été traité soigneusement. Pourtant, ce
cas est très différent du cas non-abélien et, afin de garder l’idée originale des classes
secondaires, sa définition ne peut pas être considérée comme étant la simple abéliani-
sation du cas SU(N). En effet, le déterminant det

Ä
Id + iFA

2π
ä
vaut simplement 1+ iFA

2π
dans le cas abélien et par conséquent, il ne contient pas de terme quadratique, ce qui
impose de définir l’action CS soigneusement en suivant une autre règle tout en gar-
dant l’idée des classes secondaires. Il ne doit pas être oublié non plus que les fibrés
U (1) au-dessus d’une variété fermée de dimension 3 ne sont pas trivialisables, ce qui
signifie qu’en général, il n’est pas possible de sélectionner un élément globalement
défini dans la classe de jauge d’une connexion donnée.

Tout d’abord, soit l’holonomie abélienne1 :

hγ (A) = e2iπ
¸
γ A, (2.5)

où l’intégrale
¸
γ A doit être entendue au sens de la théorie DB2 présentée au chapitre

1 de cette partie, c’est-à-dire, A est en fait une classe de cohomologie DB. Cette
classe de cohomologie est associée à une 2-forme de courbure F à périodes entières.
Le carré de F est donc une 4-forme, toujours à périodes entières. Soit N (4) une
variété de dimension 4 découpée en deux morceaux N (4) = N

(4)
L ∪ N (4)

R tels que
∂N

(4)
R = M (3) = −∂N (4)

L . Ensuite, soit (Uα)α∈I un bon recouvrement de M (3) et
soit (Vα)α∈I une extension de ce bon recouvrement à un bon recouvrement de N (4)

tel que ∀α ∈ I, ∂Vα,R = Uα = −∂Vα,L. Soient maintenant Aα, des potentiels de
jauge locaux dans chaque Uα qui admettent des prolongements à Vα,R et Vα,L. Alors
: 




∑

α∈I

ˆ
Uα=∂Vα,R

Aα ∧ dAα =
∑

α∈I

ˆ
Vα,R

Fα ∧ Fα,

∑

α∈I

ˆ
Uα=∂Vα,L

Aα ∧ dAα =
∑

α∈I

ˆ
Vα,L

Fα ∧ Fα.
(2.6)

En comparant les résultats obtenus en regardant du côté droit et du côté gauche,
1Il s’agit en fait de l’observable intervenant dans l’effet Aharonov-Bohm.
2Habituellement, hγ

(
Ã
)

= ei
¸
γ Ã. Il doit être gardé en tête qu’à cause de la structure de l’espace

des classes de cohomologie DB, une classe ne peut pas être divisée par un nombre quelconque. Ce
choix de normalisation n’est pas une simple division de la classe de A par 2π qui n’aurait aucun
sens. Le facteur 2π survient à cause de la définition des classes de cohomologie DB.
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il vient :

∆ =
∑

α∈I

ˆ
Vα,R

Fα ∧ Fα −
∑

α∈I

ˆ
Vα,L

Fα ∧ Fα =
ˆ
N(4)

F ∧ F ∈ Z. (2.7)

Par conséquent , ∑
α∈I

´
Uα=bVα Aα∧dAα doit être considérée dans R/Z et c’est le point

de départ de la construction des quantités pertinentes étudiées ici. Contraindre cette
quantité à être invariante de jauge (à un entier près) a été traité au chapitre 1 de
cette partie et finalement, pour toute variété ferméeM (3) de dimension 3, la quantité
correcte à considérer est :

SCS (A) =
ˆ
M(3)

A ? A ∈ R/Z , (2.8)

où A est une classe de cohomologie DB associée à la classe de jauge d’une connexion
U (1) et l’opération ? est le produit DB3.

Le but de la première section est de calculer principalement la fonction de par-
tition de la théorie CS abélienne, c’est-à-dire :

ZCSk
Ä
M (3)ä = 1

NCSk

ˆ
H

DAe2iπSCSk (A), (2.9)

où :
SCSk (A) = kSCS (A) = k

ˆ
M(3)

A ? A (2.10)

et k ∈ Z puisque
´
M(3) A ? A ∈ R/Z . Il est remarquable que l’expression locale de

A ?A n’est rien d’autre que Aα ∧ dAα qui est l’expression du lagrangien CS abélien
dans R3. L’espace H devrait être l’espace des connexions abéliennes sur les fibrés
U (1) au-dessus de M (3), c’est-à-dire, comme montré précédemment, l’espace H [1]

DB.
Cependant, pour utiliser les origines définies au chapitre 1 de cette partie,

(
H

[1]
DB

)#

ou du moins un sous-espace de
(
H

[1]
DB

)#
contenant H [1]

DB et Z1 doit être considéré.
La mesure D est purement formelle et quelques propriétés seront postulées afin de
pouvoir effectuer le calcul de ZCSk , la normalisation NCSk étant là afin d’absorber les
divergences intrinsèques de l’intégrale fonctionnelle. Ceci permettra alors de relier
ce résultat avec l’invariant RT abélien.

3Si la théorie CS abélienne est définie dans S3, alors A peut être choisi comme étant une con-
nexion abélienne globalement définie et SCSk (A) = k

´
S3 A ∧ dA = k

4π2
´
S3 Ã ∧ dÃ (voir la note de

bas de page précédente). Cela signifie que le cas abélien et le cas non-abélien ont une normalisa-
tion différente. Le cas abélien ne peut par conséquent pas se déduire d’une abélianisation du cas
non-abélien, sous réserve de définir le cas abélien en suivant la même idée que le cas non-abélien du
point de vue de la théorie des classes secondaires.

81



Chapter 2. Abelian Chern-Simons theory

Dans la deuxième section, les valeurs moyennes d’observables sont calculées et
reliées à celles de la théorie RT abélienne. Là, la formule dite de chirurgie, qui
relie des calculs dans S3 à des calculs effectués directement sur la variété M (3) sera
rappelée.

Ce chapitre rassemble des résultats qui peuvent être trouvés avec leur démon-
stration et plus de détails dans [Guadagnini and Thuillier, 2013]. Ces résultats
sont présentés ici avec des notations unifiées afin de proposer à travers ce travail un
panorama le plus complet possible.
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2.1. Computation of ZCSk

2.1 Computation of ZCSk

As mentioned in the introduction, the purpose of this first section is first to compute
the partition function of the abelian CS theory, that is:

ZCSk
Ä
M (3)ä = 1

NCSk

ˆ
H

DAe2iπSCSk (A), (2.11)

where:
SCSk (A) = k

ˆ
M(3)

A ? A (2.12)

and k ∈ Z since
´
M(3) A ? A ∈ R/Z .

It can be noticed that the partition function is a sum of complex exponentials
of a quadratic term. This is formally reminiscent of the shape of the abelian RT
invariant presented in chapter 2 of the first part.

The functional measure considered here is:

dµCSk (A) = DAe2iπSCSk (A). (2.13)

The main hypothesis made in this study is that it follows the so-called Cameron-
Martin property, that is:

dµCSk (A+ α) = dµCSk (A) e4iπk
´
M(3) A?αe2iπSCSk (α) (2.14)

for a fixed connections A and a translation α.
Consider now a closed surface Σ inM (3) which is not the boundary of any volume.

Such kind of surface cannot exist in S3 but appears as soon as the homology ofM (3)

has a non trivial free homology. By the Poincaré duality, Σ can be associated with
a de Rham current jΣ which defines canonically the representative:

(jΣ,α, 0, 0) (2.15)

and is actually in the null class of
(
H

[1]
D

)#
. However, the representative:

Å
jΣ,α
2k , 0, 0

ã
(2.16)

is not in the null class of
(
H

[1]
D

)#
anymore. By a misuse of language, its class is

denoted jΣ
2k and thanks to the Cameron-Martin property:

dµCSk

Å
A+m

jΣ
2k

ã
= dµCSk (A) (2.17)
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for any m ∈ Z. This is the so-called zero mode property for the abelian CS
theory. Since there is no homological torsion in degree 2, for any ω ∈ Ω1

Z, there is
a surface Σ such that (jΣ,α, 0, 0) is a representative in the same class as (ωα, 0, 0),
where ωα is the restrictions of ω to the open set Uα. Hence, the zero mode property
is true for any ω ∈ Ω1

Z.
Using the algebraic properties given in chapter 1 of this part, the abelian CS

partition function can be computed exactly.
As a convention, the normalization is chosen to be:

NCSk =
ˆ

(Ω1/Ω1
Z )#

Dα e2iπSCSk (α), (2.18)

which is the same as:

NCSk =
ˆ

(Ω1/Ω1
0 )#

Dα e2iπSCSk (α), (2.19)

which corresponds to the infinite volume associated with the trivial fiber of DB
bundle associated with the manifold M (3) in which the abelian CS theory is defined
with respect to the measure induced by the CS action considered.

This trivial fiber is the only one that constitutes the DB bundle when the mani-
fold considered is S3 and it arises formally for any manifold M (3) of dimension 3, in
the sense that Ω1/Ω1

Z appears for any manifold M (3) of dimension 3. However, of
course, Ω1/Ω1

Z depends on M (3), so, to that extent, the trivial fiber is not common
to all closed manifolds of dimension 3. The normalization is performed with respect
to S3 only in the sense that, with this convention, ZCSk

(
S3) = 1.

This choice of normalization is mainly justified by the fact that it leads to estab-
lishing a link with the abelian RT invariant as defined in chapter 2 of the previous
part. Usually the normalization of the RT invariant is chosen to be related to
S1×S2. However, if the normalization is chosen with respect to S3 then the abelian
RT invariant coincides with the abelian CS partition function as shown further.

This way:
ZCSk

Ä
M (3)ä =

∑

τ∈T 2

e−2iπkQ(τ ,τ ), (2.20)

where Q is the so-called linking form introduced in chapter 1 of this part, in
equation (1.58), which is a non-degenerate quadratic form over the torsion part
T 2 of H2

Ä
M (3)

ä
. As a matter of fact, by the standard classification of abelian

groups,T 2 = Zp1 ⊕ . . .Zpn with ∀ i ∈ J1 ;n − 1K, pi|pi+1. The pi will be called tor-
sion indices of M (3). Moreover, Q can be represented by a symmetric matrix
(Qij)1≤i,j≤n =

Ä
qij
pi

ä
1≤i,j≤n with, by symmetry, qijpi = qji

pj
.

This computation shows that the abelian CS theory written in terms of gauge
classes directly on M (3) make it possible to obtain a topological invariant of M (3)
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2.2. Abelian expectation value of observables

by an exact computation. The topological information probed is contained in Q
which is slightly stronger than the torsion of the first homology group. Indeed, for
example, for a lens space, Q = q

p while T1 (L (p, q)) = H1 (L (p, q)) = Zp. Also, the
abelian CS theory will never see the free part of the homology.

Finally, since the gauge classes of flat connections overM (3) are in bijection with
the elements of H1

Ä
M (3),Z

ä
= Ȟ2

Ä
M (3),Z

ä
, the expression (2.20) of the partition

function shows that only the gauge classes of flat connections contribute. Hence,
this computation validates the common guess claiming that the partition function
should be dominated by the contributions of the flat connections. In this abelian
case, the flat connections not only dominate, but they are the only contributions.
In the non-abelian case, such contributions would be expected to be “dressed” by
the contributions of non-flat connections.

2.2 Abelian expectation value of observables
In this second section, the expectation value of observables of the abelian CS theory
are computed. Those observables are Wilson loops for one connection, that is,
abelian holonomies:

WM(3) (A, γ) = e2iπ
¸
γ A (2.21)

and their expectation value is given by:

〈WM(3) (A, γ)〉CSk,M(3) = 1
NCSk

(
M (3))

ˆ
H
dµCSk (A) e2iπ

¸
γ A. (2.22)

Define also:

〈〈WM(3) (A, γ)〉〉CSk,M(3) =
〈WM(3) (A, γ)〉CSk
ZCSk

(
M (3)) . (2.23)

Consider γ = γ0 + γf + γτ where the superscript 0 refers to the homologically
trivial part of the loop, f to its non-trivial free part and τ to its non-trivial torsion
part. Then:

〈WM(3) (A, γ)〉CSk,M(3) = δ
[2k]
f e−

2iπ
4k `k

M(3)(γ0+γτ ,γ0+γτ)
∑

κ∈T1

e−2iπ(kQ(κ,κ)+Q(κ,τ )) (2.24)

and:

〈〈WM(3) (A, γ)〉〉CSk,M(3) = 1
ZCSk

δ
[2k]
f e−

2iπ
4k `k

M(3)(γ0+γτ ,γ0+γτ)

∑

κ∈T1

e−2iπ(kQ(κ,κ)+Q(κ,τ )), (2.25)
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so that:
〈WM(3) (A, 0)〉CSk,M(3) = ZCSk

Ä
M (3)ä (2.26)

and:
〈〈WM(3) (A, 0)〉〉CSk,M(3) = 1. (2.27)

The decoupling of the free part happens thanks to the properties of the zero modes
presented in chapter 1 of this part.

This formula written with loops generalizes to links. It seems important to point
out that the Kronecker symbols depend on the free part of the whole link. Hence,
the whole link can have no free homology, but the components can independently
have free homology, which might be counter-intuitive.

In their studies of Gauss sums, F. Deloup and V. Turaev showed a reciprocity
formula [Deloup and Turaev, 2007] which can be written in particular, taking the
results obtained previously into account4, as:

〈γ〉RT4l,M(3) =

√
(2l)b1
p1 . . . pn

〈WM(3) (A, γ)〉CSl,M(3) , (2.28)

according to the definition given by equation (2.4) in the first part, that is:

e−i
π
4 σ(LL)√2l−m

∑

p∈Zm2l
e

2iπ
4l ((p,q),LL∪γ̃(p,q))

=

√
(2l)b1
p1 . . . pn

δ
[2l]
f e−

2iπ
4l `kM(3)(γ0+γτ ,γ0+γτ) ∑

κ∈T1

e−2iπ(lQ(κ,κ)+Q(κ,τ )). (2.29)

In particular:

Z̃RT4l

Ä
M (3)ä =

√
(2l)b1
p1 . . . pn

ZCSl
Ä
M (3)ä (2.30)

for γ = 0. Therefore:

〈〈γ〉〉RT4l,M(3) = 〈〈WM(3) (A, γ)〉〉CSl,M(3) . (2.31)

This formula relates on the left-hand side a computation associated with M (3) but
performed stricly speaking in S3, and on the right-hand side a computation per-
formed directly in M (3).

4This formula was not first shown in a context of study of manifolds of dimension 3 but on
generic quadratic forms on lattices having some specific properties. Hence, strictly speaking, the
formula has to be read only in one sense, meaning that under some hypotheses on the objects of
one side, the existence of the other side is guaranteed, but the reverse is not true in general. Also,
it shall be noticed that the reciprocity formula corresponds in this context to the non-modular case
k = 4l.
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In the SU(N) case, it is often said that the CS theory and the RT theory co-
incides. It is remarkable that there is always an abelian RT theory related to a
given abelian CS theory whereas the converse is not true in general. In any case, an
abelian CS theory in never associated with an abelian modular RT theory.

Moreover, for a given abelian CS theory, the correspondence with its associated
abelian RT theory is not trivial at all, both sides of the reciprocity formula having
completely different shapes. If it were possible to compute exactly the SU(N) CS
partition function and expectation value of observables as it is done here in the
abelian case, then there should also be a “non-abelian reciprocity formula” relating
an expression derived from a given SU(N) CS theory with a coupling k and an
expression derived from a modular category built with representations of Uq(slN ),
with q = e

2iπ
k . It is interesting to notice that the reciprocity formula “quantizes”

abelian CS theories, in the sense that it transforms an expression derived from a
given abelian CS theory with a coupling l, thus related to U (1), into an expression
related to Z4l. This interpretation would still hold in the SU(N) case.

Finally, the abelian CS surgery function of M (3) is defined as:

ŴS3 (A,L) =
∑

p∈Zm2l

m∏

i=1
e

2iπpi
¸
Li
A
, (2.32)

where L ⊂ S3 is a surgery link of M (3), so that:
¨
ŴS3 (A,L)

∂
CSl,S3 =

∑

p∈Zm2l
e−

2iπ
4l (p,LLp) (2.33)

and thus, from equation (2.22)5 obtained in chapter 2 of the first part and equation
(2.30) given in the present chapter:

¨
ŴS3 (A,L)

∂
CSl,S3 =

√
2lmei

π
4 σ(LL)

√
(2l)b1
p1 . . . pn

ZCSl
Ä
M (3)ä . (2.34)

Also:
¨
ŴS3 (A,L)WS3 (A, γ̃)

∂
CSl,S3 =

∑

p∈Zm2l
e−

2iπ
4l ((p,q),LL∪γ̃(p,q)) (2.35)

where γ̃ ⊂ S3 is the preimage of a loop γ ⊂ M (3) with a framing q by the surgery
procedure. Moreover, from equation (2.4)5 obtained in chapter 2 of the first part
and equation (2.28) given in the present chapter:

¨
ŴS3 (A,L)WS3 (A, γ̃)

∂
CSl,S3 =

√
2lmei

π
4 σ(LL)

√
(2l)b1
p1 . . . pn

〈γ〉CSl,M(3) . (2.36)

5Strictly speaking, the correspondence is up to a complex conjugation, that is, actually, up to
the orientation of the manifold.
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Finally:
¨¨
ŴS3 (A,L)WS3 (A, γ̃)

∂∂
CSl,S3¨¨

ŴS3 (A,L)
∂∂

CSl,S3

= 〈〈WM(3) (A, γ)〉〉CSl,M(3) = 〈〈γ〉〉RT4l,M(3) .

(2.37)
This formula is called the surgery formula in reference to that of the non-abelian
case [Reshetikhin and Turaev, 1991]. It extends naturally from loops to links. It is
noteworthy that the abelian surgery formula has been proved here by a direct com-
putation, whereas the non-abelian surgery formula is showed in [Guadagnini, 1993]
by indirect arguments, similar to that of Witten for proving the correspondence be-
tween SU(2) CS theory and Jones polynomials. It uses in particular the formulation
of QFT in terms of operators and Fock spaces and assumes the correspondence with
the formulation of QFT in terms of functional integral. This correspondence is one
of the tricky points of QFT since several quantities are completely ill-defined in both
formulations.

88



Chapter 3

Abelian BF theory

Contents
Introduction (English version) . . . . . . . . . . . . . . . . . . . 90
Introduction (version française) . . . . . . . . . . . . . . . . . . 91
3.1 Computation of ZBFk . . . . . . . . . . . . . . . . . . . . . 92
3.2 Abelian expectation value of observables . . . . . . . . . 94

89



Chapter 3. Abelian BF theory

Introduction (English version)
Mimicking the abelian CS theory, the abelian BF theory studied here is given by
the action:

SBFk (A,B) = k

ˆ
M(3)

A ? B, (3.1)

where A and B are two DB classes associated with the gauge classes of two U (1)-
connections.

It should be underlined here that in the non-abelian case, B is a true 1-form
(that is, globally defined) with coefficients in the Lie algebra of the gauge group.
The choice made here is to treat B as if it were more specifically a connection in
the non-abelian case so that it can be associated now with a DB class in the abelian
case. This choice a priori arbitrary is the one that leads to obtaining a relation
between the abelian BF theory and the abelian TV theory as shown further.

The purpose of the first section is to compute mainly the partition function of
the abelian BF theory, that is:

ZBFk
Ä
M (3)ä = 1

NBFk

ˆ
H ×H

DADB e2iπSBFk (A,B), (3.2)

where:
SBFk (A,B) = k

ˆ
M(3)

A ? B (3.3)

and k ∈ Z since
´
M(3) A ? B ∈ R/Z . The local expression of A ? B is nothing but

Aα ∧ dBα which is the expression of the abelian BF Lagrangian in R3. The space
H is defined in the same way as in the previous chapter. The measure D is still
purely formal and again a few properties will be postulated to be able to perform
the computation of ZBFk , the normalization NBFk being here to cancel the intrinsic
divergency of the functional integral. This result will be related, on the one hand,
to the abelian CS partition function and, on the other hand, to the abelian TV
invariant.

In the second section, the expectation value of observables will be computed and
related to that of the abelian TV theory. The abelian RT invariant related to the
Drinfeld center of CZk will be used to obtain a surgery formula analogous to that
obtained in the case of the abelian CS theory.

This chapter gathers the results that can be found with proofs and details in
[Mathieu and Thuillier, 2016a], [Mathieu and Thuillier, 2016b] and [Mathieu and
Thuillier, 2017], with unified notations. The computations related to the abelian BF
theory have been obtained adapting the methods used for the abelian CS theory.
They constitute the main contribution of this study together with the relations
established with abelian RT, TV and CS theories.
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Introduction (version française)
Calquant la théorie CS abélienne, la théorie BF abélienne étudiée ici est donnée par
l’action :

SBFk (A,B) = k

ˆ
M(3)

A ? B, (3.1)

où A et B sont deux classes de cohomologie DB associées à la classe de jauge de
deux connexions U (1).

Il doit être souligné ici que dans le cas non-abélien, B est une vraie 1-forme (c’est-
à-dire, globalement définie) avec des coefficients dans l’algèbre de Lie du groupe de
jauge. Le choix fait ici est de traiter B comme si c’était plus spécifiquement une
connexion dans le cas non-abélien, de sorte qu’elle peut être associée maintenant à
une classe de cohomologie DB dans le cas abélien. Ce choix a priori arbitraire est
celui qui permet d’obtenir une relation entre la théorie BF abélienne et la théorie
TV abélienne comme il sera montré plus loin.

Le but de la première section est de calculer principalement la fonction de par-
tition de la théorie BF abélienne, c’est-à-dire :

ZBFk
Ä
M (3)ä = 1

NBFk

ˆ
H ×H

DADB e2iπSBFk (A,B), (3.2)

où :
SBFk (A,B) = k

ˆ
M(3)

A ? B (3.3)

et k ∈ Z puisque
´
M(3) A?B ∈ R/Z . L’expression locale de A?B n’est rien d’autre

que Aα∧dBα ce qui est l’expression du lagrangien BF dans R3. L’espace H est défini
de la même façon qu’au chapitre précédent. La mesure D est toujours purement
formelle et, de nouveau, quelques propriétés seront postulées afin de pouvoir effectuer
le calcul de ZBFk , la normalisation NBFk étant là afin d’absorber les divergences
intrinsèques de l’intégrale fonctionnelle. Ce résultat sera relié, d’une part, à la
fonction de partition CS abélienne et, d’autre part, à l’invariant TV abélien.

Dans la deuxième section, les valeurs moyennes d’observables sont calculées et
reliées à celles de la théorie TV abélienne. L’invariant RT abélien lié au centre de
Drinfeld de CZk sera utilisé afin d’obtenir une formule de chirurgie analogue à celle
obtenue dans le cas de la théorie CS abélienne.

Ce chapitre rassemble des résultats qui peuvent être trouvés avec leur démonstra-
tion et plus de détails dans [Mathieu and Thuillier, 2016a], [Mathieu and Thuillier,
2016b] et [Mathieu and Thuillier, 2017], avec des notations unifiées. Les calculs liés
à la théorie BF abélienne ont été obtenus en adaptant les méthodes utilisées pour
la théorie CS abélienne. Ils constituent la principale contribution de ce travail de
même que les relations établies avec les théories RT, TV et CS abéliennes.
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Chapter 3. Abelian BF theory

3.1 Computation of ZBFk

As mentioned in the introduction, the purpose of this first section is first to compute
the partition function of the abelian BF theory, that is:

ZBFk
Ä
M (3)ä = 1

NBFk

ˆ
H ×H

DADB e2iπSBFk (A,B), (3.4)

where:
SBFk (A,B) = k

ˆ
M(3)

A ? B (3.5)

and k ∈ Z since
´
M(3) A ? B ∈ R/Z .

It can be noticed that the partition function is a sum of complex exponentials of
a bilinear term. This is formally reminiscent of the shape of the abelian TV invariant
presented in chapter 3 of the first part.

The functional measure considered here is:

dµBFk (A,B) = DADB e2iπSBFk (A,B). (3.6)

The main hypothesis made in this study is that it follows a “Cameron-Martin-like”
property, that is:

dµBFk (A+ α,B + β)
= dµBFk (A,B) e2iπSBFk (A,β)e2iπSBFk (α,B)e2iπSBFk (α,β) (3.7)

for fixed connections A and B and translations α and β.
Keeping the notations introduced for the abelian CS case, the so-called zero

mode property becomes, for the abelian BF theory:

dµBFk

Å
A+m

jΣ1

k
,B + n

jΣ2

k

ã
= dµBFk (A,B) (3.8)

for any n,m ∈ Z. It is similar to the one presented in the case of the abelian CS
theory but here, the period is k instead of 2k.

Using the algebraic properties given in chapter 1 of this part, the abelian BF
partition function can be computed exactly.

As a convention, the normalization is chosen to be:

NBFk =
ˆ
(Ω1/Ω1

Z )#×(Ω1/Ω1
Z )#

e2iπSBFk (α,β)DαDβ, (3.9)

which is the same as:

NBFk =
ˆ
(Ω1/Ω1

0 )#×(Ω1/Ω1
0 )#

e2iπSBFk (α,β)DαDβ, (3.10)
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3.1. Computation of ZBFk

which corresponds to the infinite volume associated with the trivial fiber of DB
bundle associated with the manifold M (3) in which the abelian BF theory is defined
with respect to the measure induced by the BF action considered.

It shall be reminded that this trivial fiber is the only one that constitutes the DB
bundle when the manifold considered is S3 and it arises formally for any manifold
M (3) of dimension 3, in the sense that Ω1/Ω1

Z appears for any manifold M (3) of
dimension 3. However, of course, Ω1/Ω1

Z depends on M (3), so, to that extent, the
trivial fiber is not common to all closed manifolds of dimension 3. The normaliza-
tion is performed with respect to S3 only in the sense that, with this convention,
ZBFk

(
S3) = 1.

This choice of normalization is mainly justified by the fact that it leads to estab-
lishing a link with the abelian TV invariant as defined in chapter 3 of the previous
part. Usually the normalization of the TV invariant is chosen to be related to
S1×S2. However, if the normalization is chosen with respect to S3 then the abelian
TV invariant coincides with the abelian BF partition function as shown further.

The computation of the partition function finally gives:

ZBFk
Ä
M (3)ä =

∑

τ1,τ2∈T 2

e−2iπkQ(τ1,τ2) =
n∏

i=1
gcd (pi, k) pi, (3.11)

where Q is still the linking form over the torsion part T 2 of H2
Ä
M (3)

ä
as introduced

in the preliminaries. Here also, it is remarkable that the partition function contains
a non-trivial topological piece of information related to the homological torsion of
M (3) but nothing about the free homology.

The abelian BF case if very similar to the abelian CS case. The abelian BF action
can be seen as an asymmetrization of the abelian CS action and the computation
leads to a partition function which the asymmetrization of the abelian CS partition
function. Like in the abelian CS, it is remarkable that only the gauge classes of flat
connections contribute to the partition function.

Furthermore, setting T 2 = Zp1 ⊕ . . .Zpn and assuming:

• pi is odd for 1 ≤ i ≤ α,

• pi is purely even (divisible by 2 but not 4) for α+ 1 ≤ i ≤ α+ β,

• pi is divisible by 4 for α+ β + 1 ≤ i ≤ α+ β + γ = n,

then:

∣∣∣ZCSk
Ä
M (3)ä∣∣∣2 = 2γ

(
n∏

i=1
gcd (pi, k) pi

)
δ0,β = 2γZBFk

Ä
M (3)ä δ0,β. (3.12)
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Chapter 3. Abelian BF theory

As a conclusion, in general:

∣∣∣ZCSk
Ä
M (3)ä∣∣∣2 6= ZBFk

Ä
M (3)ä . (3.13)

The equality occurs if and only if all the torsion indices of M (3) are odd.
The kronecker symbol δ0,β in (3.12) is reminiscent of the condition:

∀α ∈ H1 ÄM (3),Z2k
ä
, α∪α∪α = 0 (3.14)

in (2.23) of chapter 2 of the first part. Indeed:

1
2kα∪α∪α

Ä
M (3)ä = kQ (ᾱ, ᾱ) (3.15)

with ᾱ ∈ T1 such that:

∀ ū ∈ T1, Q (ᾱ, ū) = 1
2kα (ū) . (3.16)

Hence:
α∪α∪α

Ä
M (3)ä = 0 in Z2k ⇔ kQ (ᾱ, ᾱ) ∈ Z (3.17)

which can be showed to be equivalent to β = 0 [Mathieu and Thuillier, 2016a].
The point here is that the operator Q acts on the torsion of M (3) as a quadratic

form for abelian CS theory and as a bilinear form for abelian BF theory. Turning
Q acting as a quadratic form into Q bilinear sounds actually easy, just writing:

2 (u,Qv) = ((u+ v) , Q (u+ v))− (u,Qu)− (v,Qv) (3.18)

But the difficulty arises from the fact that 2 is not necessarily invertible on the torsion
lattice and can make appear a sub-periodicity in the exponential. This phenomenon
is quite similar to what happens with abelian RT and TV invariants.

This result is different from the SU (2) case where it has been shown formally
that: ∣∣∣ZSU(2)

CSk

Ä
M (3)ä∣∣∣2 = Z

SU(2)
BFk

Ä
M (3)ä . (3.19)

This difference is not really surprising in so far as the formal proof of the equality
in the SU (2) case relies on a variable change depending deeply on the cosmological
constant κ of the theory [Cattaneo et al., 1998], whereas such term cannot exist
here.
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3.2. Abelian expectation value of observables

3.2 Abelian expectation value of observables
In this second section the expectation value of observables of the abelian BF theory
are computed. Those observables are simply the product of two Wilson loops, that
is, the product of two abelian holonomies:

WM(3) (A, γ1)WM(3) (B, γ2) = e
2iπ
¸
γ1
A
e

2iπ
¸
γ2
B (3.20)

and their expectation value is given by:

〈WM(3) (A, γ1)WM(3) (B, γ2)〉BFk,M(3)

= 1
NBFk

ˆ
H ×H

dµBFk (A,B) e2iπ
¸
γ1
A
e

2iπ
¸
γ2
B
. (3.21)

Define also:

〈〈WM(3) (A, γ1)WM(3) (B, γ2)〉〉BFk,M(3)

=
〈WM(3) (A, γ1)WM(3) (B, γ2)〉BFk,M(3)

ZBFk
(
M (3)) . (3.22)

Consider γ1 = γ0
1 + γf1 + γτ1 and γ2 = γ0

2 + γf2 + γτ2 where the superscript 0 refers
to the homologically trivial part of the loop, f to its non-trivial free part and τ to
its non-trivial torsion part. Then:

〈WM(3) (A, γ1)WM(3) (B, γ2)〉BFk,M(3)

= δ
[k]
f1 δ

[k]
f2 e
− 2iπ

k
`k
M(3)(γ0

1+γτ1 ,γ0
2+γτ2 )

∑

κ1,κ2∈T1

e−2iπ(kQ(κ1,κ2)+Q(τ1,κ2)+Q(κ1,τ2)) (3.23)

and:

〈〈WM(3) (A, γ1)WM(3) (B, γ2)〉〉BFk,M(3)

= 1
ZBFk

(
M (3))δ

[k]
f1 δ

[k]
f2 e
− 2iπ

k
`k
M(3)(γ0

1+γτ1 ,γ0
2+γτ2 )

∑

κ1,κ2∈T1

e−2iπ(kQ(κ1,κ2)+Q(τ1,κ2)+Q(κ1,τ2)), (3.24)

so that:
〈WM(3) (A, 0)WM(3) (B, 0)〉BFk,M(3) = ZBFk

Ä
M (3)ä (3.25)

and:
〈〈WM(3) (A, 0)WM(3) (B, 0)〉〉BFk,M(3) = 1. (3.26)
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Chapter 3. Abelian BF theory

Here also of course, the decoupling of the free part happens thanks to the properties
of the zero modes presented in chapter 1 of this part.

As the CS expectation value of observables, this formula written with loops gen-
eralizes to links. It shall be underlined that, for a given coupling k, the linking factor
in the abelian BF case is e−

2iπ
k
`k
M(3)(γ0

1+γτ1 ,γ0
2+γτ2 ) while it is e−

2iπ
4k `k

M(3)(γ0
1+γτ1 ,γ0

1+γτ1 )
in the abelian CS case. Hence, from this point of view, the abelian CS theory can
be regarded as more accurate.

As for the abelian BF and CS partition functions, there is no relation in general
between the abelian BF and CS expectation value of observables. Nevertheless, in
the case where γ is homologically trivial andM (3) has no torsion, which implies that
the quadratic form Q is trivial, then it is possible to write:

〈〈WM(3) (A, γ)〉〉CSl,M(3) = 〈〈WM(3) (A, γ)WM(3) (B, γ)〉〉BF4l,M(3)

= e−
2iπ
4l `kM(3) (γ,γ) (3.27)

and:
ZCSl

Ä
M (3)ä = ZBF4l

Ä
M (3)ä = 1. (3.28)

The expectation value of observables of the abelian BF theory turns out to
be related to the one defined for the abelian TV thanks to a reciprocity formula
analogous to the one which has been mentioned in the abelian RT and CS case:

≠
WM(3)

Å l
k
, γ1

ã
WM(3)

Åm
k
, γ2

ã∑
TVk,M(3)

= kb1

p1 . . . pn
〈WM(3) (A, γ1)WM(3) (B, γ2)〉BFk,M(3) , (3.29)

according to the definition given by equation (3.37) in the first part, that is:

1
kV+F−1

∑

l∈ZE
k

∑

m∈ZF
k

e
2iπ
k

(m·dl+l·z1+m·z2) (3.30)

= kb1

p1 . . . pn
δ

[k]
f1 δ

[k]
f2 e
− 2iπ

k
`k
M(3)(γ0

1+γτ1 ,γ0
2+γτ2 ) ∑

κ1,κ2∈T1

e−2iπ(kQ(κ1,κ2)+Q(τ1,κ2)+Q(κ1,τ2)).

or:
1

kV+F−1
∑

l∈ZE
k

∑

m∈ZF
k

e2iπk(( m
k )·d( l

k )+( l
k )·z1+( m

k )·z2) (3.31)

= kb1

p1 . . . pn
δ

[k]
f1 δ

[k]
f2 e
− 2iπ

k
`k
M(3)(γ0

1+γτ1 ,γ0
2+γτ2 ) ∑

κ1,κ2∈T1

e−2iπ(kQ(κ1,κ2)+Q(τ1,κ2)+Q(κ1,τ2)).
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3.2. Abelian expectation value of observables

with a given cellular decomposition of M (3), assuming that γ1 and γ2 can be built
from the edges of this cellular decomposition. If it is not the case, then it is always
possible to refine the cellular decomposition so that this statement becomes true.

In particular:

ZTVk
Ä
M (3)ä = kb1

p1 . . . pn
ZBFk

Ä
M (3)ä (3.32)

for γ1 = 0 and γ2 = 0, which can be seen immediately from equation (3.33) of
chapter 3 of the first part and equation (3.11) of this chapter. Therefore:

≠≠
WM(3)

Å l
k
, γ1

ã
WM(3)

Åm
k
, γ2

ã∑∑
TVk,M(3)

= 〈〈WM(3) (A, γ1)WM(3) (B, γ2)〉〉BFk,M(3) . (3.33)

This reciprocity formula, under the form (3.30), is very similar to that of Deloup
and Turaev. It is remarkable that it relates a lattice of periodicity k to the torsion
lattice, k passing, here also, from the numerator to the denominator in the complex
exponential. Contrary to the reciprocity formula of Deloup and Turaev where the
operators act quadratically, the operators here act bilinearly, introducing then an
asymmetry. This asymmetry of the formula is even more visible due to the fact that
d is even not a square matrix. Under the form (3.31), both sides are very similar.
Indeed, the left-hand side can be considered as a BF theory with Zk-connections
over a lattice. The reciprocity formula can thus be regarded as a discretization of
the abelian BF theory presented here which comes down also to a lattice on the
right-hand side.

Furthermore, the computations on both sides of the equality are performed in
M (3). Nevertheless, thanks to the results given in chapter 2 of the first part:

〈〈γ1, γ2〉〉RTZ(CZk),M
(3) = 〈〈WM(3) (A, γ1)WM(3) (B, γ2)〉〉BFk,M(3) . (3.34)

Hence, there is finally anyway a correspondence between a computation performed
in M (3) and a computation performed in S3.

Moreover, the abelian BF surgery function of M (3) is defined as:

ŴS3 (A,L) ŴS3 (B,L) =
∑

p∈Zm
k

m∏

i=1
e

2iπpi
¸
Li
A ∑

u∈Zm
k

m∏

i=1
e

2iπui
¸
Li
B
, (3.35)

where L ⊂ S3 is a surgery link of M (3), so that:
¨
ŴS3 (A,L) ŴS3 (B,L)

∂
BFk,S3 =

∑

p∈Zm
k

∑

u∈Zm
k

e−
2iπ
k

(p,LLu) (3.36)
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and thus, from the expressions obtained in chapters 2 and 3 of the first part, in
particular equations (2.28) and (3.54):

ZTVk
Ä
M (3)ä = 1

km
〈ŴS3 (A,L) ŴS3 (B,L)〉BFk,S3 . (3.37)

Also:
¨
ŴS3 (A,L) ŴS3 (B,L)WS3 (A, γ̃1)WS3 (B, γ̃2)

∂
BFk,S3

=
∑

p∈Zm
k

∑

u∈Zm
k

e−
2iπ
k ((p,q,0),LL∪γ̃1∪γ̃2 (u,0,v)) (3.38)

where γ̃1 ⊂ S3 is the preimage of a loop γ1 ⊂M (3) with framing q and γ̃2 ⊂ S3 is the
preimage of a loop γ2 ⊂ M (3) with framing v by the surgery procedure. Moreover,
from the expressions obtained in chapters 2 and 3 of the first part, in particular
equations (2.41) and (3.56):
≠
WM(3)

Å l
k
, γ1

ã
WM(3)

Åm
k
, γ2

ã∑
TVk,M(3)

= 1
km
〈Ŵ (A,L) Ŵ (B,L)WM(3) (A, γ̃1)WM(3) (B, γ̃2)〉BFk,S3 . (3.39)

Finally the so-called surgery formula for BF theory can be written under three
different forms:

〈〈WM(3) (A, γ1)WM(3) (B, γ2)〉〉BFk,M(3)

=

¨¨
ŴS3 (A,L) ŴS3 (B,L)WS3 (A, γ̃1)WS3 (B, γ̃2)

∂∂
BFk,S3¨¨

ŴS3 (A,L) ŴS3 (B,L)
∂∂

BFk,S3

, (3.40)

〈〈WM(3) (A, γ1)WM(3) (B, γ2)〉〉TVk,M(3)

=

¨¨
ŴS3 (A,L) ŴS3 (B,L)WS3 (A, γ̃1)WS3 (B, γ̃2)

∂∂
BFk,S3¨¨

ŴS3 (A,L) ŴS3 (B,L)
∂∂

BFk,S3

, (3.41)

〈〈γ1, γ2〉〉RTZ(CZk),M
(3)

=

¨¨
ŴS3 (A,L) ŴS3 (B,L)WS3 (A, γ̃1)WS3 (B, γ̃2)

∂∂
BFk,S3¨¨

ŴS3 (A,L) ŴS3 (B,L)
∂∂

BFk,S3

, (3.42)

the last one being the less relevant one since it establishes a relation between two
computations performed in S3 strictly speaking. These formulæ extend naturally
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form loops to links. They constitute the most important new results of this study.
They sum up the relations that exist between the abelian BF, TV and RT theory
and prove that, as well as the abelian CS theory, the abelian BF theory can be taken
back in S3 by a surgery procedure. It is important to insist on the fact that those
results are not obtained in a perturbative way, nor by indirect arguments assuming
correspondences between several different formulations of QFT, but only expressing
BF theory in terms of gauge classes over M (3).
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Chapter 1. SU(N) Chern-Simons invariant of flat connections

Introduction (English version)
In this chapter some elements presented in [Guadagnini et al., 2017] on the SU(N)
CS invariant are recalled. It is defined as:

SCS (A) = 1
8π2

ˆ
M(3)

QCS (A) , (1.1)

QCS being the so-called CS 3-form defined as:

QCS = Tr
Å
A ∧ dA+ 2

3A ∧A ∧A
ã
, (1.2)

where A is a SU(N)-connection and M (3) is a closed manifold of dimension 31.
Actually, to be written this way, A has to be an object which is globally defined,
that is, which is a global 1-form with coefficients in the Lie algebra of SU(N). Given
a gauge class, finding such a representative is always possible since SU(N) fiber
bundles over a closed manifold of dimension 3 are all trivializable.

As said in the introduction of chapter 2 of the second part, the CS invariant,
and mostly its SU(N) version, has been considered in various branches of physics
such as particle physics, quantum gravity, condensed matter physics [Fröhlich et al.,
1994] and mathematical physics.

The most famous application in mathematical physics is probably its relation to
Jones polynomials. The idea of Witten’s proof is basically the following. Consider in
a closed manifoldM (3) of dimension 3 and a link L whose components are labeled by
elements of SU(N). Cut M (3) along a sphere S2 in a neighbourhood of a crossing of
two strands of L. Two volumes are obtained and in particular one which is a ball B3

of dimension 3 whose boundary S2 is punctured four times in total by the two strands
of L which cross each other inside B3. Those four points are pairwise associated
inside B3 by the two strands connecting them. Witten showed that the state space
associated with the punctured S2 is 2-dimensional. The present configuration of
strands inside B3 is a vector of this state space, as well as any other configuration of
strands connecting the same points inside B3. There are three such configurations in
number. Since the state space is 2-dimensional, those three different configurations
are linearly dependent. The state space is also the space of conformal blocks for the
four-point functions on S2 punctured by the two strands of L. The linear dependence
between the three configurations can then be written explicitely. Witten discovered
that it corresponds to the so-called skein relation which is a fundamental property
that arises in the construction of Jones polynomials.

This proof could indicate that there is actually a CFT underlying the CS theory,
but this is actually not the case. Indeed, a CS theory has a vanishing stress-energy

1It should be pointed out that the SU(N) CS quantum action SCSk with coupling k is just given
by SCSk = kSCS.
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tensor, which should not happen in a CFT. The link between CFT and the CS
theory relies on the common symmetries of those theories. Indeed, on the one hand,
in CFT the monodromies of the correlation functions provide representations of the
braid group and the SU(N)-representations of the braid group are classified by the
quantum groups Uq(su(N)). On the other hand, the SU(N) CS theory is equivalent
to the RT theory founded on the same quantum groups.

However, the purpose of this chapter is to prove that is it possible anyway to
reduce some computations of the CS invariant SCS for flat SU(N)-connections to
2-dimensional terms. The method presented here relies on Heegaard splittings as
introduced in chapter 3 of the first part. The CS invariant of a flat connection is a
relevant quantity to compute since flat connections are the solutions of EL equations
and are thus expected to provide the main contributions to the functional integrals
in the quantum case.

Although some methods have been proposed to compute the CS invariant of a
flat connection, for example in [Kirk and Klassen, 1990], this quantity is quite tricky
to compute and remains unknown in general for a given manifold. This chapter
presents some preliminary results of an ongoing work. In particular the main new
idea is that the CS invariant of a flat connection can always be reduced to a surface
term which splits into a sum of two surface terms, one being an intersection term
that can be computed completely graphically, the other coming from a WZ term
whose graphical signification remains mysterious but which has been investigated
on several classes of examples.
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Introduction (version française)

Dans ce chapitre, des éléments présentés dans [Guadagnini et al., 2017] relatifs à
l’invariant CS SU(N) sont rappelés. Il est défini comme :

SCS (A) = 1
8π2

ˆ
M(3)

QCS (A) , (1.1)

QCS étant la 3-forme dite CS définie comme :

QCS = Tr
Å
A ∧ dA+ 2

3A ∧A ∧A
ã
, (1.2)

où A est une connexion SU(N) et M (3) est une variété fermée de dimension 31.
En fait, pour être écrite de cette façon, A doit être un objet globalement défini,
c’est-à-dire, être une 1-forme globale à coefficients dans l’algèbre de Lie de SU(N).
Étant donné une classe de jauge, trouver un tel représentant est toujours possible
puisque les fibrés SU(N) au-dessus d’une variété fermée de dimension 3 sont tous
trivialisables.

Comme précisé dans l’introduction du chapitre 2 de la deuxième partie, l’invariant
CS, et essentiellement sa version SU(N), a été considéré dans diverses branches de
la physique, comme la physique des particules, la gravité quantique, la physique de
la matière condensée et la physique mathématique.

L’application en physique mathématique la plus célèbre est probablement sa
relation avec les polynômes de Jones. L’idée de la preuve de Witten peut être
résumée de la façon suivante. Le point de départ est une variété fermée M (3) de
dimension 3 et un entrelac L dont les composantes portent chacunes un élément
de SU(N). La variété M (3) est ensuite découpée selon une sphère S2 contenant un
voisinage d’un croisement de deux brins de L. Deux volumes sont alors obtenus et en
particulier un qui est une boule B3 de dimension 3 dont le bord S2 est percé quatre
fois au total par les deux brins de L qui se croisent à l’intérieur de B3. Ces quatre
points sont associés deux par deux dans B3 par les deux brins qui les relient. Witten
a montré que l’espace des états associés à la sphère percée S2 est de dimension 2. La
configuration considérée des brins dans B3 est un vecteur de cet espace des états, de
même que toute autre configuration de brins reliant les mêmes points dans B3. Ces
configurations sont au nombre de trois. Puisque l’espace des états est de dimension
2, ces trois configurations différentes sont linéairement dépendantes. L’espace des
états est aussi l’espace des bloques conformes de la fonction quatre points de S2

percée par les deux brins de L. La relation de dépendance linéaire entre les trois
configurations peut être ensuite écrite explicitement. Witten a découvert qu’elle

1L’action quantique CS SU(N) notée SCSk , k étant une constante de couplage, est simplement
définie par SCSk = kSCS.
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correspond à la relation dite d’échevaux qui est une propriété fondamentale qui
intervient dans la construction des polynômes de Jones.

Cette preuve pourrait indiquer qu’il existe en fait une CFT sous-jacente dans
la théorie CS, mais ce n’est pas le cas. En effet, le tenseur énergie-impulsion d’une
théorie CS est nul, ce qui ne peut se produire dans une CFT. Le lien entre CFT et
théorie CS repose sur les symétries communes de ces théories. En effet, d’une part, en
CFT, les monodromies des fonctions de corrélation fournissent des représentations du
groupe de tresse et les représentations SU(N) du groupe de tresse sont classifiées par
les groupes quantiques Uq(su(N)). D’autre part, la théorie CS SU(N) est équivalente
à la théorie RT fondée sur ces mêmes groupes quantiques.

Cependant, l’objectif de ce chapitre est de montrer qu’il est tout de même possible
de réduire certains calculs de l’invariant CS SCS associé aux connexions plates SU(N)
à des termes de dimension 2. La méthode présentée ici repose sur les scindements
de Heegaard introduits au chapitre 3 de la première partie. L’invariant CS associé
à une connexion plate est une quantité pertinente à calculer étant donné que les
connexions plates sont les solutions des équations EL et sont donc supposées fournir
la principale contribution aux intégrales fonctionnelles dans le cas quantique.

Bien que des méthodes aient été proposées afin de calculer l’invariant CS d’une
connexion plate, par exemple dans [Kirk and Klassen, 1990], cette quantité est assez
compliquée à calculer et demeure inconnue en général pour une variété donnée. Ce
chapitre présente quelques résultats préliminaires d’un travail en cours. En partic-
ulier, la principale nouvelle idée est que l’invariant CS d’une connexion plate peut
toujours se réduire à la somme de deux termes de surface, l’un étant un terme
d’intersection qui peut être calculé entièrement graphiquement, l’autre étant issu
d’un terme WZ dont la signification graphique demeure mystérieuse mais qui a été
étudié sur plusieurs classes d’exemples.
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Chapter 1. SU(N) Chern-Simons invariant of flat connections

1.1 General method

Reduction of the SU(N) CS invariant for a flat connection. It should not
be forgotten that any closed manifold M (3) of dimension 3 can be decomposed as
the gluing of two identical genus g handlebodies HL and HR along their boundary
Σ which is thus a Riemann surface of genus g according to a gluing rule h. The
relevant information of this so-called Heegaard splitting is provided by the image
of the trace of the meridian discs of HL on ∂HR = Σ (by convention here, but the
opposite convention is of course possible), see Figure 1.1. This information can thus
be represented on a diagram called Heegaard diagram. A planar representation will
be adopted according to Figure 1.2.

HL

h

HR

(a) Genus 1 Heegaard splitting

HL

h

HR

(b) Genus 2 Heegaard splitting

Figure 1.1: Heegaard splitting.

It should be pointed out that the meridian discs dualize the generators (γj)1≤j≤g
of the fundamental group of HL, and furthermore, the following theorem holds:

Theorem. There exists a bijection between the gauge classes of flat SU(N)-connections
over M (3) and the conjugation classes of SU(N)-representations of π1

Ä
M (3)

ä
.

A proof of this classical result can be found in [Morita, 2001]. A fundamental
object arising is the SU(N) holonomy of a SU(N)-connection A along a loop γ,
which is given by:

hγ (A) = Pei
¸
γ A ∈ SU(N) , (1.3)
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(a) Genus 1 Heegaard diagrams

(b) Genus 2 Heegaard diagrams

Figure 1.2: Convention of representation of Heegaard diagrams.

The previous theorem just states that the pairing given by the holomy between
gauge classes of flat connections and conjugation classes of SU(N)-representations
of loops in the fundamental group is non-degenerate.

Consider a flat connection ω in HL and for all j in J1 ; gK, a generator γj of
π1(H). Then, for all j in J1 ; gK:

hγj (ω) = eiσγj , (1.4)

where σγj ∈ su(N). Let xj be an arbitrary point on γj . Consider now:

A = i
g∑

j=1
σγjδxj (sj) dsj = i

g∑

j=1
σγj d

Ä
Hxj (sj)

ä
, (1.5)

with sj the natural parameter of γj and Hxj the Heaviside distribution defined
between sj = 0 and sj = l (γj) (length of γj) switching at xj . Of course, in this
context, the differential operator d has to be understood in the sense of distributions.

By construction, A is a connection which is exact, thus:

dA = 0. (1.6)

Also, still by construction:
A ∧A = 0. (1.7)

This implies that:
FA = dA+A ∧A = 0. (1.8)
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Hence, a flat connection that has the same holonomy along γj as ω is built. Moreover,
it has the remarkable property to be localized on a disc Dj in HL that intersects once
with γj that is, in a transverse position towards γj . Therefore the holonomy can be
considered to be the intersection between γj and Dj with a charge σγj provided an
orientation for Dj has been set. This orientation defines -thanks to the “right-hand
rule”- an orientation of its boundary which is represented on the Heegaard diagram.
All these orientations have to be consistent.

In the following, by a misuse of language, the confusion will be made between a
localized connection and its associated charge:

“ A = i
g∑

j=1
σγj ”, (1.9)

The connection can also be localized on thickened discs of thickness εj by the
same arguments:

A = i
g∑

j=1
σγjθ

′
j(sj) dsj = i

g∑

j=1
σγj d (θj(sj)) , (1.10)

where θj is a smooth function such that θj (0) = 0 and θj (εj) = 1. Such semi-
localized connections are flat and abelian. They are related to ω by a gauge trans-
formation, as the completely localized one and for the same reason : it has the same
holonomy along each γi as ω.

The image on Σ = ∂HR of the trace of meridional discs of HL is precisely
what is represented on a Heegaard diagram associated with a splitting of a manifold
M (3) = HL ∪h HR. The curves appearing on such diagram can thus be regarded as
the trace of a flat connection on the Riemann surface Σ = ∂HR.

In the following, a flat connection represented by a collection of g discs in a
handlebody of genus g will be noted with a capital latin letter.

Let ω be a flat SU(N)-valued 1-form over M (3) such that:
{
ω HR = AR,

ω HL = ωL.
(1.11)

Then:
AΣ
R = h∗ωΣ

L , (1.12)
on ∂HR = ΣR and there exists g : HL −→ SU(N) such that:

ωL = g−1ALg + g−1 dg. (1.13)

Hence, the gluing rule is:

AΣ
R = V −1h∗AΣ

LV + V −1 dV, (1.14)
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with:
V = h∗gΣ, (1.15)

on ∂HR = ΣR.
Equation (1.7) shows that AL and AR are on top of that abelian. Hence:

QCS (AR) = QCS (AL) = 0, (1.16)

since the cubic term is 0 and the quadratic term is exact on HL and HR which are
manifolds with a boundary.

Hence, taking this fact into account:

QCS (ωL) = dTr
Ä
g−1ALg ∧

Ä
g−1 dg

ää

− 1
3Tr
ÄÄ
g−1 dg

ä
∧
Ä
g−1 dg

ä
∧
Ä
g−1 dg

ää
(1.17)

and finally:

SCS (ω) = deg (h)
ß 1

8π2

‹
Σ

Tr
Ä
V −1h∗AΣ

LV ∧ V −1 dV
ä

− 1
24π2

˚
HR

Tr
Ä
U−1 dU ∧ U−1 dU ∧ U−1 dU

ä´
, (1.18)

where U : HR −→ SU(N) is a continuation of V : ∂HΣ
R −→ SU(N) inside HR.

Let us write this equality as:

SCS (ω) = I− SWZ, (1.19)

where I is the surface term and SWZ the volume integral of the Wess-Zumino term.

Computation of the surface term. Using the gluing rule, the commutativity
in the trace, the anti-commutativity of the wedge product and the fact that:

d
Ä
V −1 dV

ä
=
Ä
dV −1ädV = −V −1 dV ∧ V −1 dV, (1.20)

the surface term can be written in several equivalent ways:

I =deg (h)
ß 1

8π2

‹
Σ

Tr
Ä
V −1h∗AΣ

LV ∧ V −1 dV
ä™

(1.21)

=deg (h)
ß 1

8π2

‹
Σ

Tr
Ä
AΣ
R ∧ V −1 dV

ä™
(1.22)

=deg (h)
ß 1

8π2

‹
Σ

Tr
Ä
V −1h∗AΣ

LV ∧AΣ
R

ä™
(1.23)

I =deg (h)
ß 1

8π2

‹
Σ

Tr
Ä
h∗AΣ

L ∧ dV V −1ä™ . (1.24)
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It should be pointed out that if the representation of π1
Ä
M (3)

ä
is abelian, then:

SCS (ω) = deg (h)
ß 1

8π2

‹
Σ

Tr
Ä
h∗AΣ

L ∧AΣ
R

ä™
(1.25)

and the WZ term is 0.
To compute the surface term V has to be determined. For this purpose, the

main equation used is the gluing rule:

AΣ
R = V −1h∗AΣ

LV + V −1 dV, (1.26)

which just says that AL and AR are related by a gauge transformation at the gluing
surface.

As for the Heegaard diagram, AL = AR = 0 inside the domains delimited by the
traces of h∗AL and/or AR on ∂HR = Σ and the gluing rule gives thus:

V −1 dV = 0. (1.27)

Therefore, V is a constant map inside those domains.
The trace on ∂HR = Σ of each disc Dj which represents AΣ

R carries a charge
associated with sigma according to equation (1.5). Given two domains of ∂HR = Σ
separated by the trace of a disc Dj which represents AΣ

R, the discontinuity of V
between the two domains is provided by the gluing rule:

AΣ
R = V −1 dV, (1.28)

since h∗AΣ
L = 0, that is, the height of the step between the value of V in each domain

is precisely the charge of AΣ
R.

Consider an oriented path γ on Σ starting at x0 and finishing at x1. Then:

τγ
Ä
AΣ
R

ä
= V −1 (x0) τγ

Ä
h∗AΣ

L

ä
V (x1) , (1.29)

where τγ
Ä
AΣ
R

ä
is the parallel transport of AΣ

R along γ. This implies that:

V (x1) = τ−1
γ

Ä
h∗AΣ

L

ä
V (x0) τγ

Ä
AΣ
R

ä
. (1.30)

If V (x0) = 1 then:

∀x ∈ Σ, V (x) = τ−1
γ

Ä
h∗AΣ

L

ä
τγ
Ä
AΣ
R

ä
, (1.31)

so V can be computed from parallel transports of AΣ
R and h∗AΣ

L.
Moreover, AΣ

R induces in the universal covering a flat connection ÃΣ
R which is

gauge equivalent to the null connection :

ÃΣ
R = Ṽ −1 dṼ , (1.32)
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with Ṽ : Σ̃ −→ SU(N). Consider two points x0 and x1 on Σ on both sides of the
trace of AΣ

R and a path γ that joins them. They induce respectively two points x̃0
and x̃1 and a path γ̃ on Σ̃. Since ÃΣ

R is gauge equivalent to the null connection,
then:

τ̃γ̃
Ä
ÃΣ
R

ä
= Ṽ −1 (x̃0) τ̃γ̃ (0) Ṽ (x̃1) = Ṽ −1 (x̃0) Ṽ (x̃1) (1.33)

and this relation is locally preserved on Σ:

τγ
Ä
AΣ
R

ä
= V −1 (x0)V (x1) . (1.34)

Hence, the height of the step can be computed from the evaluation of V inside the
two domains separated by the trace of AΣ

R.
This way, the holonomy along a trivial generator of π1(HR) is 1 (up to a sign

depending on the orientation of the curves) and its computation according to the
previous rule gives a constraint that appears in the presentation of π1

Ä
M (3)

ä
.

As an example, consider the Heegaard splitting of the lens space L (5, 3) shown
in Figure 1.3 (keeping in mind that, according to Figure 1.2, the genus 1 handlebody
of the splitting is recovered identifying the two black discs and twisting them so that
the equal numbers coincide). According to the “right hand rule” for the orientation:

a5 = 1, (1.35)
which is actually the presentation of π1(L (5, 3)) = Z5. There are as many relations
as handles in the splitting but some might be trivial or redundant.

−A +A

3
4

5

1
2

1
2

3

4
5

Figure 1.3: Heegaard diagram associated with L (5, 3).

A way to see that is the following : a trivial loop in a manifold M (3) induces a
trivial loop in M̃ (3), but a non-trivial loop in M (3) induces an open path in M̃ (3)

By a misuse of language, the confusion will be made between the charge of the
connection and its holonomy2 and equations (1.28) and (1.34) will be identified as:

“ AΣ
R = VRV

−1
L ”, (1.36)

2It must be borne in mind that this misuse of language will be adopted also to label the Heegaard
diagrams, where the traces of AΣ

R and AΣ
L will be labeled with their holonomy.
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Chapter 1. SU(N) Chern-Simons invariant of flat connections

with the indices L and R refering to the right side and the left side of the trace of
AΣ
R according to its orientation. Keeping this convention, when two domains are

separated by the trace of h∗AΣ
L, then the gluing rule gives:

h∗AΣ
L = − (dV )V −1 =

Ä
V −1ä−1 d

Ä
V −1ä , (1.37)

so:
“ h∗AΣ

L = V −1
R VL ”. (1.38)

The quantity:
−V −1h∗AΣ

LV = AΣ
R (1.39)

is also needed to compute the surface term. It is given by:

“ − V −1h∗AΣ
LV = VRV

−1
L ”. (1.40)

As a conclusion, if the value of V is set inside a domain, thanks to the continuity
at the handles and rule (1.36), it is possible to determine the value of V in every
domain and then to compute the charge of the trace of h∗AΣ

L thanks to rule (1.38)
as well as V −1h∗AΣ

LV thanks to rule (1.39).
To complete the diagram, an element V0 can be placed in any domain, then

propagated thanks to the continuity at the handles and equation (1.36). The label
of each domain depends thus on this V0. However, in the examples treated below,
equation (1.38), to be true, imposes a constraint on this element V0 which limits
the possibilities of the labels. In the case of lens spaces treated as a first family of
examples, there is actually only one possibility. In the case of the second family of
examples, the labels are defined up to a global sign.

Once the diagram is completed with all the charges on each line, the surface term
is nothing but an intersection term. Contributions arise specifically at intersections
between traces of h∗AΣ

L and AΣ
R and are just the product of the charge of AΣ

R and
the charge of V −1h∗AΣ

LV in this order or the product of the charge of −V −1h∗AΣ
LV

and the charge of AΣ
R in this order. It must be borne in mind that the charge

appearing on the completed diagrams on the trace of V −1h∗AΣ
LV is not the charge

of AΣ
L but the charge of −V −1h∗AΣ

LV computed with rule (1.39) since this is the
quantity that appears in the computation of the surface term as given by equations
(1.21)-(1.24). The charge V −1h∗AΣ

LV has no reason for being continuous along the
trace of h∗AΣ

L and there are in fact some discontinuities in the examples treated.
What is remarkable is the fact that although V −1h∗AΣ

LV is discontinuous on both
sides of AΣ

R, the trace of the product of V −1h∗AΣ
LV by AΣ

R is continuous.
Such a way of computing with localized connections can be proved to be consis-

tent with the smooth approach by just studying limits in the sense of the topology
of weak convergence. On the side of localized connections, the main issue is the ap-
pearance of ill-defined distributional products. However, in the present case, because
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the connections are flat, the square of a distributional connection can be regarded
as its differential up to a sign.

Computation of the WZ term. Concerning the WZ term, the following study
is restricted to the SU(2) case and a semi-localized expression of V −1 dV 3 is used.
Indeed, the WZ term involves a distributional cube with a priori no canonical way
to define it contrary to the distributional square as mentioned above. Thickening the
trace of AΣ

R and h∗AΣ
L, the points of intersection of those lines become by thickening

intersections of strips and, thanks to equation (1.31), considering a system of axis
(x, y), x being directed along the trace of AΣ

R and y being directed along the trace
of AΣ

L (or conversely), V can be written as4:

V (x, y) = a (x) b (y) , (x, y) ∈ [0 ; 1]2 (1.41)

and the functions a and b are determined by the value of V at the corners of the
domain defined by the intersection of the strips which represent the thickening of AΣ

R

and h∗AΣ
L. Actually, written this way, the whole function V is completely determined

by its value at only three corners. Its value at the last corner immediately comes
out of the triviality of the holonomy around the intersection domain.

To compute the SWZ term a volume continuation of such a V has to be found.
Since V (x, y) ∈ SU(2) for any x and y, then:

V (x, y) = eiξ(x,y)σ(x,y) = cos(ξ (x, y)) + i sin(ξ (x, y))σ (x, y) , (1.42)

with:
σ (x, y) = n1 (x, y)σ1 + n2 (x, y)σ2 + n3 (x, y)σ3, (1.43)

σ1, σ2 and σ3 being the Pauli matrices. Then, the continuation:

U (x, y, t) = eitξ(x,y)σ(x,y) = cos(tξ (x, y)) + i sin(tξ (x, y))σ (x, y) (1.44)

seems relevant5 since the integration over t can be easily performed:

SWZ = 1
4π2

‹
Σ

(ξ − cos(ξ) sin(ξ))n3
2 d
Å
n1
n2

ã
∧ d
Å
n3
n2

ã
. (1.45)

As a conclusion, the CS invariant, which is actually a volume term, can be trans-
formed into surface terms, related to the gluing surface of a Heegaard splitting of
M (3). It is noteworthy that this is the symmetry of the Heegaard splitting con-
struction that makes it possible to get this result, the localization of the connections

3A map V can be used to compute I and another one to compute SWZ if they are gauge-related
since a gauge transformation produces only an integer on SWZ and the global result is taken in R/Z

4Considering the thickeness to be normalized to 1.
5Any other continuation would lead to the same SWZ up to an integer.
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being impossible for example in a surgery construction. Heegaard splittings are
known in the world of mathematical physics [Kohno, 1992] but had never been used
the present way until now. The method presented in [Kirk and Klassen, 1990] is
completely different and relies on a surgery construction.

It should be pointed out that SWZ computed with thickened connections is noth-
ing but the volume of the body of dimension 3 whose boundary is defined by V 6.
Different choices of V would lead to the same value of SWZ in R/Z . This value in
R/Z depends only on the family of elements of SU(2) that label the domains where
V is constant, which are simply isolated points when the connections are completely
thickened. Hence, conversely, this statement is true also when connections tend to
be completely localized. In some sense, SWZ computed with thickened connections
defines the value of SWZ with localized connections in R/Z . However, finding a
universal combinatorial formula on the values of V might lead to a new geometrical
interpretation of SWZ related to dimension 2.

Lastly, taking into account what has just been said, in the case of completely
thickened connections, the map V sends the surface Σ in SU(2). Thus the geometry
of V (Σ) could be expected to have the same genus as Σ. In the example investigated,
this is not exactly the case, in the sense that all the handles degenerate in dimension
1 objects making the volume bounded by V (Σ) homeomorphic to the 3-ball B3

(volume such that ∂B3 = S2).

1.2 Example of lens spaces

Flat connections and Heegaard diagram. In this section the general method
presented in section 1.1 is applied to compute the SU(N) CS invariant of a lens
space. A lens space L (p, q) is considered here. Its fundamental group π1(L (p, q)) is
Zp and there are

[p
2
]
conjugacy classes of SU(N)-representations of π1(L (p, q)),

[p
2
]

being the integer part of p2 . Each class admits a representative that can be written:

ρ (γ) = e
2iπn 1

p
σ
, (1.46)

where n is an integer in J0 ;
[p

2
]
K7, γ is a generator of π1(L (p, q)) and σ = σγ is an

element of SU(N). Since the fundamental group is generated by only one generator,

6Indeed, at each intersection of strips that represent AΣ
R and h∗AΣ

L, V is a map from [0 ; εx] ×
[0 ; εy] to SU(2). The continuity of V in this smooth case garantees that each intersection domain
defines a face of a closed body in SU(2).

7It could be expected that n ∈ J0 ; p − 1K but there would be then two representatives for each
class. Indeed, if ρ (γ) = e

2iπn 1
p
σ with n ∈ J

[
p
2

]
+1 ; p−1K, then, there exists an element V ∈ SU(N)

such that V ρ (γ)V −1 = e
2iπn′ 1

p
σ with n′ ∈ J0 ;

[
p
2

]
K.
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there is no specific constraint on σ, which can be chosen, for example, to be:

σ =




1 0 . . . . . . . . . . . . . . . . . . 0
0 1 0 . . . . . . . . . . . . . . . 0
... . . . ...
... . . . ...
... . . . ...
... . . . ...
... . . . ...
0 . . . . . . . . . . . . . . . 0 1 0
0 . . . . . . . . . . . . . . . . . . 0 − (N − 1)




(1.47)

Thanks to the theorem introduced in the previous section, the class of conjugation
of this representation is associated with the gauge class of a flat connection, among
which a localized representative AR, and so in particular AΣ

R, carries a charge:

AΣ
R = 2iπn1

p
σ. (1.48)

A Heegaard diagram associated with L (p, q) is given in Figure 1.4. Filling out this
diagram thanks to rules (1.36) and (1.38):

h∗AΣ
L = 2iπnq

p
σ. (1.49)

Computation of the surface term. Since this case is abelian, the CS invariant
coincides with the surface term, which has a simpler expression than the general
one:

SCS = 1
8π2

‹
Σ

Tr
Ä
h∗AΣ

L ∧AΣ
R

ä
. (1.50)

This integral has p contributions arising at the p intersections of the trace of h∗AΣ
L

and AΣ
R, each contribution being:

Tr
Ä
h∗AΣ

L ∧AΣ
R

ä
=
Å

2iπnq
p

ãÅ
2iπn1

p

ã
Tr
Ä
σ2ä , (1.51)

that is:
Tr
Ä
h∗AΣ

L ∧AΣ
R

ä
= −8π2n2 q

p2
N (N − 1)

2 (1.52)

and thus:

SCS = 1
8π2 × p×

Ç
−8π2n2 q

p2
N (N − 1)

2

å
= −n2 q

p

N (N − 1)
2 , (1.53)
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−A

q

q + 1

q − 2
q − 1

+A

1
2

p − 1
p

a

Figure 1.4: Heegaard diagram associated with L (p, q).

since, as already mentioned, there is no WZ term in the abelian case.
In particular, in the SU(2) case:

SCS =
Z
−n2 q

p
, (1.54)

keeping in mind that n ∈ J0 ;
[p

2
]
K. It is important to notice that the SU(2) case

looks like the U(1) case but does not produce exactly the same CS invariant. Indeed,
in the abelian partition given in equation (2.20) of chapter 1 of the second part, for
a lens space L (p, q):

SCS =
Z
Q (τA, τA) =

Z
−n2 q

p
, (1.55)

with τA ∈ T 2 = Zp and n ∈ J0 ; p−1K associated with τA by the universal coefficients
theorem8.

In the SU(2) case, although the representations of π1(L (p, q)) are abelian, n is
not the index of the cohomology class of a given generator, but the index of the
conjugacy class of its representation of π1(L (p, q)). Hence, n is in J0 ;

[p
2
]
K and not

in J0 ; p− 1K.

8It shall be reminded at this step that, according to part II, only the flat connections contribute
to the abelian CS and BF partition functions whereas in the non-abelian case, some fluctuations
around this contribution are expected.
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1.3 Example of some genus 2 Heegaard splittings
Flat connections and Heegaard diagram. In this section the general method
presented in section 1.1 is used to compute the SU(2) CS invariant of a family
of closed manifolds M (3) of dimension 3 whose general Heegaard diagram is given
in Figure 1.5. This family of manifolds includes some homology spheres, that are
manifolds having the same homology as the sphere but which are not homeomorphic
to the sphere (they show, as a consequence, that the homology in not classifying).
The non-abelian case is expected to probe a quantity related to the homotopy.

Since a loop around a handle is homotopically trivial inside HR, the relations
generating the fundamental group can be read turning around the handles (the discs
on the diagrams). Hence the fundamental group9 of such a family of manifolds is:

π1
Ä
M (3)ä = 〈γa, γb | γnaa = γnbb = (γaγb)nab〉. (1.56)

In the presentation (1.56) the element (γaγb)nab turns out to be central. Since
the center of SU(2) is ± 1, there are two possibilities to build a SU(2)-representation
ρ of π1

Ä
M (3)

ä
. The choice made here is10:

ana = bnb = (ab)nab = − 1, (1.57)

with:



ρ (γa) = a = ei
(2β+1)π
na

σ3 = cos
Ç

(2α+ 1)π
na

å
+ i sin

Ç
(2α+ 1)π

na

å
σ3

ρ (γb) = b = e
i
(2β+1)π
nb

σr = cos
Ç

(2β + 1)π
nb

å
+ i sin

Ç
(2β + 1)π

nb

å
σr

(ab) = e
i
(2γ+1)π
nab

σab = cos
Ç

(2γ + 1)π
nab

å
+ i sin

Ç
(2γ + 1)π

nab

å
σab,

(1.58)

where:
σr =

√
1− r2 σ1 + r σ3, (1.59)

σ1, σ2 and σ3 being still Pauli matrices. Furthermore, α ∈ J0 ;
î
na−1

2
ó
K, β ∈

J0 ;
î
nb−1

2
ó
K and γ ∈ J0 ;

î
nab−1

2
ó
K. Indeed, according to [Kirk and Klassen, 1990],

contrary to the lens spaces, there is no redundancy here.
Computing the product ab and identifying the real part with cos

(
(2γ+1)π
nab

)
:

r =
cos
(

(2α+1)π
na

)
cos
(

(2β+1)π
nb

)
− cos

(
(2γ+1)π
nab

)

sin
(

(2α+1)π
na

)
sin
(

(2β+1)π
nb

) (1.60)

9The general fundamental group of a manifold M (3) of dimension 3 is not classifying, which
means that it does not contain the whole information on the topology of M (3), but the Heegaard
diagram does.

10It can be verified that the opposite choice actually leads to the trivial representation.
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and identifying the imaginary part with sin
(

(2γ+1)π
nab

)
:

σab =
cos
(

(2α+1)π
na

)
sin
(

(2β+1)π
nb

)

sin
(

(2γ+1)π
nab

)
√

1− r2 σ1

−
sin
(

(2α+1)π
na

)
sin
(

(2β+1)π
nb

)

sin
(

(2γ+1)π
nab

)
√

1− r2 σ2 (1.61)

+
sin
(

(2α+1)π
na

)
cos
(

(2β+1)π
nb

)
+ r cos

(
(2α+1)π

na

)
sin
(

(2β+1)π
nb

)

sin
(

(2γ+1)π
nab

)
√

1− r2 σ3.

Set from now on: 



θa = (2α+ 1)π
na

,

θb = (2β + 1)π
nb

,

θab = (2γ + 1)π
nab

.

(1.62)

Rules (1.36) and (1.39) given in section 1.1 of this chapter can then be used to
fill out a diagram with the piece of information that is needed for the calculations.
The result is given in Figure 1.6 with focuses around the handles in Figures 1.7 and
1.8.
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Figure 1.5: Heegaard diagram associated with M (3).
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Figure 1.6: Heegaard diagram associated with M (3) with charges.
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Figure 1.7: Focus on the handle +A.
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Figure 1.8: Focus on the handle +B.
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Computation of the surface term. Computing the surface term I:

I= 1
8π2

ß
−θ2

a

ï
(nab − 2)− 2 (na − 1) + nab

2 Tr(σ3σabσ3σab)
ò

− θ2
b

ï
(nab − 2)− 2r2 (nb − 1) + nab

2 Tr(σrσbaσrσba)
ò

−θaθb
ï
2rnab + nab

2 Tr(σ3σbaσrσba) + nab
2 Tr(σrσabσ3σab)

ò™
, (1.63)

with: 



Tr(σ3σabσ3σab) = 1
sin2(θa) sin2(θab)(
− 8 cos(θa) cos(θb) cos(θab)

+ 2 cos2(θa)
Ä
1 + cos2(θab)

ä

+ 4 cos2(θb)− 2 sin2(θab)
)
,

Tr(σrσbaσrσba) = 1
sin2(θb) sin2(θab)(
− 8 cos(θa) cos(θb) cos(θab)

+ 2 cos2(θb)
Ä
1 + cos2(θab)

ä

+ 4 cos2(θa)− 2 sin2(θab)
)
,

Tr(σrσabσ3σab) = 1
sin(θa) sin(θb) sin2(θab)(

6 cos(θa) cos(θb) cos2(θab)

− 4 cos(θab)
Ä
cos2(θa) + cos2(θb)

ä

+ 2 cos(θa) cos(θb) + 2 cos(θab)

− 2 cos3(θab)
)
,

Tr(σ3σbaσrσba) =Tr(σrσabσ3σab) .

(1.64)

The case nab = 2 has been completely solved analytically. The associated Hee-
gaard diagram is given in Figure 1.9. The diagram filled out with charges on each
line is given in Figure 1.10. After computation of the intersection terms:

I = 1
4

Ç
na

Å
θa
π

ã2
+ nb

Å
θb
π

ã2
− 2A2

å
, (1.65)

with:
A =

Ç
cos(θa)
sin(θb)

Å
θa
π

ã
+ cos(θb)

sin(θa)

Å
θb
π

ãå
, (1.66)
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that is:
I = 1

4

Ç
(2α+ 1)2

na
+ (2β + 1)2

nb
− 2A2

å
. (1.67)
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Figure 1.9: Particular case nab = 2.
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Figure 1.10: Particular case nab = 2 with charges.
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Computation of the WZ term. The WZ term is quite tricky to compute and for
the moment only the particular case nab = 2 has been completely solved analytically.
Equation (1.45) of section 1.1 of this chapter can be rewritten in this particular case
as:

1
4π2

‹
Σ

(ξ − cos(ξ) sin(ξ))n3
2 d
Å
n1
n2

ã
∧ d
Å
n3
n2

ã

=
‹

Σ
∂x∂y

ß 1
4π2

Å1
2ξ

2 (x, y)− r (θax) (θby)
ã™

. (1.68)

Thus, the contribution on each domain (x, y) ∈ [0 ; 1]2 is:

1
4π2

Å1
2ξ

2 (0, 0) + 1
2ξ

2 (1, 1)− 1
2ξ

2 (1, 0)− 1
2ξ

2 (0, 1)− rθaθb
ã
. (1.69)

Summing over all the domains, finally:

SWZ = 1
4

Å1
2 − 2A2

ã
, (1.70)

so that:
SCS = 1

4

Ç
(2α+ 1)2

na
+ (2β + 1)2

nb
− 1

2

å
. (1.71)

Moreover, a group G = 〈γa, γb | γnaa = γnbb = (γaγb)nab = e〉 is a called a Von
Dyck group, e being the neutral element. The Von Dyck groups are classified
according to three different types:

• spherical type if 1
na

+ 1
nb

+ 1
nab

> 1 (all finite),

• Euclidean type if 1
na

+ 1
nb

+ 1
nab

= 1 (all infinite),

• hyperbolic type if 1
na

+ 1
nb

+ 1
nab

< 1 (all infinite).

There are actually finitely many Von Dyck groups of spherical type which are:

(na, nb, nab) =





(3, 3, 2) ,
(4, 3, 2) ,
(5, 3, 2) ,
(n, 2, 2) .

(1.72)

All those spherical type Von Dyck groups are finite and of order |G| such that:

1
|G| = 1

2

Å 1
na

+ 1
nb
− 1
nab

ã
, (1.73)
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with nab = 2.
Assume now π1

Ä
M (3)

ä
= 〈γa, γb | γnaa = γnbb = (γaγb)nab〉 with 1

na
+ 1

nb
+ 1

nab
> 1.

Consider also ρ ((γaγb)nab) = − 1. Then, the elements of ρ
Ä
π1
Ä
M (3)

ää
are the

elements of the corresponding Von Dyck group up to a sign.
Hence, when 1

na
+ 1

nb
+ 1

nab
> 1:

1∣∣∣ρ
(
π1
(
M (3)))

∣∣∣
= 1

2 |G| = 1
4

Å 1
na

+ 1
nb
− 1
nab

ã
(1.74)

and thus, for α = β = 0:
SCS = 1∣∣∣ρ

(
π1
(
M (3)))

∣∣∣
. (1.75)

This result is still true in R/Z for the trivial representation.
It can be stated in particular that the Poincaré homology sphere corresponds

to (na, nb, nab) = (5, 3, 2). It is known that its fundamental group is of order 120.
Therefore, in that case, the representation ρ is faithful.

The general case where nab is not specified has been investigated but not solved
analytically. Numerical computations seem to indicate that the result for nab = 2
can be generalized to:

SCS = 1
4

Ç
(2α+ 1)2

na
+ (2β + 1)2

nb
− (2γ + 1)2

nab

å
. (1.76)

Comparison with [Kirk and Klassen, 1990]. The Poincaré homology sphere
admits a Heegaard diagram given in Figure 1.11. The diagram filled out with charges
on each line is given in Figure 1.12. On the one hand, this is a particular case of the
family of diagrams considered in this section, whose fundamental group parameters
are: 




na = 5,
nb = 3,
nab = 2.

(1.77)

On the other hand, the Poincaré homology sphere is a particular case of so-called
Seifert manifolds over S2 with three exceptional fibers, described by:

{0, (o1, 0) , (5, 1) , (3, 1) , (2,−1)} (1.78)

according to Seifert’s notations.
Hence, it seems reasonable to assume that the whole family of diagrams consid-

ered is associated with such kind of manifolds, described more generally by:

{0, (o1, 0) , (na, 1) , (nb, 1) , (nab,−1)} (1.79)
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and whose fundamental group admits the presentation:

π1
Ä
M (3)ä

= 〈xa, xb, xab |hxi = xih, x
na
a h = xnbb h = xnabab h

−1 = 1, xaxbxab = 1〉, (1.80)

which coincides in fact with the fundamental group read on the Heegaard diagrams
presented before, noticing that the presentation implies:

xab = (xaxb)−1 . (1.81)

As a consequence the previous equivalent notations will be used from now on.
It turns out that such a manifold is a homology sphere if and only if na, nb and

nab are pairwise relatively prime and:

1
na

+ 1
nb
− 1
nab

= 1
nanbnab

. (1.82)

In this case, P. Kirk and E. Klassen found that:

SKK
CS = nanbnab

4

Ç
(2α+ 1)
na

+ (2β + 1)
nb

+ (2γ + 1)
nab

å2
. (1.83)

It can be shown that, actually, in R/Z :

SKK
CS =

Z

1
4

Ç
(2α+ 1)2

na
+ (2β + 1)2

nb
− (2γ + 1)2

nab

å
, (1.84)

which is consistent with the result (1.71) computed before and the expression (1.76)
conjectured after numerical computations.
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Figure 1.11: Particular case of the Poincaré homology sphere.
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Figure 1.12: Particular case of the Poincaré homology sphere with charges.
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Chapter 2. Geometric interpretation of gauge fixing in R4l+3

Introduction (English version)

The abelian CS action is considered in R4l+3 in this chapter:

SCSk = k

4π2

ˆ
R4l+3

Ã(2l+1) ∧ dÃ(2l+1). (2.1)

It should not be forgotten that this expression is not the abelianization of the SU (2)
CS action (see the normalization).

Set A = Ã
2π (to be compared with the choice made in chapter 1 of the first part).

Then:
SCSk = k

ˆ
R4l+3

A(2l+1) ∧ dA(2l+1), (2.2)

which is the action considered further.
It should be noted that the connections, which are objects of degree 1 in the

3-dimensional case, are replaced here by objects A(2l+1) of degree 2l + 1 in the
4l + 3-dimensional case. Since R4l+3 is contractible, A(2l+1) ∧ dA(2l+1) is an object
of degree 4l + 3 which is defined globally.

For using standard methods of computation of QFT, this action should be written
under the form:

SCSk = k
Ä
A(2l+1),DA(2l+1)ä , (2.3)

where D is an invertible operator. This is not possible for the moment. Under this
form, the theory has too many degrees of freedom and D is not invertible. Some
degrees of freedom have to be fixed. For this purpose, a gauge has to be fixed and
this so-called gauge fixing procedure has to be implemented in the action by
introducing auxiliary fields B(i) analogous to Lagrange multipliers. This procedure
therefore puts some constraints on the fields of the theory and the action becomes:

SCSk = k (A,DA) , (2.4)

with A =
Ä
A(2l+1), B(2l), . . . , B(0)

ä
.

Then, consider two 2l+1-cycles γ(2l+1)
1 and γ(2l+1)

2 and their associated de Rham
current j(2l+2)

1 and j(2l+2)
2 , that is, distributional objects such that:
ˆ
γ

(2l+1)
i

A(2l+1) =
ˆ
R4l+3

A(2l+1) ∧ j(2l+2)
i . (2.5)

Suppose γi is carrying a charge qi. Then:

q1

ˆ
γ

(2l+1)
1

A(2l+1) + q2

ˆ
γ

(2l+1)
2

A(2l+1) = (A,J ) , (2.6)
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where J =
(
q1j

(2l+2)
1 + q2j

(2l+2)
2 , 0, . . . , 0

)
. In the formalism of path integral, the

expectation value 〈γ(2l+1)
1 , γ

(2l+1)
2 〉 is given by:

〈γ(2l+1)
1 , γ

(2l+1)
2 〉 = 1

N

ˆ
H

DA(2l+1) e2iπk
´
R4l+3 A(2l+1)∧dA(2l+1)

e
2iπ
¸
γ

(2l+1)
1

A(2l+1)

e
2iπ
¸
γ

(2l+1)
2

A(2l+1)

. (2.7)

Taking into account the degeneracy of the theory and using a gauge fixing procedure,
the expectation value 〈γ(2l+1)

1 , γ
(2l+1)
2 〉 is actually given by:

〈γ1, γ2〉 = 1
NCSk

ˆ
H

DA e2iπk((A,DA)+(A,J )). (2.8)

Now perform a shift:
A −→ A− 1

2kD
−1J . (2.9)

Thanks to the self-adjointness of D and admitting that the formal measure D is
invariant under translation:

〈γ1, γ2〉 = e−
2iπ
4k (J ,D−1J )
NCSk

ˆ
H

DA e2iπk(A,DA). (2.10)

Hence, the quantity of interest is actually
(J ,D−1J ) and the technical difficulty

still consists in inverting the suitable operator D. It should be noted otherwise that
the γ(2l+1)

i are not exactly cycles but framed cycles1 and even more precisely with
ambient isotopy classes of framed cycles.

The point of this chapter is to interpret geometrically a set of gauge fixing proce-
dures. The propagator of the abelian CS theory in R4l+3 is computed with respect to
a distortion of the covariant gauge in Euclidean metric following two methods. The
first method is the usual one. The second consists in absorbing the distortion of the
gauge in the metric so as to consider the usual covariant gauge with an anisotropic
metric. The results are then interpreted in terms of linking number.

The study presented here is a generalization of [Gallot et al., 2018].

1It should not be forgotten that the framing of a cycle can be interpreted in the following way:
a cycle is not exactly a loop but a closed strip which is twisted n times, n ∈ Z.
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Introduction (version française)

L’action CS abélienne est considérée dans R4l+3 dans ce chapitre :

SCSk = k

4π2

ˆ
R4l+3

Ã(2l+1) ∧ dÃ(2l+1). (2.1)

Il ne doit pas être oublié que cette expression n’est pas l’abélianisation de l’action
CS SU (2) (voir la normalisation).

Soit A = Ã
2π (à comparer avec le choix fait dans le chapitre 1 de la première

partie). Alors :

SCSk = k

ˆ
R4l+3

A(2l+1) ∧ dA(2l+1), (2.2)

qui est l’action considérée plus loin.
Il doit être noté que les connexions, qui sont des objets de degré 1 dans le cas de

dimension 3, sont remplacées ici par des objets A(2l+1) de degré 2l + 1 dans le cas
de dimension 4l + 3. Puisque R4l+3 est contractile, A(2l+1) ∧ dA(2l+1) est un objet
de degré 4l + 3 qui est défini globalement.

Pour utiliser les méthodes standard de calcul de QFT, cette action doit être
écrite sous la forme :

SCSk = k
Ä
A(2l+1),DA(2l+1)ä , (2.3)

où D est un opérateur inversible. Ce n’est pour l’instant pas possible. Sous cette
forme, la théorie a trop de degrés de liberté et D n’est pas inversible. Des degrés de
liberté doivent être fixés. Pour cela, une jauge doit être fixée et cette procédure dite
de fixation de jauge doit être implémentée dans l’action en utilisant des champs
auxiliaires B(i) analogues à des multiplicateurs de Lagrange. Cette procédure con-
traint par conséquent les champs de la théorie et l’action devient :

SCSk = k (A,DA) , (2.4)

avec A =
Ä
A(2l+1), B(2l), . . . , B(0)

ä
.

Ensuite, des 2l+1-cycles γ(2l+1)
1 et γ(2l+1)

2 sont considérés ainsi que leurs courants
de de Rham associés j(2l+2)

1 et j(2l+2)
2 , c’est-à-dire, des objets distributionnels tels

que : ˆ
γ

(2l+1)
i

A(2l+1) =
ˆ
R4l+3

A(2l+1) ∧ j(2l+2)
i . (2.5)

À γi est associée une charge qi. Alors :

q1

ˆ
γ

(2l+1)
1

A(2l+1) + q2

ˆ
γ

(2l+1)
2

A(2l+1) = (A,J ) , (2.6)
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où J =
(
q1j

(2l+2)
1 + q2j

(2l+2)
2 , 0, . . . , 0

)
. Dans le formalisme des intégrales fonction-

nelles, la valeur moyenne d’observables 〈γ(2l+1)
1 , γ

(2l+1)
2 〉 est donnée par :

〈γ(2l+1)
1 , γ

(2l+1)
2 〉 = 1

N

ˆ
H

DA(2l+1) e2iπk
´
R4l+3 A(2l+1)∧dA(2l+1)

e
2iπ
¸
γ

(2l+1)
1

A(2l+1)

e
2iπ
¸
γ

(2l+1)
2

A(2l+1)

. (2.7)

Tenant compte de la dégénérescence de la théorie et utilisant une procédure de
fixation de jauge, la valeur moyenne 〈γ(2l+1)

1 , γ
(2l+1)
2 〉 est en fait donnée par :

〈γ1, γ2〉 = 1
NCSk

ˆ
H

DA e2iπk((A,DA)+(A,J )). (2.8)

Un changement de variable est ensuite effectué :

A −→ A− 1
2kD

−1J . (2.9)

Grâce au fait que D est auto-adjoint, et supposant que la mesure formelle D est
invariante par translation :

〈γ1, γ2〉 = e−
2iπ
4k (J ,D−1J )
NCSk

ˆ
H

DA e2iπk(A,DA). (2.10)

Ainsi, la quantité intéressante est en fait
(J ,D−1J ) et la difficulté technique consiste

toujours à inverser l’opérateur D approprié. Il doit être noté par ailleurs que les
γ

(2l+1)
i ne sont pas exactement des cycles mais des cycles encadrés1 et même plus

précisément des classes d’isotopie ambiante de cycles encadrés.
L’objectif de ce chapitre est d’interpréter géométriquement un ensemble de procé-

dures de fixation de jauge. Le propagateur de la théorie CS abélienne dans R4l+3 est
calculé pour une déformation de la jauge covariante en métrique euclidienne suivant
deux méthodes. La première méthode est la méthode usuelle. La deuxième con-
siste à absorber la déformation de la jauge dans la métrique de sorte à considérer la
jauge covariante habituelle dans une métrique anisotrope. Les résultats sont alors
interprétés en termes de nombre d’enlacements.

Le travail présenté ici est une généralisation de [Gallot et al., 2018].

1Il ne doit pas être oublié que le cadre d’un cycle peut être interprété de la façon suivante : un
cycle n’est pas tout à fait une boucle mais une bande fermée vrillée n fois, n ∈ Z.
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Chapter 2. Geometric interpretation of gauge fixing in R4l+3

2.1 Conventions

Fields. The vectors are noted here by lower case letters n = nµ∂µ and capi-
tal or Greek letters are used for the forms ω(r) = ωµ1...µrψ

µ1 ∧ . . . ∧ ψµr , with
(ψµ1 ∧ . . . ∧ ψµr)µ1,...,µr∈J1;4l+3K a basis of the subspace of the r-forms of the exterior
algebra ∧4l+3(R4l+3). Hence, a lowercase letter can be transformed into a capital
one via the action of a metric g on R4l+3 as Ng

µ = gµνn
ν for a given vector n. When

g is simply the Euclidean metric, the superscript g will be omitted. It should be
noted that although the notations of differential geometry are adopted here, the
covariance involved in those computations is just that of Gl

Ä
R4l+3

ä
.

Consider the so-called Levi-Civita symbol which is the totally antisymmetric
tensor defined by:

εµ1...µ4l+3 =





+1 if ε ((µ1 . . . µ4l+3)) = +1,
0 if ∃ i, j ∈ J1 ; 4l + 3K | µi = µj ,

−1 if ε ((µ1 . . . µ4l+3)) = −1,
(2.11)

where ε ((µ1 . . . µ4l+3)) is the signature of the permutation (µ1 . . . µ4l+3).
Let ω(r) = 1

r!ωµ1...µrψ
µ1 ∧ . . . ∧ ψµr be a r-form. The Hodge dualization ∗g with

respect to a metric g of ω is defined by:

∗gω(r) =
»
|g|

r! (4l + 3− r)!g
µ1ν1 . . . gνrµrεν1...ν4l+3ωµ1...µrψ

νr+1 ∧ . . . ∧ ψν4l+3 , (2.12)

with |g| = det (g).
It should be noted that since 4l + 3 is odd and the metrics considered are rie-

mannian:
∗g ∗gω(r) = ω(r). (2.13)

Let η(q) = 1
q!ηµ1...µqψ

µ1 ∧ . . . ψµq , then the exterior product ω(r) ∧ η(q) is:

ω(r) ∧ η(q) = 1
r!q!ωµ1...µrηµr+1...µr+qψ

µ1 ∧ . . . ∧ ψµr+q . (2.14)

Let m and n be a pair of vectors. The scalar product of m and n with respect
to a metric g will be denoted m ·g n and the norm of m with respect to g will be
denoted |m|g. Here also, the index g will be omitted when g is the Euclidean metric.

The correspondence between the Lagrangian form L and the Lagrangian density
L is then L = ∗gL so that

´
L =

´
L
»
|g|dnx according to equation (2.12).

138



2.1. Conventions

Fourier transform with respect to a constant anisotropic metric. In the
following, the fields considered are elements of the tensor product between smooth
functions and the exterior algebra C∞

Ä
R4l+3
x

ä
⊗ ∧∗(R4l+3). The Fourier transform

is defined so as to send the set of fields in a copy of itself C∞
Ä
R4l+3
k

ä
⊗ ∧∗(R4l+3).

In particular this Fourier transform preserves form degrees.
The Fourier transform of ω(r) = 1

r!ωµ1...µr (x)ψµ1
x ∧ . . . ∧ ψµrx with respect to the

metric g is defined by:

FTg

î
ω(r)ó = 1

r!FTg [ωµ1...µr ] (k)ψµ1
k ∧ . . . ∧ ψ

µr
k , (2.15)

where:

FTg [ωµ1...µr ] (k) =
ˆ
R4l+3

ωµ1...µr (x) e−ikµgµνxν d4l+3x. (2.16)

The definition of a Fourier transform with respect to the metric g relies heavily on
the fact that this metric is constant albeit anisotropic .

The inverse Fourier transform of φ(r) = 1
r!φµ1...µr (k)ψµ1

k ∧ . . .∧ψ
µr
k with respect

to the metric g is defined by:

FT−1
g

î
φ(r)ó = 1

r!FT−1
g [φµ1...µr ] (x)ψµ1

x ∧ . . . ∧ ψµrx , (2.17)

where:

FT−1
g [φµ1...µr ] (x) = 1

(2π)4l+3

ˆ
R4l+3

φµ1...µr (k) eikµgµνxν |g|d4l+3k. (2.18)

With these definitions:
FTg [∂µ] = −iKg

µ, (2.19)

where Kg
µ = gµνk

ν according to the convention set before.
Convolution is defined as usual:

u� v (x) =
ˆ
R4l+3

u (y) v (x− y) dy, (2.20)

so that FTg turns convolutions into pointwise products:

FTg [u� v] = FTg [u] · FTg [v] . (2.21)

Here also, the index g will be omitted when g is the Euclidean metric.
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Chapter 2. Geometric interpretation of gauge fixing in R4l+3

2.2 Correlators

In the Euclidean metric. Consider the gauge fixing function:

F (A) = α1∂1A1 + . . .+ α4l+3∂4l+3A4l+3 (2.22)

in Euclidean metric, or:
F (A) = gµν∂µAν , (2.23)

with gµν the inverse of the anisotropic metric:

gµν =




1
α1

0 . . . 0 0
0 1

α2
0

... . . . ...
0 1

α4l+2
0

0 0 . . . 0 1
α4l+3



. (2.24)

Rewrite F as:

F (A) =
4l+3∑

i=1
αi (nνi ∂ν) (nµi Aµ) , (2.25)

where the ni form the canonical basis of R4l+3
x and the αi are real numbers that will

be considered to vary in ]0 ; 1]. This constraint is implemented by adding the La-
grange multiplier term B F (A) where B is an auxiliairy field, to the CS Lagrangian.

In order to easily generalize to 4l + 3 dimensions, it is convenient to translate
the Lagrange constraint into geometric terms using the exterior derivative, wedge
product and Hodge dualization:

LGF = B
4l+3∑

i=1
αiNi ∧ ∗ d ∗ ∧Ni

∗A, (2.26)

where the αi are defined as above. Expression (2.26) shall be understood as follows:
the Hodge dualization ∗, wedge product and exterior derivative successively act from
right to left on the whole forms on their respective right sides. For example,

B ∧Ni ∧ ∗ d ∗ ∧Ni
∗A⇔ B ∧ 〈Ni ∧ {∗ [d (∗ (Ni ∧ ∗A))]}〉 . (2.27)

In 4l+ 3 dimensions A = A(2l+1) is a (2l + 1)-form, thus B = B(2l) is a 2l-form and
the above gauge-fixing constraint is incomplete as a large residual gauge invariance
with respect to B(2l) is left. The latter can be fixed in its turn using a similar
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2.2. Correlators

procedure with a (2l − 1)-form of Lagrange multipliers B(2l−1) etc. in a cascading
way. The complete gauge fixing Lagrangian then reads:

LGF =B(2l) ∧
4l+3∑

i=1
αiNi ∧ ∗ d ∗ ∧Ni

∗A(2l+1)

+B(2l−1) ∧
4l+3∑

i=1
αiNi ∧ ∗ d ∗ ∧Ni

∗B(2l)

+ . . .

+B(0) ∧
4l+3∑

i=1
αiNi ∧ ∗ d ∗ ∧Ni

∗B(1). (2.28)

Focus now on the computation of this two-point autocorrelator of A in the interpolat-
ing gauge considered. For this purpose, defineA =

Ä
A(2l+1), B(2l), B(2l−1), . . . , B(0)

ä
.

The complete action can be written as a scalar product:

1
2 (A,DA) =

ˆ
R4l+3

LCS + LGF. (2.29)

In this equation, D is the (2l + 2)× (2l + 2) matrix differential operator:




(∗ d)(2l+1,2l+1) −Ψ(2l+1,2l) 0 0
Ξ(2l,2l+1) 0 Ψ(2l,2l−1) 0

0 Ξ(2l−1,2l) 0 −Ψ(2l−1,2l−2)

0 0 Ξ(2l−2,2l−1) 0

. . .
0 −Ψ(1,0)

Ξ(0,1) 0




, (2.30)

where:

Ξ =
4l+3∑

i=1
αi
∗Ni ∧ ∗ d ∗ ∧Ni

∗ (2.31)

and:

Ψ =
4l+3∑

i=1
αiNi ∧ ∗ d ∗ ∧Ni. (2.32)

The right superscript indicates the degree of the form on which the operator acts,
the left superscript indicates the degree of the resulting form. It should be pointed
out that Ξ 6= ± ∗Ψ ∗ since the degree on which each operates is not the same.
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Chapter 2. Geometric interpretation of gauge fixing in R4l+3

With respect to the conventions introduced in section 2.1 the Fourier transform
of D is the (2l + 2)× (2l + 2) matrix multiplicative operator FT [D]:




FT[(∗ d)(2l+1,2l+1)] −FT[Ψ(2l+1,2l)]
FT[Ξ(2l,2l+1)] 0

0 FT[Ξ(2l−1,2l)]
0 0

. . .
0 −FT[Ψ(1,0)]

FT[Ξ(0,1)] 0




, (2.33)

where:

FT
î
(∗ d)(2l+1,2l+1)ó = −i ∗K∧ , (2.34)

FT
î
Ξ(r,r+1)ó = −i ∗Q ∧ ∗ , (2.35)

FT
î
Ψ(r+1,r)ó = −iQ∧ , (2.36)

with:

Q =
4l+3∑

i=1
αiNi ∧ ∗K ∗ ∧Ni. (2.37)

It should be noted that:
Qµ = δµνq

ν , (2.38)

with:

q =
4l+3∑

i=1
αiki, (2.39)

where the confusion ki = (0, . . . , 0, ki, 0, . . . , 0) is made for convenience.
The aim is to find a right-inverse operator from the point of view of the convo-

lution in the direct space:
D � P (x) = δ (x) (2.40)

thus satisfying in the Fourier space:

FT [D] FT [P] = Id, (2.41)

with:
FT [P] =

(
FT
î
P(2l+2−i,2l+2−j)ó

i,j

)
1≤i,j≤2l+2

. (2.42)

From now on, the superscripts will be omitted since they are completely determined
by the subscripts.
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2.2. Correlators

Let us focus on the component FT [P]1,1 since it is the only one that matters in
the computation of the link invariant. Finally:

FT [P]1,1 = −i ∗ Q

k · q∧ , (2.43)

where k =
4l+3∑
i=1

ki, taking the convention ki = (0, . . . , 0, ki, 0, . . . , 0). It must be borne
in mind that this equation describes actually an action on 2l + 1-forms: the Hodge
dualization does not act on Q but on Q ∧ ω(2l+1).

Rewrite FT [P]1,1 in terms of components:

FT [P]µ1...µ2l+1ν1...ν2l+1
= − i

(2l + 1)!εµ1...µ2l+1ν1...ν2l+1ρ
αρk

ρ

4l+3∑
i=1

αik2
i

, (2.44)

where the matrix indices are omitted for convenience.
It should be noted that the normalization 1

(2l+1)! comes from the Hodge dualiza-
tion ∗ applied to a 2l + 2-form.

The computation of the inverse Fourier transform leads to:

Pµ1...µ2l+1ν1...ν2l+1 (x)

= 1
(2l + 1)!

Γ
Ä

4l+3
2
ä

2π 4l+3
2

1√
α1 . . . α4l+3

εµ1...µ2l+1ν1...ν2l+1ρ
xρ

|x|4l+3
g

. (2.45)

This two-point autocorrelator is reminiscent of the well-known Gauss linking
formula according to the anisotropic metric g.

In the anisotropic metric. The gauge fixing function used here is:

F (A) = gµν∂µAν , (2.46)

with gµν the inverse of the anisotropic metric:

gµν =




1
α1

0 . . . 0 0
0 1

α2
0

... . . . ...
0 1

α4l+2
0

0 0 . . . 0 1
α4l+3



. (2.47)
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Chapter 2. Geometric interpretation of gauge fixing in R4l+3

More generally in dimension 4l + 3 the gauge fixing Lagrangian reads:

LgGF =B(2l) ∧ d ∗gA(2l+1)

+B(2l−1) ∧ d ∗gB(2l)

+ . . .

+B(0) ∧ d ∗gB(1), (2.48)

where the B(k)s are auxiliary fields. It corresponds to the “covariant” gauge in the
anisotropic metric g.

The two-point autocorrelator of A is now computed in this gauge. With A =Ä
A(2l+1), B(2l), B(2l−1), . . . , B(0)

ä
, the gauge fixed action reads:

1
2 (A,DgA)g = 1

2

ˆ
R4l+3

LCS + LgGF, (2.49)

with Dg represented by the (2l + 2)× (2l + 2) matrix:



(∗g d)(2l+1,2l+1) − d(2l+1,2l) 0
Φ(2l,2l+1)
g 0 d(2l,2l−1)

0 Φ(2l−1,2l)
g 0

0 0 Φ(2l−2,2l−1)
g

. . .
0 − d(1,0)

Φ(0,1)
g 0




, (2.50)

with:
Φg = ∗g d ∗g . (2.51)

The conventions on the superscripts are the same as the ones in the previous para-
graph. It should be noted that Φg 6= ± ∗g d ∗g since the degree on which each operates
is not the same.

Performing a Fourier transformation with respect to the metric g of Dg, an
operator FTg [Dg] is obtained. It is represented by the (2l + 2)× (2l + 2) matrix:




FTg[(∗g d)(2l+1,2l+1)] −FTg[d(2l+1,2l)]
FTg
î
Φ(2l,2l+1)
g

ó
0

0 FTg
î
Φ(2l−1,2l)
g

ó
0 0

. . .
0 −FTg[d(1,0)]

FTg
î
Φ(0,1)
g

ó
0




, (2.52)
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2.2. Correlators

with:

FTg

î
(∗g d)(2l+1,2l+1)ó = −i ∗gKg∧ , (2.53)

FTg

î
Φ(r,r+1)
g

ó
= −i ∗gKg ∧ ∗g , (2.54)

FTg

î
d(r+1,r)ó = −iKg ∧ . (2.55)

The aim is to find a right-inverse operator from the point of view of the convo-
lution in the direct space:

Dg � Pg (x) = δ (x) (2.56)

thus satisfying in the Fourier space:

FTg [Dg] FTg [Pg] = Id, (2.57)

with:
FTg [Pg] =

(
FTg

î
P(2l+2−i,2l+2−j)
g

ó
i,j

)
1≤i,j≤2l+2

. (2.58)

From now on, the superscripts will be omitted since they are completely determined
by the subscripts.

Finally:
FTg [Pg]1,1 = −i ∗g Kg

k ·g k
∧ , (2.59)

which is perfectly analogous to the previous result:

FT [P]1,1 = −i ∗ Q

k · q∧ , (2.60)

up to a dissymmetry between q and k and with ·g and ∗g instead of · and ∗.
Rewrite FTg [Pg]1,1 in terms of components:

FTg [Pg]µ1...µ2l+1ν1...ν2l+1
= −

i
»
|g|

(2l + 1)!εµ1...µ2l+1ν1...ν2l+1ρ
kρ

4l+3∑
i=1

1
αi
k2
i

, (2.61)

where the matrix indices are omitted for convenience.
The computation of the inverse Fourier transform leads to:

(Pg)µ1...µ2l+1ν1...ν2l+1 (x)

= 1
(2l + 1)!

Γ
Ä

4l+3
2
ä

2π 4l+3
2

1
α1 . . . α4l+3

εµ1...µ2l+1ν1...ν2l+1ρ
xρ

|x|4l+3
g

, (2.62)

which is not exactly the same result as the P found in the previous part because
of the normalization factor coming from the Hodge dualization in FT [P]. However,
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Chapter 2. Geometric interpretation of gauge fixing in R4l+3

the normalization factor is absorbed in the computations of the building blocks of
the expectation value of observables:

(J1,PJ2) = (J1,PgJ2)g (2.63)

by definition, so this operation contains a Hodge dualization and FTg [Pg] too and
in section 2.1 it has been shown that the double Hodge dualization is the identity.
Both approaches are thus equivalent for the computation of observables.

To sum up, the Euclidean metric δµν has been changed into the constant anisotropic
metric gµν . Instead, the active Gl

Ä
R4l+3

ä
transformation of R4l+3 which transforms

(via pullback or pushforward) the Euclidean metric into the anisotropic one could
have been considered. However, it appeared that this approach would have been
more cumbersome since it would have been necessary to take gauge potential trans-
formations into account.

2.3 Limits

The limit cases investigated here can be generically written as:
{
α1, . . . , αk −→ 0,
αk+1, . . . , α4l+3 −→ 1,

(2.64)

for k ∈ J1 ; 4l + 2K. This operation makes the metric singular with k singularities.
Geometrically, this amounts to flatten k directions of the space.

Since:
(I1,PI2) = (I1,PgI2)g , (2.65)

consider P which has the simplest expression:

Pµ1...µ2l+1ν1...ν2l+1 (x)

= 1
(2l + 1)!

Γ
Ä

4l+3
2
ä

2π 4l+3
2

1√
α1 . . . α4l+3

εµ1...µ2l+1ν1...ν2l+1ρ
xρ

|x|4l+3
g

. (2.66)

Since the area of the unit 4l+ 2-dimensional sphere S4l+2 is
∣∣∣S4l+2

∣∣∣ = 2π
4l+3

2
Γ( 4l+3

2 ) , then:

Pµ1...µ2l+1ν1...ν2l+1 (x)

= 1
(2l + 1)!

1
|S4l+2|

1√
α1 . . . α4l+3

εµ1...µ2l+1ν1...ν2l+1ρ
xρ

|x|4l+3
g

. (2.67)
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The limit investigated can be written:

Pµ1...µ2l+1ν1...ν2l+1 (x)

= 1
(2l + 1)!

∣∣∣Sk−1
∣∣∣

|S4l+2|Ikεµ1...µ2l+1ν1...ν2l+1ρ
xρ⊥

|x⊥|4l+3−k δ
(k) Äx‖

ä
, (2.68)

with:
x‖ =

Ä
x1, . . . , xk, 0 . . . 0

ä
, (2.69)

and:
x⊥ =

Ä
0, . . . , 0, xk+1, . . . , x4l+3ä , (2.70)

so that:
x = x‖ + x⊥ (2.71)

and:
Ik =

ˆ +∞

0
dr

rk−1

(1 + r2)
4l+3

2
. (2.72)

For k even, then:

Ik = (k − 2) (k − 4) . . . 2
(4l + 1) (4l − 1) . . . (4l − (k − 5)) (4l − (k − 3)) (2.73)

and for k odd, then:

Ik = (k − 2) (k − 4) . . . 1
(4l + 1) (4l − 1) . . . (4l − (k − 4))

24l−(k−2)
Ä
2l − k−3

2
ä
!
Ä
2l − k−1

2
ä
!

(4l − (k − 3))! . (2.74)

The explicit formula of P can be given for some specific cases:

• k = 1 would correspond to a generalization of the Coulomb gauge and:

Pµ1...µ2l+1ν1...ν2l+1 (x)

= 1
(2l + 1)

1
2π2l+1 εµ1...µ2l+1ν1...ν2l+1ρ

xρ⊥
|x⊥|4l+2 δ

(1)(x‖), (2.75)

• k = 4l + 2 would correspond to a generalization of an axial-like gauge2 and:

Pµ1...µ2l+1ν1...ν2l+1 (x)

= 1
2

1
(2l + 1)!εµ1...µ2l+1ν1...ν2l+1ρ

xρ⊥
|x⊥|

δ(4l+2)(x‖). (2.76)
2In the sense that an axial gauge nµAµ = 0 for a given vector n would imply a fortiori

nν∂ν (nµAµ) = 0.
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Chapter 2. Geometric interpretation of gauge fixing in R4l+3

In the previous computation two particular cases were eliminated:

• k = 0 is purely covariant gauge, so there is no integral to compute and:

Pµ1...µ2l+1ν1...ν2l+1 (x)

= 1
(2l + 1)!

Γ
Ä

4l+3
2
ä

2π 4l+3
2

εµ1...µ2l+1ν1...ν2l+1ρ
xρ

|x|4l+3 , (2.77)

• k = 4l + 3 has no meaning from the geometric point of view, and it can be
noticed through the fact that rk−1

(1+r2)
4l+3

2
is not integrable on R+.

The covariant, Coulomb and axial-like gauges where investigated in [Gallot et al.,
2018] while the formula (2.68) is a generalization that is not published. It provides a
general expression of the propagator of abelian CS theory in R4l+3 for the complete
family of derivative gauges (2.22). It is noteworthy that the Coulomb and axial-
like gauges provide examples of the two different situations that arise through the
computation of Ik in the general case.

2.4 Geometric interpretation
The linking formula has a universal expression:

(I1,PI2) = (I1,PgI2)g = 1
|S4l+2|

˛
γ1

˛
γ2

[eg (x, y) , dx, dy]g
|x− y|4l+2

g

, (2.78)

where Ii is the de Rham current associated with γi,

eg (x, y) = x− y
|x− y|g

(2.79)

and:

[a, b, c]g =
»
|g|

(2l + 1)!2 ερµ1...µ2l+1ν1...ν2l+1a
ρbµ1...µ2l+1cν1...ν2l+1 . (2.80)

Universal means here that the right-hand side of equation (2.78) does not depend
on the choice between the two methods presented in the previous sections, that
is, computation in Euclidean metric with anisotropic gauge fixing or in anisotropic
metric with covariant gauge.

Given two cycles γ1 and γ2, the Gauss map (x, y) 7−→ eg (x, y) , (x, y) ∈ γ1×γ2 is
a mapping from a product of two manifolds, each being homeomorphic to S2l+1, in a
manifold homeomorphic to S4l+2. The linking formula represents the degree of this
map, that is, the number of times the manifold homeomorphic to S4l+2 is covered.
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2.4. Geometric interpretation

This manifold can be seen to be an ellipsoid embedded in R4l+3 endowed with the
Euclidean metric or to be exactly S4l+3 in R4l+3 endowed with the anisotropic metric
g. The product γ1×γ2 has to be homeomorphic to S2l+1×S2l+1 for the degree map
to be well-defined. Thus, depending on the limit chosen, some classes of degenerated
cases arise. However, since the linking formula is invariant under ambient isotopy,
a representative in the ambient isotopy class can be chosen for the linking number
to be well-defined.

To illustrate this, let us consider the case of R3. Keeping the notations of the
previous section, k = 0 is the covariant gauge, k = 1 is the Coulomb gauge and
k = 2 is an axial-like gauge. The typical non-pathological configuration probed by
the covariant gauge is represented in Figure 2.1(a) while an example of a degenerate
configuration is presented in Figure 2.1(b). Similarly for Coulomb gauge, those
configurations are shown in Figures 2.2(a) and 2.2(b) and for axial-like gauge in
Figures 2.3(a) and 2.3(b).

(a) Non-pathological configuration. (b) Pathological configuration.

Figure 2.1: The case of covariant gauge.

(a) Non-pathological configuration. (b) Pathological configuration.

Figure 2.2: The case of covariant gauge.
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(a) Non-pathological configuration. (b) Pathological configuration.

Figure 2.3: The case of covariant gauge.
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Conclusion (English version)

This study presented an abelian modular category. It produced the corresponding
abelian RT and TV invariants related together, in accordance with the theorem
of Reshetikhin, Turaev and Viro. A weaker version of the abelian RT invariant
has been studied. However, it is not related to the abelian TV invariant derived
before since its construction relies on a finite semisimple spherical category and not
a modular category anymore.

The abelian CS and BF theories have been defined on any closed manifold M (3)

of dimension 3. Those abelian theories are not written as usual in terms of con-
nections but in terms of gauge classes of connections which are nothing but DB
cohomology classes. By introducing DB cohomology in formal functional integrals,
it was then possible to switch from a purely formal object to finite integrals which
finally produce topological invariants. The partition functions of the abelian CS
and BF theories turned out then to be equal respectively to the abelian RT and TV
invariants derived previously, up to a factor depending on the homology of M (3).
Those equalities establish a non-trivial correspondence between topological invari-
ants probed by categories on the one hand, and by connections on the other hand.
It is noteworthy that the connections probe the topology of the manifold M (3) itself
whereas the categories probe the topology of a graph related to M (3), sometimes
located in M (3) (a triangulation), sometimes located in S3 (a surgery link).

Moreover, it is natural to introduce the expectation value of observables in QFT
from physicsts’ point of view, whereas it is not in the perspective of mathematicians.
Categories are not really adapted for that. Through the identification made in this
study by direct computations between those two different perspectives, it is now
possible to identify invariants of links in the manifold M (3) under consideration
with the expectation value of observables where categories are concerned and show
correspondences with the usual expectation value of observables, where connections
are concerned.

Such kind of results have been known for several years in the non-abelian case,
mostly SU(2). Through this study, it appeared that subtleties arise in the U(1) case
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Conclusion (English version)

which is fundamentaly different from the SU(N) case1. In particular, regarding the
partition functions, in general:

∣∣∣ZCSk
Ä
M (3)ä∣∣∣2 6= ZBFk

Ä
M (3)ä . (1)

The equality can occur depending on the topology of M (3). This fact could be ex-
pected since the formal equality established in the non-abelian case is strongly based
on the cosmological constant κ that cannot appear in the abelian case. Moreover,
surprisingly, the abelian CS theory is not related to the modular abelian RT theory
but its extension, contrary to the non-abelian case. The ad hoc regularization by
quantum groups, appearing in particular in LQG, arises here naturally through the
reciprocity formulæ. Those formulæ can be understood in some sense as a proof of
the surgery formulæ.

It has been shown all along this study that the abelian CS and BF theories,
through the quadratic form Q over the cohomological torsion, have something to do
with linking, intersection and crossings... The extensions of this study presented in
part III show that this is still true for abelian CS theory in R4l+3, using customary
physicists’ methods of computation. Some pieces of those ideas also seem to appear
in the computation of the SU(N) CS invariant. This potentially opens new ways for
understanding the non-abelian case.

It is however important to keep in mind that what was called CS and BF actions
in the present study is very specific: the fields of the theories have been considered
to be DB cohomology classes, that is, U (1) gauge classes, whose representatives are
local forms defined in open sets, which stick together inside the intersections of those
open sets by means of gauge transformations. The DB cohomology is the natural
tool with which computations on such kind of actions can be performed. Sometimes,
in the mathematics literature, the abelian CS and BF actions are defined globally.
This is the same as considering only the fiber over the null class in DB affine bundle
and it is actually the choice of normalization taken here for partition function. What
is remarkable is that this way of defining the abelian CS and BF theories starts from
the usual physical idea of local observers and in addition, it is related to the abelian
RT and TV theory.

The formalism of functional integrals and the theory of categories produce two
different approaches of TQFT that appeared in this study to be strongly related in
the particular cases of the abelian CS and BF theories. However, the aim of this
study is not to define properly the formalism of functional integral nor to propose
a systematical way of computation. What has been done is just an extraction of
relevant topological quantities from purely formal functional integrals.

The formalism of functional integrals is not limited to those two theories since it
can be used for any theory that can be expressed in terms of an action functional,

1It should not be forgotten that the SU(N) groups are simply connected whereas U(1) is not.
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although the DB cohomology non-perturbative approach remains very specific to
the present study. In general, only standard perturbative methods provide some
results. The theory of categories provides also a framework to study other QFT like
CFT [Fuchs et al., 2002] reducing the problems to the computation of quantities
related to graphs.

This study presents a quite closed set of results related to abelian RT, TV, CS
and BF theories in dimension 3. However, it raises several open questions.

First, since the DB product maps H [p]
DB × H

[q]
DB to H

[p+q+1]
DB , it is possible to

consider integrals of polynomial functions of DB cohomology classes over closed
manifolds M (n) of any dimension n as actions. For example, the abelian CS theory
defined here in terms of DB cohomology classes in dimension 3 has already been
extended to closed manifolds M (4l+3) of dimension 4l + 3. It has similar properties
as that presented in this study and produces analogous invariants of manifolds and
links in those manifolds [Gallot et al., 2013]. Hence, an action that consists in
an integral of a polynomial function of some DB cohomology classes should also
lead to some topological invariants, and since the reciprocity formulæ presented in
this study do not depend on the dimension, those invariants might be related to
invariants built from some generalizations of a surgery procedure in dimension n.
Some relations might also exist with generalizations of abelian RT and TV theories.

Furthermore, in the so-called Batalin-Vilkovisky formalism, abelian BF theory
has been proved to be in relation with the Reidemeister torsion of the manifold
under consideration [Cattaneo et al., 2017]. The comparison of this approach and
the approach discussed in this study could lead to a new understanding of this topic.

Ultimately, the abelian CS theory plays a role in the quantum Hall effect and it
appeared relevant to study tensor powers of U (1) as a gauge group [Fräßdorf, 2018].
As a consequence, the theory is not characterized by a unique coupling constant
anymore, but by a matrix of coupling constants. For such a theory, there might be
an extension of DB cohomology approach that makes it possible to get exact results.
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Conclusion (version française)

Ce travail a présenté une catégorie modulaire abélienne. Il a produit les invariants
RT et TV abéliens correspondants reliés entre eux, en accord avec le théorème de
Reshetikhin, Turaev et Viro. Une version plus faible de l’invariant RT abélien a été
étudiée. Cependant, elle n’est pas reliée à l’invariant TV considéré précédemment
puisque sa construction ne repose plus sur une catégorie modulaire mais sur une
catégorie sphérique semisimple finie.

Les théories CS et BF abéliennes ont été définies sur toute variété fermée M (3)

de dimension 3. Ces théories abéliennes ne sont pas écrites comme d’habitude en
termes de connexions mais en termes de classes de jauge de connexions qui ne sont
rien d’autre que des classes de cohomologie DB. L’introduction de la cohomologie
DB dans des intégrales fonctionnelles formelles a permis de transformer des objets
purement formels en des intégrales finies qui produisent finalement des invariants
topologiques. Les fonctions de partition des théories CS et BF abéliennes se sont
avérées respectivement égales aux invariants RT et TV abéliens présentés précédem-
ment, à un facteur près dépendant de l’homologie de M (3). Ces égalités établissent
une correspondance non-triviale entre les invariants topologiques sondés par les caté-
gories d’une part et par les connexions d’autre part. Il est important de noter que
les connexions sondent la topologie de la variété M (3) elle-même alors que les caté-
gories sondent la topologie d’un graphe relié à M (3), parfois localisé dans M (3) (une
triangulation), parfois localisé dans S3 (un entrelac de chirurgie).

De plus, il est naturel d’introduire des valeurs moyennes d’observables en QFT
d’un point de vue de physicien, alors que ça ne l’est pas d’un point de vue de
mathématicien. Les catégories ne sont pas vraiment adaptées pour cela. A travers
l’identification faite dans ce travail par des calculs directs entre ces deux différentes
perspectives, il est maintenant possible d’identifier des invariants d’entrelacs dans
la variété M (3) considérée avec des valeurs moyennes d’observables en termes de
catégories et de montrer des correspondances avec les valeurs moyennes d’observables
usuelles en termes de connexions.

Des résultats de ce type sont connus depuis plusieurs années dans le cas non-
abélien, principalement SU(2). A travers ce travail, il s’avère que des subtilités
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Conclusion (version française)

surviennent dans le cas U(1) qui est fondamentalement différent du cas SU(N)1. En
particulier, concernant les fonctions de partition, en général :

∣∣∣ZCSk
Ä
M (3)ä∣∣∣2 6= ZBFk

Ä
M (3)ä . (1)

L’égalité peut survenir en fonction de la topologie de M (3). Ce fait pouvait être
attendu puisque l’égalité formelle établie dans le cas non-abélien repose fortement
sur la constante cosmologique κ qui ne peut apparaître dans le cas abélien. De
plus, de façon surprenante, la théorie CS abélienne n’est pas reliée à la théorie RT
abélienne modulaire, mais à son extension, contrairement au cas non-abélien. La
régularisation ad hoc par des groupes quantiques, apparaissant en particulier en
LQG, survient ici naturellement à travers les formules de réciprocité. Ces formules
peuvent être comprises d’une certaine façon comme une preuve des formules de
chirurgie.

Il a été montré tout au long de ce travail que les théories CS et BF abéliennes,
à travers la forme quadratique Q sur la torsion cohomologique, ont quelque chose à
voir avec de l’enlacement, de l’intersection, des croisements... Les extensions de ce
travail présentées en partie III montrent que c’est toujours vrai pour la théorie CS
abélienne dans R4l+3, en utilisant les méthodes standard de calcul des physiciens.
Des éléments de telles idées ont aussi l’air d’apparaître dans le calcul de l’invariant
CS SU(N). Ceci ouvre de nouvelles perspectives potentielles pour la compréhension
du cas non-abélien.

Il est cependant important de garder en tête que ce qui a été appelé actions CS
et BF dans ce travail est très spécifique : les champs de la théorie ont été en fait
pris comme étant des classes de cohomologie DB, c’est-à-dire, des classes de jauge
de connexions U (1), dont les représentants sont des formes locales définies dans des
ouverts, qui se recollent dans les intersections de ces ouverts par transformations
de jauge. La cohomologie DB est l’outil naturel avec lequel les calculs de ce genre
d’actions peuvent être effectués. Parfois, dans la littérature, les actions CS et BF
abéliennes sont définies globalement. Cela revient à considérer seulement la fibre au-
dessus de la classe nulle dans le fibré affine représentant les classes de cohomologie
DB, ce qui est le choix de normalisation pris ici pour la fonction de partition. Il est
remarquable, que cette façon de définir les théories CS et BF abéliennes parte de
l’idée physique usuelle d’observateurs locaux et s’avère en plus reliée aux théories
RT et TV abéliennes.

Le formalisme des intégrales fonctionnelles et la théorie des catégories constituent
deux approchent différentes des TQFT qui se sont avérées dans ce travail fortement
liées dans les cas particuliers des théories CS et BF abéliennes. Cependant, le but
de ce travail n’est pas de définir proprement l’intégrale fonctionnelle ni de proposer

1Il doit être gardé en tête que les groupes SU(N) sont simplement connexes alors que U(1) ne
l’est pas.
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une méthode systématique de calcul. Ce qui a été fait n’est qu’une extraction des
quantités topologiques pertinentes d’intégrales fonctionnelles purement formelles.

Le formalisme des intégrales fonctionnelles n’est pas limité à ces deux théories
puisqu’il peut être utilisé pour n’importe quelle théorie qui peut s’exprimer en ter-
mes d’action, bien que l’approche non-perturbative par la cohomologie DB reste très
spécifique à ce travail. En général, seules les méthodes perturbatives standard four-
nissent des résultats. La théorie des catégories fournit aussi un cadre pour étudier
d’autres QFT comme les CFT [Fuchs et al., 2002] en réduisant les problèmes à des
calculs de quantités liées à des graphes.

Ce travail présente un ensemble relativement fermé de résultats reliant les théories
RT, TV, CS et BF abéliennes en dimension 3. Cela étant, il soulève un certain nom-
bre de questions ouvertes.

Premièrement, puisque le produit DB envoie H [p]
DB × H

[q]
DB dans H [p+q+1]

DB , il est
possible de considérer des intégrales de polynômes en des classes de cohomologie
DB sur des variétés fermées M (n) de dimension n quelconque comme actions. Par
exemple, la théorie CS abélienne définie ici en termes de classes de cohomologie
DB en dimension 3 a déjà été étendue aux variétés fermées de dimension 4l + 3.
Ses propriétés sont similaires à celles présentées dans ce travail et elle produit de
façon analogue des invariants des variétés et des entrelacs dans ces variétés [Gallot
et al., 2013]. Ainsi, une action qui consiste en une intégrale d’un polynômes en
des classes de cohomologie DB devrait aussi conduire à des invariants topologiques,
et puisque les formules de réciprocité présentées dans ce travail ne dépendent pas
de la dimension, ces invariants pourraient être reliés à des invariants construits à
partir de généralisations d’une procédure de chirurgie en dimension n. Des rela-
tions pourraient également exister avec des généralisations des théories RT et TV
abéliennes.

Ensuite, dans le formalisme dit de Batalin-Vilkovisky, il a été prouvé que la
théorie BF abélienne est en relation avec la torsion de Reidemeister de la variété
considérée [Cattaneo et al., 2017]. La comparaison entre cette approche et l’approche
discutée dans ce travail pourrait conduire à une nouvelle compréhension de ce sujet.

Enfin, la théorie CS abélienne joue un rôle dans l’effet Hall quantique et il s’avère
pertinent d’étudier des puissances tensorielles de U (1) comme groupe de jauge [Fräß-
dorf, 2018]. Par conséquent, la théorie n’est plus caractérisée par une unique con-
stante de couplage mais par une matrice de constantes de couplage. Pour une telle
théorie, il pourrait y avoir une extension de l’approche par la cohomologie DB qui
permette d’obtenir des résultats exacts.
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Abstract
This dissertation considers the abelian BF theory on a closed manifold of di-

mension 3. It is formulated in terms of gauge classes which turn out to be Deligne-
Beilinson cohomology classes. This formulation offers the possibility to extract the
mathematically relevant quantities from formal functional integrals. The partition
function and the expectation value of observables are therefore computed in this
sense. They are proved to be connected, on the one hand, with their analogue
obtained in the same manner from the abelian Chern-Simons theory, and, on the
other hand, with their analogue defined in the framework of the abelian Reshetikhin-
Turaev and Turaev-Viro theories. Two extensions of this study are also discussed.
Firstly, a graphical approach is proposed to compute the SU(N) classical Chern-
Simons invariant. Secondly, a geometric interpretation of the gauge fixing procedure
is presented for the abelian Chern-Simons theory in R4l+3.

Keywords: abelian BF theory, abelian Chern-Simons theory, Deligne-Beilinson
cohomology, abelian Turaev-Viro invariant, abelian Reshetikhin-Turaev invariant,
modular category, SU(N) classical Chern-Simons invariant, Heegaard diagram, in-
terpolating gauge.

Résumé
Cette thèse porte sur la théorie BF abélienne sur une variété fermée de dimension

3. Elle est formulée en termes de classes de jauge qui sont en fait des classes de co-
homologie de Deligne-Beilinson. Cette formulation offre la possibilité d’extraire les
quantités mathématiquement pertinentes d’intégrales fonctionnelles formelles. La
fonction de partition et les valeurs moyennes d’observables sont ainsi calculées en
ce sens. Elles s’avèrent reliées, premièrement, aux quantités analogues obtenues
de la même manière avec la théorie abélienne de Chern-Simons, et, deuxième-
ment, avec les quantités analogues définies dans le cadre des théories abéliennes de
Reshetikhin-Turaev et de Turaev-Viro. Deux extensions de ce travail sont discutées.
Premièrement, une approche graphique est proposée afin de calculer l’invariant clas-
sique SU(N) de Chern-Simons. Deuxièmement, une interprétation géométrique de
la procédure de fixation de jauge est présentée pour la théorie de Chern-Simons
abélienne dans R4l+3.

Mots-clefs: théorie BF abélienne, théorie de Chern-Simons abélienne, coho-
mologie de Deligne-Beilinson, invariant de Reshetikhin-Turaev abélien, invariant
de Turaev-Viro abélien, catégorie modulaire, invariant classique SU(N) de Chern-
Simons, diagramme de Heegaard, jauge interpolante.
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