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Abstract: The Feistel structure represents a fundamental architectural component within

the domain of symmetric cryptographic algorithms, with a substantial body of research

conducted within the context of classical computing environments. Nevertheless, re-

search into specific symmetric cryptographic algorithms utilizing the Feistel structure is

relatively scarce in quantum computing environments. This paper, for the first time, pro-

poses a five-round distinguisher for Camellia under the quantum chosen-ciphertext attack

(qCCA) setting, with its effectiveness empirically validated. Additionally, by combining

Grover’s algorithm and Simon’s algorithm, we construct a nine-round key-recovery attack

model against Camellia. Through an in-depth analysis of Camellia’s key expansion algo-

rithm, we significantly reduce the complexity of the key-recovery attack. The proposed

attack achieves a time complexity of 261.5 for recovering the correct key bits and requires

531 quantum bits.

Keywords: Feistel cipher; quantum chosen-ciphertext attacks; Grover’s algorithm; Simon’s

algorithm; Camellia

MSC: 94A60; 81P94; 68Q12; 68W40; 68P25

1. Introduction

Quantum computing has the potential to address problems that are intractable for

classical computing, particularly in the field of cryptanalysis. For certain complex problems,

such as large-scale search or the identification of specific structures, the computational

complexity on classical computers often grows exponentially. In contrast, quantum com-

puting leverages quantum superposition and quantum parallelism to significantly improve

computational efficiency. For example, Shor’s quantum algorithm [1] can break the classi-

cal RSA public-key encryption system in polynomial time, while Grover’s algorithm [2]

reduces the time complexity of unstructured database search from the classical O(2n) to the

quantum O(2n/2), posing a direct threat to the key search process of symmetric encryption

algorithms. Similarly, Simon’s algorithm [3] can effectively break cryptographic schemes

with specific structural properties by identifying the periodicity of certain functions. In

addition, recent studies in the field of quantum computing have demonstrated that its

applications have expanded to advanced domains such as secure communication and

machine learning. For example, Zhou et al. [4] proposed a multi-party semi-quantum

private comparison protocol based on d-dimensional GHZ states, which highlights signifi-

cant advancements in leveraging quantum technology for privacy protection. Similarly,

Akrom’s review [5] of quantum support-vector machines underscores the advantages of
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quantum computing in machine learning. These findings indicate that quantum computing

is developing at a rapid pace and has emerged as a powerful tool for the field of cryptogra-

phy. Thus, employing quantum algorithms to analyze the security of symmetric encryption

algorithms is not only a critical approach to evaluating their resistance to quantum attacks

but also provides valuable insights into the potential threats quantum computing poses to

modern cryptography.

Until 2010, quantum attacks on symmetric ciphers were not considered a significant

threat. However, when Kuwakado and others [6] first introduced a polynomial distin-

guisher for a three-round Feistel cipher under a quantum chosen-plaintext attack (qCPA)

setting, this perspective changed. Since then, various quantum attacks on symmetric

ciphers have been developed.

Zhandry [7], Kaplan [8], and others have proposed two different models for the

quantum cryptanalysis of symmetric ciphers:

Standard Security (Q1 Model): A block cipher is standard secure against quantum

adversaries if no efficient quantum algorithm can distinguish the block cipher from pseu-

dorandom permutation (PRP or a PRF) by making only classical queries.

Quantum Security (Q2 Model): A block cipher is deemed quantum secure against

quantum adversaries if no efficient quantum algorithm can distinguish the block cipher

from PRP (or a PRF) even by making quantum queries.

This paper assumes that the attackers belong to the Q2 model. Recent studies have an-

alyzed the security of symmetric ciphers under this model. In 2012, Kuwakado et al. [9]

studied the quantum security of the EM cipher under the Q2 model, utilizing Simon’s

algorithm to construct an efficient distinguisher under the qCPA setting, thereby prov-

ing that the quantum version of the EM cipher is not secure. Subsequently, in 2015,

Dinur et al. [10] combined meet-in-the-middle and partitioning attacks to enhance attacks

on Feistel structures of more than four rounds. In 2016, Kaplan [11] utilized Simon’s al-

gorithm to break CBC-MAC, PMAC, and other symmetric cipher systems in polynomial

time, demonstrating that Simon’s algorithm could be used for slide attacks, providing

exponential acceleration. Leander et al. [12] in 2017 first combined Grover’s algorithm

with Simon’s algorithm to construct a quantum attack framework, which was later applied

to the analysis of FX structures. Since then, the Grover-meets-Simon algorithm has been

extensively utilized by numerous scholars in the quantum analysis of symmetric ciphers.

Following Kaplan et al.’s [11] development of quantum slide attacks, Hosoyamada and

colleagues [13] in 2019 expanded upon these techniques, introducing a related-key attack

on the EM cipher structure and presenting a two-round key-recovery attack on the EM

cipher structure.

Dong et al. [14] combined Grover’s algorithm and Simon’s algorithm to introduce

a new quantum key-recovery attack on Feistel structures with varying rounds. In 2019,

Ito [15] and others proposed a novel distinguisher for Feistel structures under a quantum-

chosen ciphertext attack (qCCA) setting. This distinguisher can differentiate, in polynomial

time, between four-round Feistel-F and Feistel-KF constructions and six-round Feistel-FK

structures from random permutations. Subsequently, quantum key-recovery attacks for

r-round Feistel-KF and Feistel-FK structures were performed, achieving key-recovery in

O(2
(r−4)n

4 ) and O(2
(r−6)n

4 ) time, respectively. In the same year, Dong et al. [16] conducted

a study on quantum distinguisher and key recovery attacks for two generalized Feistel

structure (GFS) algorithms. They constructed 2d − 1 rounds of quantum distinguisher

against d-branch Type-1 GFS and 2d+ 1 rounds of quantum distinguisher against 2d-branch

Type-2 GFS. Using these quantum distinguishers, key-recovery attacks were conducted on

the Type-1 and Type-2 GFS ciphers over d2 − d + 2 and 4d rounds, respectively, with time

complexities of O(2
( 1

2d2 − 3
2d +2)· n

2 ) and O(2
d2n

2 ).
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Ito et al. [17] also designed a polynomial-level quantum distinguisher under the

qCPA setting for 3d − 3 round configurations of Type-1 GFS, along with a d2 − d + 1 round

version under the qCCA setting. Based on these distinguishers, key-recovery attacks were

performed on r-round Type-1 GFS ciphers, with complexities of O(2

(

d2

2 − 3d
2 +2

)

· k
2+

(r−d2)k

2 )

and O(2
(r−(d2−d+1))k

2 ).

Ni et al. [18] introduce a 3d − 3 rounds of quantum distinguisher on Type-1 GFS

under the Q2 model and also investigate quantum attacks against the CAST-256 block

cipher. In 2020, Cid et al. [19] demonstrated a qCPA on contracting Feistel struc-

tures and studied related-key attacks on balanced Feistel structures. That same year,

Hodzic et al. [20], based on Simon’s algorithm, developed a construction for seven-round

and eight-round quantum distinguishers for generalized Feistel structures under the qCPA

setting. In 2021, Li et al. [21] examined the round functions and linear transformation P

of Camellia, presenting a five-round quantum distinguisher and, under the qCPA setting,

proposed a seven-round Camellia algorithm key-recovery attack with a complexity of 224.

Cui et al. [22] initially defined weakly periodic functions, thereby extending the

application scope of Simon’s algorithm and further constructing several variant Feistel

structure distinguishers. They proposed quantum key-recovery attacks for Feistel variants.

In 2022, Canale et al. [23] provided an automated periodic function search algorithm

under a quantum computing model, implementing key-recovery attacks for the five-round

Feistel-FK structure. In 2023, Xu et al. [24], based on the divisibility of branch output

functions, proposed quantum attacks on two types of GFS under the qCPA setting. They

constructed quantum distinguishers for an 8-round 4F and a 5-round 2F under the Q2

model, conducting 12-round and 7-round quantum key-recovery attacks, respectively.

Additionally, they constructed a six-round 2F quantum distinguisher on a weak divisibility

basis, performing an eight-round quantum key-recovery attack.

In the same year, Sun et al. [25] studied the security of Type-1 generalized Feistel

structures, constructing a quantum distinguisher for a d-branch d2 − 1 round Type-1 GFS

structure under the qCCA setting. Furthermore, under the qCPA setting for the Type-1

block cipher CAST-256, they introduced a 17-round quantum distinguisher and constructed

a quantum key-recovery attack with a complexity of O(2
37(r−17)

2 ).

The rapid advancement of quantum computing has necessitated the development and

evaluation of post-quantum cryptographic (PQC) schemes to ensure secure communication

in the quantum era. Recent studies have highlighted both the practical applications and

potential vulnerabilities of PQC. For instance, Aslam et al. [26] proposed a quantum-

resilient blockchain-enabled secure communication framework for connected autonomous

vehicles, demonstrating the applicability of PQC in real-world IoT scenarios. Similarly,

Sim et al. [27] investigated the side-channel vulnerabilities of lattice-based cryptographic

schemes, particularly CRYSTALS-KYBER, and introduced a chosen-ciphertext clustering

attack by leveraging the side-channel leakage of Barrett reduction. Their attack achieved a

100% success rate in recovering secret keys on ARM Cortex-M4 microcontrollers. These

findings underscore the dual necessity of ensuring mathematical robustness and address-

ing side-channel resistance in PQC implementations, especially in resource-constrained

environments such as IoT devices.

Based on the findings of prior research, it is apparent that studies conducted under

the qCCA model remain inadequate, and numerous aspects remain unexplored. Studies

demonstrate that numerous schemes proven secure under qCPA can be compromised

by quantum algorithms like Simon’s algorithm in qCCA settings. More significantly, the

NIST Post-Quantum Cryptography Standardization Project has adopted the Q2 model

(i.e., qCCA security) as a core evaluation criterion. Consequently, analysis under qCCA
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conditions constitutes an essential benchmark for assessing the quantum security of block

cipher algorithms.

The paper presents a five-round distinguisher for Camellia algorithm [28] under the

qCCA setting. This is achieved by studying the round function and the characteristics of

the key scheduling algorithm. Additionally, a key recovery attack model is proposed, and

the complexity of nine rounds of Camellia recovery key under the quantum computing

model is analyzed using the distinguisher.

2. Preliminaries

2.1. Notation and Acronyms

The notations used in this paper and their explanations are presented in Table 1.

List of the acronyms and their definitions used in this paper in Table 2.

Table 1. Notations and Their Definitions.

Symbol Description

Xi Output on the left side of the i-th round in the Feistel structure
Xi−1 Output on the right side of the i-th round in the Feistel structure
Fi Round function of the i-th round in the Feistel structure
ki Round key for the i-th round
<<< Circular left shift operation
>>> Circular right shift operation
ki,j The j-th byte of the round key for the i-th round
Si S-box substitution in the round function of the i-th round
∩ Logical AND operation
∪ Logical OR operation

Table 2. Acronyms and their definitions.

Acronym Definition

IoT Internet of Things
qCPA Quantum Chosen-Plaintext Attack
qCCA Quantum Chosen-Ciphertext Attack
GFS Generalized Feistel Structure
SP Substitution–Permutation Network
PQC Post-Quantum Cryptographic

2.2. Brief Description of Camellia Algorithm

The Camellia algorithm [28], jointly designed by NTT and Mitsubishi Electric in 2000,

is known for its high security and efficient performance on both hardware and software

platforms. It was selected as a winning algorithm in the European NESSIE project in 2003,

recommended in Japan’s CRYPTREC initiative the same year, became an IETF standard in

2004, and adopted as an ISO/IEC standard in 2005.

Camellia is based on a Feistel structure with a block length of 128 bits and supports

key lengths of 128, 192, and 256 bits, corresponding to 18, 24, and 32 rounds, respectively.

2.2.1. Camellia Encryption Transformation

The encryption transformation of Camellia involves differing initial and final whiten-

ing keys, with FL/FL−1 functions inserted every six rounds. For the 128-bit key version, the

process consists of three six-round Feistel structures and two rounds of FL/FL−1 functions.

Below, Camellia with a 128-bit key is described in Figure 1.
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Figure 1. Encryption process of Camellia.

The plaintext M is 128 bits, the whitening key kwi(1 ≤ i ≤ 4) is 64 bits, and the round

key ki(1 ≤ i ≤ 18) is 64 bits. The key kli(1 ≤ i ≤ 4) utilized in each FL/FL−1 function

is 32 bits, and the final output ciphertext C is 128 bits. The specific encryption process is

as follows:

(1) Plaintext Whitening

A 128-bit plaintext M undergoes an XOR operation with the whitening key kw1∥kw2,

resulting in two parts: the left 64 bits X−1 and the right 64 bits X0, such that

M ⊕ (kw1∥kw2) = X−1∥X0.

(2) Round Iteration

For each round of the Feistel structure, let Xi denote the left output of the i-th round,

and Xi−1 denote the right output of the i-th round. For i = 1, 2, . . . , 18, excluding

i = 6 and i = 12, the i-th round transformation is performed as follows:

Xi = Xi−2 ⊕ F(Xi−1, ki) (1)

For i = 6, 12, the transformation is as follows:

X′
i = Xi−2 ⊕ F(Xi−1, ki) Xi = FL

(

X′
i, kli/3−1

)

Xi−1 = FL−1(Xi−1, kli/3) (2)

(3) Pre-whitening of ciphertext output

The final round output X18∥X17 is XORed with the whitening keys kw3∥kw4, produc-

ing the whitened ciphertext C = (X18∥X17)⊕ (kw3∥kw4).

The FL and FL−1 transformations are defined as follows:

FL : F64
2 → F64

2 ,

(XL∥XR, klL∥klR) 7→ YL∥YR,

YR = ((XL ∩ klL) ≪ 1)⊕ XR, YL = (YR ∪ klR)⊕ XL

FL−1 : F64
2 → F64

2 ,

(YL∥YR, klR∥klL) 7→ XL∥XR,

XL = (YR ∪ klR)⊕ YL, XR = ((XL ∩ klL) ≪ 1)⊕ YR.

(3)

where ∩ represents bitwise logical “AND” operation; ∪ represents bitwise logical “OR”

operation. In the Feistel structure, the function F during step (2) utilizes an SP structure

design that incorporates round key XOR operations, S-box lookups, and the permutation P.
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The final output of function F is formed by the outputs of eight S-boxes after undergoing

the permutation P, as depicted in Figure 2. The specific steps involved are outlined below:

(1) Round Key XOR

A 64-bit input is divided into eight bytes. Each byte is then XORed with a correspond-

ing round key byte before proceeding to the next step.

(2) S-Box Lookup

The XORed bytes sequentially query eight S-boxes in the order of s1, s2, s3, s4, s2, s3, s4, s1.

(3) Permutation P

The output from the S-boxes undergoes a linear transformation, described as follows.

y1 = x1 ⊕ x3 ⊕ x4 ⊕ x6 ⊕ x7 ⊕ x8; y5 = x1 ⊕ x2 ⊕ x6 ⊕ x7 ⊕ x8

y2 = x1 ⊕ x2 ⊕ x4 ⊕ x5 ⊕ x7 ⊕ x8; y6 = x2 ⊕ x3 ⊕ x5 ⊕ x7 ⊕ x8

y3 = x1 ⊕ x2 ⊕ x3 ⊕ x5 ⊕ x6 ⊕ x8; y7 = x3 ⊕ x4 ⊕ x5 ⊕ x6 ⊕ x8

y4 = x2 ⊕ x3 ⊕ x4 ⊕ x5 ⊕ x6 ⊕ x7; y8 = x1 ⊕ x4 ⊕ x5 ⊕ x6 ⊕ x7

(4)

The final output order is (y8, y7, y6, y5, y4, y3, y2, y1). The diffusion layer P and its

inverse P−1 have the following coefficient matrices:

P =





























0 1 1 1 1 0 0 1

1 0 1 1 1 1 0 0

1 1 0 1 0 1 1 0

1 1 1 0 0 0 1 1

0 1 1 1 1 1 1 0

1 0 1 1 0 1 1 1

1 1 0 1 1 0 1 1

1 1 1 0 1 1 0 1





























, P−1 =





























1 1 1 0 1 0 0 1

0 1 1 1 1 1 0 0

1 0 1 1 0 1 1 0

1 1 0 1 0 0 1 1

0 1 1 1 0 1 1 1

1 0 1 1 1 0 1 1

1 1 0 1 1 1 0 1

1 1 1 0 1 1 1 0





























(5)

s1

s3

s4

s2

s3

s4

s1

s2

ki8

ki7

ki6

ki5

ki4

ki3

ki2

ki1

s1
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s2
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s4

s1
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ki8
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ki6

ki5

ki4

ki3

ki2
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Figure 2. The round function of Camellia.

2.2.2. Key Expansion Algorithm

The round keys used in the encryption process are generated from a 256-bit initial

key kL(128)∥kR(128). Initially, kL(128)∥kR(128) is input into the Feistel structure with round

constants Σ1, Σ2, Σ3, Σ4, Σ5, Σ6. After four rounds, 128-bit kA(128) is generated, and after
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six rounds, 128-bit kB(128) is produced. The structure of the algorithm is shown in Figure 3.

The six round constants involved in generating kA(128) and kB(128) are:

Σ1 = 0xA09E667F3BCC908B

Σ2 = 0xB67AE8584CAA73B2

Σ3 = 0xC6EF372FE94F82BE

Σ4 = 0x54FF53A5F1D26F1C

Σ5 = 0x10E527FADE682D1D

Σ6 = 0xB05688C2B3E6C1FD

(6)

F

F

F

F

F

F

kL(128) kR(128)

kA(128) kB(128)

1


2


4


5


6


kL(128)       kL(128)kL(128)       kL(128)

F

F

F

F

F

F

kL(128) kR(128)

kA(128) kB(128)

1


2


4


5


6


kL(128)       kL(128)

3

Figure 3. The key expansion algorithm of Camellia.

In the 128-bit version of the master key, the 256-bit initial key is defined as:

kL(128)

∥

∥

∥
kR(128) = k

∥

∥

∥
0. The round keys for each round are derived by shift transforma-

tions of the initial key KL and KA, as summarized in Table 3.

Table 3. Wheel keys for each wheel.

Round
Round
Key

Round Key Value Round
Round
Key

Round Key Value

Pre-whitening kw1(64) (kL <<< 0)L(64) F (Round10) k10(64) (kL <<< 60)R(64)

Pre-whitening kw2(64) (kL <<< 0)R(64) F (Round11) k11(64) (kA <<< 60)L(64)

F (Round1) k1(64) (kA <<< 0)L(64) F (Round12) k12(64) (kA <<< 60)R(64)

F (Round2) k2(64) (kA <<< 0)R(64) FL kl3(64) (kL <<< 77)L(64)

F (Round3) k3(64) (kL <<< 15)L(64) FL−1 kl4(64) (kL <<< 77)R(64)

F (Round4) k4(64) (kL <<< 15)R(64) F (Round13) k13(64) (kL <<< 94)L(64)

F (Round5) k5(64) (kA <<< 15)L(64) F (Round14) k14(64) (kL <<< 94)R(64)

F (Round6) k6(64) (kA <<< 15)R(64) F (Round15) k15(64) (kA <<< 94)L(64)

FL kl1(64) (kA <<< 30)L(64) F (Round16) k16(64) (kA <<< 94)R(64)

FL−1 kl2(64) (kA <<< 30)R(64) F (Round17) k17(64) (kL <<< 111)L(64)

F (Round7) k7(64) (kL <<< 45)L(64) F (Round18) k18(64) (kL <<< 111)R(64)

F (Round8) k8(64) (kL <<< 45)R(64) Post-whitening kw3(64) (kA <<< 111)L(64)

F (Round9) k9(64) (kA <<< 45)L(64) Post-whitening kw4(64) (kA <<< 111)R(64)

2.3. Related Algorithms

In this section, we offer a concise overview of classical quantum algorithms, specifically

Simon’s algorithm, Grover’s algorithm, and the Grover-meets-Simon algorithm.

2.3.1. Simon’s Algorithm

Given a Boolean function f : {0, 1}n → {0, 1}n, which is guaranteed to satisfy

f (x) = f (y) ⇔ x ⊕ y ∈ {0, s}, it means the function has a period s and we need

to find s. Classically, the optimal time to find period s is O
(

2n/2
)

. Nevertheless,
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Simon [3] introduced an algorithm that significantly expedites this process, requiring

only O(n) queries to determine s. This algorithm comprises the following five steps:

(1) Initialize two n-bit quantum registers in state |0⟩⊗n|0⟩⊗n and apply the Hadamard

transform to the first register to obtain the corresponding superposition state.

H⊗n|0⟩|0⟩ = 1√
2n ∑

x∈{0,1}n

|x⟩|0⟩ (7)

(2) Conduct a quantum query on function f and map it to the current state.

1√
2n ∑

x∈{0,1}n

|x⟩| f (x)⟩ (8)

(3) Measure the second register, reducing the first register to the following state:

1√
2
(|z⟩+ |z ⊕ s⟩) (9)

(4) Apply the Hadamard transform to the first register to obtain

1√
2

1√
2n ∑

y∈{0,1}n

(−1)y·z(1 + (−1)y·s)|y⟩ (10)

(5) In this superposition state, the amplitudes corresponding to y · s = 1 are zero. As

a result, for any measurement of y, it is always true that y · s = 0. By iterating this

process O(n) times, a set of linear equations can be constructed. Solving this system

of equations results in determining the value of s.

At ISIT2010, Kuwawkado et al. [6] presented a quantum distinguishing attack on a

three-round Feistel cipher constructed using Simon’s algorithm. As illustrated in Figure 4,

α0 and α1 are arbitrary constants.

f : {0, 1} × {0, 1}n → {0, 1}n

b, x → αb ⊕ X2, (X3, X2) = E(αb, x)

f (b, x) = F2(F1(αb)⊕ x)

(11)

Let f be a periodic function satisfying f (b, x) = f (b ⊕ 1, x ⊕ F1(α0)⊕ F1(α1)). Subse-

quently, the period s = 1∥F1(α0)⊕ F1(α1) can be obtained in polynomial time by employing

Simon’s algorithm.

F2 F3

x

bX0

X-1
X2X1 X3

F1

f

Figure 4. The periodic function of 3-round Feistel structure under qCPA setting.

2.3.2. Grover’s Algorithm

When dealing with an unordered set of N = 2n elements, Grover’s algorithm [2] is

employed to pinpoint a unique element that fulfills certain criteria. Specifically, a quantum

oracle O is used, which performs the operation O|x⟩ = (−1) f (x)|x⟩, where f (x) = 0 for all

x except x0 within the range 0 ≤ x < 2n, and f (x0) = 1. The goal is to determine x0. The

most efficient classical algorithm for searching this unordered data has a time complexity
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of O(N). However, Grover’s algorithm, executed on a quantum computer, dramatically

reduces this to merely O(
√

N) operations. The algorithm proceeds as follows:

(1) Initialize an n-bit register |0⟩⊗n and apply the Hadamard transform to the first register

to achieve the corresponding superposition state, as shown in Equation (12):

H⊗n|0⟩ = 1√
2n ∑

x∈{0,1}n

|x⟩ = |ϕ⟩ (12)

(2) Construct a quantum oracle O : |x⟩ → (−1) f (x)|x⟩, if x is the correct state, then

f (x) = 1 ; otherwise, f (x) = 0.

(3) Define the Grover iteration: (2|ϕ⟩⟨ϕ| − I)O, and iterate this operation R ≈ π
√

2n/4

times:

[(2|ϕ⟩⟨ϕ| − I)O]R|ϕ⟩ ≈ |x0⟩ (13)

(4) Return x0.

2.3.3. Grover-Meets-Simon

During the 2017 ASIACRYPT conference, Leander et al. [12] presented a quantum

key recovery attack approach that integrates Grover’s algorithm with Simon’s algorithm,

specifically targeting the FX structure, depicted in Figure 5. The FX structure fulfills the

given equation:

Enc(x) = Ek0
(x + k1) + k2 (14)

m

k1 k2

cEk0

Figure 5. The structure of FX.

Reference [12] constructs the function f (k, x) = Enc(x)+Ek(x) = Ek0
(x + k1)+ k2 +Ek(x).

When the correct key guess k = k0, it holds that f (k, x) = f (k, x + k1). However, for k ≠ k0,

the function is not periodic. Under the qCPA setting, Reference [10] employs a combination of

Simon’s algorithm and Grover’s algorithm to attack the FX structure.

Based on the work of Leander [12], Hosoyamada et al. [29] and Dong et al. [14] added

a few rounds behind the three-round Feistel structured distinguisher shown in Figure 4

for recovering the keys of the Feistel encryption algorithm for the r rounds, with a time

complexity of O
(

2(r−3)n/2
)

.

3. Construction of Periodic Functions

This chapter presents a brief description of the periodic function of four-round Feistel

structure proposed by ITO et al. [15]. Additionally, a periodic function for the Camellia

algorithm is constructed and verified to be correct.

3.1. The Periodic Function of Four-Round Feistel Structure

At RSA 2019, Ito et al. introduced the design of periodic functions for a four-round

Feistel cipher. They developed a quantum distinguisher and presented a key recovery

attack against the Feistel structure. We will now describe the method for constructing a

periodic function for a four-round Feistel structure, as proposed in Reference [15]. Figure 6

illustrates the structure of the periodic function.
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0 ||f x（ ）

1F 2F
3F 4F 4F 3F

2F



0 1 
d

1F


x

Figure 6. The periodic function of 4-round Feistel structure.

The four-round Feistel-F encryption structure is denoted as FF4, and its corresponding

decryption structure is represented by FF−1
4 . The round functions of Feistel-F are signified

by F1, . . . , F4 ∈ Func ( n/2 ). The plaintext input (a, b) ∈
(

{0, 1}n/2
)2

to FF4, which outputs

the ciphertext (c, d) ∈
(

{0, 1}n/2
)2

. The encryption structure (a, b) 7→ (c, d) is defined

as follows:

c = a ⊕ F1(b)⊕ F3(b ⊕ F2(a ⊕ F1(b)))

d = b ⊕ F2(a ⊕ F1(b))⊕ F4(a ⊕ F1(b)⊕ F3(b ⊕ F2(a ⊕ F1(b))))
(15)

The decryption structure (c, d) 7→ (a, b) is defined as follow:

a = c ⊕ F3(d ⊕ F4(c))⊕ F1(d ⊕ F4(c)⊕ F2(c ⊕ F3(d ⊕ F4(c))))

b = d ⊕ F4(c)⊕ F2(c ⊕ F3(d ⊕ F4(c)))
(16)

For the input plaintext
(

αβ, x
)

, the encryption and decryption structures can be fur-

ther simplified.The simplified structure is depicted in Figure 7. The function f o(β∥x) is

described as:

f o(β∥x) = α0 ⊕ α1 ⊕ F2

(

x ⊕ F1

(

αβ

))

⊕ F2

(

x ⊕ F1

(

αβ

)

⊕ F3

(

αβ ⊕ F2

(

x ⊕ F1

(

αβ

)))

⊕F3

(

αβ ⊕ α0 ⊕ α1 ⊕ F2

(

x ⊕ F1

(

αβ

))))
(17)

Theorem 1. Define Z(β∥x) = F1

(

αβ

)

⊕ x. Then, Z(β∥x) is a periodic function with a period

s = 1∥(F1(α0)⊕ F1(α1)).

Proof of Theorem 1. Z((β∥x)⊕s) = x ⊕ F1(α0) ⊕ F1(α1) ⊕ F1

(

α(β⊕1)

)

= x ⊕ F1

(

αβ

)

=

Z(β∥x).

It is straightforward to demonstrate that Z(β∥x) is a periodic function. The output

function f ◦(β∥x) can be described as follows:

f o(β∥x) = α0 ⊕ α1 ⊕ F2

(

Zβ∥x

)

⊕ F2

(

Zβ∥x ⊕ F3

(

α0 ⊕ F2

(

Zβ∥x

))

⊕ F3

(

α1 ⊕ F2

(

Zβ∥x

)))

(18)

It can be deduced that f o(β∥x) is a periodic function with a period of s.

0 ||f x（ ）

1F 2F 2F
3F 3F





x

||xZ

0 1 

Figure 7. The equivalent structure of 4-round Feistel structure periodic function.

3.2. Construction of Periodic Functions for Camellia

In this section, we aim to construct a periodic function for Camellia, leveraging the

periodic function construction methods outlined in the preceding section. To commence,

we construct the five-round periodic function structure as illustrated in Figure 8.
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0 ||f x（ ）
(0000 00 0)

0000 00 0)P x(

0

'X2X 3X 4X 5X

1F 2F
3F 4F 4F

3F
2F

（0 00 0000）

5F 5F
1F

0X

1X − 1X 1

'X2

'X
3

'X

Figure 8. The construction of Camellia’s periodic function.

In the illustrated structure, F5 and F1 do not participate in the construction of

the periodic function f o(β∥x), thus the structure can be further simplified as shown

in Figure 9.

0 ||f x（ ）

(0000 00 0)

0000 00 0)P x(

0

'X
3

'X

0X

2X 3X 4X

1F 2F
3F 4F 4F 3F

2F

（0 00 0000）

1X −
1X

2

'X 1

'X

Figure 9. The quivalent structure of Camellia periodic function.

Let the inputs for the two branches be
(

000000αβ0
)

and P(000000x0), where 0 repre-

sents a sequence of eight zero bits. The variables αβ and x are both byte variables, both

of which are located at the sixth byte. Byte indexing starts at 0 in this article. The input

P(000000x0) is obtained from (000000x0) through a permutation P.

After the first round function transformation, we obtain the output X1 as

X1 = F1(X0)⊕ X−1 = F1

(

000000αβ0
)

⊕ P(000000x0) = P(000000 ∗ 0) (19)

where ∗ = s1

(

αβ

)

⊕ x, si is the s transformation of the i-th round function. Given the

characteristics of Camellia algorithm’s P permutation matrix, we obtain the output X2 as:

X2 = F2(X1)⊕ X0 = P(00∆∆∆∆∆0)⊕
(

000000αβ0
)

(20)

Within this structure, each symbol ∆ is distinct and consists solely of bytes related to ∗.

The output obtained above continues to participate in the round function operation, and

we can obtain the subsequent output as shown in the following equations:

X3 = X1 ⊕ F3(X2) = P(000000 ∗ 0)⊕ F3

(

P(00∆∆∆∆∆0)⊕
(

000000αβ0
))

= P(000000 ∗ 0)⊕ F3

(

(∆∆∆∆∆∆∆∆)⊕
(

000000αβ0
))

= P(000000 ∗ 0)⊕ F3(∆∆∆∆∆∆?∆)

= P(000000 ∗ 0)⊕ P(∆∆∆∆∆∆?∆)

= P(∆∆∆∆∆∆?∆)

(21)

The symbol ? is used to indicate a byte where the periodicity of the function cannot

be determined.

X4 = F4(X3)⊕ X2 = F4(P(∆∆∆∆∆∆?∆))⊕ P(00∆∆∆∆∆0)⊕
(

000000αβ0
)

= F4(∆∆?????∆)⊕ P(00∆∆∆∆∆0)⊕
(

000000αβ0
)

(22)

X′
2 = F4(X3 ⊕ (0α000000))⊕ X4 = F4((∆∆?????∆)⊕ (0α000000))⊕ X4

= P
(

∆α′?????∆
)

⊕ P(∆∆?????∆)⊕ P(00∆∆∆∆∆0)⊕
(

000000αβ0
)

= P
(

∆α′∆∆∆∆∆∆
)

⊕
(

000000αβ0
)

(23)
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X′
1 = F3

(

X′
2

)

⊕ X′
3 = P(∆∆∆∆∆∆?∆)⊕ X3 ⊕ (0α000000) = P(∆∆∆∆∆∆?∆) (24)

X′
0 = X′

2 ⊕ F2

(

X′
1

)

= P
(

∆α′∆∆∆∆∆∆
)

⊕
(

000000αβ0
)

⊕ S2P(P(∆∆∆∆∆∆?∆)) (25)

Performing the P−1 operation on both sides of the above equation, we obtain:

P−1X′
0 =

(

∆α′∆∆∆∆∆∆
)

⊕ P−1
(

000000αβ0
)

⊕ S2(∆∆?????∆)

=
(

∆α′∆∆∆∆∆∆
)

⊕
(

00αβαβαβαβ0αβ

)

⊕ (∆∆?????∆)

= (∆∆??????)

(26)

As derived above, the 0 th and first bytes of P−1X′
0 relate only to the variable ∗; thus

they can be used to construct a periodic function. Define the output byte P−1(X′
0)1 as the

function f o(β, x), i.e., f o(β, x) =
(

P−1(X′
0)1

)

. The theorem states the following:

Theorem 2. The period of the function f o(β, x) is s = 1∥s1(α0)⊕ s1(α1).

f o(β, x) = f o(β ⊕ 1, x ⊕ s1(α0)⊕ s1(α1))

Proof of Theorem 2. When β = 0, for f o(β∥x), ∗ = s(α0) ⊕ x = s(α0⊕1) ⊕ x ⊕ s(α0) ⊕
s(α1) = s(α0)⊕ x. Since the value of f o(β∥x) relates only to ∗, it follows that f o(0∥x) =

f o(0 ⊕ 1∥x ⊕ s(α0)⊕ s(α1)).

When β = 1, for f o(β∥x), ∗ = s(α1) ⊕ x = s(α1⊕1) ⊕ x ⊕ s(α0) ⊕ s(α1) =

s(α1) ⊕ x. Since the value of f o(β∥x) relates only to ∗, it follows that f o(1∥x) =

f o(1 ⊕ 1∥x ⊕ s(α0)⊕ s(α1)).

It can be demonstrated that the function f o(β∥x) exhibits periodicity. In accordance

with Theorem 2 of the study [15], a distinguisher against the five-round Camellia can be

constructed using the function f o(β∥x).

During the research process, we attempted to construct distinguishers with a higher

number of rounds. However, distinguishers exceeding five rounds could not be theoreti-

cally verified for their correctness. Based on the method proposed in this paper, we consider

the five-round distinguisher to be an appropriate choice. On the other hand, the five-round

distinguisher offers a balance between complexity and theoretical verifiability, making it

the most suitable choice based on the method proposed in this paper. This selection ensures

that the distinguisher is both practical to implement and theoretically sound, which is

critical for the reliability of our approach.

3.3. Experimental Validation

In this subsection, we conducted targeted experiments to validate the correctness

of the periodic functions developed in the preceding section. In accordance with the

Camellia algorithm criteria outlined in the literature [28], we have constructed the five-

round periodic function structure presented in Section 3.2 on the Python 3.7 environment.

Our primary aim was to verify the equation f ◦(β, x) = f ◦(β ⊕ 1, x ⊕ s1(α0)⊕ s1(α1)). We

conducted correctness verification by setting different input parameters. Based on a local

computer, we selected 232 sets of distinct parameter data for periodicity testing, all of which

confirmed the correctness of the periodic. As illustrated in Figure 10, the periodic function

is demonstrated to be correct with a specific set of data.

The input plaintext group data are
(

000000αβ0
)

, P(000000x0), where x = (00000000),

α0 = (00000000), and α1 = (00000001). When β = 0, for f ◦(β, x), the plaintext input

comprises solely zeros. The output for the first byte, denoted as
(

P−1
)

X′
0, is (01101100).
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For f ◦(β ⊕ 1, x ⊕ s1(α0)⊕ s1(α1)), the plaintext group data is updated to (0000000α1),

P(000000x⊕ s1(α0)⊕ s1(α1)0 ), and remarkably, the output for the first byte, again denoted

as
(

P−1
)

X′
0, remains unchanged at (01101100).

Given the experimental verification outlined above, Theorem 1 is confirmed to be accurate.

Figure 10. Experimental result.

4. The Attack Model for Camellia

This section presents a key-recovery attack model for the Camellia algorithm under

the qCCA setting, leveraging the five-round distinguisher proposed in Section 3.2. Here is

an outline of our attack methodology:

1. Implement a nine-round encryption oracle, denoted as E , and decrypt the input of

the periodic function fin over two rounds. The resulting intermediate value after the

two rounds and the subkeys for the two rounds as the input to the circuit E . Then, the

output of E undergoes two rounds of decryption and is XORed with a constant.

2. Implement a quantum circuit D that computes the inverse of E . Encrypt the results

from the previous step over two rounds, inputting the intermediate value along with

subkeys into the circuit D. Subsequently, encrypt D’s output over two rounds to

acquire the periodic function output fout.

3. Guess the keys for the two rounds preceding and succeeding the quantum circuits E
and D.

4. For each key guess, check its correctness with the following procedure.

(1) Apply the five-round distinguisher to E and D.

(2) If the distinguisher returns “this is a random permutation”, then judge that

the guess is wrong. Otherwise, judge that the guess is correct.

Nine-Round Key-Recovery Attack on Camellia

A nine-round key-recovery attack is performed using the established attack model, as

shown in Figure 11. The periodic function input fin is
[

P(000000x0),
(

000000αβ0
)]

, with

the output fout being P−1((X7)1). To decrypt fin through two rounds and retrieve the

plaintext, the keys K1 and K2,{2,3,4,5,7} need to be guessed. Subsequently, the ciphertext is

obtained after nine rounds of encryption by the oracle. In addition, the keys to be guessed

for the decryption of the ciphertext for two rounds are K9,{0,3,4,5,6} and K8,7. After xOR

the obtained intermediate state with the constant [(00000000), (0α000000)], it needs to

guess the keys K8,7 and K9,{0,3,5,6,7} to encrypt for two rounds to obtain the ciphertext. The

plaintext is then obtained by nine rounds of decryption oracle. Finally, the keys K1 and K2,1

must be guessed in order to encrypt the plaintext for two rounds, thereby obtaining the

output fout.

Due to the characteristics of Camellia’s key scheduling, where round keys for F

(Round 1), F (Round 2), and F (Round 9) are derived from cyclic shifts of KA, many

key bits are repeated. We guess all key bits for Round 1 and bytes 1–5, 7 for Round 2.

Round 9 requires guesses for 0 and 3–7 bytes of the key, with 45 bits being repetitions. As

shown in Figure 12, the orange portion of the figure indicates the three-bit non-repeating

key positions that must be guessed in Round 9. Thus, the actual key bits to guess are

KA[0–63], KA[72–111],[120–127], KL[37–44], KA[69,70,71], totaling 64+ 48 + 8 + 3 = 123 bits.
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0000 00αβ0

P(0000 00x0)

decrypt

2-r

Guess K2/K1 Guess K9/K8 Guess K9/K8

0α00 0000

Guess K1/K2

X7

fin

fout=(P-1
)(X7)1

encrypt

9-r

decrypt

2-r

encrypt

2-r

decrypt

9-r

encrypt

2-r

Figure 11. The key-recovery attack model of Camellia.

r Key Bit Position

1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

2
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

n …

9
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76

77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108

Notes:Yellow parts represent duplicated key bits in the key schedule.

Orange parts indicate non-duplicated key bits in the round.

Figure 12. Camellia round key duplicate bits.

Define g : F64
2 × F48

2 × F8
2 × F32

2 × F
(8+1)
2 → F8

2 satisfying (KA[0–63], KA[72–119],

KL[37–44], KA[69,70,71], y) → f (y), where y = f o(β, x). If the key guess is correct, the fol-

lowing holds true:

g
(

KA[0–63], KA[72–119], KL[37–44], KA[69,70,71], y
)

=

g
(

KA[0–63], KA[72–119], KL[37–44], KA[69,70,71], y ⊕ s
) (27)

If fin → fout is a periodic function, then the period of this function can be determined

by inputting it into Simon’s algorithm. The guess is correct; otherwise, the guess is incorrect.

As outlined in the literature [12], the formula for the number of quantum bits required

for a key recovery attack is as follows:

sum = nk + nin × l + nout × l, l = 2(ñ +
√

n) (28)

where sum represents the total number of quantum bits required, nk the length of

the key, nin the input length of the periodic function, nout the output length of

the periodic function, and ñ the length of the period. For Camellia’s guessed keys

KA[0–63], KA[72–119], KL[37–44], KA[69, 70, 71], we have that:

nk = 64 + 48 + 8 + 3 = 123, nin = 8 + 1 = 9, ñ = 8 + 1 = 9

nout = 8, l = 2(9 +
√

9) = 24, sum = 123 + 9 × 24 + 8 × 24 = 531
(29)

The whole attack needs 123+ 9× 2(9+
√

9) + 8× 2(9+
√

9) = 531 qubits. According

to the methods described in References [14,16], the proof is provided as follows: Given an

accurate guess of the key:

(K1, K2,{1,2,3,4,5,6}, K8,7K9,[69,70,71]) (30)

it holds that:

g(K1, K2,{1,2,3,4,5,6}, K8,7K9,[69,70,71], y) = g(K1, K2,{1,2,3,4,5,6}, K8,7K9,[69,70,71], y ⊕ s). (31)

Let the h be defined as:
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h : F123
2 × F

(8+1)×24
2 → F8×24

2

(K1, K2,{1,2,3,4,5,6}, K8,7, K9,[69,70,71], y1, . . . , y24)

→ g(K1, K2,{1,2,3,4,5,6}, K8,7, K9,[69,70,71], y1) || . . . ||
g(K1, K2,{1,2,3,4,5,6}, K8,7, K9,[69,70,71], y24).

(32)

where || denotes concatenation.

The constructed quantum gate Uh satisfies the following mapping:

|K1, K2,{1,2,3,4,5,6}, K8,7, K9,[69,70,71], y1, . . . , y24, 0, . . . , 0⟩
→ |K1, K2,{1,2,3,4,5,6}, K8,7, K9,[69,70,71], y1, . . . , y24,

h(K1, K2,{1,2,3,4,5,6}, K8,7, K9,[69,70,71], y1, . . . , y24))⟩.
(33)

By constructing a quantum algorithm A, we achieve a key recovery attack on the

Camellia algorithm. The algorithm begins by initializing 531 qubits, all set to the initial

state |0⟩. Among these qubits, the first 123 + 8 + 1 × 24 = 339 qubits undergo a Hadamard

transform H⊗339, resulting in the following uniform superposition:

∑
k1∈F64

2 ,k2∈F48
2 ,k8∈F8

2 ,k9∈F3
2 ,y1,...,y24∈F8+1

2

|k1, k2, k8,7, k9⟩|y1 . . . y24⟩|0⟩ (34)

In the proof, k1 represents the full key for the first round, k2 represents K2,{1,2,3,4,5,6}, k8

represents K8,7, k9 represents K9,[69,70,71], and y1, . . . , y24 are auxiliary qubits. The amplitude

of this quantum state, which can be ignored, is given by:

2−(123+(8+1)×24)/2 = 2−339/2. (35)

Next, the superposition state is processed through the Uh, resulting in the

following state:

∑
k1∈F64

2 , k2∈F48
2 , k8∈F8

2 , k9∈F3
2 , y1,...,y24∈F8+1

2

|k1, k2, k8,7, k9⟩|y1 . . . y24⟩|h(k1, k2, k8,7, k9, y1, . . . , y24)⟩ (36)

To extract periodic information, a Hadamard transform is applied again to the

|y1 . . . y24⟩ register, resulting in the following superposition:

|φ⟩ = ∑
k1∈F64

2 , k2∈F48
2 , k8∈F8

2 , k9∈F3
2 , y1,...,y24∈F8+1

2

|k1, k2, k8,7, k9⟩ (−1)⟨u1,y1⟩|u1⟩ . . . (−1)⟨u24,y24⟩|u24⟩

|h(k1, k2, k8,7, k9, y1, . . . , y24)⟩
(37)

If the guessed key (k1, k2, k8, k9) is correct, the period s will be orthogonal to

u1, . . . , u24 upon measuring |φ⟩. According to Lemma 4 from Reference [12], choosing

l = 2 × (8 + 1 + 8 + 1) = 24 ensures that the period s can be computed.

The classification of the quantum state is performed using a classifier B, defined

as B : F
123+(8+1)×24
2 → {0, 1}. The classifier operates as follows. First, it checks the

dimension of

Ū = Span(|u1, . . . , u24⟩). (38)

If dim(Ū) ̸= 24, the classifier outputs 0. Otherwise, the unique period s is computed

using Lemma 4 from Reference [12]. For any given y, the classifier verifies the equality:

g(k1, k2, k8, k9, y) = g(k1, k2, k8, k9, y ⊕ s). (39)
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If this equality holds, the classifier outputs 1; otherwise, it outputs 0. The classifier B

divides the quantum state |φ⟩ into the “good” subspace |φ1⟩ and the “bad” subspace |φ0⟩,
such that:

|φ⟩ = |φ1⟩+ |φ0⟩. (40)

Here, |φ1⟩ represents the projection onto the “good” subspace, while |φ0⟩ represents

the projection onto the “bad” subspace. The “good” subspace satisfies B = 1. Furthermore,

the classifier defines a unitary operator SB, which acts as follows:

|k1, k2, k8, k9⟩|y1 . . . y24⟩ →







−|k1, k2, k8, k9⟩|y1 . . . y24⟩, if B = 1,

|k1, k2, k8,7, k9⟩|y1 . . . y24⟩, if B = 0.
(41)

Grover’s algorithm is then applied to amplify the probability of the classifier out-

putting 1. For the initial state |φ⟩ = A|0⟩, the angle to the “bad” subspace is θ, where:

sin2(θ) = p ≈ 2−61.5. (42)

Using Grover’s algorithm, the following iterative operator is applied:

Q = −AS0 A−1SB. (43)

The number of iterations required is:

t = ⌈π/(4θ)⌉ = ⌈π/(4 × 2−61.5)⌉ = 261.5. (44)

After these iterations, the final state is almost orthogonal to the “bad” subspace, and

the probability of measuring a “good” state approaches 1. The entire attack requires

531 qubits, including 123 qubits for storing the key, 9 qubits for the input to the periodic

function, 8 qubits for the periodic function’s output, and additional qubits for periodic

computation. The time complexity of the attack is:

T = O(261.5). (45)

This approach successfully achieves a key recovery attack on the Camellia algorithm.

The comparison between the work presented in this paper and other methods is shown

in Table 4.

Table 4. Comparison with other attack methods.

Reference Target Cipher
Attack
Model

Attack Type
Rounds of Key

Recovery
Time Complexity

Quantum Resources
(Qubits)

[30] Luby–Rackoff qCPA Distinguishing attack 4 O(2n/12) N/A
[15] Feistel-F qCCA Distinguishing attack 4 Polynomial O(n) N/A
[21] Camellia qCPA Key recovery attack 7 O(224) 456 qubits
[31] MARS-like (4 branches) qCCA Key recovery attack 9 O(22n) N/A
This work Camellia qCCA Key recovery attack 9 O(261.5) 531 qubits

5. Conslusions and Future Work

Reference [15]studied the quantum distinguisher for a four-round Feistel structure

under the Q2 model but did not consider the internal structure of the algorithm. The

contribution of this paper is the first construction of a quantum key-recovery attack against

Camellia under the qCCA model. Specifically, based on the round function and key

scheduling features of Camellia, we propose a five-round qCCA distinguisher. Subse-

quently, leveraging this distinguisher, we present a nine-round quantum key-recovery

attack based on the Grover-meets-Simon algorithm, achieving a time complexity of 261.5.
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Compared to previous quantum analyses of Camellia, our attack demonstrates better

performance and makes a significant contribution to the study of the quantum security

of block cipher algorithms. The ability of symmetric cryptographic algorithms to resist

quantum attacks is garnering increasing attention. In addition to conducting quantum

security analyses of existing symmetric cryptographic algorithms, researchers are also

considering quantum security as a critical criterion in proposing new symmetric cryp-

tographic designs. Future research will focus on constructing quantum distinguishers

with an increased number of rounds under quantum computing models. Furthermore, by

exploring quantum algorithms, the time complexity of quantum key-recovery attacks may

be further reduced. Additionally, the effectiveness of symmetric cryptographic structural

schemes against quantum attacks will be further investigated.
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