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Abstract. The 18O+48Ti reaction was studied at the energy of 275 MeV for the first time
under the NUMEN and NURE experimental campaigns with the aim of investigating the
complete reaction network potentially involved in the 48Ti→48Ca double charge exchange
transition. Understanding the degree of competition between successive nucleon transfer and
double charge exchange reactions is crucial for the description of the meson exchange mechanism.
Into this context, angular distribution measurements for one- and two-nucleon transfer reactions
for the system 18O+48Ti were performed at the MAGNEX facility of INFN-LNS in Catania.
An overview of the status of the analysis for the two-proton transfer reaction will be given.
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1. Introduction
Over the past decades, the search for the neutrinoless double beta (0νββ) decay continues with
undiminished interest, since it is the best probe of the neutrino nature. Numerous experimental
campaigns from all over the globe are seeking evidence of such a rare process using different
candidate nuclei for 0νββ decay [1, 2, 3, 4]. Among them, NUMEN (NUclear Matrix Elements
for Neutrinoless double beta decay) campaign [5, 6], carried out at INFN-LNS in Catania,
proposes for the first time the use of double charge exchange (DCE) reactions induced by heavy
ions as a mean to obtain data-driven information on the nuclear matrix elements (NMEs) for
various 0νββ decay target candidates. Into this context, the 48Ti nucleus is of great interest
since it is the daughter nucleus of 48Ca in the 0νββ decay process [7].

The one-step DCE reaction is one of the possible pathways of the complete DCE mechanism,
since the same final states may be populated through a sequence of multi-nucleon transfer
reactions and/or double single charge exchange (DSCE). A theoretical study [8] for the 18O+40Ca
collision suggested the combination of single charge exchange (SCE) with sequential one-proton
and one-neutron transfer reactions as a possible process in the leading order in the 18O +
40Ca→18Ne + 40Ar transition. In a recent study [9] it was demonstrated that the sequential
multi-nucleon transfer gives a negligible contribution to the total DCE cross-section in the
20Ne + 116Cd→20O + 116Sn transition at 306 MeV. However, it is very important to quantify
the degree of competition between the direct meson exchange mechanism [10, 11] and other
competitive processes [12, 13, 14, 15, 16, 17, 18] for a precise determination of the absolute DCE
cross-sections, which may be the key for accessing the information of the NMEs of the 0νββ
decay [19, 20, 21].

Taking into consideration all the above, in the present work which is part of the NURE
project [22], the 18O+48Ti reaction was studied by measuring in the same experiment the
complete net of the available reaction channels that may be involved in the 48Ti→48Ca DCE
transition, namely, elastic and inelastic scattering, SCE, single- and two-nucleon transfer
reactions. The present article provides an overview of the strategy adopted for the data analysis
of the 48Ti(18O,20Ne)46Ca two-proton transfer reaction channel. The complete analysis of the
48Ti(18O,19F)47Sc one-proton transfer reaction channel can be found in Ref. [23], while the
analyses for the rest of the reaction channels is in progress [24, 25].

2. Experimental details
The experiment was conducted at INFN-LNS in Catania, where an 18O8+ ion beam at the energy
of 275 MeV impinged a TiO2 target evaporated on a thin 27Al foil. To this purpose, additional
measurements with a 27Al target and a WO3 target with an aluminium backing were performed
for estimating the background contributions arising from the different target components.

The various reaction ejectiles were momentum analyzed by the MAGNEX large acceptance
magnetic spectrometer [26] and detected by its Focal Plane Detector (FPD) [27]. The FPD
is a hybrid detection system composed of two sectors. The first part is a gas detector acting
as a proportional drift chamber providing information on the energy of the ions lost inside the
gas (∆Etot) and also as a position-sensitive detector for the measurement of the horizontal and
vertical positions and angles of the ions’ track. The second part of the FPD comprises a wall
of 60 silicon detectors for the measurement of the ions’ residual energy (Eresid). Using the
information provided by the FPD, the particle identification (PID) is performed following the
prescription reported in Ref. [28]. An example of the PID procedure is illustrated in Fig. 1 for
the case of the 48Ti(18O,20Ne)46Ca reaction.

3. Data reduction
Having identified the 20Ne10+ events, a high-order software ray reconstruction is applied to the
data and the momentum vector of the ions at the target position is determined [29]. Having
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Figure 1. An example of PID spectra for the 48Ti(18O,20Ne)46Ca reaction measured at 275
MeV. Left panel) Typical ∆Etot - Eresid plot gated by one silicon detector of the FPD. The
neon contour is highlighted with the solid black line. Right panel) Correlation plot between the
horizontal position at the focal plane of the spectrometer, Xfoc, and the Eresid for the identified
neon ions of the left panel. The various loci represent ions with different ratio

√
m/q. The

20Ne10+ and 18Ne10+ events are indicated by the solid black and dotted blue lines, respectively.

known the momentum vector, the excitation energy spectrum may be obtained as Ex= Q0 - Q,
where Q0 is the ground state (g.s.) to g.s. Q-value and Q is the reaction Q-value calculated
adopting the missing mass method [26]. A preliminary Ex spectrum is shown in Fig. 2. After
Ex≈ 3.0 MeV events coming from the two-proton transfer reaction on 27Al and 16O components
of the target are present in the spectrum. However, measurements with an aluminium and
oxygen target were repeated in order to estimate and subtract such events. A preliminary Ex

spectrum for the two-proton transfer reaction on 27Al is also shown in Fig. 2. The analysis of
the data obtained with the oxygen target is still in progress. It can be seen that the yield in
the low-lying excitation energy region in both spectra is exhausted by 20Ne states, as observed
previously in Ref. [13] for the same reaction on a 40Ca target. Based on that it seems that the
(18O,20Ne) reaction favors the population of 20Ne states regardless of transition undertaken from
the target. After subtracting the contaminant events, experimental angular distribution cross-
sections for the 48Ti(18O,20Ne)46Ca reaction will be extracted and analyzed under the proper
reaction frameworks as done previously in Refs. [12, 13], in order to quantify the contribution of
simultaneous and sequential nucleon transfer in the measured two-proton transfer cross-sections.
To this purpose, data for the (18O,19F) one-proton transfer reaction [23] are crucial in order to
constrain the reaction probability of the sequential mechanism (18O→19F→20Ne).

4. Summary
A global study of the 18O+48Ti reaction at 275 MeV was performed for the first time as part
of the NUMEN and NURE experimental campaigns by measuring the complete net of the
available reaction channels. Angular distribution measurements for the various reaction ejectiles
were performed by means of the MAGNEX magnetic spectrometer. The present contribution is
focused on the analysis of the two-proton transfer reaction, where a preliminary excitation energy
spectrum for the low-lying states involved in the 48Ti(18O,20Ne)46Ca reaction was obtained. The
background subtraction procedure is in progress and upon its completion we will gain access to
the high excitation energy region of the spectrum. The results of this analysis in conjunction
with the ones for the two-neutron transfer reaction will provide the appropriate constraints on
the DCE mechanism in the 48Ti(18O,18Ne)48Ca transition.
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Figure 2. Left panel) Preliminary excitation energy spectrum corresponding to the
48Ti(18O,20Ne)46Ca reaction at 275 MeV. In the inset, the region corresponding to -1<Ex<4
MeV is shown. Figure taken from Ref. [24]. Right panel) Same as in figure on the left panel,
but for the 27Al(18O,20Ne)25Na reaction.
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