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In this thesis, we investigate mathematical constructions related to

holography principle from physics, organized into three main parts. Firstly,

we introduce the concept of quadratic duality for chiral algebras, extending

the construction from associative algebras. We establish its relationship

with the Maurer-Cartan equation, bridging it with physical intuition.

Secondly, we define the notion of a vertex operator algebra (VOA) in a

(pseudo)-tensor category. Specifically, we study a βγ VOA in the Deligne

category. This construction provides a rigorous mathematical definition

for the large N vertex algebra relevant to holography. Thirdly, we analyze

the structure of the higher dimensional Laurent series, which are analog

of the 1d Laurent series C((z)). Here, the derived structure becomes

crucial, distinguishing it from the 1d case. We compute the A∞ structure

on the cohomology and explore various variations of this model. These

A∞/L∞ algebraic structures can define certain (vertex) Poisson algebra.

As a consequence of the holography conjecture, the vertex Poisson algebra

is isomorphic to the one constructed from the βγ system in the Deligne

Category. We provide several checks of this conjecture.
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1
I N T R O D U C T I O N

The holography principle, initially proposed by ’t Hooft [tH93] and elabo-
rated by Susskind [Sus95], asserts that within a quantum gravity frame-
work, "given any closed surface, we can represent all that happens inside it
by degrees of freedom on this surface itself."[tH93] This insightful concept
implies that all information contained in some region of space can be
represented as a ’Hologram’ - a theory which lives on the boundary of
that region.

Despite appearing mysterious and difficult to conceive at first glance,
physicist have accumulated increasing evidence about the holographic
principle. The AdS/CFT correspondence, first discovered by Maldacena
[Mal98], is perhaps the most successful realization of the holographic
principle. Generally speaking, it is a conjectured relationship between
two kinds of theories. On one side of the correspondence are quantum
gravity theories in anti-de Sitter spaces (AdS) formulated in terms of
string theory or M-theory. On the other side are conformal quantum
field theories originated as the world volume theories on D branes. Since
its discovery, the AdS/CFT correspondence has significantly influenced
numerous branches of theoretical physics, extending far beyond the realm
of string theory.

However, a bridge between the AdS/CFT correspondence and math-
ematics had been missing due to the rather mysterious nature of this
duality, and the lack of mathematical formulation of the theories on both
sides. Simplification is needed if we wish to extract any mathematical
meaningful statement out of the AdS/CFT duality.

A procedure known as "twisting" is an ideal tool to perform such simpli-
fication for supersymmetric gauge theories. Since its introduction by Witten
[Wit88a], this technique has been widely explored and has had a profound
impact on quantum field theory and on related areas of mathematics. Clas-
sical examples includes A and B model topological string [Wit88b] in 2d,
Rozansky-Witten theory [RW97] in 3d, Donaldson-Witten theory[Wit88a],
Vafa-Witten theory[VW94] and Kapustin-Witten theory[KW07] in 4d. On
the one hand, twisted theories have particularly nice properties that often
admit mathematical rigorous formulation and exact computations. On
the other hand, they know about information of certain BPS sector in the
original physical theories. Though the twisting techniques has been suc-
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1.1 koszul duality in quantum field theory 2

cessfully applied to a variety of supersymmetric field theories, the original
construction does not apply to supergravity. Only until recently the proper
definition of twisted supergravity is proposed, in [CL16]. In that paper,
Costello and Li also proposed a twisted form of AdS/CFT correspondence.
This program throws light upon the mathematical structure hidden behind
(part of) the AdS/CFT correspondence.

The notion of Koszul duality is shown to play a crucial part in this story.
In [Cos17], Costello formulated the following twisted form of holography
principle (or conjecture):

Conjecture 1.1. Consider a stack of branes in twisted string theory or M-theory.
We can consider the following two algebras

• The algebras AN of local operators of the twisted supersymmetric gauge
theory living on a stack of N branes, after sending N → ∞.

• The algebra B of local operators of the twisted supergravity restricted along
the location of the branes.

Then, these two algebras are Koszul dual:

lim
N→∞

AN = B!. (1.1)

In this direction, there has been a surge of recent works exploring
different aspects of twisted supergravity and twisted holography. Various
twisted holography models are proposed [IFMZ20, CG18, CP21]. More
examples of twisted supergravity are found [EH21, RSW21]. Operators that
create D-branes with non-trivial geometrical shapes called giant graviton
in twisted holography are studied in [BG21].

While the twisting procedure has significantly simplified the physi-
cal theories, the conjecture above is still a few steps away from being
a mathematical conjecture. In this thesis, we aim to bridge this gap as
much as possible, and try to make some mathematical rigorous state-
ment/conjecture of holography.

1.1 koszul duality in quantum field theory

We first briefly review the central concept that appears in the twisted ver-
sion of holography, which is Koszul duality. Koszul duality is a ubiquitous
concept in homological algebra, which has also found many applica-
tions in representation theory, algebraic geometry, and topology (see, e.g.,
[BGS96, BGG78, GK94, GKM97]). In this introduction, we mainly focus on
the interaction between Koszul duality and quantum field theory. In fact,
the concept of Koszul duality, though quite new to physicists, is plentiful
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in the structure of quantum field theory, especially in the study of defects
and boundaries [PW21]. In this introduction, we briefly review two main
sources of Koszul duality in field theory.

One important aspect of Koszul duality in quantum field theory arises
from defects. Given a field theory T on some manifold M, one can consider
coupling some other system along a submanifold S ⊂ M. In the simplest
case, we consider one dimensional defect, so that the algebra alone the de-
fect is given by (dg) associative algebra. Suppose the algebra of the original
field theory and the defect theory are given by A and B respectively. Then
the uncoupled theory has the algebra A⊗ B. A coupling between the two
theories can be understood as an element α ∈ A⊗ B which satisfies the
Maurer-Cartan equation. Then we identify the space of coupling between
the two systems as the Maurer-Cartan elements MC(A⊗ B). Among all
possible defect couplings, we are particularly interested in the universal
one. The universal defect, if exist, is defined as an algebra A! together with
a Maurer-Cartan element αuni ∈ MC(A⊗ A!) that satisfy the universal
property: For any other algebra B and a coupling α ∈ MC(A⊗ B), there
exist a unique morphism ϕ : A! → B such that α = ϕ(αuni). We have

MC(A⊗ B) ∼= Hom(A!, B), for any B, (1.2)

We see that this is the well known properties satisfied by the Koszul
duality for associative algebra. In this thesis, we will also study this
property for a version of Koszul duality for chiral algebra [GLZ22]. This
give us the interpretation of the algebra of the universal defect that we can
couple to the theory T as the Koszul dual to the algebra of the theory T
along S. We refer to [CP21, PW21] for more examples of Koszul duality
from universal defect in quantum field theory.

Another perspective of Koszul duality comes from considering the
boundary. For simplification, we consider boundary condition of two
dimensional topological field theory, which consist of a dg category C.
Consider two generators B,B! of the category. The significance of the
condition of being a generator is that the category C is equivalent to the
(derived) category of modules of the algebra A∂ := EndC(B). The algebra
A∂ (resp. A!

∂ := EndC(B!)) is also called the boundary algebra associated
with the boundary condition B (resp. B!). Now suppose that the two
boundary conditions B,B! are transversal to each other, which means that

HomC(B,B!) ≈ C . (1.3)

Physically, this correspond to the following situation. We consider the
theory to be placed on [0, 1]× N satisfying boundary conditions B and
B! on the two sides of the interval respectively. Then the condition 1.3 is
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equivalent to the bulk theory on [0, 1]×C being cohomologically trivial.
More explicitly, if we try to solve the equation of motion on the interval
with the corresponding boundary condition, then there is a unique solution
modulo gauge transformation.

The condition that B,B! are generators guarantees that the two algebras
A∂, A!

∂ generate the whole commutant of each other. More explicitly, we
use the equivalence of categories C → A∂ −mod. This functor sends B! to
Hom(B,B!) ∼= C. Computing Hom in the two equivalent categories leads
to

A!
∂ = Hom(B!,B!) ∼= REndA∂

(C) (1.4)

This turns out to be one definition of Koszul duality for associative algebra.
We refer to [PW21, Zen21] for more examples of Koszul duality in quantum
field theory from boundary algebra.

1.2 koszul duality and open closed coupling

As mentioned earlier, Koszul duality can emerge in quantum field theory
through universal defects. An important question arises: how can we find
or construct examples of universal defects? While constructing a defect in
a quantum field theory is straightforward, such as Wilson line, identifying
a universal one can be challenging. String theory offers abundant examples
of bulk/defect systems – branes are defect objects in string theory. In fact,
the holography conjecture 1.1 predicts that a stack of N branes becomes a
universal defect system in the limit as N → ∞.

The relationship between closed and open strings have been a central
problem in string theory [KR04]. A string world sheet with boundaries
may typically be read in two different ways as either a closed string or
an open string scattering process. For example, a cylinder worldsheet
stretching between two D-brane can represent either as an open string
with ends on both branes going around a 1-loop vacuum diagram or a
closed string emitted from one of the branes and absorbed by the other.
The fact that string scattering amplitude should be the same for the two
perspectives exhibits the so called open-closed duality. In the TCFT setup,
it is shown in [Cos07] that an open closed TCFT is fully encoded in the
Calabi-Yau A∞ category of its boundary conditions (D branes).

The relationship between open closed coupling and Koszul duality
becomes more transparent if we look at the space-time string field theory
of topological string. The open-string field theory for the topological
B-model is the Holomorphic Chern-Simons, and the closed string field
theory is the BCOV theory. It was proved in [CL15] that there exists
a unique perturbative quantization for the coupled open-closed theory.
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Furthermore, according to the well-known Loday-Quillen-Tsygan theorem
[Qui84, Tsy83], the large N algebra of the open string theory is represented
by cyclic cohomology, which is dual to the closed string states. Therefore,
these consideration naturally lead to conjecture that open-closed coupling
is an instance of Koszul duality.

1.3 large N algebra via deligne category

As we have introduced, on one side of the duality we consider the algebra
AN of local operators on the stack of N branes, after sending N → ∞.
In fact, it is a mathematical nontrivial task to make sense of the limit
limN→∞AN , and part of this thesis is devoted to solve this problem.

A twisted field theory that correspond to a stack of N branes is typically
described by a (dg) Lie algebra of the form [Wit95, CS15]

glN(A) = glN ⊗ A (1.5)

for some (dg) associative algebra or an A∞ algebra A. At the tree level, the
space of local operators can be computed via the Lie algebra cohomology
of glN(A). In the limit when N goes to infinity, we consider the sequence
of inclusion

gl1(A) ↪→ gl2(A) ↪→ · · · ↪→ glN(A) ↪→ . . . (1.6)

which gives rise to a sequence of the Lie algebra cohomology

H•(gl1(A))← H•(gl2(A))← . . . H•(glN(A))← . . . (1.7)

Then the space of local operators in the large N limit can be defined as the
limit of the above diagram. One can then use the Loday-Quillen-Tsygan
theorem to simplify the results.

However, the above definition has a major draw back that the space
of local operators is not just a graded vector space, but also inherits
some algebraic structures from field theory computation. The morphisms
induced by the inclusions glN(A) ↪→ glN+1(A) does not preserve the
algebraic structure of local operators in general. Therefore, the sequence
1.6 does not provide us a definition of the algebra of local operators in
many cases.

To address this issue, let’s revisit how we compute the large N algebra in
practice. Essentially, physicists compute the algebra as if the fields reside in
a "space" resembling matrices of rank N, treated as an arbitrary parameter.
Furthermore, no additional trace relations are imposed on these matrices,
unlike in the case of finite N matrices.
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Deligne category, defined in [Del07, DMO+
82], is the mathematical

gadget that rigorously realize the desired properties. It is a category that
consists of objects that are sums and summands of V⊗r ⊗ (V∗)⊗s, where V
is regarded as the fundamental representation of the general linear group.
There isn’t any further relation among those objects, and we set Tr(1) = N
by hand with N an arbitrary parameter.

Our strategy to define the large N algebra is to define the algebra or
vertex algebra in Deligne category first. In fact, we go further and define
the notion of vertex algebra in more general symmetric monoidal category.
To obtain the large N vertex algebra as a vertex algebra in vector space,
we apply the functor Hom(1,−). This also allows us to define a family of
vertex algebra as we vary N. Certain specialization of the parameter will
also be of interest to us.

1.4 dimensional reduction and derived laurent series

Koszul duality possesses the property that it returns us to the original
algebra when applied twice. In the setup of quantum field theory, this
results in a nontrivial isomorphism if we can realize Koszul duality in two
distinct ways within a single system. In the string theory context, Koszul
duality can be realized as the algebra on a stack of N branes in the limit as
N tends to infinity. Alternatively, one can incorporate the other definition
of Koszul duality, as the transversal boundary conditions. This can be
achieved in a general setup by transforming a bulk-defect system into a
bulk-boundary system."

r

S

Dimension−−−−−→
Reduction

S

r

Suppose we are considering a d dimensional defect S = Rd × {0} in
Rd ×Rn−d. We are interested in the algebra of operators restricted along
S. Instead of studying the algebra directly, we first remove the defect locus
and perform dimensional reduction on the unit sphere of Rn−d normal to
the defect. Namely, we consider the projection

πSn−d−1
: Rd × (Rn−d\{0})→ Rd ×R>0, (1.8)
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where we send (x, y) to (x, r = |y|).
After this dimensional reduction, we get a theory on Rd ×R>0. Since

we have removed the defect locus, fields of this theory correspond to fields
of the original theory with arbitrary poles at r = 0. Now, we can add
a boundary condition to this theory at Rd × {r = 0}. There is a natural
candidate for the boundary condition, given by requiring that fields of the
original theory have no pole at r → 0. We find that this requirement leads
to a valid boundary condition in most examples. Moreover, we expect that
the boundary algebra after imposing this boundary condition is the same
as the algebra of the original theory restricted along the defect locus.

Then both pictures of Koszul duality enter this field theory construction.
On the one hand, we can consider the algebra on a stack of N branes
in N → ∞, which is conjectured to be the universal defect algebra. On
the other hand, we consider the boundary algebra with the boundary
condition transversal to the one we mentioned. Both are Koszul dual to
the same algebra, so they should be isomorphic.

As is often the case, the transversal boundary condition can also be
realized as the boundary condition that requires fields of the original
theory to have no pole at r → ∞. Therefore, we can add one more piece of
ingredient to the twisted holography conjecture

• The boundary algebra A∂ of the theory obtained by performing KK
compactification of the twisted supergravity along the unit sphere of
the normal direction to the defect. The boundary condition is chosen
so that fields have no pole at r → ∞.

Then the twisted holography conjecture predicts that

lim
N→∞

AN ∼= A∂. (1.9)

In this thesis, we will be considering a special class of quantum field
theory called holomorphic theory. After dimensional reduction, these the-
ories have an algebraic model closely related to the (higher dimensional)
Laurent series. For example, a 2d CFT can be considered as a 2d holomor-
phic theory. The associated mode algebra can be considered as the algebra
after dimensional reduction along the unit circle. The description of such
mode algebra is typically related to the formal Laurent series C((z)). For
example, the mode algebra of Kac Moody VOA is given by the universal
enveloping algebra of some central extension of g((z)).

Higher dimensional analog of Laurent series exist, but with some es-
sential difference. For d ≥ 2, Hartogs’ theorem implies that the space of
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holomorphic functions on the punctured affine space is the same as the
space of holomorphic functions on the affine space

O(Åd) = O(Ad) ∼= k[z1, . . . , zd] (1.10)

Instead, we should replace the "classical" algebra of functions O(Åd) =

H0(Åd,O) by the derived space of functions RΓ(Åd,O)

Hi(Åd,O) =


k[z1, . . . , zd], i = 0,

z−1
1 . . . z−1

d k[z−1
1 , . . . , z−1

d ], i = d− 1,

0, otherwise.

(1.11)

We see that the singular data is restored, but in different cohomological
degree.

Still, the cohomology 1.11 forgets the information about the dg algebra
structure on the derived space of functions RΓ(Åd,O). To restore this
part of information, we need to work with a proper dg algebra model for
RΓ(Åd,O). Such a model is introduced in [FHK19] called the Jouanolou
model. By the homotopy transfer theorem, the dg algebra of RΓ(Åd,O)
induces an A∞ algebra structure on the cohomology H•(Åd,O). In this
thesis, we will analyze this A∞ structure in detail.

In this thesis, we mainly focus on the case when d = 2. Later we will see
that the A∞ structure on H•(Å2,O) and its many variants define a class of
(vertex) Poisson algebra structures. These (vertex) Poisson algebras can be
regarded as certain semi classical limit of the algebra A∂. From "corollary"
1.9 of the Holography conjecture, we propose the main conjectures of this
thesis. We conjecture that the (vertex) Poisson algebra defined through
the derived Laurent series H•(Åd,O) are isomorphic to the semi classical
limit of certain large N algebra AN defined through Deligne category.



2
K O S Z U L D UA L I T Y

The notion of Koszul duality is ubiquitous in mathematics. It is a simple,
yet powerful principle that has found many applications in representation
theory, algebraic geometry, homological algebra, and topology (see, e.g.,
[BGS96, BGG78, GK94, GKM97]).

Given an augmented associative algebra A, we can construct a new
algebra

A! = RHomA(k, k)

equipped with the Yoneda product. Under certain conditions, performing
this construction twice bring us back to the original algebra A. If this is
the case, we call such an algebra A Koszul and the functor A→ A! Koszul
duality. While simple in its definition, this construction yields significant
implications, including the equivalence of certain derived categories of
modules. Its deep connection with quantum field theory is also discussed
in the introduction.

For associative algebra that admits a presentation as a quadratic algebra,
its Koszul dual has particularly nice construction. In this chapter, we first
review the classical construction of quadratic Koszul duality for associative
algebra.

Our goal in this chapter is to generalize this construction to chiral
algebra. We also discuss generalization to the quadratic-linear-scalar case.
Finally we present some simple example that parallel the well-know
examples of associative algebra.

2.1 bar construction and twisting morphism

We first introduce the bar and cobar functor for algebra and coalgebra. We
follow the discussion in [LV12]. Let (A, dA, µA) be an differential graded
algebra with an augmentation ε : A → k. We denote Ā = ker ε, then
A ∼= k ⊕ Ā. We define the bar construction of A to be the following
differential graded coalgebra

BA := (Tc(sĀ), dBA = d1 + d2), (2.1)

9



2.1 bar construction and twisting morphism 10

where Tc(sĀ) is the cofree coalgebra generated by sĀ. The differential d1

is induced by the differential dA and the differential d2 is the Hochschild
differential induced by the product µA.

Similarly, given a differential graded coalgebra (C, dC, ∆) with a coaug-
mentation C = k ⊕ C̄. We define the cobar construction of C to be the
following differential graded algebra

ΩC := (T(s−1C̄), dΩC = d1, d2) (2.2)

where T(s−sC̄) is the free algebra generated by s−1C̄. The differential d1

is induced by the differential dC and the differential d2 is induced by the
coproduct ∆C.

Given a dg algebra A and a dg coalgebra C, we can equip the space
Hom(C, A) a dg algebra structure (Hom(C, A), ∂, ⋆). The differential is
naturally induced from the differential of A and C. The product is given
by the convolution product

f ⋆ g := µ ◦ ( f ⊗ g) ◦ ∆ (2.3)

One can check by definition that the differential ∂ is indeed a derivation
with respect to the convolution product ⋆.

Definition 2.1. A twisting morphism is a degree −1 map α : C → A that
satisfy the Maurer-Cartan equation

∂α + α ⋆ α = 0 (2.4)

We denote Tw(C, A) the space of twisting morphism from C to A.

Using the space of twisting morphism, we can show that the bar and
cobar construction form a pair o adjoint functors

Ω : {conil. dg coalgebras}⇄ {aug. dg algebras} : B (2.5)

Theorem 2.2. For every augmented dg algebra A and every conilpotent dg
coalgebra C, there exist natural bijections

Homdg−Alg(ΩC, A) ∼= Tw(C, A) ∼= Homdg−coAlg(C, BA) (2.6)

Given the bar and cobar construction, we can construct the standard bar
resolution as a twisted tensor product complex. We first define the twisted
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tensor product of a coalgebra C and a algebra A. A map α : C → A also
induces a derivation dr

α on C⊗ A, which is defined by

dr
α : C⊗ A

∆⊗idA−→ C⊗ C⊗ A
idC⊗α⊗idA−→ C⊗ A⊗ A

idC⊗µ−→ C⊗ A (2.7)

Direct calculation shows that

Lemma 2.3. The coderivation dα := dC⊗A + dr
α satisfy

d2
α = dr

∂α+α⋆α (2.8)

As a result, when α ∈ Tw(C, A), we obtain a chain complex

C⊗α A := (C⊗ A, dα) (2.9)

which is called the twisted tensor product.
From the identity map on BA we obtain the universal twisting map

π : BA → A. Explicitly, this map is given by π : BA → sĀ → Ā → A.
We consider the corresponding twisted tensor product BA⊗π A. We see
that this is the (reduced) bar resolution of A, which is an acyclic complex.
Similarly, we have the universal twisting map ι : C → ΩC, given by
ι : C → C̄ → s−1C̄ → ΩC. It gives rise to a acyclic complex C⊗ι ΩC.

2.2 koszul duality for quadratic algebra

First we introduce the notion of quadratic data. A quadratic data (V, R)
is a graded vector space V together with a graded subspace R ⊂ V⊗2. A
morphism of quadratic data f : (V, R) → (W, S) is a graded linear map
f : V →W such that ( f ⊗ f )(R) ⊂ S.

The quadratic algebra A(V, R) is defined by the quotient of free as-
sociative (tensor) algebra T(V) by the two sided ideal (R) generated by
R.

A(V, R) = T(V)/(R) (2.10)

Since (R) is a homogeneous ideal, A(V, R) is graded and we call this de-
gree weight. By definition, an element a in the image of V⊗n → T(V)/(R)
has weight degree ω(a) = n. Explicitly, A(V, R) is given by

A(V, R) = k⊕V⊕ (V⊗2/R)⊕ · · · ⊕
(

V⊗n/ ∑
i+j=n−2

V⊗i ⊗ R⊗V⊗j

)
⊕ · · ·

(2.11)
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It has the universal property that for any associative algebra A with
a algebra map T(V) → A such that (R) maps to 0, then there exists a
unique morphism A(V, R)→ A which makes the diagram commutes

T(V) A

A(V, R)

(2.12)

Similarly, we define the quadratic coalgebra C(V, R) as the sub-coalgebra
of the cofree coassociative coalgebra Tc(V), cogenerated by R. Explicitly,
C(V, R) is given by

C(V, R) = k⊕V ⊕ R⊕ · · · ⊕

 ⋂
i+j=n−2

V⊗i ⊗ R⊗V⊗j

⊕ · · · (2.13)

It has the universal property that for any coalgebra C with coalgebra maps
C → Tc(V) such that the composition with the projection Tc(V)→ V⊗2/R
is 0, then there exist a coalgebra map C → C(V, R) such that the following
diagram commute

C(V, R)

C Tc(V)

Let (V, R) be a quadratic data (V, R),. By definition the Koszul dual
coalgebra of the quadratic algebra A(V, R) is the coalgebra

A¡ = C(sV, s2R) (2.14)

where s2R is the image of R in (sV)⊗2.
We define the Koszul dual algebra of the quadratic algebra as the linear

dual of A¡. Dualizing the exact sequence

0→ R→ V⊗2 → V⊗2/R→ 0 (2.15)

gives us the exact sequence

0→ R⊥ → (V∗)⊗2 → R∗ → 0 (2.16)

where R⊥ is the image of (V⊗2/R)∗ in (V∗)⊗2. In other words, R⊥ is the
subspace of (V∗)⊗2 that consists of elements f that vanish on R, f (R) = 0.
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Therefore, we find that the linear dual of C(V, R) is given by

A! = A(s−1V∗, s−2R⊥) (2.17)

Now we consider the bar construction for a quadratic algebra. There are
two natural gradings on BA for A = A(V, R): a homological degree and a
weight degree. An element sa1⊗· · ·⊗ san ∈ (sĀ)n is of homological degree
n and weight degree ω(a1) + · · ·+ ω(an). We define a syzygy degree to be
the weight degree minus the homological degree. For example, the syzygy
degree of sa1 ⊗ · · · ⊗ san ∈ (sĀ)n is ω(a1) + · · ·+ ω(an)− n. The complex
BA is now bigraded by syzygy degree and the weight, and the differential
raises the syzygy degree by 1. The syzygy degree d component of BA is
denoted Bd A, and the weight n component of of BA is denoted (BA)(n).
We illustrate this bi-grading in the following diagram

. . . . . . . . . . . . (4)

0 V⊗3

V⊗R+R⊗V (V⊗2

R ⊗V)⊕ (V ⊗ V⊗2

R ) V⊗3 (3)

0 V⊗2

R V⊗2 (2)

0 V (1)

k (0)

3 2 1 0
We indicate the syzygy degrees on the bottom row and weight degrees are
indicated on the rightmost column.

We see that the syzygy degree 0 column forms the cofree coalgebra
Tc(sV). Therefore the Koszul dual coalgebra A¡ = C(sV, s2R) is a subspace
of this column, and we get an inclusion map

i : A¡ → BA (2.18)

which factors through the syzygy degree 0 component B0A. Moreover, we
can show that this inclusion is an isomorphism to the degree 0 component
of the homology.

Proposition 2.4. The natural coalgebra inclusion i : A¡ → BA induces an
isomorphism of graded coalgebras

i : A¡ ∼= H0(B•A) (2.19)
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Under the inclusion i, the universal twisting morphism π : BA → A
becomes the following map

κ : C(sV, s2R)→ sV ∼= V → A(V, R) (2.20)

Lemma 2.5. We have κ ∈ Tw(A¡, A).

We see that the Koszul dual coalgebra A¡ is a good candidate to replace
the very big bar coalgebra BA. The main theorem of (quadratic) Koszul
duality theory is the following criterion that characterize this property.

Theorem 2.6. (Koszul criterion). Let (V, R) be a quadratic data. Let A =

A(V, R) the associated quadratic algebra and A¡ = C(sV, s2R) its quadratic
dual coalgebra. Then the following assertions are equivalent

1. The right Koszul complex A¡ ⊗κ A is acyclic.

2. The inclusion i : A¡ → BA is a quasi-isomorphism.

Let A = A(V, R) be a finitely generated quadratic algebra. For A a
Koszul algebra, we can use the Koszul complex to compute the derived
Ext functor by

ExtA(k, k) = H•(HomA(A⊗κ A¡, k)) (2.21)

Corollary 2.7. If A = A(V, R) be a finitely generated quadratic algebra and is
Koszul, we have an isomorphism

ExtA(k, k) ∼= A! (2.22)

In the finitely generated case, we can also identify the space of twisting
morphism as the space of solutions to the Maurer-Cartan equation. We
can reformulate Theorem 2.2 using the Koszul dual algebra

Corollary 2.8. Let A be a finitely generated Koszul algebra. Then we have a
quasi isomorphism

MC(A⊗ B) ∼= Hom(A!, B) (2.23)

2.3 chiral and factorization algebra

Before we consider the quadratic duality theory for chiral algebra, we first
give a brief review of some basic definitions of chiral algebras and factor-
ization algebras. For more details, see [BD04, FBZ04, Gai98]. Throughout
this section, X stands for a smooth curve over C.
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Definition 2.9. LetA be a Z-graded DX-module. A chiral algebra structure
on A is a degree 0 DX2-module map [BD04]:

µ : j∗ j∗A⊠A → ∆∗(A),

where ∆ : X → X2 is the diagonal embedding and j : U = X2 − ∆ ↪→ X2

is the open embedding.
The map µ satisfies the following two conditions:

• Antisymmetry:

If f (z1, z2) · a ⊠ b is a local section of j∗ j∗A⊠A, then

µ( f (z1, z2) · a ⊠ b) = −(−1)|a||b|σ1,2µ( f (z2, z1) · b ⊠ a), (2.24)

where σ1,2 acts on ∆∗A by permuting two factors of X2.

• Jacobi identity:

If a ⊠ b ⊠ c · f (z1, z2, z3) is a local section of j∗ j∗A⊠3 where j is the
open embedding of the complement of the big diagonal in X3. Then

µ(µ( f (z1, z2, z3)·a ⊠ b)⊠ c) + (−1)|a|(|b|+|c|)σ1,2,3µ(µ( f (z2, z3, z1) · b ⊠ c)⊠ a)+

(−1)|c|(|a|+|b|)σ−1
1,2,3µ(µ( f (z3, z1, z2) · c ⊠ a)⊠ b) = 0,

here σ1,2,3 denotes the cyclic permutation action on ∆X→X3

∗ A and
∆X→X3

: X → X3 is the diagonal embedding.

Now we give the definition of the factorization algebra. Later we will
discuss the relationship between chiral algebras and factorization algebras.

We use the following conventions in the definition. For a surjective map
π : J ↠ I between two finite sets I and J, let j[J/I] : U[J/I] ↪→ X J be the
complement to all the diagonals that are transversal to ∆(J/I) : X I ↪→ X J .
Therefore one has

U[J/I] =
{(

xj
)
∈ X J : xj1 ̸= xj2 if π (j1) ̸= π (j2)

}
.

Definition 2.10. A factorization algebra on X consists of the following
datum:

(1) A graded quasicoherent sheaf BX I over X I for any finite set I, which
has no non-zero local sections supported at the union of all partial diago-
nals.

(2) Isomorphisms of graded quasicoherent sheaves

ν(π) = ν(J/I) : ∆(π)∗BX J
∼−→ BX I
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for every surjection π : J ↠ I and compatible with the composition of the
π′s.

(3) (factorization) For every surjection J ↠ I, there is an isomorphism of
OU[J/I]-modules

c[J/I] : j[J/I]∗(⊠
i∈I

BX Ji )
∼−→ j[J/I]∗BX J .

We require that c’s are mutually compatible: for K ↠ J the isomorphism
c[K/J] coincides with the composition c[K/I](⊠

i∈I
c[Ki/Ji ]). And c should be

compatible with ν: for every J ↠ J′ ↠ I one has

ν(J/J′)∆(J/J′)∗(c[J/I]) = c[J′/I](⊠
i∈I

ν(Ji/J′i )).

(4)(unit) There exists a global section 1 of BX such that for every f ∈ BX

one has 1 ⊠ f ∈ BX2 ⊂ j∗ j∗B⊠2
X and ∆∗(1 ⊠ f ) = f .

There is an equivalence between the category of factorization algebras
and that of chiral algebras [BD04]. More precisely, we can obtain a chiral
algebra from a factorization algebra B as follows. For each surjection J ↠ I
we have a natural isomorphism of left D−modules

∆(J/I)∗BX J
∼−→ BX I .

We can rewrite it as an isomorphism of right DX J -modules

∆(J/I)
∗ ω⊠I

X ⊗OXJ BX J
∼−→ ∆(J/I)

∗ (ω⊠I
X ⊗OXI BX I ).

In particular for ∆ : X ↪→ X2, we have

∆∗ωX ⊗OX2 BX2
∼−→ ∆∗(ωX ⊗OX BX).

Then we have

j∗ j∗Br⊠2 = j∗ j∗ω⊠2
X ⊗OX2 BX2 → ∆∗ωX ⊗OX2 BX2 = ∆∗(ωX ⊗OX B) = ∆∗Br.

(2.25)
One can verify that the above binary operation makes the right DX-module
Br into a chiral algebra.

Now we explain the inverse direction. Suppose we have a chiral algebra
A, then we define FX I = Al

X I := AX I ⊗OXI ω−1
X I on X I . Here AX I is the

intersections of the kernels of all the chiral operations on j∗ j∗A⊠I . Then
we have

∆(J/I)∗FX J ≃ FX I

and F is a factorization algebra. See [BD04, Section 3.4] for more details.
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2.4 chiral quadratic duality

We would like to generalize the previous construction of Koszul duality
to the world of chiral algebra. On the one hand, possible construction
of chiral algebra is limited due to the axiom of locality. For example,
there is no chiral counterpart of tensor algebra. On the other hand, we
still have the chiral analog of quadratic algebra, and a proper quadratic
relation is required for locality to hold. There is also a vertex algebra
version of this construction [Roi01]. We use the chiral algebra language as
it is more convenient to prove some theorem. We use this construction to
formulate the chiral quadratic duality and extend it to non-homogeneous
cases [GLZ22].

Throughout this section, X denotes a smooth complex algebraic curve
and j : U ↪→ X× X denotes the complement of the diagonal.

Quadratic constructions

We first introduce the chiral algebra freely generated by a given non-empty
set of sections subject to quadratic relations, constructed in [BD04, Section
3.4.14,pp184].

Definition 2.11. A chiral quadratic datum is a pair (N, P) where N is a
locally free Z-graded OX-module of finite rank and P ⊂ j∗ j∗N ⊠ N is a
locally free OX×X-submodule such that P|U = N ⊠ N|U .

Remark 2.12. In the original construction [BD04], N can be any quasi-
coherent OX-module and P can be any quasi-coherent submodule of
j∗ j∗N ⊠ N. Here for simplicity, we will only consider the case when both
N and P are locally free.

Remark 2.13. The condition P|U = N ⊠ N|U is the main difference from
the quadratic algebra case. It corresponds to the locality axiom in the
definition of vertex algebras. This simply means that for every local section
a ⊠ b ∈ N ⊠ N, we can find an integer n >> 0 sufficiently large such that
(z1 − z2)na ⊠ b ∈ P where z1, z2 are local coordinates on X2. It translates
to the locality axiom: for every pair of generators (a, b) of a vertex algebra,
we have

a(n)b = 0, n >> 0,

here −(n)− is the standard n-th product notation in vertex algebras.

Suppose we have a chiral quadratic datum (N, P). We present the uni-
versal property satisfied by the quadratic chiral algebra that correspond
to (N, P). This is simply a generalization of the universal property of
quadratic algebra 2.12.



2.4 chiral quadratic duality 18

Consider a functor on the category of chiral algebras CA(X) which
assigns to a chiral algebra A the set of all OX-linear morphisms

ϕ : Nω = N ⊗OX ωX → A

such that the chiral product µA annihilates the submodule ϕ⊠2(P⊗OX2

ωX2) ⊂ j∗ j∗A⊠2. Beilinson and Drinfeld prove that this functor is repre-
sentable. They refer to the corresponding universal chiral algebra as the
chiral algebra freely generated by (N, P). We will denote this chiral algebra
by A(N, P).

Definition 2.14. The quadratic chiral algebra associated to a chiral quadratic
datum (N, P) is defined to be A(N, P).

We do not present the detail of the construction of A(N, P) here. The
reader can refer to [BD04, 3.4.14,pp184] for detail.

Motivated by the construction of the quadratic duality for quadratic
associated algebra

A = A(V, R)→ A! = A(s−1V∗, s−2P⊥), (2.26)

we introduce the quadratic dual relation P⊥ as follows.

Definition 2.15. Let (N, P) be a chiral quadratic datum. Define a OX×X-
submodule P⊥ of j∗ j∗s−1N∨

ω−1 ⊠ s−1N∨
ω−1 as follows. Consider the following

sequence of maps

j∗ j∗s−1N∨ω−1 ⊠ s−1N∨ω−1
⟨−,−|⟩−−−→P HomOX2 (P, j∗ j∗s−2ω−1

X2 )

−→ HomOX2 (P, s−2∆!ωX),
(2.27)

where the first map is given by the restriction of the natural pairing

⟨−,−⟩ : (j∗ j∗N ⊠ N)⊗OX2 (j∗ j∗s−1N∨ω−1 ⊠ s−1N∨ω−1)→ j∗ j∗s−2ω−1
X2

to P. Let P⊥ be the kernel of the composition. In other words, we have P⊥

is the sheaf of sections whose pairing with P is regular. We have

P⊥|V = {t|∀p ∈ P|V , ⟨t, p⟩ ∈ s−2ω−1
X2 |V}

for any open subset V of X× X.

In general, the pair (s−1N∨
ω−1 , P⊥) is not a chiral quadratic datum. For

example, we can take P to be j∗ j∗N ⊠ N itself. Then P⊥ will be the zero
sheaf and does not satisfy the condition P|U = N ⊠ N|U . This leads to the
following definition.
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Definition 2.16. A chiral quadratic datum (N, P) is called dualizable if

P⊥|U = s−1N∨ω−1 ⊠ s−1N∨ω−1 |U .

From the following proposition, we can obtain a dual chiral quadratic
datum from a dualizable chiral quadratic datum.

Proposition 2.17. If a chiral quadratic datum (N, P) is dualizable, then

P⊥ ≃ s−2P∨ ⊗OX2 ω−1
X2 ,

here P∨ = HomOX2 (P,OX2) is the dual of P. This implies that P⊥ is also locally
free and (N∨

ω−1 , P⊥) is a dualizable chiral quadratic datum.

Proof. Assume that rank(N) = r. We first show that there exists a positive
integer k > 0 such that

P ⊂ N ⊠ N(k∆).

We prove this by contradiction. Suppose that for any positive integer
k > 0, P is not contained in N ⊠ N(k∆). Then we can find an open subset
V ⊂ X such that N and N∨

ω−1 can be trivialized on V (and we denote a
basis of N|V by {ei}1=1,...,r) and a sequence of sections

{ ∑
1≤i,j≤r

f n
ij ei ⊠ ej}n≥1, ∑

1≤i,j≤r
f n
ij ei ⊠ ej ∈ Γ(V ×V, P|V×V)

which satisfies that
{ord∆( f n

ij )}
1≤i,j≤r
n≥1

is unbounded below. Here the notation ord∆ means the pole order along
the diagonal. This means that we can find (i0, j0) ∈ {1, . . . , r} × {1, . . . r}
and n1 < n2 < n3 < · · · such that {ord∆( f ni

i0 j0
)}i≥1 is unbounded below.

Then we conclude that for k ∈ Z,
e∨i0 dz−1

1 ⊠e∨j0 dz−1
2

(z1−z2)k /∈ Γ(V ×V, P⊥|V×V). This
implies that P is not dualizable, we get a contradiction.

We conclude that P is a locally free sheaf of rank r2. Then the obvious
map

P⊥ → s−2P∨ ⊗OX2 ω−1
X2

is an isomorphism. In fact, we can construct an inverse as follows. We
work locally as above, suppose {ei ⊠ ej} (resp. {pk}) is a local basis of
N ⊠ N (resp. P). We can find local functions { f k

ij}, { f−1 k
ij } regular away

from the diagonal such that

pk = ∑
1≤i,j≤r

f k
ijei ⊠ ej, ei ⊠ ej =

r2

∑
k=1

f−1 k
ij pk.
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Define
p∨k 7→ ∑

1≤i,j≤r
f−1 k
ij e∨i ⊠ e∨j .

This defines the desired inverse s−2P∨ ⊗OX2 ω−1
X2 → P⊥.

Now we are ready to introduce the notion of quadratic dual chiral
algebra.

Definition 2.18. Let A(N, P) be a quadratic chiral algebra associated to a
dualizable quadratic datum (N, P). We define A! to be

A(s−1N∨ω−1 , P⊥).

We call A! the quadratic dual chiral algebra of A.

Since P is locally free, we have P∨∨ = P which implies that (A!)! = A.
This explains the name of "quadratic dual chiral algebra".

Non-homogeneous constructions

In this subsection, we modify the construction in the previous discussion to
study the non-homogeneous cases. Namely, we introduce a duality notion
that can be viewed as a chiral analogue of non-homogeneous quadratic
duality for associative algebras [LV12, Pos93].

Let 1◦ ≃ OX be a copy of the trivial line bundle.

Definition 2.19. A chiral quadratic-linear-scalar (QLS) datum is a chiral
quadratic datum in the form of (N ⊕ 1◦, P◦), such that

j∗ j∗(N ⊠ 1◦ ⊕ 1◦ ⊠ N ⊕ 1◦ ⊠ 1◦) ∩ P◦ = N ⊠ 1◦ ⊕ 1◦ ⊠ N ⊕ 1◦ ⊠ 1◦

The QLS chiral algebra associated to a QLS datum (N ⊕ 1◦, P◦) is defined
to be

A(N, P◦)QLS :=
A(N ⊕ 1◦, P◦)
⟨1◦ω − 1ω⟩

where 1ω = ωX is the unit and ⟨1◦ω − 1ω⟩ is the ideal generated by 1◦ω − 1ω.

For a chiral quadratic datum (N ⊕ 1◦, P◦), we denote qP◦ ⊂ j∗ j∗N ⊠ N
to be the image of

P◦ ↪→ j∗ j∗(N ⊕ 1◦)⊠ (N ⊕ 1◦)→ j∗ j∗N ⊠ N,

where the first arrow is the inclusion and the second arrow is the projection.
Using the fact that (qP◦)⊥ ⊂ P◦⊥, we have the following lemma.
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Lemma 2.20. Assume that the chiral quadratic datum (N⊕ 1◦, P◦) is dualizable.
Then the identity map id : s−1N∨

ω−1 → s−1N∨
ω−1 induces a injective morphism of

chiral algebras

i : A(s−1N∨ω−1 , (qP◦)⊥)→ A(s−1N∨ω−1 ⊕ s−11◦ω−1 , P◦⊥).

Retain the same notations, we introduce the notion of dualizable chiral
QLS datum.

Definition 2.21. We call a chiral QLS datum (N ⊕ 1◦, P◦) dualizable if
(N ⊕ 1◦, P◦) is dualizable as a chiral quadratic datum and

1) The inner derivation

d :=µ(s−11◦ ⊠−) :

A(s−1N∨ω−1 ⊕ s−11◦ω−1 , P◦⊥)→ ∆∗A(s−1N∨ω−1 ⊕ s−11◦ω−1 , P◦⊥)

preserves Im(i). More precisely, d(a) is in the image of ∆∗i if a is in the
image of i;

2) The element µ(s−11◦ ⊠ s−11◦) ∈ ∆∗A(s−1N∨
ω−1 ⊕ s−11◦

ω−1 , P◦⊥) is in
the image of ∆∗i.

Here, the notation s−11◦ means the identity global section s−11◦ ∈
Γ(X, s−1OX).

We introduce the notion of twisted pair which later will serve as the
"dual chiral algebra" of a QLS chiral algebra.

Definition 2.22. A twisted pair is a triple (B,B◦, S), where B◦ is a graded
chiral algebra and B ⊂ B◦ is a subalgebra. And S ∈ Γ(X,B◦) is a global
section of degree -1 such that

1) the map (h ⊠ id)µ(S ⊠−) : B◦ → B◦ preserves the subalgebra B.
Here h(M) := M⊗DX OX denotes the de Rham sheaf for any right DX-
module M,

2) the element µ(S ⊠ S) belongs to ∆∗B.

The following proposition is just a reformulation of previous definitions.

Proposition 2.23. Let (N ⊕ 1◦, P◦) be a dualizable chiral QLS datum. Then the
triple

(A(s−1N∨ω−1 , (qP◦)⊥),A(s−1N∨ω−1 ⊕ s−11◦ω−1 , P◦⊥), s−11◦)

is a twisted pair.

We define the quadratic dual of the chiral QLS algebra A(N, P◦)QLS to
be the above twisted pair.
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We now introduce the notion of chiral CDG-algebra (curved DG-algebra)
which will appear in Section 2.6.

Definition 2.24. A chiral CDG-algebra is a triple (B, d, ι), where B is a
graded chiral algebra, d : B → B is a derivation of B of degree −1, that is,
d satisfies

d(µ(a ⊠ b)) = µ(da ⊠ b) + µ(a ⊠ db).

And ι ∈ Γ(X,B) is a global section of degree -2 which is called curving. It
satisfies the following

1) d2(−) = (h ⊠ id)µ(ι ⊠−),
2) d(ι) = 0.

We can obtain a chiral CDG-algebra from a twisted pair.

Proposition 2.25. Let (B,B◦, S) be a twisted pair. Define

d := (h ⊠ id)µ(S ⊠−) : B → B,

ι := (h ⊠ id)µ(S ⊠ S) ∈ Γ(X,B),

then (B, d, ι) is a CDG chiral algebra.

Proof. It follows directly from the definition.

Remark 2.26. In the case of associated algebra, Positselski [Pos93] defines
the dual of a QLS algebra to be a CDG algebra constructed from the QLS
data. However, in the context of chiral algebras, passing from the twisted
pair to the CDG-algebra loses information. Also, the twisted pair is more
suitable to construct the curved chiral chain complex which serves as the
chiral analogue of the curved Hochschild chain complex in [Pos93].

2.5 maurer-cartan equation and quadratic duality

In this section, we study the relationship between chiral quadratic duality
and the Maurer-Cartan equations. In the associative algebra case, we have
shown that if an algebra A is Koszul, then the space MC(A⊗ B) := {α ∈
A⊗ B|[α, α] = 0, |α| = 1} of solutions of the Maurer-Cartan equation has
a one-to-one correspondence with the space Hom(A!, B) of algebra homo-
morphisms. We study similar correspondence for chiral algebras. However,
it not clear to us how to define the Koszulness for chiral algebras at this
stage. Nevertheless, we establish the chiral analogue of this connection for
some special cases.

We first introduce the Maurer-Cartan equation for chiral algebras.
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Definition 2.27. Let A be a graded chiral algebra. The Maurer-Cartan
equation is defined to be

µ(α ⊠ α) = 0, α ∈ Γ(X,A), |α| = 1.

The set of the solutions is denoted by MC(A).

Remark 2.28. Sometimes, one encounters a weaker form of the Maurer-
Cartan equation. It has the form of h(µ(α ⊠ α)) = 0, where h(−) = −⊗DX

OX is the de Rham sheaf. For example, in [Li23] the author established
an correspondence between renormalized quantum master equations and
this form of Maurer Cartan equations of vertex algebras. In the language
of vertex algebras (suppose that X = C), a constant section vdz satisfies
the equation in Definition 2.27 is equivalent to v(n)v = 0 for n ≥ 0. While
the latter equation is equivalent to v(0)v = 0.

We recall the definition of tensor products of chiral algebras. Suppose
that A1 and A2 are chiral algebras. We denote the corresponding factor-
ization algebras by F (Ai), i = 1, 2. Then

FX I := F (A1)X I ⊗OXI F (A2)X I

is also a factorization algebra. The tensor product A1 ⊗A2 is defined to
be the chiral algebra that corresponds to F .

Remark 2.29. Suppose X is the complex plane and Ai = X× (Vi)ω, i = 1, 2,
where Vi are vertex algebras. Then the above tensor product is the same as
the usual vertex algebra tensor product.

In the context of quadratic associative algebras, the tensor product of a
quadratic algebra and its dual contains a canonical element that satisfies
the usual Maurer-Cartan equation. Here we have the chiral algebra version
of this.

Proposition 2.30. If we take A to be A(N, P) and A! to be A(s−1N∨
ω−1 , P⊥)

then the canonical element ϕ(s−1Id) ∈ Γ(X, ϕ(s−1N∨ ⊗OX N)) ⊂ Γ(X,A! ⊗
A) is a solution to the Maurer-Cartan equation. Here ϕ : s−1N∨ ⊗OX N →
A! ⊗A is the natural map.

Proof. Suppose that rank(N) = r. To simplify the notation, we omit the
symbol ϕ and pretend that s−1N∨ ⊗ N is a submodule of A! ⊗A. We can
cover X× X by open subsets, such that we can find a collection of sections

{Pα}α=1,...,r2 , Pα ∈ P|V ,

and
{P∨α }α=1,...,r2 , P∨α ∈ P⊥ ⊗OX2 ωX2 |V ,
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such that

s−1Id ⊠ s−1Id|V =
r2

∑
α=1

P∨α ⊗ Pα (2.28)

for each open subset V that belongs to the covering. By the definition of
the tensor product of chiral algebras, we have

P⊥ ⊗OX2 P⊗OX2 ωX2 ⊂ ker µA!⊗A.

This implies that µ(s−1Id⊠ s−1Id)|V = 0 for every V. Therefore µ(s−1Id⊠
s−1Id) = 0.

Parallel to the quadratic associative algebra case, we can characterize
morphisms from a quadratic chiral algebra A = A(N, P) to an arbitrary
graded chiral algebra B as solutions of the Maurer-Cartan equations for
A! ⊗B, i.e., the tensor product of the chiral quadratic dual and the target
chiral algebra.

Theorem 2.31. Let B be a graded chiral algebra. There exists an injective map

Hom(A(N, P),B) ↪→ MC(A(s−1N∨ω−1 , P⊥)⊗B).

Proof. Suppose that we have a morphism φ : A(N, P)→ B. We claim that
the element

(id⊗ φ)(s−1Id) ∈ Γ(X,A(s−1N∨ω−1 , P⊥)⊗B)

is a solution of the Maurer-Cartan equation. This claim follows from
Proposition 2.30 and the fact that id⊗ φ : A!⊗A → A!⊗B is a morphism
of chiral algebras. The injectivity follows from the construction – (id⊗
φ)(s−1Id) is a zero section if and only if φ = 0.

We can show that the above injective map is bijective if we put more
conditions. We introduce the notion of effective chiral quadratic datum.

Definition 2.32. A chiral quadratic datum (N, P) is called effective if the
natural map ϕ : Nω → A(N, P) is injective and (for simplicity of notation,
we will omit the symbol ϕ)

P⊗OX ωX2 = j∗ j∗Nω ⊠ Nω ∩ ker µA(N,P).

Remark 2.33. It is easy to find effective chiral quadratic datum. We can
start from an arbitrary chiral quadratic datum (N, P). If P′ ⊗OX ωX2 =

j∗ j∗Nω ⊠ Nω ∩ ker µA(N,P) is locally free, then we can take (N, P′) to be our
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new chiral quadratic datum. From the construction in [BD04, 3.4.14,pp184],
we have A(N, P) = A(N, P′) and (N, P′) is effective.

Theorem 2.34. Let B be a graded chiral algebra which concentrated in degree 0.
Assume that N is in degree 0 and (s−1N∨

ω−1 , P⊥) is effective, then there exists a
bijection

Hom(A(N, P),B) ∼= MC(A(s−1N∨ω−1 , P⊥)⊗B).

Proof. We omit the symbol ϕ as before. We use the notationA = A(N, P),A! =

A(s−1N∨
ω−1 , P⊥). Suppose that we have α ∈ A! ⊗ B, |α| = 1 satisfies the

Maurer-Cartan equation. Since we assume that both B and N are in degree
0, we have

α ∈ s−1N∨ω−1 ⊗OX B ⊂ A
! ⊗B.

Then α defines a morphism of OX modules

ϕα : Nω → B,

ϕα(−) = ⟨sα,−⟩.

Note that we have
(id⊗ ϕα)(s−1Id) = α.

We can cover X2 by open subsets ∪Vi. We can find {Pi
α}, {Pi ∨

α }such that
the equation 2.28 holds on Vi. Now take V = Vi, we have

0 = µ(α ⊠ α)|V = µ((id ⊠ id)⊗ (ϕα ⊠ ϕα)(s−1Id ⊠ s−1Id))|V

= µ((id ⊠ id)⊗ (ϕα ⊠ ϕα)(∑
α∈S

P∨α ⊗ Pα))|V

= µ(∑
α∈S

P∨α ⊗ (ϕα ⊠ ϕα)(Pα))|V .

We have

(∑
α∈S

P∨α ⊗ (ϕα ⊠ ϕα)(Pα))|V = ∑
α∈S

P∨α ⊗Qα, Qα ∈ ker(µB)|V

since we assume that (s−1N∨
ω−1 , P⊥) is effective. This implies that

µB((ϕα ⊠ ϕα)(Pα))|V = µB(Qα) = 0, α ∈ S.

We can generalize the notion of Maurer-Cartan equation to twisted pairs.
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Definition 2.35. Let A be a graded chiral algebra and (B,B◦, S) be a
twisted pair. The Maurer-Cartan equation is defined to be

µ((S + α)⊠ (S + α)) = 0, α ∈ Γ(X,A⊗B), |α| = 1.

The set of the solutions is denoted by MC((B,B◦, S)⊗A)

Proposition 2.36. If we take A to be A(N⊕1◦,P◦)
⟨1◦ω−1ω⟩ and (B,B◦, S) to be

(A(s−1N∨ω−1 , (qP◦)⊥),A(s−1N∨ω−1 ⊕ s−11◦ω−1 , P◦⊥), s−11◦) (2.29)

the canonical element s−1Id ∈ Γ(X, s−1N∨ ⊗OX N) ⊂ Γ(X,B ⊗A) is a solu-
tion to the Maurer-Cartan equation.

Proof. The identity element s−1Id◦ ∈ Γ(X, (s−1N∨
ω−1 ⊕ s−11◦

ω−1)⊗OX (N ⊕
1◦)⊗OX ωX) satisfies the usual Maurer-Cartan equation in B◦ ⊗A(N ⊕
1◦, P◦)

µ(s−1Id
◦
⊠ s−1Id

◦
) = 0.

Note that s−1Id◦ = s−1Id+S ∈ Γ(X,B◦⊗A), the proposition follows.

Theorem 2.37. Let C be a graded chiral algebra and (B,B◦, S) be the twisted
pair (2.29). Then there is a injection

Hom(
A(N ⊕ 1◦, P◦)
⟨1◦ω − 1ω⟩

, C) ↪→ MC((B,B◦, S)⊗ C).

Proof. Suppose there is a morphism of chiral algebras

ϕ :
A(N ⊕ 1◦, P◦)
⟨1◦ω − 1ω⟩

→ C.

Note that ϕ is induced by the following morphism

ϕ̃ : A(N ⊕ 1◦, P◦)→ C

such that ϕ̃|Nω = ϕ|Nω and ϕ̃|1◦ω = 1ω = ωX. Then

α = ϕ̃(s−1Id
◦
)− S = ϕ(s−1Id)

is the solution of the Maurer-Cartan equation.

Similarly, we have the following theorem.
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Theorem 2.38. Let C be a graded chiral algebra concentrated in degree 0 and
(B,B◦, S) be the twisted pair (2.29). Assume that N is degree 0 and (s−1N∨

ω−1 ⊕
s−11◦

ω−1 , P◦⊥) is effective. Then there is a bijection

Hom(
A(N ⊕ 1◦, P◦)
⟨1◦ω − 1ω⟩

, C) ∼= MC((B,B◦, S)⊗ C).

Proof. Suppose we have a solution α of the Maurer-Cartan equation. We
can define a map ϕ̃α : Nω ⊕ 1◦ω → C such that

α = (id⊗ ϕ̃α|Nω )(s
−1Id),

and ϕ̃α|1◦ω : 1◦ω → C is equal to the unit map ωX → C. Then repeat the
proof in Theorem 2.31, we have a morphism of chiral algebras

ϕ̃α : A(N ⊕ 1◦, P◦)→ C,

and it factors through the ideal ⟨1◦ω − 1ω⟩ by construction. Thus, we have
a morphism

ϕα :
A(N ⊕ 1◦, P◦)
⟨1◦ω − 1ω⟩

→ C.

The proof is complete.

2.6 examples

There are some classical examples of Koszul duality for associative algebra.
The most famous example of Koszul dual algebras are the symmetric
algebra S(V) and the exterior algebra ∧V∨. In the non-homogeneous case,
we have the Koszul duality between the universal enveloping algebra U(g)

and the Chevalley-Eilenberg algebra CE(g). In this section we discuss
examples of quadratic duality for chiral algebra that parallel the cases of
associative algebra.

Commutative chiral algebra

First, we consider the simplest quadratic datum (N, P = N ⊠ N), with
N locally free of finite rank. We have A(N, P) = Sym(ND), which is the
commutative chiral algebra generated by ND := N ⊗OX DX.

The dual quadratic datum is given by (s−1N∨
ω−1 , P⊥ = s−1N∨

ω−1 ⊠ s−1N∨
ω−1).

It automatically satisfies P⊥|U = s−1N∨
ω−1 ⊠ s−1N∨

ω−1 |U , so this quadratic
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datum is dualizable. We have A(s−1N∨
ω−1 , P⊥) = Sym((s−1N∨

ω−1)D), which
is the graded commutative chiral algebra generated by (s−1N∨

ω−1)D.

Another pure quadratic example

Let N be the free OX-module N =
⊕4

i=1OX. We denote the corresponding
basis by {ϕi}i=1,...4. We define P to be the OX2 module with basis

ϕi ⊠ ϕj, {i, j} ̸= {1, 2},

ϕ1 ⊠ ϕ2 −
1

z1 − z2
ϕ3 ⊠ ϕ4,

ϕ2 ⊠ ϕ1 +
1

z1 − z2
ϕ4 ⊠ ϕ3.

For the dual datum, we have s−1N∨
ω−1 =

⊕4
i=1 s−1ω−1

X . We denote the
corresponding basis by {ψi = s−1ϕ∨i }i=1,...4. Then P⊥ has the following
basis

ψi ⊠ ψj, {i, j} ̸= {3, 4},

ψ3 ⊠ ψ4 +
1

z1 − z2
ψ1 ⊠ ψ2,

ψ4 ⊠ ψ3 −
1

z1 − z2
ψ2 ⊠ ψ1.

P⊥ defined above satisfies P⊥|U = s−1N∨
ω−1 ⊠ s−1N∨

ω−1 |U , so this quadratic
datum is dualizable.

Affine Kac-Moody chiral algebra

Let g be a finite dimensional Lie algebra with an invariant pairing κ. We
take a basis {xa}1≤a≤n of g. Let N = g⊗ω−1

X . We let P◦ ⊂ j∗ j∗(N ⊕ 1◦)⊠
(N ⊕ 1◦) to be the OX2-module defined by the following basis

1◦ ⊠ 1◦,

1◦ ⊠ xa, xa ⊠ 1◦, 1 ≤ a ≤ n,

xa ⊠ yb −
1
2

n

∑
c=1

(
f c
ab

z1 − z2
) (1◦ ⊠ xc + xc ⊠ 1◦)− κab

(z1 − z2)2 1◦ ⊠ 1◦, ; 1 ≤ a, b ≤ n,

(2.30)
where κab = κ(xa, xb).

As a more familiar construction, we consider the affine Kac-Moody
Lie∗ algebra gκ

D = gD ⊕ωX. It gives rise to the twisted chiral enveloping
algebra U(gD)

κ [BD04, Section 3.7.25, pp227].
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Proposition 2.39. We have an isomorphism of chiral algebras

A(N ⊕ 1◦, P◦)
⟨1◦ω − 1ω⟩

= U(gD)
κ.

Proof. On the one hand, we have a map Nω ⊕ 1◦ω → gκ
D → U(gD)

κ. By the
universal property, we get a map of chiral algebra A(N⊕ 1◦, P)→ U(gD)

κ.
By construction, 1◦ω is mapped to the unit of U(gD)

κ. Therefore we have a
map of chiral algebra A(N⊕1◦,P◦)

⟨1◦ω−1ω⟩ → U(gD)
κ.

On the other hand, we consider the map Nω ⊕ 1◦ω →
A(N⊕1◦,P◦)
⟨1◦ω−1ω⟩ , which

extends to a DX-module map gκ
D →

A(N⊕1◦,P◦)
⟨1◦ω−1ω⟩ . Using the relation 2.30,

we find that the image of this map has the same Lie∗ bracket as gκ
D.

Therefore we get a map of Lie∗ algebra gκ
D →

A(N⊕1◦,P◦)
⟨1◦ω−1ω⟩ . By the universal

property of (twisted) chiral envelope, we have a map of chiral algebra
U(gD)

κ → A(N⊕1◦,P◦)
⟨1◦ω−1ω⟩ .

The composition gκ
D →

A(N⊕1◦,P◦)
⟨1◦ω−1ω⟩ → U(gD)

κ is the canonical map gκ
D →

U(gD)
κ. Therefore the composition U(gD)

κ → A(N⊕1◦,P◦)
⟨1◦ω−1ω⟩ → U(gD)

κ is the

identity. Similarly the composition A(N⊕1◦,P◦)
⟨1◦ω−1ω⟩ → U(gD)

κ → A(N⊕1◦,P◦)
⟨1◦ω−1ω⟩

also gives the identity.

Now we analyze the quadratic dual datum. We find that P◦⊥ is given
by the following basis

s−11◦ω−1 ⊠ s−11◦ω−1 + ∑
1≤a,b≤n

κab

(z1 − z2)2 s−1x∨a ⊠ s−1x∨b ,

s−11◦ω−1 ⊠ s−1x∨c +
1
2 ∑

1≤a,b≤n

f c
ab

z1 − z2
s−1x∨a ⊠ s−1x∨b , 1 ≤ c ≤ n,

s−1x∨c ⊠ s−11◦ω−1 +
1
2 ∑

1≤a,b≤n

f c
ab

z1 − z2
s−1x∨a ⊠ s−1x∨b , 1 ≤ c ≤ n,

s−1x∨a ⊠ s−1x∨b , 1 ≤ a, b ≤ n.

We see that (N ⊕ 1◦, P◦) is dualizable as qudratic datum. The quadratic
projection (qP◦)⊥ is given by the following basis

s−1x∨a ⊠ s−1x∨b , 1 ≤ a, b ≤ n.

Therefore, the chiral algebra B = A(s−1N∨
ω−1 , (qP◦)⊥) = Sym((s−1N∨

ω−1)D)

is the graded commutative chiral algebra generated by s−1N∨
ω−1 .

We denote B◦ = A(s−1N∨
ω−1⊕ s−11◦

ω−1 , P◦⊥). To prove that (B,B◦, s−11◦)
is indeed a twisted pair, we analyze the differential and the curving ele-
ment.
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Proposition 2.40. The differential defined by d = (h ⊠ id)µ(s−11◦ ⊠−) pre-
serves B. Moreover, the DG chiral algebra (B, d) is isomorphic to the Chevalley
DG algebra (C(gD), dCE) for the Lie∗ algebra gD (see [BD04, Section 4.7, pp348]
for details, where they use the name "de Rham-Chevalley algebra" as the construc-
tion is for general Lie∗ algebroids).

Proof. B is a commutative chiral algebra, which coincides with C(gD) as
plain graded chiral algebra. The corresponding left D-module Bl is a
commutative DX-algebra.

We denote the image of s−1x∨c under s−1N∨
ω−1 → Bl by the same symbol

s−1x∨c . Using the dual relation we can compute d restricted to s−1N∨
ω−1 ⊗

ωX as follows

d(s−1x∨c dz) = (h ⊠ id)µ(s−11◦ ⊠ s−1x∨c dz2)

=
1
2 ∑

1≤a,b≤n
(h ⊠ id)µ(

f c
ab

z1 − z2
s−1x∨a dz1 ⊠ s−1x∨b dz2).

The chiral map µ restricted to B is given by the commutative product on
Bl . We can simplify the above map as follows

d(s−1x∨c dz) =
1
2 ∑

1≤a,b≤n
f c
ab(s

−1x∨a · s−1x∨b )dz.

Since d is aD-module map, the above result extend to a map d : (s−1N∨
ω−1)D →

B. We see that d restricted to (s−1N∨
ω−1)D is given by the composition

(s−1N∨
ω−1)D

[−,−]∗→ (s−1N∨
ω−1)D ⊗ (s−1N∨

ω−1)D → Sym2((s−1N∨
ω−1)D), which

coincide with dCE.
The Jacobi identity of chiral map implies that d satisfies Leibniz rule

with respect to the chiral map. We thus complete the proof.

The final ingredient is the curving. Using the dual relation we find that
it is given by

ι = (h ⊠ id)µ(s−11 ⊠ s−11)

= − ∑
1≤a,b≤n

(h ⊠ id)µ(
κab

(z1 − z2)2 s−1x∨a dz1 ⊠ s−1x∨b dz2).

We see that (h ⊠ id)µ( κab
(z1−z2)2 s−1x∨a dz1 ⊠ s−1x∨b dz2) is indeed an element

of B. Therefore the triple (B,B◦, s−11◦) is a twisted pair and serves as the
quadratic dual of U(gD)

κ.
From the vertex algebra point of view, the vertex algebra corresponding

to the twisted chiral envelope U(gD)
κ is the affine Kac-Moody VOA Vκ(g).
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The quadratic dual vertex algebra can be identified with the graded com-
mutative vertex algebra VCE(g) := CE(Lg) equipped with the Chevalley-
Eilenberg differential and a curving. Explicitly, we denote

{Ja(z) = ∑
n∈Z

Ja,(n)z
−n−1}1≤a≤n

the set of generating fields of Vκ(g). The quadratic dual vertex algebra
VCE(g) is generated by fields {ca(z) = ∑

n∈Z
ca
(n)z

−n−1}1≤a≤n. The differen-

tial can be expressed as follows

d(∂mca) = −1
2 ∑

1≤b,c≤n
∑

r+s=m
f a
bc

(
m
r

)
(∂rcb)(∂scc),

where we define ∂mca = ∂mca(0)|0⟩. Using VOA axiom, ∂mca can also be
identified with Tmca. The curving element can be identified with

ι = − ∑
1≤a,b≤n

κab(∂ca)cb.

The canonical element s−1Id ∈ Γ(X, s−1N ⊗OX N) corresponds to the
following element in the vertex algebra Vκ(g)⊗VCE(g)

I :=
n

∑
a=1

Ja ⊗ ca.

We can verify the corresponding Maurer-Cartan equation using vertex
algebra operation. Note that I(0) = ∑

1≤a≤n
∑

l+m=−1
Ja,(l) ⊗ ca

(m). We find the

following

I(0)I = ∑
1≤a,b,c≤n

f c
ab Jc ⊗ cacb + ∑

1≤a,b≤n
|0⟩ ⊗ κab(∂ca)cb.

We also have
dI = −1

2 ∑
1≤a,b,c≤n

f a
bc Ja ⊗ cbcc.

Therefore, the following Maurer-Cartan equation is satisfied

dI +
1
2

I(0)I +
1
2

ι = 0. (2.31)
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We can use I(m) = ∑
1≤a≤n

∑
l+k=m−1

Ja,(l) ⊗ ca
(k) to check that the stronger form

of Maurer-Cartan equation (see the Remark 2.28) is also satisfied

I(m)I = 0, for m ≥ 1. (2.32)

As a consequence, for any vertex algebra V and a homomorphism
φ : Vκ(g) → V, (φ⊗ id)(I) satisfies the Maurer-Cartan equation. On the
other hand, for any vertex algebra V concentrated in degree 0, a degree 1
element of VCE(g)⊗V takes the following form

α =
n

∑
a=1

ca ⊗ ya, ya ∈ V.

For the (strong form of) Maurer-Cartan equation 2.31,2.32 to hold for α,
we must have

ya,(0)yb =
n

∑
c=0

f c
abyc,

ya,(1)yb = κab|0⟩,
ya,(m)yb = 0, for m ≥ 2.

Using Borcherds identities [FBZ04], we find

[ya,(l), yb,(m)] =
n

∑
c=1

f c
abya,(l+m) + κabδn,−m.

This implies that the following map

Ja → ya, 1 ≤ a ≤ n,

defined a homomorphism of vertex algebra Vκ(g)→ V.

βγ system

Let L =
⊕

α∈Q

Lα be a finite dimensional Q(conformal weight)-graded su-

perspace. Suppose that L is equipped with an even symplectic pairing of
conformal weight −1

⟨−,−⟩ : Lα ⊗ L1−α → C.
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We define N =
⊕

α∈Q

Lα ⊗ω1−α
X . Let {xa}1≤a≤n be a basis of L. We consider

P◦ ⊂ j∗ j∗(N ⊕ 1◦)⊠ (N ⊕ 1◦) defined by the following basis

1◦ ⊠ 1◦,

1◦ ⊠ xa, xa ⊠ 1◦, 1 ≤ a ≤ n,

xa ⊠ yb −
Ωab

z1 − z2
1◦ ⊠ 1◦, 1 ≤ a, b ≤ n.

where Ωab = ⟨xa, xb⟩.

Proposition 2.41. The chiral algebra A(N⊕1◦,P)
⟨1◦ω−1ω⟩ defined as above is isomorphic

to the chiral Weyl algebra W(L, ⟨−,−⟩) defined in [BD04, Section 3.8.1, pp228].
The corresponding vertex algebra is the βγ− bc system.

Proof. This is a corollary of Proposition 2.39

We assume that the symplectic pairing is non-degenerate. Then the dual
relation P⊥ is given by the following basis

s−11◦ω−1 ⊠ s−11◦ω−1 + ∑
1≤a,b≤n

Ωab

z1 − z2
s−1x∨a ⊠ s−1x∨b ,

s−11◦ω−1 ⊠ s−1x∨a , s−1x∨a ⊠ s−11◦ω−1 , 1 ≤ a ≤ n,

s−1x∨a ⊠ s−1x∨b , 1 ≤ a, b ≤ n,

The quadratic projection (qP◦)⊥ is given by the following basis

s−1x∨a ⊠ s−1x∨b .

We get the graded commutative chiral algebra A(s−1N∨
ω−1 , (qP◦)⊥) =

Sym((s−1N∨
ω−1)D). The differential d is zero. The curving element is given

as follows

ι = (h ⊠ id)µ(s−11◦ ⊠ s−11◦)

= − ∑
1≤a,b≤n

(h ⊠ id)µ(
Ωab

z1 − z2
s−1x∨a dz1 ⊠ s−1x∨b dz2).

By identifying the chiral map with the commutative product of Sym((s−1N∨
ω−1)D)

l

as in the proof of 2.40, we see that the curving ι is an element of Sym((s−1N∨
ω−1)D).

Moreover, ι is given by

− ∑
1≤a,b≤n

Ωab(s−1x∨a · s−1x∨b )dz
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3.1 (pseudo-)tensor category

Symmetric monoidal category

In this section, we briefly review the definitions related to symmetric
monoidal category. For more detail, see [EGNO15]

Definition 3.1. A monoidal category is a category C equipped with

1. A functor ⊗ : C × C → C, called the tensor product functor;

2. A distinguished object 1 called the unit object;

3. A natural isomorphism α : ((−⊗−)⊗−) → (−⊗ (−⊗−)), with
components:

αX,Y,Z : (X⊗Y)⊗ Z ∼→ X⊗ (Y⊗ Z) (3.1)

called the associativity isomorphism;

4. Two natural isomorphisms l : (1⊗−)→ (−), r : (−⊗ 1)→ (−),

such that the following two identity holds

1. triangle identity:
(X⊗ 1)⊗Y X⊗ (1⊗Y)

X⊗Y
rX⊗idY

αX,1,Y

idX⊗lX

2. pentagon identity:

((X⊗Y)⊗ Z)⊗W (X⊗ (Y⊗ Z))⊗W

(X⊗Y)⊗ (Z⊗W) X⊗ ((Y⊗ Z)⊗W)

X⊗ (Y⊗ (Z⊗W))

αX,Y,Z⊗idW

αX⊗Y,Z,W αX,Y⊗Z,W

αX,Y,Z⊗W idX⊗αY,Z,W

34
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Definition 3.2. Let (C,⊗C , 1C), (D,⊗D, 1D) be two monoidal categories.
A (lax) monoidal functor between C and D is a triple (F, J, ϵ), where F
is a functor F : C → D, JX,Y : F(X)⊗D F(Y) ∼→ F(X ⊗C D) is a natural
isomorphism and ϵ : 1D → F(1C) is an isomorphism. These data are
required to satisfy the following conditions

1. associativity:

(F(X)⊗D F(Y))⊗D F(Z) F(X)⊗D (F(Y)⊗D F(Z))

F(X⊗C Y)⊗D F(Z) F(X)⊗D F(Y⊗C Z)

F((X⊗C Y)⊗C Z) F(X⊗C (Y⊗C Z))

αDF(X),F(Y),F(Z)

JX,Y⊗D idF(Z) idF(X)⊗D JY,Z

JX⊗CY,Z JX,Y⊗CZ

F(αCX,Y,Z)

2. unitality:

1D ⊗D F(X) F(1C)⊗D F(X)

F(X) F(1C ⊗C X)

ϵ⊗idF(X)

lDF(X)
J1C ,X

F(lCX)

F(X)⊗D 1D F(X)⊗D F(1C)

F(X) F(X⊗C 1C)

idF(X)⊗ϵ

rDF(X)
JX,1C

F(rCX)

Given an object X in C, an object X∗ is called a left dual of X if there
exist morphisms evX : X∗ ⊗ X → 1 and coevX : 1 → X ⊗ X∗, called the
evaluation and coevaluation maps, such that the compositions

X coevX⊗idX−→ (X⊗ X∗)⊗ X
αX,X∗ ,X−→ X⊗ (X∗ ⊗ X)

idX⊗evX−→ X

X∗
idX∗⊗coevX−→ X∗ ⊗ (X⊗ X∗)

α−1
X∗ ,X,X∗−→ (X∗ ⊗ X)⊗ X∗

evX⊗idX∗−→ X∗
(3.2)

are the identity morphisms.
Similarly, we have the notion of right dual ∗X of an object X.

Proposition 3.3. If an object X has a left (respectively, right) dual object, then it
is unique up to a unique isomorphism.

Definition 3.4. 1. An object X in C is called rigid if it has both a left
dual and a right dual.

2. A monoidal category C is called rigid if every object of C is rigid.
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Then we define the notions of braided monoidal category and symmetric
monoidal category.

Definition 3.5. A braided monoidal category is a monoidal category C
equipped with a natural isomorphism

σX,Y : X⊗Y → Y⊗ X (3.3)

called the braiding, such that the following two hexagonal diagrams
commute

X⊗ (Y⊗ Z) (Y⊗ Z)⊗ X

(X⊗Y)⊗ Z Y⊗ (Z⊗ X)

(Y⊗ X)⊗ Z Y⊗ (X⊗ Z)

σX,Y⊗Z

αY,Z,XαX,Y,Z

σX,Y⊗idZ

αY,X,Z

idY⊗σX,Z

and

(X⊗Y)⊗ Z Z⊗ (X⊗Y)

X⊗ (Y⊗ Z) (Z⊗ X)⊗Y

X⊗ (Z⊗Y) (X⊗ Z)⊗Y

σX⊗Y,Z

α−1
Z,X,Yα−1

X,Y,Z

idX⊗σY,Z

α−1
Y,X,Z

σZ,X⊗idY

Definition 3.6. Let C, D be two braided monoidal categories. A monoidal
functor (F, J, ϵ) between C and D is called braided if the following diagram
commutes

F(X)⊗D F(Y) F(Y)⊗D F(X)

F(X⊗C Y) F(Y⊗C X)

σDF(X),F(Y)

JX,Y JY,X

F(σCX,Y)

Definition 3.7. A symmetric monoidal category is a braided monoidal
category for which the braiding satisfy the condition

σY,X ◦ σX,Y = idX⊗Y (3.4)
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Karoubian category

In this section, we briefly review definitions of the Karoubian category,
also called the pseudo-abelian category.

Given a category C, an idempotent of C is an endomorphism e : X → X,
such that

e ◦ e = e

An idempotent e is said to split if there is an object Y and morphisms
p : X → Y, i : Y → X such that e = i ◦ p and idY = p ◦ i.

Definition 3.8. A category C is called Karoubian if every idempotent splits.

Definition 3.9. A Karoubi envelope of a category C is a tuple (Ckar, ι)

where Ckar is Karoubian and ι : C → Ckar is a fully-faithful functor such
that for any Karoubian category D, the restriction function

Fun(Ckar,D)→ Fun(C,D) (3.5)

is an equivalence of categories.

Given a category, one can always construct its Karoubi envelope Ckar as
follows. The objects of Ckar are pairs (X, e) where X is an object in C and
e : X → X is an idempotent. The morphisms between (X, e) and (X′, e′) is
given by

Hom((X, e), (X′, e′)) = { f ∈ Hom(X, X′)| f ◦ e = e′ ◦ f } (3.6)

We use the following terminology in our paper.

Definition 3.10. 1. A pseudo-abelian category is a additive Karoubian
category.

2. A pseudo-tensor category over a field k is a pseudo-abelian, rigid,
symmetric monoidal category over k.

3. A tensor category over a field k is an abelian, rigid, symmetric
monoidal category over k.

Ind completion and compact objects

Definition 3.11. A category I is filtered if it is nonempty and satisfies

1. For every two objects j, j′ in I, there exists an object k and two
morphisms j→ k and j′ → k.
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2. For every two parallel morphisms f , g : j→ k, there exists an object
l and a morphism h : k→ l such that h ◦ f = h ◦ g.

A filtered colimit in a category C is the colimit of a diagram F : I → C,
where I is filtered. Such a diagram is also called an ind object in C.

Example 3.12. Colimits in Set are easy to describe. We have

colim
i∈I

F(i) =

(
⨿
i∈I

F(i)

)
/ ∼ (3.7)

where ∼ is the equivalence relation identifying a ∈ F(i) ∼ b ∈ F(j) if
for the object k with morphisms f : i → k, g : j → k, we have F( f )(a) =
F(g)(b).

Ind objects in C form a category Ind(C) called the ind completion of C.
Given two ind objects X : I → C and Y : J → C, the space of morphisms
from X to Y is defined to be

HomInd(C)(X, Y) = lim
i∈I

colim
j∈J

Hom(Xi, Yj) (3.8)

Definition 3.13. An object X in a locally small category C is called compact
if the functor

HomC(X,−) : C → Set (3.9)

preserves filtered colimits.
We denote Cc the sub-category of compact objects in C.

Definition 3.14. A category C is compactly generated if C ∼= Ind(Cc).

By definition, objects in C are compact in Ind(C). The converse is not
necessarily true in general. However, in this paper, we will focus on the
case when C is Karoubian. In this case, compact objects in Ind(C) are all
isomorphic to objects in C.

Proposition 3.15. The functor C → (Ind(C))c is an equivalence of category if
and only if C is Karoubian.

Proof. First, we show that A ∈ Ind(C) is a compact object of Ind(C) if
and only if there exists an object X ∈ C and morphisms i : A → X and
p : X → A such that p ◦ i = idA.

For A ∈ Ind(C), let A = colim
i∈I

Ai. Since A is compact, we have

Hom(A, A) = colim
i∈I

Hom(A, Ai)
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Therefore, there exist an object X = Ai ∈ C for some i ∈ I with morphisms
i : A→ X such that idA = p ◦ i.

On the other hand, if there exist an object X ∈ C and morphisms
i : A → X and p : X → A such that p ◦ i = idA. For any filtered colimit
Y = colimiYi, we have a map

Hom(A, Y)→ Hom(X, Y)
∼=→ colimiHom(X, Yi)→ colimiHom(A, Yi)

We can check that this map is an isomorphism. Therefore A is compact.
C → (Ind(C))c induces an equivalence of categories if and only if any

compact object A of Ind(C) is isomorphic to an object A′ ∈ C. We have
shown that this condition is equivalent to the condition that C being
Karoubian.

Corollary 3.16. Let C̃ = Ind(C) be the Ind completion of a Karoubian category.
Then the tensor product preserves compact objects of C̃.

3.2 enveloping algebra in pseudo-tensor category

The usual notion of Lie algebra and associative algebra extend to any
symmetric monoidal category C

Definition 3.17. A Lie algebra object in C is an object g in C together with
a morphism

[−,−] : g⊗ g→ g (3.10)

We require the following axioms

1. (Skew-symmetry)
[−,−] ◦ (id⊗2

g + σ) = 0 (3.11)

2. (Jacobi identity)

[−, [−,−]] ◦ (id⊗3
g + (idg⊗ σ) ◦ (σ⊗ idg) + (σ⊗ idg) ◦ (idg⊗ σ)) = 0

(3.12)
where we denote [−, [−,−]] = [−,−] ◦ (idg ⊗ [−,−]).

Definition 3.18. An associative algebra object in C is an object A in C
together with a morphism m : A⊗ A→ A, such that

m ◦ (m⊗ idA) = m ◦ (idA ⊗m) (3.13)

A unital algebra in C is an associative algebra (A, m) together with a
map η : 1→ A called unit, such that

m ◦ (η ⊗ idA) = lA, m ◦ (idA ⊗ η) = rA (3.14)
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A commutative algebra in C is an associative algebra (A, m) such that

m = m ◦ σ (3.15)

An important construction related to a Lie algebra g in vector space is
its universal enveloping algebra U(g). It is defined by the quotient

U(g) = T(g)/I (3.16)

where I is the ideal given by

I = ⟨x⊗ y− y⊗ x− [x, y] | x, y ∈ g⟩ (3.17)

This construction extend naturally to Lie algebra in a tensor category.
However, if C is only a pseudo-tensor category, i.e. without arbitrary
quotient, the existence of the universal enveloping algebra is not obvious.
In this section, we present a construction of universal enveloping algebra
as a deformation of the symmetric algebra.

For any object X in C, the tensor algebra T(X) is defined as

T(X) =
⊕
k≥0

Tk(X) =
⊕
k≥0

X⊗k (3.18)

It has a natural associative product given by the tensor product Tk(X)⊗
Tl(X) → Tk+l(X). The symmetric group Sk acts on Tk(X). We have an
idempotent

eSym =
1
k! ∑

τ∈Sn

τ : Tk(X)→ Tk(X)

e2
Sym = eSym

(3.19)

Since C is Karoubian, we get the symmetric tensor Sk(X) as an object in C.
Then we define

S(V) =
⊕
k≥0

Sk(X). (3.20)

S(V) inherit an product m from the tensor algebra T(X), defined as

m : S(V)⊗ S(V)
i⊗i→ T(V)⊗ T(V)

⊗→ T(V)
p→ S(V) (3.21)

Lemma 3.19. For any object X and Z, the Hom space HomC(Z, TnX) is natu-
rally a Sn module. We have

HomC(Z, SnX) = HomC(Z, TnX)Sn (3.22)
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Proof. By definition, HomC(Z, SnX) = { f ∈ HomC(Z, TnX)|eSym ◦ f = f }.
For any such f , we have σ ◦ f = σ ◦ eSym ◦ f = eSym ◦ f = f for any
σ ∈ Sn. On the other hand, suppose f ∈ HomC(Z, TnX) that satisfy
σ ◦ f = f for any σ ∈ Sn. Clearly eSym ◦ f = f . Thus we have proved
HomC(Z, SnX) = { f ∈ HomC(Z, TnX)|σ ◦ f = f , for any σ ∈ Sn}.

Weyl algebra and Weyl quantization

Before we present the construction of universal enveloping algebra, it will
be helpful to look at the easier example of Weyl algebra.

We assume that X is equipped with a antisymmetric two form

ω : X⊗ X → 1

ω ◦ σ = −Ω
(3.23)

ω extends to a series of maps

ωij : Tk(X)⊗ Tl(X)→ Tk−1(X)⊗ T−1(X) (3.24)

by applying ω to the i-th and j-th X and identities on the others. Explicitly,
we can write ωij as the composition

Tk(X)⊗Tl(X)
σ(k,k−1,...,i)⊗σ(1,2,...,j)−→ Tk(X)⊗Tl(X)

id⊗k−1
X ⊗Ω⊗idl−1

X−→ Tk−1(X)⊗Tl−1(X)

(3.25)
where σ(k,k−1,...,i) is the braiding map that correspond to the permutation
(k, k− 1, . . . , i).

We define ω : Tk(X)⊗ Tl(X)→ Tk−1(X)⊗ T−1(X) by

ω =
k

∑
i=1

l

∑
j=1

ωij (3.26)

It induces a map on the symmetric tensor, that we also denoted ω

ω : S(X)⊗ S(X)→ S(X)⊗ S(X) (3.27)

We define the Weyl algebra as the Moyal-Weyl deformation of the
symmetric algebra.

Definition 3.20. The Weyl algebra W(X, ω) associated to (X, ω) is the
associative algebra (S(V), ⋆), where ⋆ is given by

− ⋆− = m ◦ exp(
ω

2
)(−⊗−) (3.28)
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We can pictorially represent the map ω by a digram

• •
ω :

Then the ⋆ product can be pictorially represented by the following

• •

. . .

∑n≥0
1
n!

n

In fact, the star product has the property that shifting the antisymmetric
map ω by a symmetric map α : S2(X) → 1 leads to an isomorphic star
product. We first extend α to a map S(X)→ S(X). Then The isomorphism
is given by exponentiate α

exp(
1
4

α) : S(X)→ S(X) (3.29)

Proposition 3.21. Let α : X⊗ X → 1 be a symmetric two form, i.e. α ◦ σ = α.
Denote ⋆ω the star product defined by ω and ⋆ω+α the star product defined by
ω + α. Then we have the following commutative diagram

S(X)⊗ S(X) S(X)⊗ S(X)

S(X) S(X)

e( 1
4 α)⊗e( 1

4 α)

⋆ω ⋆ω+α

exp( 1
4 α)

(3.30)

Shifting by a symmetric form α is related to the choice of ordering in the
identification of symmetric algebra and the non-commutative Weyl algebra.
The standard Moyal-Weyl product ⋆ω is associated with the symmetric
ordering. Sometimes a different ordering, called normal ordering, is also
used. This ordering is more convenient in defining the module associated
with a polarization.

We call a polarization of (X, ω) a decomposition X = L+ ⊕ L−, so that
the symplectic form also decomposes as ω = ω+ + ω−, where

ω+ ∈ Hom(L− ⊗ L+, 1), ω− ∈ Hom(L+ ⊗ L−, 1) (3.31)

and ω+ = −ω− ◦ σ. Given a polarization, we can consider the star product
associated with the two form 2ω−

⋆2ω− = exp(ω−) ∈ Hom(S(X)⊗ S(X), 1) (3.32)
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This product corresponds to the so called normal ordering. It differs from
the standard star product by the symmetric two form α = ω+ − ω−.
The advantage of ⋆2ω− is that we can naturally define a (S(X), ⋆2ω−) left
module structure on S(L−). The module map is given by the same formula
as ⋆2ω− , composed with πL− , where πL− is the natural projection

πL− : S(L+ ⊕ L−)→ S(L−) (3.33)

Using the isomorphism 3.29, we obtain a leftW(X, ω) module structure
on S(L−), which we denote by ⋆l :

⋆l :W(X, ω)⊗ S(L−)→ S(L−) (3.34)

This map can be written as follows:

− ⋆l − = πL− ◦m ◦ exp(ω−) ◦ (exp(
ω+ −ω−

4
)−⊗−) (3.35)

Universal enveloping algebra

Now we can move on to define the universal enveloping algebra of a Lie
algebra g in C. The Lie structure is given by a map

[−,−] : g⊗ g→ g

Such a map extend by Leibniz rule to a map on the symmetric algebra
S(g)

S(g)⊗ S(g)→ S(g) (3.36)

We construct the universal enveloping algebra U(g) as the deformation
of S(g) equipped with the (CBH) star product. Recall that the Campbell-
Baker-Hausdorff (CBH) formula provides us with an expression for the
exponential of two Lie algebra elements X, Y

exp(X) exp(Y) = exp(X + Y + CBH(X, Y))

The first few terms in CBH(X, Y) reads

CBH(X, Y) =
1
2
[X, Y] +

1
12

([X, [X, Y]] + [[X, Y], Y]) + . . .

For any Lie words of length n + 1 that appears in the CBH formula, we
attach a directed graph Γ, so that

1. Γ has n + 2 nodes denoted {1, 2, . . . , n} ∪ {L, R};
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2. Γ has 2n edges. For each node k ∈ {1, 2, . . . , n}, there are two edges
start from k;

3. There is no self loop edge of the form (k, k).

The graph Γ is constructed as follows. Recall that any Lie words of two
symbol X, Y can be represented as a binary rooted tree with leaves label
by X or Y. For each internal node (a node that is not a leaf), we associate a
node of the graph, and the leaves labeled by X is associated with node L
and the leaves labeled by Y is associated with the node R. Then edges of Γ
are associated with edges of the tree, with the same orientation as from
root to leaves.

Note that the same set of graphs is used by Kontsevich [Kon03] in his
construction of general star product. In the same way, we further assign
a map BΓ : S(g)⊗ S(g)→ S(g) to each graph Γ. For example, for the Lie
word [X, Y] we attach the graph

• •
[X, Y] :

The corresponding map on S(g) is the map 3.36. As another example, for
[X, [X, Y]] we attach the graph

• •
[X, [X, Y]] :

The corresponding map on S(g) can be constructed by symmetrizing the
following composition of maps

Tk(g)⊗ Tl(g)
id⊗k−1

X ⊗[−,−]⊗idl−1
X−→ Tk−1(g)⊗ g⊗ Tl−1(g)

id⊗k−2
X ⊗[−,−]⊗idl−1

X−→ Tk−2(g)⊗ g⊗ Tl−1(g) = Tk+l−2(g)

(3.37)

Suppose that we can write the CBH formula as

exp(X) exp(Y) = exp(X + Y + CBH(X, Y)) = exp(X + Y + ∑
Γ

cΓΓ)

Then we define the universal enveloping algebra U(g) as the following
CBH quantization of the symmetric algebra S(g)

⋆ = exp(∑
Γ

cΓBΓ) (3.38)
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3.3 vertex algebra in pseudo tensor category

Basic definitions

First, we recall the definition of a vertex algebra. A vertex algebra consist
of a vector space V together wih the following data:

1. The vacum vector: |0⟩ ∈ V.

2. The translation map: T : V → V.

3. An infinite collection of bilinear maps: ·n : V ⊗ V → V for n ∈ Z.
We require that for any u, v ∈ V, there exist an integer N such that
u ·n v = 0 for any n ≥ N.

We usually collect these maps into a power series and write Y(u, z)v =

∑n∈Z u ·n v z−n−1.

These data satisfy the following axioms

1. Vacuum. Y(|0⟩, z)u = u, and Y(u, z)|0⟩ ∈ u + zV[[z]] for any u ∈ V.

2. Translation. T|0⟩ = 0. Further more, [T, Y(u, z)] = ∂zY(u, z)

3. Locality. For any u, v ∈ V, there exist an integer N such that

(z− w)N [Y(u, z), Y(v, w)] = 0 (3.39)

We observe that most part of the definition applies seamlessly to any
braided monoidal category, requiring no modification. The aspect demand-
ing particular attention arises when we must consider specific elements
in V, as we cannot talk about elements in an object of an arbitrary cate-
gory. The essence of this problem lies in recognizing that such structures
concern the compact objects within the category. Hence, in our definition,
we consider a compactly generated symmetric monoidal category C. To
work in a setup where we have a reasonable notion of vertex algebra, in
this and the following sections, we consider symmetric monoidal category
C that satisfies the following conditions

1. C is compactly generated. I.e. C ∼= Ind(C0) for some symmetric
monoidal category C0.

2. C0 is a pseudo tensor category, i.e. a rigid symmetric monoidal
category and is idempotent complete.

3. Q ⊂ HomC(1, 1)
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As we have seen, such a category has the nice properties that compact ob-
jects are closed under the monoidal structure, and the universal enveloping
construction works.

We define vertex algebra in C as follows:

Definition 3.22. A vertex algebra in C consist of the data of an object V in
C together with morphisms

1. The vacum vector: |0⟩ ∈ HomC(1, V).

2. The "translation" map: T ∈ HomC(V, V).

3. An infinite collection of maps: ·n ∈ HomC(V ⊗ V, V) for n ∈ Z.
We usually collect these maps together and get a map Y(z) =

∑n∈Z ·n z−n−1 ∈ Hom(V ⊗ V, V)[[z, z−1]]. We also require that for
any compact object X in C and α, β ∈ HomC(X, V), there exist an
integer N such that

·n ◦ (α⊗ β) = 0 (3.40)

for any n ≥ N.

These data satisfy the following axioms

1. Vacuum. Y(z) ◦ (|0⟩ ⊗ idV) = lV . Further more, Y(z) ◦ (idV ⊗ |0⟩) ∈
HomC(V ⊗ 1, V)[[z]], so that Y(z) ◦ (idV ⊗ |0⟩)|z=0 = rV .

2. Translation. T|0⟩ = 0. Further more, T ◦ Y(z)− Y(z) ◦ (idV ⊗ T) =
∂zY(z)

3. Locality. For any compact object X and α, β ∈ HomC(X, V), we can
find a integer N such that

(z− w)N(Y(w) ◦ (idV ⊗Y(z)) ◦ (α⊗ β⊗ idV)

−Y(z) ◦ (idV ⊗Y(w)) ◦ (σ⊗ idV) ◦ (α⊗ β⊗ idV)
)
= 0
(3.41)

Remark 3.23. Since we have assumed that our category C is compactly
generated by a pseudo tensor category, tensor product of compact objects
is still compact. We can show that the collection of maps Y(z) satisfying
condition 3.40 is equivalent to say that it is an elements in

HomC(V ⊗V, V((z))) (3.42)

To see this, we let V = colim
i∈I

Vi for Vi compact. To simplify the discussion,

we focus on the singular part of Y(z). By definition, we have

HomC(V ⊗V, Vz−1[z−1]) = lim
(i,j)∈I×I

colim
k∈Z

HomC(Vi ⊗Vj,⊕k
i=0Vz−i−1)

(3.43)
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This gives us, for each i, j ∈ I× I, an integer Ni,j and maps µi,j;n : Vi⊗Vj →
Vz−n−1 for n ≤ Ni,j. These maps are compatible in the obvious way. So
we get a series of maps µn, and on each Vi ⊗Vj, µn vanishes for n > Ni,j.
This is equivalent to the condition we give in our definition, because any
map X → V from a compact object X must factor through a map X → Vi
for some i. Our definition has the advantage of being independent of the
presentation of V as a colimit,

Remark 3.24. Compact objects in Vectk are finite dimensional vector spaces.
Therefore, for C = Vectk, the above definition gives us the usual definition
of vertex operator algebra. Moreover, we can let C = VectZ

k (or VectZ2
k ),

then the above construction gives us the usual notion of graded (or super)
vertex algebra

The following statement is a simple corollary of the vacuum and trans-
lation axioms.

Lemma 3.25. We have the following identity

Y(z) ◦ (idV ⊗ |0⟩) = ezT ◦ rV

in HomC(V ⊗ 1, V)[[z]].

Proof. By the translation axiom, we have

∂zY(z) ◦ (idV ⊗ |0⟩) = T ◦Y(z) ◦ (idV ⊗ |0⟩)

This implies, by induction, that

∂n
z Y(z) ◦ (idV ⊗ |0⟩) = Tn ◦Y(z) ◦ (idV ⊗ |0⟩)

By the vacuum axiom, we have

∂n
z Y(z) ◦ (idV ⊗ |0⟩)|z=0 = Tn ◦ rV

Since Y(z) ◦ (idc ⊗ |0⟩) ∈ HomC(V, V)[[z]], we have

Y(z) ◦ (idV ⊗ |0⟩) =
∞

∑
n=0

zn

n!
∂n

z Y(0) ◦ (idV ⊗ |0⟩) = ezT ◦ rV

Remark 3.26. There are several equivalent formulations of the locality axiom
for vertex algebra in Vectk. An often used one is the so called Borcherds
identity. We discuss these equivalent definition in C in the next section.
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Associativity

In section, we study associativity property of vertex algebra in C and
different formulation of the locality axiom. Most part of this section follows
from the same results as vertex algebra in vector space.

Lemma 3.27. We have the following identity

ewT ◦Y(z) ◦ (idV ⊗ e−wT) = Y(z + w)

in HomC(V ⊗V, V)[[z±1, w±1]].

Proof. By the translation axiom, we have

ewT ◦Y(z) ◦ (idV ⊗ e−wT) =
∞

∑
n=0

wn

n!
∂n

z Y(z) = Y(z + w)

Proposition 3.28. (skew-symmetry) For any compact object X and morphisms
α, β ∈ HomC(X, V), the following identity hold

Y(z) ◦ (α⊗ β) = ezT ◦Y(−z) ◦ σ ◦ (α⊗ β) (3.44)

in HomC(X⊗ X, V)((z))

Proof. We apply the Locality axiom and find

(z− w)N
(

Y(w) ◦ (idV ⊗Y(z)) ◦ (α⊗ β⊗ |0⟩)

−Y(z) ◦ (idV ⊗Y(w)) ◦ (σ⊗ idV) ◦ (α⊗ β⊗ |0⟩)
)
= 0

for large enough N. Using Lemma 3.25, we find

(z− w)N
(

Y(w) ◦ (idV ⊗ ezT)−Y(z) ◦ (idV ⊗ ewT) ◦ σ
)
◦ (α⊗ β) = 0

Then we apply Lemma 3.27 and find

(z−w)NY(w) ◦ (idV⊗ ezT) ◦ (α⊗ β) = (z−w)NewT ◦Y(z−w) ◦σ ◦ (α⊗ β) = 0

We can choose N large enough so that the right hand side does not contain
any negative power of (z−w). Then we set z = 0 and the identity becomes
wNY(w) ◦ (α⊗ β) = wNewT ◦Y(−w) ◦ σ ◦ (α⊗ β) = 0. We divide both side
by wN , which gives the formula 3.44.



3.3 vertex algebra in pseudo tensor category 49

Theorem 3.29. For any compact object X and morphisms α, β, γ ∈ HomC(X, V),
the three expansions

Y(z) ◦ (idV ⊗Y(w)) ◦ (α⊗ β⊗ γ) ∈ HomC(X⊗3, V)((z))((w))

Y(w) ◦ (idV ⊗Y(z)) ◦ (σ⊗ idV) ◦ (α⊗ β⊗ γ) ∈ HomC(X⊗3, V)((w))((z))

Y(w) ◦ (Y(z− w)⊗ idV) ◦ (α⊗ β⊗ γ) ∈ HomC(X⊗3, V)((w))((z− w))
(3.45)

are the expansion of the same element of

HomC(X⊗3, V)[[z, w]][z−1, w−1, (z− w)−1] (3.46)

Proof. By the locality axiom, Y(z) ◦ (idV ⊗Y(w)) ◦ (α⊗ β⊗ γ) and Y(w) ◦
(idV ⊗ Y(z)) ◦ (σ ⊗ idV) ◦ (α ⊗ β ⊗ γ) are the expansions of the same
element. Therefore we only need to prove that the first and last expression
are the expansions of the same element.

By the skew symmetry property, we have the following identity

Y(z) ◦ (idV ⊗Y(w)) ◦ (α⊗ β⊗ γ)

= Y(z) ◦ (idV ⊗ ewT ◦Y(−w) ◦ σ) ◦ (α⊗ β⊗ γ)
(3.47)

Then we use Lemma 3.27 and find

Y(z) ◦ (idV ⊗Y(w)) ◦ (α⊗ β⊗ γ)

= ewT ◦Y(z− w) ◦ (idV ⊗Y(−w) ◦ σ) ◦ (α⊗ β⊗ γ)
(3.48)

On the other hand, Y(z− w) ◦ (α⊗ β) = ∑n∈Z(z− w)−n−1 ·n ◦(α⊗ β) by
definition. The composition ·n ◦ (α⊗ β) is still a map from a compact object
X⊗2. Therefore we can apply the skew symmetry property to Y(w) ◦ (·n ◦
(α⊗ β)⊗ γ), which gives us

Y(w) ◦ (Y(z− w)⊗ idV) ◦ (α⊗ β⊗ γ)

= ewT ◦Y(−w) ◦ σ ◦ (Y(z− w)⊗ idV) ◦ (α⊗ β⊗ γ)
(3.49)

By applying the locality axiom again, we find that Y(z) ◦ (idV ⊗Y(w)) ◦
(α⊗ β⊗ γ) and Y(w) ◦ (Y(z− w)⊗ idV) ◦ (α⊗ β⊗ γ) are expansions of
the same elements.
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Theorem 3.30. (Borcherds identity) For any compact object X and morphisms
α, β, γ ∈ HomC(X, V), we have the following identity

∑
n≥0

(
m
n

)
·m+k−n ◦(·n+l ⊗ idV) ◦ (α⊗ β⊗ γ) =

∑
j≥0

(
l
j

)
(−1)j

(
·m+l−j ◦(idL ⊗ ·k+j)−

(−1)l ·k+l−j ◦(idV ⊗ ·m+j) ◦ (σ⊗ idV)
)
◦ (α⊗ β⊗ γ)

(3.50)

for any integers m, k, l.

Proof. By Theorem 3.29, the three expressions Y(z) ◦ (idV ⊗ Y(w))(α ⊗
β ⊗ γ), Y(w) ◦ (idV ⊗ Y(z)) ◦ (σ ⊗ idV)(α ⊗ β ⊗ γ) and Y(w) ◦ (Y(z −
w)⊗ idV)(α⊗ β⊗ γ) are the expansion of the same elements X(z, w) in
HomC(X⊗3, V)[[z, w]][z−1, w−1, (z− w)−1]. Let f (z, w) be a rational func-
tion which has poles only at z = 0, w = 0 and z = w. Let R > ρ > r > 0,
we consider the contour integral∮

Cρ
w

∮
CR

z

Y(z) ◦ (idV ⊗Y(w))(α⊗ β⊗ γ) f (z, w)dzdw

−
∮

Cρ
w

∮
Cr

z

Y(w) ◦ (idV ⊗Y(z)) ◦ (σ⊗ idV)(α⊗ β⊗ γ) f (z, w)dzdw
(3.51)

This contour integral can be written as
∮

Cρ
w

∮
CR

z −Cr
z

X(z, w) f (z, w)dzdw. We
can further replace CR

z − Cr
z by a circle Cδ

z(w) of radius δ < ρ around w.
In this region, X(z, w) is expanded as Y(w) ◦ (Y(z−w)⊗ idV)(α⊗ β⊗ γ).
We find that 3.51 is equal to∮

Cρ
w

∮
Cδ

z (w)
Y(w) ◦ (Y(z− w)⊗ idV)(α⊗ β⊗ γ) f (z, w)dzdw (3.52)

If we choose f (z, w) = zmwk(z− w)l , the above identity gives us 3.50.

OPE and normally ordered product

Given a compact object X, we call a collection of maps A(z) = ∑n Anz−n−1

An : X⊗V → V (3.53)
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a field labeled by X if for any compact object X′ and morphism β : X′ → V,
there exist an integer N such that An ◦ (idX ⊗ β) = 0 for all n > N. In
other words, a field A(z) labeled by X is a morphism

A(z) ∈ HomC(X⊗V, V((z))) (3.54)

By construction, for any morphism α : X → V, the map Y(z)(α⊗ idV)

is a field labeled by X.

Theorem 3.31. (Goddard’s uniqueness theorem) Let V be a vertex algebra in C,
A(z) a field on V labeled by X. Suppose there exist a map α : X → V such that

A(z) ◦ (idX ⊗ |0⟩) = Y(z) ◦ (α⊗ |0⟩) (3.55)

and A(z) is local with respect to the field Y(z) ◦ (β⊗ idX′) for any β : X′ → V.
Then A(z) = Y(z) ◦ (α⊗ idV).

Proof. Let V = colim
i∈I

Vi for Vi compact, and denote si : Vi → V the

inclusion map. By the locality, we have, for large enough N

(z− w)N A(z) ◦ (idX⊗(Y(w) ◦ (si ⊗ |0⟩)))
= (z− w)NY(w) ◦ (si ⊗ A(z)) ◦ (σX,X′ ⊗ |0⟩)

(3.56)
Since A(z)(idX ⊗ |0⟩) = Y(z) ◦ (α⊗ |0⟩), we further have

(z− w)N A(z) ◦ (idX ⊗ (Y(w) ◦ (si ⊗ |0⟩)))
= (z− w)NY(w) ◦ (si ⊗Y(z)) ◦ (α⊗ |0⟩) ◦ (σX,X′ ⊗ idV)

= (z− w)NY(z) ◦ (idX ⊗Y(w)) ◦ (α⊗ si ⊗ |0⟩)
(3.57)

By the vacuum axiom, both sides of the above equation are well-defined
at w = 0, and Y(w) ◦ (si ⊗ |0⟩) = si. Setting w = 0, and divide both sides
by zN , we obtain

A(z)(idX ⊗ si) = Y(z) ◦ (α⊗ si) (3.58)

This equation hold for any i ∈ I, therefore we have

A(z) = Y(z) ◦ (α⊗ idV) (3.59)

Corollary 3.32. We have the identity

Y(z) ◦ (T ⊗ idV) = ∂zY(z) (3.60)
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Proof. Let V = colim
i∈I

Vi for Vi compact, and denote si : Vi → V the

inclusion map. We define the field A(z) = ∂zY(z) ◦ (si ⊗ idV). Since Y(z) ◦
(si ⊗ idV) satisfies the locality condition with any other Y(z) ◦ (β⊗ idV),
A(z) also satisfy the locality condition with any other Y(z) ◦ (β⊗ idV). We
also have

A(z) ◦ (idVi ⊗|0⟩) = ∂zY(z) ◦ (si⊗|0⟩) = ∂zezTsi = ezTTsi = Y(z) ◦ (Tsi⊗|0⟩)
(3.61)

By the Goddard’s uniqueness theorem, we have ∂zY(z) ◦ (si ⊗ idV) =

Y(z) ◦ (Tsi ⊗ idV). This holds for any i ∈ I, which implies Y(z) ◦ (T ⊗
idV) = ∂zY(z).

We define the notion of normally ordered product

Definition 3.33. Let X1, X2 be two compact objects, and A(z) = ∑n Anz−n−1,
B(z) = ∑n Bnz−n−1 two fields labeled X1 and X2 respectively. The normally
ordered product : A(z)B(w) : is defined as the formal power series

∑
n∈Z

(
∑

m<0
Am ◦ (idX ⊗ Bn)z−m−1

+ ∑
m≥0

Bn ◦ (idX′ ⊗ Am) ◦ (σ⊗ idV)z−m−1

)
w−n−1

(3.62)

as an element in HomC(X⊗ X′ ⊗V, V)[[z±, w±]]. Equivalently, we have

: A(z)B(w) := A(z)+ ◦ (idX ⊗ B(w)) + B(w) ◦ (idX′ ⊗ A(z)−) ◦ (σ⊗ idV)

(3.63)

Lemma 3.34. The specialization of : A(z)B(w) : at w = z is a well defined field
labeled by X⊗ X′. Moreover,

: A(w)B(w) := Resz=0(δ(z− w)−A(z) ◦ (idX ⊗ B(w))

+ δ(z− w)+B(w) ◦ (idX′ ⊗ A(z)) ◦ (σ⊗ idV))
(3.64)

Proof. Let us denote C(z) =: A(z)B(z) :. As a formal expression, C(z) =
∑n∈Z Cnz−n−1 with

Cl = ∑
n>l−1

Al−1−n ◦ (idX ⊗ Bn) + ∑
n≤l−1

Bn ◦ (idX′ ⊗ Al−1−n) ◦ (σ⊗ idV)

(3.65)
To show that each Cl is a well defined map HomC(X ⊗ X′ ⊗ V, V), we
write V = colim

i∈I
Vi. We show that each Cl ◦ (idX⊗X′ ⊗ si) is well defined.
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Since both A(z), B(w) are fields, we can find an integer N such that
An(idX ⊗ si) = 0, Bn(idX′ ⊗ si) = 0 for n > N. Therefore,

Cl ◦ (idX⊗X′ ⊗ si) =
N

∑
n=l

Al−1−n ◦ (idX ⊗ Bn ◦ (idX′ ⊗ si))

+
l−1

∑
n=l−1−N

Bn ◦ (idX′ ⊗ Al−1−n) ◦ (σ⊗ si)

(3.66)

which is a well-defined finite sum.
For l > N, the summation in the first line vanishes. For the second

line, we find that each Am ◦ (idX ⊗ si) is a map from the compact object
X⊗Vi to V. We can further find another integer Nm such that Bn ◦ (idX′ ⊗
Am ◦ (idX ⊗ si)) = 0 for n > Nm. If we take N̄ = max{Nm}0≤m≤N , we find
that Bn ◦ (idX′ ⊗ Al−1−n) ◦ (σ⊗ si) = 0 for n > N̄ in the summation range
l − 1− N ≤ n ≤ l − 1. As a result, we find that Cl ◦ (idX⊗X′ ⊗ si) = 0 for
l > N + N̄ + 1. This prove that C(z) is a field.

The last identity is a simple computation

Resz=0δ(z− w)−A(z) ◦ (idX ⊗ B(w)) = A(w)+ ◦ (idX ⊗ B(w)) (3.67)

Similarly

Resz=0δ(z− w)+B(w) ◦ (idX′ ⊗ A(z)) = B(w) ◦ (idX′ ⊗ A(z)−) (3.68)

Corollary 3.35. We have the identity

∂w : A(w)B(w) :=: ∂w A(w)B(w) : + : A(w)∂wB(w) : (3.69)

An important result that allows us to construct vertex algebra from
generators is the Dong’s lemma.

Lemma 3.36. (Dong’s Lemma) If A(z), B(z), C(z) are mutually local fields, then
: A(z)B(z) : and C(z) are also mutually local.

Proof. The proof is the same as the Dong’s Lemma for ordinary vertex
algebra [FBZ04].

Basic examples

In this section we consider some basic examples of vertex algebra in C.
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commutative vertex algebra The easiest example of a vertex
algebra is the commutative vertex algebra.

Definition 3.37. A vertex algebra (V, |0⟩, T, Y) in C is called commutative
if the morphisms ·n : V ⊗V → V vanish for all n ≥ 0.

Definition 3.38. A differential algebra in C is a commutative algebra (A, m)

equipped with a derivation T, i.e. a map T : A→ A that satisfy the Leibniz
rule T ◦m = m ◦ (T ⊗ id + id⊗ T).

Proposition 3.39. There is a one to one correspondence between commutative
vertex algebra in C and unital differential algebra in C.

Proof. Given a commutative vertex algebra (V, |0⟩, T, Y), we define a unital
commutative algebra structure on V. We define m = ·−1 : V ⊗ V → V.
Let V = colim

i∈I
Vi for Vi compact, and denote si : Vi → V the canonical

inclusion map. By the skew symmetry property 3.44, we have

m ◦ (si ⊗ sj) = m ◦ σ ◦ (si ⊗ sj) (3.70)

for any i, j ∈ I. Notice that the map m is defined as a element in

m ∈ HomC(V ⊗V, V) = lim
(i,j)∈I×I

HomC(Vi ⊗Vj, V) (3.71)

Therefore, m ◦ (si ⊗ sj) for all i, j ∈ I determines m. We have m = m ◦ σ.
By the Borcherds identity, we have

m ◦ (m⊗ idV) ◦ (si ⊗ sj ⊗ sk) = m ◦ (idV ⊗m) ◦ (si ⊗ sj ⊗ sk) (3.72)

for any i, j, k ∈ I. This implies the associativity of m. Therefore, m defines a
commutative algebra structure on V. |0⟩ is a unit follows from the vacuum
axiom.

On the other hand, given a unital commutative algebra (V, |0⟩, m)

equipped with a derivation T. We define the vertex algebra structure
by

Y(z) = m ◦ (ezT ⊗ idV) (3.73)

Then we can check that all axioms of vertex algebra are satisfied.

Given a compact object X in C, we explicitly construct the commutative
vertex algebra "generated" by X.

First we define L−X =
⊕

n<0 Xtn and define a operator T : L−X →
L−X by −∂/∂t. More precisely, L−X = colim

n∈Z≥0

⊕n
i=0 X−i−1, where each
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X−n−1
∼= X is a copy of X. The operator T by definition is an element in

∏∞
n=0 Hom(X−n−1, X−n−2), which is given by

T = ((n + 1) · idX ∈ Hom(X−n−1, X−n−2))n∈Z≥0 (3.74)

Then we consider the symmetric algebra S(L−X) and extend T to
S(L−X) by Leibniz rule. More precisely, we first define T : Tk(L−X) →
Tk(L−X) by

k−1

∑
i=0

id⊗i
L−X ⊗ T ⊗ id⊗k−i−1

L−X : (L−X)⊗k → (L−X)⊗k (3.75)

We also define T to be 0 for k = 0. By abuse of notation we used the same
symbol T here. It is easy to check that T commute with the symmetric
idempotent eSym 3.19, eSym ◦ T = T = T ◦ eSym. Therefore, T defines an map
S(L−X)→ S(L−X) and it is a derivation with respect to the commutative
product.

We have constructed (S(L−X), ·, T) as a unital commutative algebra
with a derivation T, which is equivalent to a commutative vertex algebra
structure.

symplectic boson Next, we consider a class of vertex algebra called
symplectic boson, which is also called the chiral Weyl algebra. We start
with a compact symplectic object X, i.e. a compact object equipped with a
symplectic form

Ω : X⊗ X → 1

Ω ◦ σ = −Ω
(3.76)

We define LX = X[t±] := colim
n∈Z≥0

⊕n
i=−n−1 Xi, where as before each Xtn =

Xn ∼= X is a copy of X. We can equip LX with a symplectic form, given by

δn,−m−1Ω ∈ Hom(Xn ⊗ Xm, 1) (3.77)

We can use the construction in Section 3.3 and define the Weyl algebra
W(LX) = (S(LX), ⋆). The Lagrangian decomposition LX = L+X⊕ L−X
induces a leftW(LX) module structure on S(L−X).

As a object in C we set V = S(L−X) and define the map T in a same
way as 3.74, 3.75. The vacuum is the natural map |0⟩ : 1→ S(L−X). The
only nontrivial part is to define the vertex algebra map Y(z). By definition,
it suffice to construct a series of map

Yk(z) : Sk(L−X)⊗V → V((z)) for any k ≥ 0 (3.78)
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For k = 0, we define it by the vacuum axiom Y0(z) = idV ∈ Hom(1⊗
V, V).

For k = 1, we can define it as a collection of fields Y(Xn, z) ∈ Hom(Xn⊗
V, V((z))) for n ≤ −1. We denote X(z) := Y(X−1, z) ∈ Hom(X−1 ⊗
V, V((z))). Let tk = idX ∈ Hom(Xn, Xn+k) be the identity map that only
shift the index by k. We define X(z) as follows

X(z) = ∑
n∈Z

z−n−1 ⋆l ◦(tn+1 ⊗ idV) ∈ Hom(X−1 ⊗V, V((z))) (3.79)

where ⋆l is the module map defined in 3.34. To check that X(z) is in-
deed an element in Hom(X−1 ⊗ V, V((z))), we notice that ⋆l restricted
to Hom(Xn ⊗ Sk(

⊕m
i=−m−1 Xi), V) vanish when k, m is fixed and n large

enough. Then we define the fields Y(X−n−1, z) by

Y(X−n−1, z) =
1
n!

∂n
z X(z) ◦ (tn ⊗ idV) ∈ Hom(X−n−1 ⊗V, V((z))) (3.80)

For higher k, we first define a collection of fields

Y(X−n1−1 . . . X−nk−1, z) ∈ Hom(X−n1−1 ⊗ · · · ⊗ X−nk−1 ⊗V, V((z)))
(3.81)

by normally ordered product. Namely, we set

Y(X−n1−1 . . . X−nk−1, z) =
1

n1! . . . nk!
: ∂n1

z X(z) . . . ∂nk
z X(z) : (3.82)

Such collection of fields defines a map Tk(L−X)⊗V → V((z)). We use the
inclusion Sk(L−X)→ Tk(L−X) and find a map Sk(L−X)⊗V → V((z)).

Proposition 3.40. The data (V, |0⟩, T, Y) defined above is a vertex algebra in C.

Proof. First we check the vacuum axiom. Y(z) ◦ (|0⟩ ⊗ idV) = idV holds
by definition. For the remaining part Y(z) ◦ (idV ⊗ |0⟩)|z=0 = idV , we
check this on each Sk(L−X). For k = 1, we find by definition of X(z)
3.79 that X(z) ◦ (idX−1 ⊗ |0⟩)|z=0 is well defined and gives idX−1 . Simi-
larly, Y(X−n−1, z) ◦ (idX−n−1 ⊗ |0⟩)|z=0 = idX−n−1 . Then we can prove by
induction that

Y(X−n1−1 . . . X−nk−1, z) ◦ (idX−n1−1⊗...X−nk−1 ⊗ |0⟩)|z = idX−n1−1⊗...X−nk−1

(3.83)
Then we check the translation axiom. T ◦ |0⟩ = 0 by definition. For the

remaining part of the translation axiom, we also check it on each Sk(L−X).
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Notice that T|X0 = 0, so T ◦ π = π ◦ T. Also T is a derivation of the Weyl
algebraW(LX). For k = 1, we find

T ◦ X(z)− X(z) ◦ (idX−1 ⊗ T) = ∑
n∈Z

z−n−1 ⋆l ◦(T ◦ tn+1 ⊗ idV)

= ∑
n∈Z

−nz−n−1 ⋆l ◦(T ◦ tn ⊗ idV)

= ∂zX(z)

(3.84)

Similarly, we can check that T ◦ Y(X−n−1, z) − Y(X−n−1, z) ◦ (idX−n−1 ⊗
T) = ∂zY(X−n−1, z). We prove by induction and that ∂z satisfy the Leibniz
rule with respect to the normally ordered product.

Finally, we check the locality axiom. As implied by the Dong’s lemma,
we only need to check that the field X(z) is local with respect to itself. We
compute

X(z) ◦ (idX−1 ⊗ X(w)) = ∑
n,m∈Z

z−n−1w−m−1 ⋆l ◦(tn+1 ⊗ ⋆l ◦ (tm+1 ⊗ idV))

= ∑
n,m∈Z

z−n−1w−m−1 ⋆l ◦(⋆ ◦ (tn+1 ⊗ tm+1)⊗ idV)

(3.85)
Therefore, the commutator is given by

X(z) ◦ (idX−1 ⊗ X(w))− X(w) ◦ (idX−1 ⊗ X(z)) ◦ (σ⊗ idV)

= ∑
n,m∈Z

z−n−1w−m−1 ⋆l ◦([−,−]⋆ ◦ (tn+1 ⊗ tm+1)⊗ idV)
(3.86)

where [−,−]⋆ = ⋆− ⋆ ◦ σ. We have, by definition,

[−,−]⋆ ◦ (tn+1 ⊗ tm+1) = δn,−m−1ω ∈ Hom(X−1 ⊗ X−1, 1) (3.87)

This implies

X(z) ◦ (idX−1 ⊗ X(w))− X(w) ◦ (idX−1 ⊗ X(z)) ◦ (σ⊗ idV)

=δ(z− w)lV ◦ (ω⊗ idV)
(3.88)

Hence X(z) is local with respect to itself.

Remark 3.41. From 3.85 we can easily check that

X(z) ◦ (idX−1 ⊗ X(w)) =
1

z− w
lV ◦ (ω⊗ idV)+ : X(z)X(w) : (3.89)

The singular part 1
z−w lV ◦ (ω ⊗ idV) is also called the OPE between the

fields X(z) and X(w).
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Vertex Lie algebra and universal enveloping construction

An important method to construct vertex algebra is through the universal
envelope of vertex Lie algebra. Firstly, we define the notion of vertex Lie
algebra in C.

Definition 3.42. A vertex Lie algebra in C is an object L ∈ C equipped
with a map T ∈ HomC(L, L) and maps

Y−(z) = ∑
n≥0
·n z−n−1 ∈ HomC(L⊗ L, L)⊗ z−1C[[z−1]] (3.90)

We require that for any compact object X ∈ C and α, β ∈ HomC(X, L),
there exist an integer N such that ·n(α⊗ β) = 0 for n ≥ N.

These structures are required satisfy the following axioms

1. Translation. Y−(z) ◦ (T ⊗ idL) = ∂zY−(z).

2. Skew-symmetry. For any compact object X ∈ C and α, β ∈ HomC(X, L),
Y−(z) ◦ (α⊗ β) = (ezT ◦Y−(−z) ◦ σ)− ◦ (α⊗ β).

3. Commutator. For any compact object X in C and α, β, γ ∈ HomC(X, L),
we have

∑
n≥0

(
m
n

)
·m+n−k ◦(·n ⊗ idL) ◦ (α⊗ β⊗ γ) =

·m ◦(idL ⊗ ·k) ◦ (α⊗ β⊗ γ)− ·k ◦ (idL ⊗ ·m) ◦ (σ⊗ idL)(α⊗ β⊗ γ)
(3.91)

A vertex Poisson algebra is a commutative vertex algebra together with
a compatible vertex Lie algebra structure.

Definition 3.43. A vertex Poisson algebra in C is a unital commutative
algebra in C with a derivation (V, |0⟩, m, T), together with a vertex Lie
algebra structure (V, |0⟩, Y−) such that

Y−(z) ◦ (id⊗m) = m ◦ (Y−(z)⊗ id) + m ◦ (id⊗Y−(z)) ◦ (σ⊗ id)

Given a vertex algebra (V, |0⟩, T, Y) in C, we can construct a vertex Lie
algebra simply by forgetting the operations ·n for n < 0.

Lemma 3.44. Let (V, |0⟩, T, Y) be a vertex algebra in C. Then VLie = (V, T, Y−)
is a vertex Lie algebra in C, where

Y−(z) = ∑
n≥0
·n z−n−1 (3.92)
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Proof. The translation axiom follows from the translation axiom of the
vertex algebra V. The skew-symmetry axiom is a consequence of 3.44. The
commutator axiom follows from the Borcherds identity 3.50.

This construction defines a functor from the category of vertex algebra
to the category of vertex Lie algebra. This functor actually have an left
adjoint functor, whose image is called the enveloping vertex algebra.

Theorem 3.45. Given a vertex Lie algebra L in C, there is a vertex algebra U (L),
such that for any vertex algebra V, there is a canonical isomorphism

Hom(U (L), V) = Hom(L, VLie) (3.93)

Some other constructions

In this section, we analyze how the notion of vertex algebra behaves under
symmetric monoidal functor. We show that the image of a vertex algebra
is still a vertex algebra if the functor is braided monoidal and preserve
filtered colimit, i.e.

F(colim
i∈I

Xi) = colim
i∈I

F(Xi)

Example 3.46. Let C and D two categories as per our requirements, i.e.
C ∼= Ind(C0),D ∼= Ind(D0) and C0,D0 are pseudo tensor category. Let
(F0, J, ϵ) be a braided monoidal functor between C0 and D. Then, F0 has
an extension

F : Ind(C0)→ D (3.94)

that preserve filtered colimmit.

Proposition 3.47. Let (F, J, ϵ) : C → D be a braided monoidal functor that
preserve filtered colimit. Given a vertex algebra (V, |0⟩, T, Y(z)) in C, we define

1. Ṽ = F(V).

2. |̃0⟩ = F(|0⟩) ◦ ϵ.

3. T̃ = F(T).

4. Ỹ(z) = ∑n∈Z z−n−1F(·n) ◦ JV,V .

Then (Ṽ, |̃0⟩, T̃, Ỹ(z)) is a vertex algebra in D.

Proof. First we show that Ỹ(z) is indeed a map to the formal Laurent series.
Let V = colim

i∈I
Vi with Vi ∈ C0 and denote si : Vi → V the inclusion map.

Take any compact object X in D and α, β ∈ HomD(X, F(V)). We have

HomD(X, F(V)) = HomD(X, colim
i∈I

F(Vi)) = colim
i∈I

HomD(X, F(Vi))

(3.95)
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As a result, we can always find a i ∈ I and a map α′ ∈ HomD(X, F(Vi))

such that α = F(si) ◦ α′. Similarly we can find a j ∈ I and a map β′ ∈
HomD(X, F(Vj)) such that β = F(sj) ◦ β′. Therefore, to check that F(·n) ◦
JV,V ◦ (α⊗ β) = 0 for large enough n, we only need to check that F(·n) ◦
JV,V ◦ (F(si)⊗ F(sj)) = 0 for large enough n.

Since J is a natural transformation, we have JV,V ◦ (F(si) ⊗ F(sj)) =

F(si⊗ sj) ◦ JVi ,Vj . Therefore F(·n) ◦ JV,V ◦ (F(si)⊗ F(sj)) = F(·n ◦ (si⊗ sj)) ◦
JVi ,Vj , which vanish for large enough n.

Next, we check the vacuum axiom. By abuse of notation, we write
Ỹ(z) = F(Y(z)) ◦ JV,V . We have

Ỹ(z) ◦ (|̃0⟩ ⊗ idṼ) = F((z)) ◦ JV,V ◦ (F(|0⟩) ◦ ϵ⊗ idṼ)

= F(Y(z) ◦ (|0⟩ ⊗ idV)) ◦ J1,V ◦ (ϵ⊗ idṼ)

= F(lV) ◦ J1,V ◦ (ϵ⊗ idṼ)

= lṼ

(3.96)

Similarly, Ỹ(z) ◦ (idṼ ⊗ |̃0⟩) = F(Y(z) ◦ (idV ⊗ |0⟩)) ◦ JV,1 ◦ (idṼ ⊗ ϵ),
which has no pole and specialize to F(rV) ◦ JV,1 ◦ (idṼ ⊗ ϵ) = rṼ at z = 0.

Then we check the translation axiom. T̃ ◦ |̃0⟩ = F(T ◦ |0⟩) ◦ ϵ = 0. By
definition, T̃ ◦ Ỹ(z) = F(T ◦Y(z)) ◦ JV,V . On the other hand,

Ỹ(z) ◦ (idṼ ⊗ T̃) = F(Y(z)) ◦ JV,V ◦ (idṼ ⊗ F(T))

= F(Y(z) ◦ (idV ⊗ T)) ◦ JV,V
(3.97)

Therefore, T̃ ◦ |̃0⟩ − Ỹ(z) ◦ (idṼ ⊗ T̃) = F(∂zY(z)) ◦ JV,V = ∂zỸ(z).
Finally, we check the locality axiom. As before, it suffice to check the

locality for maps F(si), F(sj). We have

Ỹ(w) ◦ (idṼ ⊗ Ỹ(z)) ◦ (F(si)⊗ F(sj)⊗ idṼ)

=F(Y(w)) ◦ JV,V ◦ (idṼ ⊗ F(Y(z)) ◦ JV,V) ◦ (F(si)⊗ F(sj)⊗ idṼ)

=F(Y(w)) ◦ JV,V ◦ (F(si)⊗ F(Y(z) ◦ (sj ⊗ idV)) ◦ (idF(Vi) ⊗ JVj,V)

=F(Y(w) ◦ (idV ⊗Y(z)) ◦ (si ⊗ sj ⊗ idV))) ◦ JVi ,Vj⊗V ◦ (idF(Vi) ⊗ JVj,V)
(3.98)

Similarly,

Ỹ(z) ◦ (idṼ ⊗ Ỹ(w)) ◦ (σ⊗ idṼ) ◦ (F(si)⊗ F(sj)⊗ idṼ)

=F(Y(w) ◦ (idV ⊗Y(z)) ◦ (sj ⊗ si ⊗ idV))) ◦ JVj,Vi⊗V ◦ (idF(Vj) ⊗ JVi ,V) ◦ (σ⊗ idṼ)

=F(Y(w) ◦ (idV ⊗Y(z)) ◦ (sj ⊗ si ⊗ idV))) ◦ JVj⊗Vi ,V ◦ (JVj,Vi ⊗ idṼ) ◦ (σ⊗ idṼ)
(3.99)
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Since F is braided, JVj,Vi ◦ σ = F(σ) ◦ JVi ,Vj . Moreover, JVj⊗Vi ,V ◦ (F(σ) ⊗
F(idV)) = F(σ⊗ idV) ◦ JVi⊗Vj,V . We find

Ỹ(z) ◦ (idṼ ⊗ Ỹ(w)) ◦ (σ⊗ idṼ) ◦ (F(si)⊗ F(sj)⊗ idṼ)

=F(Y(w) ◦ (idV ⊗Y(z)) ◦ (sj ⊗ si ⊗ idV) ◦ (σ⊗ idV)) ◦ JVi ,Vj⊗V ◦ (idF(Vi) ⊗ JVj,V)
(3.100)

In summary, [̃. . . ] = F([. . . ]) ◦ JVi ,Vj⊗V ◦ (idF(Vi) ⊗ JVj,V), which vanish
when we multiply it by (z− w)N for N large enough.

For a category C = Ind(C0) as above, and suppose that R = EndC(1) is
a commutative ring. The functor

HomC(1,−) : C → R−mod (3.101)

extend to a braided monoidal functor. The natural isomorphism JX,Y :
HomC(1, X)⊗R HomC(1, Y)→ HomC(1, X⊗ Y) is given by tensor of the
two maps α⊗ β composed with the isomorphism 1 ∼= 1⊗ 1. It commute
with the permutation σ by construction.

As a corollary, we have an easy way to construct a vertex algebra over
the ring R from a vertex algebra in C.

Corollary 3.48. Let (V, |0⟩, T, Y) be a vertex algebra in C. Suppose EndC(1) =
R for some commutative ring R. Then Ṽ := HomC(1, V) have the structure of
vertex algebra over R, defined as follows

1. The vacuum vector is simply |0⟩ ∈ Ṽ.

2. The translation operator T̃ : Ṽ → Ṽ is constructed as composition with T:
for any α ∈ Ṽ, T̃α is the composite map 1

α→ V T→ V.

3. Ỹ(z) : Ṽ ⊗ Ṽ → Ṽ((z)) is constructed as composition with Y(z): for any

α, β ∈ Ṽ, α ·n β is the composite map 1
α⊗β→ V ⊗V ·n→ V.

It turns out that we also have a family of vertex algebra modules over Ṽ
labeled by compact objects of C.

Proposition 3.49. The functor HomC(−, V) : (Cc)op → R −mod factor
through the forgetful functor Ṽ −mod→ R−mod.

Proof. For any compact object X in C, we denote MX = HomC(X, V). We
construct a Ṽ module structure YM : Ṽ ⊗MX → MX((z)) on MX. For any
α ∈ Ṽ and v ∈ MX, we define α ·n,M v as the composition

α ·n,M v : X ∼= 1⊗ X α⊗v→ V ⊗V ·n→ V (3.102)
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And we set YM(α, z)v = ∑n∈Z α ·n,M v z−n−1. Since X is a compact object,
for any α ∈ Ṽ and v ∈ MX, we can find a N such that α ·n,M v = 0 for
n > N. Therefore, YM(α, z)v is indeed a Laurent series.

By the identity axiom for V, we have |0⟩ ·n,M v = δn,−1v. This implies
YM(|0⟩, z)v = v for any v ∈ MX.

Notice that in the Borcherds identity 3.50 for V, we can choose α, β, γ

to be maps from different compact objects to V (as finite sum of compact
objects is compact). It immediately implies the Jacobi identity for YM.

For any two compact object X1, X2 and a morphism f ∈ HomC(X1, X2).
We can check that the map f ∗ : MX2 → MX1 , defined by f ∗(v) = v ◦ f ,
intertwine with the module map, i.e. α ·n,M1 f ∗(v) = f ∗(α ·n,M2 v).

Given a vertex algebra V in C, we call a map D : V → V a derivation of
the vertex algebra if D satisfy

D ◦Y(z) = Y(z) ◦ (D⊗ idV) + Y(z) ◦ (idV ⊗ D) (3.103)

By definition and Corollary 3.32. T is a derivation for the vertex algebra V.

Proposition 3.50. For any map α : 1→ V, the map α(0) := ·0 ◦ (α⊗ idV) ◦ l−1
V :

V ∼= 1⊗V → V is a derivation.
It becomes a differential, i.e. α2

(0) = 0 if and only if ·0(α⊗ α) = 0.

Proof. By the Borcherds identity, we have

α(0) ◦ ·k ◦ (si ⊗ sj) = ·k ◦ (α(0) ◦ si ⊗ sj) + ·k ◦ (si ⊗ α(0) ◦ sj) (3.104)

where si : Vi → V is the inclusion. This identity hold for any si, sj, which
implies that α(0) is a derivation.

3.4 deligne category

Basic construction

In this section, we review the definition of the Deligne category Repf(GLδ).
We refer to [CW12, Eti16] for more detail. The Deligne category is con-
structed out of a "skeleton category" Rep0(GLδ) and then followed by
additive envelope and Karoubi envelope. We describe Rep0(GLδ) first.

We fix δ ∈ k. Objects of Rep0(GLδ) consist of (possibly empty) words w
of two symbols •, ◦. We denote 1 the empty word.

Given two words w, w′, a (w, w′) diagram is a graph with two rows of
vertices where we set w as the first row of vertices and w′ as the second
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row of vertices. We require that each vertices is connected to exactly one
edge. An edge is connected to both a • and a ◦ vertices if and only if the
two vertices are in the same row. We define the Morphism space between
two words w, w′ to be the k-linear space on basis {(w, w′)− diagrams}.

Example 3.51. We have the following two (•◦, •◦) diagrams.

• ◦

• ◦ ,

• ◦

• ◦

We have the following two (• ◦ •◦, 1) diagram

• ◦ • ◦ , • ◦ • ◦

There are six (• ◦ •◦, •◦) diagrams

• ◦

• ◦ • ◦ ,

• ◦

• ◦ • ◦ ,

• ◦

• ◦ • ◦ ,
• ◦

• ◦ • ◦ ,

• ◦

• ◦ • ◦ ,

• ◦

• ◦ • ◦

Given a (w, w′) diagram X and a (w′, w′′) diagram Y. We let Y ∗ X be
the graph obtained by stacking Y atop X, and Y · X the graph obtained
from Y ∗X by forgetting the middle row of vertices. Thus Y ·X is a (w, w′′)-
diagram. We denote l(X, Y) the number of cycles in the graph Y ∗ X. Then
composition of morphism in Rep0(GLδ) is defined by

Hom(w′, w′′)×Hom(w, w′)→ Hom(w, w′′)

(Y, X) 7→ δl(X,Y)Y · X
(3.105)

Example 3.52. Let X =
• ◦
• ◦

, we compute X2

• ◦

• ◦

• ◦

= δ×
• ◦

• ◦
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Therefore, if we let e = 1
δ

• ◦
• ◦

, then e2 = e.
As another example, we let Y1 =

• ◦
• ◦ • ◦

. Then X ·Y1 is given by

• ◦

• ◦ • ◦

• ◦

=

• ◦

• ◦ • ◦

If we let Y2 =
• ◦
• ◦ • ◦

, then X ·Y1 is given by

• ◦

• ◦ • ◦

• ◦

= δ×
• ◦

• ◦ • ◦

Remark 3.53. It is easy to check that two words w, w′ are isomorphic if and
only if they have the same number of • and ◦. Therefore, each object in
Rep0(GLδ) is isomorphic to an object of the form

[r, s] := •, . . . , •︸ ︷︷ ︸
r

◦, . . . , ◦︸ ︷︷ ︸
s

(3.106)

Remark 3.54. End([r, s]) = Br,s(δ) is the walled Brauer algebra.

Now we equip Rep0(GLδ) with the structure of a rigid symmetric
monoidal category. The tensor functor −⊗− is defined as follows. On
objects, w1 ⊗ w2 = w1w2 is simply concatenation of words. The ten-
sor product of morphisms X1 ⊗ X2 is simply the diagram obtained by
placing the diagram X1 to the left of the diagram X2. The braiding
σw1,w2 : w1 ⊗ w2 → w2 ⊗ w1 is the (w1w2, w2w1) diagram that connect
each letter of wi in the first row to the same letter of wi in the second row.

It is easy to check that the above definitions gives Rep0(GLδ) the struc-
ture of symmetric monoidal category.

Next, we show that Rep0(GLδ) is rigid. For any word w, we define
w∗ the word obtained from w by replacing all • with ◦ and vice versa.
We define the morphism evw : w∗ ⊗ w → 1 the (w∗w, 1) diagram that
connect the i-th letter in w∗ with the i-th letter in w. Similarly, we define
coevw : 1 → w⊗ w∗ the (1, ww∗) the (1, ww∗) diagram that connect the
i-th letter in w with the i-th letter in w∗.

Example 3.55. For w = • ◦ •, ev•◦• and coev•◦• are given by
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ev•◦• =• ◦ • ◦ • ◦ , coev•◦• =
• ◦ • ◦ • ◦

Finally, we can define the Deligne category Repf(GLδ)

Definition 3.56. For δ ∈ k, the Deligne category Repf(GLδ) is the Karoubi
envelope of the additive envelope of the category Rep0(GLδ). The tensor
structure Rep0(GLδ) extend to Repf(GLδ) in the natrual way.

The most important properties of Repf(GLδ) are listed below:

Proposition 3.57. (i) For δ /∈ Z, the category Repf(GLδ) is a semisimple abelian
category.

(ii) If δ ∈ Z and if p, q are nonnegative integers with p− q = δ, then the
category Repf(GLδ) (which is not abelian) admits a non-faithful symmetric tensor
functor Repf(GLδ) → Repf(GLp|q) to the (finite dimensional) representation
category of the supergroup GLp|q, which sends [1, 0] to the supervector space
V = k1|0.

(iii) The category Repf(GLδ) has the following universal property: if D is a
rigid symmetric monoidal category then isomorphism classes of (possibly non-
faithful) symmetric tensor functors Repf(GLδ) → D are in bijection with iso-
morphism classes of objects X in D of dimension δ, via F → F([1, 0]).

Some variants

In this paper, we mostly work with the ind completion of the Deligne
category Repf(GLδ). We denote Rep(GLδ) = Ind(Repf(GLδ)).

We would also like to work with a category where δ is not a number,
but an indeterminate formal parameter.

Definition 3.58. We define Rep0(GL[[δ]]) the k[[δ]]-linear category, whose
objects are still given by words w of symbols •, ◦. The space of morphisms
between two words w, w′ is the space of k[[δ]]-linear span of (w, w′) dia-
grams. The composition of morphisms is defined as before, except that a
loop now contribute a factor of δ.

We define Repf(GL[[δ]]) as the Karoubi envelope of additive envelope of
Rep0(GL[[δ]]). We also define Rep(GL[[δ]]) = Ind(Repf(GL[[δ]])).

Similarly, we define the k((δ))-linear version of the Deligne category
Repf(GL((δ))), Rep(GL((δ))).

Remark 3.59. Although the construction for Repf(GL[[δ]]) is basically the
same as Repf(GLδ), Repf(GL[[δ]]) has far fewer objects than Repf(GLδ).

As a simple example, we have seen that 1 − 1
δ

• ◦
• ◦

is an idempotent.
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Therefore
(
•◦, 1− 1

δ

• ◦
• ◦

)
is an object in Repf(GLδ) but not an object in

Repf(GL[[δ]]).
However, Rep(GL[[δ]]) is still compactly generated by pseudo tensor

category by construction, and it make sense to define vertex algebra in it.
It also satisfy the following universal property

Proposition 3.60. The category Repf(GLδ) has the following universal property:
if D is a rigid symmetric monoidal category over the ring k[[δ]], then isomorphism
classes of (possibly non-faithful) symmetric tensor functors Repf(GLδ) → D
are in bijection with isomorphism classes of objects X in D of dimension δ, via
F → F([1, 0]).

We also define the Z graded version of the Deligne category RepZ(GLδ)

(or RepZ(GL[[δ]])). Objects of RepZ(GLδ) are given by direct sum of objects
in Deligne category X =

⊕
n∈Z Xn. The tensor product is defined so that

(X ⊗ Y)n =
⊕

p+q=n Xp ⊗ Yq. The braiding follows the Koszul sign rule,
where σw1,w2 pick up a sign (−1)pq for w1 in degree p and w2 in degree q.

3.5 vertex algebra in deligne category

Motivation

In the remarkable work [BLL+
15], Beem, Lemos, Liendo, Peelaers, Rastelli,

and van Rees have constructed a map

V : {4d N = 2 SCFTs} → {Vertex algebras}

called 4d/2d duality. The vertex algebra V(T ) can be understood as a
protected sub-sector of the corresponding 4d N = 2 superconformal field
theory T . It contains a wealth of information and invariant of the theory
T . For example, the character of the vertex algebra V(T ) coincides with
the Schur index of T . Another important conjecture is that the associated
variety XV(T ) is isomorphic to the Higgs branch Higgs(T ).

Given a 4d N = 2 SCFT TG,R with vector multiplets in a gauge group G
and hypermultiplets transforming in the representation R of G, the vertex
algebra V(TG,R) can be constructed as a BRST reduction of a βγ bc system.
Roughly speaking, it is given by a βγ system valued in R together with a
bc system valued in the adjoint g, subject to the BRST reduction. In this
thesis, we focus on the case of N = 4 SYM theory with gauge group G,
which is the same as a N = 2 theory with hypermultiplets transforming
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in the adjoint representation g, SYMg = TG,g. The corresponding VOA
V(SYMg) consists of a βγ system

Za
1(z)Zb

2(0) ∼
ηab

z

and a bc system

ba(z)cb(0) ∼ ηab

z
The corresponding BRST operator is given by

QBRST =
∮

dz fabc : bacbcc : (z) + fabc : caZb
1Zc

2 : (z) (3.107)

When we take g = glN , such a vertex algebra has another interpretation as
the algebra of local operators on a stack of N D1 branes in the B model
topological string.

While offering a comprehensive definition of the VOA, this description
poses practical challenges due to the inherent difficulty of computing
the BRST cohomology in general. Only a few examples can be explicitly
computed. In this thesis, we consider a simplification by considering the
"large N limit" of the VOA V(SYMglN ) and its generalization. As discussed
earlier in the introduction, defining the "large N limit" straightforwardly
as a limit in N is not feasible. It is also straightforward to illustrate why
this is the case. First we see that the two field Tr Zi(z), i = 1, 2, are both in
the BRST cohomology. If we compute their OPE we find

Tr Z1(z)Tr Z2(0) ∼
N
z

(3.108)

Therefore, the map AN → AN+1 cannot be a morphism of vertex algebra.
Instead, we define the corresponding VOA in the Deligne category and
then apply the functor Hom(1,−). We’ll demonstrate that the generator
of the BRST cohomology can be explicitly described using cyclic homol-
ogy, and the corresponding OPE possess a rich structure related to the
topological string.

Main example

In this section, we use Deligne category to construct the large N vertex
algebra that correspond to the N = 4 SYM with gauge group GLN . We
work with the Z graded version of the Deligne category. It doesn’t matter
whether we use RepZ(GL[[N]]) or RepZ(GLN) as our construction works
in both cases.
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Through a slight abuse of notation, we denote c, Z1, Z2, b as four copies
of the object [1, 1], in degrees−1, 0, 0, 1 respectively. We define a symplectic
form on the sum X = c⊕ Z1⊕ Z2⊕ b by (anti-)symmetrizing the following
pairing on [1, 1]

• ◦ • ◦ ∈ Hom([1, 1]⊗ [1, 1], 1) (3.109)

Using our previous construction, we define the chiral Weyl algebra
W(X) in the Deligne category Rep(GLN). The corresponding vertex al-
gebra HomGLN (1,W(X)) is our main object of studides. Recall from Sec-
tion 3.3 that W(X) can be identified with the object S(

⊕
n<0(cn ⊕ Z1,n ⊕

Z2,n ⊕ bn)). Using the same notation as in Section Section 3.3, we de-
note c(z) ∈ Hom(c−1 ⊗W(X),W(X)(z)) the field that correspond to the
inclusion c−1 →W(X). Similarly, we define the field b(z), Z1(z), Z2(z).

As in 3.107, we define the BRST charge as follows

Q =
∮

dz Tr(: b(z)c(z)c(z) :) + Tr(: c(z)Z1(z)Z2(z) :) (3.110)

Remark 3.61. In the above expression, Tr(. . . ) should be understood as the

morphism
• ◦ • ◦ • ◦

in Hom(1, . . . ).

Proposition 3.62. For Q given as above, we have Q2 = 0.

Proof. Let us denote J(z) = Tr(: b(z)c(z)c(z) :) + Tr(: c(z)Z1(z)Z2(z) :).
To prove Q2 = 0, it suffice to show that the OPE between J(z) and itself
vanish. As an illustration, we compute, in a diagrammatic way, the OPE
between Tr(: b(z)c(z)c(z) :) and itself. This is done by considering all
possible Wick contractions, and each Wick contraction is represented by
the diagram 3.109.

For example, the Wick contraction Tr(: bcc : (z)) Tr(: bcc : (w)) gives us

• ◦ • ◦ • ◦ • ◦ • ◦ • ◦
=

1
z− w

• ◦ • ◦ • ◦ • ◦

=
1

z− w
Tr(: bccc : (w))
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We can check that the sum of all possible single Wick contractions cancel
each other and gives us 0. There are also contributions from double Wick

contractions. For example, Tr(: bcc : (z)) Tr(: bcc : (w)) gives us

• ◦ • ◦ • ◦ • ◦ • ◦ • ◦
=

N
(z− w)2

• ◦ • ◦

=
N

(z− w)2 Tr(: c(z)c(w) :)

On the other hand, Tr(: bcc : (z)) Tr(: bcc : (w)) gives us

• ◦ • ◦ • ◦ • ◦ • ◦ • ◦
= − 1

(z− w)2
• ◦ • ◦

= − 1
(z− w)2 : Tr(c(z))Tr(c(w)) :

Summing all contribution together, we find

Tr(: bcc : (z))Tr(: bcc : (w)) ∼ 2
N Tr(: c(z)c(w) :)− : Tr(c(z))Tr(c(w)) :

(z− w)2

Similarly, we can compute

Tr(: c[Z1, Z2] : (z))Tr(: c[Z1, Z2] : (w))

∼− 2
N Tr(: c(z)c(w) :)− : Tr(c(z))Tr(c(w)) :

(z− w)2

− 2
Tr(: cc[Z1, Z2] : (z))

(z− w)

Tr(: bcc : (z))Tr(: c[Z1, Z2] : (w)) ∼ Tr(: cc[Z1, Z2] : (z))
(z− w)

It follows that different contribution cancel, and we have J(z)J(w) ∼ 0.

As a consequence, Q defines a differential on Hom(1,W(X)). Our vertex
algebra is then defined as the BRST cohomology, (Hom(1,W(X)), Q). We
will explore this vertex algebra in more detail in the following sections.

An important extension of the above construction is to add a βγ system
valued in the (anti-)fundamental representation. We denote I = [0, 1]⊗
CK|K, which is K + K copies of ◦ = [0, 1] with K of them in degree 0 and
K of them in degree 1. Similarly, we define J = [1, 0]⊗ (CK|K)∗ as K + K
copies of • = [1, 0] with K of them in degree 0 and K of them in degree −1.
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We define a symplectic form on I ⊕ J by (anti-)symmetrizing the following
morphism

◦ • ∈ Hom([0, 1]⊗ [1, 0], 1)

Then we consider the corresponding chiral Weyl algebra W(X ⊕ I ⊕ J).
For the new system, we add the following element to the BRST charge

QM =
∮

dz TrF(: I(z)c(z)J(z) :)

Here TrF(. . . ) denote the morphism ◦ • ◦ • in Hom(1, . . . ), composed
with the natural pairing (CK|K)⊗ (CK|K)∗ → C.

Proposition 3.63. We have (Q + QM)2 = 0.

A more general construction

In this section, we consider a generalization of the construction in the last
section. Construction in this section follows a unpublished work with D.
Gaiotto, A. Lopez and H. Silverans.

Let A be a compact 2d Calabi Yau algebra. Due to [KS06], we take A to
be a unital cyclic A∞ algebra, i.e. an A∞ algebra (A, m1, m2, . . . ) equipped
with a symmetric and non degenerate pairing (−,−) : A ⊗ A → C[2],
such that the expression (a0, mn(a1, . . . , an)) is cyclically symmetric in the
graded sense.

We denote the inverse of the pairing by η ∈ A⊗ A. We can choose a
basis {a1, . . . , an} of A and express η as ∑ ηijai ⊗ aj. By definition, we have

(aai)η
ijaj = a

This element also defines a symmetric pairing on the linear dual A∗, which
is given by

( f , g) = ( f ⊗ g)(η)

If we choose the dual basis B = { f 1, . . . , f n} of A∗, then ( f i, f j) = ηij. We
define the following object in Rep(GL[[N]])

XA∗ =
⊕
fi∈B

ϕi (3.111)

where each ϕi is a copy of [1, 1] = •◦ in degree | fi| − 1. XA∗ is equipped
with a symplectic form

Ω = ∑
ij

Ωij ∈
⊕
i,j

Hom(ϕi ⊗ ϕj, 1) (3.112)
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given by

Ωij = ηij • ◦ • ◦ (3.113)

Then one can use our general construction to define the symplectic boson
systemW(XA∗) generated by the object XA∗ .

Lemma 3.64. We have an isomorphism

Hom(1,W(XA∗)) ∼= Sym(CC•λ(A[[t]])[1]) (3.114)

Proof. Recall that we can identifyW(XA) = S([1, 1]⊗ t−1A∗[t−1]). Using
Lemma 3.19 we have

Hom(1,W(XA)) ∼=
⊕
n≥0

(Hom(1, Tn([1, 1]⊗ t−1A∗[t−1]))Sn

=
⊕
n≥0

(k[Sn]⊗ (t−1A∗[t−1])⊗n)Sn

=
⊕
n≥0

(k[Sn]⊗Hom(A[[t]]⊗n, C))Sn

The rest of the proof follows from the proof of Loday-Quillen-Tsygan
Theorem [Qui84, Tsy83].

Under the above isomorphism, a cyclic cochain f : A[[t]]⊗n → C of the
form f i1 t−k1 ⊗ f i2 t−k2 ⊗ . . . f in t−kn is mapped to the element

• ◦ • ◦ . . . • ◦
∈ Hom(1, ϕi1

−k1
⊗ . . . ϕin

−kn
)

We denote A(A) = Hom(1,W(XA∗)) the corresponding vertex algebra.
To define the BRST reduction, we specify an element Q ∈ Hom(1,W(XA∗)).
By the previous lemma, we can define it as an element in CC•λ(A[[t]]). We
consider the following maps

∑
n≥1

(a0(t)⊗ a1(t)⊗ · · · ⊗ an(t)→
1

(n + 1)!
(a0(0), mn(a1(0), . . . an(0))))

The corresponding BRST charges can be written as follows

Q = ∑
n≥1

∑
i0,...,in

1
(n + 1)!

∮
dz(ai0 , mn(ai1 , . . . , ain))Tr(: ϕi0(z) . . . ϕin(z) :)

(3.115)

Remark 3.65. We can let A = C[ϵ1, ϵ2], with both ϵi in degree 1. Then A is
a 2d Calabi-Yau algebra with the map (−) : A → C given by (ϵ1ϵ2) = 1
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and 0 otherwise. It is easy to check that the construction in this section for
A = C[ϵ1, ϵ2] reproduces the example introduced in the last section.

We can also add (anti)-fundamental representation into this construc-
tion. Let M (resp. M̃) be a finite dimensional left (resp. right) A module.
Suppose we have a non-degenerate pairing

(−,−) : M̃⊗M→ C.

Using this non-degenerate pairing, we can identify M̃ as the dual M∗ of
M and vice versa. We also assume that the identification is as A-module.
This means that

(m̃, mM
n (a1, . . . , an, m)) = (mM̃

n (m̃, a1, . . . , an), m) (3.116)

where mM
n and mM̃

n are the A module map on M and M̃ respectively. We
can choose a basis {mj} = BM of M and the dual basis {mj} of M̃. Then
the pairing becomes (mi, mj) = δi

j.
We define the following objects in the Deligne category

XM =
⊕

mj∈BM

Ij ⊕ J j

where each Ij is a copy of [0, 1] in degree |mj| and J j is a copy of [1, 0] in
degree |mj|. We can define symplectic form on XM as follows

∑ δ
j
i
◦ • ∈ Hom(Ii ⊗ J j, 1),

Given this symplectic structure, we define the symplectic boson system
W(XA∗ ⊕ XM).

Lemma 3.66. We have an isomorphism (as a graded vector space)

Hom(1,W(XA∗ ⊕XM)) ∼= Sym(CC•λ(A[[t]])[1]⊕ B•(M̃[[t]], A[[t]], M[[t]])∗)
(3.117)

Under the above isomorphism, a element in (M[[t]]⊗ A[[t]]⊗n ⊗ M̃[[t]])
of the form mjt−k0 ⊗ f i1 t−k1 ⊗ . . . f in t−kn ⊗mit−kn+1 is mapped to the ele-
ment

◦ • ◦ • ◦ . . . • ◦ • ∈ Hom(1, Ij,−k0 ⊗ ϕi1
−k1
⊗ . . . ϕin

−kn
⊗ Ji
−kn+1

)



3.6 vertex poisson algebra structures 73

We also add a new term QM into the BRST differential. By the previous
lemma, we can define it as an element in B•(M̃[[t]], A[[t]], M[[t]])∗. We
consider the following collection of maps for n ≥ 1

m̃(t)⊗ a1(t) · · · ⊗ an(t)⊗m(t)→ 1
n!
(m̃(0), mM

n (a1(0), . . . an(0), m(0)))

The corresponding BRST charges can be written as follows

QM = ∑
n≥1

∑
i0,...,in

1
n!

∮
dz(m̃j, mM

n (ai1 . . . , ain , mi))Tr(: Ij(z)ϕi1(z) . . . ϕin(z)Ji :)

(3.118)

3.6 vertex poisson algebra structures

In this thesis, we will consider various vertex Poisson structures as different
classical limits of the algebra (A(A), Q). First, we consider the easiest one,
which corresponds to the tree level planar limit in physics terminology.

First, we add a formal parameter h̄ and consider the version of Weyl alge-
braWh̄(XA) with symplectic form h̄ω. We denote Ah̄ = Hom(1,Wh̄(XA)).
In this section, we consider the classical limit with h̄→ 0:

Wh̄=0(XA) =Wh̄(XA)/h̄Wh̄(XA)

And similarly define Ah̄=0.
Since the h̄ → 0 limit of the Weyl algebra is simply the commutative

algebra, Wh̄=0(XA) is a commutative vertex algebra. Then by [FBZ04],
Wh̄=0(XA) acquires the structure of vertex Poisson algebra (in Deligne
category). As a result, Ah̄=0 has the structure of Poisson vertex algebra.
Denote Q0 the differential on Ah̄=0 induced by Q. We have the following
proposition that improves the results of 3.64

Proposition 3.67. 1. Q2
0 = 0.

2. We have an isomorphism of chain complexes

(Ah̄=0, Q0) ∼= (Sym(CC•λ(A[[z]])[1]), b) (3.119)

where b is the Hochschild differential on CC•λ(A[[z]]) that computes+ the
cyclic cohomology.

Proof. Denote J(z) = ∑n≥1 ∑i0,...,in
1

(n+1)! (ai0 , mn(ai1 , . . . , ain))Tr(: ϕi0 . . . ϕin :
(z)). To prove that Q2

0 = 0 we only need to prove that a single Wick con-
traction between J(z) and itself vanishes. It is easy to check that computing
the Wick contraction gives us the A∞ relation on mn.
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We proceed to consider a more complicated classical limit. We define
a three parameter family version Ad,h̄,N(A) of the algebra. We work with
the Deligne category Rep(GL[[N]]), this gives us the parameters h̄ and N.
We consider the following Rees construction

Ad,h̄,N(A) =
⊕
n≥0

d
n
2 Symn(CC•λ(A[[z]])[1]) ⊂ Sym(CC•λ(A[[z]])[1])[[d

1
2 ]]

(3.120)
Then we consider the following re-parametrization

Ad,λ = A
d,h̄=d

1
2 ,N=λ/d

1
2

(3.121)

Proposition 3.68. Ad,λ lifts to a module over C[[d, λ]]. Moreover,

Ad=0,λ = Ad,λ/dAd,λ (3.122)

is a commutative vertex algebra.

Proof. For the first statement to hold, we need to show that the OPE
coefficients for the algebra Ad,h̄,N(A) has the following form

d
a
2 h̄bNc (3.123)

where all a, b, c are all integers and satisfy the conditions

c ≥ 0,

b− c ≥ 0,

a + b− c is a positive even integer

(3.124)

We prove this by induction on the number of Wick contractions. When
there is a single Wick contraction, it only connects two single trace oper-
ators and produce one single trace operator. Thus the OPE coefficient is
d

1
2 h̄, which satisfy the above conditions.
Now suppose we already have n wick contraction and the coefficient

take the form 3.123. Now we add one more Wick contraction, which always
add an extra h̄ factor. It might also introduce another factor of N or d

1
2 ,

which we now discuss.
When this new Wick contraction is adjacent to a previous one, we have

an extra factor of N, but the number of output trace is not changed. In this
case, the coefficient becomes

d
a
2 h̄b+1Nc+1

which satisfy the conditions 3.124.
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When the new Wick contraction is not adjacent to any previous one, it
will not add a extra factor of N. But in this case, we either have one more
trace or one less trace in the output. Then the coefficient becomes

d
a+1

2 h̄b+1Nc or d
a−1

2 h̄b+1Nc

which also satisfy the condition 3.124.

As a result, Ad=0,λ has the structure of vertex Poisson algebra. In fact,
the specialization λ = 0 of the Poisson vertex algebra Ad=0,λ is the same
as the Ah̄=0 we defined earlier. We will study the vertex Poisson algebra
Ad=0,λ in more detail for A = C[ϵ1, ϵ2] later.



4
D E R I V E D L AU R E N T S E R I E S

The Laurent polynomial O(Å1) = k[z, z−1] is a fundamental object in the
local structures of chiral algebra/conformal field theory over curves. For
d ≥ 2, Hartogs’ theorem implies that the space of holomorphic functions
on a punctured affine space is the same as the space of holomorphic
functions on affine space

O(Åd) = O(Ad) ∼= k[z1, . . . , zd] (4.1)

Naively, information about the singular behavior when points collide
is lost in dimension d ≥ 2. To overcome this problem, we replace the
"classical" algebra of functions O(Åd) = H0(Åd,O) by the derived space
of functions RΓ(Åd,O). We have the following well known answer

Hi(Åd,O) =


k[z1, . . . , zd], i = 0,

z−1
1 . . . z−1

d k[z−1
1 , . . . , z−1

d ], i = d− 1,

0, otherwise.

(4.2)

We see that the singular data is restored, but in different cohomological
degree.

As we learn from homological algebra, instead of the cohomology, we
should keep track of the actual complex that gives rise to the cohomology,
up to quasi-isomorphism. Indeed, the cohomology 4.2 forgets the infor-
mation about the dg algebra structure on the derived space of functions
RΓ(Åd,O). To restore this part of information, we either need to work
with a proper dg algebra model for RΓ(Åd,O), or consider the A∞ algebra
structure on the cohomology H•(Åd,O).

In this chapter, we introduce the dg algebra model for RΓ(Åd,O) called
the Jouanolou model following [FHK19]. We also compute explicitly the
A∞ algebra structure on the cohomology H•(Åd,O) for d = 2 using
representation theory. The latter structure can be used to construct the
minimal model of the higher Kac-Moody algebra RΓ(Åd,O ⊗ g). These
structure, and many of their variants, are used to define certain Poisson
algebra and vertex Poisson algebra structures that are important in the
twisted holography context.

76
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4.1 the jouanolou model

In this section, we introduce a dg algebra model for RΓ(Åd,O), which is
called the Jouanolou model. We follow the discussion in [FHK19]. First we
introduce another copy of Ad and denote its coordinates by (z∗1 , . . . , z∗d).
We write

zz∗ :=
d

∑
i=1

ziz∗i (4.3)

Let J denote the closed subscheme of A2d cut out by the equation zz∗ = 1.

J = {(zi, z∗i ) ∈ A2d | zz∗ = 1} (4.4)

The affine scheme J is called the Jouanolou torsor of Åd.

Lemma 4.1. The projection onto the first factor

π : J → Åd (4.5)

is Zariski locally trivial with fibers isomorphic to Ad−1.

Proof. We have an affine open cover {D(zi) = Spec k[z1, . . . , zd]zi}i of Åd.
For each D(zi), we have

π−1(D(zi)) = Spec (k[z1, . . . , zd, z∗1 , . . . , z∗d]/zz∗ − 1)zi

∼= Spec k[z1, . . . , zd]zi ⊗ k[z∗1 , . . . , ẑ∗i , . . . , z∗d]

= D(zi)×Ad−1

(4.6)

For any quasi-coherent sheaf E on Åd we consider the global relative de
Rham complex

A•
[d](E) = Γ(J, Ω•

J\Åd ⊗ π∗E) (4.7)

Proposition 4.2. (a) A•
[d](E) is a model for RΓ(Åd, E).

(b) If E is a commutative OÅd algebra, A•
[d](E) is a commutative dg algebra.

Proof. (a) Since J is affine, we have a quasi-isomorphism

A•
[d](E) ∼= RΓ(J, Ω•

J\Åd ⊗ π∗E) ∼= RΓ(Å, Rπ∗(Ω
•

J\Åd ⊗ π∗E)) (4.8)

Moreover, since π is Zariski locally trivial with fibers isomorphic to Ad−1,
the map

E→ Rπ∗(Ω
•

J\Åd ⊗ π∗E) (4.9)
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is a quasi-isomorphism of complexes of sheaves. The statement follows
immediately.

We can give a explicit description of the Jouanolou model A•
[d] :=

A•
[d](O

d
Å
). Let k[z, z∗] = k[z1, . . . , zd, z∗1 , . . . , z∗d] be the algebra of regular

function on Å2d. Let
k[z, z∗][(zz∗)−1] (4.10)

be the localization of the polynomial algebra k[z, z∗] with respect to zz∗ =
∑d

i=1 ziz∗i .

Proposition 4.3. The m-th graded component Am
[d] is identified with the space of

differential forms
ω = ∑ fi1,...,im(z, z∗)dz∗i1 . . . dz∗im

(4.11)

where the coefficients fi1,...,im(z, z∗) ∈ k[z, z∗][(zz∗)−1] satisfy the following two
conditions

1. The coefficients fi1,...,im(z, z∗) has degree−m with respect to the z∗ variables.

2. The contraction ιξ(ω) with the Euler vector field ξ = ∑i z∗i
∂

∂z∗i
vanishes.

Under the above identification, the de Rham differential is given by

∂̄ =
d

∑
i=1

dz∗i
∂

∂z∗i
(4.12)

Another useful presentation of the algebra A•
[d] is through the tangen-

tial Cauchy-Riemann (CR) complex Ω0,•
b (S2d−1) of S2d−1. We adopt the

definition using the embedding of S2d−1 into C2d (defined by the equa-
tion r = 1)[Fol72]. We define Ω0,•

b (S2d−1) as the quotient of Ω0,•(C2d)|S2d−1

by the ideal I(∂̄r) generated by ∂̄r. By choosing a metric ⟨−,−⟩ on C2d,
the CR complex Ω0,•

b (S2d−1) can also be identified with the orthogonal
complement of I(∂̄r) in Ω0,•(C2d)|S2d−1 .

The CR differential ∂̄ can be defined as follows. Let f ∈ C∞(S2d−1) be
a function on S2d−1, and f ′ be an extension of f to C2d. Then ∂̄ f is the
restriction to S2d−1 of

∂̄ f ′ − ⟨∂̄ f ′, ∂̄r⟩
⟨∂̄r, ∂̄r⟩

∂̄r. (4.13)

Notice that we have a map of dg algebra from A•
[d] to the Dolbeault

complex Ω0,•(Cd − {0}) , given by

∑ fi1,...,im(z, z∗)dz∗i1 . . . dz∗im
7→ fi1,...,im(z, z̄)dz̄i1 . . . dz̄im (4.14)
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By the construction of the CR complex, we have a map of dg algebra
Ω0,•(Cd − {0}) → Ω0,•

b (S2d−1). Thus we have a map A•
[d] → Ω0,•

b (S2d−1).

This map identifies A•
[d] as the space of polynomial sections of Ω0,•

b (S2d−1).

Proposition 4.4. The image of A•
[d] under the above map is dense in the L2

completion of Ω0,•
b (S2d−1).

Finally, we define a higher dimensional analogue of the residue map.
First we denote

Ap,•
[d] = A•

[d] ⊗Ωp
Åd (4.15)

Explicitly, we can write

A•,•
[d] = A•

[d][dz1, . . . , dzd] (4.16)

The map A•
[d] → Ω0,•(Cd − {0}) extent to a map A•,•

[d] → Ω•,•(Cd − {0}).
We define the residue map Res : Ad,d−1

[d] as

Res(ω) =
(d− 1)!
(2πi)d

∫
S2d−1

ω (4.17)

This residue is normalized so that the Bochner–Martinelli kernel

ΩB =
∑d

j=1(−1)d+1z∗j dz∗1 ∧ . . . d̂z∗j ∧ · · · ∧ dz∗d
(zz∗)d (4.18)

has residue 1
Res(ΩBdz1 . . . dzd) = 1 (4.19)

In this and the following sections, we also consider the d dimensional
formal disk Dd = k[[z1, . . . , zd]] and formal punctured disk D̊d = Dd −
{0}. We denote A•

d the Jouanolou model for RΓ(D̊d,OD̊d). The cohomology
of (A•

d, ∂) gives

Hi(D̊d,O) =


k[[z1, . . . , zd]], i = 0,

z−1
1 . . . z−1

d k[z−1
1 , . . . , z−1

d ], i = d− 1,

0, otherwise.

(4.20)

This is the higher dimensional analogue of the formal Laurent series
C((z)).
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4.2 representation theoretic analysis

In this and the following sections, we focus on the case when d = 2. In
this case, the SL2 (and GL2) group acts on A2 and D2, which induces an
action on the Jouanolou torsor so that zz∗ is GL2 invariant. Therefore, the
dg algebras A•

[2] and A•
2 inherit an action of SL2 (and GL2).

It will be convenient to introduce another set of coordinates

wi = zi, w̄i =
z∗i
zz∗

ξi =
dz∗i
zz∗

(4.21)

Then we can identify

A0
[2]
∼= C[wi, w̄i]/(ww̄ = 1),

A1
[2]
∼= A0

[2]ΩB,
(4.22)

where ΩB is the class in A1
[2] generated by the Bochner–Martinelli kernel

ΩB =
z∗1dz∗2 − z∗2dz∗1

zz∗
= w̄1ξ2 − w̄2ξ1 (4.23)

Recall that A0
[2] can be identified as the space of polynomial functions on

S3, therefore we have the following harmonic decomposition

A0
[2] =

⊕
j, j̄∈ 1

2 Z≥0

Hj, j̄ (4.24)

where

Hj, j̄ =

{
Harmonic polynomials that are homogeneous
of degree 2j in (w1, w2) and degree 2 j̄ in (w̄1, w̄2)

}
j, j̄∈ 1

2 Z≥0

(4.25)
Our labeling of the space Hj, j̄ using half integers instead of integers seems
unnatural. We chose this labeling to be compatible with the usual quantum
mechanical notation of spin. In fact, Hj, j̄ is a spin j + j̄ representation of
SL2.

The residue map introduced in the last section gives us an SL2 invariant
pairing (A0

[2])
⊗2 → C:

(α, β) 7→ Res(αβΩBdz1dz2) (4.26)
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We can check that this pairing is non-degenerate. It will be convenient to
use an orthonormal basis for each space Hj, j̄. Under the SL2 action, there
is a canonical choice of basis generated by the highest weight vector. For
the space Hj,0, we choose the orthonormal basis to be{

e(j)
m :=

√
(2j + 1)!

(j + m)!(j−m)!
wj+m

1 wj−m
2 | −j ≤ m ≤ j

}
, (4.27)

with e(j)
j =

√
2j + 1w2j

1 the highest weight vector. For the space H0, j̄, we
choose the orthonormal basis to be{

ē( j̄)
m̄ :=

√
(2 j̄ + 1)!

( j̄ + m̄)!( j̄− m̄)!
w̄ j̄+m̄

2 (−w̄1)
j̄−m̄ | − j̄ ≤ m̄ ≤ j̄

}
. (4.28)

For Hj, j̄ with j, j̄ ̸= 0, we denote the corresponding orthonormal basis by{
e(j, j̄)

m | −(j + j̄) ≤ m ≤ j + j̄
}

. (4.29)

we choose the highest weight vector to be

e(j, j̄)
j+ j̄ =

√
(2j + 2 j̄ + 1)!
(2j)!(2 j̄)!

w2j
1 w̄2 j̄

2 . (4.30)

Other elements of this basis are uniquely determined by the SL2 action.
Later we will write down explicitly this orthonormal basis in terms of
harmonic polynomials.

An important structure of A•
[2] is its commutative product. We want to

understand how this product behaves under the decomposition A0
[2] =⊕

j, j̄∈ 1
2 Z≥0
Hj, j̄. Note that harmonic polynomials are just polynomials of

the variable wi and w̄i. The product in the subalgebra C[wi] and C[w̄i]

respectively is easy and is the commutative product of polynomial. The
only difficult part is the product between C[wi] and C[w̄i] after harmonic
decomposition. Therefore, we first compute the product M restricted to
Hj,0 ⊗H0, j̄:

M : Hj,0 ⊗H0, j̄ → Hj, j̄ ⊕Hj− 1
2 , j̄− 1

2
⊕ · · · ⊕

{
Hj− j̄,0 j > j̄

H0, j̄−j j ≤ j̄
. (4.31)
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Denote πj = Hj,0. Note that {πj}j∈ 1
2 Z≥0

enumerates all irreducible repre-
sentations of SL2. We have an isomorphism

ϕj, j̄ : πj+ j̄
∼=→ Hj, j̄ (4.32)

as SL2 representation. Using the orthogonal basis of πj and Hj, j̄ defined

earlier, we have e(j, j̄)
m = ϕj, j̄(e

(j+ j̄)
m ).

Note that we have the well known tensor product rule of SL2 represen-
tations

CG : πj ⊗ π j̄
∼= πj+ j̄ ⊕ πj+ j̄−1 ⊕ · · · ⊕ π|j− j̄|. (4.33)

The matrix elements of the above isomorphism in the orthogonal basis are
given by the SL2 (SU(2)) Clebsch-Gordan coefficients Cj1,j2;j3

m1,m2;m3 . Then we
consider the map

M ◦ CG−1 :

πj+ j̄ ⊕ πj+ j̄−1 ⊕ · · · ⊕ π|j− j̄| → Hj, j̄ ⊕Hj− 1
2 , j̄− 1

2
⊕ · · · ⊕

{
Hj− j̄,0 j > j̄

H0, j̄−j j ≤ j̄
.

(4.34)
Since both M and CG intertwine the SL2 action, by Schur’s lemma M ◦
CG−1 must be a constant multiple of identity on each irreducible subspace.
Therefore, we have the following diagram

Hj,0 ⊗H0, j̄

πj+ j̄ Hj, j̄

⊕ ⊕
πj+ j̄−1 Hj− 1

2 , j̄− 1
2

⊕ ⊕
...

...
πj+ j̄−k Hj− k

2 , j̄− k
2...

...

CG M

λj, j̄,0

λj, j̄,1

λj, j̄,k
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We see that the map M is completely characterized by the constant λj, j̄,k.
To compute each constant λj, j̄,k, it suffices to compute the map M ◦ CG−1

on each highest weight vector. We have

M ◦ CG−1(e(j+ j̄−k)
j+ j̄−k ) =

j

∑
m=−j

Cj, j̄;j+ j̄−k
j−m, j̄−k+m;j+ j̄−ke(j)

j−m ē( j̄)
j̄−k+m

= (−1)k

√
(2j + 1)!(2 j̄ + 1)!

k!(2j + 2 j̄− k + 1)!
e(j− k

2 , j̄− k
2 )

j+ j̄−k .

(4.35)

Therefore,

λj, j̄,k = (−1)k

√
(2j + 1)!(2 j̄ + 1)!

k!(2j + 2 j̄− k + 1)!
. (4.36)

This gives us the following

Proposition 4.5. The product map M on the subspace Hj,0 ⊗H0, j̄ is computed
by the following formula

M(e(j)
m , ē( j̄)

m̄ ) =
min(2j,2 j̄)

∑
k=0

λj, j̄,kCj, j̄;j+ j̄−k
m,m̄;m+m̄e(j− k

2 , j̄− k
2 )

m+m̄ . (4.37)

In fact, we should understand the product M as an identity in the ring
C[wi, w̄i]/(w1w̄1 + w2w̄2 − 1), that expresses a monomial of wi, w̄i as a
linear combination of harmonic polynomials. As a result, the inverse of M
on Hj, j̄:

M−1 : H j̄, j̄ → Hj,0 ⊗H0, j̄ (4.38)

should be understood as an identity that expresses the orthonormal basis
of Hj, j̄ as a polynomial of wi, w̄i. Since the Clebsch-Gordan coefficients
are real and form a unitary matrix, we can easily write down the matrix
elements of M−1. This leads us to the following

Proposition 4.6. The orthonormal basis of the space of harmonic polynomials
Hj, j̄ can be written as follows

e(j, j̄)
l =∑

m
λ−1

j, j̄,0Cj, j̄;j+ j̄
l−m,m;le

(j)
l−m ē( j̄)

m

=∑
m
(−1) j̄−m

√
(2j + 2 j̄ + 1)(2j)!(2 j̄)!(j + j̄ + l)!(j + j̄− l)

(j + l −m)!(j− l + m)!( j̄−m)!( j̄ + m)!

× wj+l−m
1 wj−l+m

2 w̄ j̄−m
1 w̄ j̄+m

2 .

(4.39)

Given the above results, one can compute the product M of any two
harmonic polynomials. First, we write the harmonic polynomials into
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polynomials of wi, w̄i using the above formula. Then we can perform the
product in the polynomial ring C[wi, w̄i]. Finally, we use M|Hj,0⊗H0, j̄

to
decompose the polynomial into harmonic polynomials, which gives us the
desired product map. Following this idea, we show in Appendix B.1 that
the product of two arbitrary harmonic polynomials is given by

M(e(j1, j̄1)
m1 , e(j2, j̄2)

m2 ) = ∑
k


j1 j2 j1 + j2
j̄1 j̄2 j̄1 + j̄2

j1 + j̄1 j2 + j̄2 j1 + j2 + j̄1 + j̄2 − k


×
√
(2j1 + 1)(2j2 + 1)(2 j̄1 + 1)(2 j̄2 + 1)(2j1 + 2 j̄1 + 1)(2j2 + 2 j̄2 + 1)

× λ−1
j1, j̄1,0λ−1

j2, j̄2,0λj1+j2, j̄1+ j̄2,kCj1+ j̄1,j2+ j̄2;j1+j2+ j̄1+ j̄2−k
m1,m2;m1+m2

e(j1+j2− k
2 , j̄1+ j̄2− k

2 )
m1+m2

,
(4.40)

where


j1 j2 j3
j4 j5 j6
j7 j8 j9

 is the Wigner 9j symbol.

4.3 a special deformation retract

In this section, we start to analyze the cohomology of Jouanolou model
for d = 2. We would like to compute the A∞ algebra structure on the
cohomology H•(Å2,O). To do this we first construct a special deformation
retract on A•

[2] and then apply the homotopy transfer theorem.
The easiest way to construct such a deformation retract is to utilize the

SL2 representation studied in previous section. We need to understand
how the differential ∂̄ of the Jouanolou model behaves under the harmonic
decomposition. The operator ∂̄ commute with SL2 action. By Schur’s
lemma, on each SL2 irreducible subspace, ∂̄ is either zero or a scalar
multiple of the identity onto an irreducible subspace of the same SL2

representation. Therefore, it suffices to look at the action of ∂̄ on the highest
weight vector on each irreducible subspace. Using the reparametrization
in 4.21, we have

∂̄(w2j
1 w̄2 j̄

2 ) = 2 j̄w2j
1 w̄2 j̄−1

2 ξ2 = 2 j̄w2j+1
1 w̄2 j̄−1

2 ΩB. (4.41)

We find that

∂̄ :
Hj,0 → 0
Hj, j̄

≃→ Hj+ 1
2 , j̄− 1

2
ΩB

. (4.42)

Under the orthonormal basis, the differential ∂̄ is given by the following
constant

∂̄|Hj, j̄→Hj+ 1
2 ΩB , j̄− 1

2
=
√

2 j̄(2j + 1). (4.43)
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Given this knowledge about ∂̄, it is easy to reproduce the known result
4.20

H0(Å2,O) =
⊕

j∈ 1
2 Z≥0

Hj,0,

H1(Å2,O) =
⊕

j̄∈ 1
2 Z≥0

H0, j̄ΩB.
(4.44)

We define the homotopy operator h : A1
[2] → A0

[2] by "inverse" of ∂̄ as
follows

h :
H0, j̄ΩB → 0
Hj, j̄ΩB

≃→ Hj− 1
2 , j̄+ 1

2

, (4.45)

so that h acts on the highest weight vector by

h(w2j
1 w̄2 j̄

2 ΩB) =
1

2 j̄ + 1
w2j−1

1 w̄2 j̄+1
2 . (4.46)

Under the orthonormal basis 4.30, h is given by the following constant

hj, j̄ := h|Hj, j̄ΩB→Hj− 1
2 , j̄+ 1

2
=

1√
2j(2 j̄ + 1)

. (4.47)

We can verify that
i ◦ p− 1 = ∂̄ ◦ h + h ◦ ∂̄, (4.48)

where i and p are the standard inclusion and projection between A•
[2] and

H•(Å2,O).
We can also verify that

h ◦ i = 0, p ◦ h = 0, h ◦ h = 0. (4.49)

As a result, we have constructed a special deformation retract (SDR)

h (A•
[2], ∂̄)

p
⇄

i
(H•(Å2,O), 0). (4.50)

We give more details about the definition of SDR in Appendix A, where
we also provide its connection with homotopy transfer theorem.

It is important to note that the SDR we constructed is compatible with
the pairing on A•

[2]. One easily check that Res(d2zh(a)b) = Res(d2zah(b)).
Under this extra condition, it is shown in [Kaj07] that the transferred
A∞ structure on the cohomology is also a cyclic A∞ algebra. The bilinear
pairing on the cohomology is simply given by the restriction of the original
bilinear pairing.
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4.4 A∞ structure on the cohomology : m2 and m3

In this and the next section, we analyze the algebraic structure on the
cohomology

H•(Å2,O) (4.51)

induced from the dg algebra structure on A•
[2]. We first look at the induced

product structure m2 on H•(Å2,O). For the degree 0 part, the product
on H0(Å2,O) = C[w1, w2] is simply the commutative product of the
polynomial algebra. By degree reason, the only other nonzero product is
H0(Å2,O)⊗ H1(Å2,O)→ H0(Å2,O), which is given by

m2 = p ◦M : Hj,0 ⊗H0, j̄ΩB →
{

0 if j > j̄,

H0, j̄−jΩB if j ≤ j̄.
(4.52)

Using the formula for M from the last section, we find that

m2(w
p
1 wq

2,
(r + s + 1)!

r!s!
w̄r

1w̄s
2ΩB) =

(r + s− p− q + 1)!
(r− p)!(s− q)!

w̄r−p
1 w̄s−q

2 ΩB.

(4.53)

Remark 4.7. Alternatively, we can identify H1(Å2,O) = C[w̄1, w̄2]ΩB with
the (degree shifted) dual of H0(Å2,O) = C[w1, w2] via the residue pairing
4.26. Then the commutative product of C[w1, w2] induces a dual map

m′2 : H0(Å2,O)⊗ H1(Å2,O)→ H1(Å2,O), (4.54)

which is defined by m′2( f , gΩB)(h) = ( f · h, gΩB) for f , h ∈ H0(Å2,O)
and gΩB ∈ H1(Å2,O).

The fact that m′2 and m2 are the same is a consequence of the cyclic prop-
erty of m2: (h, m2( f , gΩB)) = (gΩB, m2( f , h)). This fact will be particularly
useful when we consider the higher products mn on the cohomology.

Now we can proceed to consider the higher structure on the cohomology
H•(Å2,O).

Proposition 4.8. There exist a nontrivial A∞ structure (actually a C∞ structure)
{mn}n≥2 on H•(Å2,O), such that the A∞ algebra (H•(Å2,O), {mn}n≥2) is
A∞ quasi-isomorphic to the dg commutative algebra (A•

[2], ∂̄, ·)

The existence of this A∞ structure is a corollary of the homotopy transfer
theorem. Since (A•

[2], ∂̄, ·) is a dg commutative algebra, the transferred
structure is also a C∞ algebra [ZG06]. The fact that this A∞ structure is
nontrivial is shown in [Pol03] in a more general context.
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The A∞ operation mn can be construed as follows

mn = ∑
T∈PBTn

(±)mT. (4.55)

Here the summation is taken over all rooted planar binary trees T with n
leaves. The map mT is construed by assigning the product map M on the
vertices, h on the internal edges, i on the leaves and p on the roots.

In this section, we warm up by computing the product m3 on H•(Å2,O).
It is given by the following trees

m3

= p

i

i i

h

−
p

i i

h
i

Explicitly, we have

m3(a, b, c) = pM(a, hM(b, c))− pM(hM(a, b), c), (4.56)

where we omit the inclusion i for simplicity.
Since H•(Å2,O) is concentrated in degree 0 and 1, and m3 is of degree
−1 by definition, we have that m3 is non zero only in the following
subspace of H•(Å2,O)⊗3

⊕
perm

H0(Å2,O)⊗ H0(Å2,O)⊗ H1(Å2,O),

⊕
perm

H0(Å2,O)⊗ H1(Å2,O)⊗ H1(Å2,O),
(4.57)

where we sum over all permutations of the tensor factors. Due to the cyclic
structure, m3 on the different subspaces are related by

(a0, m3(a1, ā0ΩB, ā1ΩB)) = −(ā1ΩB, m3(a0, a1, ā0ΩB)) (4.58)

Therefore it suffices to only compute m3 on
⊕

perm H0(Å2,O)⊗H0(Å2,O)⊗
H1(Å2,O).

First we consider m3 restricted on Hj1,0 ⊗Hj2,0 ⊗H0, j̄ΩB. Because h =

0 restricted on H0(Å2,O), pM(hM(a, b), c) = 0 for a, b ∈ H0(Å2,O).
Therefore, m3 is given by pM(a, hM(b, c)) in this case.
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If j̄ < j2, pM(−, hM(−,−)) is given by the following composition of
maps

Hj1,0 ⊗Hj2,0 ⊗H0, j̄ΩB
1⊗M∼= Hj1,0 ⊗ (Hj2, j̄ΩB ⊕Hj2− 1

2 , j̄− 1
2
ΩB ⊕ · · · ⊕Hj2− j̄,0ΩB)

1⊗h→ Hj1,0 ⊗ (Hj2− 1
2 , j̄+ 1

2
ΩB ⊕Hj2−1, j̄ΩB ⊕ · · · ⊕Hj2− j̄− 1

2 , 1
2
ΩB)

pM→ Hj1+j2− j̄−1,0.
(4.59)

If j̄ ≥ j2, the formula for computing m3 takes the same form. However,
there is a slight difference in the last summand

Hj1,0⊗Hj2,0⊗H0, j̄ΩB
1⊗M∼= Hj1,0⊗ (Hj2, j̄ΩB⊕Hj2− 1

2 , j̄− 1
2
ΩB⊕· · ·⊕H0, j̄−j2 ΩB).

(4.60)
Note that H0, j̄−j2 is sent to 0 after we apply h.

We compute m3(e
(j1)
m1 , e(j2)

m2 , ē( j̄)
m̄ ΩB) following these steps. According to

the above formula, we first need to compute hM(e(j2)
m2 , ē( j̄)

m̄ ΩB). We have

h(M(e(j2)
m2 , ē( j̄)

m̄ ΩB)) =
min(2 j̄,2j2−1)

∑
i=0

hj2− i
2 , j̄− i

2
λj2, j̄,iC

j2, j̄;j2+ j̄−i
m2,m̄,m2+m̄e(j2− i+1

2 , j̄− i−1
2 )

m2+m̄ .

(4.61)

To compute the product pM(e(j1)
m1 , e(j2− i+1

2 , j̄− i−1
2 )

m2+m̄ ), we can use a variation of

the formula 4.39 of M−1 to write e(j2− i+1
2 , j̄− i−1

2 )
m2+m̄ as a polynomial

e(j2− i+1
2 , j̄− i−1

2 )
m2+m̄ = ∑

m′
λ−1

j2− 1
2 , j̄+ 1

2 ,i
Cj2− 1

2 , j̄+ 1
2 ;j2+ j̄−i

m′,m2+m̄−m′;m2+m̄e(j2− 1
2 )

m′ ē( j̄+ 1
2 )

m2+m̄−m′ . (4.62)

Then we find that

pM(e(j1)
m1 , e(j2− i+1

2 , j̄− i−1
2 )

m2+m̄ ) = ∑
m′
(−1)2 j̄+1λ−1

j2− 1
2 , j̄+ 1

2 ,i

√
2j2(2j1 + 1)(2 j̄ + 2)

2j1 + 2j2

× Cj2− 1
2 , j̄+ 1

2 ;j2+ j̄−i
m′,m2+m̄−m′;m2+m̄Cj1,j2− 1

2 ;j1+j2− 1
2

m1,m′;m1+m′ Cj1+j2− 1
2 , j̄+ 1

2 ;j1+j2− j̄−1
m1+m′,m2+m̄−m′;m1+m2+m̄e(j1+j2− j̄−1)

m1+m2+m̄

=(−1)2j1+2j2−i+1λ−1
j2− 1

2 , j̄+ 1
2 ,i

√
2j2(2j1 + 1)(2 j̄ + 2)(2j2 + 2 j̄− 2i + 1)

× Cj2+ j̄−i,j1;j1+j2− j̄−1
m2+m̄,m1;m1+m2+m̄

{
j2 − 1

2 j̄ + 1
2 j2 + j̄− i

j1 + j2 − j̄− 1 j1 j1 + j2 − 1
2

}
e(j1+j2− j̄−1)

m1+m2+m̄ ,

(4.63)

where
{

j1 j2 j3
j4 j5 j6

}
is the Wigner 6j-Symbol.
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Combining the above results, we find that m3(e
(j1)
m1 , e(j2)

m2 , ē( j̄)
m̄ ΩB) is given

by

m3(e
(j1)
m1 , e(j2)

m2 , ē( j̄)
m̄ ΩB) =

min(2 j̄,2j2−1)

∑
i=0

(−1)2j1+2j2−i+1

×
{

j2 − 1
2 j̄ + 1

2 j2 + j̄− i
j1 + j2 − j̄− 1 j1 j1 + j2 − 1

2

}
Cj2, j̄;j2+ j̄−i

m2,m̄,m2+m̄Cj2+ j̄−i,j1;j1+j2− j̄−1
m2+m̄,m1;m1+m2+m̄

×

√
(2j1 + 1)2j2(2j2 + 1)(2j2 + 2 j̄− 2i + 1)

(2j2 − i)(2 j̄− i + 1)
e(j1+j2− j̄−1)

m1+m2+m̄

.

(4.64)
In fact, the above result is sufficient to determine all values of m3. We

have

m3(ē
( j̄)
m̄ ΩB, e(j1)

m1 , e(j2)
m2 ) = −m3(e

(j2)
m2 , e(j1)

m1 , ē( j̄)
m̄ ΩB), (4.65)

m3(e
(j1)
m1 , ē( j̄)

m̄ ΩB, e(j2)
m2 ) = m3(e

(j1)
m1 , e(j2)

m2 , ē( j̄)
m̄ ΩB)−m3(e

(j2)
m2 , e(j1)

m1 , ē( j̄)
m̄ ΩB).

(4.66)

Then we use the cyclic property:(
ē( j̄2)

m̄2
ΩB, m3(e

(j1)
m1 , e(j2)

m2 , ē( j̄1)
m̄1

ΩB)
)
=
(

e(j1)
m1 , m3(e

(j2)
m2 , ē( j̄1)

m̄1
ΩB, ē( j̄2)

m̄2
ΩB)

)
.

(4.67)
This determines the value of m3 on H0(Å2,O)⊗ H1(Å2,O)⊗ H1(Å2,O).

For our later application, it will be more convenient to use the value of
m3 in a different basis. We make the following change of variable{

p = j1 + m1

q = j1 −m1
,

{
r = j2 + m2

s = j2 −m2
,

{
u1 = j̄1 − m̄1

v1 = j̄1 + m̄1
,

{
u2 = j̄2 − m̄2

v2 = j̄2 + m̄2
,

(4.68)
with the constraint that

u1 + u2 = p + r− 1, v1 + v2 = q + s− 1. (4.69)

This constraint is equivalent to j̄1 + j̄2 = j1 + j2− 1, m̄1 + m̄2 = −(m1 +m2).
Then we define the constant (m3)

p,q;r,s
u1,v1;u2,v2 by the following

(m3)
p,q;r,s
u1,v1;u2,v2 :=

(−1) j̄1−m̄1 N(j1, m1)N(j2, m2)

N( j̄1, m̄1)N( j̄2, m̄2)

(
ē( j̄2)

m̄2
ΩB, m3(e

(j1)
m1 , e(j2)

m2 , ē( j̄1)
m̄1

ΩB)
)

.

(4.70)

where N(j, m) =
√

(j−m)!(j+m)!
(2j+1)! . This expression is non zero given the

constraint 4.69.
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The constant (m3)
p,q;r,s
u1,v1;u2,v2 can be regarded as the value of m3 in a

unnormalized basis. We have

m3(w
p
1 wq

2, wr
1ws

2,
(u1 + v1 + 1)!

u1!v1!
w̄u1

1 w̄v1
2 ΩB) = (m3)

p,q;r,s
u1,v1;u2,v2 wu2

1 wv2
2 . (4.71)

Using the relation 4.65 and the cyclic property, we find that the constant
(m3)

p,q;r,s
u1,v1;u2,v2 satisfy the following relation

(m3)
p,q;r,s
u1,v1;u2,v2 = −(m3)

r,s;p,q
u2,v2;u1,v1 . (4.72)

4.5 A∞ structure on the cohomology : mn

In this section, we analyze all the higher products mn on the cohomology
H•(Å2,O). First, by degree reason, the n-th product is only non zero on
the following subspace of H•(Å2,O)⊗n

⊕
perm

H0(Å2,O)⊗2 ⊗ H1(Å2,O)⊗n−2,

⊕
perm

H0(Å2,O)⊗ H1(Å2,O)⊗n−1.
(4.73)

The fact that H•(Å2,O) is concentrated in degree 0, 1 and the homotopy
operator h decreases the degree by 1 strongly restricts possible trees that
contribute to the higher product mn. A tree that contains the following
vertex must be zero

h h

h = 0

As a result, for any tree that gives a non-zero map, all vertices must be
directly connected to a leaf or the root. Moreover, the product map is zero
on (A1

[2])
⊗2. Therefore, for n ≥ 3, a tree that gives a non-zero map must

only consist of the following vertices:

i
H0

i
H1

h

h
i

H1

h
p

h h

Only a few trees survive under this condition.
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First we consider the map mn on H0(Å2,O)⊗ H1(Å2,O)⊗n−1. In this
case, only one tree contribute, which is given by

mn(a0, ā1ΩB, . . . , ān−1ΩB)

= pM(hM(. . . hM(hM(a0, ā1ΩB), ā2ΩB), . . . , ān−1ΩB)),
(4.74)

for a0 ∈ H0(Å2,O) and ā1ΩB, . . . , ān−1ΩBH1(Å2,O).
We emphasize that the order of input elements does matter in a higher

operation mn. Therefore, the above formula does not directly apply to
other cases when we insert a0 ∈ H0(Å2,O) in a different slot of the map
mn. However, since since (H•(Å2,O), {mn}n≥2) is a C∞ algebra, all other
cases can be derived from the result of mn(a0, ā1ΩB, . . . , ān−1ΩB). We have
the following

mn(ān−1ΩB, . . . , āk+1ΩB, a0, ā1ΩB, . . . , ākΩB)

= ∑
σ∈Sh(k,n−1−k)

(±)mn(a0, āσ−1(1)ΩB, . . . , āσ−1(n−1)ΩB), (4.75)

where Sh(k, n− 1− k) the subset of (k, n− 1− k)-shuffles in Sn−1.
For n ≥ 3, let us denote

µn(a0; ā1ΩB, . . . , ān−1ΩB)

= M(hM(. . . hM(hM(a0, ā1ΩB), ā2ΩB), . . . , ān−1ΩB)).
(4.76)

Then mn(a0, ā1ΩB, . . . , ān−1ΩB) = pµn(a0, ā1ΩB, . . . , ān−1ΩB). The purpose
of defining µn is that it can be computed iteratively as follows

µn(a0; ā1ΩB, . . . , ān−1ΩB) = M(hµn−1(a0; ā1ΩB, . . . , ān−2ΩB), ān−1ΩB).
(4.77)

Computation of µn is similar to the computation of m3 in the last section.
First we compute µ3(e

(j0)
m0 , ē( j̄1)

m1 ΩB, ē( j̄2)
m2 ΩB). Using B.7, we have

µ3(e
(j0)
m0 , ē( j̄1)

m1 ΩB, ē( j̄2)
m2 ΩB) = ∑

i1,i2

h
j0−

i1
2 , j̄1−

i1
2

λj0, j̄1,i1 λ−1
j0− 1

2 , j̄1+ 1
2 ;i1

λj0− 1
2 , j̄1+ j̄2+ 1

2 ;i2√
(2 j̄1 + 2)(2 j̄2 + 1)(2j0 + 2 j̄1 − 2i1 + 1)

{
j̄1 + 1

2 j0 − 1
2 j0 + j̄1 − i1

j0 + j̄1 + j̄2 − i2 j̄2 j̄1 + j̄2 + 1
2

}
× Cj0, j̄1;j0+ j̄1−i1

m0,m1;m0+m1
Cj0+ j̄1−i1, j̄2;j0+ j̄1+ j̄2−i0

m0+m1,m2;m0+m1+m2
e(j0− 1

2−
i2
2 , j̄1+ j̄2+ 1

2−
i2
2 )

m0+m1+m2
ΩB.

(4.78)



4.5 A∞ structure on the cohomology : mn 92

In general, µn(a0, ā1ΩB, . . . , ān−1ΩB) takes the following form

µn(e
(j0)
m0 , ē( j̄1)

m1 ΩB, . . . ē( j̄n−1)
mn−1 ΩB) = ∑

i1,...,in−1

(µn)
j0, j̄1..., j̄n−1
i1,...,in−1

(
n−2

∏
l=0

C Jl−il , j̄l+1,Jl+1−il+1
Ml ,ml+1,Ml+1

)

e(j0− n−2
2 −

in−1
2 , J̄n−1+

n−2
2 −

in−1
2 )

Mn−1
ΩB,

(4.79)
where i0 = 0 and we define

Jl = j0 + j̄1 + · · ·+ j̄l , l ≥ 0,

J̄l = Jl − j0, l ≥ 1,

Ml = m0 + · · ·+ ml , l ≥ 0.

(4.80)

Using the recursion relation 4.77 and the formula B.7, we find that

(µn)
j0, j̄1..., j̄n−1
i1,...,in−1

=
n−1

∏
l=2

h
j0− l−2

2 −
il−1

2 , J̄l−1+
l−2

2 −
il−1

2

√
(2 J̄l−1 + l)(2 j̄l + 1)(2Jl−1 − 2il−1 + 1)

×
(

n−2

∏
l=1

λj0− l−1
2 , J̄l+

l−1
2 ;il

λ−1
j0− l

2 , J̄l+
l
2 ;il

)
λj0− n−2

2 , J̄n−1+
n−2

2 ;in−1

×
n−1

∏
l=2

{
J̄l−1 +

l1
2 j0 − l−1

2 Jl−1 − il−1

Jl − il j̄l J̄l +
l−1

2

}
.

(4.81)
The above expression simplifies to

(µn)
j0, j̄1..., j̄n−1
i1,...,in−1

= λj0− n−2
2 , J̄n−1+

n−2
2 ;in−1

n−1

∏
l=2

√
(2j0 − l + 3)(2 j̄l + 1)(2Jl−1 − 2il−1 + 1)
(2j0 − l + 2− il−1)(2 J̄l−1 + l − 1− il−1){

J̄l−1 +
l−1

2 j0 − l−1
2 Jl−1 − il−1

Jl − il j̄l J̄l +
l−1

2

}
.

(4.82)
We have the following formula for mn(e

(j0)
m0 , ē( j̄1)

m1 ΩB, . . . ē( j̄n−1)
mn−1 ΩB)

mn(e
(j0)
m0 , ē( j̄1)

m1 ΩB, . . . ē( j̄n−1)
mn−1 ΩB) = ∑

i1,...,in−2

(µn)
j0, j̄1 ..., j̄n−1
i1,...,in−1

×
(

n−2

∏
l=0

C Jl−il , j̄l+1,Jl+1−il+1
Ml ,ml+1,Ml+1

)∣∣∣∣∣ i0=0;
in−1=2j0−n+2

ē( J̄n−1−j0+n−2)
Mn−1

ΩB.
(4.83)

Here, the range of summation is taken to be

0 ≤ il ≤ min{2j0 − l, 2 J̄l + l − 1}, for l = 1, . . . n− 2. (4.84)
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However, the actual range of summation is much smaller due to the
constraint of the Wigner 6j symbol and the Clebsch–Gordan coefficients.
For example, the summand is nonzero only when

il ≥ il−1, for l = 2, . . . n− 1. (4.85)

Using the cyclic structure, the above result is sufficient to determine the
whole mn. For example, we have the following(

e(j1)
m1 , mn(e

(j2)
m2 , ē( j̄1)

m1 ΩB, . . . ē( j̄n−1)
mn−1 ΩB)

)
=
(

ē( j̄n−1)
mn−1 ΩB, mn(e

(j1)
m1 , e(j2)

m2 , ē( j̄1)
m1 ΩB, . . . ē( j̄n−2)

mn−2 ΩB)
) (4.86)

This determines the value of mn on H0(Å2,O)⊗2 ⊗ H1(Å2,O)⊗n−2. We
can use the C∞ property to determine all the remaining values of mn.

It will be convenient to define the constant

(mn)
p,q;r,s
u1,v1;...;un−1,vn−1

=

(
n−1

∏
i=1

(ui + vi + 1)!
ui!vi!

) (
wp

1 wq
2, mn(wr

1ws
2, w̄u1

1 w̄v1
2 ΩB, . . . , w̄un−1

1 w̄vn−1
2 ΩB)

)
=

(
2

∏
l=1

√
(jl + ml)!(jl −ml)!

(2jl + 1)!

)(
n−1

∏
l=1

√
(2 j̄l + 1)!

( j̄l + m̄l)!( j̄l − m̄l)!

)
×
(

e(j1)
m1 , mn(e

(j2)
m2 , ē( j̄1)

m1 ΩB, . . . ē( j̄n−1)
mn−1 ΩB)

)
(4.87)

The variables p, q, r, s, ui, vi and ji, mi, j̄i, m̄i are related as follows{
p = j1 + m1

q = j1 −m1
,

{
r = j2 + m2

s = j2 −m2
,

{
ui = j̄i − m̄i

vi = j̄i + m̄i
. (4.88)

We also have the constraint u1 + . . . un−1 = p + r− n + 2, v1 + . . . vn−1 =

q + s− n + 2 on the variable, which is equivalent to

j̄1 + j̄2 + · · ·+ j̄n−1 = j1 + j2 − n + 2, m̄1 + m̄2 + . . . m̄n = −(m1 + m2).
(4.89)

4.6 a non-commutative deformation

In this section, we consider the Moyal deformation of the structure sheaf
OÅ2 with respect to the standard Poisson bivector

Π = ∂z1 ∧ ∂z2 (4.90)
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We denote OÅ2,c the non-commutative deformation (OÅ2 [[c]], ∗c), where
c is the formal deformation parameter and the star product ∗c can be
expressed by

f ∗c g = m ◦ e
cΠ
2 ( f ⊗ g)

= f g +
c
2

ϵij∂zi f ∂zj + (
c
2
)2ϵi1 j1 ϵi2 j2 ∂zi1

∂zi2
f ∂zj1

∂zj2
g + . . .

(4.91)

This non-commutative deformation induces a non-commutative defor-
mation to the Jouanolou model. We denote A•

[2],c = A•
[d](OÅ2,c). As a dg

associative algebra, A•
[2],c has the same underlying dg vector space as

A•
[2][[c]], but equipped with a deformed product Mc given by the same

formula 4.91. In the remainder of this section, we analyze the deformed
A∞ structure on the cohomology H•(Å2,OÅ2,c).

As a first step, we analyze the deformed product Mc under the Harmonic
decomposition. In the easiest case, we consider Mc|Hj,0⊗Hj′ ,0

Mc(w
p
1 wq

2, wr
1ws

2) = ∑
k≥0

(
c
2
)k 1

k!
Rk(p, q, r, s)wp+r−k

1 wq+s−k
2 (4.92)

where the constant Rk(p, q, r, s) is defined as

Rk(p, q, r, s) =
k

∑
i=0

(−1)i
(

k
i

)
[p]k−i[q]i[r]i[s]k−i (4.93)

We also use the descending Pochhammer symbol [a]n = a!
(a−n)! .

We can also write it using the orthonormal basis

Mc(e
(j1)
m1 , e(j2)

m2 ) = ∑
k≥0

(c/2)kCj1,j2;j1+j2−k
m1,m2;m1+m2

(2j1 + 2j2 − 2k + 1)

√
[2j1 + 1]k+1[2j2 + 1]k+1

k![2j1 + 2j2 − 2k]k−1
e(j1+j2−k)

m1+m2

(4.94)
To obtain the full A∞ structure on H•(Å2,OÅ2,c), we need more in-
formation about the product Mc. For example, we also need to com-

pute Mc(e
(j1)
m1 , ē( j̄2)

m̄2
ΩB). Recall that ē( j̄2)

m̄2
ΩB ∝ z̄ j̄2−m̄2

1 z̄ j̄2+m̄2
2

(z1 z̄1+z2 z̄2)
2 j̄2+1 )(z

∗
1dz∗2 − z∗2dz∗1).

Therefore

ϵij∂zi e
(j1)
m1 ∂zj ē

( j̄2)
m̄2

ΩB =
2 j̄2 + 1

z1z̄1 + z2z̄2
(z̄2∂z1 − z̄1∂z2)(e

(j1)
m1 )ē

( j̄2)
m̄2

ΩB (4.95)

We can define an operator η : Hj, j̄ → Hj− 1
2 , j̄− 1

2
by the formula η =

w̄2∂w1 − w̄1∂w2 . The action of η on A•
[2][[c]] is completely determined by
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its action on the highest weight vector. We have η(w2j
1 w̄2 j̄

2 ) = 2jw2j−1
1 w̄2 j̄+1

2 .
Therefore,

η(e(j, j̄)
m ) =

√
(2j)(2 j̄ + 1)e(j− 1

2 , j̄+ 1
2 )

m (4.96)

Then we can simplify Mc(e
(j1)
m1 , ē( j̄2)

m̄2
ΩB) as follows

Mc(e
(j1)
m1 , ē( j̄2)

m̄2
ΩB) = ∑

k≥0
(

c(2 j̄2 + 1)
2

)k M(ηke(j1)
m1 , ē( j̄2)

m̄2
ΩB) (4.97)

More generally, we have

Mc(e
(j1, j̄1)
m1 , ē( j̄2)

m̄2
ΩB) = ∑

k≥0
(

c(2 j̄2 + 1)
2

)k M(ηke(j1, j̄1)
m1 , ē( j̄2)

m̄2
ΩB)

= ∑
k≥0

(
c(2 j̄2 + 1)

2
)k
√
[2j1]k[2 j̄1 + k]k M(e(j1− k

2 , j̄1+ k
2 )

m1 , ē( j̄2)
m̄2

ΩB)

(4.98)

while the M(e(j1− k
2 , j̄1+ k

2 )
m1 , ē( j̄2)

m̄2
ΩB) can be computed by the formula B.7.

Then we can, in principle, use these formula to compute the A∞ structure
{mc

2, mc
3, . . . }on H•(Å2,OÅ2,c).

4.7 minimal model for higher kac-moody algebra

Given a Lie algebra g, the formal current algebra g((z)) and its central
extension plays a fundamental role in the study of Kac-Moody vertex
algebra. The generalization of g((z)) to higher dimension is developed in
[FHK19], where the authors considered the current algebra

g•d := g⊗ A•
d (4.99)

and its central extension. g•d is a dg Lie algebra, and its natural to con-
sider its minimal model. Namely, we consider the transferred L∞ algebra
structure on the cohomology

H•(Å2, g⊗O) (4.100)

One way to obtain the L∞ structure on the cohomology is to directly
apply the homotopy transfer theorem to the dg Lie algebra g•d. However, as
we have already computed the C∞ structure on H•(Å2,O), it would save
us a lot of work if we can construct the L∞ structure by considering the
tensor product. This lead us to the more general question of the existence
of L∞ algebra structure on the tensor product between a Lie algebra and a
C∞ algebra.
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This is proved in [Rob17] with a more general statement. Let Ψ : P → L
be a morphism between two dg operad. Suppose P is augmented and
Koszul, and each P(n) is finite dimensional, then the main theorem in
[Rob17] state that there is a morphism of operad

Lie∞ → L⊗P !
∞ (4.101)

where P !
∞ is the resolution of the Koszul dual operad of P . Moreover, such

construction is compatible with the homotopy transfer theorem.
If we let L = P = Lie and Ψ the identity morphism of Lie operad. This

result implies that there is a canonical L∞ structure on the tensor product
between a Lie algebra and a C∞ algebra.

In our cases, an explicit formula can be easily obtained by thinking
about the homotopy transfer of the Lie algebra A•

[2] ⊗ g. The homotopy
transfer from a Lie algebra to a L∞ algebra is similar to the homotopy
transfer of associative algebra, except that we consider all (not necessarily
planar) binary rooted trees and we replace the product map with the
Lie bracket on each vertex. In our cases, the condition on non zero trees
discussed in the last section still hold. Therefore, up to a permutation of
the leaves, the trees that contribute to the L∞ operations are the same as in
the last section. As a result, we have the following formula for the higher
bracket ln restricted on (H0(Å2,O)⊗ g)⊗ Sn−1(H1(Å2,O)⊗ g)

ln(a0 ⊗ x0, ā1ΩB ⊗ x1, ..., ān−1ΩB ⊗ xn−1)

= ∑
σ∈Sn−1

mn(a0, āσ(1)ΩB, ..., āσ(n−1)ΩB)[...[[x0, xσ(1)], xσ(2)], ..., xσ(n−1)],

(4.102)
where a0 ∈ H0(Å2,O), āiΩB ∈ H1(Å2,O) and xi ∈ g. We have that
|Sn−1| = (n− 1)! = dimLie(n). In fact, the set of elements

{[...[[x0, xσ(1)], xσ(2)], ..., xσ(n−1)], σ ∈ Sn−1}

form a basis of the Lie operad Lie(n) and are called Dynkin elements.
Similar construction applies if we replace A•

2 by its non commutative
generalization A•

2,c. However, since A•
2,c is no longer commutative, we

cannot choose arbitrary Lie algebra g in the tensor product A•
2,c ⊗ g. In this

case, we can only choose g to be glK, which comes from the associative
algebra MatK×K. We apply 4.101 to L = P = Ass and Ψ the identity. Since
Ass! = Ass, 4.101 implies that there is an L∞ structure on tensor product
between an associative algebra and a A∞ algebra. Let us denote mc

n the A∞



4.8 polyvector fields 97

structure map on H•(A•
2,c), then the L∞ structure on H•(A•

2,c)⊗MatK×K

can be written as follows

lc
n(a0 ⊗ x0, a1 ⊗ x1, ..., an−1 ⊗ xn−1)

= ∑
σ∈Sn

mc
n(aσ−1(0), aσ−1(1), ..., aσ−1(n−1))⊗ (xσ−1(0)xσ−1(1) . . . xσ−1(n−1))

(4.103)
where ai ∈ H•(A•

2,c) and xi ∈ glK

4.8 polyvector fields

Another important construction is the algebra of polyvector fields on Åd

PVp,•
[d] = A•

[d](∧
pTÅd), PVp,•

d = A•
d(∧pTD̊d) (4.104)

Explicitly, we have

PVp,•
[d] = A•

[d][∂z1 , . . . , ∂zd ], PVp,•
d = A•

d[∂z1 , . . . , ∂zd ] (4.105)

with ∂zi in degree (1, 0).
One can equip the dg algebra PVp,•

[d] (and PVp,•
d ) a dg BV algebra structure.

To do this we choose a holomorphic volume form ΩÅd , which is typically
chosen as the standard one ΩÅd = dz1 . . . dzd. Then we can identify PVj,i

[d]

with Ad−j,i
[d] via contraction with ΩÅd :

PVj,i
[d]
∼= Ad−j,i

[d]

α 7→ α ∨ΩÅd

(4.106)

The differential ∂ : Aj,i
[d] → Aj+1,i

[d] then induce a differential on PVj,i
[d] via the

above isomorphism
∂ : PVj,i

[d] → PVj−1,i
[d] (4.107)

Explicitly, given the identification 4.105, ∂ can be expressed as follows

∂ =
d

∑
i=1

∂

∂(∂zi)

∂

∂zi
(4.108)

The ∂ operator on polyvector fields is not a derivation with respect to
the product structure. The failure of it being a derivation can be measured
by a bracket

{α, β} := ∂(α ∧ β)− (∂α) ∧ β− (−1)|α|α ∧ (∂β), (4.109)
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which coincides with the Schouten-Nijenhuis bracket on polyvector fields
(up to a sign). Explicitly, this bracket is given by the following expression

{α, β} =
d

∑
i=1

∂α

∂(∂zi)

∂β

∂zi
+ (−1)|α|

∂α

∂zi

∂β

∂(∂zi)
(4.110)

The fundamental algebraic structures of polyvector fields on Calabi-Yau ge-
ometry can be summarized by saying that the tuple {PV•,•

[d], ∂̄,∧, ∂, {−,−}}
defines a differential graded Batalin-Vilkovisky algebra.

Using the isomorphism 4.106, it is easy to find that the cohomology
H•(PV•,•

[d], ∂̄) is given as follows

Hi(PV•,•
[d], ∂̄) =


k[z1, . . . , zd][∂z1 , . . . , ∂zd ], i = 0,

z−1
1 . . . z−1

d k[z−1
1 , . . . , z−1

d ][∂z1 , . . . , ∂zd ], i = d− 1,

0, otherwise.
(4.111)

In the original formulation, the classical Kodaira-Spencer theory is
related to the dg Lie algebra (ker ∂, ∂̄, {−,−}). In the case when d = 2,
the L∞ structure on the cohomology H•(ker ∂, ∂̄) is analyzed in [Zen24].
In [CL12], a different formulation of Kodaira-Spencer theory, called BCOV
theory, is proposed, where the constraint ∂µ = 0 is imposed homologically.
The derived version of the kernel of ∂ is the homotopy fixed points for the
corresponding action of C[1]

PV⊗L
C[ε] C (4.112)

In our case, we consider the complex

(PV•,•
[d][[u]], ∂̄− u∂) (4.113)

equipped with the bracket {−,−}. It induces an L∞ structure on the
cohomology H•(PV•,•

[d][[u]], ∂̄− u∂).
We can couple the Kodaira-Spencer theory with the Holomorphic Chern-

Simons theory. For the coupled theory, we consider the complex

PV•,•
d [[u]]⊕ A•

d ⊗ g (4.114)

where we take g = glK or glK|K. The coupling between polyvector fields
and holomorphic Chern-Simons theory in the classical theory is encoded
by a L∞ map

PV•,•
d [[u]]→ (Dpoly(A•

d))
σ (4.115)
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which is a cyclic version [Wil11] of the Kontsevich’s formality map [Kon03].
This defines a L∞ structure on the complex 4.115, and induces an L∞

structure on the cohomology.

4.9 L∞ algebra and poisson structure

Poisson structure

In all of our above examples, we obtain a cyclic L∞ algebra L with the
decomposition

L = L+ ⊕ L−[−1] (4.116)

Under this decomposition, the cyclic pairing becomes a non-degenerate
pairing L+ ⊗ L− → C and induces an isomorphism L− ∼= L∗+. The L∞

structure {ln : L⊗n → L[n− 2]}n≥2 can be reduced to maps:

ln : Sn−1(L−)⊗ L+ → L−
ln : Sn−2(L−)⊗∧2L+ → L+

(4.117)

Using the cyclic pairing, we observe that the above two maps comes from
the same elements in Sn−1(L∗−)⊗ ∧2(L∗+). Collecting them together, we
find that the L∞ structure L+ ⊕ L−[−1] is the same as an element in

O(L−)⊗∧2L−

This is the same as the bivector field on L−. In fact, the L∞ condition
guarantees that this bivector is a Poisson bivector.

Lemma 4.9. Let L = L+ ⊕ L−[−1] equipped with a non-degenerate pairing
L+ ⊗ L−, then we have an bijection between the set of cyclic L∞ structures on L
with the paring and the set of Poisson structures on O(L−)

Proof. Given a bivector π ∈ O(L−) ⊗ ∧2L−, the corresponding bracket
{−,−} satisfies the Jacobi identity if and only if π satisfies [π, π] = 0,
with respect to the Schouten–Nijenhuis bracket. Then its easy to check that
this condition translates to the L∞ condition as in (26) of [ASZK97].

Therefore, we obtained various Poisson algebra O(L−) which corre-
spond to the various L∞ algebras that come from the derived Laurent
series.
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Promoting to vertex Poisson structure

We wish to promote the above Poisson algebra into a vertex Poisson
algebra. The easiest way is to consider the associated infinite jet space

J∞L− = L−[[t]]

Then according to [AM21], there is a Poisson vertex algebra structure on
O(J∞L−).

In most of our situations, the Poisson vertex algebra is a deformation of
L−[[t]], which comes from a deformation of the L∞ structure of L[[t]].

Lemma 4.10. For L as in Lemma 4.9. Then there is a bijection between the set
of L∞ structure on L[[t]], ..., and the set of Poisson vertex algebra structures on
O(J∞L−).

As a example, we consider a deformation of J∞(H•(D̊2, g ⊗ O)) ∼=
H•(D× D̊2, g⊗O) constructed as follows. Recall that the Jouanolou model
for H•(D× D̊2, g⊗O) is given by

A•
2[[t]]⊗ g

equipped with the differential ∂̄ 4.12 and Lie bracket [−,−]. In the context
of twisted holography, we introduce a deformed differential

∂̄ + λΩB∂t (4.118)

Then there will be a new L∞ structure on the cohomology H•(A•
2[[t]]⊗

g, ∂̄ + λΩB∂t). This new L∞ structure can be computed via homological
perturbation lemma and the homotopy transfer. Recall that we have the
following special deformation retract (SDR) from A•

2 to H•(D̊2,O)

h (A•
2[[t]], ∂̄)

p
⇄

i
(H•(D× D̊2,O), 0). (4.119)

After adding λΩB∂t to the differential, we can apply the homological
perturbation lemma and find the following new SDR

h′ (A•
2[[t]], ∂̄ + λΩB∂t)

p′

⇄
i′
(H•(D× D̊2,O), D). (4.120)

The new differential D is given by

D = p(1− λΩB∂th)−1λΩB∂ti = p(λΩB∂t + λ2ΩB∂thΩB∂t + . . . )i (4.121)
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The other maps i′, p′, h′ in the SDR are given by

p′ = p + p(1− λΩB∂th)−1λΩB∂th = p + pλΩB∂th + . . .

i′ = i + h(1− λΩB∂th)−1λΩB∂ti = i + hλΩB∂ti + . . .

h′ = h + h(1− λΩB∂th)−1λΩB∂th = h + hλΩB∂th + . . .

(4.122)

Given this new SDR, we obtain a new A∞ structure on H•(D× D̊2,O) =
J∞H•(D̊2,O). It can be computed by the same method as in Section 4.5,
but with the new maps i′, p′, h′.

As an example, we compute the new product m′2 on H•(D̊2,O)[[t]]. It
will be convenient to introduce a degree 0 map h̃ : A•

2 → A•
2:

h̃ :
H0, j̄ → 0
Hj, j̄

≃→ Hj− 1
2 , j̄+ 1

2

, (4.123)

so that h̃(−ΩB) acts the same as h(−). We have

h̃(w2j
1 w̄2 j̄

2 ) =
1

2 j̄ + 1
w2j−1

1 w̄2 j̄+1
2 . (4.124)

Using h̃, we can simplify the expression for i′, p′, h′ and D. We have

D = ∑
k≥1

pΩBλk h̃k−1∂k
t i (4.125)

and
p′ = p + ∑

k≥1
pλk h̃k∂k

t |A1
2

i′ = i + ∑
k≥1

λk h̃k∂k
t i|A0

2

h′ = ∑
k≥0

λk h̃k∂k
t h

(4.126)

The new product m′2 can be computed as m′2(−,−) = p′M(i′−, i′−). We
focus on m′2 on H0(D̊2,O)[[t]]⊗2. In this case, m′2 simplifies to

m′2( f1a1, f2a2) = ∑
k1,k2≥0

λk1+k2(∂k1
t f1)(∂

k2
t f2)pM(h̃k1 a1, h̃k2 a2), (4.127)

for f1, f2 ∈ C[[t]] and a1, a2 ∈ H0(D̊2,O). To simplify the notation, we
denote the maps m(k1,k2)

2 (a1, a2) = pM(h̃k1 a1, h̃k2 a2), then we can write m′2
as m′2( f1a1, f2a2) = ∑k1,k2≥0 λk1+k2(∂k1

t f1)(∂
k2
t f2)m

(k1,k2)
2 (a1, a2).

In order to compute the maps m(k1,k2)
2 , one can employ the formula

4.40 for the product of arbitrary two harmonic polynomial. Here, we
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provide a different method based on SL2 representation. Note that m(k1,k2)
2

is compatible with the SL2 action and send Hj1,0 ⊗Hj2,0 to Hj1+j2−k1−k2,0.
Therefore the corresponding matrix elements must be proportional to the
Clebsch-Gordan coefficients in the orthonormal basis. To determine the
constant of proportionality it suffices to compute one non-zero value of
m(k1,k2)

2 . Using the definition 4.124 of h̃, we find that

h̃k(e(j)
m ) =

√
(2j− k)!
(2j)!k!

e(j− k
2 , k

2 )
m . (4.128)

The easiest case of a non-zero product is the product between the highest
weight vector and the lowest weight vector. We have

m(k1,k2)
2 (e(j1)

j1
, e(j2)
−j2

) =

√
(2j1 − k1)!(2j2 − k2)!

k1!k2!(2j1)!(2j2)!
m2(e

(j1−
k1
2 , k1

2 )
j1

, e(j2−
k2
2 , k2

2 )
−j2

)

= (−1)k2

√
(2j1 + 1)(2j2 + 1)(2j1 − k1)!(2j2 − k2)!

k1!k2!(2j1 + 2j2 − k1 − k2 + 1)!

×

√
(2j1 + 2j2 − 2k1 − 2k2 + 1)!

(2j1 − k1 − k2)!(2j2 − k1 − k2)!
e(j1+j2−k1−k2)

j1−j2
.

(4.129)
This implies

m(k1,k2)
2 (e(j1)

m1 , e(j2)
m2 )

=(−1)k2

√
(2j1 + 1)(2j2 + 1)(2j1 + 2j2 − 2k1 − 2k2)!

(2j1 + 2j2 − k1 − k2 + 1)!(2j1)!(2j2)!(2j1 − k1 − k2)!(2j2 − k1 − k2)!

× (2j1 − k1)!(2j2 − k2)!
k1!k2!

Cj1,j2,j1+j2−k1−k2
m1,m2,m1+m2

e(j1+j2−k1−k2)
m1+m2

.

(4.130)
We can also rewrite this result into the unnormalized basis {wp

1 wq
2} (see

formula (2.18) in [PRS90]). We have

m(k1,k2)
2 (wp

1 wq
2, wr

1ws
2) =

(−1)k2 Rk(p, q, r, s)wp+r−k
1 wq+s−k

2
k1!k2![p + q]k1 [r + s]k2 [p + q + r + s− k + 1]k

(4.131)
where k = k1 + k2.

Later, we will observe that the holography conjecture predicts that the
Poisson vertex algebra structures constructed in this section are isomor-
phic to the Poisson vertex algebra constructed from the Deligne category.
Various tests of this conjecture will be conducted in the next chapter.



5
H O L O G R A P H Y I N
Q UA N T U M F I E L D T H E O RY

5.1 koszul duality in quantum field theory

In this section, we explore in examples the relationship between Koszul
duality and quantum field theory. As discussed in the introduction, Koszul
duality in quantum field theory arises primarily from two sources: univer-
sal defects and transversal boundary conditions. We illustrate these two
points with explicit examples.

universal defect Let us explain how universal defect relates to
Koszul duality in the simplest example: that of Chern-Simons theory with
Lie algebra g. Fields of Chern Simons theory consist of the gauge field
A ∈ Ω1(X)⊗ g. The action functional is

CS(A) =
∫

Tr(AdA +
2
3

A3), (5.1)

which is invariant under the gauge transformation

δA = dc + [c, A] (5.2)

The local operators of Chern-Simons theory are entirely generated by the
ghost, given by the Chevalley-Eilenberg (CE) dg algebra CE•(g). When cou-
pling Chern-Simons theory with topological quantum mechanics along the
Rt axis, we demonstrate that the universal defect produces the universal
enveloping algebra U(g), which is Koszul dual to CE•(g).

The most general coupling we can have involves coupling the Chern-
Simons gauge field Aa

t to local operators in the algebra, which we denote
ρa. The action functional of the coupled system take the form

CS(A) + P exp(
∫

Rt

Aa
t ρa) + S1d (5.3)

103
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We ask the action functional to be gauge invariant under the gauge trans-
formation δAa = dca + f a

bccb Ac. We find that the path ordered exponential
transforms as follows

∑
n≥1

n

∑
i=1

∫
t1≤t2≤···≤tn

Aa1
t (t1)ρ(t1) . . . (dtcai + f ai

bccb(ti)Ac(i)) . . . Aan
t (tn)ρan

(5.4)
Integrating by parts the terms with dtc picks up boundary terms, which
comes from ti colliding with other points. We find that the boundary
contribution of the term with dtc is given by

∑
n≥1

n

∑
i=1

∫
t1≤t2≤···≤tn

Aa1
t (t1)ρ(t1) . . . (−cb Ac

t ρbρc + cb Ac
t ρcρb) . . . Aan

t (tn)ρan

(5.5)
We find that the path-ordered exponential is gauge invariant if we require

ρbρc − ρcρb = f a
bcρa (5.6)

This defines the universal enveloping algebra U(g).

transversal boundary condition We consider the transversal
boundary conditions in the Poisson sigma model [Kon03, CF01]. For dif-
ferent types of Poisson tensor, we can reproduce many classical examples
of pairs of Koszul dual algebras 2.2.

In the BV formalism, the space of fields of Poisson sigma model is given
by

(Xi, ηi) ∈ Ω•(Σ)⊗ T∗[1]V (5.7)

The vector space V is equipped with a Poisson structure α = αij(x)∂i ∧ ∂j,
satisfying [α, α] = 0 under the Schouten-Nijenhuis bracket. The BV action
functional is given as follows

S =
∫

ηidXi +
1
2

αij(X)ηiηj (5.8)

The BV-BRST differential can be defined by bracketing with the BV action
Q = {S,−}. We have

QXi = dXi + αij(X)ηj

Qηi = dηi +
1
2

∂αjk

∂xi (X)ηjηk

(5.9)
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In the AKSZ formalism, this BV theory can be formulated as the following
mapping space

Maps(ΣdR, T∗[1]V) (5.10)

It is equipped with the symplectic structure induced from the Poisson
structure α.

A boundary condition is defined to be a Lagrangian of the phase space
of the theory on the boundary. We mainly consider two types of boundary
conditions, Dirichlet and Neumann boundary conditions. The Dirichlet
boundary condition is given by setting ηi = 0. It corresponds to the La-
grangian Maps(M1

dR, V) ⊂ Maps(M1
dR, T∗[1]V). The Neumann boundary

condition is given by setting X i = 0. It correspond to the Lagrangian
Maps(M1

dR, V∗[1]) ⊂ Maps(M1
dR, T∗[1]V)

Now we discuss the boundary algebras for different types of Poisson
tensor:

• For vanishing Poisson tensor, we get a free theory. Choosing Dirichlet
boundary condition set ηi = 0. The boundary algebra is generated
by the fields Xi with boundary BRST differential

QXi = dXi (5.11)

By passing to the cohomology, we see that the boundary algebra is
generated by the lowest component xi of Xi. There is no boundary
OPE and the boundary algebra is the commutative algebra Sym(V).
Choosing Neumann boundary condition set Xi = 0. We find that the
boundary algebra is given by Sym(V∗[1]), which is Koszul dual to
Sym(V).

• For a linear Poisson structure αij(x) = f ij
k xk, the condition [α, α] = 0

is equivalent to the Jacobi identity of the structure constants f ij
k . It

therefore defines a Lie algebra that we denote as g. For the Dirichlet
boundary condition, the boundary algebra is generated by xi. The
boundary algebra in this case is essentially the deformation quantiza-
tion of the Poisson algebra (Sym(g), [−,−]), which is the universal
enveloping algebra U(g) [Kon03].

For the Neumann boundary condition, the boundary algebra is
generated by ηi. There is no OPE but the algebra is equipped with a
boundary differential

dηk =
1
2

f ij
k ηiηk (5.12)

We see that this boundary algebra is the Chevalley-Eilenberg algebra
C•(g). This is another classical examples of Koszul duality pair.



5.2 twisted holography : example of b model on C3
106

• We can also consider a constant Poisson tensor. First we discuss the
Dirichlet boundary condition. The boundary algebra is the defor-
mation quantization of the Poisson algebra (Sym(V), α), and in this
case gives us the Weyl algebra.

For the Neumann boundary condition, we can observe the following
boundary anomaly

{S, S} = {
∫

ηidXi, αijηiηj} =
∫

R×R>0

αijdηiηj =
∫

R
(αijηiηj)

(1) (5.13)

It is generally inconsistent to quantize a theory when the system
exhibit an anomaly. However, at least in this example, we can define
a consistent boundary algebra because there is no possible nontrivial
OPE at all. The boundary algebra is simply the exterior algebra C[ηi],
and we need to "remember" the distinguished element αijηiηj as the
anomaly.

Recall that the anomaly measures the failure of the quantum master
equation to hold. This naturally lead us to the definition of curved
algebra, in which the Maurer-Cartan equation is modified to incor-
porate the curved element. In fact, the curved algebra (C[ηi], d =

0, c = αijηiηj) is exactly the Koszul dual of the Weyl algebra.

• For a quadratic Poisson tensor, we get two quadratic algebras for both
Dirichlet and Neumann boundary conditions. Their Koszul duality
has being studied in [Sho10]. We can also study Koszul duality
of boundary algebras for more general Poisson tensors. We expect
the Dirichlet boundary condition to give rise to the Kontsevich’s
deformation quantization. However, the Neumann boundary will
lead to A∞ algebra in general.

5.2 twisted holography : example of b model on C3

In this thesis, we study the example of twisted holography proposed in
[CG18]. This model studies the B model topological string on C3. We put
a stack of N branes at C× {0} ⊂ C3 and consider the open string theory
on the brane and closed string theory on the target C3.

The open string theory on the stack of N branes lead to the vertex
algebra of gauged βγ system defined in Section 3.5. Let us recall that it is
defined by the symplectic bosonWSYM in the Deligne category generated
by four felds c(z), Z1(z), Z2(z), b(z). The BRST charge is defined as

Q =
∮

dz Tr(: b(z)c(z)c(z) :) + Tr(: c(z)Z1(z)Z2(z) :) (5.14)
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The vertex algebra in Deligne category produces for us a (dg) vertex
algebra in vector space, defined as (A = Hom(1,WSYM), Q).

On the other hand, the B model topological string on a Calabi-Yau
threefold can be formulated as a quantum field theory called Kodaira-
Spencer gravity [BCOV94]. This theory is further studied in [CL12], where
the authors used a slight variant of this theory called BCOV theory. As
in [GV99], adding a stack of N branes wrapping C ⊂ C3 leads to a
gravitational backreaction. A non-trivial Beltrami differential is turned on,
deforming C3 into the deformed conifold SL2(C). This is the reason we
study the deformation 4.118 in Section 4.9. Perturbative quantization of
BCOV theory is studied in [CL12, CL15]. In principle, we can define the
factorization algebra (in the sense of [CG17]) that correspond to the BCOV
theory ObsBCOV .

The twisted holography conjecture predicts that the chiral algebra that
corresponds to the theory on the brane A is "Koszul dual" to the factoriza-
tion algebra of the BCOV theory ObsBCOV restricted to C

A = (ObsBCOV |C)! (5.15)

However, the above ’conjecture’ still has some issues. Although we at-
tempt to define Koszul duality for chiral algebras in Section 2 ([GLZ22]),
our definition only applies to a small class of chiral algebras called
quadratic (or quadratic-linear-scalar). It is challenging for us to understand
what the Koszul dual would be for a chiral algebra as complicated as A.
On the BCOV theory side, although in principle there exists a factorization
algebra that corresponds to the perturbative quantization of BCOV theory,
it will be very difficult to study it. An even more challenging problem is
that we need to translate the factorization algebra structure in the sense of
[CG17] to the factorization algebra in the sense of [BD04] to connect with
the chiral algebra structure of A.

To formulate a rigorous and testable conjecture, we make the following
simplifications. First, we transform the statement about Koszul duality into
a statement of isomorphism. This is achieved by applying "Koszul duality"
again to the factorization algebra of BCOV theory. As we have introduced,
by realizing the algebra along C as a boundary algebra, its Koszul dual
is given by the boundary algebra of the transversal boundary condition.
As a result, we conjecture that the large N chiral algebra is isomorphic
to this boundary algebra of the transversal boundary condition. Second,
instead of studying the full quantum theory, we consider the semiclassical
limit. This reduces the factorization algebra/chiral algebra structure on
both sides to the much more tractable vertex Poisson algebra structures.
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Recall from section 3.6 that we also defined a three parameters family
Ad,h̄,N version of the vertex algebra. After a parametrization, we defined a
Poisson vertex algebra Ad=0,λ. This is the Poisson vertex algebra on the
one side of the duality.

We also constructed various Poisson vertex algebra structure obtained
from the various construction related to the derived Laurent series. The
phase space for the BCOV theory on C3\C is given by

PV•,•
2 [[t, ∂t]][[u]] (5.16)

This complex is equipped with the differential ∂̄ + u∂ before the back-
reaction. After the back reaction, the differential deforms to ∂̄ + u∂ +

{λΩB∂t,−}. The structure of the classical field theory is encoded in the L∞

structure on it. By homotopy transfer theorem, we obtain an L∞ structure
on the cohomology H•(PV•,•

2 [[t, ∂t]][[u]], Q). By the construction in Section
4.9, the L∞ structure on the cohomology induces a vertex Poisson structure
on L− ⊂ H•(PV•,•

2 [[t, ∂t]][[u]], Q). As we have discussed in 4.8, we can
identify the dual of L− as the cyclic cohomology HC•(C[ϵ1, ϵ2, t]).

Conjecture 5.1. The Poisson vertex algebra Ad=0,λ defined in 3.6 is isomorphic
to the Poisson vertex algebra structure on HC•(C[ϵ1, ϵ2, t]) defined by the L∞

structure on the cohomology of PV•,•
2 [[t, ∂t]][[u]].

One can generalize the construction to include space filling branes in
this setup. To cancel the anomaly, we add K space filling branes and K anti
branes. On the large N chiral algebra side, we consider the new gauged
βγ system defined in Section 3.5. Recall that we have new fields I(z), J(z)
valued in CK|K ⊗ [1, 0] and its dual. A new term is added to the BRST
differential

QM =
∮

dz TrF(: I(z)c(z)J(z) :)

The string field theory of the K|K space filling brane on C3 is given by
the holomorphic Chern Simons theory valued in the Lie algebra glK|K. The
phase space for the holomorphic Chern-Simons theory on C3\C is given
by

A•
2[[t]]⊗ glK|K

We consider the BCOV theory coupled with the holomorphic Chern-
Simons theory. The coupled theory is given by the L∞ algebra

PV•,•
2 [[t, ∂t]][[u]]⊕ A•

2[[t]]⊗ glK|K

By the construction in Section 4.9, we obtain a vertex Poisson algebra
structure on the degree 1 part of it cohomology.
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Then the twisted holography conjecture predicts that the above two
vertex Poisson algebra are isomorphic.

5.3 test of the conjecture

Poisson vertex algebra from derived Laurent series

In this section, we outline the process of deriving the Poisson vertex algebra
structure from the L∞ structure defined in Section 4.7. We focus on the
case of H•(D̊2, g⊗O). Recall that we denoted L−[1] = H1(D̊2, g⊗O)) =
g[w̄1, w̄2]ΩB. First, we consider L∞ algebra before the deformation 4.118

and the Poisson structure on O(L−). We denote {Ba[n, m]} a basis of L∗−
dual to the basis { (n+m+1)!

n!m! taw̄n
1 w̄m

2 }.
As a first step, we consider the Lie bracket [−,−] on H•(D̊2, g⊗ O).

Composing with the cyclic pairing we find a map

∧2L+ ⊗ L− → C (5.17)

given by

(tawp
1 wq

2, tbwr
1ws

2,
(p + r + q + s + 1)!
(p + r)!(q + s)!

tcw̄p+r
1 w̄q+s

2 )→ f c
ab

Using the dual pairing between L+ and L−, we find that the above map
gives us a linear two form (L−)∗ ⊗ ∧2L−. This two form lead to the
following Poisson bracket

{Ba[p, q], Bb[r, s]} = f c
abBc[p + q, r + s] (5.18)

This Poisson structure onO(L−) induces a Poisson vertex algebra structure
on O(J∞L−) = C[∂nBa[p, q] | n ≥ 0, p, q ≥ 0]. Using the prescription in
[Ara12], we have

Ba[p, q](n)Bb[r, s] = δn,0 f c
abBc[p + q, r + s] (5.19)

Remark 5.2. We can also write the above structure in terms of the map
Y− : O(L−)⊗O(L−)→ O(L−)z−1[z−1]

Y−(Ba[p, q], z)Bb[r, s] =
1
z

f c
abBc[p + q, r + s] (5.20)
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We can proceed to consider the higher bracket ln. By composing with
the cyclic pairing we obtain a map

∧2L+ ⊗ Sn−2(L−)→ C (5.21)

Recall that we define the constant (mn)
p,q;r,s
u1,v1;...;un−1,vn−1 as follows

(mn)
p,q;r,s
u1,v1;...;un−1,vn−1

=

(
n−1

∏
i=1

(ui + vi + 1)!
ui!vi!

) (
wp

1 wq
2, mn(wr

1ws
2, w̄u1

1 w̄v1
2 ΩB, . . . , w̄un−1

1 w̄vn−1
2 ΩB)

)
(5.22)

By the prescription 4.102 in Section 4.7 on the L∞ structure on the tensor
product H•(D̊2,O)⊗ g, we find the following expression for the maps 5.21

(tawp
1 wq

2, tbwr
1ws

2,
(p + r + q + s + 1)!
(p + r)!(q + s)!

tcw̄p+r
1 w̄q+s

2 )

→ 1
(n− 1)! ∑

σ
∑

u1+...un−1=p+r−n+2
v1+...vn−1=q+s−n+2

∑
c1,...,cn−1

∑
σ∈Sn−1

(mn)
p,q;r,s
uσ(1),vσ(1);...;uσ(n−1),vσ(n−1)

K(ta, [...[[tb, tcσ(1) ], tcσ(2) ], ..., tcσ(n−1) ])
(5.23)

This correspond to a two form Sn−1(L−)∗ ⊗∧2L−, and gives us the follow-
ing vertex Poisson structure

Ba[p, q](m)Bb[r, s]

=
δm,0

(n− 1)! ∑
σ

∑
u1+...un−1=p+r−n+2
v1+...vn−1=q+s−n+2

∑
c1,...,cn−1

∑
σ∈Sn−1

(mn)
p,q;r,s
uσ(1),vσ(1);...;uσ(n−1),vσ(n−1)

K(ta, [...[[tb, tcσ(1) ], tcσ(2) ], ..., tcσ(n−1) ])Bc1 [u1, v1]Bc2 [u2, v2] · · · Bcn−1 [un−1, vn−1].
(5.24)

We consider the special case when n = 3, which gives

Ba[p, q](m)Bb[r, s] = δm,0 ∑
u1+u2=p+r−1
v1+v2=q+s−1

∑
c,d,e, f

K f c

×
(
(m3)

p,q;r,s
u1,v1 f e

b f f d
ae − (m3)

r,s;p,q
u1,v1 f e

a f f d
be

)
Bc[u1, v1]Bd[u2, v2].

(5.25)

where we used the shorthand (m3)
p,q;r,s
u,v := (m3)

p,q;r,s
u,v;p+r−1−u,q+s−1−v. Though

the above formula is for general Lie algebra, in the holographic setting we
need to use the Lie algebra gl(K|K) or gl(K). Strictly speaking, the bulk
anomaly of the open-closed coupled theory cancels only for the super Lie
algebra gl(K|K). Here we works with gl(K) for simplicity. The result can be
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easily generalized to gl(K|K) by taking care of the ± sign. Note that gl(K)
has a canonical basis given by the elementary matrices {Ea1a2}1≤a1,a2≤K.
Therefore we replace the indices a by a1a2 in the above formula. The Killing
form Ka1a2;b1b2 is given by

Ka1a2;b1b2 = δa1b2 δa2b1 . (5.26)

The structure constant can be extracted from the commutation relation

[Ea1a2 , Eb1b2 ] = δa2b1 Ea1b2 − δa1b2 Eb1a2 . (5.27)

Then the formula 5.24 can be expanded as

Ba1a2 [p, q](m)Bb1b2 [r, s]

= δm,0 ∑
u1+u2=p+r−1
v1+v2=q+s−1

((m3)
r,s;p,q
u1,v1 − (m3)

p,q;r,s
u1,v1 )Ba1b2 [u1, v1]Bb1a2 [u2, v2](0)

+ ∑
c

(
(m3)

p,q;r,s
u1,v1 δa1b2 Bb1c[u1, v1]Bca2 [u2, v2]

−(m3)
r,s;p,q
u1,v1 δa2b1 Ba1c[u1, v1]Bcb2 [u2, v2]

)
.

(5.28)
By computing m3 using 4.64, we find that (m3)

1,0;0,1
0,0 = − 1

2 and (m3)
0,1;1,0
0,0 =

1
2 . We find the following

Ba1a2 [1, 0](m)Bb1b2 [0, 1] = δm,0

(
Ba1b2 [0, 0]Bb1a2 [0, 0](0)

− 1
2 ∑

c
δa2b1 Ba1c[0, 0]Bcb2 [0, 0](0)− δa1b2 Bb1c[0, 0]Bca2 [0, 0](0)

)
.

(5.29)

As a more nontrivial example, we can use the formula 4.64 to compute
the following value of m3

(m3)
1,0;r,s
u,v = − r!s!(u + v + 1)!(r + s− u− v− 1)!

(r + s + 1)!u!v!(r− u)!(s− v− 1)!
,

(m3)
r,s;1,0
u,v =

r!s!(u + v)!(r + s− u− v)!
(r + s + 1)!u!v!(r− u)!(s− v− 1)!

.
(5.30)
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We obtain the following

Ba1a2 [1, 0](m)Bb1b2 [r, s]

∼δm,0 ∑
u,v

(
r + s

r

)−1(u + v
u

)(
r + s− u− v− 1

r− u

)
(

Ba1b2 [u, v]Bb1a2 [r− u, s− v− 1](0)

−1
2 ∑

c

r + s− u− v
r + s + 1

δa2b1 Ba1c[u, v]Bcb2 [r− u, s− v− 1](0)

−1
2 ∑

c

u + v + 1
r + s + 1

δa1b2 Bb1c[u, v]Bca2 [r− u, s− v− 1](0)
)

.

(5.31)

Next, we consider the Poisson vertex algebra structure that correspond
to the deformed A∞ structure on A•

2[[t]] defined in Section 4.9. The whole
collection of A∞ maps is deformed starting from the differential. Recall that
the new differential is given by D = ∑k≥1 pΩBNk h̃k−1∂k

t i on H•(D̊2,O)[[t]].
By composing with the cyclic pairing we obtain a map

L+[[t]]⊗ L+[[t]]→ C[[t]] (5.32)

Using 4.128, we find that the above map is given by

(wp
1 wq

2tn, wr
1ws

2tm) = ∑
k≥1

Nkδk,p+q+1δr,qδs,p
(−1)p p!q!
k!(k− 1)!

tn∂k
t (t

m) (5.33)

This correspond to the following Poisson vertex algebra structure

Ba[p, q](m)Bb[q, p] = δm,p+q+1Kab(−1)qNp+q+1 p!q!
(p + q)!

, (5.34)

Remark 5.3. We can also write the above structure in terms of the map Y−,
we have

Y−(Ba[p, q], z)Bb[r, s] =
Kab

zp+q+2 (−1)qNp+q+1 p!q!
(p + q)!

(5.35)

We also computed the deformation to the product structure: m′2( f1a1, f2a2) =

∑k1,k2≥0 Nk1+k2(∂k1
t f1)(∂

k2
t f2)m

(k1,k2)
2 (a1, a2), with

m(k1,k2)
2 (wp

1 wq
2, wr

1ws
2) =

(−1)k2 Rk(p, q, r, s)wp+r−k
1 wq+s−k

2
k1!k2![p + q]k1 [r + s]k2 [p + q + r + s− k + 1]k

(5.36)
where k = k1 + k2.
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To obtain the corresponding Poisson vertex algebra structure, we com-
pute the following summation

k! ∑
k1+k2=k

Rk(p, q, r, s)
k1!k2![p + q]k1 [r + s]k2 [p + q + r + s− k + 1]k

=
Rk(p, q, r, s)

[p + q]k[r + s]k
,

(5.37)

where we used the formula B.17 derived in the Appendix. We also have

(k− l)! ∑
k1+k2=k

(
k2

l

)
Rk(p, q, r, s)

k1!k2![p + q]k1 [r + s]k2 [p + q + r + s− k + 1]k

=
Rk(p, q, r, s)

l![p + q]k−l [r + s]k[p + q + r + s− 2k + l + 1]l
,

(5.38)

The above results give us

Ba[p, q](m)Bb[r, s]

= f c
ab

k

∑
l=0

δm,k−l Nk Rk(p, q, r, s)× ∂l
zBc[p + r− k, q + s− k](0)

l![p + q]k−l [r + s]k[p + q + r + s− 2k + l + 1]l
.

(5.39)

OPE from large N chiral algebra

In this section, we analyze the OPE from the large N chiral algebra de-
fined via the Deligne category. We focus on the part of the algebra that
correspond to C[t]⊗C[ϵ1,ϵ2,t] C[t] ∼= C[x1, x2, t] according to 3.66. We can
choose the following BRST representative:

E(p,q)(z) :=: IZ(i1 Zi2 . . . Zin) J : (z), p, q ∈ Z≥0

where i1, . . . , in = {
p︷ ︸︸ ︷

1, . . . , 1,

q︷ ︸︸ ︷
2, . . . , 2}. It is convenient to organize this tower

of fields into generating function. Let

Z(λ; z) := Z1(z)λ1 + Z2(z)λ2.

We define
E(n)(λ; z) =: IZ(λ)n J : (z) (5.40)

It has the expansion

E(n)(λ; z) = ∑
p+q=n

(
n
p

)
E(p,q)(z)λp

1 λ
q
2. (5.41)
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We consider different terms in the OPE between E(n)(z) and E(n′)(z′).
Firstly, we consider the constant term in the OPE. This correspond to the
full wick contraction depicted as follows

◦ • ◦ . . . • ◦ • ◦ • ◦ . . . • ◦ •

Counting loops and pole, we find that the above contraction gives the
following OPE

E(n)(λ, z)E(n′)(λ′, 0) ∼ δn,n′
Nn+1[λλ′]n

zn+2 . (5.42)

where we denote [λλ′] = λ1λ′2 − λ2λ′1. Expanding E(n)(λ, z) into the
symmetrized operator E(p,q), we find

E(p,q)(z)E(q,p)(0) ∼ (−1)qNp+q+1 p!q!
(p + q)!

1
zp+q+2 . (5.43)

Then we consider the linear terms in the OPE. We wish to organize the
results into a series of N. The first term, which is of zeroth order in N,
corresponds to a wick contraction of a single I − J pair. For example,

(IZi1 . . . J)(z)(IZj1 . . . J)(0) =
1
z

IZi1 . . . Zj1 . . . J. (5.44)

Remark 5.4. We also have the contraction (IZi1 . . . J)(IZj1 . . . J). However,
this term gives us the same combinatorial factors and poles and should be
attributed to the Lie algebra factor that we omitted.

Thus the corresponding OPE is

E(p,q)(z)E(r,s)(0) ∼ 1
z

E(p+r,q+s)(0) + . . . . (5.45)

This OPE can also be written as

E(n)(λ; z)E(n′)(λ′; 0) ∼ 1
z

n′!
(n + n′)!

(λ · ∂λ′)
nE(n+n′)(λ′; 0) + . . . (5.46)

where λ · ∂λ′ = λ1∂λ′1
+ λ2∂λ′2

.
We emphasize that there are secretly other terms in this contraction.

In fact, after the I, J contraction of the symmetrized operators, we obtain
IZ(i1 . . . Zin)Z(j1 . . . Zjn) J. This is, in general, not the symmetrized operator
IZ(i1 . . . Zin Zj1 . . . Zjn) J. However, we can always manipulate the final ex-
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pression into a sum of the symmetrized operator IZ(i1 . . . Zin Zj1 . . . Zjn) J
and other operators in the BRST representative.

For example, an I, J contraction of IZ1 J and IZ2 J is IZ1Z2 J, which
is not symmetrized. Using the BRST relation, we find that I[Z1, Z2]J is
cohomologous to I J I J. Therefore the term IZ1Z2 J is cohomologous to
IZ(1Z2) J + 1

2 I J I J. The remaining terms like I J I J are also important, and
correspond to the quadratic terms in the OPE that we will analyze later.

We also expect to find linear OPE’s of higher order in N. The part of
k-th order should correspond to a single I − J contraction together with k
adjacent Z− Z contractions.

◦ • ◦ . . . • ◦ • ◦ • ◦ . . . • ◦ •

Such a contraction produce a Nk factor and a pole 1
zk+1 . We have

Nk

zk+1 I(z)Z(λ; z)n−kZ(λ′; 0)n′−k J(0). (5.47)

By symmetrizing the Z operators, we can rewrite this OPE as follows

E(n)(λ; z)E(n′)(λ′; 0) ∼ Nk[λλ′]k

zk+1
(n′ − k)!

(n + n′ − 2k)!
(λ · ∂λ′)

n−kE(n+n′−2k)(λ′; 0) . . . ,

(5.48)
where we omitted terms with derivatives of E. Expanding the operators
into E(p,q), we can compute the constant coefficient by

k

∑
i=0

(−1)i(k
i)(

p+q−k
q−i )(r+s−k

r−i )

(p+q
p )(r+s

r )
=

Rk(p, q, r, s)
[p + q]k[r + s]k

, (5.49)

which follows from the definition 4.93 of the constant Rk(p, q, r, s). This
matches the leading term of 5.39. To obtain the coefficients of the derivative
terms, we use the planar three point function

⟨E(n)(λ, z)E(n′)(λ′, z′)E(n′′)(λ′′, z′′)⟩

=
N

n+n′+n′′
2 +1[λλ′]

n+n′−n′′
2 [λ′λ′′]

n′+n′′−n
2 [λλ′′]

n+n′′−n′
2

(z− z′)
n+n′−n′′

2 +1(z′ − z′′)
n′+n′′−n′

2 +1(z− z′′)
n+n′′−n′

2 +1
,

(5.50)
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which is computed via full planar wick contraction. Expanding this three
point function we find that

⟨E(n)(λ, z)E(n′)(λ′, z′)E(n′′)(λ′′, z′′)⟩

=
N

n+n′+n′′
2 +1[λλ′]

n+n′−n′′
2 [λ′λ′′]

n′+n′′−n
2 [λλ′′]

n+n′′−n′
2

(z− z′)
n+n′−n′′

2 +1

×∑
l≥0

( n+n′′−n′
2 + l)!

( n+n′′−n′
2 )!l!

(−1)l
(

z− z′

z′ − z′′

)l 1
(z′ − z′′)n′′+2

= ∑
l≥0

N
n+n′+n′′

2 +1[λλ′]
n+n′−n′′

2

(z− z′)
n+n′−n′′

2 −l+1

[ n+n′′−n′
2 + l]l( n′+n′′−n

2 )!
[n′′ + l + 1]ln′′!

× (λ · ∂λ′)
n+n′′−n′

2 [λ′λ′′]n
′′ ∂l

z′

l!
1

(z′ − z′′)n′′+2

(5.51)

Using the two-point function, we can extract from the above expression
the following OPE

E(n)(λ; z)E(n′)(λ′; 0) ∼
k

∑
l=0

Nk[λλ′]k

zk−l+1
[n− k + l]l(n′ − k)!

[n + n′ − 2k + l + 1]l(n + n′ − 2k)!

× (λ · ∂λ′)
n−k ∂l

z
l!

E(n+n′−2k)(λ′; 0).
(5.52)

We can check that this matches exactly with 5.39.
In the rest of this section, we consider the quadratic terms in the OPE.

Naively, we expect these terms can be produced by a wick contraction of a
single Z− Z pair

(I...Zik ...J)(z)(I...Zjl ...J)(0)

=
1
z
(IZj1 ...Zjl−1 Zik+1...J)(0)(IZi1 ...Zik−1 Zjl+1 Zj1 ...J)(0).

(5.53)

However, as we have mentioned in the last section, after a single I − J
contraction, we need to manipulate the final expression into a BRST
representative. In this process, we can trade the commutator [Z1, Z1] with
∑ Ja Ia. Therefore, OPE of the form (I . . . J)(z)(I . . . J)(0) ∼ 1

z (I . . . J)(I . . . J)
can also be generated in the single I − J wick contraction studied in the
last section.

It is a tedious work to analyze the combinatorial factor of the wick
contractions in the general situation. To simplify the discussion, we study
some special cases.
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The simplest example we can look at is the OPE of Ia1 Z1 Ja2 and Ib1 Z2 Jb2 .
A single Z− Z contraction gives us

(Ia1 Z1 Ja2)(z)(Ib1 Z2 Jb2)(0) ∼
1
z
(Ia1 Jb2)(Ib1 Ja2)(0). (5.54)

A single I − J contraction gives us

(Ia1 Z1 Ja2
)(z)(Ib1 Z2 Jb2)(0) + (Ia1 Z1 Ja2)(z)(Ib1 Z2 Jb2)(0)

∼ − 1
2z ∑

c
(δa2b1(Ia1 Jc)(Ic Jb2)(0) + δa1b2(Ib1 Jc)(Ic Ja2)),

(5.55)

where we omitted the operator IZ(1Z2) J that is analyzed in the last section.
More generally, we consider the OPE between E(1) and E(n′). A wick

contraction of a single Z− Z pair gives us

E(1)
a1a2(λ; z)E(n′)

b1b2
(λ′, 0) ∼∑

n′′

[λλ′]

z
E(n′′)

a1b2
(λ′, 0)E(n′−n′′−1)

b1a2
(λ′, 0). (5.56)

Expanding the above formula with 5.41, we find

E(1,0)
a1a2 (z)B(r,s)

b1b2
(0) ∼ 1

z ∑
u,v

(
r + s

r

)−1(u + v
u

)(
r + s− u− v− 1

r− u

)
× E(u,v)

a1b2
E(r−u,s−v−1)

b1a2
(0).

(5.57)

This matches with the first term of the boundary OPE of 5.31. To match the
remaining terms, we consider the single I − J contraction. As in previous
discussion, we use the BRST relation and find that I . . . [Z(λ), Z(λ′)] . . . J
is cohomologous to [λλ′]I . . . J I . . . J. Therefore, after dropping the sym-
metrized operator that we have discussed, we find the following OPE

E(1)
a1a2(λ; z)E(n′)

b1b2
(λ′, 0)

∼ − [λλ′]

z ∑
n′′

∑
c

(
n′ − n′′

n′ + 1
δa2b1 E(n′′)

a1c (λ′, 0)E(n′−n′′−1)
cb2

(λ′, 0)

+
n′′ + 1
n′ + 1

δa1b2 E(n′′)
b1c (λ′, 0)E(n′−n′′−1)

ca2 (λ′, 0)
)

.

(5.58)
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Expanding this formula, we find

E(1,0)
a1a2 (z)B(r,s)

b1b2
(0) ∼ −1

z ∑
u,v

∑
c

(
r + s

r

)−1(u + v
u

)(
r + s− u− v− 1

r− u

)
×
(

r + s− u− v
r + s + 1

δa2b1 E(u,v)
a1c B(r−u,s−v−1)

cb2
(0)

+
u + v + 1
r + s + 1

δa1b2 E(u,v)
b1c B(r−u,s−v−1)

ca2 (0)
)

.

(5.59)
This gives the remaining terms of the boundary OPE of 5.31.

As we have discussed, the deformed geometry will introduce deforma-
tion to the higher operations and gives us deformed interaction vertices.
We expect that the deformed quartic action I(3,k)

O corresponds to the wick
contraction of k + 1 adjacent Z− Z fields, and also the wick contraction of
a single I − J together with k adjacent Z− Z fields. It will be interesting
to explore these OPE.



A
H O M O T O P Y A L G E B R A A N D
H O M O T O P Y T R A N S F E R

Since this paper heavily uses techniques from homotopy algebra. We
briefly review this topic in this appendix. We recommend the survey
[Val14] for a detailed review.

Convention and Koszul sign rule

First, we fix the convention for our discussion. We work with Z-graded
C-vector space

V =
⊕
n∈Z

Vn. (A.1)

The grading n is related to the ghost number in physics. The degree
of an element v ∈ Vn is denoted by |v| = n, and such a v is called a
homogeneous element.

For V and W two graded vector spaces, the tensor product V ⊗W and
the Hom space Hom(V, W) has the following grading

(V ⊗W)n =
⊕

i+j=n

Vi ⊗Wj, Hom(V, W)n =
⊕

i

Hom(Vi, Wi+n).

We denote the Koszul sign braiding on tensor products to be

τV,W : V ⊗W →W ⊗V,

v⊗ w 7→ (−1)|v||w|w⊗ v.

The above sign rule induces naturally a sign rule for the action of the
symmetric group Sn on the n-th tensor product V⊗n

σ : v1 ⊗ v2 ⊗ · · · ⊗ vn → ϵ(σ, v)vσ(1) ⊗ vσ(2) ⊗ . . . vσ(n),

where ϵ(σ, v) is called the Koszul sign.
For V a Z graded vector space, we denote V[n] the degree n-shifted

space such that
V[n]m := Vn+m. (A.2)

119
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We also use the notation of suspension sV and desuspension s−1V as
follows

sV := V[1], s−1V := V[−1]. (A.3)

We can also regard s as a degree −1 linear map s : V → V[1]. For a
homogeneous a ∈ V, we have sa ∈ V[1] and |sa| = |a| − 1. Similarly, s−1

can be regarded as a degree 1 linear map, such that s−1s = ss−1 = 1.

Homotopy algebra

In this appendix, we review the definition of various homotopy algebras
including A∞, C∞ and L∞ algebras.

A∞ algebra

Definition A.1. An A∞ algebra is a graded vector space A = {An}n∈Z

with a collection of multi-linear operations

mn : A⊗n → A of degree n− 2 for all n ≥ 1, (A.4)

which satisfy the following relations:

n

∑
k=1

n−k

∑
j=0

(−1)jk+(n−j−k)mn−k+1 ◦ (id⊗j ⊗mk ⊗ id⊗n−j−k) = 0. (A.5)

Let’s demonstrate the above relations for small values of n:

1. n = 1. We have m1 ◦m1 = 0, which means that m1 is a differential
on A. We also denote d = m1.

2. n = 2. We have

dm2(x1, x2) = m2(dx1, x2) + (−1)|x1|m2(x1, dx2). (A.6)

This relation implies m1 is a derivation with respect to the binary
product m2.

3. n = 3. The relation yields

m2(m2(x1, x2), x3)−m2(x1, m2(x2, x3)) =

dm3(x1, x2, x3) + m3(dx1, x2, x3) + m3(x1, dx2, x3) + m3(x1, x2, dx3).
(A.7)

An A∞ algebra with mk = 0 for k ≥ 3 is also called a differential graded
associative (dga) algebra. For example, the tangential Cauchy-Riemann
complex (Ω0,•

b (S3), ∂̄b, ·) is a dga algebra
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There is an equivalent definition of A∞ algebra in terms of coderivation.
We introduce the reduced tensor coalgebra

T̄c(V) =
⊕
n≥1

V⊗n, (A.8)

with comultiplication given by

∆̄(v1 ⊗ v2 ⊗ · · · ⊗ vn) =
n−1

∑
i=1

(v1 ⊗ · · · ⊗ vi)⊗ (vi+1 ⊗ · · · ⊗ vn). (A.9)

Recall that a coderivation on a coalgebra (C, ∆) is a map L : C → C such
that ∆ ◦ L = (L⊗ 1 + 1⊗ L)∆.

For the (reduced) tensor coalgebra T̄c(V), a coderivation on it is com-
pletely determined by its projection pV ◦ L : T̄c(V) → T̄c(V) → V.
To see this, we first notice that pV ◦ L is given by a set of maps Lk ∈
Hom(V⊗k, V), k ≥ 1. Given this set of maps, the coderivation is uniquely
given by

L =
n

∑
i≥1

n−i

∑
j=0

1⊗j ⊗ Li ⊗ 1n−i−j. (A.10)

The structure of an A∞ algebra on A can be compactly organized into the
structure of a square zero coderivation on T̄c(sA).

Proposition A.2. The following data are equivalent

• A collection of linear maps mk : A⊗k → A of degree 2− k satisfying A∞

relation.

• A degree 1 coderivation b on T̄c(A[1]) satisfying b2 = 0.

Proof. We only sketch the proof here and refer to [GJ+90] for more details.
Given linear maps mk : A⊗k → A, we define maps bk : (sA)⊗k → sA by

bk = s ◦mk ◦ (s−1)⊗k. (A.11)

The maps bk further define a coderivation b on T̄c(A[1]) through A.10. One
can check that the requirement b2 = 0 is equivalent to the A∞ relations
A.5.

C∞ algebra In this paper, the dga algebras that we studied satisfy
additional properties of being graded commutative.

m2(a, b) = (−1)|a||b|m2(b, a). (A.12)
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Such algebras are called differential graded commutative (dgc) algebra.
The homotopy version of dgc algebra is called C∞ algebra, which we now
define.

A (p, q)-shuffle is a permutation σ ∈ Sp+q such that

σ(1) < σ(2) < · · · < σ(p), σ(p + 1) < σ(p + 2) < · · · < σ(p + q).
(A.13)

We denote by Sh(p, q) the subset of (p, q)-shuffles in Sp+q.
We have introduced the reduced tensor coalgebra T̄c(V) =

⊕
n≥1 V⊗n.

It becomes a Hopf algebra when equipped with the multiplication map
called shuffle product

sh((a1, . . . , ap)⊗ (ap+1, . . . ap+q)) = ∑
σ∈Sh(p,q)

ϵ(σ, a)(aσ−1(1), aσ−1(2), . . . aσ−1(p+q)).

(A.14)

Definition A.3. A C∞-algebra structure on a graded vector space A =

{An}n∈Z is an A∞ structure (A, {mn}n≥1) such that the set of maps {bk =

s ◦ mk ◦ (s−1)⊗k, k ≥ 1} vanish on the image of the shuffle product sh :
Tc(sA)⊗ Tc(sA)→ Tc(sA).

For example, the element sa ⊗ sb + (−1)(|a|+1)(|b|+1)sb ⊗ sa is in the
image of the shuffle product. Vanishing of b2 on this element is the same
as the graded commutativity of m2.

L∞ algebra We also introduce the notion of L∞ algebra.

Definition A.4. Let g = {gn}n∈Z be a graded vector space. An L∞ structure
on g is a collection of multi-linear maps

ln : g⊗n → g of degree n− 2 for all n ≥ 1, (A.15)

that are graded skew-symmetric:

ln(xσ−1(1), . . . , xσ−1(n)) = (−1)σϵ(σ, x)ln(x1, . . . , xn), for all σ ∈ Sn,
(A.16)

and satisfy the following relations:

n

∑
k=1

(−1)k ∑
σ∈Sh(k,n−k)

(−1)σϵ(σ, x)

ln−k−1(lk(xσ−1(1), . . . , xσ−1(k)), xσ−1(k+1), . . . , xσ−1(n)) = 0.

(A.17)

Let us analyze the defining relations for small values of n:

1. n = 1. The relation is l1 ◦ l1 = 0, which means that l1 is a differential
on g.
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2. n = 2. We have

l1(l2(x1, x2)) = l2(l1(x1), x2) + (−1)|x1|l2(x1, l1(x2)) (A.18)

which says that l1 is a derivation with respect to the binary map l2.

3. n = 3. The relations yields

l2(l2(x1, x2), x3) + (−1)(|x1|+|x2|)|x3|l2(l2(x3, x1), x2)

+ (−1)(|x2|+|x3|)|x1|l2(l2(x2, x3), x1) = l1l3(x1, x2, x3) + l3(l1(x1), x2, x3)

+ (−1)|x1|l3(x1, l1(x2), x3) + (−1)|x1|+|x2|l3(x1, x2, l1(x3)).
(A.19)

which says that l2 satisfies Jacobi identities up to homotopy given by
l3.

There is a similar characterization of L∞ algebra in terms of a coderiva-
tion. Instead of the tensor coalgebra, we consider the reduced symmetric
coalgebra S̄c(V) where

S̄c(V) =
⊕
n≥1

Symn(V).

The coproduct ∆̄ : S̄c(V)→ S̄c(V)⊗ S̄c(V) is defined by

∆̄(v1 · v2 . . . vn)

=
n−1

∑
i=1

∑
σ∈Sh(i,n−i)

ϵ(σ, v)(vσ−1(1) · vσ−1(2) . . . vσ−1(i))⊗ (vσ−1(i+1) · · · vσ−1(n)).

(A.20)
Then we have

Proposition A.5. The following data are equivalent

• A collection of linear maps lk : g⊗k → g of degree 2− k satisfying L∞

relation.

• A degree 1 coderivation Q on S̄c(g[1]) satisfying Q2 = 0.

Homological perturbation lemma

We introduce an important technical tool called the homological perturba-
tion lemma. We refer to [Cra04] for a more detailed discussion.

Let us first consider the following homotopy data of chain complexes.
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Definition A.6. A special deformation retract (SDR) from a cochain com-
plex (A, dA) to (H, dH) consists of the following data

h (A, dA)
p
⇄

i
(H, dH), (A.21)

where i, p are cochain maps and h is a degree −1 map on A, such that

i ◦ p− 1A = dA ◦ h + h ◦ dA, p ◦ i = 1H, (A.22)

and
h ◦ i = 0, p ◦ h = 0, h ◦ h = 0. (A.23)

Consider a perturbation δ to the differential on A:

d′A = dA + δ, d′2A = 0 (A.24)

The perturbation is called small if (1− δh) is invertible.

Lemma A.7. (Homological perturbation lemma) Given a SDR data as A.25 and
a small perturbation, there is a new SDR:

h (A, d′A)
p′

⇄
i′
(H, d′H) (A.25)

where the maps above are defined by

d′H = dH + p(1− δh)−1δi,

h′ = h + h(1− δh)−1δh,

p′ = p + p(1− δh)−1δh,

i′ = i + h(1− δh)−1δi.

(A.26)

The homological perturbation lemma can be regarded as a substitution
of the spectral sequence techniques, which provides explicit formulae.

Homotopy transfer

Given a dga algebra (or an A∞ algebra in general) and a chain com-
plex quasi-isomorphic to it, homotopy transfer theorem [Kad80] gives
the complex an A∞ structure. In particular, one gets an A∞ structure on
the cohomology of a dga algebra. We emphasize that there are different
approaches to construct this A∞ structure. In this appendix, we take the
approach using homological perturbation lemma [Ber14].
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Given a dga algebra (A, d, ·). Suppose we can find a SDR to its cohomol-
ogy H = H•(A)

h (A, d)
p
⇄

i
(H, dH = 0). (A.27)

Recall that the dga algebra structure on A is equivalent to a differential b
on T̄c(sA). Therefore, we first extend the above SDR to the corresponding
tensor coalgebra

Proposition A.8. The following is a SDR

Ths (T̄c(sA), Tds)
Tps

⇄
Tis

(T̄c(sH), 0), (A.28)

where the differential Tds is defined by Tds = ∑n≥1 ∑n−1
i=0 1i ⊗ (s ◦ d ◦ s−1)⊗

1n−i−1. The projection and inclusion maps are defined by Tps = ∑n≥1(s ◦ p ◦
s−1)⊗n and Tis = ∑n≥1(s ◦ i ◦ s−1)⊗n. The deformation retract is defined as

Ths = ∑
n≥1

n−1

∑
i=0

1⊗i ⊗ (s ◦ h ◦ s−1)⊗ (s ◦ i ◦ p ◦ s−1)⊗n−i−1.

The product · on the dga algebra A defined a map b2 : (sA)⊗2 → sA
and extend to a map δ : T̄c(sA)→ T̄c(sA). Together with the differential
Tds, the sum b = Tds + δ : T̄c(sA) → T̄c(sA) encode the dga algebra
structure A in the sense of Proposition A.2. Now we can regard δ as a
perturbation to the differential and apply the homological perturbation
lemma. We have the following new SDR

h′ (T̄c(sA), Tds + δ)
p′

⇄
i′
(T̄c(sH), b′). (A.29)

The homological perturbation lemma provides us a formula for all the
maps h′, p′, i′. However, only the differential bH matter to us as it encodes
the transferred A∞ structure on the cohomology H. We have

b′ = Tps ◦ (1− δ ◦ Ths)−1 ◦ δ ◦ Tis = ∑
n≥0

Tps ◦ (δ ◦ Ths)n ◦ δ ◦ Tis. (A.30)

If we further expand the above formula into components, we find the
usual tree description of the transferred A∞ structure on H. Let PBTn

be the set of planar binary rooted trees with n leaves. We consider the
following construction that assigns each T ∈ PBTn an n array operation
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mT on H. The operation mT is obtained by putting i on the leaves, m on
the vertices, h on the internal edges and p on the root. Then we consider

mn = ∑
T∈PBTn

(±)mT, (A.31)

where the (±) sign can be tracked by a careful analysis of the Koszul sign
rule in A.30.

Theorem A.9. The operations {mn}n≥2 defined on H by the formulae A.31 form
an A∞-algebra structure on H.

Moreover, the transferred A∞-algebra (H, {mn}n≥2) is A∞ quasi-isomorphic
to the dg algebra (A, dA, ·).

In the example of our study, the tangential Cauchy-Riemann complex
(Ω0,•

b (S3), ∂̄b, ·) is graded commutative. We are interested in the transferred
structure for dgc algebra. This scenario is analyzed in [ZG06]. For (A, d, ·)
a dgc algebra, if we regard it as a dga algebra, the A∞ structure constructed
by A.31 actually defines a C∞ structure.

For homotopy transfer of dg Lie algebra and L∞ algebra, a similar
result can be established. We start with a dg Lie algebra (L, d, [−,−]) and
consider the transferred structure on its cohomology g = H•(L). Suppose
we are given the following SDR

h (L, d)
p
⇄

i
(H, dH = 0). (A.32)

The tensor trick can be extended to the symmetric case

Shs (S̄c(sL), Sds)
Sps

⇄
Sis

(S̄c(sg), 0), (A.33)

where the differential Sds is defined by Sds = ∑n≥1 ∑n−1
i=0 1i ⊗ (s ◦ d ◦

s−1)⊗ 1n−i−1. The projection and inclusion maps are defined by Sps =

∑n≥1(s ◦ p ◦ s−1)⊗n and Sis = ∑n≥1(s ◦ i ◦ s−1)⊗n. The deformation retract
is defined as

Shs = ∑
n≥1

1
n! ∑

σ∈Sn

σ−1

(
n−1

∑
i=0

1⊗i ⊗ (s ◦ h ◦ s−1)⊗ (s ◦ i ◦ p ◦ s−1)⊗n−i−1

)
σ.

The Lie bracket [−,−] on L defined a map Q2 : (sL)⊗2 → sL and extend
to a map δ : S̄c(sL) → T̄c(sL). We add this differential to the above SDR
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as a perturbation. Then we have a new SDR, with a new differential on
S̄c(sg) given by the following

Q′ = Sps ◦ (1− δ ◦ Shs)−1 ◦ δ ◦ Sis = ∑
n≥0

Sps ◦ (δ ◦ Shs)n ◦ δ ◦ Sis. (A.34)

We can expand the above formula into components. This gives us the usual
tree description of the transferred L∞ structure on g. Let BTn be the set of
binary rooted trees with n leaves. In this case, we need to consider trees not
necessarily planar, which means edges can cross each other. We consider
the following construction that assigns each T ∈ BTn an n array operation
lT on H. The operation lT is obtained by putting i on the leaves, [−,−] on
the vertices, h on the internal edges and p on the root. We consider

ln = ∑
T∈BTn

(±)lT. (A.35)

Then the operations {ln}n≥2 defined an L∞-algebra structure on g. More-
over, the L∞ algebra (g, l2, l3, . . . ) is L∞ quasi-isomorphic to the dg Lie
algebra (L, d, [−,−]).



B
S O M E C O M P U TAT I O N S

b.1 product of S3
harmonic polynomials

In this section, we compute the product of two arbitrary S3 harmonics. We
first recall the formula 4.39 that decomposes a harmonic polynomial into
sum of monomials

e(j, j̄)
m = ∑

l
λ−1

j, j̄,0Cj, j̄;j+ j̄
m−l,l;me(j)

m−l ē
j̄
l , (B.1)

where

λj, j̄,k = (−1)k

√
(2j + 1)!(2 j̄ + 1)!

k!(2j + 2 j̄− k + 1)!
. (B.2)

Then we can write

M(e(j1, j̄1)
m1 , e(j2, j̄2)

m2 ) = ∑
l1,l2

λ−1
j1, j̄1,0λ−1

j2, j̄2,0Cj1, j̄1;j1+ j̄1
m1−l1,l1;m1

Cj2, j̄2;j2+ j̄2
m2−l2,l2;m2

M(e(j1)
m1−l1

ē( j̄1)
l1

, e(j2)
m2−l2

ē( j̄2)
l2

).

(B.3)
To compute M(e(j1)

m1−l1
ē( j̄1)

l1
, e(j2)

m2−l2
ē( j̄2)

l2
), we consider the product e(j1)

m1−l1
e(j2)

m2−l2

and ē( j̄1)
l1

ē( j̄2)
l2

separately. We find

M(e(j1)
m1−l1

ē( j̄1)
l1

, e(j1)
m1−l ē

( j̄1)
l2

) =

√
(2j1 + 1)(2j2 + 1)(2 j̄1 + 1)(2 j̄2 + 1)

(2j1 + 2j2 + 1)(2 j̄1 + 2 j̄2 + 1)

× Cj1,j2;j1+j2
m1−l1,m2−l2,m1+m2−l1−l2

C j̄1, j̄2; j̄1+ j̄2
l1,l2,l1+l2

M(e(j1+j2)
m1+m2−l1−l2

, ē( j̄1+ j̄2)
l1+l2

)

=∑
k

λj1+j2, j̄1+ j̄2,k

√
(2j1 + 1)(2j2 + 1)(2 j̄1 + 1)(2 j̄2 + 1)

(2j1 + 2j2 + 1)(2 j̄1 + 2 j̄2 + 1)

× Cj1,j2;j1+j2
m1−l1,m2−l2;m1+m2−l1−l2

C j̄1, j̄2; j̄1+ j̄2
l1,l2;l1+l2

Cj1+j2, j̄1+ j̄2;j1+j2+ j̄1+ j̄2−k
m1+m2−l1−l2,l1+l2;m1+m2

e(j1+j2− k
2 , j̄1+ j̄2− k

2 )
m1+m2

.
(B.4)
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Therefore

M(e(j1, j̄1)
m1 , e(j2, j̄2)

m2 ) = ∑
k

∑
l1,l2

√
(2j1 + 1)(2j2 + 1)(2 j̄1 + 1)(2 j̄2 + 1)

(2j1 + 2j2 + 1)(2 j̄1 + 2 j̄2 + 1)

× λ−1
j1, j̄1,0λ−1

j2, j̄2,0λj1+j2, j̄1+ j̄2,kCj1, j̄1;j1+ j̄1
m1−l1,l1;m1

Cj2, j̄2;j2+ j̄2
m2−l2,l2;m2

Cj1,j2;j1+j2
m1−l1,m2−l2;m1+m2−l1−l2

× C j̄1, j̄2; j̄1+ j̄2
l1,l2;l1+l2

Cj1+j2, j̄1+ j̄2;j1+j2+ j̄1+ j̄2−k
m1+m2−l1−l2,l1+l2;m1+m2

e(j1+j2− k
2 , j̄1+ j̄2− k

2 )
m1+m2

=∑
k

λ−1
j1, j̄1,0λ−1

j2, j̄2,0λj1+j2, j̄1+ j̄2,k


j1 j2 j1 + j2
j̄1 j̄2 j̄1 + j̄2

j1 + j̄1 j2 + j̄2 j1 + j2 + j̄1 + j̄2 − k


×
√
(2j1 + 1)(2j2 + 1)(2 j̄1 + 1)(2 j̄2 + 1)(2j1 + 2 j̄1 + 1)(2j2 + 2 j̄2 + 1)

×Cj1+ j̄1,j2+ j̄2;j1+j2+ j̄1+ j̄2−k
m1,m2;m1+m2

e(j1+j2− k
2 , j̄1+ j̄2− k

2 )
m1+m2

,
(B.5)

where


j1 j2 j3
j4 j5 j6
j7 j8 j9

 is the Wigner 9− j symbol.

In our study of the higher product on the CR cohomology, a constantly

appearing computation is the product of the form M(e(j1− i
2 , j̄1− i

2 )
m1 , ē( j̄2)

m2 ).
One can use the above general formula to compute this. Here, we derive
an alternative formula that is more succinct. The key is that we use a

variation of 4.39 to expand the harmonics polynomial e(j1− i
2 , j̄1− i

2 )
m1

e(j1− i
2 , j̄1− i

2 )
m1 = ∑

l
λ−1

j1, j̄1,iC
j1, j̄1;j1+ j̄1−i
m1−l,l;m1

e(j1)
m1−l ē

( j̄1)
l . (B.6)

Using this, we find

M(e(j1− i
2 , j̄1− i

2 )
m1 , ē( j̄2)

m2 ) = ∑
l

λ−1
j1, j̄1,i

√
(2 j̄1 + 1)(2 j̄2 + 1)
(2 j̄1 + 2 j̄2 + 1)

× Cj1, j̄1;j1+ j̄1−i
m1−l,l;m1

C j̄1, j̄2; j̄1+ j̄2
l,m2;l+m2

M(e(j1)
m1−l , ē( j̄1+ j̄2)

l+m2
)

= ∑
k≥0

∑
l

λ−1
j1, j̄1,iλj1, j̄1+ j̄2;k

√
(2 j̄1 + 1)(2 j̄2 + 1)
(2 j̄1 + 2 j̄2 + 1)

× Cj1, j̄1;j1+ j̄1−i
m1−l,l;m1

C j̄1, j̄2; j̄1+ j̄2
l,m2;l+m2

Cj1, j̄1+ j̄2;j1+ j̄1+ j̄2−k
m1−l,m2+l;m1+m2

e(j1− k
2 , j̄1+ j̄2− k

2 )
m1+m2

= ∑
k≥0

(−1)2(j1+ j̄1+ j̄2)−kλ−1
j1, j̄1,iλj1, j̄1+ j̄2;k

√
(2 j̄1 + 1)(2 j̄2 + 1)(2j1 + 2 j̄1 − 2i + 1)

×
{

j̄1 j1 j1 + j̄1 − i
j1 + j̄1 + j̄2 − k j̄2 j̄1 + j̄2

}
Cj1+ j̄1−i, j̄2;j1+ j̄1+ j̄2−k

m1,m2;m1+m2
e(j1− k

2 , j̄1+ j̄2− k
2 )

m1+m2
.

(B.7)
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Though we write the summation range as k ≥ 0, the Wigner 6j symbol
actually constraint it such that k ≥ i and k ≤ min{2j1, 2 j̄1 + 2 j̄2}.

b.2 some identities involving pochhammer symbols

In this appendix, we review some identities involving Pochhammer sym-
bols that are used in the calculation of holography chiral algebra. In the
main text, we introduced the descending Pochhammer symbols

[a]n := a(a− 1) . . . (a− n + 1) =
(a)!

(a− n)!
. (B.8)

We also introduce the ascending Pochhammer symbol

(a)(n) := a(a + 1) . . . (a + n− 1) =
(a + n− 1)!
(a− 1)!

. (B.9)

The descending and ascending Pochhammer symbols are related to one
another by

(a)(n) = [a + n− 1]n. (B.10)

The hypergeometric function 2F1 is defined as a power series using the
ascending Pochhammer symbol

2F1(a, b, c, z) =
∞

∑
i=0

(a)(i)(b)(i)

(c)(i)
1
i!

zi. (B.11)

The series terminates if either a or b is a nonpositive integer, in which case
the function reduces to a polynomial:

2F1(−k, b, c, z) =
k

∑
i=0

(−1)i
(

k
i

)
(b)(i)

(c)(i)
zi. (B.12)

The following result is important in obtaining various generalizations of
the Chu–Vandermonde’s identity.

Proposition B.1 ([FPW12]). For any k ≥ 1, x, y ∈ R+, and a, b > 0, we have

k

∑
i=0

(
k
i

)
xiyn−i(a)(i)(b)(n−i) = yk(a + b)(k) 2F1(−k, a, a + b, 1− x

y
). (B.13)

Taking x, y = 1 in the above formula we obtain the Chu–Vandermonde’s
identity

k

∑
i=0

(
n
i

)
(a)(i)(b)(k−i) = (a + b)(k). (B.14)
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Corollary B.2.

n

∑
i=l

(
i
l

)(
k
i

)
(a)(i)(b)(k−i) =

(
k
l

)
(a + b)(k)

(a + b)(l)
(a)(l). (B.15)

Proof. Letting x → 1 + x, y→ 1 in the formula B.13, we obtain the follow-
ing

k

∑
i=0

(
k
i

)
(1 + x)i(a)(i)(b)(k−i) = (a + b)(k) 2F1(−n, a, a + b,−x). (B.16)

Expanding both side into a series of x we obtain the formula B.15.

Corollary B.3. We have the following identity

k

∑
i=0

(
k
i

)
1

[a]i[b]k−i
=

[a + b− k + 1]k
[a]k[b]k

. (B.17)

Proof.

k

∑
i=0

(
k
i

)
1

[a]i[b]k−i
=

k

∑
i=0

(
k
i

)
(a− k + k− i)!(b− k + i)!

a!b!

=
k

∑
i=0

(
k
i

)
(a− k + 1)(k−i)(a− k)!(b− k + 1)(i)(b− k)!

a!b!

= (a + b− 2k + 2)(k)
(a− k)!(b− k)!

a!b!

=
[a + b− k + 1]k

[a]k[b]k
,

(B.18)
where we used the Chu–Vandermonde’s identity B.14 in the third line.

Corollary B.4. We have the following identity

k

∑
i=l

(
i
l

)(
k
i

)
1

[a]i[b]k−i
=

(
k
l

)
[a + b− k + 1]k

[a]k−l [b]k[a + b− 2k + l + 1]l
. (B.19)
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Proof.

k

∑
i=l

(
i
l

)(
k
i

)
1

[a]i[b]k−i
=

k

∑
i=l

(
k
i

)(
i
l

)
(a− k + 1)(k−i)(a− k)!(b− k + 1)(i)(b− k)!

a!b!

=

(
k
l

)
(a− k)!(b− k)!

a!b!
(a + b− 2k + 2)(k)

(a + b− 2k + 2)(l)
(a− k + 1)(l)

=

(
k
l

)
[a + b− k + 1]k

[a]k−l [b]k[a + b− 2k + l + 1]l
.

(B.20)
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