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Abstract
The Advanced Photon Source (APS) facility has just com-

pleted an upgrade to become one of the world’s brightest
storage-ring light sources. For the first time, machine learn-
ing (ML) methods have been developed and used as part
of the baseline commissioning plan. One such method is
Bayesian optimization (BO) – a versatile tool for efficient
high-dimensional single and multi-objective tuning, as well
as surrogate model construction and other purposes. In this
paper we will present our development work on adapting
BO to practical control room problems such as tuning linac
and booster transmission efficiency, injection stabilization,
enlarging storage ring dynamic and momentum apertures,
and various other tasks. We will also show first experimen-
tal results of these efforts, including achieving initial beam
capture in the APS-U storage ring. Given the success of BO
methods at APS, we are working on tighter ML algorithm in-
tegration into the standard control room procedures through
a dedicated graphical interface.

INTRODUCTION
New particle accelerator projects face increasing perfor-

mance demands, resulting in tighter tolerances on accuracy
and stability. With the recent successes of machine learning,
there is immense interest in making use of smarter algo-
rithms to implement generic tools to improve reliability,
reduce expert workload, and provide higher performance to
users.

A key application of ML for accelerators is in parameter
optimization, whereby one or multiple objectives are tuned
through an intelligent search of the parameter space. Con-
ventional optimization methods previously applied at APS
include simplex [1, 2], RCDS [3], and genetic algorithms
[4]. Our recent efforts have focused on ML-based methods
including Bayesian optimization (BO) [5], reinforcement
learning [6], and others. BO is of special interest since it
allows efficient black-box function optimization with few
samples, taking advantage of any prior physics-model knowl-
edge provided to the algorithm. This is especially valuable
for new accelerators since simulation models might not yet
be available or are not sufficiently well calibrated for offline
training.

At APS, we developed methods to make BO applicable to
a wide range of experimental systems, including those with
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high-dimensionality, time-dependent drift [7], or critical
safety considerations [8], all without extensive expert tun-
ing and automatically making use of high-fidelity archival
data [9]. This paper presents applications of BO to sev-
eral experimental tasks we performed as part of the APS-U
commissioning.

BAYESIAN OPTIMIZATION
We first briefly review the math behind BO. The output

being optimized is described by

y = 𝑓 (x) + 𝜀, (1)

where 𝑓 (x) is the black-box function of interest and 𝜀 ∼
N(0, 𝜎2

𝜀) the added noise. Using Gaussian Processes
(GP) [10], a surrogate model for 𝑓 can be parameterized as
a multivariate normal distribution with a mean 𝑚(x) and
covariance kernel 𝑘 (x, x′). The kernel is used to evaluate
the similarity between values of 𝑓 at x and x′, and its’ appro-
priate choice is critical for good GP convergence. In general,
local kernels such as the square exponential (SE) are used,
although more specialized ones are required for certain tasks
[8, 11]:

𝑘𝑆𝐸,𝑖 = 𝜎2 exp

(
−(𝑥𝑖 − 𝑥′

𝑖
)2

2𝑙2

)
. (2)

Kernel hyper-parameters are generally the output variance
𝜎 and lengthscale 𝑙.

GP surrogate model is used for acquisition function opti-
mization in order to find the most promising next step(s). A
typical choice is the upper confidence bound function that
balances exploration and exploitation,

UCB(x) = 𝜇(x) +
√︁
𝛽 ∗ 𝜎(x) (3)

where mean 𝜇 and variance 𝜎 are provided by the model
and 𝛽 is the tradeoff hyperparameter.

INJECTOR TUNING
In parallel with APS-U storage ring construction, injector

commissioning activities were ongoing so as to validate var-
ious upgrades and prepare for robust delivery of high charge
bunches. Details of these efforts are discussed in separate
submissions for the Particle Accumulator Ring (PAR) [12]
and the Booster [13].

An important part of this process was commissioning a
set of new thermionic guns in the linac and re-optimizing the
system for different charges/pulse counts. BO-based tuning
was used extensively in these tasks, allowing for significant



15th International Particle Accelerator Conference,Nashville, TN

JACoW Publishing

ISBN: 978-3-95450-247-9

ISSN: 2673-5490

doi: 10.18429/JACoW-IPAC2024-TUPS50

1778

MC6.D13 Machine Learning

TUPS50

TUPS: Tuesday Poster Session: TUPS

Content from this work may be used under the terms of the CC BY 4.0 licence (© 2024). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.



expansion of the scanned parameter spaces as compared to
previous simplex-based tools. Figure 1 shows an example
of such a ‘run’.

Figure 1: Experimental single-objective APS linac optimiza-
tion with BO optimizer. Goal is to transmit highest possible
charge to the end of the linac (denoted by LTP objective).
Vertical line indicates when optimization parameter space
was switched from 16D to 20D on the fly, causing some
exploration jitter but quickly finding the new useful input
parameter (lower pale blue trace).

Due to generally convex topology of the objective space
for transmission efficiency and significant concerns about
hysteresis, trust region [14] and step size limit features of
our optimizer software APSopt (discussed in detail below)
were used, allowing for a smooth improvement with mini-
mal random exploration and small steps. We also performed
dynamic objective and variable switching. Namely, for ob-
jectives, the single-objective goal was swapped to current
monitors further downstream (L1 -> L3 -> L5 -> LTP) as
transmission improved. For variables, parameter space was
expanded on the fly based on expert intuition and beam tra-
jectory. Such manipulations can be done while retaining
already collected data and are unique to model-based meth-
ods like BO. We later extended BO procedure to measure
and optimize PAR injection efficiency as the ultimate per-
formance parameter, fully encompassing the linac and the
transfer lines. An attempt to directly run the final 20D/LTP
configuration with simplex did not appear to converge.

APS-U BEAM CAPTURE AND INJECTION
EFFICIENCY

Initial steps of APS-U ring commissioning such as Booster
transfer line tuning, first turn beam threading, and eventual
beam capture have been extensively simulated and auto-
mated using standard linear optics methods [15]. However,
we initially faced a number of challenges utilizing these tools
due to magnet polarity errors, wrong setpoints, and instru-
mentation misconfigurations. While attempting to achieve
beam capture, we decided to directly explore the parameter
space of available injection parameters (transfer line correc-
tor currents, septum and kicker voltages, RF phase, orbit
bumps, etc.) through a high-dimensional BO configuration
with a strong exploration bias in the acquisition function. As
shown in Fig. 2, after several minutes of scanning with BPM
10 turn sum signal objective (from turn-by-turn acquisition),
8 uA beam current was noticed on the DCCT. This, to our
knowledge, is the only time an ML tool has achieved initial
beam capture in a particle accelerator.

Figure 2: Top figure - first beam capture of the APS-U
storage ring. BO with large exploration bias was used with
BPM sum signal goal so as to provide a smoothly varying
objective with gradient (as compared to mostly zero-valued
DCCT current). Bottom picture - one of regular injection
efficiency tuning runs with DCCT current as objective.

After establishing a good lattice configuration we contin-
ued to use BO repeatedly for injection efficiency tuning (see
example in GUI section below), since APS-U utilizes a swap-
out injection scheme and thus has high sensitivity to and
complex interplay of optics matching, physical apertures,
and dynamic acceptance. As commissioning proceeded,
ring orbit and optics were adjusted multiple times and it
typically took BO less than 10 minutes to recover efficiency.
Work is ongoing to fully automate this process.
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BAYESIAN EXPLORATION AND
MODELLING

Along with optimization tasks, BO can be used for 
explor-ing the parameter space and constructing surrogate 
models to better understand the objectives. This is 
performed by making acquisition function equal to 
uncertainty (i.e. very high 𝛽 in Eq. (3)), sometimes referred 
to as Bayesian explo-ration (BE). One use-case we 
encountered was in mapping out the injection aperture 
limits to check for septum mis-alignments, since this 
determines the feasible closed orbit parameters through 
the injection straight. We scanned tra-jectory in 2D and 
3D, the former case being shown in 
Fig. 3.

Figure 3: Bayesian exploration of the septum aperture using
last 2 horizontal transfer line correctors as inputs and first
ring BPM as output.

Our results were consistent with a grid scan and with
simulations but required only 20% of the samples to generate.
This sample efficiencywill be even more prominent in higher-
dimensional scans.

CONTROL ROOM INTEGRATION
In the control room, ML experts can run BO using Python

notebooks and low level APIs for extra flexibility and debug-
ging functionality. However, it is important to put ML tools
into hands of other physicists and operators, which means
abstracting away many of the details into presets and simple
interfaces. To that end we have been designing a GUI front-
end with a number of ’human-in-the-loop’ features such
as sampling suggestions but also single-click-to-run func-
tionality. It is also fully compatible with standard APS file
formats [16] and software deployment methods. A screen-
shot of current version after successful injection efficiency
optimization is shown in Fig. 4.

The core algorithm execution engine has been well tested
previously, and we are in the process of deploying the GUI for
other physicists’ use, iterating on feedback and incorporating
various tutorials, failsafes, and other auxiliary features.

Figure 4: APSopt GUI being used for injection efficiency
tuning after an orbit change.

CONCLUSION
ML tools have the potential to both be extremely powerful

in certain types of tasks, but also problematic and detri-
mental if applied without careful setup and consideration of
experimental realities. Through a concerted multi-year ef-
fort, APS has developed, tested, and now regularly uses ML
optimization methods in a variety of operationally relevant
hands-on tasks. In this paper we highlighted some of these
in the injector and in the new APS-U storage ring, including
key contributions to the commissioning process. Several
further applications are slated to be explored soon, includ-
ing nonlinear beam dynamics tuning, ion effect mitigation,
orbit stabilization, and others. Our plan is to continue with
ML method integration in a practical and data-driven fash-
ion, while also incorporating new state-of-the-art techniques
from ML community and pursuing high-fidelity modelling
and digital twin environment for faster and more robust val-
idation and deployment to the control room. We hope our
experience encourages broader adoption of ML methods at
accelerator facilities worldwide.
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