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Abstract

We consider the SO(4, 1)-covariant fuzzy hyperboloid H 4
n as a solution of Yang–Mills matrix models, 

and study the resulting higher-spin gauge theory. The degrees of freedom can be identified with functions on 
classical H 4 taking values in a higher-spin algebra associated to so(4, 1), truncated at spin n. We develop a 
suitable calculus to classify the higher-spin modes, and show that the tangential modes are stable. The metric 
fluctuations encode one of the spin 2 modes, however they do not propagate in the classical matrix model. 
Gravity is argued to arise upon taking into account induced gravity terms. This formalism can be applied 
to the cosmological FLRW space-time solutions of [1], which arise as projections of H 4

n . We establish a 
one-to-one correspondence between the tangential fluctuations of these spaces.
© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

In the present paper we continue the exploration of 4-dimensional covariant fuzzy spaces and 
their associated higher-spin gauge theories, as started in [2,3]. These are non-commutative spaces 
which allow to reconcile a quantum structure of space(-time) with covariance under the maximal 
isometry. In contrast, quantized Poisson manifolds such as R4

θ [4,5] are not fully covariant, as 
an explicit tensor θμν breaks the covariance. In previous work [2,3], gauge theory on the fuzzy 
4-sphere S4

N was studied in detail, starting from the observation that S4
N is a solution of Yang–
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Mills matrix models supplemented by a mass term, cf. [6]. Here we extend this analysis to fuzzy 
H 4

n , which is a non-compact quantum space preserving an SO(4, 1) isometry, also known as 
Euclidean AdS4. For other related work on covariant quantum spaces see e.g. [7–14].

The motivation for this work is two-fold: first, we want to develop a formalism to study gauge 
theory on H 4

n along the lines of usual calculus and field theory, in order to facilitate the interpre-
tation of the resulting models. While S4

N allows to use a clean but less intuitive organization of 
fields into polynomials corresponding to Young diagrams, the non-compact nature of H 4 requires 
to develop a calculus as well as field formalism reminiscent of the conventional treatment. We 
will achieve this goal, and obtain results analogous to the compact case but in a more transparent 
manner.

The second motivation is to set the stage for a similar analysis of the cosmological fuzzy 
space-time solutions M3,1

n found in [1,15]. These FLRW-type space-times have very interesting 
physical properties such as a regularized Big-Bang-like initial singularity and a finite density 
of microstates. M3,1

n can obtained from the present H 4
n via a projection, which not only leads 

to a Minkowski signature, but also reduces the symmetry to SO(3, 1). Since the group theory 
becomes weaker, it seems advisable to consider first the simpler (Euclidean) case of fuzzy H 4

n . 
We establish the relevant formalism in this paper, and moreover provide some explicit links 
between the modes on H 4

n and M3,1
n .

One of the most interesting features of 4-dimensional covariant fuzzy spaces is the natural 
appearance of higher spin theories. This can be understood by recalling that these spaces are 
quantized equivariant S2-bundles over the base space (i.e. S4 or H 4 here), where the fiber is 
given by the variety of self-dual 2-forms on the base. The equivariant structure implies that 
would-be Kaluza–Klein modes transmute into higher-spin modes. Taken as background solution 
in matrix models, such as the IKKT model, one obtains a higher-spin gauge theory as effective 
theory around the 4-dimensional covariant fuzzy spaces. As a remark, the structure is reminiscent 
of twistor constructions, see also [16].

Let us describe the results of this paper in some detail. Starting from the classical as well 
as fuzzy geometry of the hyperboloid H 4, we develop a calculus, solely based on the Poisson 
structure, to organize the fuzzy algebra of functions on H 4

n into SO(4, 1) irreducible components. 
We further establish a map between the modes in the irreducible components, suggestively called 
spin s fields, and conventional (rank s) tensor fields on H 4.

Having understood the “functions” on H 4
n , we proceed by considering H 4

n as background 
in the IKKT matrix model. As a first result, we classify all (tangential) fluctuation modes at a 
given spin level and exhibit their algebraic features. Subsequently, we are able to diagonalize 
the kinetic term in the action governing the fluctuations. Remarkably, the kinetic terms for all 
tangential fluctuations are non-negative such that no instabilities in the tangential sector exist.

Having in mind emergent gravity scenarios, we derive the associated graviton modes for spin 
0, 1 and 2 fields. The spin 0 and spin 2 contributions satisfy the de Donder gauge, and at spin 
2 one graviton mode emerges from the tangential sector. However, while the underlying modes 
do propagate, the graviton turns out to behave like an auxiliary field, and does not propagate at 
the classical level. The reason is that the field redefinition required for the graviton cancels the 
propagator, similar as in on S4

N [2].
Nevertheless, our results are interesting and useful. First of all, since classical GR is not renor-

malizable, it should presumably be viewed as a low-energy effective theory. Then the starting 
point of an underlying quantum theory should be quite different from GR at the classical level, 
as in our approach, and gravity may be induced by quantum effects [17,18]. This is the idea of 
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emergent gravity. The present model may well realize this idea, since the basic framework is 
non-perturbative and well suited for quantization (in particular the maximally supersymmetric 
IKKT model), and the required spin 2 fluctuations do arise naturally. The extra degrees of free-
dom may or may not help, but certainly covariance provides a significant advantage compared 
to other related frameworks, cf. [19]. In particular, it is remarkable that no negative or ghost-like 
modes appear in the tangential modes.

Perhaps the most interesting perspective is the extension to the cosmological space-times 
M3,1. We will establish a one-to-one correspondence of the tangential modes on H 4

n to the full 
set of fluctuations on M3,1. Since the tangential modes on H 4

n are stable and free of pathologies 
(in contrast to off-shell GR), it seems likely that the Minkowski setting on M3,1 provides a good 
model, too. In fact, the presence of negative radial modes on H 4

n would require to implement a 
constraint in the matrix model, which may spoil supersymmetry. This is not needed for M3,1, 
which provides further motivation for including a discussion of M3,1 here. However, to keep the 
paper within bounds, we postpone the details for this case to future work.

The paper is organized as follows: We start with a discussion of the classical geometry un-
derlying H 4

n in section 2, before discussing fuzzy H 4
n in detail in section 3. In particular, we 

introduce a calculus suitable for decomposing the algebra of functions into modules of equal 
spin. The details of the decomposition and the properties of the irreducible modes are provided in 
section 4. Having established the fundamentals of fuzzy H 4

n , we explore the fluctuations around 
an H 4

n background in the IKKT matrix model in section 5. We pay particular attention to the clas-
sification of tangential fluctuations, and explicitly diagonalize their kinetic term. Subsequently, 
the graviton modes are identified and their equation of motions are derived. Before concluding 
we briefly explore the projection of H 4

n to the Minkowskian M3,1
n in section 6. Finally, section 7

concludes and provides an outlook for future work. Relevant notation and conventions as well as 
auxiliary identities and derivations are collected in appendices A–D.

2. Classical geometry underlying H 4
n

The classical geometry underlying fuzzy H 4
n is CP 1,2, which is an S2-bundle over the 

4-hyperboloid H 4. More precisely, CP 1,2 is an SO(4, 1)-equivariant bundle over H 4 as well 
as a coadjoint orbit of SO(4, 2). Recall, for instance from [20, Def. 1.5], that a G-equivariant 
bundle π : E → X is equipped with a G-group action ρ̃ : E → E as well as ρ : X → X such 
that the projection map π is an intertwiner, i.e. π ◦ ρ̃ = ρ ◦ π . Here, the actions of SO(4, 1) on 
the total space CP 1,2 and base space H 4 are immanent by definition of these spaces. In partic-
ular, this means that the local stabilizer group SO(4) acts non-trivially on the fiber S2, leading 
to higher-spin fields on H 4, and a canonical quantization exists. The construction is similar to 
twistor constructions for Minkowski space.

2.1. CP 1,2 as SO(4, 1)-equivariant bundle over the hyperboloid H 4

Let ψ ∈C4 be a spinor of so(4, 1) with ψ̄ψ = 1. Consider the following Hopf map:

H 4,3 →H 4 ⊂R
1,4

ψ �→ xa = r

2
ψ̄γ aψ, a = 0,1,2,3,4 ,

(2.1)

where r introduces a length scale, and H 4,3 is the 7-hyperboloid
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H 4,3 = {ψ ∈C
4| ψ̄ψ =ψ†γ 0ψ = 1} . (2.2)

The γ a , a = 0, . . . , 4 are SO(4, 1) gamma matrices, see appendix B for details. The map (2.1) is 
a non-compact version of the Hopf map S7 → S4, which respects SO(4, 1) and in which the xa

transform as SO(4, 1) vectors. By using (B.3) one can verify that

4∑
a,b=0

ηabx
axb =− r2

4
=: −R2 (2.3)

so that the right-hand side is indeed in H 4; note that xa ∈R due to (A.7). Since the overall phase 
of ψ drops out, we can re-interpret (2.1) as a map

xa : CP 1,2 →H 4 ⊂R
1,4 (2.4)

where CP 1,2 = H 4,3/U(1) is defined as space of unit spinors ψ̄ψ = 1 modulo U(1). In other 
words, CP 1,2 is a S2-bundle over H 4. To exhibit the fiber, consider an arbitrary spinor ψ with 
ψ̄ψ = 1. Since

x0 = r

2
ψ†ψ > 0, (2.5)

there exists a suitable SO(4, 1) transformation such that

xa|ξ =R(1,0,0,0,0), (2.6)

which defines a reference point ξ ∈H 4. Its stabilizer group is

H = {h; [h,γ0] = 0} = SU(2)R × SU(2)L ⊂ SO(4,1) (2.7)

where SU(2)L acts on the +1 eigenspace of γ 0. By introducing complex parameters

ψT = (a∗1 , a∗2 , b1, b2
)
, 1 = ψ̄ψ =−|a1|2 − |a2|2 + |b1|2 + |b2|2 =ψ†ψ (2.8)

it follows that |b1|2 + |b2|2 = 1 and a1 = a2 = 0. Thus after an appropriate SU(2)L transforma-
tion we can assume

ψT = (0,0,0,1) , (2.9)

which will be a reference spinor over ξ throughout the remainder. Hence CP 1,2 is a S2-bundle 
over H 4, and the S2 fiber is obtained by acting with SU(2)L on ψ . This is analogous to the 
well-known fact that CP 3 is an S2-bundle over S4. Note that the metric on the hyperboloid 
induced via

xa : H 4 ↪→R
1,4 (2.10)

is Euclidean, despite the SO(4, 1) metric on target space. This is obvious at the point ξ =
(R, 0, 0, 0, 0), where the tangent space is R4

1234.

SO(4, 2) formulation and embedding functions. It is useful to view CP 1,2 as a 6-dimensional 
coadjoint orbit of SU(2, 2)

CP 1,2 ∼= {U−1ZU, U ∈ SU(2,2)} ↪→ su(2,2) (2.11)

through the rank one 4 × 4 matrix



684 M. Sperling, H.C. Steinacker / Nuclear Physics B 941 (2019) 680–743
Z =ψψ̄, Z2 =Z, tr(Z)= 1, Z† = γ 0Zγ 0−1
. (2.12)

The embedding (2.11) is described by the embedding functions

mab = tr(Z�ab)=ψ�abψ = (mab)∗,

xa = r tr(Z�a5)= r

2
ψγ aψ = r ma5, a, b = 0, . . . ,4

(2.13)

noting that 1
2γ a =�a5, see (A.5). Upon restricting to so(4, 1) ⊂ so(4, 2) ∼= su(2, 2), we recover 

(2.4), which reflects that the SO(4, 1) action is transitive on CP 1,2. The last equation in (2.13)
amounts to a group-theoretical definition of the Hopf map, which will generalize to the non-
commutative case. The SO(4, 2) structure is often useful, but it does not respect the projection 
to H 4.

We can compute the invariant functions∑
0≤a<b≤4

mabmab =
∑

0≤a<b≤4

ψ̄ψ̄�ab ⊗�abψψ = 1

2
, (2.14)

∑
0≤a<b≤5

mabmab =
∑

0≤a<b≤5

ψ̄ψ̄�ab ⊗�abψψ = 3

4
, (2.15)

using the identities (B.6) and (B.7). Here, the indices are raised and lowered with ηab =
diag(−1, 1, 1, 1, 1, −1). Combining the two identities (B.6)–(B.7) and recalling xa = rma5, we 
recover

xax
a =− r2

4
=−R2. (2.16)

Remarkably, the SO(4, 1)-invariant xaxa is constant on CP 1,2. Similarly, (B.9) together with 
the above relations imply1 the SO(4, 2) identities

ηcc′m
acmbc′ = 1

4
ηab, a, b = 0, . . . ,5 (2.17)

which reduces to the SO(4, 1) relation

ηcc′m
acmbc′ − r−2xaxb = 1

4
ηab, a, b = 0, . . . ,4 . (2.18)

In particular, this implies that mab is orthogonal to xa ,

xam
ab = 0 . (2.19)

Furthermore, the following SO(4, 2) identities hold:

εabcdef mabmcd = ψ̄ψ̄εabcdef �ab ⊗�cdψψ (2.20)

= 2ψ̄ψ̄(�ef ⊗ 1+ 1⊗�ef )ψψ

= 4ψ̄�ef ψ = 4mef , (2.21)

using (B.10); this can also be seen from (B.11). Reduced to SO(4, 1), this implies

1 This is just a manifestation of the relation Z2 =Z, see (2.12).
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εabcdem
abmcd =−4

r
xe , e = 0, . . . ,4. (2.22)

Finally, there exists a self-duality relation

εabcdem
abxc = ψ̄ψ̄εabc5de�

ab ⊗�c5ψψ (2.23)

= 1

2
ψ̄ψ̄(�de ⊗ 1+ 1⊗�de)ψψ

= ψ̄�deψ =mde (2.24)

using (B.10). Thus mab is a tangential self-dual rank 2 tensor on H 4, in complete analogy to S4
N

[21]. At the reference point (2.6), one can express mab in terms of the SO(4) t’Hooft symbols

mμν = ηi
μν Ji, JiJ

i = 1 (2.25)

where Ji describes the internal S2. This exhibits the structure of CP 1,2 is an SO(4, 1)-equivariant 
bundle over H 4. The fiber S2 is generated by the local SU(2)L, while SU(2)R acts trivially.

2.2. CP 1,2 as SO(3, 2)-equivariant bundle over the hyperboloid H 2,2

Equivalently, the homogeneous space CP 1,2 of SO(4, 2) can be viewed as S2-bundle over 
H 2,2, which arises from a different Hopf map

H 4,3 →CP 1,2 →H 2,2 ⊂R
2,3 (2.26)

as follows, cf. [22]:

ta = 1

R
ψ�a4ψ = 1

R
ma4, a = 0,1,2,3,5 . (2.27)

This map is compatible with SO(3, 2), and establishes (2.26) as SO(3, 2)-equivariant bundle in 
the aforementioned sense. The reference spinor (2.9) is now projected to ta = r−1(0, 0, 0, 0, 1) ∈
R3,2, which transforms as SO(3, 2) vector. Then ta defines a hyperboloid H 2,2 ⊂ R3,2 with 
intrinsic signature (+, +, −, −). Using analogous identities as before, we obtain the constraints

η̃abt
atb = r−2, η̃ab = diag(−1,1,1,1,−1) ,

tax
a = 0 = tμxμ .

(2.28)

The last relation follows from the SO(4, 2) relation (2.17), noting that t4 ≡ 0. More generally, 
we can consider

xa =mabαb, ta =mabβb (2.29)

where α, β ∈R2,4 are two linearly independent vectors with2 αbβ
b = 0. Then the previous con-

structions are recovered for α = e5, β = e4. The common symmetry group which preserves both 
αb and βb is SO(3, 1). Note that t5 ∝ x4 on CP 1,2.

2 The case of light-like α is also interesting, see section 3.2.
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Fig. 1. Sketch of the projection �x from H 4 to M3,1 with Minkowski signature.

2.3. SO(3, 1)-invariant projections and Minkowski signature

So far we have constructed H 4 and H 2,2, but not a space with Minkowski signature yet. 
Space-times with Minkowski signature can be obtained by SO(3, 1)-covariant projections of the 
above hyperboloids. Explicitly, consider the projections

�x : CP 1,2 →R
3,1,

m �→ xμ =mμbαb

�t : CP 1,2 →R
3,1,

m �→ tμ =mμbβb

with μ= 0,1,2,3, (2.30)

which respect SO(3, 1). A sketch of �x is displayed in Fig. 1. In section 6, the image 
M3,1 ⊂ R3,1 of �x serves as cosmological FLRW space-time with k = −1, as discussed in 
[1]. In contrast, tμ is interpreted as internal space related to translations.

3. The fuzzy hyperboloid H 4
n

Now we turn to the central object of this paper: the fuzzy hyperboloid H 4
n . H 4

n is a quantization 
of the bundle CP 1,2 over H 4, which respects the SO(4, 2) structure and the projection to the 
base space H 4. This is natural because CP 1,2 is a coadjoint orbit of SO(4, 2) via (2.11). As such 
CP 1,2 is equipped with a canonical SO(4, 2)-invariant Poisson (symplectic) structure; whereas 
on H 4 no such structure exists. H 4

n was first discussed in [22], and it serves as starting point for 
a quantized cosmological space-time in [15].

As for any coadjoint orbit, fuzzy H 4
n can be defined in terms of the operator algebra End(Hn), 

where Hn is a suitable unitary irrep of SU(2, 2) ∼= SO(4, 2). The representation is chosen such 
that the Lie algebra generators Mab ∈ End(Hn) generate a non-commutative algebra of func-
tions, interpreted as quantized or fuzzy CP

1,2
n . The Mab are naturally viewed as quantized 

coordinate functions mab (2.13) on CP 1,2. Fuzzy H 4
n is then generated by Hermitian genera-

tors Xa ∼ xa , which transform as vectors under SO(4, 1) ⊂ SO(4, 2), and are interpreted as 
quantized embedding functions (2.4). This will be made more explicit through an oscillator con-
struction, which allows to derive all the required properties.

To define fuzzy H 4
n explicitly, let ηab = diag(−1, 1, 1, 1, 1, −1) be the invariant metric of 

SO(4, 2), and let Mab be the Hermitian generators of SO(4, 2), which satisfy

[Mab,Mcd ] = i(ηacMbd − ηadMbc − ηbcMad + ηbdMac) . (3.1)
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We choose a particular type of (discrete series) positive-energy unitary irreps3 Hn known as 
minireps or doubletons [23,24]. Remarkably, the Hn remain irreducible4 under SO(4, 1) ⊂
SO(4, 2). Moreover, the minireps have positive discrete spectrum

spec(M05)= {E0,E0 + 1, . . .}, E0 = 1+ n

2
(3.2)

where the eigenspace with lowest eigenvalue of M05 is an n + 1-dimensional irreducible repre-
sentation of either SU(2)L or SU(2)R . Then the Hermitian generators

Xa := rMa5, a = 0, . . . ,4

[Xa,Xb] = −ir2Mab =: i�ab
(3.3)

(note the signs!) transform as SO(4, 1) vectors, i.e.

[Mab,Xc] = i(ηacXb − ηbkXa),

[Mab,Mcd ] = i(ηacMbd − ηadMbc − ηbcMad + ηbdMac) .
(3.4)

Because the restriction to SO(4, 1) ⊂ SO(4, 2) is irreducible, it follows that the Xa live on a 
hyperboloid,

ηabX
aXb =XiXi −X0X0 =: −R21 (3.5)

with some R2 to be determined below. Since X0 = rM05 > 0 has positive spectrum, this 
describes a one-sided hyperboloid in R1,4, denoted as H 4

n . Analogous to fuzzy S4
N , the semi-

classical geometry underlying H 4
n is CP 1,2 [22], which is an S2-bundle over H 4 carrying a 

canonical symplectic structure. In the fuzzy case, this fiber is a fuzzy 2-sphere S2
n . We work 

again in the semi-classical limit. We also note the following commutation relations

�XXb = [Xa, [Xa,Xb]] = −4r2Xb . (3.6)

The negative sign arises from η = diag(−1, 1, 1, 1, 1, −1), and �X is not positive definite.

3.1. Fuzzy H 2,2
n and momentum space

As in the classical case (2.27) and for later purpose, we also define

T a = 1

R
Ma4, a = 0, . . . ,3,5 (3.7)

where R r T 5 =−X4. As the restriction of Hn to SO(3, 2) ⊂ SO(4, 2) is irreducible, the opera-
tors (3.7) satisfy the constraint

η̃abT
aT b =−T 0T 0 +

∑
i=1,2,3

T iT i − T 5T 5 = 1

r2 1 (3.8)

3 Strictly speaking there are two versions HL
n or HR

n with opposite “chirality”, but this distinction is irrelevant in the 
present paper and therefore dropped.

4 This follows from the minimal oscillator construction of Hn , where all SO(4, 2) weight multiplicities are at most 
one, cf. [23,25,26].
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cf. (2.28). This is the quantization of the hyperboloid H 2,2 ⊂ R3,2 with intrinsic signature 
(+, +, −, −) of section 2.2 and becomes Lorentzian via the projection (2.3). The commutation 
relations are

[T a,T b] = i
1

R2 Mab a, b = 0, . . . ,3,5 ,

[T μ,Xν] = i
1

R
ημνX4, μ, ν = 0, . . . ,3 ,

(3.9)

which justifies to consider T μ as translation generators, and

�T T b = [Ta, [T a,T b]] = + 4

R2 T b (3.10)

Note the different signs in (3.10) and (3.6), which arise from of η55 =−1 =−η44.

3.2. SO(3, 1)-covariant fuzzy spaces

In analogy to section 2.3, we consider the SO(3, 1)-covariant fuzzy generators

X̃μ =Mμaαa, T̃μ =Mμaβa (3.11)

where α, β are SO(3, 1)-invariant. They satisfy

[X̃μ, X̃ν] = (α · α)Mμν, [T̃ μ, T̃ ν] = (β · β)Mμν

[X̃μ, T̃ν] = i
(
δμ
ν Mabαaβb + α · βMμν

)
= i
(
δμ
ν α ∧ βD + α · βMμν

)
(3.12)

where α∧β = α4β5 −α5β4 and D =M45. For α ·α ≈ 0 and α ·β ≈ 1 ≈ α∧β , the X̃μ become 
almost commutative and the commutation relations are not far from the Poincare algebra:

Poincare algebra. In particular for light-like α = 1√
2
(1, −1) and β = 1√

2
(1, 1), we obtain

Kμ := 1√
2
(Mμ5 −Mμ4), T̃ μ = 1√

2
(Mμ5 +Mμ4) (3.13)

which satisfy

[T̃ μ, T̃ ν] = 0 = [Kμ,Kν] ,
[T̃ μ,Kν] = i(δμ

ν D +Mμν) .
(3.14)

Hence the T̃ μ together with Mμν generate the Poincare algebra ISO(3, 1) as sub-algebra of 
so(4, 2), with special conformal generators Kμ and the dilatation operator D

[D, T̃μ] = iT̃μ, [D,Kμ] = −iKμ. (3.15)

3.3. Oscillator realization, minireps and coherent states

The Hilbert space Hn is a highest-weight unitary representation of SU(2, 2), which can be 
obtained by quantizing the spinorial construction of CP 2,1 in (2.1). For the quantization one 
replaces the classical 4-component spinor ψα by 4 operators, which satisfy

[ψα, ψ̄β ] = δβ
α . (3.16)
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The associated bilinears

Mab := ψ̄�abψ (3.17)

realize the Lie algebra (3.1) of SO(4, 2), due to[
ψ̄�abψ, ψ̄�cdψ

]
= ψ̄
[
�ab,�cd

]
ψ. (3.18)

The Mab are self-adjoint operators, since

�ab† = γ 0�abγ 0−1
. (3.19)

As a consequence, they implement unitary representations of SU(2, 2) on the Fock space 
F = span{ψ̄ . . . ψ̄ |0〉} of the bosonic oscillators, which decomposes into an infinite number of 
irreducible positive energy unitary representations H�.

The oscillator algebra (3.16) can be realized explicitly as follows (cf. [24,27]): Consider 
bosonic creation and annihilation operators ai, bj which satisfy

[ai, a
†
j ] = δ

j
i , [bi, b

†
j ] = δ

j
i for i, j = 1,2 . (3.20)

Using the ai, bj we form spinorial operators

ψ :=

⎛⎜⎜⎝
a

†
1

a
†
2

b1
b2

⎞⎟⎟⎠ (3.21)

with Dirac conjugates

ψ̄ ≡ψ†γ 0 =
(
−a1,−a2, b

†
1, b

†
2

)
. (3.22)

Then

[ψα, ψ̄β ] = δα
β (3.23)

as required, and the SO(4, 2) generators are

Mab = ψ̄�abψ =
(
−a1,−a2, b

†
1, b

†
2

)
�ab

⎛⎜⎜⎝
a

†
1

a
†
2

b1
b2

⎞⎟⎟⎠ . (3.24)

The generators of SU(2)L and SU(2)R are defined by

Lk
i := a

†
kai − 1

2
δk
i Na

Ri
j := b

†
i bj − 1

2
δi
jNb

and the time-like generator X0 (or the “conformal Hamiltonian” E) is given by

r−1 X0 =E =M05 = ψ̄�05ψ = 1

2
ψ†ψ = 1

2
(Na +Nb + 2), (3.25)

where Na ≡ a
†
ai , Nb ≡ b

†
bj are the bosonic number operators, and
i j



690 M. Sperling, H.C. Steinacker / Nuclear Physics B 941 (2019) 680–743
N̂ = ψ̄ψ =−Na +Nb − 2 (3.26)

is invariant. The non-compact generators are given by linear combinations of creation and anni-
hilation operators of the form a†

i b
†
j and aibj .

Minireps. The simplest class of unitary representation has lowest weight space given by the Fock 
vacuum ai |0〉 = 0 = bi |0〉, which defines [27]

|�〉 := |1,0,0〉 =: |0〉 , E = 1, jL = jR = 0 . (3.27)

This gives the doubleton minireps built on the lowest weight vectors

|�〉 :=
∣∣∣E,

n

2
,0
〉
:= a

†
i1

. . . a
†
in
|0〉 , E = 1+ n

2
, jL = n

2
, jR = 0

|�〉 :=
∣∣∣E,0,

n

2

〉
:= b

†
i1

. . . b
†
in
|0〉 , E = 1+ n

2
, jL = 0, jR = n

2

(3.28)

which are annihilated by all L− operators, i.e. of the form aibj ,

aibj |�〉 ≡ 0 (3.29)

and

n2 :=
(
N̂ + 2

)2 = (Na −Nb)
2 , n= 0,1,2, . . . . (3.30)

Acting with all operators of the form a†
i b

†
j of L+ on |�〉, one obtains positive energy discrete 

series UIR’s H� of U(2, 2) with lowest weight � = (E, n
2 ,0
)

and � = (E,0, n
2

)
. We will largely 

ignore the distinction and denote both as Hn. These are known as minireps of so(4, 2), because 
they are free of multiplicities in weight space.5 They correspond to fields living on the boundary 
of AdS5. The minireps remain irreducible under SO(4, 1) as well as SO(3, 2), and they can be 
interpreted as massless fields on AdS4, or as conformal fields6 on Minkowski space. The lowest 
weight state 

∣∣E,0, n
2

〉
of Hn generates a (n + 1)-dimensional irreducible representation of either 

SU(2)L or SU(2)R with degenerate X0, naturally interpreted as fuzzy S2
n .

Comparing the above oscillator construction (3.17) with (2.13), it is manifest that for each 
Hn, with n > 0, the Mab generators can be interpreted as quantized embedding functions

Mab ∼mab : CP 1,2 → so(4,2)∼=R
15 . (3.31)

This provides the quantization of the coadjoint orbits (2.11), which defines fuzzy CP
1,2
n . Since 

X0 ≥ 1, they should be viewed as quantized bundles with base space H 4
n described by Xa , and 

fiber S2
n , for n = 1, 2, 3, . . .. The implicit constraints defining these varieties will be elaborated 

below. For n > 0, these spaces have been briefly discussed in [16,22], and we will mostly focus 
on that case. The minimal n = 0 case is different, but also very interesting, and we discuss it in 
some detail in appendix C.2.

Coherent states and quantization. The above discrete series irreps Hn provide a natural definition 
of coherent states |m〉 = g · |�〉 ∈Hn, which are given by the SO(4, 2) orbit through the lowest 

5 This can be seen e.g. from the characters given in [26].
6 It may seem tempting to apply some of the standard technology of CFT in the present context. However, the use of 

SO(4, 2) here is quite different from CFT, and it does not respect the bundle structure over H 4. Also, the notions of 
primaries and descendants do not seem to be applicable here, since in the present signature Kμ (3.15) do not rise or 
lower the eigenvalues of D.
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weight state |�〉. The set of coherent states forms a U(1)-bundle over CP 1,2, and allow to recover 
the semi-classical geometry of CP 2 as S2-bundle over H 4 via mab = 〈m|Mab |m〉. In particular, 
the lowest weight state is located at the reference point 〈�|Xa |�〉 = xa

ξ = (R, 0, 0, 0, 0), see 
(2.6). The local SO(4) generators Mij act on the coherent states over ξ in a spin n2 irrep.

These coherent states |m〉 also provide a SO(4, 2)-equivariant quantization map from the 
classical space of functions on CP 1,2 to the fuzzy functions End(Hn):

Q : C(CP 1,2)→ End(Hn)

f (m) �→
∫

CP 1,2

dμf (m) |m〉 〈m| (3.32)

where |m〉 is a coherent state,7 and dμ is the SO(4, 2)-invariant measure. For polynomial func-
tions, this corresponds to Weyl quantization, mapping irreducible polynomials P(mab) to the cor-
responding totally symmetrized polynomials P(Mab); in particular Q(mab) =Mab . Likewise, 
square-integrable functions on CP 1,2 are mapped to Hilbert-Schmidt operators in End(Hn). We 
expect8 that the map Q is surjective, and that all “reasonable” (e.g. square-integrable or Hilbert-
Schmidt) harmonics in End(Hn) can be obtained as quantizations of higher-spin harmonics on 
H 4 via Q. This will be used below.

3.4. Algebraic properties of fuzzy H 4
n

Using the aforementioned oscillator realization, one can derive a number of useful identities 
for the above operators on Hn; we refer the reader to appendix C for the details. To begin with, 
consider the SO(4, 1)-invariant radius operator

R2 :=
∑

a,b=0,1,2,3,4

ηabX
aXb . (3.33)

Since H� is irreducible under so(4, 1), it must follow that R2 ∼ 1. Indeed, one finds

XaX
a =− r2

4
N̂(N̂ + 4)=− r2

4
(n2 − 4)=: −R2 (3.34)

where n = |N̂ + 2| = 0, 1, 2, . . .. Note that R2 is positive for n = 0, 1, which seems strange 
because X0 is positive. However, this is a quantum artifact, and the expectation values 〈Xa〉 under 
coherent states still sweep out the usual H 4. Additionally we compute the quadratic SO(4, 1)

and SO(4, 2) Casimir operators

C2[so(4,1)] =
∑

a<b≤4

MabMab = 1

2
(n2 − 4) , (3.35)

C2[so(4,2)] =
∑

a<b≤5

MabMab = 3

4
(n2 − 4) . (3.36)

We note that (3.35) agrees with [22]. Further identities can be obtained from the so(6)C identity 
(B.9), which entails

7 Observe that the phase ambiguity of the coherent states drops out here.
8 For a formal argument see appendix C.1. A more rigorous proof would be desirable.
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ηcc′MacMbc′ + (a ↔ b)= 1

2
(n2 − 4)ηab . (3.37)

This implies the so(4, 1) relation

ηcc′�
ac�bc′ + (a ↔ b)= r2

(
2R2ηab +

(
XaXb +XbXa

))
. (3.38)

These correspond to (2.17), (2.18). Moreover, one finds

XbMab +MabXb = 0 , (3.39)

which means that the SO(4, 1) generators Mab are tangential to H 4
n . Another interesting identity 

is

εabcdefMabMcd = 4nMef

εabcdeMabMcd = 4nr−1Xe

(3.40)

cf. (2.21), (2.22). Finally, the self-duality relation (2.24) becomes

εabcdeMabXc = nrMde . (3.41)

To summarize, we have found counterparts for all relation of the classical geometry in section 2.1, 
which vindicates the choice of representation Hn.

3.5. Wave-functions and spin Casimir

Given a representation Hn of SO(4, 2), the most general “function” in End(Hn) can always 
be expanded as follows

φ = φ(X)+ φab(X)Mab + . . . ∈ End(Hn) =: C , (3.42)

which transform in the adjoint representation Mab �→ [Mab, ·] of so(4, 2). The φab(X) will 
be interpreted as quantized tensor fields on H 4, which transform under SO(4, 1). We define an 
SO(4, 2)-invariant inner product on C via

〈φ,ψ〉 = trH
(
φ†ψ
)

. (3.43)

For polynomials generated by the Xa , this trace diverges. However this is only an IR-divergence, 
and we are mainly interested in normalizable fluctuations corresponding to physical scalar fields. 
Technically speaking, we will be working with Hilbert-Schmidt operators in End(H). These can 
be expanded into modes obtained by decomposing End(H) into unitary representations of the 
isometry group SO(4, 1) of the background. We will see that the expansion (3.42) is truncated 
at n generators Mab.

Spin Casimir. To proceed, we require a characterization of the above SO(4, 1) modes in terms of 
a Casimir operator which measures spin. One can achieve this by the SO(4, 1)-invariant

S2 := C2[so(4,1)] + r−2�=
∑

a<b≤4

[Mab, [Mab, ·]] + r−2[Xa, [Xa, ·]] , (3.44)

which measures the spin along the S2 fiber. To understand this, we locally decompose 
so(4, 1), for example at the reference point (2.6), into so(4) generators Mμν and transla-
tion generators P μ = 1 Mμ0. Then C2[so(4, 1)] = −R2PμP μ + C2[so(4)], and R2PμP μ ∼
R
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−r−2[Xμ, [Xμ, ·]] if acting on functions φ(x), cf. (3.69). Therefore S2 ∼ C2[so(4)] should van-
ish on scalar functions φ(X) on H 4, but not on higher-spin functions involving θab. We will see 
that this is indeed the case, and End(Hn) contains modes up to spin n as measured by S2 (3.55). 
We also observe

C2[so(4,2)] = C2[so(4,1)] − r−2�= S2 − 2r−2� ,

C2[so(4,2)] = 2C2[so(4,1)] − S2 .
(3.45)

Note that S2, �, and C2[so(4, 2)] commute and can be diagonalized simultaneously.

Higher-spin modes on H 4
n . To determine the spectrum of S2 for the modes in (3.42) we first 

prove the following identity for any f ∈ C:

S2({f,Xa}+)= {S2f,Xa}+ , (3.46)

where {·, ·}+ denote the anti-commutator. To see this, consider

S2(f Xa)= (S2f )Xa + [Mcd , f ][Mcd ,Xa] + 2r−2[Xc,f ][Xc,Xa]
= (S2f )Xa + 2i[Mad , f ]Xd − 2i[Xc,f ]Mca

= (S2f )Xa + 2i[MadXd,f ] − 2iMad [Xd,f ] − 2i[Xc,f ]Mca . (3.47)

Similarly,

S2(Xaf )=Xa(S2f )+ 2i[XdMad , f ] − 2i[Xd,f ]Mad − 2iMca[Xc,f ] (3.48)

and adding them yields (3.46). Next, starting from

�XXa =−4Xa =−C2[so(5)]Xa (3.49)

this identity immediately implies

S2Pn(X)= 0 (3.50)

for totally symmetrized polynomials Pn(X) in X. More generally, we show in appendix C.1 that 
this holds for any scalar field φ on H 4 quantized via coherent states, i.e.

S2φ = 0 for any φ =
∫

CP 1,2

φ(x)|x〉〈x| . (3.51)

As a next step, we consider the higher-spin fields. Using

2C2[so(4,1)]Mab = [Mcd , [Mcd ,Mab]] = 12Mab

�XMab = [Xc, [Xc,Mab]] = −2Mab

S2Mab = 4Mab (3.52)

we find

S2φ(1) = 4φ(1) for any φ(1) = φab(x)Mab (3.53)

with quantized functions φab(X) on H 4 in (3.51), etc. We can similarly compute S2 for any 
irreducible polynomial function in Mab, and obtain

S2(�s
α)= 2s(s + 1)�s

α, �s
α = (Pα)a1b1...asbs Ma1b1 . . .Masbs (3.54)
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where Pα ∼ is a 2-row rectangular Young projector. The restriction to these Young diagrams 
follows from the commutation relations (3.1) and the self-duality relation (3.40). This leads to 
the decomposition

C := End(Hn)=
n⊕

s=0

Cs , S2|Cs = 2s(s + 1) (3.55)

where Cs is the eigenspace of S2 = 2s(s + 1). We refer to appendix C.1 for the details. Of 
course the Cs contain also forms of the type φα(X) �s

α . However since the multiplication does 
not respect the grading, we can only say that Cs is the quantization of tensor fields φα(x) taking 
values in the vector space spanned by �α,

Cs � Q(φa1...as ;b1...bs
(x)ma1b1 . . .masbs ) ≡Q(φα(x)�α), s ≤ n , (3.56)

where �α denotes both the polynomials in Mab and mab . We remind the reader that Q (3.32)
respects so(4, 2). The truncation9 at n follows provided Q is surjective, since the corresponding 
classical expressions (3.56) with s > n are annihilated by Q. In fact they correspond to spin s > n

irreps of the local SO(4), which are not supported by the local fiber spanned by the coherent 
states, which is a fuzzy 2-sphere S2

n . See appendix C.1 for more details.
This is a very remarkable structure, which leads to higher-spin fields on H 4 truncated at 

spin n. For small n, the uncertainty scale L2
NC ≈ R2, see (3.59), is set by the curvature scale 

of H 4 ⊂ R1,4, so that the space is far from classical. Nevertheless, the case of small n may be 
interesting after projection to the cosmological space-time M3,1 as discussed in section 6.

The n = 2 case. The case N̂ = 0 = n − 2 is special, because then C2[so(4, 1)] = 0 = R2. To 
avoid this we will assume n �= 2 in this paper.

The n = 0 case. In that case, (3.40) gives

εabcdefMabMcd = 0 , (3.57)

which is a relation in the Joseph ideal [28]. Then the Mab, a, b = 0, . . . , 5 generate Vasiliev’s 
higher-spin algebra associated to so(4, 2). However here we will not aim for a higher-spin theory 
on AdS5, but reduce Hn for n �= 0 to the so(4, 1) generators Mab, a, b = 0, . . . , 4, and the re-
maining Xa generators. Then the Mab, a, b = 0, . . . , 4 satisfy relations which are locally similar 
to the hs algebra of so(4, 1), while the Xa generate the underlying space.

3.6. Semi-classical limit and Poisson calculus

Now consider the semi-classical limit of fuzzy H 4
n , which is obtained for large n, and is 

indicated by ∼. Then Xa ∼ xa and �ab ∼ θab , and the above relations on H4
n reduce to

xax
a =−R2, (3.58a)

θabxb = 0 , (3.58b)

εabcdeθ
abxc = nrθde ∼ 2Rθde , (3.58c)

9 We do not claim that for example the algebra of functions generated by Pa =Ma4 is truncated at order n; this is not 
the case. The claim is that all Hilbert-Schmidt operators can be written in the above way.
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γ bb′ := ηaa′θ
abθa′b′ = L4

NC

4
P bb′ , (3.58d)

where the scale of non-commutativity is

L4
NC := θabθab = 4r2R2 . (3.59)

Here

P ab = ηab + 1

R2 xaxb with P abxb = 0 and P abP bc = P ac (3.60)

is the Euclidean projector on H 4 (recall that H 4 is a Euclidean space). Hence the algebra of 
functions on fuzzy H 4

n reduces for large n to the algebra of functions

End(Hn) ∼ C(CP 1,2) = ⊕s Cs (3.61)

on the classical Poisson manifold CP 1,2, as described in section 2.1. We denote the eigenspaces 
of S2 again with Cs , which are now modules over the algebra C0 = C(H 4) of functions on H 4, 
thus encoding the structure of a bundle over H 4. From now on we work in the semi-classical 
limit. The bundle structure can be made more explicit by writing

θab = ηab
i J i (3.62)

as in (2.25), where ηab
i are the tangential self-dual t’Hooft symbols; “tangential” follows from 

xaθ
ab = 0. The J i transform as vectors of the local SU(2)L ⊂ SO(4), and describe the internal 

S2 fiber.

Derivatives. It is useful to define the following derivations (cf. [2])

ð
aφ := − 1

r2R2 θab{xb,φ} = 1

r2R2 xb{θab,φ}, φ ∈ C , (3.63)

which are tangential xaða = 0, satisfy the Leibniz rule, and are SO(4, 1)-covariant. Equivalently,

{xa, ·} = θab
ðb . (3.64)

In particular, the following holds:

ð
axc =− 1

r2R2 θab{xb, x
c} = P ac

T

[ða,ðb]φ =− 1

r2R2 {θab,φ} (3.65)

as shown in appendix D. The first line shows that ð act as isometries on functions, such that the 
ða can be viewed as a set of five Killing vector fields on H 4 with Lie bracket given by (3.65). 
Furthermore,

ð
aθcd = 1

r2R2 θab{xb, θ
cd} = − 1

R2 θab(ηbcxd − ηbdxc)

= 1

R2 (−θacxd + θadxc). (3.66)

We also note that the SO(4, 1) rotations of scalar functions are generated by {Mab, ·}, which 
can be written as

{Mab,φ} = −(xa
ðb − xb

ða)φ, φ ∈ C0 . (3.67)
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To see this, it suffices to verify the action on the xc generators,

{Mab, xc} = −(xa
ðb − xb

ða)x
c =−(xaP bc − xbP ac)=−(xaηbc − xbηac) (3.68)

since both sides are derivations. Finally, the semi-classical limit of the � operator (3.6) can be 
expressed in terms of the derivatives as follows:

�φ =−{xa, {xa,φ}} = −{xa, θ
ab
ðbφ}

= −{xa, θ
ab}ðbφ − θab{xa,ðbφ}

= r2{Mab, xa}ðbφ − θabθac
ðb∂cφ

=−r2R2P ab
ðaðbφ (3.69)

for any φ ∈ C.

Connection. We define an SO(4, 1)-covariant connection on the module C (4.1) by [2]

∇ = PT ◦ ð (3.70)

so that for ∇a ≡∇ða

∇aφb = ∂aφb − 1

R2 xbφa,

∇aφbc = ∂aφbc − 1

R2 (xbφac + xcφba) (3.71)

etc. if φa , φab are tangential. Comparing with (3.66) and using (3.67) it follows that the connec-
tion is compatible with θab, i.e.

∇θab = 0, ∇{f,g} = {∇f,g} + {f,∇g} (3.72)

and ∇aPbc = 0. The associated curvature

Rab :=R[ða,ðb] = [∇a,∇b] − ∇[ða,ðb] (3.73)

is computed in appendix D.15, and reduces to the Levi–Civita connection on tensor fields. Thus 
H 4

n is a quantum space which is fully SO(4, 1)-covariant, and we have found a calculus which is 
defined solely in terms of the Poisson bracket, i.e. the semi-classical limit of matrix commutators. 
This is very important for the present non-commutative framework.

Averaging over the fiber. There exists a canonical map

[·]0 : C(CP 1,2)→ C(H 4)

f (ξ) �→ f (x)=
∫
S2

f (ξ) (3.74)

defined by integrating over the fiber at each x ∈ H 4. This projects the functions on the total 
space to functions on the base space. On fuzzy S4

N , this averaging can be defined in terms of a 
SO(5)-invariant projection to some sub-space of End(H). For H 4

n , [·]0 is nothing but the projec-
tion to S2 = 0 i.e. to C0, as discussed below.
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Explicitly, the averaging [·]0 over the internal S2 is given by[
θabθcd

]
0
= 1

12
L4

NC(P acP bd − P bcP ad + εabcde 1

R
xe)

= r2R2

3
(P acP bd − P bcP ad + εabcde 1

R
xe) . (3.75)

One can generalize the averaging to higher powers of θab, e.g. [2]

[θabθcdθef θgh]0 = 3

5

(
[θabθcd ]0[θef θgh]0 + [θabθef ]0[θcdθgh]0 + [θabθgh]0[θcdθef ]0

)
.

(3.76)

Alternatively, one could proceed to define a star product for functions on H 4, which is presum-
ably commutative, but not associative, in analogy to the case of S4

N [11]. On the other hand, for 
n = 0 there is nothing to project, and the full algebra of functions on H 4 is non-commutative and 
associative without extra generators.

Integration. As for any quantized coadjoint orbit, the trace on End(H) corresponds to the integral 
over the underlying symplectic space, defined by the symplectic volume form. Explicitly,

TrQ(φ)=
∫

dμφ =
∫

H 4

ρ[φ]0 , ρ =̂ dim(H)

Vol(H 4)
(3.77)

replacing the ill-defined fraction dim(H)

Vol(H 4)
with the symplectic volume form dμ, which reduces 

to ρ on H 4. This is best seen via coherent states (3.32). We will often drop dμ and Q in the 
semi-classical limit. Finally, note that the ða are not self-adjoint under the integral, but∫

ðaf g =−
∫

f ðag + 1

θR2

∫
f {xb, θ

ab}g =−
∫

f ðag − 4

R2

∫
xafg (3.78)

using {xb, θba} = 4r2xa .

4. Functions, tensors and higher-spin modes

We have seen that the algebra End(Hn) of fuzzy H 4
n reduces in the semi-classical limit to the 

algebra of functions on CP 1,2. The results of section 3.5 provide a more detailed decomposition 
of C into modules (3.55)

C =
∞⊕

s=0

Cs � φs
a1...as ;b1...bs

(x) ma1b1 . . .masbs ≡ φs
β(x)�β, (4.1)

over the algebra of functions C0 on H 4, due to (3.46). This means that C is a bundle over H 4, 
whose structure is determined by the constraints (2.17), (2.21) and (2.24). An explicit description 
is given by the one-to-one map10

10 Note that �(s)H 4 is not a module over C0, hence this is not a module isomorphism. In [2], a different convention 
was used for the map φa1...as (x) ↔ φ(s) . The present convention avoids the appearance of square-roots of Casimirs in 
this map.
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�(s)H 4 → Cs

φ(s)
a1...as

(x) �→ φ(s) = {xa1 , . . . {xas , φ(s)
a1...as

} . . .} .
(4.2)

Here �(s)H 4 denotes the space of totally symmetric, traceless, divergence-free rank s tensor 
fields on H 4, which are identified with (symmetric tangential divergence-free traceless) tensor 
fields φ(s)

a1...as
with SO(4, 1) indices, as discussed in section 4.2 and in [2]. The inverse map of 

(4.2) (up to normalization) can be given by

Cs � φ(s) �→ {xa1 , . . . {xas , φ(s)} . . .}0 ∈ �(s)H 4 (4.3)

which is symmetric due to [·]0, as well as traceless, divergence-free and tangential. These state-
ments are analogous to the results in [2].

Some comments on the map (4.2) are in order. We show in sections 4.0.1–4.0.3 that pure 
divergence modes would be mapped to zero by (4.2). Injectivity will be shown below by estab-
lishing (4.3). To see surjectivity, it suffices to consider the vicinity of a chosen reference point, 
for instance (2.6). Then polynomial functions suffice to approximate any element in Cs . Then the 
so(4, 2) representation theory allows to characterize all polynomials in Cs uniquely by Young 
diagrams, as explained in detail in [2, section 3]. These in turn are captured by the map (4.2), and 
an alternative inverse map can be used [2]

Cs � φ
(s)
a1...as ;b1...bs

(x)ma1b1 . . .masbs �→ φ
(s)
a1...as ;b1...bs

(x) xb1 . . . xbs ∈ �(s)H 4 , (4.4)

which is equivalent to (4.3) up to normalization.
Hence Cs encodes one and only one irreducible spin s field on H 4, given by square-integrable 

tensor fields on H 4. The generators �β form a basis of irreducible totally symmetric polynomials 
in mab , i.e. of Young tableaux

⊕ ∼= hs := ⊕∞
s=1 �s,β . (4.5)

As in [2], hs is closely related to the higher-spin algebra of Vasiliev theory.11 Hence C can be 
viewed as functions on H 4 taking values in hs.

4.0.1. Spin 1 modes
The unique spin 1 field is encoded in φabm

ab . According to the above statements, it can be 
expressed in terms of a tangential, divergence-free tensor field φa ∈ C0 on H 4, i.e.

xaφa = 0 = ð
aφa . (4.6)

Given such a φa , we define

φ(1) := {xa,φa} = θab
ðbφa = 1

2
θabFab ∈ C1,

Fab = ðbφa − ðaφb

(4.7)

which encodes the field strength of the vector field. This is not tangential, but

xaFab = xa
ðbφa − xa

ðaφb = xa
ðbφa =−φb (4.8)

11 Note that H0 is a minirep of SO(4, 2) but not of SO(4, 1). This explains why we get an extension of Vasiliev’s hs
algebra by functions of X.
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using (D.1). Conversely, the “potential” φa(x) is recovered from φ(1) via a projection

−{xa,φ
(1)}0 = α1(�− 2r2)φa, α1 = 1

3
(4.9)

where φ(1) = {xc, φc} for a tangential, divergence-free φa ∈ C0. The derivation of (4.9) is detailed 
in (D.18)–(D.20). The generalization of this formula for higher-spin is discussed below. If φa is 
an irrep of SO(4, 1), we may abbreviate this as

−{xa,φ
(1)}0 =: α̂1φa (4.10)

where α̂1 is the value of α1(� − 2r2) on φa .

Pure gauge modes. Finally, one can verify that for φ̃a = ðaφ, the associated “field strength” 
tensor is Fab ∝ {θab, φ}, but the field strength form φ(1) vanishes identically:

φ(1) = {xa,ðaφ} = 0 (4.11)

using (D.3). This expresses the gauge invariance (or irreducibility) of φ(1).

4.0.2. Spin 2 modes
Similarly, spin 2 modes can be realized in terms of a tangential, divergence-free, traceless, 

symmetric rank 2 tensor φab(x) = φba(x) ∈ C0, i.e.

xaφab = 0 = ð
aφab = ηabφab . (4.12)

We define the associated “potential form”

φ(2)
a = {xb,φab} = θbc

ðcφab =−ωa;cbθcb ∈ C1 , (4.13)

which can be viewed as so(4, 1)-valued one-form with

ωa;cb = 1

2
(ðcφab − ðbφac) . (4.14)

Note that φ(2)
c is indeed tangential,

xcφ(2)
c = xc{xa,φca} = −{xa, xc}φca = 0 . (4.15)

The so(4)-valued components of φ(2)
a correspond to the spin connection, while its translational 

components

xcωa;cb =−1

2
xc
ðbφac = 1

2
φab (4.16)

reduce to φab, as on fuzzy S4
N [2]. The “field strength form” corresponding to φ(2)

a is

φ(2) = {xa,φ(2)
a } =: 1

2
θadRad [φ]

= −θad
ðd(ωa;cbθcb) =−θcbθad

ðdωa;cb − θadωa;cbðdθcb

= 1

2
θadθcb(ðaωd;cb − ðdωa;cb)

=: 1

2
θadθbcRad;bc[φ] ∈ C2 (4.17)



700 M. Sperling, H.C. Steinacker / Nuclear Physics B 941 (2019) 680–743
noting that the ðdθcb terms drop out for traceless, tangential φab, using (3.66). This encodes the 
linearized Riemann curvature tensor associated to φab,

Rad [φ] := −ðaφ
(2)
d + ðdφ(2)

a =Rad;bcθ
bc ∈ C1,

Rad;bc = ðaωd;bc − ðdωa;bc

= 1

2
(ðdðcφab − ðaðcφdb − ðdðbφac + ðaðbφdc) . (4.18)

Although the ðe do not commute among another, their commutator is radial due to (3.67), i.e.

PRad;bc − PRbc;ad = 0 . (4.19)

Hence the tangential components of PRae;bc[φ] coincide with the usual linearized Riemann 
tensor. The connection form φ(2)

c (i.e. ω) is recovered by a projection

−{xa,φ
(2)}1 = α2(�− 2r2)φ(2)

a ∈ C1, α2 = 2

5
(4.20)

generalizing (4.9). Here, we defined φ(2) = {xb, {xc, φbc}} for a tangential, divergence-free, 
traceless φab ∈ C0. Similarly to the spin 1 case, (4.20) could be obtained via formula (3.76); 
however, we provide a more transparent derivation by means of an inner product below. If the 
underlying tensor φab is an irrep of SO(4, 1), we may abbreviate this as

−{xa,φ
(2)}0 =: α̂2φ

(2)
a (4.21)

where α̂2 is the value of α2(� − 2r2) on φ(2)
a .

Spin 2 pure gauge modes. Again, consider a pure gauge rank 2 tensor

φ̃
(1)
ab =∇aφb +∇bφa (4.22)

which is tangential and traceless (provided ðaφa = 0), but no longer divergence-free. Then

φ̃(1)
a := {xb, φ̃

(1)
ab } = {xb,ðaφb + ðbφa − 1

R2 (xaφb + xbφa)}

= {xb,ðaφb} − 1

R2 {xb, xaφb}

= ðaφ
(1) + 2

R2 θacφc (4.23)

using (D.7) and φ(1) = {xa, φa}. This satisfies

{xa, φ̃(1)
a } = {xa,ðaφ

(1) + 2

R2 θacφc} = 2

R2 {xa, θacφc} = 0 (4.24)

using (5.30), which expresses the gauge invariance of φ(2).

4.0.3. Spin s modes and Young diagrams
As observed above, elements in Cs can be identified with totally symmetric, traceless, 

divergence-free rank s tensor fields φa1...as on H 4 via

φ(s) = {xa1 , . . . {xas , φa1...as } . . .} ∈ Cs . (4.25)

It is useful to define also the mixed spin s objects, such as the “connection (2s − 1)-form”
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φ(s)
a = {xa1 , . . . , {xas−1 , φa1...as−1a} . . .} ∈ Cs−1 (4.26)

which are all tangential and associated to the underlying irreducible rank s tensor field. Then the 
“field strength” form can be written as

φ(s) = {xa,φ(s)
a } =: 1

2
Rad [φ]θad

= θa1b1ðb1 . . . θasbsðbs φa1...as = θa1b1 . . . θasbsðb1 . . .ðbs φa1...as

=:Ra1...as ;b1...bs
(x) θa1b1 . . . θasbs ≡ Rα(x)�α ∈ Cs (4.27)

noting that the ðθ ... terms drop out for traceless tangential φa1...as , using (3.66). Here

Rad [φ] := −ðaφ
(s)
d + ðdφ(s)

a

Rb1...bs ;a1...as
(x)=Pða1 . . .ðas φb1...bs (4.28)

is some antisymmetrized derivatives corresponding to some two row rectangular Young projector 
P ∼ , which can be regarded as linearized higher-spin curvature. We will show below that 
the potential φ(s)

a is then recovered from the following projection

−{xa,φ
(s)}s−1 = αs(�− 2r2)φ(s)

a ∈ Cs−1. (4.29)

If the underlying φa1...as ∈ C0 is an irrep of SO(4, 1), we may abbreviate this as

−{xa,φ
(s)}s−1 =: α̂sφ

(s)
a (4.30)

where α̂s is the value of αs(� − 2r2) on φ(s)
a .

Pure gauge modes. Finally, one can verify that a pure gauge rank s tensor

φ̃(s−1)
a1...as

=∇(as φa1...as−1) (4.31)

drops out from the field strength form,

{xa1 , . . . , {xas , φ̃(s−1)
a1...as

} . . .} = 0 . (4.32)

As before, this is a manifestation of the gauge invariance of φ(s). One way to see this is to move 
∇ out of the brackets using (3.72) and, finally, use (D.4).

One may wonder about the meaning of the infinitesimal transformations

φ(s) �→ {�,φ(s)} . (4.33)

These correspond to symplectomorphisms on CP 1,2 generated by the Hamiltonian vector field 
{�, ·}, which mix the different spin modes in a non-trivial way. They do not correspond to the 
above pure gauge modes (4.31), but see section 5.9.

4.1. Inner product and quadratic action

It is interesting and useful to compute the inner product (3.43) of the above spin s fields φ(s)

defined by the trace in End(H). In the spin 1 case, consider the quadratic form∫
φ(1)φ(1) = 1

4

∫
[θabθcd ]0FabFcd

= r2R2

12

∫
(2P acP bd + xf

R
εabcdf )FabFcd (4.34)
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which looks like the action for self-dual (abelian) Yang–Mills. In the spin 2 case, consider the 
analogous quadratic form∫

φ(2)φ(2)

= 1

4

∫
[θaeθbcθa′e′θb′c′ ]0Rae;bc[φ]Ra′e′;b′c′ [φ]

= 3

10

∫
[θaeθa′e′ ]0[θbcθb′c′ ]0Rae;bc[φ]Ra′e′;b′c′ [φ]

= 1

30

∫
(2P aa′P ee′ + xf

R
εaea′e′f )(2P bb′P cc′ + xf

R
εbcb′c′f )Rae;bc[φ]Ra′e′;b′c′ [φ]

= 2

15

∫
P aa′P ee′P bb′P cc′Rae;bc[φ]Ra′e′;b′c′ [φ] + topological terms (4.35)

because [φ(2)]0 = 0. Note that we used the symmetries (4.19) of Rae;bc or rather of its tangential 
part PRae;bc , as the radial contributions drop out anyway. We observe that (4.35) is a (self-
dual) linearized quadratic gravity action,12 which can be written in terms of the Rab “forms” as 
follows:∫

φ(2)φ(2) = 1

4

∫
[θaeθbcθa′e′θb′c′ ]0Rae;bcRa′e′;b′c′

= 3

10

∫
[θaeθa′e′ ]0Rae;bcθ

bcRa′e′;b′c′θb′c′

= 3

10

∫
[θaeθa′e′ ]0RaeRa′e′

= 2r2R2

5

∫
(P acP bd − P adP bc + xe

R
εabcde)ðbφ

(2)
a ðdφ(2)

c . (4.36)

Similarly for spin s, we have∫
φ(s)φ(s) =

∫
[θaeθa′e′RaeRa′e′ ]0

= αsr
2R2
∫

(P acP bd − P adP bc + xe

R
εabcde)ðbφ

(s)
a ðdφ(s)

c (4.37)

which is again some self-dual quadratic Fronsdal-type higher-spin action [29]. The factor αs

will be determined below. This suggests that a matrix model based on a single φ ∈ End(H)

should define some higher-spin theory, which is however expected to be more or less trivial. 
Nevertheless it would be interesting to study the action defined by higher-order polynomials, and 
to understand its relation with Vasiliev’s theory [30]. In the remainder of this paper, we will show 
how a non-trivial higher-spin gauge theory arises from multi-matrix models.

4.1.1. Projections, positivity and determination of αs

Now consider the spin s modes φ(s) ∈ Cs as above, determined by some irreducible rank s
tensor field on H 4. We have seen that this in one-to-one correspondence to a spin s potential 
φ

(s)
a ∈ Cs−1 as above. Then

12 The topological terms are the linearized Pontryagin and Euler class (i.e. Gauss–Bonnet term).
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−
∫

φ(s)
a {xa,φ

(s)}s−1 =−
∫

φ(s)
a {xa,φ

(s)} =
∫
{xa,φ(s)

a }φ(s) =
∫

φ(s)φ(s) . (4.38)

This provides the following relations:

Spin 1 case. For spin s = 1, the projection {xa, φ(s)}0 in (4.38) was computed in (4.9), which 
gives ∫

φ(1)φ(1) = α1

∫
φ(1)

a (�− 2r2)φ(1)
a ≥ 0, (4.39)

for Hermitian φ(1) Therefore

α1 = 1

3
, (4.40)

and in particular � − 2r2 is positive on C0.

Spin 2 case. We can evaluate the right-hand side of (4.38) using (4.36) as∫
φ(2)φ(2) = 2r2R2

5

∫
P ac

ðbφ
(2)
a ð

bφ(2)
c − ð

dφ(2)
a ð

aφ
(2)
d + xe

R
εabcde

ðbφ
(2)
a ðdφ(2)

c

= 2r2R2

5

∫
−φ(2)

a ðbð
bφ(2)

a + 1

R2 φ
(2)
b φ

(2)
b − 4

R2 φ(2)
a φ(2)

a

+ 1

r2R2 φ(2)
a

(
{θad,φ

(2)
d } − 1

2R
εabdcexe{θbd,φ(2)

c }
)

= α2

∫
φ(2)

a (�− 2r2)φ(2)
a (4.41)

using (3.78), (D.22), the self-duality relation (D.23) and (D.24). Therefore

α2 = 2

5
. (4.42)

This holds in fact for any tangential divergence-free φc ∈ C1. Together with (4.38), this estab-
lishes the formula (4.20). On the other hand, (4.40) and (4.39) implies also e.g.13∫

φ(2)
a φ(2)

a = 1

3

∫
φab(�− 2r2)φab (4.43)

if φab ∈ C0 is divergence-free, traceless and tangential (by fixing one index).

Generic spin s case. In the generic case, we obtain similarly∫
φ(s)φ(s) =

∫
φ(s)

a α̂sφ
(s)
a , α̂sφ

(s) = αs(�− 2r2)φ(s)
a , (4.44)∫

φ(s)φ(s) =
∫

φ(s)
a1...as

α̂s . . . α̂2α̂1φ
(s)
a1...as

. (4.45)

Explicit expressions for αs for s ≥ 3 could be computed similarly but are not required for our 
purposes.

13 Since φ
(2)
a = {xc, φcb} for tangential traceless divergence-free φab ∈ C0; the index a is irrelevant here.
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4.2. Local decomposition

Finally consider any point on H 4, for instance the reference point (2.6). We denote the four 
tangential coordinates with xμ, and the time-like coordinate on R4,1 with x0. Then the so(4, 1)

generators decompose (locally) into so(4) generators mμν , and the remaining translation gener-
ator by pμ =mμ0. We can then decompose e.g. the spin s = 1 modes locally as

φab(x)mab = φμ(x)pμ + φμν(x)mμν ∈ C1 (4.46)

and similar for higher-spin. From this point of view, the main lesson of the above results is that 
the φμ(x) and φμν(x) are not independent fields, but determined by the same irreducible spin 1 
field φa(x), and similarly for higher-spin fields. For generalized fuzzy spaces these constraints 
may disappear, as considered in [3]. For the basic spaces H 4

n and for S4
N [2], the formalism 

developed above takes these constraints properly into account.

5. Matrix model realization and fluctuations

Now consider the IKKT matrix models with mass term,

S[Y ] = 1

g2 Tr
(
[Ya,Y b][Ya′ , Y b′ ]ηaa′ηbb′ −μ2YaY

a
)

. (5.1)

Here ηab = diag(−1, 1, . . . , 1) is interpreted as Minkowski metric of the target space R1,D−1. 
The positive mass μ2 > 0 should ensure stability. The above model leads to the classical equa-
tions of motion

�Y Y a + 1

2
μ2Ya = 0 (5.2)

where

�Y = [Ya, [Ya, ·]
] ∼−{ya, {ya, ·}} (5.3)

plays the role of the Laplacian. Note that (5.2) are precisely the equation of motions for the IKKT 
model put forward in [31] after taking an IR cutoff into account.

5.1. Fuzzy H 4
n solution and tangential fluctuation modes

Consider the solution Ya =Xa of (3.6) corresponding to fuzzy H 4
n , and add fluctuations

Ya =Xa +Aa (5.4)

on H 4
n . They naturally separate into tangential modes xaAa=0 and radial modes xaAa �=0. The 

SO(4, 1)-invariant inner product〈
A(i),A(j)

〉
:=
∫

A(i)
a A(j)

b ηab (5.5)

is positive definite for (Hermitian) tangential Aa on H 4, and negative for the radial modes. Since 
Aa ∈ End(Hn) ⊗R5, we expect four tangential fluctuation modes and one radial mode for each 
spin (except for spin 0), as for S4

N [2]. Our strategy will be to remove the radial modes, and to 
find a useful basis of tangential modes in the semi-classical limit.
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Intertwiners. Define the SO(4, 1) intertwiners

I(Aa) := {θab,Ab}
Ĩ(Aa) := Paa′ {θa′b,Ab}
G(Aa) := {xa, {xb,Ab}} . (5.6)

They are Hermitian w.r.t. the inner product (5.5), and tangential except for I , noting that

xa I(Aa)= xa {θac,Ac} = −r2R2
ð

aAa

ð
aI(Aa)= ða{θad,Ad} = 1

r2R2 xb{θab, {θad,Ad}}

= − 1

r2R2 xb I2(Ab) . (5.7)

The SO(4, 1) Casimir for the fluctuation modes can be expressed using I as follows:

C2[so(4,1)](full)Aa = 1

2
([Mcd , ·] +M

(5)
cd )2Aa

= C2[so(4,1)](ad)Aa − 2r−2I(Aa)+ 4

= (−r−2�− 2r−2I + S2 + 4)Aa

= (R2
ð · ð− 2r−2I + S2 + 4)Aa (5.8)

using (3.44), and C2[so(4, 1)] = 4 for the vector representation C5. This can be seen by express-
ing I as follows:

−θ(M
(ad)
cd ⊗M

(5)
cd A)a ∼−(M(5)

cd

)a
b
i{θcd, ·}Ab = 2{θab,Ab} = 2I(A)a . (5.9)

Here

(M
(5)
ab )cd = i(δc

bηad − δc
aηbd) (5.10)

is the vector generator of so(4, 1), and M(ad)
bc = i{Mbc, ·} denotes the representation of so(4, 1)

induced by the Poisson structure on S4. As a check, we note that C(full)(xa) = 0, since I(xa) =
4xa . This reflects the full SO(4, 1)-invariance of the background xa .

5.1.1. Spin 0 modes
Let φ ∈ C0 be a spin 0 scalar field. There are two tangential spin 0 modes, which read

A(1)
a = ðaφ ∈ C0, φ ∈ C0 ,

A(2)
a = θab

ðbφ = {xa,φ} ∈ C1 .
(5.11)

These modes satisfy

{xa,A(1)
a } = {xa,ðaφ} = 0 ,

{xa,A(2)
a } = −�φ ,

(5.12)

using (D.3). Clearly only A(1)
a is physical, while A(2)

a is a pure gauge field. Let us compute the 
action of the I intertwiner; to start with
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I(A(2)
a ) := {θab, {xb,φ}} = {{θab, xb}, φ}} + {xb, {θab,φ}}

= 4r2{xa,φ} + r2{xb, (xa
ð

b − xb
ð

a)φ}
= 4r2{xa,φ} + r2θba

ð
bφ

= 3r2A(2) . (5.13)

Similarly, one finds

I(A(1)
a ) := {θab,ðbφ} = r2A(1)

a (5.14)

Now we can use the identities

I(A(2)
a )= {θab, θbb′A(1)

b′ }
= {θab, θbb′ }A(1)

b′ + θbb′ {θab,A(1)

b′ }
= 3r2θab′A(1)

b′ + {θbb′θab,A(1)

b′ } − θab{θbb′ ,A(1)

b′ }
= 3r2θab′A(1)

b′ − r2R2{P ab′ ,A(1)

b′ } − θabI(A(1)
b )

= 3r2θab′A(1)

b′ − r2(xa{xc,A(1)
c } − θacA(1)

c )− θabI(A(1)
b )

= 4r2θacA(1)
c − θabI(A(1)

b ) , (5.15)

wherein we used

R2{P ab,φb} = {xaxc,φc} = xa{xc,φc} + xc{xa,φc}
= xa{xc,φc} − θacφc , (5.16)

for any tangential φc, and the gauge fixing relations (5.30). Therefore

θabI(A(1)
b )= 4r2A(2)

a − I(A(2)
a )

Ĩ(A(1)
a )= 4r2A(1)

a + 1

r2R2 θadI(A(2)
d ) . (5.17)

For s = 0, this gives

I(A(2)
a )= 3r2A(2) (5.18)

since S2A(2) = 4A(2), in agreement with (5.13). Then (5.17) gives

Ĩ(A(1)
a )= r2A(1)

a (5.19)

because A(1)
a is tangential. To summarize,

Ĩ
(
A(1)

a

A(2)
a

)
= r2
(

1 0
0 3

)(
A(1)

a

A(2)
a

)
(5.20)

5.1.2. Spin 1 modes
Now let φa ∈ C0 be a tangential, divergence-free spin 1 field. Then there are four tangential 

spin 1 modes, given by

A(1)
a = ðaφ

(1) ∈ C1, φ(1) = {xa,φa} ∈ C1

A(2)
a = θab

ðbφ
(1) = {xa,φ(1)} ∈ C2 ⊕ C0 ,

A(3)
a = φa ∈ C0 ,

A(4)
a = θabφb ∈ C1 .

(5.21)
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Here φ(1) is the unique spin 1 mode in End(H). I can be computed on the A(3)
a and A(4)

a modes 
using

I(φa) := {θab,φb} = r2φa (5.22)

due to (D.2), which gives

I(A(3)
a ) := {θab,φb} = r2φa = r2A(3)

a . (5.23)

Furthermore,

Ĩ(A(4)
a ) := P aa′ {θa′b, θbcφc}

= P aa′θbc{θa′b,φc} + P aa′ {θa′b, θbc}φc

= P aa′ {θbcθa′b,φc} − θab{θbc,φc} + 3r2θacφc

=−r2R2P aa′ {P a′c, φc} + 2r2θacφc

= r2P aa′θa′cφc + 2r2A(4)
a

= 3r2A(4)
a (5.24)

using (5.16). I(A(2)
a ) and I(A(1)

a ) will be computed for the general case below.

5.1.3. Spin 2 modes
Now let φab = φba ∈ C0 be a tangential, divergence-free, traceless spin 2 field, and let φ(2)

a =
{xb, φab} ∈ C1. Then there are four tangential spin 2 modes, given by

A(1)
a = ðaφ

(2) ∈ C2, φ(2) = {xa,φ(2)
a } ∈ C2 ,

A(2)
a = θab

ðbφ
(2) = {xa,φ(2)} ∈ C3 ⊕ C1 ,

A(3)
a = φ(2)

a ∈ C1 ,

A(4)
a = θabφ

(2)
b ∈ C2 .

(5.25)

Here φ(2) is the unique spin 2 mode in End(H), which involves the linearized Riemann tensor. 
They satisfy the gauge fixing relations derived below, see (5.30). Also recall from (4.15) that φ(2)

c

is indeed tangential. Furthermore,

I(A(3)
a ) := {θab,φ

(2)
b } = {θab, {xc,φbc}}

= −{φbc, {θab, xc}} − {xc, {φbc, θ
ab}}

= r2{φbc, η
acxb − ηbcxa} + r2{xc,φac}

= 0 (5.26)

using (5.22) for the last term. Adapting (5.27), we obtain

Ĩ(A(4)
a )= P aa′ {θbcθa′b,φc} − θab{θbc,φc} + 3r2θacφc

=−r2R2P aa′ {P a′c, φc} + 3r2θacφc

= r2P aa′θa′cφc + 3r2A(4)

= 4r2A(4) . (5.27)

It is illuminating to display the explicit tensor content of the spin 2 modes, recalling that φ(2)
b is 

the spin connection (4.13) and φ(2) is the curvature tensor. Using (4.17), this is
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A(1)
a = ðaφ

(2) = 1

2
ða(θ

edθbcRed;bc[φ(2)]) ,

A(2)
a = 1

2
θaa′

ða′(θ
edθbcRed;bc[φ(2)]) ,

A(3)
a =−ωa;deθ

de ,

A(4)
a =−θabωb;deθ

de .

(5.28)

In particular, A(4)
a = θabAb encodes a so(4, 1)-valued gauge field Ab =−ωb;deθ

de given by the 
linearized spin connection of φab.

5.1.4. Spin s ≥ 1 modes
Now consider the generic case. Let φa1...as ∈ C0 be a tangential, divergence-free, traceless, 

symmetric spin s field, and let φ(s)
a = {xa1, . . . {xas−1, φa1...as−1a} . . .} ∈ Cs−1. Then there are 

four tangential spin s modes, given by

A(1)
a = ðaφ

(s) ∈ Cs , φ(s) = {xa,φ(s)
a } ∈ Cs

A(2)
a = θab

ðbφ
(s) = {xa,φ(s)} ∈ Cs+1 ⊕ Cs−1

A(3)
a = φ(s)

a ∈ Cs−1 ,

A(4)
a = θabφ

(s)
b ∈ Cs .

(5.29)

Here φ(s) is the unique spin s mode in End(H). The modes (5.29) satisfy the gauge-fixing rela-
tions

{xa,A(1)
a } = {xa,ðaφ

(1)} = 0 ,

{xa,A(4)
a } = {xa, θabφb} = θab{xa,φb} = r2R2

ð
aφa = 0 ,

{xa,A(3)
a } = {xa,φa} = φ(1) ,

{xa,A(2)
a } = −�φ(1) ,

(5.30)

using (D.3), and

ð
aA(1)

a =− 1

r2R2 �φ(1) ,

ð
aA(2)

a = 0 = ð
aA(3)

a ,

ð
aA(4)

a = ða(θ
abφb)= {xa,φa} = φ(1) .

(5.31)

These relations hold for any spin. Together with (5.7), it follows that I(A(2)) and I(A(3)) are 
tangential, while I(A(1)) and I(A(4)) are not. Let us proceed to Ĩ; we first show that

Ĩ(A(3)
a ) := {θab,φ

(s)
b } = (2− s)r2A(3)

a (5.32)

This can be proven inductively as follows:

{θab,φ
(s)
b } = {θab, {xc,φ

(s)
bc }}

= −{φ(s)
bc , {θab, xc}} − {xc, {φ(s)

bc , θab}}
= r2{φ(s)

ba , xb} + (3− s)r2{xc,φ(s)
ac }

= (2− s)r2φ(s)
a (5.33)
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using (5.22), where φ(s)
ab = {xa1, . . . , {xas−2 , φa1...as−2ab} . . .} ∈ Cs−2. Note that we employed the 

relation {θab, φ(s)
bc } = (3 − s)r2φ

(s)
bc for φ(s)

bc ∈ Cs−2, which can be derived via induction, too. 
Adapting (5.27), this yields

Ĩ(A(4)
a )= P aa′ {θbcθa′b,φc} − θab{θbc,φc} + 3r2θacφc

=−r2R2P aa′ {P a′c, φc} − (2− s)r2θabφ
(s)
b + 3r2θacφc

= r2P aa′θa′cφc + (s + 1)φ(s)
a r2A(4)

= (s + 2)r2A(4). (5.34)

To compute I(A(2)
a ), consider

I(A(2)
a ) := {θab,A(2)

b } = {{xa, xb},A(2)
b }

= −{{xb,A(2)
b }, xa} − {{A(2)

b , xa}, xb} , (5.35)

where the second term can be rewritten as

−{{A(2)
b , xa}, xb} = −{{{xb,φ}, xa}, xb}

= {{{φ,xa}, xb}, xb} + {{θab,φ}, xb}
=�A(2)

a − {{φ,xb}, θab} − {{xb, θ
ab}, φ}

=�A(2)
a − I(A(2)

b )+ 4r2A(2)
a . (5.36)

So that we obtain

2I(A(2)
a )=−{{xb,A(2)

b }, xa} +�A(2)
a + 4r2A(2)

a

= {�φ,xa} +
(�+ 4r2)A(2)

a (5.37)

for any spin s ≥ 1. Therefore

(�− 2I)(A(2)
a )=−{�φ,xa} − 4r2A(2)

a . (5.38)

On the other hand, for a spin s field φ we have

{xa,�φ} =A(2)[�φ] = r2A(2)[(−C2 + S2)φ] = r2(2s(s + 1)−C2
full)A(2)[φ]

= ((�+ 2I)− r2S2 + 2r2s(s + 1)− 4r2)A(2)[φ] , (5.39)

using the intertwiner property and (5.8), hence

{xa,�φ} −�{xa,φ} = (2I − r2S2 + 2r2s(s + 1)− 4r2)A(2)[φ] . (5.40)

Comparing with (5.37), this gives

2I(A(2)
a )=−{xa,�φ} + (�+ 4r2)A(2)

a = (4r2 − 2I + r2S2 − 2r2s(s + 1)+ 4r2)A(2)

such that

2I(A(2)
a )= r2

(1

2
S2 − s(s + 1)+ 4

)
A(2) (5.41)

for s ≥ 1, which is tangential. Hence if S2 is diagonal then I is also diagonal, and the Casimir 
C2[SO(4, 1)] (5.8) can be diagonalized simultaneously. To evaluate (5.41), we decompose A(2)

a

into its components in Cs−1 ⊕ Cs+1 as follows:
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A(2)
a =−αs(�− 2r2)A(3)

a +A(2′)
a ∈ Cs−1 ⊕ Cs+1 ,

A(2′)
a :=A(2)

a + αs(�− 2r2)A(3)
a ∈ Cs+1 , (5.42)

using (4.29); recall that A(3)
a ≡ φ

(s)
a . Note that (5.42) is simultaneously a decomposition into 

eigenvectors of I ,

2I(A(2′)
a )= 2(s + 3)r2A(2′)

a ,

2I(A(3)
a )= 2(2− s)r2A(3)

a (5.43)

consistent with (5.32). Then we arrive at

2I(A(2)
a )=−2(2− s)αsr

2(�− 2r2)A(3)
a + 2(s + 3)r2A(2′)

a

= 2(s + 3)r2A(2)
a + 2(2s + 1)αsr

2(�− 2r2)A(3)
a (5.44)

and I(A(1)
a ) is obtained from (5.17),

Ĩ(A(1)
a )= 4r2A(1)

a + 1

R2 θad((s + 3)A(2)
d + (2s + 1)αs(�− 2r2)A(3)

d )

= r2(1− s)A(1)
a + 2s + 1

R2 αsθ
ab(�− 2r2)A(3)

a

= r2(1− s)A(1)
a + 2s + 1

R2 α̂sA(4)
a (5.45)

where the last line is only a short-hand notation which applies to irreps, cf. (4.10). Hence Ĩ is 
diagonalized as follows:

Ĩ(A(1′)
a )= r2(1− s)A(1′)

a ,

A(1′)
a =A(1)

a − αs

R2r2 θ̃ ab(�− 2r2)A(3)
b ≡A(1)

a − α̂s

R2r2A
(4)
a , (5.46)

using (5.34). Accordingly, we define the eigenmodes

(B(1)
a ,B(2)

a ,B(3)
a ,B(4)

a ) := (A(1′)
a ,A(2′)

a ,A(3)
a ,A(4)

a ) , (5.47)

which satisfy

Ĩ

⎛⎜⎜⎜⎝
B(1)

a

B(2)
a

B(3)
a

B(4)
a

⎞⎟⎟⎟⎠= r2

⎛⎜⎜⎝
1− s 0 0 0

0 s + 3 0 0
0 0 2− s 0
0 0 0 2+ s

⎞⎟⎟⎠
⎛⎜⎜⎜⎝
B(1)

a

B(2)
a

B(3)
a

B(4)
a

⎞⎟⎟⎟⎠ , (5.48a)

S2

⎛⎜⎜⎜⎝
B(1)

a

B(2)
a

B(3)
a

B(4)
a

⎞⎟⎟⎟⎠= 2

⎛⎜⎜⎝
s(s + 1) 0 0 0

0 (s + 1)(s + 2) 0 0
0 0 (s − 1)s 0
0 0 0 s(s + 1)

⎞⎟⎟⎠
⎛⎜⎜⎜⎝
B(1)

a

B(2)
a

B(3)
a

B(4)
a

⎞⎟⎟⎟⎠ . (5.48b)

This shows that all these modes are distinct, and it will allow to diagonalize and evaluate explic-
itly the quadratic action. It also implies that we did not miss any modes, since there can be only 
5 modes for each spin (including the radial one, see below).
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Gauge fixing term. The intertwiner G of (5.6) takes the values

G(A(2)
a )=−{xa,�φ(s)}

G(A(3)
a )= {xa,φ(s)} =A(2)

a

G(A(1)
a )= G(A(4)

a )= 0 . (5.49)

5.2. Recombination, hs-valued gauge fields and Young diagrams

The distinct modes A(i) are useful to disentangle the different degrees of freedom. On the 
other hand we can relax the requirements that the underlying tensor fields φa1...as are irreducible, 
so that the modes can be captured in a simpler way.

Trace contributions. These arise from

φa1...as = ηa1a2φa3...as . (5.50)

Then

φ̃(s)
a = {xa1 , . . . {xas−1 , ηa1a2φa3...a} . . .}} = −�φ(s−2)

a ∈ Cs−2,

φ̃(s) = {xa, φ̃(s)
a } = −{xa,�φ(s)

a } (5.51)

which enters the four modes as follows

A(1)
a = ðaφ̃

(s−2) ∈ Cs−2,

A(2)
a = θab

ðbφ̃
(s−2) = {xa,φ(s−2)} ∈ Cs−1 ⊕ Cs−3

A(3)
a = φ̃(s−2)

a ∈ Cs−3,

A(4)
a = θabφ̃

(s−2)
b ∈ Cs−2. (5.52)

Hence the trace components reproduce the four modes with spin s − 2, as long as �φ
(s)
a �= 0.

Divergence modes. Now we drop the requirement that φab is divergence-free. Consider the case 
of rank 2 tensors, expressed in terms of spin 1 modes as in (4.22)

φ̃
(1)
ab =∇aφb +∇bφa . (5.53)

Then according to (4.24), these contributions to the would-be spin 2 modes A(1)
a , A(2)

a vanish 
identically. The contribution to A(3)

a reduces to a combinations of the spin 1 modes of A(1)
a and 

A(4)
a , and the contribution to A(4)

a reduces to a combinations of the spin 1 modes of A(2)
a and 

A(3)
a . Hence if we drop the divergence-free condition, it would suffice to keep the A(3)

a and A(4)
a

modes.14 In particular, we need not worry about these constraints upon projecting H 4 to M3,1. 
It will suffice to impose the appropriate divergence- and trace-conditions for M3,1.

Finally as for S4
N [2], we can collect all tangential fluctuation modes as hs-valued tangential 

gauge fields

Aa = θacAc, Ac =Ac,α(x)�α (5.54)

14 However, the spin 0 modes cannot be recovered from divergence modes: for φa = ðaφ we get φ̃(1) = {xa, ðaφ} = 0
due to (D.3).
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where Ac,α(x) are double-traceless tensor fields corresponding to 2-row Young diagrams of the 
type . The external leg is associated to the extra box in the Young diagram. However the 
Ac,α(x) are in fact higher curvatures of the underlying symmetric tensor fields φa1...as as in 

(4.28), which characterize the irreducible physical degrees of freedom A(i)
a .

5.2.1. Inner products
The inner products (5.5) of the tangential fluctuations are given by∫

A(1)
b A(1)

b =
∫

ðbφ
(s)
ðbφ

(s) = αs

r2R2

∫
φ(s)

a (�+ 2r2s)(�− 2r2)φ(s)
a ,∫

A(1)
b A(4)

b =
∫

ðaφ
(s)θabφ

(s)
b =
∫

φ(s){xb,φ
(s)
b }

=
∫

φ(s,1)φ(s,4) = αs

∫
φ(s)

a (�− 2r2)φ(s)
a ,∫

A(3)
b A(2)

b =
∫

φ
(s)
b {xb,φ(s)} = −

∫
{xb,φ

(s)
b }φ(s) =−αs

∫
φ(s)

a (�− 2r2)φ(s)
a ,∫

A(2)
b A(2)

b =
∫
{xb,φ

(s)}{xb,φ(s)} = αs

∫
φ(s)

a (�+ 2r2s)(�− 2r2)φ(s)
a ,∫

A(3)
a A(3)

a =
∫

φ
(s)
b φ

(s)
b ,∫

A(4)
a A(4)

a =
∫

θabφ
(s)
b θacφ(s)

c = r2R2
∫

φ
(s)
b φ

(s)
b ,∫

A(1)
b A(2)

b =
∫

A(1)
b A(3)

b =
∫

A(4)
a A(2)

a =
∫

A(4)
a A(3)

a = 0 , (5.55)

using (3.69), (D.3), (D.36) and [θabφ
(s,4)
b φ

(s,3)
a ]0 = 0; we drop the labels φ(s,4)

b ≡ φ
(s)
b if no 

confusion can arise.
Now consider the eigenstates (5.47) of I . We verify that B(2)

a and B(1)
a satisfy the orthogonality 

relations∫
B(2)

a B(3)
a =

∫
(A(2)

a + α̂sA(3)
a )A(3)

a = 0 ,∫
B(1)

a B(4)
a = 0 , (5.56)

using the definitions (5.42), (5.46) as well as (4.44). Therefore {B(i)
a }4i=1 form an orthogonal basis 

of eigenmodes. The normalization can be computed as∫
B(2)

a B(2)
a =

∫ (
A(2)

a + α̂sA(3)
a

)(
A(2)

a + α̂sA(3)
a

)
= αs

∫
φ(2′)

a

(
(�+ 2r2s)− αs(�− 2r2)

)
(�− 2r2)φ(2′)

a

=
∫

φ(2′)
(
(1− αs)�+ 2r2(s + 1)

)
φ(2′) (5.57)

and
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∫
B(1)

a B(1)
a =

∫ (
A(1)

a − α̂s

R2r2A
(4)
a

)(
A(1)

a − α̂s

R2r2A
(4)
a

)
= αs

r2R2

∫
φ(1′)

a

(
(�+ 2r2s)− αs(�− 2r2)

)
(�− 2r2)φ(1′)

a

= 1

r2R2

∫
φ(1′)
(
(1− αs)�+ 2r2αs(s + 1)

)
φ(1′) . (5.58)

Note that all A(2)
a modes are pure gauge modes, and they will drop out in the action.

5.3. Radial modes

Finally consider the radial fluctuation modes. These are given by

A(r)
a [φ(s)] = xaφ

(s), φ(s) ∈ Cs . (5.59)

They are dangerous because the radial metric in R1,4 is negative,∫
A(r)

b A(r)
b =
∫

xaφ
(s)xaφ(s) =−R2

∫
φ(s)φ(s) (5.60)

recalling that xax
a = −R2 < 0. However, they disappear after the projection to M3,1. If we 

include these radial fluctuations, we should first diagonalize I . We have

I(A(r)
a )= {θab, xbφ

(s)} = {θab, xb}φ(s) + xb{θab,φ(s)}
= 4xaφ(s) − θab{xb,φ

(s)}
= 4A(r)

a + r2R2A(1)
a . (5.61)

Recall that I(A(2′,3)) is tangential, but I(A(1,4)) is not, with

xaI(A(1)[φ])=�φ ,

xaI(A(4)[φ])=−r2R2φ ,

xaI(A(1′)[φ])= (�+ α̂s)φ , (5.62)

using (5.7) and (5.31). Hence the radial modes may couple to the A(1,2) or the B(1,2) modes, and 
the I eigenmodes seem to mix completely all 3 components A(1′), A(4), A(r). However since the 
radial modes are negative definite, we will focus on the tangential modes, and on its projection 
to M4,1 in the next stage.

5.4. SO(4, 1)-invariant quadratic action on H 4

The quadratic fluctuations for the fluctuation modes ya = xa +Aa are governed by the action

S[y] = S[x] + S2[A] +O(A3), (5.63)

where

S2[A] = 2

g2

∫
dμ
(
Aa(D2A)a + {xa,Aa}2

)
= 2

g2

∫
dμAa(D2 + G)Aa . (5.64)

Here
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(D2A) :=
(

�− 2I + 1

2
μ2
)
A (5.65)

is the “vector” (matrix) Laplacian, and G(A) (5.6) ensures gauge invariance. The mass term 
determines r2 via the on-shell condition for H 4

n ,

0 =
(

�+ 1

2
μ2
)

xa,
1

2
μ2 = 4r2 . (5.66)

Gauge-invariant action. Consider first the gauge-invariant kinetic term

S2[A] = 2

g2

∫
dμAa(D2 + G)Aa . (5.67)

We verify that the pure gauge modes A(2)
a are null modes using (5.49) and (5.38):

(D2 + G)A(2)
a =−{�φ(s), xa} +

(
1

2
μ2 − 4r2

)
A(2)

a − {xa,�φ(s)} = 0 (5.68)

for any spin, taking into account the on-shell condition 1
2μ2 = 4r2. Hence the pure gauge modes 

A(2)
a indeed decouple.
For spin 0, we determine the action explicitly for the B(1) and B(2) modes

(D2 + G)

(
B(1)

a

B(2)
a

)
=
(�+ 2r2 0

0 0

)(
B(1)

a

B(2)
a

)
. (5.69)

The inner product is diagonal for spin 0, and the quadratic action is given by

S2[A] =
∫

B(i)
a

(�+ 2r2 0
0 0

)
B(i)

a . (5.70)

Since B(1)
a ∈ C0, this is indeed positive define (except for the pure gauge mode) due to (5.55), 

recalling that � ∝−ð · ð for spin 0 (3.69).

Gauge-fixed action and positivity. Now we consider a gauge-fixed action, which is obtained by 
canceling G with a suitable Faddeev–Popov (or BRST) term:

S2,(fix)[A] = 2

g2

∫
dμAD2 A . (5.71)

We work in the basis {B(i)} (5.47) where I is diagonal. Then the eigenvalues of the kinetic 
operator D2 are elaborated in the appendix D.1. Together with the inner products in section 5.2.1, 
we obtain the following diagonalized quadratic action∫

B(1)
a D2B(1)

a = αs

r2R2

∫
φ(s)

a

×
(
(�+ 2r2s)− αs(�− 2r2)

)
(�− 2r2)(�+ 2r2(3s + 2))φ(s)

a

= 1

r2R2

∫
φ(s)
(
(1− αs)�+ 2r2αs(s + 1)

)
(�+ 4r2(s + 1))φ(s) ,
(5.72a)
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∫
B(2)

a D2B(2)
a = αs

∫
φ(s)

a

(
(�+ 2r2s)− αs(�− 2r2)

)
(�− 2r2)(�+ 2r2s)φ(s)

a

=
∫

φ(s)
(
(1− αs)�+ 2r2αs(s + 1)

)�φ(s) , (5.72b)∫
B(3)

a D2B(3)
a =

∫
φ

(s)
b (�+ 2r2s)φ

(s)
b , (5.72c)∫

B(4)
a D2B(4)

a = r2R2
∫

φ
(s)
b (�− 2r2s)φ

(s)
b . (5.72d)

All these terms are non-negative, because

(�+ 2r2s)− αs(�− 2r2)= (1− αs)�+ 2r2(s + αs) > 0.

A[(�− 2r2s)φ
(s)
b ] ∝A[(�+ r2s(s − 3))φa1...as ] (5.73)

for any intertwiner A, using (D.33). The first line is positive because 1 > αs , and the second line 
is positive since � + r2s(s − 3) is manifestly positive for s ≥ 3, while for s = 1, 2 it coincides 
with � −2r2 which is also positive on divergence-free tensor fields as shown in (4.39). As usual, 
the unphysical modes will be canceled by Faddeev–Popov ghosts.

We consider explicitly the case of spin 1 and spin 2. For spin 1, we have∫
B(1)

a D2B(1)
a = α1

r2R2

∫
φa

(
(�+ 2r2)− α1(�− 2r2)

)
(�− 2r2)(�+ 10r2)φa

= 1

r2R2

∫
φ(1)
(
(1− α1)�+ 4r2α1

)
(�+ 8r2)φ(1) , (5.74a)∫

B(2)
a D2B(2)

a = α1

∫
φa

(
(�+ 2r2)− α1(�− 2r2)

)
(�− 2r2)(�+ 2r2)φa

=
∫

φ(1)
(
(1− α1)�+ 4r2α1

)�φ(1) , (5.74b)∫
B(3)

a D2B(3)
a =

∫
φa(�+ 2r2)φa , (5.74c)∫

B(4)
a D2B(4)

a = r2R2
∫

φa(�− 2r2)φa , (5.74d)

and for spin 2∫
B(1)

a D2B(1)
a = α2

r2R2

∫
φ(2)

a

(
(�+ 4r2)− α2(�− 2r2)

)
(�− 2r2)(�+ 16r2)φ(2)

a

= 1

r2R2

∫
φ(2)
(
(1− α2)�+ 6r2α2

)
(�+ 12r2)φ(2)

= α1α2

r2R2

∫
φab(�+ 6r2 − α2�)(�+ 18r2)(�− 2r2)�φab , (5.75a)∫

B(2)
a D2B(2)

a = α2

∫
φ(2)

a

(
(�+ 4r2)− α2(�− 2r2)

)
(�− 2r2)(�+ 4r2)φ(2)

a

=
∫

φ(2)
(
(1− α2)�+ 6r2α2

)�φ(2)

= α2α1

∫
φab

(�+ 6r2 − α2�)(�+ 6r2)(�− 2r2)�φab , (5.75b)
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∫
B(3)

a D2B(3)
a =

∫
φ(2)

a (�+ 4r2)φ(2)
a

= α1

∫
φab(�+ 6r2)(�− 2r2)φab , (5.75c)∫

B(4)
a D2B(4)

a = r2R2
∫

φ
(2)
b (�− 4r2)φ

(2)
b

= α1r
2R2
∫

φab(�− 2r2)2φab , (5.75d)

using (4.43). Note that we only include tangential fluctuation modes here. If we would also 
include the radial fluctuations as in section 5.3, they would be negative definite or ghost modes, 
because the metric in the radial direction is time-like. However this is resolved upon projecting 
to M3,1, as discussed below.

5.5. Yang–Mills gauge theory

We can write the full action (5.1) in a conventional (higher-spin) Yang–Mills form for the 
recombined higher-spin gauge fields (5.54) Aa = θabAb . Then the field strength is

Fab = [Xa +Aa,Xb +Ab] ∼ θab + θaa′θbb′Fa′b′ ,

Fab =∇aAb −∇bAa′ + [Aa,Ab] (5.76)

recalling that ∇θab = 0. Hence the action (5.1)

S[Y ] ∼ 1

g2
YM

∫
H 4

(
FabFa′b′η

aa′ηbb′ − 2

R2 AaAa′η
aa′) (5.77)

is basically a hs-valued Yang–Mills action15 (dropping surface terms and using μ2 = 8r2), where

1

g2
YM

= ρ
L8

NC

4g2 (5.78)

is the dimensionless Yang–Mills coupling constant. For nonabelian spin 1 modes A(4)
a on stacks 

of H 4
n branes, the usual Yang–Mills action is recovered. For spin 2, one would expect this to 

describe some type of quadratic gravity action [32–34]. However this does not happen as shown 
below, since the graviton is obtained by a field redefinition (5.101) and does not propagate at the 
classical level. However the Yang–Mills framework suggests that no ghost modes appear also for 
higher-spin (as opposed to quadratic gravity), hence gravity might emerge at the quantum level.

5.6. Metric and gravitons on H 4

Now we take some of the leading (cubic) interactions of these modes into account, focusing on 
the contributions of the spin 2 (and spin 1) modes to the kinetic term on H 4. These contributions 

15 We used xaAa = 0; the apparent “mass” term is at the cosmological curvature scale, and would presumably disappear 
upon imposing the non-linear constraint YaYa =−R2.
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are expected to give rise to linearized gravity. The kinetic term for all fluctuations on a given 
background Ya ∼ ya arises in the matrix model from16

S[φ] = −Tr[Ya,φ][Ya,φ] ∼
∫

ρ {ya,φ}{ya,φ}

=
∫

ργ ab
ðaφðbφ

ξ=
∫

ρ γ μν∂μφ∂νφ

=
∫

H 4

d4x
√|Gμν |Gμν∂μϕ∂νϕ (5.79)

using (3.77); some dimensionful constants are absorbed in ϕ, and Greek indices indicate local 
coordinates. Here γ ab is a symmetric tensor in SO(4, 1) notation

γ ab = ηcc′e
caec′b, eca = {yc, xa} (5.80)

which in local coordinates near some reference point ξ reduces to γ μν , cf. (3.58d). Hence the 
effective metric is given by [3,15,19]

Gμν = 4α

L4
NC

γ μν , α =
√

L4
NC

4|γ μν | (5.81)

and eca can be interpreted as vielbein. For a deformation of the H 4 background of the form

ya = xa +Aa , (5.82)

the metric is perturbed due to γ ab = γ ab + δAγ ab +O(A2) with

δAγ ab =:Hab[A] = {xc, xa}{Ac, x
b} + (a ↔ b)

= θca{Ac, x
b} + (a ↔ b)

= {θcaAc, x
b} + {θcbAc, x

a} + r2
(
Abxa +Aaxb − 2ηab

(
Acx

c
))

.

(5.83)

Here Hab[A] is an SO(4, 1) intertwiner and tangential,

Habxa = 0 , H := ηabH
ab = 1

2
L4

NCð
aAa . (5.84)

Then the linearized effective metric (5.81) becomes in SO(4, 1)-covariant notation

Gab = P ab + h̃ab , with h̃ab :=
(

hab − 1

2
P abh

)
, (5.85)

thus defining the physical graviton h̃ab , where

hab = 4

L4
NC

[Hab]0, h= ηabh
ab (5.86)

is dimensionless. We study the graviton modes (5.85) for the spin s = 0, 1, 2 fluctuations of 
(5.29) in more detail below.

16 One might worry about the contributions from {ya , ·} on the generators θbc for higher-spin modes. However the 
metric is always defined by the two derivative terms acting on the tensor fields.
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5.6.1. Spin 0 gravitons
To begin with, consider the perturbation (5.83) of the metric for the two spin 0 modes of 

(5.11). One finds

Hab[A(1)] = θacθbd
(
ðcðdφ(0) + ðdðcφ

(0)
)

,

Hab[A(2)] = r2(xaθ
bd
ðdφ(0) −R2θad

ðdðbφ
(0))+ (a ↔ b) . (5.87)

Upon averaging, one obtains

hab[B(1)] = α1

(
2Pabð · ðφ(0) − (∇a∇bφ

(0) +∇b∇aφ
(0))
)

, (5.88)

hab[B(2)] = 0 ,

and the expressions satisfy

h[B(1)] = 6�φ, ∇ahab[B(1)] = 0 , (5.89)

using ∇ah
ab = ðah

ab − 1
R2 xbh. Then the physical graviton of (5.85) satisfies the de Donder 

gauge,

∇ah̃ab[B(1)] − 1

2
∇bh̃= 0 with h̃ab[B(1)] = hab[B(1)] − 1

2
Pabh̃ . (5.90)

The spin 0 contribution to the metric is interesting because its off-shell modes have the wrong 
(ghost-like) sign in GR. This does not happen in the present Yang–Mills model, which is impor-
tant for quantization.

5.6.2. Spin 1 gravitons
Next, we compute the spin one contributions to the gravitons on H 4. Taking into account the 

Cs gradation, the averaged metric perturbation (5.83) is non-vanishing only for the modes A(3)
a

and A(2′)
a .

Spin 1 graviton A(2)
a . Here, we observe

Hab[A(2)] = −r2R2{Pab,φ
(1)} − r2R2

(
∇aA(2)

b +∇bA(2)
a

)
+ r2
(
xaA(2)

b + xbA(2)
a

)
=−r2R2

(
∇aA(2)

b +∇bA(2)
a

)
(5.91)

such that the averaging yields

hab[A(2)] = α1

(
∇a(�− 2r2)φb +∇b(�− 2r2)φa

)
. (5.92)

This has the form of pure gauge (diffeomorphism) contributions. Since the A(2) modes are pure 
gauge, they are not physical in the present model.

Spin 1 graviton A(3)
a . Similarly, we have

Hab[A(3)] = θadθbf
(
ðf φd + ðdφf

)
(5.93)

such that averaging yields

hab[A(3)] = −α1 (∇aφb +∇bφa) . (5.94)
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Physical spin 1 gravitons. For the spin 1 eigenmodes B(i) of (5.47), we therefore obtain the 
following physical gravitons:

h̃ab[B(1)] = h̃ab[B(4)] = 0 ,

h̃ab[B(2)] = α1(1− α1)
(
∇a(�− 2r2)φb +∇b(�− 2r2)φa

)
,

h̃ab[B(3)] = −α1 (∇aφb +∇bφa) .

(5.95)

Hence there is indeed a physical spin 1 mode h̃ab[B(3)] contributing to the metric fluctuations. 
Nevertheless, since it has the form of pure gauge (diffeomorphism) contributions, it will decouple 
from a conserved energy-momentum tensor Tμν .

5.6.3. Spin 2 gravitons
Finally, we consider the spin 2 fluctuations of the background and evaluate their associated 

graviton modes.

Spin 2 graviton A(1)
a . Since A(1)

a = ðaφ
(2) with φ(2) = {xa, {xb, φab}} ∈ C2, we have

Hab = θda{ðdφ(2), xb} + (a ↔ b)

= {xb, {θad
ðdφ(2)} − {θda, xb}ðdφ(2) + (a ↔ b)

= {xb, {xa,φ(2)}} − {θda, xb}ðdφ(2) + (a ↔ b) . (5.96)

The second term drops out in the projection to C0, and using (4.29) twice one finds

hab[A(1)] = 4

L4
NC

[{xb, {xa,φ(2)}}]0 = 2

R2r2 α̂1α̂2φab . (5.97)

Spin 2 graviton A(2)
a . For A(2)

a = {xc, φbc} ∈ C1 ⊕ C3, it follows that Hab ∈ Codd and therefore

hab ∝ [Hab]0 = 0 . (5.98)

In fact this is a pure gauge mode in the model.

Spin 2 graviton A(3)
a . Next, consider A(3)

a = {xc, φac} ∈ C1. Then Hab ∈ Codd, and again

hab ∝ [Hab]0 = 0 . (5.99)

Spin 2 graviton A(4)
a . Finally, consider the mode A(4)

a = θae{xc, φec} ∈ C2. Then

Hab = θda{θde{xc,φec}, xb} + (a ↔ b)

= θdaθde{{xc,φec}, xb} + θda{θde, xb}{xc,φec} + (a ↔ b)

= r2R2{{xc,φac}, xb} − r2θba{xc,φec}xe + (a ↔ b)

=−r2R2{xb, {xc,φac}} + (a ↔ b) (5.100)

using (4.15). Recall that (4.29) implies [{xb, {xc, φac}]0 =−α̂1φab , and therefore

hab[A(4)] = 2α1(�− 2r2)φab . (5.101)
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Physical gravitons. Computing the gravitons for the eigenmodes B(i), we find

h̃ab[B(i)] = 0 for i = 1,2,3

h̃ab[B(4)] = 2α1(�− 2r2)φab, ð
ah̃ab[B(4)] = 0 =∇ah̃ab[B(4)] (5.102)

using (D.26). The trivial result for B(i), i = 2, 3, is obvious, as the individual contributions for 
A(i), i = 2, 3, vanish. However, the vanishing contribution of B(1) is the result of a non-trivial 
cancellation of the contributions from A(1) and A(4).

In summary, the physical fields contributing to the metric fluctuations are a spin 2 field, 
a spin 1 field, and a spin 0 field. This is somewhat reminiscent of scalar-vector-tensor gravity. 
The spin 0 and spin 2 modes both satisfy the de Donder gauge.

To understand the present organization into spin modes, recall that the linearized metric fluc-
tuations hab decompose in general as

hab = h
(2)
ab +∇aξb +∇bξa + 1

4
ηabh (5.103)

where h(2)
ab is a divergence-free, traceless spin 2 tensor. This corresponds to our spin 2, spin 1 and 

spin 0 contribution to the graviton; note that ξa contains another spin 0 (divergence) mode. While 
the ξa fields are unphysical pure gauge modes, the spin 0 part h is a physical field which is in 
general sourced by the trace of the energy-momentum tensor. In the Einstein-Hilbert action, this 
spin 0 field enters with the “wrong” sign, cf. [35]. This does not happen here, which is certainly 
welcome for the quantization of the model.

5.7. Classical action for metric fluctuations

Having defined the notion of physical graviton in (5.85), an effective 4-dimensional action for 
h̃ab is desirable. By writing the trace as an integral as in (3.77), one can express the (gauge-fixed) 
kinetic term for B(4) in terms of ̃hab ≡ h̃ab[B(4)] as follows:

S2 = 1

g2

∫
ρ B(4)D2B(4) = 1

g2 α1r
2R2
∫

ρ φ
(2)
ab [B(4)](�− 2r2)2φ

(2)
ab [B(4)]

= 1

4α1g
2
YML4

NC

∫
h̃ab[B(4) ]̃hab[B(4)] (5.104)

where gYM is the dimensionless Yang–Mills/Maxwell coupling constant (5.78). Superficially, 
this looks like a mass term for the graviton; however this is only the spin two mode, which is by 
definition invariant under diffeomorphisms. Hence (5.104) could also be viewed as the quadratic 
contribution to the cosmological constant in GR.17

Taking into account a coupling to matter of the form δhS = 1
2

∫
h̃abT

ab , the equations of 
motion for ̃hab become

h̃ab[A(4)] = −4

3

g2

ρL4
NC

Tab =−1

3
g2

YML4
NCTab . (5.105)

Clearly ̃hab is not propagating, but acts like an auxiliary field which tracks Tab. As a consequence, 
the pure matrix model action (5.1) does not lead to gravity on H 4, similar to the case of S4

N

17 Hence a large positive mass would not imply large curvature but rather a short range of these modes. See e.g. [36] for 
a related discussion.
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[2]. Nevertheless, the action (5.1) does define a non-trivial, and apparently not pathological, 
spin 2 theory in 4 dimensions with a propagating spin 2 field φab, which should be suitable for 
quantization. Gravity may then arise upon quantization, as discussed next.

5.8. Induced gravity

At first sight it may seem disappointing that gravity does not arise from the classical action. 
On the other hand, since classical GR is not renormalizable, it should presumably be viewed as 
a low-energy effective theory. Adopting this point of view, it is reasonable that the starting point 
of an underlying quantum theory can be very different at the classical level, as for instance in the 
approach advocated here. This train of though is exactly the idea of emergent gravity.18

As soon as quantum effects in the matrix model are taken into account, the effective met-
ric ̃hab will unavoidably acquire a kinetic term, and therefore propagate. More specifically, it is 
well-known that induced gravity terms arise at one loop, upon integrating out fields that cou-
ple to the effective metric [17,18,38]. The induced terms include the cosmological constant and 
Einstein-Hilbert terms. The maximal supersymmetry of the underlying model19 along with the 
finite density of states of the solution strongly suggests that the model is UV finite and “almost-
local”. Moreover, the usual large contribution to the cosmological constant 

∫ √
g�4 is avoided 

here, cf. the one-loop computation in [3]. Canceling also the induced Einstein-Hilbert term is 
more subtle,20 and it is plausible that the supersymmetry breaking H 4 background does lead to 
an induced Einstein-Hilbert term with scale �̃=O

( 1
r

)
.

Motivated by these considerations, one may add a term 
∫

σ�̃2h̃abð ·ðh̃ab to the action (5.104), 
with σ =±1, such that the total action coupled to matter reads

S =
∫

σ�̃2h̃abð · ðh̃ab + 4

3g2
YML4

NC

∫
h̃abh̃ab + 1

2

∫
h̃abT

ab . (5.106)

The equation of motion for ̃hab are then(
ð · ð+ 4

3σg2
YML4

NC�̃2

)
h̃ab =− 1

4σ�̃2
Tab (5.107)

where �̃ is the effective cutoff scale set by induced gravity. For σ =−1, this is indeed a reason-
able equation for linearized gravity, with the effective Newton constant

8πGN = 1

8�̃2
(5.108)

and mass scale

18 In fact, it is known that the Type IIB bulk gravity in the IKKT model arises only at one loop [37]. However, this is a 
different issue, since the present degrees of freedom are only 4-dimensional.
19 This really requires the maximal supersymmetry of the IKKT model, otherwise UV/IR mixing effects will render the 
model strongly non-local and probably pathological, cf. [39,40].
20 On Moyal–Weyl backgrounds, N = 1 SUSY is sufficient to cancel the induced “would-be” cosmological constant 
term, while the induced Einstein–Hilbert term is only canceled in the N = 4 case [41,42]. This is reflected by the absence 
of UV/IR mixing. Here the background and the explicit mass term induce a spontaneous and soft breaking of N = 4
SUSY. Nevertheless, the suggested scenario seems reasonable.
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m2 =O

(
1

g2
YML4

NC�̃2

)
. (5.109)

The mass scale can become very small m2 = O
(

1
R2

)
if �̃ = O

( 1
r

)
and n is large, or upon 

projection to the Minkowski space-time M3,1, where the universe grows in time. Of course, the 
mass term will acquire quantum corrections too, which will be suppressed by supersymmetry. It 
would be desirable to study this in more detail elsewhere.

Even though such a mass term might be interpreted in terms of a cosmological constant in 
linearized GR, its meaning here is somewhat different. As in GR, a proper interpretation requires 
the full non-linear theory. However, it is plausible that a positive mass term may simply imply an 
IR cutoff for gravity here, while the large-scale structure of the background solution might not 
be affected. Therefore a small, but non-zero mass term is quite welcome in the presented setting 
to ensure stability, while the large-scale cosmology would be determined by the background 
solution, as illustrated in section 6.

5.9. Local gauge transformations

Among the higher-spin gauge transformations δ�(xa + Aa) := {xa + Aa, �} generated by 
� ∈ C, consider the spin 1 gauge transformations generated by

�(1) = {xa, va} = θab
ðbva ∈ C1 (5.110)

with va(x) a divergence-free vector field. These correspond to (volume-preserving) diffeomor-
phisms on H 4. The action on scalar functions φ(x) reads

δ�φ = {φ(x),�(1)} = {φ(x), θab
ðbva} (5.111)

so that the action on vector fluctuations is

δ�Aa = δ�xa + {Aa,�
(1)} (5.112)

with21

δ�xa = {xa,�
(1)} = {xa,�}0 + {xa,�

(1)}2
= α1(�− 2r2)va +A(2′)

a [�(1)] (5.113)

using (4.9). The first term describes a diffeomorphism corresponding to the vector field ṽa =
α1(� − 2r2)va . The second term accounts for the spin 1 pure gauge mode A(2′)

a as discussed 
in section 5.1, whose contribution to the graviton h̃ab was computed in (5.91). The higher-spin 
gauge transformations could be worked out similarly.

Since there is only one such gauge invariance, but several fields for each spin, one may worry 
about the consistency of the model. However, recall that the gauge-fixed action (5.71) has been 
proven to be well-defined and non-degenerate in section 5.4. Hence there is no problem at least 
in the Euclidean setting. This is due to the special origin of the fluctuation modes in End(Hn), 
see (3.55).

21 Note that {Aa, �(1)} is not necessarily tangential. However that term vanishes in the semi-classical limit, and is 
significant only for nonabelian gauge fields which we do not consider. The proper treatment is of course to impose the 
non-linear constraint YaYa =−R2, which would restore gauge invariance.
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6. Lorentzian quantum space-times from fuzzy H 4
n

Having disentangled the fluctuations on H 4
n , we would like to apply these tools to the more 

interesting cosmological space-time solutions M3,1. Since the latter is obtained by a projection 
considered in section 3.2, many considerations remain valid. Most importantly, the fluctuation 
modes originate from the same End(Hn) such that we can rely on the same spin operator S2, 
and our classification can be carried over. Moreover, the tangential fluctuations on H 4

n are in 
one-to-one correspondence to the full set of fluctuation modes on M3,1, as will be shown below. 
The symmetry group is reduced to SO(3, 1) instead of SO(4, 1), which is weaker, but should 
still be very useful.

6.1. Cosmological space-time solutions

By projecting fuzzy H 4
n onto the 0123 plane via � of (2.30) i.e. by keeping the Yμ =Mμaαa

for μ = 0, 1, 2, 3 and dropping Y 4, we obtain (3 + 1)-dimensional fuzzy space-time solutions. 
Since the embedding metric ημν is compatible with SO(3, 1), we have

[Yρ, [Yρ,Yμ]] = i(α · α)[Yρ,Mρμ] = −i(α · α)[Mρμ,Yρ]

= (α · α)

{
Yμ, μ �= ρ

0, μ= ρ
(no sum) (6.1)

such that

�Y Yμ = [Yρ, [Yρ,Yμ]] = 3(α · α)Yμ . (6.2)

Depending on α · α we obtain three different types of quantized space-time solutions with 
Minkowski signature in the IKKT model with mass term. These are:

�XXμ =−3r2 Xμ ,

�T T μ = 3

R2 T μ ,

�ZZμ = 0 .

(6.3)

Choosing a positive mass term to ensure stability, we focus on the solution

Yμ =Xμ, r2 = 1

3
m2 . (6.4)

This is the homogeneous and isotropic quantized FLRW cosmological space-time M3,1
n with 

k = −1 introduced22 in [1]. Here m2 sets the scale r2, while n remains undetermined. These 
backgrounds are SO(3, 1)-covariant, which is the symmetry respected by �X.

6.2. Semi-classical geometry

We first recall the semi-classical limit of this space [1], with xμ for μ = 0, 1, 2, 3 as coordi-
nates on M. By SO(3, 1)-invariance, we can always consider the local reference point ξ on H 4

resp. M

22 We change notation from [1], where Y 1 was dropped instead of Y 4.
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ξ = (x0,0,0,0, x4)
�→ (x0,0,0,0), x0 =R cosh(η), x4 =R sinh(η) . (6.5)

Globally, we have the following constraints

xμxμ =−R2 − x2
4 =−R2 cosh2(η) ,

tμtμ = r−2 cosh2(η) ,

tμxμ = 0, μ, ν = 0, . . . ,3 (6.6)

where η will be a global “cosmic” time coordinate. From the radial constraint xax
a = −R2 on 

H 4 one deduces {xax
a, xμ} = 0, which further implies

0 = xam
aμ = xνm

νμ + x4m
4μ . (6.7)

This establishes a relation between the momenta and the tμ,

tμ = 1

R
mμ4 = 1

Rr2x4 xνθ
νμ ξ= 1

Rr2

1

tanh(η)
θ0μ . (6.8)

Furthermore, the self-duality constraint (3.58c) reduces to23

t i = 1

R
mi4 = 1

nRr3 εabci4θ
abxc ξ= 1

nr3 cosh(η)εijkθjk,

t0 ξ= 0 , (6.9)

where the last equation is simply a consequence of xμtμ = 0. Therefore tμ describes a space-like 
S2 with radius r−2 cosh2(η). Conversely, the above relations allow to express θμν in terms of the 
momenta tμ as follows

θij = nr3

2 cosh(η)
εijk tk ,

θ0i =Rr2 tanh(η) t i .

(6.10)

By means of R ∼ 1
2nr , one can summarize (6.10) neatly:

θμν = r2R ημν
α (x) tα , (6.11)

where ημν
α (x) is a SO(3, 1)-invariant tensor field on M3,1, which is analogs of the t’Hooft 

symbols. Note that θ0i � θij for late times η � 1; this reflects the embedding of H 4 ⊂ R4,1

which approaches the light cone at late times. Thus space is almost commutative, but space-time 
is not. Nevertheless the effects of non-commutativity will be weakened due to the averaging 
on S2. Finally the constraint (3.58d) reads

γ αβ := ημνθ
μαθνβ = L4

NC

4
(ηαβ + 1

R2 xαxβ −R2 tαtβ) (6.12)

which at the chosen reference point yields

23 Note that this form only applies in the special so(3, 1) adapted frame, and it is not generally covariant; of course on 
Minkowski manifolds, there is no notion of self-duality. However there can be a SO(3, 1)-invariant relation as above 
which holds in the preferred cosmological frames, and this is what happens here. This is one reason why it is important 
to not have full Poincare covariance in the Minkowski case.
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γ ij = L4
NC

4
(δij −R2 t i t j ) ,

γ 00 = L4
NC

4
sinh2(η) ,

γ 0j = 0 .

(6.13)

Averaging and effective metric on M3,1. An effective metric for scalar fields φ(x) on M3,1 can 
be defined by the quadratic action (5.79). Looking at (6.12), we note that γ αβ contains the term 
tαtβ , which is not constant on the fiber S2. By averaging over the fiber, one obtains the following 
result [1]

[γ ij ]0 = L4
NC

4
δij − [t i t j ]0 = L4

NC

12

(
3− cosh2(η)

)
δij ,

[γ 00]0 = L4
NC

4
sinh2(η), [γ 0i]0 = 0 .

(6.14)

Note the signature change at cosh2(η) = 3 which marks the Big-Bang in this model, and the 
large pre-factors which grow in time η. Taking into account the conformal factor in the effective 
metric Gμν (5.81), one obtains the cosmic scale parameter a(t) ∝ t for late times, corresponding 
to a coasting universe [1].

However we have not yet shown that this metric Gμν governs all of the low-energy physics, 
and that there are no tachyonic or ghost modes. The large local symmetry of the model and the 
universal structure of the Yang–Mills action should help to elaborate the full dynamics. Here 
we only take some steps in that direction: we establish a precise correspondence between the 
fluctuation modes as well as a close relation between the action of both spaces.

6.3. Wave-functions, higher-spin modes and constraints

In this section we briefly comment on the fluctuation modes on M3,1. The space of functions 
End(Hn) on M3,1 is the same as on H 4

n , meaning that the decomposition (3.55) remains valid 
and is truncated at order n. The modes will still be considered as functions (or sections of higher-
spin bundles) on H 4, such that a representation as in (3.42) is expected to hold. Consequently, 
the modes can be interpreted as functions (or higher-spin modes) on24 M3,1 via � of (2.30). The 
φab(x) etc. then define some higher-rank field on M3,1. In the following, we will only address a 
few basic points.

6.4. Tangential fluctuation modes, relation with H 4 and SO(4, 1)

Now consider fluctuations yμ = xμ + Aμ around M3,1. The first observation is that these 
four fluctuation modes Aμ, μ = 0, . . . , 3 are in one-to-one correspondence with the tangential 
fluctuations on H 4. To see this, recall that tangential fluctuations on H 4 satisfy by definition25

the constraint

24 We will ignore the dependence on two sheets M± for simplicity.
25 A gauge-invariant constraint would be (Xa +Aa)(Xa +Aa) =−R2. For the present purpose, its linearized form is 
what we want.
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Aax
a = 0, A4 =−xμ

x4
Aμ , (6.15)

with Aa ∈ End(H). To associate a general fluctuation mode on M4,1 one simply drops A4, 
and conversely A4 can be recovered from Aμ via (6.15). Hence there is a correspondence of 
tangential fluctuations

Aa on H 4

SO(4,1)

Aμ on M3,1

Aa on H 4 Aμ on M3,1

(6.16)

Since the maps are invertible, an SO(4, 1)-action is defined on the fluctuations Aμ on M3,1, 
which, however, is not an isometry and not unitary. Nevertheless it acts as a structural group, and 
organization developed for H 4 in the previous sections remains applicable. As a consequence, 
configurations in the M3,1 model can be mapped one-to-one to configurations in the H 4 model. 
Similarly, higher-rank tangential tensors on H 4 such as the gravitons

habx
a = 0 (6.17)

can be mapped one-to-one to tensors hμν on M3,1, and the missing components hab are uniquely 
determined from the hμν . In the same vein, all internal fluctuations on S2 will be organized in a 
SO(4, 1)-covariant way as on H 4. This relation is somewhat analogous to a Wick rotation.

Action and dynamics. The matrix model provides again an action for the fluctuation modes Aμ, 
which has the same structure as in section 5.4,

SM[A] =
∫

Aμ

(
�M − 2I + 1

2
μ2
)
Aμ (6.18)

upon gauge fixing. The matrix Laplacian on M3,1 is related to the one on H 4 through

�M =�H − [X4, [X4, ·]] = [Xμ, [Xμ, ·]] ∼ −L4
NC

4
γ μν∂μ∂ν + . . . . (6.19)

We can utilize the same mode expansion in terms of A(i)
μ as in section 5.1,

A(1)
μ = ðμφ(s) ∈ Cs , φ(s) = {xa,φ(s)

a } = {xμ,φ(s)
μ } + {x4, φ

(s)
4 } ∈ Cs

A(2)
μ = θμb

ðbφ
(s) = {xμ,φ(s)} ∈ Cs+1 ⊕ Cs−1

A(3)
μ = φ(s)

μ ∈ Cs−1,

A(4)
μ = θμbφ

(s)
b ∈ Cs ,

(6.20)

which is SO(3, 1)-covariant. As explained in section 5.2, the irreducibility constraints, i.e. 
transversality and tracelessness, can be implemented as appropriate for M3,1 without changing 
the setup. The relation (4.9) still applies; for example

{xμ,φ(1)}0 =−2

3
φμ + R2

3
ð

c
ðcφμ . (6.21)

Note that ðcðc is the Euclidean Laplace operator on H 4, even though we are working in the 
Minkowski case. Hence the right-hand side of (6.21) amounts to some field redefinition. In the 
same vein, the higher-derivative terms in the action (5.72) for the rank s tensor fields φa ...a
1 2
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amount to field redefinitions. Therefore one should expect that these higher-derivative terms do 
not lead to new degrees of freedom or ghosts.

On the other hand it might be tempting to use a SO(3, 1)-covariant formalism, where e.g. 
{xa, φ(s)

a } in (6.20) is replaced by {xμ, φ(s)
μ }. However then some identities are lost, and it remains 

to be seen which formalism is more advantageous.

7. Conclusion and outlook

In this article we provide a careful and detailed analysis of the fluctuation modes on fuzzy 
H 4

n as a background in Yang–Mills matrix models, focusing mainly on the semi-classical case. 
While the results are largely analogous to the case of S4

N [2], the present approach based on a 
suitable Poisson calculus is more transparent and fairly close to a standard field-theory treatment. 
The intrinsic structure of these quantum spaces is responsible for obtaining a higher-spin gauge 
theory, which is fully SO(4, 1)-covariant. The key feature is the equivariant bundle structure, 
which leads to a transmutation of would-be Kaluza–Klein modes into higher-spin modes.

Summary. Let us summarize the main points: A suitable set of representations for the construc-
tion of H 4

n is identified as the minireps or doubleton Hn, for which we recall the oscillator 
realization in section 3. The first major step is a classification of the fuzzy algebra of functions 
End(Hn), which relies on two pillars: (i) the construction of a spin Casimir invariant S2 which 
measures the intrinsic angular momentum on the S2

n fiber, and (ii) the statement that the quan-
tization map (3.32) is surjective. This provides the basis for the expansion (3.42) of a generic 
function in End(Hn), which is a finite expansion in the generators associated to the fiber. More 
precisely, End(Hn) decomposes into a finite set of higher-spin sectors Cs (3.55), labeled by the 
spin Casimir. In the semi-classical limit, these become modules over the algebra of functions on 
H 4, which are identified with tangential, divergence-tree, traceless rank s tensor fields on H 4.

The second major step is the development of a suitable differential calculus built upon deriva-
tions ða defined via the Poisson bracket in (3.64). This provides the tools to work explicitly with 
the generic spin s modes on a non-compact space.

Having in mind the IKKT matrix model, we observe that H 4
n is a solution of Yang–Mills 

matrix models with mass term, and classify the fluctuation modes around an H 4
n background 

in section 5. Building on the understanding of End(Hn), we find four tangential (5.29) and one 
radial fluctuation modes for each spin s ≥ 1. We find the explicit eigenmodes B(i) of the differ-
ential operator D2, see (5.65), which governs the fluctuations in the matrix model. It turns out 
that the tangential modes are stable, due to positivity results on their kinetic terms.

Next, we identify the physical graviton (5.85) as linearized fluctuation of the effective metric 
(5.81) around the H 4

n background, and we compute the associated graviton modes for spin s =
0, 1, 2. The gravitons at spin s = 0, 2 naturally satisfy the de Donder gauge. However, it turns 
out that the spin 2 graviton behaves as an auxiliary field, at least at the classical level. A more 
interesting gravitational behavior should be obtained by including quantum corrections, leading 
to induced gravity terms. We briefly discuss this scenario in section 5.8.

Considering H 4
n as a starting point towards the fuzzy space-time M3,1

n , these issues are how-
ever less important. Since M3,1

n is obtained from H 4
n by a projection, the fuzzy algebra of 

functions for M3,1
n coincides with End(Hn), and our results provide a useful set of tools. As 

first steps, we briefly discuss the geometry and the organization of higher-spin modes of M3,1
n , 

and establish a relation between tangential fluctuation on H 4
n and M3,1

n in section 6.
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Discussion and outlook. From a physics point of view, the results may seem a bit disappointing 
in the sense that the spin 2 modes do not lead to a propagating graviton at the classical level. 
However gravity could be restored in the quantum case, where induced gravity terms arise. The 
most encouraging result is that the tangential fluctuations are stable and do not lead to ghost-like 
modes. This is an improvement over GR where the off-shell conformal modes have the wrong 
sign, and arguably also over quadratic gravity where ghost-like modes arise at least superficially, 
cf. [33,34]. On the other hand, the radial modes are unstable here, which however could be cured 
by a radial constraint.

There are several issues which deserve to be studied further. For example, the Poisson calculus 
developed here should be extended to the fully non-commutative case. Likewise, the relation of 
the present higher-spin gauge theory with Vasiliev theory should be clarified. In view of the H 4

geometry, it is natural to contemplate possible applications of holography. Some of the structural 
statements in sections 3.5 and 3.6 would deserve a more rigorous treatment. Furthermore, the 
1-loop computation in [3] could easily be adapted, since H 4 is locally very similar to S4. This 
would allow to make more specific statements about the induced gravity terms, although to obtain 
the Einstein-Hilbert term may require a more refined approach. Finally, the minimal case n = 0
is very remarkable and special, because it does not correspond to a quantized symplectic space.

The main physics motivation for the present work is the close relation to the cosmological 
FLRW-type solutions M3,1 of [1], which are obtained from a projection of H 4

n . The fluctuation 
analysis on M3,1 can largely proceed along the same lines, with some important differences. In 
particular, the radial modes will disappear while the signature becomes Lorentzian. Furthermore, 
field redefinitions such as (5.101), which are responsible for the non-propagating nature of the 
graviton on H 4, should no longer cancel the propagator. Therefore M3,1

n is a very promising 
candidate for a quantum space-time with interesting gravitational physics in the framework of 
matrix models. However, we postpone a detailed analysis of M3,1 to future work.
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Appendix A. Some aspects of SO(4, 2)

The Lie algebra so(4, 2) is defined by

[Mab,Mcd ] = i (ηacMbd − ηadMbc + ηbdMac − ηbcMad) , (A.1)

where ηab = diag(−1, 1, 1, 1, 1, −1) with a, b, . . . = 0, 1, 2, 3, 4, 5. Unitary representations 
of SO(4, 2) are given by Hermitian Mab . The maximal compact subgroup of SO(4, 2) is 
SU(2)L × SU(2)R ×U(1)E , generated by the following generators:

Lm = 1

2

(
1

2
εmnlMnl +Mm4

)
−→ SU(2)L

Rm = 1

2

(
1

2
εmnlMnl −Mm4

)
−→ SU(2)R
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with m, n, l = 1, 2, 3. They satisfy

[Lm,Ln] = iεmnlLl ,

[Rm,Rn] = iεmnlRl ,

[Lm,Rn] = [E,Ln] = [E,Rn] = 0 .

(A.2)

The U(1)E generator E = M05 is the conformal Hamiltonian, whose spectrum is positive in a 
positive energy representation. Denoting the maximal compact Lie sub-algebra of SU(2)L ×
SU(2)R ×U(1)E as L0, the conformal algebra g has a three-graded decomposition

g= L+ ⊕L0 ⊕L−, (A.3)

with respect to E, such that

[L0,L±] = L±, [E,L±] =±L± , (A.4)

and L± are the non-compact generators. The six roots of so(6)C decompose accordingly into 
two compact roots X±

βi
and four non-compact roots X±α̂ij

. The latter transform as (2)L ⊗ (2)R

i.e. as complex vectors of SO(4), and satisfy (X±α̂ij
)† =−X∓α̂ij

.
Spinorial representations of SO(4, 2) are obtained in terms of the SO(3, 1) gamma matrices 

γμ satisfying {γμ, γν} =−2ημν for μ, ν = 0, 1, 2, 3 and γ4 := γ0γ1γ2γ3 as follows26:

�μν := 1

4i

[
γμ, γν

]
�μ4 := − i

2
γμγ4 �μ5 := −1

2
γμ �45 := −1

2
γ4 . (A.5)

We adopt the gamma matrix conventions

γ0 =
(

12 0
0 −12

)
γm =

(
0 −σm

σm 0

)
⇒ γ4 = i

(
0 12
12 0

)
(A.6)

where σm, m = 1, 2, 3 are the usual Pauli matrices. They satisfy

γ †
a =−γbη

ba = γ0γaγ
−1
0 , a = 0,1,2,3,4

�
†
ab =�a′b′η

aa′ηbb′ = γ0�abγ
−1
0 , a, b = 0,1,2,3,4,5

(A.7)

as it should be. The universal covering group of SO(4, 2) is SU(2, 2), which is the group of 
4 × 4 complex matrices with

U−1 = γ0U
†γ−1

0 (A.8)

which respects the indefinite sesquilinear form

ψ̄1ψ2 =ψ
†
1 γ 0ψ2 . (A.9)

The 15-dimensional Lie algebra su(2, 2) = so(4, 2) can thus be identified with the space of trace-
less complex 4 × 4 matrices Zα

β with real structure

Z† = γ0Zγ−1
0 . (A.10)

26 To maintain a consistent notation for SO(4, 2), our γ 4 is what is usually called γ 5; this will not arise explicitly and 
should not cause confusion.
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Appendix B. Conventions and identities for Gamma matrices

Using the sign conventions ηab = diag(−1, 1, 1, 1, 1) and ηab = diag(−1, 1, 1, 1, 1, −1), the 
Gamma matrices of so(4, 1) are

{γa, γb} = −2ηab, a, b = 0, . . . ,4 (B.1)

such that γ 2
0 = 1 and γ †

0 = γ0, and more generally

γ †
a = γ0γaγ

−1
0 =−ηabγb =: −γ a. (B.2)

Then

γaγ
a =−51 (B.3)

We can evaluate the SO(4, 1) intertwiner∑
a,b≤4

�ab ⊗�ab = C2[so(4,1)](4)⊗(4) − 2C2[so(4,1)](4) (B.4)

acting on

(4)⊗ (4)= ((10)S ⊕ (6)AS

)
so(4,2)

= ((10)S ⊕ (5)AS ⊕ (1)AS

)
so(4,1)

(B.5)

Using the well-known eigenvalues of the quadratic Casimirs (which coincide with those of the 
compact group), it follows that⎛⎝∑

a,b≤4

�ab ⊗�ab

⎞⎠
S

= 1 , (B.6)

⎛⎝∑
a,b≤5

�ab ⊗�ab

⎞⎠
S

= 3

2
1 . (B.7)

This implies∑
a≤5

(
γa ⊗ γ a

)
S
=−1 and

∑
a,b≤5

�ab�
ab = 5 . (B.8)

Similarly, there is an so(4, 2) identity

ηcc′
(
�ac ⊗�bc′ +�bc ⊗�ac′)

S
= 1

2
ηab . (B.9)

This holds because both sides are symmetric, therefore it acts on (0, 0, 1)⊗S2 = (0, 0, 2); the re-
sulting symmetric tensor operator �ab would have to be in (0, 1, 0)⊗S2 = (0, 2, 0) + (0, 0, 0), but 
(0, 2, 0) /∈ End(0, 0, 2), thus only ηab can occur. We also note the following so(4, 2) identities:(

εabcdef �ab ⊗�cd
)
S
= 2(�ef ⊗ 1+ 1⊗�ef ) (B.10)

and

{�ab,�cd}+ = (ηacηbd − ηadηbc)1+ 1

2
εabcdef �ef . (B.11)

In particular,

εabcdef �ab�cd = 12�ef . (B.12)
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Appendix C. Basic identities for fuzzy H 4
n

We provide the proofs for the identities given in section 3.4. First, (3.34) is obtained from

4XaX
a = r2ψ̄γ aψψ̄ ′γaψ

′

= r2ψ̄γ aγaψ + r2ψ̄ψ̄ ′γ a ⊗ γaψψ ′

= −5r2ψ̄ψ − r2ψ̄ψ̄ ′ψψ ′

= −5r2ψ̄ψ − r2ψ̄(−δ +ψψ̄ ′)ψ ′

= −N̂(N̂ + 4)r2 (C.1)

using the (B.3). Similarly, (3.35) follows from

C2[so(4,1)] =
∑

a<b≤4

ψ̄�abψψ̄ ′�abψ
′

=
∑

a<b≤4

(
ψ̄�ab�abψ + ψ̄ψ̄ ′�ab ⊗�abψψ ′)

= 5

2
N̂ + 1

2
ψ̄ψ̄ ′ψψ ′

= 1

2
N̂(N̂ + 4) (C.2)

and (3.36) follows similarly

C2[so(4,2)] =
∑

a<b≤5

ψ̄�abψψ̄ ′�abψ
′

=
∑

a<b≤5

(
ψ̄�ab�abψ + ψ̄ψ̄ ′�ab ⊗�abψψ ′)

= 15

4
N̂ + 3

4
ψ̄ψ̄ ′ψψ ′

= 3

4
N̂(N̂ + 4) (C.3)

using (B.7). The identity (3.40) is obtained as

εabcdeMabMcd = εabcdeψ̄�abψψ̄ ′�cdψ ′

= ψ̄εabcde�
ab�cdψ + ψ̄ψ̄ ′εabcde�

ab ⊗�cdψψ ′

= 12ψ̄�e6ψ + 2ψ̄ψ̄ ′(�e6 ⊗ 1+ 1⊗�e6)ψψ ′

= 12ψ̄�e6ψ + 4(N̂ψ̄�e6ψ − ψ̄�e6ψ)

= 4r−1(N̂ + 2)Xe = 4nr−1Xe (C.4)

using (B.12) and the Euclidean identities (B.10). Finally, (3.41) is obtained from

εabcdeMabXc = rεabcdeψ̄�abψψ̄ ′�c5ψ ′

= rψ̄εabc5de�
ab�c5ψ + rψ̄ψ̄ ′εabc5de�

ab ⊗�c5ψψ ′

= 3rψ̄�deψ + 1
rψ̄ψ̄ ′(�de ⊗ 1+ 1⊗�de)ψψ ′
2
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= 3rψ̄�deψ + r(N̂ψ̄�deψ − ψ̄�deψ)

= (N̂ + 2)rMde = nrMde (C.5)

using εabc5de�
ab�c5 = 3�de, which follows from (B.12).

C.1. Functions on Hn, spin Casimir S2 and quantization

First we argue that any “reasonable” operator � ∈ End(Hn) (in particular any Hilbert-Schmidt 
(HS) operator) can be written as quantization (3.32)

�=Q(φ)=
∫

dμφ(m) |m〉 〈m| (C.6)

of some (square-integrable, in the HS case) function φ(m) on CP 1,2. To see this, assume that 
some operator A is orthogonal to the space spanned by (C.6), i.e. Tr(A�) = 0 for all � as above. 
Then ∫

dμφ(m) 〈m|A |m〉 = 0 (C.7)

for all (square-integrable, say) functions φ(m), and therefore

〈m|A |m〉 = 0 ∀ m (C.8)

i.e. the symbol of A vanishes. It is well-known that then A also vanishes, cf. [43]; indeed 
〈m′|A|m〉 is holomorphic in m′ and m, and therefore vanishes identically if it vanishes on the 
“diagonal” 〈m|A |m〉. The point is that coherent states |m〉 are holomorphic in m.

Now consider the spin operator (3.44)

S2 := C2[so(4,1)] +�=
∑

a<b≤4

[Mab, [Mab, ·]] + [Xa, [Xa, ·]] (C.9)

acting on End(H). We can write this in a Lie algebra basis adapted to H 4 at the reference point 
ξ ∈H 4 as follows. Let Mij , i, j = 1, 2, 3, 4 be the SO(4) generators, E =M05 the energy and

Z±
j = 1√

2
(Mj0 ± iMj5) (C.10)

be the non-compact root generators. Then

S2 = (C2[so(4)] − δijMi0Mj0)+ (δijMi5Mj5 −M05M05)

= C2[so(4)] − δijZ−
i Z−

j + iδij (Mi0Mj5 +Mi5Mj0)−E2

= C2[so(4)] − δijZ−
i Z−

j −E2 (C.11)

using (3.37)

δij (Mi0Mj5 +Mj5Mi0)= η05 = 0 . (C.12)

Now let |0〉 be the ground state of Hn, which satisfies

Z−
i |0〉 = 0 . (C.13)

Then
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S2 |0〉 =
(

2
n

2

(n
2
+ 1
)
−E2
)
|0〉 =

(n
2
+ 1
)(n

2
− 1
)
|0〉

=: S2
n |0〉 (C.14)

using C2[so(4)]|0〉 = 2n
2

(
n
2 + 1
) |0〉 and E |0〉 = (1+ n

2

) |0〉, see (3.28). Now consider

S2  |0〉〈0|
= 2S2

n |0〉〈0| −Mij |0〉〈0|Mij + δij (Mi0|0〉〈0|Mj0 −Mi5|0〉〈0|Mj5)+ 2E|0〉〈0|E
= 2S2

n |0〉〈0| −Mij |0〉〈0|Mij + 1

2
Z+

j |0〉〈0|Z+
j + 1

2
Z−

j |0〉〈0|Z−
j + 2E|0〉〈0|E ,

noting that the cross-terms cancel. Then Z−
j |0〉 = 0 = 〈0|Z+

j , and for the minimal case H0 we 
have moreover Mij |0〉 = 0 and E|0〉 = |0〉. We conclude

S2  |0〉〈0| = 2S2
0 |0〉〈0| + 2|0〉〈0| = 0 (C.15)

The same argument applies for any point ξ ∈H 4, and (C.6) implies that End(H0) contains only 
spin S2 = 0 states.

For Hn with n ≥ 1, we have to consider the entire SO(4) orbit g  |0〉〈0| = g · |0〉〈0| · g =:
|m〉〈m| over ξ where |m〉 = g · |0〉 for g ∈ SO(4). We can express Mij |m〉〈m|Mij in terms of 
the SO(4) Casimir

−Mij |m〉〈m|Mij =
(
C2[so(4)] − 4

n

2

(n
2
+ 1
))

|m〉 〈m|

=
(

n⊕
s=0

2s(s + 1)1s − n(n+ 2)

)
|m〉 〈m| . (C.16)

Here 
n⊕

s=0
2s(s + 1)1s is the decomposition of C2[so(4)] into spin s irreps of SU(2). Moreover,

δij (Mi0|m〉〈m|Mj0 −Mi5|m〉〈m|Mj5)= 0 (C.17)

by SO(4) invariance. The same argument applies for any point ξ ∈ H 4 in (C.6). Therefore S2

decomposes End(Hn) into spin s irreps as follows

S2
End(Hn) =

n⊕
s=0

(
2S2

n + 2s(s + 1)1s − n(n+ 2)+ 2(
n

2
+ 1)2)

=
n⊕

s=0

2s(s + 1)1s (C.18)

which implies (3.55) and (3.56). This respects the structure of a C0 module, hence C can be 
viewed as a bundle over H 4 with fiber given by the space of functions on the fuzzy sphere S2

n, 
with all multiplicities equal to one.

C.2. Minimal fuzzy Hn=0

Consider the minireps (3.28) for the minimal case n = 0 = jL = jR . Then the lowest weight 
state |�〉 = |1, 0, 0〉 of H0 is the unique eigenspace with eigenvalue of E = 1, and there are only 
four non-vanishing operators with L+|�〉 = aibj |�〉 �= 0, while the SO(4) generators vanish on 
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�ij |�〉 = 0, i, j = 1, . . . , 4. Hence the Xa generate a 4-dimensional quantized hyperboloid H 4
0

without extra fiber. This does not seem to correspond to a coadjoint orbits of SO(4, 2), and the 
coherent states SO(4, 2)|�〉 form a trivial U(1)-bundle over H 4.

Consider the structure of H0 in some detail. Then spec(E0) = {1, 2, 3, . . .}, and the sub-space 
for each given eigenspace of E0 has the structure

H0|E0 = (E0)L ⊗ (E0)R (C.19)

where (m)L,R denotes the m-dimensional irrep of SU(2)L,R . Clearly X0 = rE0 is diagonal, 
while the Xj = r

i
√

2
(Z+

j − Z−
j ), j = 1, . . . , 4 (C.10) link the neighboring sub-spaces of (C.19)

with E0 and E0 ± 1, and similarly the �0j = r2√
2
(Z+

j +Z−
j ). On the other hand, the �ij are the 

SO(4) generators acting within (C.19). Therefore 〈�|�ab|�〉 = 0 vanishes for the local coherent 
states, but nevertheless �ab �= 0 as operator. Hence H0 is a non-commutative space which is not 
the quantization of a symplectic space. This is very interesting and should be investigated in more 
detail elsewhere. For some related mathematical results see [44].

The structure of Hn with n ∈N is analogous, where (C.19) is replaced by

H0|E0 =
(
E0 − n

2

)
L
⊗
(
E0 + n

2

)
R

. (C.20)

Appendix D. Auxiliary identities for semi-classical H 4
n

For any tangential φa ∈ C, the following identity holds:

xa
ðbφa =−φaðbx

a =−P abφa =−φb . (D.1)

For any tangential, divergence-free φa ∈ C0, formula (3.67) yields

{θab,φb} = r2(xa
ð

b − xb
ð

a)φb =−r2xb
ð

aφb = r2φa . (D.2)

Moreover, one can verify for any φ that

{xc,ð
cφ} = − 1

r2R2 {xc, θ
cd{xd,φ}}

= − 1

r2R2

(
{xc, θ

cd}{xd,φ} + θcd{xc, {xd,φ}}
)

= 1

r2R2

(
4r2xd{xd,φ} − 1

2
θcd{θcd,φ})

= 0 . (D.3)

Furthermore, one computes

ð
d({xd,φ})= 1

r2R2 θad{xa, {xd,φ}} = 1

2r2R2 θad{θad,φ} = 0 (D.4)

for any φ ∈ C, and

{xb,�f } = −{{xb, xa}, {xa, f }} − {xa, {{xb, xa}, f }} − {xa, {xa, {xb, f }}}
= −{θba, {xa, f }} − {xa, {θba, f }} +�({xb, f })
=−{{θba, xa}, f }} − 2{xa, {θba, f }} +�({xb, f })
=−{{θba, xa}, f }} − 2r2{xa, (xb

ða − xa
ðb)f } +�({xb, f })
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=−4r2{xb, f } − 2r2θab
ðaf +�({xb, f })

= (�− 2r2)({xb, f }) (D.5)

for any scalar function f ∈ C0, using (D.3). Finally,

�(θabAb)= θab�Ab + (�θab)Ab − 2{xc, θab}{xc,Ab}
= θab�Ab + (�θab)Ab − 2r2(ηacxb − ηbcxa){xc,Ab}
= θab�Ab − 2r2θabAb − 2r2(−{xa, xb}Ab − xa{xc,Ac})
= θab�Ab − 2r2θabAb + 2r2(θabAb + xa{xc,Ac})
= θab�Ab + 2r2xa{xc,Ac} . (D.6)

For the reducible tensor contributions (4.23), we need

{xb,ðaφb} = θbc
ðcðaφb = θbc

ðaðcφb + θbc[ðc,ða]φb

= ða(θ
bc
ðcφb)− (ðaθ

bc)ðcφb − 1

r2R2 θbc{θca,φb}

= ða{xb,φb} − 1

R2 (θacxb − θabxc)ðcφb + {P ba,φb} + 1

r2R2 θca{θbc,φb}

= ðaφ − 1

R2 xb{xa,φb} + 1

R2 (xa{xb,φb} − θabφb)− 1

r2R2 θcaI(φc)

= ðaφ + 1

R2 θabφb + 1

R2 (xaφ − θabφb)− 1

r2R2 θcaI(φc)

= ðaφ + 1

R2 xaφ − 1

r2R2 θcaI(φc) (D.7)

using (5.16), for any tangential φa with φ := {xa, φa}. Finally, we provide a proof for (3.65): We 
compute

ð
a
ð

cφ = 1

r4R4 xb{θab, xd{θcd,φ}}

= 1

r4R4

(
xb{θab, xd}{θcd,φ} + xbxd{θab, {θcd ,φ}}

)
= 1

r4R4

(
r2(R2{θca,φ} + xaxd{θcd,φ})+ xbxd{θab, {θcd ,φ}}

)
(D.8)

using (3.58a). Hence

[ða,ðc]φ = 1

r4R4

(
2R2r2{θca,φ} + r2(xaxd{θcd,φ} − (xcxd{θad,φ})

+ xbxd({θab, {θcd,φ}} − {θcd, {θab,φ}})
)

= 1

r4R4

(
2R2r2{θca,φ} + r2(xaxd{θcd,φ} − xcxd{θad,φ})

+ xbxd{{θab, θcd}, φ}
)

= 1

r4R4

(
2R2r2{θca,φ} + r2(xaxd{θcd ,φ} − xcxd{θad,φ}

+ xcxd{θad,φ} + xbxa{θbc,φ} −R2{θac,φ}))
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= 1

r4R4

(
2R2r2{θca,φ} −R2r2{θac,φ}

)
=− 1

r2R2 {θac,φ} . (D.9)

Covariant derivative ∇ . Recalling ∇a∇cφ = Pcc′ðaðc′φ, we obtain

[∇a,∇c]φ = [ða,ðc]φ + 1

R2 (xaðc − xcða)φ + 1

R4 xaxc
(
xd

ðd − xd
ðd

)
φ

+ 1

r4R6
xbxd

(
xcxc′ {θab, {θc′d ,φ}} − xaxa′ {θcb, {θa′d ,φ}}

)
= [ða,ðc]φ + 1

R2 (xaðc − xcða)φ

+ 1

r4R6
xbxd

(
−xcxc′ {φ, {θab, θc′d}} + xaxa′ {φ, {θcb, θa′d}}

)
= [ða,ðc]φ + 1

R2 (xaðc − xcða)φ

=− 1

r2R2

(
{θac,φ} − r2(xaðc − xcða)φ

)
=− 1

r2R2 P aa′P cc′ {θa′c′ , φ} = P aa′P cc′ [ða′ ,ðc′ ]φ (D.10)

Hence, the ∇a commute on scalar functions. For generic tensor fields φb1...bn we have to be more 
careful and proceed as follows:

∇a∇cφb1...bn

=∇a

(
P b1b

′
1 · · ·P bnb′nðcφb′1...b′n

)
= P cc′P b1b

′
1 · · ·P bnb′nða

(
P b′1b′′1 · · ·P b′nb′′n ðc′φb′′1 ...b′′n

)
(D.11)

= P cc′P b1b
′
1 · · ·P bnb′n ðaðc′φb′1...b′n + P b1b

′
1 · · ·P bnb′nða

(
P b′1b′′1 · · ·P b′nb′′n

)
ðcφb′′1 ...b′′n

Inspecting the second term in more detail, we arrive at

n∏
k=1

P bkb
′
kða

⎛⎝ n∏
j=1

P
b′j b′′j

⎞⎠ðcφb′′1 ...b′′n =
n∏

k=1

P bkb
′
k

n∑
j=1

⎛⎝(ðaP
b′j b′′j )
∏
i �=j

P b′i b′′i

⎞⎠ðcφb′′1 ...b′′n

= 1

R2

n∑
j=1

⎛⎝P abj x
b′′j
∏
i �=j

P bib
′′
i

⎞⎠ðcφb′′1 ...b′′n

= 1

R2

n∑
j=1

(
P abj
∏
i �=j

P bib
′′
i x

b′′j ðcφb′′1 ...b′′n︸ ︷︷ ︸
−φb′′1 ...b′′

j−1cb′′
j+1b′′n

)

=− 1

R2

n∑
j=1

P abj φb1...bj−1cbj+1bn . (D.12)

Consequently, the commutator looks as follows:
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[∇a,∇c]φb1...bn =
n∏

j=1

P
bj b′j P aa′P cc′

(
[ða′ ,ðc′ ]φb′1...b′n

)
(D.13)

− 1

R2

n∑
j=1

(
P abj φb1...bj−1cbj+1bn − P cbj φb1...bj−1abj+1...bn

)
.

With a little relabeling, we obtain

[∇a,∇c]φb1...bn =− 1

r2R2

n∏
j=1

P
bj b′j P aa′P cc′ {θa′c′ , φb′1...b′n}

− 1

R2

n∑
j=1

(
P abj φb1...bj−1cbj+1...bn − P cbj φb1...bj−1abj+1...bn

)

= 1

R2

n∏
j=1

P
bj b′j P aa′P cc′ {ma′c′ , φb′1...b′n}

− 1

R2

n∑
j=1

(
P abj P cd − P cbj P ad

)
φb1...bj−1dbj+1...bn (D.14)

≡Racφb1...bn .

For an ordinary tensor field φb1...bn ∈ C0, the first term coincides with ∇[ða,ðc] due to (3.65), 
which means that curvature coincides with that of the Levi–Civita connection on H 4,

Rabφb1...bn =
n∑

j=1

Rac;bj dφb1...bj−1dbj+1...bn ,

Rac;bd =− 1

R2 (PabPcd − PcbPad) . (D.15)

As a further check, consider φb1b2 = θb1b2 ∈ C1, where both contributions in (D.15) are non-
vanishing but cancel:

[∇a,∇c]θb1b2

=− 1

r2R2 P b1b
′
1P b2b

′
2P aa′P cc′ {θa′c′ , θb′1b′2}

− 1

R2

(
P ab1P cd − P cb1P ad

)
θdb2 − 1

R2

(
P ab2P cd − P cb2P ad

)
θb1d

= 1

R2 P b1b
′
1P b2b

′
2P aa′P cc′

(
ηa′b′1θ

c′b′2 − ηa′b′2θ
c′b′1 − ηc′b′1θ

a′b′2 + ηc′b′2θ
a′b′1
)

− 1

R2

(
P ab1θcb2 − P cb1θab2 + P ab2θb1c − P cb2θb1a

)
= 0 (D.16)

as it must, since ∇θb1b2 = 0. Similarly, we can check

[∇a,∇c]xb =− 1
P aa′P bb′P cc′ {θa′c′ , xb′ } − 1

(P abP cd − P cbP ad)xd
r2R2 R2
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= 1

R2 P aa′P bb′P cc′
(
θa′b′xc′ − θc′b′xa′

)
= 0 . (D.17)

Identities for spin 1 fields. In order to derive (4.9), consider

2{xa,φ
(1)} = {xa,Fbcθ

bc} =Fbc{xa, θ
bc} + {xa,Fbc}θbc

= r2Fbc(ηabx
c − ηcax

b)+ {xa,Fbc}θbc

= r2(Facx
c −Fbax

b)+ {xa,Fbc}θbc

= 2r2φa + {xa,Fbc}θbc

= 2r2φa + ðdFbcθ
adθbc , (D.18)

where one recalls θbc =−r2Mbc . The averaged second term can be evaluated as follows

ðdFbc[θadθbc]0 = R2r2

3
ðdFbc(PabPcd − PacPbd + xe

R
εadbce)

= 2R2r2

3
Pabð

cFbc + Rr2

3
xeεadbceðdFbc

= 2R2r2

3
Pabð

c(ðcφb − ðbφc)+ 2Rr2

3
xeεadbceðdðcφb

= 2R2r2

3
Pabð

c
ðcφb − 1

3

(
2Pab{θbc,φc} − xe

R
εadcbe{θdc,φb}

)
= 2R2r2

3
Pabð

c
ðcφb − 2

3
r2φa (D.19)

using (D.2), (3.65) and ðcφc = 0, self-duality (D.23) and the identity (D.24). Noting that

xb
ð

c
ðcφb = ð

c
ðcx

bφb − 2ηbc
ðcφb = 0 (D.20)

we obtain

Pabð
c
ðcφb = ð

c
ðcφa , (D.21)

i.e. � respects divergence-free tangential vector fields. Collecting all the pieces, one obtains 
(4.9).

Identities for spin s fields. The following identity holds for any tangential traceless divergence-
free spin s field φa ∈ C:∫

P ac
ðbφað

bφc =
∫

ðbφað
bφa + 1

R2 (xa
ð

bφa)(x
c
ðbφc)

=
∫

ðbφað
bφa + 1

R2 φbφ
b∫

ð
af ðag =−

∫
f ða

ðag∫
ð

dφað
aφd =−

∫
φað

d
ð

aφd − 4

R2

∫
xdφað

aφd

=−
∫

φa[ðd ,ða]φd + 4
2

∫
ð

axdφaφd

R
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=− 1

r2R2

∫
φa{θad,φd} + 4

R2

∫
φaφa∫

xe

R
εabcde

ðbφaðdφc =−
∫

xe

R
εabcdeφaðbðdφc =

∫
xe

2r2R3 εabcdeφa{θbd,φc} (D.22)

and xaðaφ = 0. Here ð · ð is the Euclidean Laplacian on H 4. Further, using the self-duality

1

2R
εadcbe{xeθdc,φb} = {θab,φb} (D.23)

we have the identity

Pab{θbc,φc} − xe

2R
εadcbe{θdc,φb} = 1

2R
Paa′εa′dcbeθdc{xe,φb}

= 1

2R
Paa′εa′dcbeθdcθ

ef
ðf φb

=−r2Paa′(g
a′f xb − gbf xa′)ðf φb

=−r2Paf xb
ðf φb = r2φa (D.24)

using irreducibility, (3.58a) and

εabcdeθ
cdθef = εabcdeθ

cd{xe, xf }
= εabcde

(
{θcdxe, xf } − xe{θcd, xf }

)
= 2R{θab, xf } + r2εabcdex

e(ηcf xd − ηf dxc)

=−2r2R(ηaf xb − ηbf xa)

εeadcbθ
dcθea =−8r2Rxb (D.25)

which is (2.22). Note that (D.24) holds for any divergence-free, tangential φb ∈ C.

Graviton identity. The following identity will be useful

ðaH
ab[A] = ða(θ

ca{Ac, x
b} + θcb{Ac, x

a})
= (ðaθ

ca){Ac, x
b} + θca

ða{Ac, x
b} + (ðaθ

cb){Ac, x
a})+ θcb

ða{Ac, x
a}

= ðaθ
ca{Ac, x

b} + {xc, {Ac, x
b}} + (ðaθ

cb){Ac, x
a}

= −{Ac, {xb, xc}} − {xb, {xc,Ac}} + 1

R2 (θacxb − θabxc){Ac, x
a}

= I(Ab)− {xb, {xc,Ac}} − r2(xb
ð

cAc − xc
ðbAc)

= Ĩ(Ab)− r2Ab − {xb, {xc,Ac}} (D.26)

for tangential Aa , using (D.4) and (5.7); note that ða respects the projection [·]0.

D.1. Casimirs, positivity, and eigenvalues of D2

In order to show that the kinetic term is positive, we need some positivity results. A first 
result for spin 1 is the following. Assume that φ(1) is Hermitian and determined by the tangential 
divergence-free vector field φa as in (4.7). Then
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0 ≤
∫

φ(1)φ(1) =
∫
{Xa,φ

a}φ(1) =−
∫

φa{Xa,φ
(1)}

= r2

3

∫
φa(−2−R2

ð · ð)φa (D.27)

This implies that (� − 2r2)φa is positive for divergence-free square-integrable tangential tensor 
fields, cf. (4.39). In particular, this gives

α̂1φa = r2

3
(−R2

ð · ð− 2)φa, φa ∈ C1, α̂1 ≥ 0 . (D.28)

We also observe∫
φ(s)�φ(s) ∝

∫
ðaφ

(s)
ð

aφ(s) ≥ 0, φ(s) ∈ Cs (D.29)

using (3.78), since x · ð = 0, i.e. ðφ has no radial components, hence the metric is Euclidean. 
Therefore � is a positive operator on any square-integrable φ ∈ Cs .

For higher spin, we need the following intertwining property of the vector fluctuations

r2C2[so(4,1)](full)Aa[φ(s)] = −(�+ 2I − r2(S2 + 4))Aa[φ(s)]
=Aa[r2C2[so(4,1)]φ(s)]
=Aa[r2C2

full[so(4,1)]φ(s)
a ] = . . .

=Aa[r2C2
full[so(4,1)]φa1...as ] (D.30)

using (5.8). The various forms on the right-hand side can be evaluated using the quadratic Casimir 
acting on the spin s field φ(s) in its various realizations:

−r2C2φ(s) = (�− r2S2)φ(s)

= (�− 2r2s(s + 1))φ(s) (D.31)

and

−r2C2
fullφ

(s)
a = (�+ 2I − r2(S2 + 4))φ(s)

a

= (�+ 2r2(2− s)− r2(2s(s − 1)+ 4))φ(s)
a

= (�− 2r2s2)φ(s)
a (D.32)

and similarly

−r2C2
fullφa1...as = (�+ 2I − r2C2[so(4,1)](s,0))φa1...as ]

= (�+ 2r2s − r2s(s + 3))φa1...as

= (�− r2s(s + 1))φa1...as (D.33)

because S2 = 0 on φa1...as ∈ C0. Here we define a generalized intertwiner I for spin s tensor 
fields

I(φa1...as ) := {θaa1, φa1...as } + . . .+ {θaas , φa1...as } = s{θaa1 , φa1...as }
= r2s φa1...as (D.34)

for symmetric φa ...as , and the Casimir of SO(4, 1) on its indices in (5)⊗Ss is
1
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C2[so(4,1)](s,0) = s(s + 3) . (D.35)

This is consistent with (D.38) for s = 1. In particular, the action of � on various realizations of 
the same spin s field is related as follows

A[(�− 2r2s(s + 1))φ(s)] =A[(�− 2r2s2)φ(s)
a ] =A[(�− r2s(s + 1))φa1...as ] . (D.36)

Now we can evaluate (D.30) for the individual spin s modes. For B(2), we obtain

(�+ 2I − r2(S2 + 4))B(2)
a [φ(s)

a ] = B(2)
a [(�+ 2I − r2(S2 + 4))φ(s)

a ] ,
(�− 2r2(s + 1)2B(2)

a [φ(s)
a ] = B(2)

a [(�− 2r2s2)φ(s)
a ] ,

D2B(2)
a [φ(s)

a ] = (�− 2I + 4r2)B(2)
a [φ(s)

a ] = B(2)
a [(�+ 2r2s)φ(s)

a ] . (D.37)

For B(4), we obtain

(�+ 2I − r2(S2 + 4))B(4)
a [φ(s)

a ] = B(4)
a [(�+ 2I − r2(S2 + 4))φ(s)

a ] ,
(�− 2r2s2)B(4)

a [φ(s)
a ] = B(4)

a [(�− 2r2s2)φ(s)
a ] ,

D2B(4)
a [φ(s)

a ] = (�− 2I + 4r2)B(4)
a [φ(s)

a ] = B(4)
a [(�− 2r2s)φ(s)

a ] . (D.38)

For B(1) we obtain similarly

(�+ 2I − r2(S2 + 4))B(1)
a [φ(s)

a ] = B(1)
a [(�+ 2I − r2(S2 + 4))φ(s)

a ] ,
D2B(1)

a [φ(s)] = (�+ 2r2(1+ s))B(1)
a [φ(s)] = B(1)

a [(�+ 2r2(3s + 2))φ(s)
a ] , (D.39)

and finally for B(3)

D2B(3)
a [φ(s)

a ] = (�− 2I + 4r2)B(3)
a [φ(s)

a ] = B(3)
a [(�+ 2r2s)φ(s)

a ] . (D.40)
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