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Abstract. Scalar fields have been widely used in cosmology during the last three decades, but
it is until now that we have been able to fully understand their role as possible major matter
components for the evolution of the Universe. Here we briefly present recent studies on scalar
fields that show how their intrinsic properties are translated into observables related to the
process of structure formation. In the first case, we consider a massive scalar field as a dark
matter component, and present the corresponding mass power spectrum. It is confirmed that
one of the distinctive features of the model is the suppression of structure at small cosmological
scales. In the second case, we describe a generic method to find inflationary solutions without
the need to be specific about the scalar potential. The method shows that single-field models of
inflation can be classified in two groups according to their predictions of inflationary observables.

1. Introduction
What we actually call the standard model of Cosmology is a phenomenological description of
the physics that seems to be at play to reproduce the observed Universe. The predictions of
such model are in strikingly good agreement with a variety of observational constraints, and it
is because of this reason that it is the fiducial model used in present and future observational
forecasts. The model is also known as the ΛCDM model, for the initials of its main matter
components: the cosmological constant Λ and Cold Dark Matter (CDM). The core of the model
is based on a spatially-flat expanding Universe whose gravitational dynamics is governed by
the equations of motion of General Relativity; in addition, the seeds of structure formation are
Gaussian distributed adiabatic fluctuations with an almost scale-invariant spectrum[1].

One major concern in the present literature is the understanding of the formation of
cosmological structure, and one principal matter component in this process is the CDM. The
latter is as simple as it gets: a pressureless fluid of particles that have no direct, weak at most,
interaction with other matter fluids apart from the gravitational one. These two basic properties
are enough to provide a complex picture of structure formation through hierarchical assembling
that fits data at different scales[2, 3].

Apart from the CDM component, the ΛCDM model also needs to set up the appropriate initial
conditions so that the formation of structure can start as required by present observations of the
distribution of galaxies. Such initial conditions, which we refer above as the seeds of structure
formation, must have been produced by some separate process in the early Universe. It is
because of this that the idea of inflation, which refers to an accelerated stage in the very early
Universe, remains as one of the cornerstone ideas of modern Cosmology[4, 5, 6].

In this paper we will present the case of a scalar field as a model for dark matter and
inflation. This is possible because of the flexible behavior that scalar fields exhibit within
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different cosmological settings (see for instance[7]). The results that will be presented in Secs. 2
and 3 below are part of recent studies on scalar fields[8, 9], with the aim to extract from
them useful features that may help us to understand the subtleties behind the formation of
cosmological structure.

2. Scalar field as dark matter
Here we present the equations of motion that must be solved in order to find the general
behavior of cosmological scalar fields. For that, we shall consider the same features as that
of the ΛCDM model: a spatially-flat Universe populated with standard matter fluids such as:
radiation, neutrinos, baryons, and a cosmological constant Λ as the dark energy component. In
addition, we consider a scalar field φ endowed with a generic potential V (φ), its Lagrangian
density given by Lφ = −(1/2)(∂φ)2 − V (φ).

If we use ρI and pI to denote the energy density and pressure, respectively, for each matter
fluid in the model apart from the scalar field, the full equations of motion for the background
dynamics are:

H2 =

(
ȧ

a

)2

=
κ2

3

[∑
I

ρI +
1

2
φ̇2 + V (φ)

]
, Ḣ = −κ

2

2

[∑
I

(ρI + pI) + 2φ̇2
]
, (1)

ρ̇I = −3H(ρI + pI) , φ̈ = −3Hφ̇− ∂φV , (2)

where κ2 = 8πG, a dot denotes derivative with respect to cosmic time t, and H = ȧ/a is the
Hubble parameter, with a the scale factor of the Universe.

In order to go beyond the background dynamics, we must take another step and calculate
the linear perturbations to the background quantities; in this way, we will be able to study
the influence of the scalar field on, for instance, the evolution of the CMB anisotropies.
For that, we assume the synchronous gauge of metric perturbations with the line element
ds2 = −dt2 + a2(t)(δij + hij)dx

idxj . The scalar field is given by φ(x, t) = φ(t) + ϕ(x, t), where
φ(t) is the background (homogeneous) field in Eqs. (1) to (2), and ϕ is its linear perturbation.
Thus, the linearized KG equation for a Fourier mode ϕ(k, t) reads[10, 11, 12, 13]:

ϕ̈ = −3Hϕ̇− (k2/a2 + ∂2φV )ϕ− 1

2
φ̇ḣ , (3)

where h is the trace of scalar metric perturbations (with ḣ known as the metric continuity), and
k is a comoving wavenumber.

We now apply the formalism above to the particular case of a scalar field as a dark matter
component. For that, we need to consider a massive scalar field, and then the potential is:

V (φ) = (1/2)m2φ2 , (4)

where m is the mass scale of the scalar field. Other potentials have been considered in the
literature, but their common feature is that they all can be approximated by the functional
form (4), see for instance[14, 15, 16, 17].

The expected behavior at late times of the scalar field, under the influence of the quadratic
potential (4), is that of rapid oscillations around the minimum of the potential located at φ = 0.
This is well known as a problematic regime which prevents an accurate solution of the scalar
field equations of motion. However, as shown with more details in[8], such troublesome regime
can be avoided by an appropriate change to polar variables for both the background and linear
perturbations. Actually, it was in[8] that an accurate calculation of the full cosmological solutions
was presented for the first time.
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Figure 1. Mass power spectrum of scalar field density contrast calculated from the solution
of Eq. (3) for the linear perturbation ϕ. The different colored lines denote the resultant power
spectrum for different values, in units of eV, of the scalar field mass m (see Eq. (4)). We
also show the case of the standard cosmological model ΛCDM (black solid line). The most
prominent feature of the scalar field MPS is the sudden cut-off of the spectrum for large values
of the wavenumber k, which means the suppression of cosmological structure at small scales.

As an example of the distinctive features of a scalar field as dark matter we present in figure 1
the mass power spectrum (MPS) of scalar field linear perturbations. The MPS was calculated
with an amended version of the Boltzmann code CLASS[18] (the details of the amendments
can be found in[8]). The most salient feature of the scalar field MPS is the sudden cut-off that
appears for large values of the wavenumber k (here in units of Mpc−1), which is interpreted
as the suppression of cosmological structure at small scales L < 1 Mpc. The wavenumber at
which the suppression starts is mainly determined by the scalar field mass m: the cosmological
structure is suppressed at larger scales for smaller values of the scalar field mass, although the
effect is only noticeable for masses m < 10−20eV.

3. Scalar fields as inflation
In the case of inflationary models with a single scalar field, the equations of motion can be
simplified because of the assumption that the scalar field is the only matter field present in the
early Universe. Another simplification is that we do not need to solve the equations of motion
for linear perturbations, as there already exist general results for the features of the primordial
perturbations that only require input from the dynamics in the background[4, 5, 6, 19].

Thus, the only equations we have to solve are:

H2 =
κ2

3

[
1

2
φ̇2 + V (φ)

]
, Ḣ = −κ2φ̇2 , φ̈ = −3Hφ̇− ∂φV . (5)

In order to have a more manageable system of differential equations, we now apply a polar
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change of variables in the form:

κφ̇√
6H

= sin(θ/2) ,
κV 1/2

√
3H

= cos(θ/2) , y1 = −2
√

2
∂φV

1/2

H
, y2 = −4

√
3

κ

∂2φV
1/2

H
. (6)

Thus, after straightforward manipulations, Eqs. (5) finally become:

θ′ = −3 sin θ + y1 , (7)

y′1 =
3

2
(1− cos θ) y1 + sin(θ/2)y2 , (8)

where a prime denotes a derivative with respect to the number of e-folds of expansion N ≡ ln(a).
In principle, we would also require an equation of motion for the second potential variable y2, but
we will show that this is not strictly necessary for the description of the inflationary solutions.

In any given inflationary setting, we expect the scalar field to change slowly from a potential
(V (φ)� φ̇2) to a kinetic dominated phase (V (φ)� φ̇2). This is also called de Sitter inflation,
as the first part of the inflationary state is similar to that produced by a cosmological constant.
Such change in the behavior of the scalar field can be parametrised more precisely in terms of
the scalar field equation of state (EoS) wφ, which is defined as:

wφ =
1
2 φ̇

2 − V (φ)
1
2 φ̇

2 + V (φ)
= − cos θ , (9)

where the last expression on the rhs of Eq. (9) appears from the polar change of variables (6).
Hence, in terms of the EoS, the inflationary phase is represented by wφ : −1→ 1; actually, it

is only required that wφ : −1→ −1/3 to span an accelerating phase. The latter can be written

in terms of the angular variable as θ : 0 → θend, where θend = arccos(1/3) = 2 arcsin(1/
√

3) '
1.2309 . . .. This suggests that we can try a series solution of Eq. (8) with the following ansatz
for the potential variable y1:

y1 =
∑
j=1

k1jθ
j , (10)

where k1j are all constant coefficients. Once with the values of k1j at hand we can make an
expansion of Eq. (7) in the form:

θ′ = (k11 − 3)θ + k12θ
2 + (k13 + 1/2)θ3 + . . . . (11)

Eq. (11) can then be solved at any order to provide a solution: θN = θN (k1j , θend, N), where
the subscript N denotes the number of e-foldings before the end of inflation.

For the calculation of inflationary quantities, we choose the so-called Hubble slow-roll (HSR)
variables[20], under which various inflationary observables can be written in terms of the so-
called HSR parameters εH and ηH . For instance, the spectral index nS and the tensor-to-scalar
ratio r, are given at first order in the HSR parameters as:

1− nS = 4εH − 2ηH = 12 sin2(θ/2)− 6 + y1 cot(θ/2) , (12)

r = 16εH = 48 sin2(θ/2) , (13)

where the last expressions on the rhs appear from the change of polar variables (6). Taking into
account the expansions (10), Eqs. (13) can be written alternatively as:

1− nS ' 2(k11 − 3) + 2k12θN + (2k13 − k11/6 + 3)θ2N , r ' 12θ2N . (14)
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In principle, Eqs. (11) and (14) is all what we need to find the values of the inflationary
observables nS and r, once the values of the expansion coefficients k1j have been determined
by other means. There is indeed a systematic, though a bit cumbersome, procedure to find the
values of k1j for any scalar field potential V (φ), the details of which can be found in[9].

One remarkable result of the above method is that de Sitter inflation in single-field models
can be comprised in two general classes, which we called Class I and Class II, irrespective of the
particular form of the scalar field potential V (φ). The key parameter for the new classification
of inflationary models is the coefficient k12. In the large N limit of the two classes we end up
with only two typical behaviors in the solutions, namely[9]: θN ∼ N−1/2 (k12 = 0: Class I),
or θN ∼ N−1 (k12 6= 0: Class II), which in turn suggest that either r ∼ N−1, or r ∼ N−2,
respectively, even though 1 − nS ∼ N−1 at the leading order in N for the two classes. Such
classification of inflationary solutions was suggested before in[21, 22, 23], but the method in[9]
is the first to give a general explanation of its existence.

To finish this section, we show in figures 2 and 3 the generic predictions for the observables
nS and r of the two classes of inflationary solutions, for N = 60, which is a typical number or
e-folds before the end of inflation. It can be seen that it is Class I, rather than Class II, the one
set of models that can provide a good fit to the observational data[9].
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Figure 2. General results on the plane nS
vs r for the Class I of single field models of
inflation, for different values of the coefficients
k11 and k13. The plots show the results for
N = 60. Notice that Class I is not completely
ruled out by observations, mostly because it
can provide low enough values of the tensor-
to-scalar ratio r. The predictions from the
typical Large Field Inflation for the potential
φ2[24], and Natural Inflation (NI)[25], are
indicated in the figure for comparison.
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Figure 3. General results on the plane nS vs
r for Class II of single field models of inflation,
for different values of the coefficients k11 and
k12. The plots show the results for N = 60.
Notice that Class II covers a smaller area
than Class I (see Fig. 2), and then it has less
freedom to fit the observational data. The
predictions from the typical Starobinsky’s
model (R2)[26] model is indicated in the figure
for comparison.

4. Conclusions and perspectives
We have presented two common instances in which scalar fields are used in Cosmology in order
to provide models for unanswered riddles of the Universe.

In the first one, related to dark matter, we showed how the MPS, one of the most important
quantities for the process of structure formation, is affected by the presence of a scalar field:
the appearance of sudden cut-off at large wavenumbers, which is translated in the suppression
of structure at small scales. This cut-off in the MPS has been the subject of study in many
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recent works about models of dark matter with scalar fields: from constraints coming from
CMB anisotropies and other astrophysical probes[27, 28, 29, 14], to the most recent topic of
the non-linear process of structure formation[30, 31], and the analysis of objects of galactic
size[32, 33, 34].

The second instance was about single-field models of inflation and their generic predictions.
Although there is already a large tradition on the study of inflationary models (see[19] and
references therein), the method briefly presented in Sec. 3 provides a brand new way to show
the intrinsic properties of scalar field models of inflation. Interestingly enough, the method
gives a more solid confirmation of the existence of two generic classes of inflationary models.
However, the question for the correct model, i.e. the particular V (φ) that could be the ultimate
responsible for inflation, still remains open.
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