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Abstract

We consider the SO (4, 1)-covariant fuzzy hyperboloid H,‘lt as a solution of Yang—Mills matrix models,
and study the resulting higher-spin gauge theory. The degrees of freedom can be identified with functions on
classical H* taking values in a higher-spin algebra associated to so(4, 1), truncated at spin n. We develop a
suitable calculus to classify the higher-spin modes, and show that the tangential modes are stable. The metric
fluctuations encode one of the spin 2 modes, however they do not propagate in the classical matrix model.
Gravity is argued to arise upon taking into account induced gravity terms. This formalism can be applied
to the cosmological FLRW space-time solutions of [1], which arise as projections of H,‘,‘ . We establish a
one-to-one correspondence between the tangential fluctuations of these spaces.
© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

In the present paper we continue the exploration of 4-dimensional covariant fuzzy spaces and
their associated higher-spin gauge theories, as started in [2,3]. These are non-commutative spaces
which allow to reconcile a quantum structure of space(-time) with covariance under the maximal
isometry. In contrast, quantized Poisson manifolds such as Rg [4,5] are not fully covariant, as
an explicit tensor OV breaks the covariance. In previous work [2,3], gauge theory on the fuzzy
4-sphere S;‘{, was studied in detail, starting from the observation that SIA'\, is a solution of Yang—

¥ Corresponding author.
E-mail addresses: marcus.sperling@univie.ac.at (M. Sperling), harold.steinacker @univie.ac.at (H.C. Steinacker).

https://doi.org/10.1016/j.nuclphysb.2019.02.027
0550-3213/© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP?.


http://www.sciencedirect.com
https://doi.org/10.1016/j.nuclphysb.2019.02.027
http://www.elsevier.com/locate/nuclphysb
http://creativecommons.org/licenses/by/4.0/
mailto:marcus.sperling@univie.ac.at
mailto:harold.steinacker@univie.ac.at
https://doi.org/10.1016/j.nuclphysb.2019.02.027
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.nuclphysb.2019.02.027&domain=pdf

M. Sperling, H.C. Steinacker / Nuclear Physics B 941 (2019) 680-743 681

Mills matrix models supplemented by a mass term, cf. [6]. Here we extend this analysis to fuzzy
H,f , which is a non-compact quantum space preserving an SO (4, 1) isometry, also known as
Euclidean AdS*. For other related work on covariant quantum spaces see e.g. [7—14].

The motivation for this work is two-fold: first, we want to develop a formalism to study gauge
theory on H,f along the lines of usual calculus and field theory, in order to facilitate the interpre-
tation of the resulting models. While S14\, allows to use a clean but less intuitive organization of
fields into polynomials corresponding to Young diagrams, the non-compact nature of H* requires
to develop a calculus as well as field formalism reminiscent of the conventional treatment. We
will achieve this goal, and obtain results analogous to the compact case but in a more transparent
manner.

The second motivation is to set the stage for a similar analysis of the cosmological fuzzy
space-time solutions /\/12" found in [1,15]. These FLRW-type space-times have very interesting
physical properties such as a regularized Big-Bang-like initial singularity and a finite density
of microstates. Mz’l can obtained from the present H,f via a projection, which not only leads
to a Minkowski signature, but also reduces the symmetry to SO (3, 1). Since the group theory
becomes weaker, it seems advisable to consider first the simpler (Euclidean) case of fuzzy H,‘: .
We establish the relevant formalism in this paper, and moreover provide some explicit links
between the modes on H? and M

One of the most interesting features of 4-dimensional covariant fuzzy spaces is the natural
appearance of higher spin theories. This can be understood by recalling that these spaces are
quantized equivariant S2-bundles over the base space (i.e. S* or H* here), where the fiber is
given by the variety of self-dual 2-forms on the base. The equivariant structure implies that
would-be Kaluza—Klein modes transmute into higher-spin modes. Taken as background solution
in matrix models, such as the IKKT model, one obtains a higher-spin gauge theory as effective
theory around the 4-dimensional covariant fuzzy spaces. As a remark, the structure is reminiscent
of twistor constructions, see also [16].

Let us describe the results of this paper in some detail. Starting from the classical as well
as fuzzy geometry of the hyperboloid H*, we develop a calculus, solely based on the Poisson
structure, to organize the fuzzy algebra of functions on H,f into SO (4, 1) irreducible components.
We further establish a map between the modes in the irreducible components, suggestively called
spin s fields, and conventional (rank s) tensor fields on H 4,

Having understood the “functions” on H,f , we proceed by considering H,f as background
in the IKKT matrix model. As a first result, we classify all (tangential) fluctuation modes at a
given spin level and exhibit their algebraic features. Subsequently, we are able to diagonalize
the kinetic term in the action governing the fluctuations. Remarkably, the kinetic terms for all
tangential fluctuations are non-negative such that no instabilities in the tangential sector exist.

Having in mind emergent gravity scenarios, we derive the associated graviton modes for spin
0, 1 and 2 fields. The spin 0 and spin 2 contributions satisfy the de Donder gauge, and at spin
2 one graviton mode emerges from the tangential sector. However, while the underlying modes
do propagate, the graviton turns out to behave like an auxiliary field, and does not propagate at
the classical level. The reason is that the field redefinition required for the graviton cancels the
propagator, similar as in on S?V [2].

Nevertheless, our results are interesting and useful. First of all, since classical GR is not renor-
malizable, it should presumably be viewed as a low-energy effective theory. Then the starting
point of an underlying quantum theory should be quite different from GR at the classical level,
as in our approach, and gravity may be induced by quantum effects [17,18]. This is the idea of
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emergent gravity. The present model may well realize this idea, since the basic framework is
non-perturbative and well suited for quantization (in particular the maximally supersymmetric
IKKT model), and the required spin 2 fluctuations do arise naturally. The extra degrees of free-
dom may or may not help, but certainly covariance provides a significant advantage compared
to other related frameworks, cf. [19]. In particular, it is remarkable that no negative or ghost-like
modes appear in the tangential modes.

Perhaps the most interesting perspective is the extension to the cosmological space-times
M1, We will establish a one-to-one correspondence of the tangential modes on H,‘lt to the full
set of fluctuations on M?>!. Since the tangential modes on H,f are stable and free of pathologies
(in contrast to off-shell GR), it seems likely that the Minkowski setting on M?>! provides a good
model, too. In fact, the presence of negative radial modes on H,‘zt would require to implement a
constraint in the matrix model, which may spoil supersymmetry. This is not needed for M3,
which provides further motivation for including a discussion of M>! here. However, to keep the
paper within bounds, we postpone the details for this case to future work.

The paper is organized as follows: We start with a discussion of the classical geometry un-
derlying H,f in section 2, before discussing fuzzy H,f in detail in section 3. In particular, we
introduce a calculus suitable for decomposing the algebra of functions into modules of equal
spin. The details of the decomposition and the properties of the irreducible modes are provided in
section 4. Having established the fundamentals of fuzzy H,f , we explore the fluctuations around
an H,‘l‘ background in the IKKT matrix model in section 5. We pay particular attention to the clas-
sification of tangential fluctuations, and explicitly diagonalize their kinetic term. Subsequently,
the graviton modes are identified and their equation of motions are derived. Before concluding
we briefly explore the projection of H,f to the Minkowskian M,S,’l in section 6. Finally, section 7
concludes and provides an outlook for future work. Relevant notation and conventions as well as
auxiliary identities and derivations are collected in appendices A—D.

2. Classical geometry underlying H,‘,‘

The classical geometry underlying fuzzy H,‘lt is CP!2, which is an S-bundle over the
4-hyperboloid H*. More precisely, CP!? is an SO (4, 1)-equivariant bundle over H* as well
as a coadjoint orbit of SO(4,2). Recall, for instance from [20, Def. 1.5], that a G-equivariant
bundle 7 : E — X is equipped with a G-group action p : E — E as well as p : X — X such
that the projection map 7 is an intertwiner, i.e. ¥ o p = p o 7. Here, the actions of SO (4, 1) on
the total space CP'-? and base space H* are immanent by definition of these spaces. In partic-
ular, this means that the local stabilizer group SO (4) acts non-trivially on the fiber S2, leading
to higher-spin fields on H*, and a canonical quantization exists. The construction is similar to
twistor constructions for Minkowski space.

2.1. CPY“2 as SO (4, 1)-equivariant bundle over the hyperboloid H*

Let ¢ € C* be a spinor of s0(4, 1) with ¥4 = 1. Consider the following Hopf map:
HY o gt cRrA

e T @1
Yo x =§1//y v, a=0,1,2,3,4,

where r introduces a length scale, and H*3 is the 7-hyperboloid
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HY =y eCYyy=yTyOy =1}. 2.2)

The y*,a=0,...,4 are SO(4, 1) gamma matrices, see appendix B for details. The map (2.1) is
a non-compact version of the Hopf map §7 — §*, which respects SO (4, 1) and in which the x*
transform as SO (4, 1) vectors. By using (B.3) one can verify that

4 r2
D napxx’ = -7 = —R? (2.3)
a,b=0

so that the right-hand side is indeed in H*; note that x, € R due to (A.7). Since the overall phase
of i drops out, we can re-interpret (2.1) as a map

x*: CP"Y? - H*cRMY (2.4)

where CP12 = H*3/U(1) is defined as space of unit spinors ¥y = 1 modulo U(1). In other
vyords, CPL2 is a S?-bundle over H*. To exhibit the fiber, consider an arbitrary spinor ¥ with
Y = 1. Since

XO — %I//Tw > 0, 2.5)

there exists a suitable SO (4, 1) transformation such that

x%le =R(1,0,0,0,0), (2.6)
which defines a reference point & € H*. Its stabilizer group is

H=1{h;[h,]=0} =SURQ)r xSU2)L CSO4,1) (2.7)
where SU (2);, acts on the +1 eigenspace of y°. By introducing complex parameters

v =(aj.a3.b1.b2),  1=9y=—laf —laf + b1 + b2 = vy (2.8)

it follows that |b |2 + |b2|2 =1 and a1 = ap = 0. Thus after an appropriate SU (2), transforma-
tion we can assume

v’ =(0,0,0,1), (2.9)

which will be a reference spinor over & throughout the remainder. Hence CP!? is a S2-bundle
over H*, and the S? fiber is obtained by acting with SU(2); on v. This is analogous to the
well-known fact that CP? is an S%-bundle over S*. Note that the metric on the hyperboloid
induced via

x%: H*< RN (2.10)

is Euclidean, despite the SO (4, 1) metric on target space. This is obvious at the point § =
(R,0,0,0,0), where the tangent space is R‘l‘234.

SO4,2) formulation and embedding functions. It is useful to view CP'2 as a 6-dimensional
coadjoint orbit of SU (2, 2)

CP'?2 =2 (U~'ZU, UeSU®2,2)} — su(2,2) (2.11)

through the rank one 4 x 4 matrix
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Z=yy, Z’=z, uw@=1, Z'=yz"". 2.12)
The embedding (2.11) is described by the embedding functions

mab — tr(ZEab) — Ezabw — (mdb)*,
5 r— 5 (2.13)
x“:rtr(ZEa)zzlm/“l//:rma, a,b=0,...,4

noting that %y“ = X% see (A.5). Upon restricting to so(4, 1) C s0(4, 2) = su(2, 2), we recover
(2.4), which reflects that the SO (4, 1) action is transitive on CP!2, The last equation in (2.13)
amounts to a group-theoretical definition of the Hopf map, which will generalize to the non-
commutative case. The SO (4, 2) structure is often useful, but it does not respect the projection
to H*.

We can compute the invariant functions

- 1
Yo mPma= Y VS Tayy =, (2.14)
O<a<b=<4 O0<a<b<4
- 3
D mPmagy= > YU @ Sapyy = 1 (2.15)
0<a<b<5 0<a<b<5

using the identities (B.6) and (B.7). Here, the indices are raised and lowered with n,, =
diag(—1,1,1, 1,1, —1). Combining the two identities (B.6)—(B.7) and recalling x* = rm9, we
recover

xgx% = —— = —R>. (2.16)

Remarkably, the SO (4, 1)-invariant x*x, is constant on cp'2. Similarly, (B.9) together with
the above relations imply' the SO (4, 2) identities

|
Neem®mPe = Z"ab’ a,b=0,...,5 (2.17)
which reduces to the SO (4, 1) relation
/ 1
ncc/m‘”mbc B Znab, a,b=0,...,4. (2.18)

In particular, this implies that m“" is orthogonal to x,
xam® =0. (2.19)

Furthermore, the following S O (4, 2) identities hold:

€abederm™m = U eapeder 0 @ Yy (2.20)
=200 (Y @1+ 1@ )Yy
=4y Sy =dm,y, (2.21)

using (B.10); this can also be seen from (B.11). Reduced to SO (4, 1), this implies

1 This is just a manifestation of the relation 72 = Z,see (2.12).
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4
€abedem™®m? = — = x, , e=0,...,4. (2.22)
r

Finally, there exists a self-duality relation

Eabcdemabxc = @L@Deabcﬁde xab ® ECS]/’V’ (2.23)
1--
= VYV e ® 1+18® Zae)yy
=Y Zaey =mae (229

using (B.10). Thus m?” is a tangential self-dual rank 2 tensor on H*, in complete analogy to S;‘v
[21]. At the reference point (2.6), one can express m? in terms of the § O (4) t’Hooft symbols

m* =, J;. JiJi=1 (2.25)

where J; describes the internal S2. This exhibits the structure of CP2 isan SO (4, 1)-equivariant
bundle over H*. The fiber S is generated by the local SU (2), while SU (2) g acts trivially.

2.2. CP"? as SO(3,2)-equivariant bundle over the hyperboloid H*>

Equivalently, the homogeneous space CP!? of SO(4,2) can be viewed as S2-bundle over
H?2, which arises from a different Hopf map

H*? > CcP"? > H>? cR>? (2.26)
as follows, cf. [22]:

1— 1
4= sza“w: Em““, a=0,1,2,3,5. (2.27)
This map is compatible with SO (3, 2), and establishes (2.26) as SO (3, 2)-equivariant bundle in
the aforementioned sense. The reference spinor (2.9) is now projected to 1 = r~1(0,0,0,0, 1) €
R32, which transforms as SO(3,2) vector. Then t“ defines a hyperboloid H>? ¢ R>? with
intrinsic signature (4, 4+, —, —). Using analogous identities as before, we obtain the constraints

~ b 2 ~ .
Napt®t’ =r—", flap = diag(—1,1,1,1,—1),
' t, x4 =0=1t,x" ) (228)
aX =VU=1, .

The last relation follows from the SO (4, 2) relation (2.17), noting that t* = 0. More generally,
we can consider

% =m®ay, “ =mB, (2.29)

where o, 8 € R>* are two linearly independent vectors with? a, 82 = 0. Then the previous con-
structions are recovered for & = ¢>, B = ¢*. The common symmetry group which preserves both
ayp and By is SO(3, 1). Note that > o< x* on CP2.

2 The case of light-like « is also interesting, see section 3.2.
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Fig. 1. Sketch of the projection ITy from H 4 to M3-! with Minkowski signature.

2.3. SO(3, 1)-invariant projections and Minkowski signature

So far we have constructed H* and H>2, but not a space with Minkowski signature yet.
Space-times with Minkowski signature can be obtained by SO (3, 1)-covariant projections of the
above hyperboloids. Explicitly, consider the projections

Hx: (CPI,Z _)R?),l’
mi—> x* =mtbay,
I1; : cp'? —>R3’1,

m> t* =mh g,

with u=0,1,2,3, (2.30)

which respect SO(3,1). A sketch of Il is displayed in Fig. 1. In section 6, the image
M3 c R¥! of T, serves as cosmological FLRW space-time with k = —1, as discussed in
[1]. In contrast, t* is interpreted as internal space related to translations.

3. The fuzzy hyperboloid H?

Now we turn to the central object of this paper: the fuzzy hyperboloid H,‘L1 . H,‘l‘ is a quantization
of the bundle CP!? over H*, which respects the SO (4, 2) structure and the projection to the
base space H*. This is natural because CP1-2 is a coadjoint orbit of SO (4, 2) via (2.11). As such
CP'? is equipped with a canonical SO (4, 2)-invariant Poisson (symplectic) structure; whereas
on H* no such structure exists. H,f was first discussed in [22], and it serves as starting point for
a quantized cosmological space-time in [15].

As for any coadjoint orbit, fuzzy H,‘,1 can be defined in terms of the operator algebra End(#,,),
where 7, is a suitable unitary irrep of SU(2,2) = SO (4, 2). The representation is chosen such
that the Lie algebra generators M, € End(#,,) generate a non-commutative algebra of func-
tions, interpreted as quantized or fuzzy (CPnl’2. The M“" are naturally viewed as quantized
coordinate functions m® (2.13) on CP'2. Fuzzy H,f is then generated by Hermitian genera-
tors X ~ x“, which transform as vectors under SO (4, 1) C SO(4, 2), and are interpreted as
quantized embedding functions (2.4). This will be made more explicit through an oscillator con-
struction, which allows to derive all the required properties.

To define fuzzy H,f explicitly, let r;”b = diag(—1, 1,1, 1,1, —1) be the invariant metric of
SO (4,2), and let M® be the Hermitian generators of SO (4, 2), which satisfy

[Mabs Mcd] = i(nacha' - nadec - nbcMaa' + nbdMac) . (31)
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We choose a particular type of (discrete series) positive-energy unitary irreps® H,, known as
minireps or doubletons [23,24]. Remarkably, the H, remain irreducible* under S 04,1 C
SO (4, 2). Moreover, the minireps have positive discrete spectrum

spec(M®) = {Ey, Eo+1,...),  Eg=1 +g 3.2)

where the eigenspace with lowest eigenvalue of M% is an n + 1-dimensional irreducible repre-
sentation of either SU (2)1 or SU (2) g. Then the Hermitian generators

X% = rM®, a=0,...,4

(3.3)
(X%, X"] = —ir’ M® = i0"
(note the signs!) transform as SO (4, 1) vectors, i.e.
[Mab» Xc] = i(nach - ﬂkaa), (3 4)
[Map, Meal =i(MacMpa — naaMpe — 1beMaa + MpaMac) . '

Because the restriction to SO (4, 1) C SO (4, 2) is irreducible, it follows that the X live on a
hyperboloid,

nap XXP =x'x' — x°%x% = —R%1 (3.5)

with some R? to be determined below. Since X° = rM% > 0 has positive spectrum, this
describes a one-sided hyperboloid in R!#, denoted as H,f. Analogous to fuzzy S%, the semi-
classical geometry underlying H,f is CP12 [22], which is an S%-bundle over H* carrying a
canonical symplectic structure. In the fuzzy case, this fiber is a fuzzy 2-sphere S,zl. We work
again in the semi-classical limit. We also note the following commutation relations

Ox X’ =[Xq, [X?, X1 = —4r2X" . (3.6)

The negative sign arises from n = diag(—1, 1, 1, 1, 1, —1), and Oy is not positive definite.
3.1. Fuzzy H,,2 2 and momentum space
As in the classical case (2.27) and for later purpose, we also define
T“=%M“4, a=0,...,3,5 (3.7)

where Rr T3 = —X*. As the restriction of 7, to SO(3,2) C SO(4,2) is irreducible, the opera-
tors (3.7) satisfy the constraint

o 1
HapTOT? = =170 + Z T'T —T°T° = 51 (3.8)
i=1,2,3 r

3 Strictly speaking there are two versions 7—[% or ’H,If with opposite “chirality”, but this distinction is irrelevant in the
present paper and therefore dropped.

4 This follows from the minimal oscillator construction of Hy, where all SO(4,2) weight multiplicities are at most
one, cf. [23,25,26].
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cf. (2.28). This is the quantization of the hyperboloid H>? c R>? with intrinsic signature
(+, 4+, —, —) of section 2.2 and becomes Lorentzian via the projection (2.3). The commutation
relations are

1
[T“,T”]ziﬁw” a,b=0,...,3,5,

) (3.9)
[T“,X”]:iEnMVX4, w,v=0,...,3,
which justifies to consider T# as translation generators, and
OrT? =T, [T?, Tb]]=+%Tb (3.10)
Note the different signs in (3.10) and (3.6), which arise from of > = —1 = —y**.
3.2. SO(3, 1)-covariant fuzzy spaces
In analogy to section 2.3, we consider the SO (3, 1)-covariant fuzzy generators
Xt =MMa,,  T,=M"B, (3.11)

where «, 8 are SO (3, 1)-invariant. They satisfy
X X =(a-a)M™,  [TFT']=(B-pHM"
(X", 7] =i(88 M aa By + - BMM)
=i(8)'a ABD + - BMM) (3.12)

wherea A =a*B> —a’p*and D= M* Fora-a~0anda- B~ 1~aAp, the X" become
almost commutative and the commutation relations are not far from the Poincare algebra:

. . . . _ 1 _ _ 1 .
Poincare algebra. In particular for light-like o = ﬁ(l’ 1) and 8 = ﬁ(l’ 1), we obtain

1 . 1
K, = E(MMS M), Th= 72(/\/1“5 + M (3.13)
which satisfy
T, T"1=0=[K" K"],
[~ ] [ ] (3.14)
[T#, K,]=i(8"* D + M),

Hence the T* together with MY generate the Poincare algebra 7SO (3, 1) as sub-algebra of
s0(4, 2), with special conformal generators K* and the dilatation operator D

[D. T, 1=iT,, [D,K,]=-iK,. (3.15)
3.3. Oscillator realization, minireps and coherent states

The Hilbert space H,, is a highest-weight unitary representation of SU (2, 2), which can be
obtained by quantizing the spinorial construction of CP>! in (2.1). For the quantization one
replaces the classical 4-component spinor ¥, by 4 operators, which satisfy

W, ¥P1=85 . (3.16)



M. Sperling, H.C. Steinacker / Nuclear Physics B 941 (2019) 680-743 689

The associated bilinears

M =y xaby, (3.17)
realize the Lie algebra (3.1) of SO (4, 2), due to
[1/} xaby, JIECdI//:I = [2“”, zcd] . (3.18)

The M, are self-adjoint operators, since
sabt _,05ab, 071 (3.19)

As a consequence, they implement unitary representations of SU(2,2) on the Fock space
F = span{y/ ... ¥|0)} of the bosonic oscillators, which decomposes into an infinite number of
irreducible positive energy unitary representations # 4 .

The oscillator algebra (3.16) can be realized explicitly as follows (cf. [24,27]): Consider
bosonic creation and annihilation operators a;, b; which satisfy

lai,a}]= A bi1= 5/ fori,j=1,2. (3.20)
Using the a;, b; we form spinorial operators
ay
=] (3.21)
Y= ) .
by
with Dirac conjugates
p=yyl= (—al, —ay, b}, b;) : (3.22)
Then
[V, ¥pl =55 (3.23)
as required, and the SO (4, 2) generators are
ay
- T
MO = 3eby — (—al, —ay. b}, bg) nab Z? . (3.24)
by

The generators of SU(2)r and SU (2)r are defined by

1
L;‘ = aZai — ES;‘NG
, 1 .
T
R; =b/bj — ES}N},

and the time-like generator X (or the “conformal Hamiltonian” E) is given by
- 1 . 1
r’1X0=E=M05=w205w=Ew’wzi(Na+Nb+2), (3.25)

where N, = a; a;, Np = b;b ; are the bosonic number operators, and
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N=vyv¢=—N,+Np—2 (3.26)

is invariant. The non-compact generators are given by linear combinations of creation and anni-
hilation operators of the form a?b} and a;b;.

Minireps. The simplest class of unitary representation has lowest weight space given by the Fock
vacuum ¢; |0) = 0 = b; |0), which defines [27]

|2) :=11,0,0) =:10), E=1,jr=jr=0. (3.27)
This gives the doubleton minireps built on the lowest weight vectors
. noo\_ ot no._n .
|Q).=’E,—,O>.=a< a0y, E=1+2j.=2 jr=0
2 o 2 2 (3.28)
: n\_pi ot no o '
Q) = ‘E,O, §>.=bil LBL10) E=14301=0jr=7
which are annihilated by all L™ operators, i.e. of the form a;b;,
aibj|RQ) =0 (3.29)
and
2 o 2 2
n :=<N+2) —(Ny—Np)?,  n=0,1,2,.... (3.30)

Acting with all operators of the form al.T bj. of LT on |Q), one obtains positive energy discrete

series UIR’s H 5 of U (2, 2) with lowest weight A = (E, §,0) and A = (E, 0, §). We will largely
ignore the distinction and denote both as #,,. These are known as minireps of so(4,2), because
they are free of multiplicities in weight space.” They correspond to fields living on the boundary
of AdS>. The minireps remain irreducible under SO (4, 1) as well as SO (3, 2), and they can be
interpreted as massless fields on AdS*, or as conformal fields® on Minkowski space. The lowest
weight state |E , 0, %) of H, generates a (n 4 1)-dimensional irreducible representation of either
SU(2); or SU(2)g with degenerate X°, naturally interpreted as fuzzy S,%.

Comparing the above oscillator construction (3.17) with (2.13), it is manifest that for each
H,, with n > 0, the M,;, generators can be interpreted as quantized embedding functions

Map ~map: CPY? > s04,2) =R . (3.31)

This provides the quantization of the coadjoint orbits (2.11), which defines fuzzy (CPH1 2 Since
X9 > 1, they should be viewed as quantized bundles with base space H,‘zt described by X, and
fiber S,%, forn =1,2,3,.... The implicit constraints defining these varieties will be elaborated
below. For n > 0, these spaces have been briefly discussed in [16,22], and we will mostly focus
on that case. The minimal n = 0 case is different, but also very interesting, and we discuss it in
some detail in appendix C.2.

Coherent states and quantization. The above discrete series irreps H;,, provide a natural definition
of coherent states |m) = g - |2) € H,,, which are given by the SO (4, 2) orbit through the lowest

5 This can be seen e.g. from the characters given in [26].

6 1t may seem tempting to apply some of the standard technology of CFT in the present context. However, the use of
SO(4,2) here is quite different from CFT, and it does not respect the bundle structure over H 4, Also, the notions of
primaries and descendants do not seem to be applicable here, since in the present signature K* (3.15) do not rise or
lower the eigenvalues of D.
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weight state |2). The set of coherent states forms a U (1)-bundle over CP 1.2 "and allow to recover
the semi-classical geometry of CP? as S2-bundle over H* via m*? = (m| M® |m). In particular,

the lowest weight state is located at the reference point (2| X¢ |Q2) = xg =(R,0,0,0,0), see

(2.6). The local SO (4) generators M/ act on the coherent states over & in a spin 5 irrep.
These coherent states |m) also provide a SO (4, 2)-equivariant quantization map from the
classical space of functions on CP !+ to the fuzzy functions End(#,,):

Q: C(CP"“?) - End(H,)
f(m)— / du f(m)|m) (m| (3.32)

CpP12

where |m) is a coherent state,” and du is the SO (4, 2)-invariant measure. For polynomial func-
tions, this corresponds to Weyl quantization, mapping irreducible polynomials P (m“?) to the cor-
responding totally symmetrized polynomials P(M9?); in particular Q(m®) = M“". Likewise,
square-integrable functions on CP!? are mapped to Hilbert-Schmidt operators in End(#,). We
expect® that the map Q is surjective, and that all “reasonable” (e.g. square-integrable or Hilbert-
Schmidt) harmonics in End(*H,) can be obtained as quantizations of higher-spin harmonics on
H* via Q. This will be used below.

3.4. Algebraic properties of fuzzy Hj

Using the aforementioned oscillator realization, one can derive a number of useful identities
for the above operators on H,,; we refer the reader to appendix C for the details. To begin with,
consider the SO (4, 1)-invariant radius operator

R*= Y naXXx". (3.33)
a,b=0,1,2,3,4

Since H p is irreducible under so(4, 1), it must follow that R2 ~ 1. Indeed, one finds

2. 2

XuX‘l:—IN(N+4)=—Z(n2—4) = —R? (3.34)
where n = IN +2|=0,1,2,.... Note that R2 is positive for n = 0, 1, which seems strange
because XY is positive. However, this is a quantum artifact, and the expectation values (X¢) under
coherent states still sweep out the usual H*. Additionally we compute the quadratic SO (4, 1)
and SO (4, 2) Casimir operators

C’lso(4, D= Y MabM“*’=§<n2—4>, (3.35)
a<b<4

C3[50(4,2)] = Z Mabj\/l“b=%(n2—4). (3.36)
a<b<5

We note that (3.35) agrees with [22]. Further identities can be obtained from the so(6)¢ identity
(B.9), which entails

7 Observe that the phase ambiguity of the coherent states drops out here.
8 For a formal argument see appendix C.1. A more rigorous proof would be desirable.
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Neer MO MPE 4 (a <> b) = %(n2 — A nap - (3.37)
This implies the so(4, 1) relation

e @COY 1 (a < b) = r? (2R277ab + (x“xb + x”x“)) : (3.38)
These correspond to (2.17), (2.18). Moreover, one finds

XpM® + MPX), =0, (3.39)

which means that the SO (4, 1) generators M® are tangential to H,‘z1 . Another interesting identity
is

€abedef MP M = dn M,y

i (3.40)
€apedeMP M = 4nr1 X,
cf. (2.21), (2.22). Finally, the self-duality relation (2.24) becomes
6ahcde/\/labxc =nrMge . (341

To summarize, we have found counterparts for all relation of the classical geometry in section 2.1,
which vindicates the choice of representation H,,.

3.5. Wave-functions and spin Casimir

Given a representation H, of SO (4, 2), the most general “function” in End(#,,) can always
be expanded as follows

¢ =d(X) + Pap(XIMP + ... € End(H,) = C, (3.42)

which transform in the adjoint representation M 5 M ] of s0(4,2). The ¢up(X) will
be interpreted as quantized tensor fields on H 4 which transform under S 04, 1). We define an
SO (4, 2)-invariant inner product on C via

(@) =t (¢7y) - (3.43)

For polynomials generated by the X, this trace diverges. However this is only an IR-divergence,
and we are mainly interested in normalizable fluctuations corresponding to physical scalar fields.
Technically speaking, we will be working with Hilbert-Schmidt operators in End(#). These can
be expanded into modes obtained by decomposing End(7#) into unitary representations of the
isometry group SO (4, 1) of the background. We will see that the expansion (3.42) is truncated
at n generators Mp.

Spin Casimir. To proceed, we require a characterization of the above SO (4, 1) modes in terms of
a Casimir operator which measures spin. One can achieve this by the SO (4, 1)-invariant

§*=Cso4, D] +r20= Y M [Map. 11+ 72X, [X, 1, (3.44)

a<b<4

which measures the spin along the S? fiber. To understand this, we locally decompose
50(4, 1), for example at the reference point (2.6), into so(4) generators MH"" and transla-
tion generators P* = £ M#0. Then C%[so(4,1)] = —R?>P, P" + C*[s0(4)], and R?P, P ~
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—r~2[X,,, [X*, -]] if acting on functions ¢ (x), cf. (3.69). Therefore S? ~ C?[s0(4)] should van-
ish on scalar functions ¢ (X) on H*, but not on higher-spin functions involving 6%, We will see
that this is indeed the case, and End(7#,,) contains modes up to spin n as measured by 52 (3.55).
We also observe

C?[s0(4,2)] = C?[so(4, )] —r *0=8>-2r"20, (3.45)
C?[s50(4,2)] =2C3[s0(4, 1)] — S . ’
Note that S2, O, and C 2[50(4, 2)] commute and can be diagonalized simultaneously.

Higher-spin modes on Hf . To determine the spectrum of S? for the modes in (3.42) we first
prove the following identity for any f € C:

S f, Xad4) =187 f, Xa)+ (3.46)
where {-, -} denote the anti-commutator. To see this, consider
S*(fXa) = (8> )X+ M, fliMea, Xal +2r 2 [X6, flIXe, X4]
= (82 ) Xa + 26IM™, f1X4 = 2[X, flMeq
= (82 ) Xq + 2IM Xy, f1-2M“[Xq, f1=2[X, flMeq - (3.47)
Similarly,
S (Xaf) = Xa(S” )+ 2[XaM™, f1=2i[Xg, FIM = 2i Ml X€, f1 (3.48)
and adding them yields (3.46). Next, starting from
OxX? = —4X* = —C*[s50(5)]1X*¢ (3.49)
this identity immediately implies
S?P,(X)=0 (3.50)
for totally symmetrized polynomials P,(X) in X. More generally, we show in appendix C.1 that
this holds for any scalar field ¢ on H* quantized via coherent states, i.e.
S’p=0  forany ¢= / d(xX)|x)(x] . (3.51)
cpl2
As a next step, we consider the higher-spin fields. Using
2C%[s0(4, DIMap = [M, [Med, Map]l = 12Map
DXMah = [XC» [Xc, Mab]] = _zMab
S*Mup =4Mp (3.52)

we find
S2pM) =49 forany ¢ = ¢y (x) M (3.53)

with quantized functions ¢,;,(X) on H* in (3.51), etc. We can similarly compute S? for any
irreducible polynomial function in M??, and obtain

S*(EY) =2s(s + DEY, E) = (Pw)arby..ash, M .. MBPs (3.54)
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where Py ~ BEE‘ is a 2-row rectangular Young projector. The restriction to these Young diagrams
follows from the commutation relations (3.1) and the self-duality relation (3.40). This leads to
the decomposition

C=EndH,) = .  Ses=2s(s+1) (3.55)
s=0

where C* is the eigenspace of S? = 2s(s + 1). We refer to appendix C.1 for the details. Of
course the C* contain also forms of the type ¢ (X) &}. However since the multiplication does
not respect the grading, we can only say that C* is the quantization of tensor fields ¢ (x) taking
values in the vector space spanned by E%,

C' > QPay..agibr..b I m BP0y = Qe (x) EY), s <n, (3.56)

where 2% denotes both the polynomials in M and m®. We remind the reader that Q (3.32)
respects s0(4, 2). The truncation’ at n follows provided Q is surjective, since the corresponding
classical expressions (3.56) with s > n are annihilated by Q. In fact they correspond to spin s > n
irreps of the local SO (4), which are not supported by the local fiber spanned by the coherent
states, which is a fuzzy 2-sphere S,%. See appendix C.1 for more details.

This is a very remarkable structure, which leads to higher-spin fields on H* truncated at
spin n. For small n, the uncertainty scale Lﬁc ~ R2, see (3.59), is set by the curvature scale
of H* c R4, so that the space is far from classical. Nevertheless, the case of small » may be
interesting after projection to the cosmological space-time M?>! as discussed in section 6.

The n =2 case. The case N =0=n — 2 is special, because then C2[50(4, ]=0=R2 To
avoid this we will assume n # 2 in this paper.

The n =0 case. In that case, (3.40) gives
€abedef MM =0, (3.57)

which is a relation in the Joseph ideal [28]. Then the M g b=0,...,5 generate Vasiliev’s
higher-spin algebra associated to so(4, 2). However here we will not aim for a higher-spin theory
on AdS?, but reduce H,, for n # 0 to the so(4, 1) generators M® a b=0,...,4, and the re-
maining X¢ generators. Then the M, a, b =0, ..., 4 satisfy relations which are locally similar
to the hs algebra of so(4, 1), while the X¢ generate the underlying space.

3.6. Semi-classical limit and Poisson calculus

Now consider the semi-classical limit of fuzzy H, which is obtained for large n, and is

indicated by ~. Then X* ~ x“ and O ~ 995 and the above relations on Hﬁ reduce to

xax% =—R?, (3.582)
9%, =0, (3.58b)
€abede® P x¢ =nr6g ~ 2ROz, , (3.58¢)

9 We do not claim that for example the algebra of functions generated by P4 = M@ s truncated at order n; this is not
the case. The claim is that all Hilbert-Schmidt operators can be written in the above way.
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’ 1/ L4 ’
ybb — naa/eabeab — ZC Pbb , (358d)

where the scale of non-commutativity is
Lyc =00, =4r"R* . (3.59)

Here

1 b

P =y 4 Rl with P%x, =0 and P pbc= pe (3.60)

is the Euclidean projector on H* (recall that H* is a Euclidean space). Hence the algebra of
functions on fuzzy H,f reduces for large n to the algebra of functions

End(#,) ~ C(CP'?) = @, C° (3.61)

on the classical Poisson manifold C P12, as described in section 2.1. We denote the eigenspaces
of 82 again with C*, which are now modules over the algebra C® = C(H*) of functions on H*,
thus encoding the structure of a bundle over H*. From now on we work in the semi-classical
limit. The bundle structure can be made more explicit by writing

§eb = nab i (3.62)

as in (2.25), where r]l‘.’b are the tangential self-dual t"Hooft symbols; “tangential” follows from
xaG“” = 0. The J! transform as vectors of the local SU(2); C SO(4), and describe the internal
S? fiber.

Derivatives. It is useful to define the following derivations (cf. [2])

o = —Leab{xb, o) = xp{0°°, ¢}, peC, (3.63)

r2 R2 r2 R2
which are tangential x“0, = 0, satisfy the Leibniz rule, and are SO (4, 1)-covariant. Equivalently,

(x?, ) =05, . (3.64)

In particular, the following holds:

I35 = — eab{xh’XC}ngc

r2R2
1
[0q, Oplgp = —m{%b, ¢} (3.65)

as shown in appendix D. The first line shows that 0 act as isometries on functions, such that the
. can be viewed as a set of five Killing vector fields on H* with Lie bracket given by (3.65).
Furthermore,

1 1

5(190(1 — r2R29ab{xb’ ecd} — _ﬁeab(nbcxd _ nbdxC)
1

= ﬁ(—é‘”xd + 6% x°). (3.66)

We also note that the SO (4, 1) rotations of scalar functions are generated by {M? .}, which
can be written as

(M, ¢} = —(xDp — x"D)p, ¢ eC’. (3.67)
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To see this, it suffices to verify the action on the x¢ generators,
{Mab7 xC} — _(xaab _ xbsa)xc — _(xa PbC _ beaC) — _(xunbc _ xbnac') (368)

since both sides are derivations. Finally, the semi-classical limit of the O operator (3.6) can be
expressed in terms of the derivatives as follows:

0¢ = —{xq, {x, ¢}} = —{xa, 0?0}
= —{xa, 0“*}0p¢p — 0 (x4, Opp}
= 1M, x,}Bpp — 07009 Byd )
= —r*R*P*"B.0p¢ (3.69)
for any ¢ € C.

Connection. We define an SO (4, 1)-covariant connection on the module C (4.1) by [2]

V=Prod (3.70)

so that for V, = Vg,

1
Vatp = 0atpp — ﬁquﬁa,

1
Va®be = 0aPpe — ﬁ(xb(bac + XcPba) (3.71)

etc. if ¢4, ¢qp are tangential. Comparing with (3.66) and using (3.67) it follows that the connec-
tion is compatible with 6% i.e.

Vot =0,  V{f.g}={Vf g +1{f Vg (3.72)

and V, Py = 0. The associated curvature

Rap = R[aas 61)] =[V4, Vp] — V[Baf)b] (373)

is computed in appendix D.15, and reduces to the Levi—Civita connection on tensor fields. Thus
Hf is a quantum space which is fully SO (4, 1)-covariant, and we have found a calculus which is
defined solely in terms of the Poisson bracket, i.e. the semi-classical limit of matrix commutators.
This is very important for the present non-commutative framework.

Averaging over the fiber. There exists a canonical map
[1o:C(CP?) = C(H*
s fo= [ 1) (3.74)
S2

defined by integrating over the fiber at each x € H*. This projects the functions on the total
space to functions on the base space. On fuzzy S4N, this averaging can be defined in terms of a
S O(5)-invariant projection to some sub-space of End(#). For H,f , [-]o is nothing but the projec-
tion to S2 = 0 i.e. to CY, as discussed below.
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Explicitly, the averaging [-]y over the internal S? is given by
1 1
bpcd 4 bd b d bed
[6°%° ]0 = S Lyc(P P — pheped g gehede o)
r’R? - pbd be pad bede 1 e
= T(P‘“P — PP Pt 4 g€ eEx‘) . (3.75)

One can generalize the averaging to higher powers of 0%°, e.g. [2]

. 3 : : dpe
[gabecdeefegh]o — g ([gabecd]o[eefegh]o + [eabeef]o[ecdegh]o + [eubegh]o[eLdetf]()) X
(3.76)

Alternatively, one could proceed to define a star product for functions on H*, which is presum-
ably commutative, but not associative, in analogy to the case of S;‘V [11]. On the other hand, for
n = 0 there is nothing to project, and the full algebra of functions on H* is non-commutative and
associative without extra generators.

Integration. As for any quantized coadjoint orbit, the trace on End(#) corresponds to the integral
over the underlying symplectic space, defined by the symplectic volume form. Explicitly,

dim(H)

Vol H) (3.77)

TrQ(¢)=/dM¢ =/p[¢]o, p =
H4

dim(H)
Vol(H#%)
to p on H*. This is best seen via coherent states (3.32). We will often drop dp and Q in the
semi-classical limit. Finally, note that the 0 are not self-adjoint under the integral, but

replacing the ill-defined fraction

with the symplectic volume form du, which reduces

[oure==[roue+ s [ rneig== [ rae- o [s2re  69)
using {xp, 0°?} = 4r2x“.
4. Functions, tensors and higher-spin modes
We have seen that the algebra End(?,,) of fuzzy H,f reduces in the semi-classical limit to the

algebra of functions on CP!-2, The results of section 3.5 provide a more detailed decomposition
of C into modules (3.55)

o]

C=EDC 3¢ by p @) mI = ¢pp(x) gf, 4.1
s=0

over the algebra of functions C% on H*, due to (3.46). This means that C is a bundle over H*,
whose structure is determined by the constraints (2.17), (2.21) and (2.24). An explicit description
is given by the one-to-one map'’

10 Note that T®) H# is not a module over CO, hence this is not a module isomorphism. In [2], a different convention

was used for the map ¢q, ...q; (¥) < ¢>(S>. The present convention avoids the appearance of square-roots of Casimirs in
this map.
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r®Op* — ¢

4.2)
o8 0 ) ¢ ={x9, L {x, W V). ¢

Here I'®) H* denotes the space of totally symmetric, traceless, divergence-free rank s tensor
fields on H*, which are identified with (symmetric tangential divergence-free traceless) tensor
fields ¢$)~~as with SO (4, 1) indices, as discussed in section 4.2 and in [2]. The inverse map of
(4.2) (up to normalization) can be given by

C3 oW (xU, . x%, W}, ) eTWH? 4.3)

which is symmetric due to [-]o, as well as traceless, divergence-free and tangential. These state-
ments are analogous to the results in [2].

Some comments on the map (4.2) are in order. We show in sections 4.0.1-4.0.3 that pure
divergence modes would be mapped to zero by (4.2). Injectivity will be shown below by estab-
lishing (4.3). To see surjectivity, it suffices to consider the vicinity of a chosen reference point,
for instance (2.6). Then polynomial functions suffice to approximate any element in C*. Then the
50(4, 2) representation theory allows to characterize all polynomials in C* uniquely by Young
diagrams, as explained in detail in [2, section 3]. These in turn are captured by the map (4.2), and
an alternative inverse map can be used [2]

s> oW L Y mA st s g B 0xP e (4.4)

ajy...ag;by. ajy...ag;by.

which is equivalent to (4.3) up to normalization.

Hence C* encodes one and only one irreducible spin s field on H*, given by square-integrable
tensor fields on H*. The generators 22 form a basis of irreducible totally symmetric polynomials
in m?, i.e. of Young tableaux

oHH = hs =02, 8. 4.5)

As in [2], bs is closely related to the higher-spin algebra of Vasiliev theory.!! Hence C can be
viewed as functions on H* taking values in bs.

4.0.1. Spin I modes
The unique spin 1 field is encoded in ¢q,m®®. According to the above statements, it can be
expressed in terms of a tangential, divergence-free tensor field ¢, € C° on H*, i.e.

xlp, =0=0, . (4.6)

Given such a ¢,, we define

1
90 = {x", ga} =0y = S0 Fu €C',

4.7
Fap = 8bd’a - 6a¢b
which encodes the field strength of the vector field. This is not tangential, but
X Fap = x“OpPa — x“0ap = x“Oppa = — ¢ (4.8)

1 Note that H is a minirep of SO (4,2) but not of SO (4, 1). This explains why we get an extension of Vasiliev’s hs
algebra by functions of X.
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using (D.1). Conversely, the “potential” ¢, (x) is recovered from ¢! via a projection

—(xa, 0o =10 =27y, a1 = % (4.9)

where q)(l) = {x¢, ¢.} for a tangential, divergence-free ¢, € C°. The derivation of (4.9) is detailed
in (D.18)—(D.20). The generalization of this formula for higher-spin is discussed below. If ¢, is
an irrep of SO (4, 1), we may abbreviate this as

—{xa, 6V} = @10 (4.10)
where & is the value of a1 (0 — 2r2) on ¢,.

Pure gauge modes. Finally, one can verify that for $a = Da¢, the associated “field strength”
tensor is JF,p X {G”b , ¢}, but the field strength form ¢(1) vanishes identically:

¢ = {x%, 0,0} =0 4.11)

using (D.3). This expresses the gauge invariance (or irreducibility) of ¢!,

4.0.2. Spin 2 modes
Similarly, spin 2 modes can be realized in terms of a tangential, divergence-free, traceless,
symmetric rank 2 tensor ¢gp(x) = ¢pq(x) € Y ie.

X Gap =0=0"Gap = n""pab - 4.12)
We define the associated “potential form”
D =1, pap) = 0"V ap = —wa:p0”  €C', (4.13)

which can be viewed as so0(4, 1)-valued one-form with

Wazch = %(6c¢ab — Op@Pac) - (4.14)
Note that ¢£2) is indeed tangential,

X9 =x(x, pea) = —{x%, X Vg = 0. (4.15)

The so0(4)-valued components of ¢§2) correspond to the spin connection, while its translational
components

1 1
xcwa;cb = _Exc6b¢ac = E‘l’ab (4.16)

reduce to @,p, as on fuzzy Sﬁ [2]. The “field strength form” corresponding to ¢¢(12) is

9 ={x". 9P} = %eadnad[qﬂ

= _eadad(wa;cbec})) = _GCbgad6d0)a;cb - gadwa;cb6d90b
1

= EG“dGCb@awd;cb — 04 ®a;ch)

1
= EO“dGbCRad;bc[qb] eC? (4.17)
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noting that the 5,1901’ terms drop out for traceless, tangential ¢, using (3.66). This encodes the
linearized Riemann curvature tensor associated to ¢,

Radlp] = —0,0 + 0402 = Roapcd™ €C',

Rad:pe = 0a®d;be — 0dWa:be

1
= §(6d86¢ab - ESzl6c¢db - 6d6b¢’ac + 6aabd)dc) . (418)

Although the d, do not commute among another, their commutator is radial due to (3.67), i.e.
PRad;bc - PRbc;ad =0. (4.19)

Hence the tangential components of PR..pc[¢] coincide with the usual linearized Riemann
tensor. The connection form ¢§2) (i.e. w) is recovered by a projection

(0, 0P h =0 —2r9P  eC',  w= S (4.20)

generalizing (4.9). Here, we defined ¢® = {x?, {x¢, ¢p.}} for a tangential, divergence-free,
traceless ¢,p € co. Similarly to the spin 1 case, (4.20) could be obtained via formula (3.76);
however, we provide a more transparent derivation by means of an inner product below. If the
underlying tensor ¢,y is an irrep of SO (4, 1), we may abbreviate this as

—{xa, $P}o = Go9? “.21)

where &, is the value of o (0 — 2r2) on qﬁflz) .

Spin 2 pure gauge modes. Again, consider a pure gauge rank 2 tensor

B = Vatp + Vi (4.22)

which is tangential and traceless (provided d%¢, = 0), but no longer divergence-free. Then
- - 1
0 = (e Gy} = (& Bagpy + 0y — 5 ("t +x"6))
1
= {x?, Bugpp} — ﬁ{xb,xaqﬁb}
2
=029V + 0“0 (4.23)
using (D.7) and oM = {x?, ¢,}. This satisfies
- 2 2 )
(x84} = 1x, a0 + 50" gc) = <51, 079} =0 (4.24)
using (5.30), which expresses the gauge invariance of ¢®.
4.0.3. Spin s modes and Young diagrams

As observed above, elements in C* can be identified with totally symmetric, traceless,
divergence-free rank s tensor fields ¢, ., on H 4 via

¢ = (x", . x%, bay.a ).} €C. (4.25)

It is useful to define also the mixed spin s objects, such as the “connection (25 — 1)-form”
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O = (xS by gy ya) -} €CST! (4.26)

which are all tangential and associated to the underlying irreducible rank s tensor field. Then the
“field strength” form can be written as

60 =(x", 9} = %Rad[qs]e“d
= 0018y, . 0UP Dy Bay g = 0N 05Dy, L B, Pay .
= Rayagby. b, @) 0057 = Ry(x) B €’ 4.27)
noting that the 96 terms drop out for traceless tangential ¢y, .. 4,, using (3.66). Here
Raal] = =0ty + a0’
Rb,..bg:ar...as (X) = POay - .. 0a,Pb,..b, (4.28)

is some antisymmetrized derivatives corresponding to some two row rectangular Young projector
P~ EEE, which can be regarded as linearized higher-spin curvature. We will show below that

the potential qbz(f) is then recovered from the following projection

(20 ¢} =as@ =209 e (4.29)

If the underlying ¢q,. 4, € C%is an irrep of SO (4, 1), we may abbreviate this as

—{xa> ¢(s) Js—1 = &s(ﬁés) (4.30)

where &; is the value of ag (00 — 2r%) on qbb(f).

Pure gauge modes. Finally, one can verify that a pure gauge rank s tensor

Z(s—1) == V(axd’a],,,aj,]) (431)

ajy...ds

drops out from the field strength form,
(x4, xS, el 1 =0. (4.32)

aj...ds

As before, this is a manifestation of the gauge invariance of ¢*). One way to see this is to move
V out of the brackets using (3.72) and, finally, use (D.4).
One may wonder about the meaning of the infinitesimal transformations

¢ > (A, ¢W}. (4.33)

These correspond to symplectomorphisms on CP'-? generated by the Hamiltonian vector field
{A, -}, which mix the different spin modes in a non-trivial way. They do not correspond to the
above pure gauge modes (4.31), but see section 5.9.

4.1. Inner product and quadratic action

It is interesting and useful to compute the inner product (3.43) of the above spin s fields ¢*)
defined by the trace in End(#). In the spin 1 case, consider the quadratic form

1
f¢(1)¢(1) — Z /[eabecd]ofabfcd

2 p2 f
R . ,
=1 — / @pacpbd 4 %e“b“’f ) FabFed (4.34)
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which looks like the action for self-dual (abelian) Yang—Mills. In the spin 2 case, consider the
analogous quadratic form

/ 5@

-7 / (09676 07" 1§ Respe [T Rurersy (]
3 aepnad’e bepb'c!
=— [ [09°0°° Jo[0"°O ]ORae;bc[¢]Ra/e’;b/c/[¢]
f £
/@P”P“ “meﬁ@#wpf+%ﬁM””RMMWwawW]
pad pee PPV PR e[ Rarer e [@]  + topological terms (4.35)

15

because [¢>(2)]0 = 0. Note that we used the symmetries (4.19) of R, or rather of its tangential
part PRe:pe. as the radial contributions drop out anyway. We observe that (4.35) is a (self-
dual) linearized quadratic gravity action,'” which can be written in terms of the R, “forms” as
follows:

1 » NSNS NN}
/¢(2)¢(2) — Z /[eucebcea e eb C ]ORae;tha’e’;b’c’

3 o
10 [0 e JoRae; bce “Rarer: b’c/eb ¢
10 [eaeea e ] RaeR

. 2r2R?

e
Similarly for spin s, we have
[ 999 = [167 RucRy
e
= o, R /(Pachd _ pad pbe %Sahcde)8b¢;s)6d¢c('s) (4.37)

which is again some self-dual quadratic Fronsdal-type higher-spin action [29]. The factor o
will be determined below. This suggests that a matrix model based on a single ¢ € End(H)
should define some higher-spin theory, which is however expected to be more or less trivial.
Nevertheless it would be interesting to study the action defined by higher-order polynomials, and
to understand its relation with Vasiliev’s theory [30]. In the remainder of this paper, we will show
how a non-trivial higher-spin gauge theory arises from multi-matrix models.

4.1.1. Projections, positivity and determination of o
Now consider the spin s modes ¢*) € C® as above, determined by some irreducible rank s
tensor field on H*. We have seen that this in one-to-one correspondence to a spin s potential

¢(§‘Y) € C*~! as above. Then

12 The topological terms are the linearized Pontryagin and Euler class (i.e. Gauss—Bonnet term).
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~ [0t 0 == [ 100 = [ 00160 = [099 @3
This provides the following relations:

Spin 1 case. For spin s = 1, the projection {x,, $*)}¢ in (4.38) was computed in (4.9), which
gives

/ ¢V =a / ¢ (0 —2r7)¢" =0, (4.39)
for Hermitian ¢! Therefore
1
oy = 3 (4.40)

and in particular 0 — 27 is positive on C°.

Spin 2 case. We can evaluate the right-hand side of (4.38) using (4.36) as

R
2r2R
iy 2¢;2>¢<2> g

1
+ (2)({9ad ¢(2)} 2 abdce e{ebd ¢(2)})

5 a c

r2R274
o 62029 (441)
using (3.78), (D.22), the self-duality relation (D.23) and (D.24). Therefore
2 (4.42)
a=—. .
*7s

This holds in fact for any tangential divergence-free ¢, € C!. Together with (4.38), this estab-
lishes the formula (4.20). On the other hand, (4.40) and (4.39) implies also e.g. 13

/ $Pp? — / Bap (0 — 26t 4.43)

if ¢ap, € CO is divergence-free, traceless and tangential (by fixing one index).

Generic spin s case. In the generic case, we obtain similarly
f ¢ = f ¢lasg. ae =@ - 209 (4.44)

f 6 = f 60 by i1l , | (4.45)

Explicit expressions for ag for s > 3 could be computed similarly but are not required for our
purposes.

13 Since ¢>(12) {x€, ¢cp} for tangential traceless divergence-free ¢, € C0; the index a is irrelevant here.
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4.2. Local decomposition

Finally consider any point on H*, for instance the reference point (2.6). We denote the four
tangential coordinates with x*, and the time-like coordinate on R*! with xY. Then the s50(4,1)
generators decompose (locally) into so(4) generators m””, and the remaining translation gener-
ator by p* = m"°. We can then decompose e.g. the spin s = 1 modes locally as

Gap (V)M = ¢ (x) p* + ()M’ eC! (4.46)

and similar for higher-spin. From this point of view, the main lesson of the above results is that
the ¢, (x) and ¢, (x) are not independent fields, but determined by the same irreducible spin 1
field ¢,(x), and similarly for higher-spin fields. For generalized fuzzy spaces these constraints
may disappear, as considered in [3]. For the basic spaces H,‘f and for Sf(, [2], the formalism
developed above takes these constraints properly into account.

5. Matrix model realization and fluctuations

Now consider the IKKT matrix models with mass term,
1 a vyb a b 2 a
SV 1= T Y Ynagmy = i2a¥) (5.1)

Here 1,5 = diag(—1, 1,..., 1) is interpreted as Minkowski metric of the target space RI-?~1,
The positive mass ;> > 0 should ensure stability. The above model leads to the classical equa-
tions of motion

1
DyY“—}-Equ“:O (5.2)
where

DYZ[Ya’[Yu"]] ”_{ya,{)’a:'}} (53)

plays the role of the Laplacian. Note that (5.2) are precisely the equation of motions for the IKKT
model put forward in [31] after taking an IR cutoff into account.

5.1. Fuzzy H,‘l1 solution and tangential fluctuation modes

Consider the solution Y = X¢ of (3.6) corresponding to fuzzy H,‘f , and add fluctuations
Y =X"4 A" (5.4

on H?. They naturally separate into tangential modes x,.A%=0 and radial modes x,.4%50. The
SO(4, 1)-invariant inner product

<A(i)ﬂ4(j)>:Z/Agi)Aé/)nab 55)

is positive definite for (Hermitian) tangential A, on H*, and negative for the radial modes. Since
A? € End(H,) ® R’, we expect four tangential fluctuation modes and one radial mode for each
spin (except for spin 0), as for S;‘V [2]. Our strategy will be to remove the radial modes, and to
find a useful basis of tangential modes in the semi-classical limit.
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Intertwiners. Define the SO (4, 1) intertwiners

T(AY) = {6, Ap)
T(Ay) = Paar (67, Ap)
G(AY) =[x, (x", Ap}} . (5.6)

They are Hermitian w.r.t. the inner product (5.5), and tangential except for Z, noting that
X T(Ag) = x 0%, A}y = —r* R* 0 A,

DIT(Ag) =00, Ay} = xp {090, {69, Aq)}

1
== P T2 (A . (5.7)

The SO(4, 1) Casimir for the fluctuation modes can be expressed using Z as follows:

r2R2

C2[50(4, 1)](full)Aa — %([Mcdy ] + Mc(j))ZAa
= C?[s0(4, )] A% — 2,727 (A%) + 4
=(—r 02T+ 8+ HA
=(R*-0—2"2T+ 8 +4A° (5.8)

using (3.44), and C 2[s0(4, 1)] = 4 for the vector representation C>. This can be seen by express-
ing 7 as follows:

—0MP @ M) A ~ —(M3))7i0%, JAP = 2(6p, APy = 2T(A)° . (5.9)
Here

(MG = i85 nad — 85ba) (5.10)
is the vector generator of so(4, 1), and M lgid) =i{Myp., -} denotes the representation of s0(4, 1)

induced by the Poisson structure on S*. As a check, we note that C ! (x@) =0, since Z(x%) =
4x%. This reflects the full SO (4, 1)-invariance of the background x“.

5.1.1. Spin 0 modes
Let ¢ € C° be a spin 0 scalar field. There are two tangential spin 0 modes, which read

AD =5, €C®,  ¢el?,

5.11
AP =09 = {x, ¢} C'. 6.1
These modes satisfy
AP} = (x84} =0,
(L AD) = 15, Bag) 512

(x*, AP} = —0¢,

using (D.3). Clearly only Aél) is physical, while A,(lz) is a pure gauge field. Let us compute the
action of the 7 intertwiner; to start with
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Z(AD) = (07, {x", ¢}) = {{6°". "}, ¢} + (. {6°" . 0})
=4r2{x?, ¢} + r2{x?, (x?0" — x5}
— 42 {x, §) + r267 0P
=3r2AP .
Similarly, one finds
Z(AD) = {890 By} = r2AD
Now we can use the identities
I(Aflz)) _ {gab’ebb/Al(;)}
— {Qab,be/}Alg) +9bb/{9ab,u419)}
=3r20Y A + (6799, A} — 67 (6" AL
_ 3r29ab’Al(;) _ r2R2{P”b/, AI(J})} _ GabI(Algl))
_ 3r20ab’Aé]/) _ rZ(xa{xc’ Agn} _ eacAgl)) _ Q“hI(Al(,l))
= 4207 AW — gAY
wherein we used
RAHPY, gy} = {x"x¢, ¢} = x7{x°, pe} + 2 (x%, )
=x{xC, go) — 0% pe .
for any tangential ¢., and the gauge fixing relations (5.30). Therefore
OPT(AY) = 4r2 AP — T(AP)
ZAD) =4r240 + ﬁ@“dI(Af)) :
For s = 0, this gives
I(Aflz)) =3r24®
since S2A?® =4A4P | in agreement with (5.13). Then (5.17) gives
ZAD) =r? AP

1. . .
because A,(l ) is tangential. To summarize,

- [ AD 1 0\ /(AP
()= (0 9 (%

5.1.2. Spin 1 modes

(5.13)

(5.14)

(5.15)

(5.16)

(5.17)

(5.18)

(5.19)

(5.20)

Now let ¢, € C” be a tangential, divergence-free spin 1 field. Then there are four tangential

spin 1 modes, given by
AP =8, ec', ¢V ={x" ¢} eC'
AD —gabg,eM — (x4 ¢V} @O,
AP =¢, €C,
AN =0%¢, ec'.

(5.21)
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Here ¢V is the unique spin 1 mode in End(#). Z can be computed on the A((f) and Af) modes
using

L(¢a) = {0, v} = r’¢a (5.22)
due to (D.2), which gives

TAD) =10, ¢p} =’ =r* AD. (5.23)
Furthermore,

T(AD) == pad (ga'b ghe g )
= pad gheggad 14 pad(ga'b gheyg
— pad (ghega’b g v _ pabighe gy 4 320% .
= _r2R2PU (P p y +2:20% 4,
— 2P ga'cy 4 22 AW
= 3249 (5.24)

using (5.16). Z (A[(,z)) and 7 (AE,”) will be computed for the general case below.

5.1.3. Spin 2 modes
Now let ¢pap = ¢pa € CO be a tangential, divergence-free, traceless spin 2 field, and let ¢¢(12) =
{x?, pap} € C'. Then there are four tangential spin 2 modes, given by
AP =0, ec? 9P =(x" 9PV eC?,
At(lz) — 09,6 =(x?, ¢?) eCP@C',
Aﬁf) _ ¢1§2) ect,
AP =t p? €2

(5.25)

Here ¢? is the unique spin 2 mode in End(?#{), which involves the linearized Riemann tensor.

They satisfy the gauge fixing relations derived below, see (5.30). Also recall from (4.15) that ¢>§2)

is indeed tangential. Furthermore,
T(AD) = (0", 60 = (0, (x°, $ne})
= — (e, 1077, xN) = (2, (e, 6"}
= r*{@pe, n*x” = "%+ 2 (x, Bac)
=0 (5.20)
using (5.22) for the last term. Adapting (5.27), we obtain
i(Ag‘)) _ Paa/{ebcea’b’ de) — 09(67, §,) + 3r20% g,
— _r2R2Paa’{Pa/c’ be) + 3r269p,
= 2Py, 4 32 AW
=4r? AW . (5.27)

It is illuminating to display the explicit tensor content of the spin 2 modes, recalling that ¢,§2) is
the spin connection (4.13) and ¢® is the curvature tensor. Using (4.17), this is
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1
AL =00 = S04 00" Rearnc[9@))

1 /
Aéz) = 50““ 6(1/ (QEdecRed;bc[d’(z)]) ) (528)

Ag) = _wa;deede ,
A‘(Z4) — _euba)b;deede .

In particular, .A{(f) = 0% A, encodes a so(4, 1)-valued gauge field A, = —wp, de0%€ given by the
linearized spin connection of ¢,p,.

5.1.4. Spin s > 1 modes

Now consider the generic case. Let ¢y, 4, € C° be a tangential, divergence-free, traceless,
symmetric spin s field, and let qu {x, . Ax S @y ayja) -} € C5~1. Then there are
four tangential spin s modes, given by

-At(zl) — 5a¢(S) e, ¢(S) — {x“, ¢{§S)} cC’
AEIZ) =09, = (x4, W} et @]
AP =gl et !,

AD = gabg e 5.

(5.29)

Here ¢ is the unique spin s mode in End(?{). The modes (5.29) satisfy the gauge-fixing rela-
tions

(x, AV} = (x*, 5,9} =0
AP = (x4 090} = 09 (x ) = rPRP0pa = 0
x AV = {x g} =0V,
(!, AP} =0,
using (D.3), and

(5.30)

1
a 1 1
AP = ——rszmqs( ),
6HAL(12) —0= 511“4513) , (531)
AW =08,(0"¢p) = (x, pa) = V.

These relations hold for any spin. Together with (5.7), it follows that 7 (A@) and Z(AD) are
tangential, while Z(A(") and Z(A®) are not. Let us proceed to T; we first show that

ZAD) = (6, ¢} = 2 — 5)r2AD (5.32)
This can be proven inductively as follows:
(07, 0y = 16, (x, 8 1)
= —{gp) (07, x°}} — (x“. {gy) . 0°"})
= rz{d)éfl), Y+ 3 = 5)r2{xC, (Y)}
=Q2-5)rig" (5.33)
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using (5.22), where ¢£‘Z) ={xY, x5 2, @y, ay_sab) -} € C*~2. Note that we employed the

relation {6%?, qﬁ,(fc)} =3 - s)r2¢,§? for ¢,§SC) € C*~2, which can be derived via induction, too.
Adapting (5.27), this yields

j‘(Agl)) — Paa,{gbCOG/b’ ¢c} _ eab{ebc’ ¢c} + 3r29aC¢c
= —r?R2P™ (P, ¢} — (2 — 5)r20°0 gy + 3r70% g,
— r2Paa/9a/c¢c + (s + 1)¢(§S)72A(4)
= (s +2)r?AW. (5.34)
To compute Z (Af) ), consider
TAD) =10 A7) = (1. 27), A
= —{(x". AP} xa) — (AP xa) 0} (5.35)
where the second term can be rewritten as
(AP xa}. x5} = —{xp, B} xa}, 20}
= {{{. xa}. x5}, 10} + ({(6°°. 6}, x)
=0AY — ¢, x}, 0"} — {{xp, 0"}, 0}
=0A? — AP +4r2AD (5.36)
So that we obtain
2T(AP) = —{(x*, AP}, xa} + OAP + 47742
= {06, x4} + (O +4r7) AP (5.37)
for any spin s > 1. Therefore
(@ —2D)(AP) = —(0¢, x,} — 4r* AP . (5.38)
On the other hand, for a spin s field ¢ we have
{xa. O} = AP [0¢] = r* AP[(=C? + 8¢ = r*2s(s + 1) — C ) AP (@]
=((O+2T) —r’S* +2r2s(s + 1) — 4rH) AP[g], (5.39)
using the intertwiner property and (5.8), hence
{(Xa, 00} — Ofxa, ¢} = QT — 28> + 2r%s(s + 1) — 4r) AP [¢]. (5.40)
Comparing with (5.37), this gives
2L(AP) = —(x*, 0¢} + (O + 4r?) AP = @r? — 2T +r28? — 2r2s(s + 1) + 4r?) AP

such that

2T(AY) = r2<%82 —s(s+1) +4)A<2> (5.41)

for s > 1, which is tangential. Hence if S? is diagonal then 7 is also diagonal, and the Casimir

C2[SO(4, 1)] (5.8) can be diagonalized simultaneously. To evaluate (5.41), we decompose A((f)

into its components in C*~! @ C**! as follows:
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AD = —q (0 —2r) AP + AP ceC ot
AP = AD o (0 — 272 AP et (5.42)

using (4.29); recall that Agf) = (S) . Note that (5.42) is simultaneously a decomposition into
eigenvectors of Z,

2T(AP)) =2(s + 3)r2 AP,
2T(AP) =22 — 5)r? AD (5.43)
consistent with (5.32). Then we arrive at
ZI(A‘(IZ)) =22 = s)ar>(0— 2r2)¢4[(13) +2(s + 3)r2¢4[(12/)
=2(s +3)r’A? 42025 4+ Dayr? (o —2r2) AD (5.44)

and I(Agl)) is obtained from (5.17),

T(AD) = 4r240 + %9“‘1 ((s +3)AY + @25 + Day (@ — 2r)4D)

2s+1

=r*(1 —s)AD + ;00 (0 — 2rH) A

G AW (5.45)

25+1
=r2(1—5)AD + SR+

where the last line is only a short-hand notation which applies to irreps, cf. (4.10). Hence 7 is
diagonalized as follows:

ZAM) =P =AY,

e ~
AL = AP — 0@ -2 AD = AL - 2A<4> (5.46)
using (5.34). Accordingly, we define the eigenmodes
B, BP, B, BW) = (AL, AP, AD, AD) (5.47)
which satisfy
B%; I—s 0 0 0 Bc((z;;
~=| B 2 0 s+3 0 0 B
o= o 0 2-5 o ||s>] G450
81(14) 0 0 0 2+5s 81(14)
B, sGs+ 1) 0 0 0 B,
= B _, 0 s+ 1D(s+2) 0 0 B (5.485)
5 [=2 o 0 G-Ds 0 e ~
8(54) 0 0 0 s(s+1) 8(54)

This shows that all these modes are distinct, and it will allow to diagonalize and evaluate explic-
itly the quadratic action. It also implies that we did not miss any modes, since there can be only
5 modes for each spin (including the radial one, see below).
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Gauge fixing term. The intertwiner G of (5.6) takes the values

G(AD) = —(x9, 0gp®)}
GAD) =[x, ¢} = AP
GAD) =G(AD) =0. (5.49)

5.2. Recombination, Ys-valued gauge fields and Young diagrams

The distinct modes A® are useful to disentangle the different degrees of freedom. On the
other hand we can relax the requirements that the underlying tensor fields ¢y, .., are irreducible,
so that the modes can be captured in a simpler way.

Trace contributions. These arise from

¢a1...as = na|a2¢a3...as . (5.50)
Then

b = (xS N ay.ab - = —000 TP €O,
¢ = (x, ¢V} = —(x*, ) (5.51)

which enters the four modes as follows

AD =5,6072 e,

Af) _ Qababq;(s—z) — (x4, ¢(s—2)} R

A®) = g6 ¢ 53,

AP =9?g 2 et (5.52)

Hence the trace components reproduce the four modes with spin s — 2, as long as Dd)és) #0.

Divergence modes. Now we drop the requirement that ¢, is divergence-free. Consider the case
of rank 2 tensors, expressed in terms of spin 1 modes as in (4.22)

3 = Vadp + Vit - (5.53)

Then according to (4.24), these contributions to the would-be spin 2 modes Agl), A((lz) vanish
identically. The contribution to AER) reduces to a combinations of the spin 1 modes of Afll) and
.Af;”, and the contribution to .Aff) reduces to a combinations of the spin 1 modes of AL(,Z) and
AS). Hence if we drop the divergence-free condition, it would suffice to keep the Ac(ls) and A,(f)
modes.'* In particular, we need not worry about these constraints upon projecting H* to M1,
It will suffice to impose the appropriate divergence- and trace-conditions for M3 1.

Finally as for S;‘v [2], we can collect all tangential fluctuation modes as hs-valued tangential
gauge fields

AT =0 A,, A=A (x)E* (5.54)

14 However, the spin 0 modes cannot be recovered from divergence modes: for ¢, = 3,¢ we get ¢~>(l) ={x?, 040} =0
due to (D.3).
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where A, 4 (x) are double-traceless tensor fields corresponding to 2-row Young diagrams of the
type Bﬂj The external leg is associated to the extra box in the Young diagram. However the
A¢ o (x) are in fact higher curvatures of the underlying symmetric tensor fields @q,.. 4, as in
(4.28), which characterize the irreducible physical degrees of freedom AE,").

5.2.1. Inner products
The inner products (5.5) of the tangential fluctuations are given by

/Aél)A21> =/5b¢(”6b¢(” - %/qsés)(DJrzrzs)(D — 22,
f AP AP = / a0 ;" = / ¢ (. 6,”)
= / $ Vg Y = ay / 6.7 (@ =25
/ AP AP = f ¢y 1", 6} = — f ", 0y )9" = —ay / V(@ —2r)gY,
/ AP AP = / (x5, 9OV, 9} = g / ¢© (@ +2r%5)(0 - 219,
f AD A = / OMCS
/Ay)A((;L) Z/Qab¢l§5)9ac¢§s) =72R2/¢1§3)¢1(:)’
/AZ(?I)A,(,Z)=/A;(,1)«423)=/A,§4)A§,2)=fv4§4)d4§3)=0v (5.55)

using (3.69), (D.3), (D.36) and [62¢ PSPy = 0; we drop the labels ¢ = ¢ if no

confusion can arise.
Now consider the eigenstates (5.47) of Z. We verify that Bflz) and Bf,l) satisfy the orthogonality
relations

/822)81(13) — /(.AEZZ) _i_&sAg))Ag) =0,
f BYBW =0, (5.56)

using the definitions (5.42), (5.46) as well as (4.44). Therefore {ZS’,(;‘)};‘:1 form an orthogonal basis
of eigenmodes. The normalization can be computed as

/' BOBO) — f ( AD 4, AS)) ( AD 4é Aﬁf))
= a / p® ((D +2r%s) — (O — 2;»2)) (@O —2r)p?)

= f ¢(2/)((1 — )0 +2r2(s + 1))¢><2’) (5.57)

and



M. Sperling, H.C. Steinacker / Nuclear Physics B 941 (2019) 680-743 713

[ - / (a0 o) (a0 )

2R2 qu“ ) (@ +2r25) — oy (0 — 2r2)>(|j —2rHp{")

2R2 ((1 — )0+ 2r%a (s + 1))¢<1’>. (5.58)

Note that all Ag) modes are pure gauge modes, and they will drop out in the action.
5.3. Radial modes

Finally consider the radial fluctuation modes. These are given by

AP =20, ¢V eC. (5.59)
They are dangerous because the radial metric in R'# is negative,

fA(r) (V)Z/xa¢(s)xa¢(s) =_R2/¢(s)¢(s) (5.60)
recalling that x,x% = —R? < 0. However, they disappear after the projection to M>!. If we

include these radial fluctuations, we should first diagonalize Z. We have
I(Agr)) — {eab’ qub(lg)} — {eah’ xb}d)(S) + )Cb{eab, ¢(S)}
= 4x¢") — 0% (x;, 61V
=4A" 4 r2R2AD (5.61)
Recall that Z(A?) is tangential, but Z(A(1-¥) is not, with
Z(AV[¢]) =09,
I(AD[p]) = -r*R*¢,
MIAN ) = (O + a9, (5.62)

using (5.7) and (5.31). Hence the radial modes may couple to the A12) or the B2 modes, and
the 7 eigenmodes seem to mix completely all 3 components AW A® | AC) However since the
radial modes are negative definite, we will focus on the tangential modes, and on its projection
to M*! in the next stage.

5.4. SO(4, )-invariant quadratic action on H*

The quadratic fluctuations for the fluctuation modes y* = x¢ 4+ A* are governed by the action

S[yl = S[x]1+ S2LA] + O(A%), (5.63)

where

SHlAl = = / dp(Ad(D2A + (3%, Ag) )_g22 [ dp Aa(D* + G A (5.64)

Here
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(D*A) = (m — 27+ %;ﬂ) A (5.65)

is the “vector” (matrix) Laplacian, and G(A) (5.6) ensures gauge invariance. The mass term

determines r2 via the on-shell condition for H?,
1 1
0= (u + 5;&) x4, 5“2 =42 . (5.66)

Gauge-invariant action. Consider first the gauge-invariant kinetic term

SaLA] = g_22 / i Au(D? + G A” (5.67)

We verify that the pure gauge modes A‘(IZ) are null modes using (5.49) and (5.38):
1
(D* + AP = — {0, x,} + <5 n?— 4r2) AP —(x9, 09} =0 (5.68)
for any spin, taking into account the on-shell condition % w? = 4r?. Hence the pure gauge modes

Af,z) indeed decouple.
For spin 0, we determine the action explicitly for the B! and B® modes

B o+2r2 0\ (B
P o (B ) = ( Q) 5.69
The inner product is diagonal for spin 0, and the quadratic action is given by
. 2 .
Sy LAl = / B (D Y 8) B9 (5.70)

Since BL(,D € C0, this is indeed positive define (except for the pure gauge mode) due to (5.55),
recalling that 0 o« —0 - 0 for spin 0 (3.69).

Gauge-fixed action and positivity. Now we consider a gauge-fixed action, which is obtained by
canceling G with a suitable Faddeev—Popov (or BRST) term:

2
S, (fix) [A] = ?/dMADz A. (5.71)

We work in the basis {B%)} (5.47) where Z is diagonal. Then the eigenvalues of the kinetic
operator D? are elaborated in the appendix D. 1. Together with the inner products in section 5.2.1,
we obtain the following diagonalized quadratic action

Wp2p) _ Y (s)
[srp =2 [ o

x (O +2r%) = ay(0 = 2) ) (0 = 2)(@ + 22 (G5 + 28}

rZIRZ /¢(s) ((1 — Ols)\:‘ + 2r2as(s + 1))(|:| + 4V2(S + 1))¢(s) ,
(5.72a)
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/ BAD?BP = ay / P ((D +2r%5) — oy (0 — 2r2))(|j —2r1) (0 +2r5)¢ ")

= / ¢<S>((1 — a)0 + 2r%a (s + 1))D¢(S) , (5.72b)
/ BODBY = / 6 (@ +2r25)0 (5.72¢)
/ BIDBY =r?R? f ) (@ —2r%5)py . (5.72d)

All these terms are non-negative, because

(O 4 2r2%s) —as (0 —2rY) = (1 — )0 + 212 (s + ) > 0.
ALD = 27%)95 ] o AL + 725(s — 3)Bay...a] (5.73)

for any intertwiner .4, using (D.33). The first line is positive because 1 > «;, and the second line
is positive since O + r2s(s — 3) is manifestly positive for s > 3, while for s = 1, 2 it coincides
with 0 — 2r2 which is also positive on divergence-free tensor fields as shown in (4.39). As usual,
the unphysical modes will be canceled by Faddeev—Popov ghosts.

We consider explicitly the case of spin 1 and spin 2. For spin 1, we have

/B;“DZzs;U = qua((m +2%) — a1 (0= 2r9) ) (0 = 2@ + 10r2)gy
I
= 2R2

/ BIDBY = / 9a((O+2) =1 (0 = 29)) (O = 2D (O + 2

[ o (a2 ) o+ 520 (5.742)

_ / (01 - en)o + 4% )op (5.74b)
f BOD2BY = / $a (0 +2r") gy . (5.74¢)
/ BID'BY =r’R? / $a(@ = 2r)u (5.74d)

and for spin 2
/ BOD2BD — —;)‘;,2 f o2 (@ +4) - ax(@ =27 (@ - 22O + 166
r

1
== / $@ ((1 )0+ 6r2a2) (@ + 12r2)p®@

o100
T 2R2

/ BPD?BP =y / ¢? <(E| +4r%) —ax(0 — 2r2)>(|:] —2r%) (@ +4r2)p?
- / e ((1 — )0+ 6r2a2>m¢<2>

= g / d)ab(m +6r2 — azm)(D +6r2) (0 —2r*)0ap , (5.75b)

/ Gap (0 + 6r> — an0) (O + 18r2) (0 = 2r2) Oapy » (5.75a)
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[ 5050 = [6 0+ 402

=y / Gab(TO + 62 (0 — 2r)ap , (5.75¢)
‘/3?Dﬁﬁ“=ﬂR2f¢fkm—mlwf)
=a1r’R? / Gap(0 — 27 bup , (5.75d)

using (4.43). Note that we only include tangential fluctuation modes here. If we would also
include the radial fluctuations as in section 5.3, they would be negative definite or ghost modes,
because the metric in the radial direction is time-like. However this is resolved upon projecting
to /\/l3’1, as discussed below.

5.5. Yang—Mills gauge theory

We can write the full action (5.1) in a conventional (higher-spin) Yang—Mills form for the
recombined higher-spin gauge fields (5.54) A* = 69’ A,,. Then the field strength is

]:ab:[Xa —i—Aa,Xb—{-.Ab] ~ Qah—i-@aa,@bb,Fa/b/,
Fab = VaAp — VpAy + [Ag, Ap] (5.76)

recalling that V62 = (. Hence the action (5.1)

1 / / 2 ’
ST~ —— | (Fap a1 0™ = 5 Aahar™) (5.77)
8ym k4

is basically a hs-valued Yang—Mills action'> (dropping surface terms and using > = 8r2), where

1 L3
——=p 4L2C (5.78)
EYym 8

is the dimensionless Yang—Mills coupling constant. For nonabelian spin 1 modes Aﬁf‘) on stacks
of H,f branes, the usual Yang—Mills action is recovered. For spin 2, one would expect this to
describe some type of quadratic gravity action [32-34]. However this does not happen as shown
below, since the graviton is obtained by a field redefinition (5.101) and does not propagate at the
classical level. However the Yang—Mills framework suggests that no ghost modes appear also for
higher-spin (as opposed to quadratic gravity), hence gravity might emerge at the quantum level.

5.6. Metric and gravitons on H*

Now we take some of the leading (cubic) interactions of these modes into account, focusing on
the contributions of the spin 2 (and spin 1) modes to the kinetic term on H*. These contributions

I3 We used x4 A% = 0; the apparent “mass” term is at the cosmological curvature scale, and would presumably disappear

upon imposing the non-linear constraint Y, Y% = —R2,
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are expected to give rise to linearized gravity. The kinetic term for all fluctuations on a given
background Y¢ ~ y¢ arises in the matrix model from'®

S[p] = —=Tr[Y", p1[Ya, p] ~ /p{y“,qﬁ}{ya,qﬁ}
=/py“”5a¢5b¢ £ /p)/””amam
= /d4x,/|GW|G“”8u(p8v<p (5.79)

H4
using (3.77); some dimensionful constants are absorbed in ¢, and Greek indices indicate local
coordinates. Here 7 is a symmetric tensor in SO (4, 1) notation

yab — 77Cc/ecaec/b’ €4 — {yc’ xa} (5.80)

which in local coordinates near some reference point & reduces to y*¥, cf. (3.58d). Hence the
effective metric is given by [3,15,19]

4 L4
G = "% v = | ZNC (5.81)
Ly 4y

and ¢ can be interpreted as vielbein. For a deformation of the H* background of the form
Y= x4 4 A9 (5.82)
the metric is perturbed due to y®* =7 + § 4y + 0(A?) with
S4y* = H[A] = (x, x" YA, x°} + (a < b)
=0“UAq, x"} + (a < b)
= (0% A, ¥} 0 A, 1) 2 (A3 ACXD 20 (Ax))

(5.83)
Here H’[A] is an SO (4, 1) intertwiner and tangential,
H%x, =0, H =nu,H" = %L‘,‘VC?)“AH ) (5.84)
Then the linearized effective metric (5.81) becomes in SO (4, 1)-covariant notation
G =p Lt with R = (h"b - %P“bh) , (5.85)
thus defining the physical graviton he® where
W=, b= (5.86)

NC
is dimensionless. We study the graviton modes (5.85) for the spin s = 0, 1,2 fluctuations of
(5.29) in more detail below.

16 One might worry about the contributions from {y¢, -} on the generators 6%¢ for higher-spin modes. However the
metric is always defined by the two derivative terms acting on the tensor fields.
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5.6.1. Spin O gravitons
To begin with, consider the perturbation (5.83) of the metric for the two spin 0 modes of
(5.11). One finds

Hapl AV =00 (8049 + 0499 ,

Hup[AP] = r?(x,0%784¢© — R*0°18,0,6 ) + (a < b). (5.87)
Upon averaging, one obtains

hap BV =1 (2Pusd - 56 = (VaVsdp® + V5V ) | (5.88)

hap| BP1=0,
and the expressions satisfy

hBDI=60¢,  Vh(BP1=0, (5.89)
using V,h* = d,he0 — %xbh. Then the physical graviton of (5.85) satisfies the de Donder
gauge,

N 1. ~ 1 -
Vehp[BP] - 5v,,h =0  with  hgp[BP)=h,[BP] - EPahh ) (5.90)

The spin O contribution to the metric is interesting because its off-shell modes have the wrong
(ghost-like) sign in GR. This does not happen in the present Yang—Mills model, which is impor-
tant for quantization.

5.6.2. Spin I gravitons

Next, we compute the spin one contributions to the gravitons on H*. Taking into account the
(3

C* gradation, the averaged metric perturbation (5.83) is non-vanishing only for the modes .4,
and .Aéz/).
Spin 1 graviton Aflz). Here, we observe
Hapl APV = =2 R (Pay, ¢V} = 12 R? (VoA + VAR ) + 12 (30 A + 55 A2)
= —r2R? (VaAS + VAP (5.91)
such that the averaging yields

hap AP = o (va(m —2r)) ¢y, + V(O — 2r2)¢a) . (5.92)

This has the form of pure gauge (diffeomorphism) contributions. Since the .A®’ modes are pure
gauge, they are not physical in the present model.

Spin 1 graviton Af?). Similarly, we have
Hop[AP1 =010 (3¢ +Bugs) (5.93)
such that averaging yields

hap AP = —ay (Vadp + Voda) - (5.94)
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Physical spin 1 gravitons. For the spin 1 eigenmodes B of (5.47), we therefore obtain the
following physical gravitons:
hap[BV] = hap[BY1 =0,
Fap B2V = (1= ) (Va(@ = 27y + V(0 = 2D ) (5.95)
hap[ BV = —a1 (Vagp + Vo) -

Hence there is indeed a physical spin 1 mode ?zab[B@)] contributing to the metric fluctuations.
Nevertheless, since it has the form of pure gauge (diffeomorphism) contributions, it will decouple
from a conserved energy-momentum tensor 7,,.

5.6.3. Spin 2 gravitons
Finally, we consider the spin 2 fluctuations of the background and evaluate their associated
graviton modes.

Spin 2 graviton Ale). Since A,(ll) =0,¢® with @ = {x%, {x?, pup}} € C?, we have

Hap = 09840, x"} + (a <> b)
= (x?, {(6°10,0P} — (69, x"}849@ + (a <> b)
= {x?, (x4, @} — (699, x2}0,90P + (@ < D). (5.96)

The second term drops out in the projection to C%, and using (4.29) twice one finds

4 2 ..
hapl AV] = ——[{x?, {x*, ¢P o = — 5 @1820ab - (5.97)
Lyc R4r

Spin 2 graviton AEF). For Aéz) = {x, ¢pc} € C! & C3, it follows that H,p, € C° and therefore
hap X [Haplo=0. (5.98)

In fact this is a pure gauge mode in the model.

Spin 2 graviton A,(f) . Next, consider A;S) = {x€, ¢uc} €C'. Then Hyp, € C°%, and again

hap X [Haplo=0. (5.99)

Spin 2 graviton Aff') . Finally, consider the mode Agt) = 0% {x¢, $poc} €C?. Then

Hyp = 09{09° (x°, dec}. x"} + (a < b)
= 0% 0% ({x", Pec}, X"} + 09{0% x"Hx, pec) + (a <> b)
= r2 R*{{x", Gac}, x"} = 120" (x°, ec}x* + (a <> b)
= —r?R¥*x? {x€, puc}} + (a < b) (5.100)
using (4.15). Recall that (4.29) implies [{xb, {x¢, ®ac}lo = —&1¢ap, and therefore

hap[AD] =201 (0 — 2r%) g, - (5.101)
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Physical gravitons. Computing the gravitons for the eigenmodes B, we find
haplBP1=0  for i=1,2,3
hap[BY1 =201 (0 = 2r")gap,  0hap[BYT=0=Vhap[BY] (5.102)

using (D.26). The trivial result for B®_ i =23, is obvious, as the individual contributions for
AW i =23, vanish. However, the vanishing contribution of B() is the result of a non-trivial
cancellation of the contributions from A" and A®.

In summary, the physical fields contributing to the metric fluctuations are a spin 2 field,
a spin 1 field, and a spin O field. This is somewhat reminiscent of scalar-vector-tensor gravity.
The spin 0 and spin 2 modes both satisfy the de Donder gauge.

To understand the present organization into spin modes, recall that the linearized metric fluc-
tuations A, decompose in general as

hab = hly) + Vats + Voka + %nabh (5.103)
where hﬁ) is a divergence-free, traceless spin 2 tensor. This corresponds to our spin 2, spin 1 and
spin O contribution to the graviton; note that &, contains another spin O (divergence) mode. While
the &, fields are unphysical pure gauge modes, the spin O part % is a physical field which is in
general sourced by the trace of the energy-momentum tensor. In the Einstein-Hilbert action, this
spin O field enters with the “wrong” sign, cf. [35]. This does not happen here, which is certainly
welcome for the quantization of the model.

5.7. Classical action for metric fluctuations

_ Having defined the notion of physical graviton in (5.85), an effective 4-dimensional action for
h? is desirable. By writing the trace as an integral as in (3.77), one can express the (gauge-fixed)
kinetic term for B® in terms of hup = hyp[B@] as follows:
1 1
$=— / p BYDBY = —a\r?R? / p ¢4y 1BV — 27200 [BY]
8 8
. 1
4189 Lyc
where gywm is the dimensionless Yang—Mills/Maxwell coupling constant (5.78). Superficially,
this looks like a mass term for the graviton; however this is only the spin two mode, which is by
definition invariant under diffeomorphisms. Hence (5.104) could also be viewed as the quadratic
contribution to the cosmological constant in GR.'” ~
Taking into account a coupling to matter of the form 8,5 = % [ hab T, the equations of
motion for &, become
~ 4 o2
hap AD] = 3 g4
PLYNC

/ hap B Thap[BD] (5.104)

1
Tap==3 gymLyeTab - (5.105)

Clearly hap is not propagating, but acts like an auxiliary field which tracks 7;,. As a consequence,
the pure matrix model action (5.1) does not lead to gravity on H*, similar to the case of Sf{,

17 Hence a large positive mass would not imply large curvature but rather a short range of these modes. See e.g. [36] for
a related discussion.
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[2]. Nevertheless, the action (5.1) does define a non-trivial, and apparently not pathological,
spin 2 theory in 4 dimensions with a propagating spin 2 field ¢,;, which should be suitable for
quantization. Gravity may then arise upon quantization, as discussed next.

5.8. Induced gravity

At first sight it may seem disappointing that gravity does not arise from the classical action.
On the other hand, since classical GR is not renormalizable, it should presumably be viewed as
a low-energy effective theory. Adopting this point of view, it is reasonable that the starting point
of an underlying quantum theory can be very different at the classical level, as for instance in the
approach advocated here. This train of though is exactly the idea of emergent gravity.'®

As soon as quantum effects in the matrix model are taken into account, the effective met-
ric hgp will unavoidably acquire a kinetic term, and therefore propagate. More specifically, it is
well-known that induced gravity terms arise at one loop, upon integrating out fields that cou-
ple to the effective metric [17,18,38]. The induced terms include the cosmological constant and
Einstein-Hilbert terms. The maximal supersymmetry of the underlying model'® along with the
finite density of states of the solution strongly suggests that the model is UV finite and “almost-
local”. Moreover, the usual large contribution to the cosmological constant | \/§A4 is avoided
here, cf. the one-loop computation in [3]. Canceling also the induced Einstein-Hilbert term is
more subtle,”’ and it is plausible that the supersymmetry breaking H* background does lead to
an induced Einstein-Hilbert term with scale A = O (%)

Motivated by these considerations, one may add a term f o 1~\2f~lab5 -Oh4? 10 the action (5.104),
with o = £1, such that the total action coupled to matter reads

oy ~ 4 ~ o~ 1 [~
S = /UAzhab8 . 6hab + W/ habhab + E/habTab . (5106)
YM™NC

The equation of motion for ﬁab are then

5.04— )i g (5.107)

. = p=—""==Tuw :
30g3nLcA2 ¢ 4oA2 ¢

where A is the effective cutoff scale set by induced gravity. For o = —1, this is indeed a reason-

able equation for linearized gravity, with the effective Newton constant

1
N= SR ( )

and mass scale

18 In fact, it is known that the Type 1IB bulk gravity in the IKKT model arises only at one loop [37]. However, this is a
different issue, since the present degrees of freedom are only 4-dimensional.

19 This really requires the maximal supersymmetry of the IKKT model, otherwise UV/IR mixing effects will render the
model strongly non-local and probably pathological, cf. [39,40].

20 On Moyal-Weyl backgrounds, A" = 1 SUSY is sufficient to cancel the induced “would-be” cosmological constant
term, while the induced Einstein—Hilbert term is only canceled in the A = 4 case [41,42]. This is reflected by the absence
of UV/IR mixing. Here the background and the explicit mass term induce a spontaneous and soft breaking of N = 4
SUSY. Nevertheless, the suggested scenario seems reasonable.
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1
2
m=0——-— ). (5.109)
(g%ML?ch2>

The mass scale can become very small m?> = O (%) if A=0 (}) and n is large, or upon

projection to the Minkowski space-time M?>!, where the universe grows in time. Of course, the
mass term will acquire quantum corrections too, which will be suppressed by supersymmetry. It
would be desirable to study this in more detail elsewhere.

Even though such a mass term might be interpreted in terms of a cosmological constant in
linearized GR, its meaning here is somewhat different. As in GR, a proper interpretation requires
the full non-linear theory. However, it is plausible that a positive mass term may simply imply an
IR cutoff for gravity here, while the large-scale structure of the background solution might not
be affected. Therefore a small, but non-zero mass term is quite welcome in the presented setting
to ensure stability, while the large-scale cosmology would be determined by the background
solution, as illustrated in section 6.

5.9. Local gauge transformations

Among the higher-spin gauge transformations 8 (x* + A%) := {x® + A%, A} generated by
A € C, consider the spin 1 gauge transformations generated by

AD =(x v} = 0780, €' (5.110)

with v, (x) a divergence-free vector field. These correspond to (volume-preserving) diffeomor-
phisms on H 4. The action on scalar functions ¢ (x) reads

Sagp = {p(x), AV} = ($(x), 07 Bpv,) (5.111)

so that the action on vector fluctuations is
SaAa =8nxq + (Ag, AV} (5.112)
with?!

Saxa = {xa, AV} = {xq, Ao + {xa, AV}
= a1 (0 —2r2)v, + AP [AD] (5.113)

using (4.9). The first term describes a diffeomorphism corresponding to the vector field v, =
o1 (0 — 2r?)v,. The second term accounts for the~ spin 1 pure gauge mode ,452/) as discussed
in section 5.1, whose contribution to the graviton %,, was computed in (5.91). The higher-spin
gauge transformations could be worked out similarly.

Since there is only one such gauge invariance, but several fields for each spin, one may worry
about the consistency of the model. However, recall that the gauge-fixed action (5.71) has been
proven to be well-defined and non-degenerate in section 5.4. Hence there is no problem at least
in the Euclidean setting. This is due to the special origin of the fluctuation modes in End(*,,),
see (3.55).

21" Note that {Aaq, A(l)} is not necessarily tangential. However that term vanishes in the semi-classical limit, and is
significant only for nonabelian gauge fields which we do not consider. The proper treatment is of course to impose the
non-linear constraint ¥, Y% = —R2, which would restore gauge invariance.
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6. Lorentzian quantum space-times from fuzzy H,‘,‘

Having disentangled the fluctuations on H,f , we would like to apply these tools to the more
interesting cosmological space-time solutions M3 Since the latter is obtained by a projection
considered in section 3.2, many considerations remain valid. Most importantly, the fluctuation
modes originate from the same End(H,,) such that we can rely on the same spin operator S2,
and our classification can be carried over. Moreover, the tangential fluctuations on H,‘l‘ are in
one-to-one correspondence to the full set of fluctuation modes on M31 as will be shown below.
The symmetry group is reduced to SO (3, 1) instead of SO (4, 1), which is weaker, but should
still be very useful.

6.1. Cosmological space-time solutions

By projecting fuzzy H? onto the 0123 plane via IT of (2.30) i.e. by keeping the Y* = M"“q,
for u =0, 1,2, 3 and dropping Y*, we obtain (3 + 1)-dimensional fuzzy space-time solutions.
Since the embedding metric n*" is compatible with SO (3, 1), we have

Yo, (Y2, Y N =i(a - a)[Yp, MPH] = —i(a - ) IMPH, Y]

YH, uw#p

(no sum) (6.1)
0, pwu=p

=(a-a)

such that
Oy Y* =[Y?,[Y,, Y*]1=3(c-a) Y. (6.2)

Depending on « - @ we obtain three different types of quantized space-time solutions with
Minkowski signature in the IKKT model with mass term. These are:

Ox X =-3r2 X",

3
0Tt =25 T", (6.3)
Dzzu =0.

Choosing a positive mass term to ensure stability, we focus on the solution

1
YH=XH, r?= 3m2 . (6.4)
This is the homogeneous and isotropic quantized FLRW cosmological space-time M?{l with
k = —1 introduced®? in [1]. Here m? sets the scale rZ, while n remains undetermined. These

backgrounds are SO (3, 1)-covariant, which is the symmetry respected by Ox.
6.2. Semi-classical geometry
We first recall the semi-classical limit of this space [1], with x* for © =0, 1,2, 3 as coordi-

nates on M. By SO (3, 1)-invariance, we can always consider the local reference point £ on H*
resp. M

22 we change notation from [1], where y! was dropped instead of Y4,
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£=x0,00 x5 °0,0,0), x" = Rcosh(n), x*= Rsinh(n) . (6.5)

Globally, we have the following constraints

xuxt = —R?* — x] = —R*cosh?(1)
t,tt = r~2 cosh®(n),
r,x* =0, w,v=0,...,3 (6.6)
where 71 will be a global “cosmic” time coordinate. From the radial constraint x,x* = —R? on

H* one deduces {xax?, x*} =0, which further implies
0= x,m™ = x,m"* + xgm** . 6.7)

This establishes a relation between the momenta and the #,

L S ;7 6.8)
R RrZx4 Rr? tanh(n)

Furthermore, the self-duality constraint (3.58c) reduces to?3

| 1 1 Lo
i_ o . pab_c E ijkpjk
th = Em,4 = 3 €abcidB?x" = 3 cosh(n)e/*6/",
L0, (6.9)

where the last equation is simply a consequence of x,,t* = 0. Therefore t** describes a space-like
S2 with radius 2 cosh? (7). Conversely, the above relations allow to express 6*V in terms of the
momenta t* as follows

3
ij_ " giik gk
2 cosh(n) (6.10)
0% = Rr? tanh(n) i
By means of R ~ %nr, one can summarize (6.10) neatly:
" =r>R nkY (x) 1%, (6.11)

where 74" (x) is a SO(3, 1)-invariant tensor field on M3 which is analogs of the t’Hooft
symbols. Note that % > 6%/ for late times 7 >> 1; this reflects the embedding of H* ¢ R*!
which approaches the light cone at late times. Thus space is almost commutative, but space-time
is not. Nevertheless the effects of non-commutativity will be weakened due to the averaging
on S2. Finally the constraint (3.58d) reads

L4 1
Y = 1,010 = %C(n“ﬂ + Fx“xﬁ — R*1%tP) (6.12)

which at the chosen reference point yields

23 Note that this form only applies in the special so(3, 1) adapted frame, and it is not generally covariant; of course on
Minkowski manifolds, there is no notion of self-duality. However there can be a SO (3, 1)-invariant relation as above
which holds in the preferred cosmological frames, and this is what happens here. This is one reason why it is important
to not have full Poincare covariance in the Minkowski case.
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L4
yi = %(5"/’ — R*1't)),

L% 6.13
Y = SXC Gink ), e

yoj:0.

Averaging and effective metric on M>'. An effective metric for scalar fields ¢ (x) on M>! can
be defined by the quadratic action (5.79). Looking at (6.12), we note that y*# contains the term
t%t#, which is not constant on the fiber S2. By averaging over the fiber, one obtains the following
result [1]

y L4 . o LA »
[y"lo= 26U —[1'1/]g = —2€ (3 — cosh? ()67 ,
Lj 12 (6.14)
[y®lo= =R s’ [r"lo=0.

Note the signature change at coshz(n) = 3 which marks the Big-Bang in this model, and the
large pre-factors which grow in time 7. Taking into account the conformal factor in the effective
metric GV (5.81), one obtains the cosmic scale parameter a(¢) o ¢ for late times, corresponding
to a coasting universe [1].

However we have not yet shown that this metric G*¥ governs all of the low-energy physics,
and that there are no tachyonic or ghost modes. The large local symmetry of the model and the
universal structure of the Yang—Mills action should help to elaborate the full dynamics. Here
we only take some steps in that direction: we establish a precise correspondence between the
fluctuation modes as well as a close relation between the action of both spaces.

6.3. Wave-functions, higher-spin modes and constraints

In this section we briefly comment on the fluctuation modes on M3, The space of functions
End(#,,) on M>! is the same as on H,? , meaning that the decomposition (3.55) remains valid
and is truncated at order n. The modes will still be considered as functions (or sections of higher-
spin bundles) on H*, such that a representation as in (3.42) is expected to hold. Consequently,
the modes can be interpreted as functions (or higher-spin modes) on’* M3 via IT of (2.30). The
dap(x) etc. then define some higher-rank field on M31 In the following, we will only address a
few basic points.

6.4. Tangential fluctuation modes, relation with H* and SO (4, 1)

Now consider fluctuations y* = x* 4+ A" around M?>!. The first observation is that these
four fluctuation modes A*, u =0, ..., 3 are in one-to-one correspondence with the tangential
fluctuations on H*. To see this, recall that tangential fluctuations on H* satisfy by definition”
the constraint

24 We will ignore the dependence on two sheets ME for simplicity.
5 A gauge-invariant constraint would be (X% 4+ A%) (X, + Ay) = —RZ. For the present purpose, its linearized form is
what we want.
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X
AavaO, A4=__MAM ) (6'15)
X4
with A, € End(#). To associate a general fluctuation mode on M*! one simply drops A%,
and conversely A* can be recovered from A* via (6.15). Hence there is a correspondence of
tangential fluctuations

A% on H* <—= A* on M3 (6.16)
S04,1)
A% on H* <—= A* on M3!

Since the maps are invertible, an SO (4, 1)-action is defined on the fluctuations A" on ML
which, however, is not an isometry and not unitary. Nevertheless it acts as a structural group, and
organization developed for H* in the previous sections remains applicable. As a consequence,
configurations in the M>! model can be mapped one-to-one to configurations in the H* model.
Similarly, higher-rank tangential tensors on H* such as the gravitons

hapx® =0 6.17)

can be mapped one-to-one to tensors %, on M?31 and the missing components 4, are uniquely
determined from the £, . In the same vein, all internal fluctuations on § 2 will be organized in a
SO (4, 1)-covariant way as on H*. This relation is somewhat analogous to a Wick rotation.

Action and dynamics. The matrix model provides again an action for the fluctuation modes A",
which has the same structure as in section 5.4,

1
SM[A]:/AM <DM—2I+§M2> Ar (6.18)
upon gauge fixing. The matrix Laplacian on M3'! is related to the one on H* through
L4
O =0n = (X% [Xa, D= [X X 0]~ —=5C ™00+ (6.19)

We can utilize the same mode expansion in terms of A,(P as in section 5.1,
AP =0, e’ V= g0 = (o) + 1t ) e
AELZ) - 9Mb5b¢(5) =" W) ectlec!
AS’) — ¢A(LS) ccs !,
Aff) — gub¢}§S) ccs,

(6.20)

which is SO(3, 1)-covariant. As explained in section 5.2, the irreducibility constraints, i.e.
transversality and tracelessness, can be implemented as appropriate for M>! without changing
the setup. The relation (4.9) still applies; for example

W 2 R? .
{x/ud’ }0=_§¢u+?5 80¢,u . (6.21)

Note that 33, is the Euclidean Laplace operator on H*, even though we are working in the
Minkowski case. Hence the right-hand side of (6.21) amounts to some field redefinition. In the
same vein, the higher-derivative terms in the action (5.72) for the rank s tensor fields ¢q; .. 4,
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amount to field redefinitions. Therefore one should expect that these higher-derivative terms do
not lead to new degrees of freedom or ghosts.

On the other hand it might be tempting to use a SO(3, 1)-covariant formalism, where e.g.
{x4, és)} in (6.20) is replaced by {x*, qbff )}. However then some identities are lost, and it remains
to be seen which formalism is more advantageous.

7. Conclusion and outlook

In this article we provide a careful and detailed analysis of the fluctuation modes on fuzzy
H,f as a background in Yang-Mills matrix models, focusing mainly on the semi-classical case.
While the results are largely analogous to the case of S;‘V [2], the present approach based on a
suitable Poisson calculus is more transparent and fairly close to a standard field-theory treatment.
The intrinsic structure of these quantum spaces is responsible for obtaining a higher-spin gauge
theory, which is fully SO (4, 1)-covariant. The key feature is the equivariant bundle structure,
which leads to a transmutation of would-be Kaluza—Klein modes into higher-spin modes.

Summary. Let us summarize the main points: A suitable set of representations for the construc-
tion of H,‘,t is identified as the minireps or doubleton H,, for which we recall the oscillator
realization in section 3. The first major step is a classification of the fuzzy algebra of functions
End(#,), which relies on two pillars: (i) the construction of a spin Casimir invariant S> which
measures the intrinsic angular momentum on the S,% fiber, and (ii) the statement that the quan-
tization map (3.32) is surjective. This provides the basis for the expansion (3.42) of a generic
function in End(#,,), which is a finite expansion in the generators associated to the fiber. More
precisely, End(H,;) decomposes into a finite set of higher-spin sectors C* (3.55), labeled by the
spin Casimir. In the semi-classical limit, these become modules over the algebra of functions on
H*, which are identified with tangential, divergence-tree, traceless rank s tensor fields on H 4,

The second major step is the development of a suitable differential calculus built upon deriva-
tions 0, defined via the Poisson bracket in (3.64). This provides the tools to work explicitly with
the generic spin s modes on a non-compact space.

Having in mind the IKKT matrix model, we observe that Hf is a solution of Yang-Mills
matrix models with mass term, and classify the fluctuation modes around an H,f background
in section 5. Building on the understanding of End(H,,), we find four tangential (5.29) and one
radial fluctuation modes for each spin s > 1. We find the explicit eigenmodes B of the differ-
ential operator D2, see (5.65), which governs the fluctuations in the matrix model. It turns out
that the tangential modes are stable, due to positivity results on their kinetic terms.

Next, we identify the physical graviton (5.85) as linearized fluctuation of the effective metric
(5.81) around the H,f background, and we compute the associated graviton modes for spin s =
0, 1, 2. The gravitons at spin s = 0, 2 naturally satisfy the de Donder gauge. However, it turns
out that the spin 2 graviton behaves as an auxiliary field, at least at the classical level. A more
interesting gravitational behavior should be obtained by including quantum corrections, leading
to induced gravity terms. We briefly discuss this scenario in section 5.8.

Considering H,f as a starting point towards the fuzzy space-time /\/l,3,’1, these issues are how-
ever less important. Since /\/1,31’1 is obtained from H,f by a projection, the fuzzy algebra of
functions for Mf,’] coincides with End(#,), and our results provide a useful set of tools. As
first steps, we briefly discuss the geometry and the organization of higher-spin modes of Mﬁ’l,
and establish a relation between tangential fluctuation on H,f and M;! in section 6.
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Discussion and outlook. From a physics point of view, the results may seem a bit disappointing
in the sense that the spin 2 modes do not lead to a propagating graviton at the classical level.
However gravity could be restored in the quantum case, where induced gravity terms arise. The
most encouraging result is that the tangential fluctuations are stable and do not lead to ghost-like
modes. This is an improvement over GR where the off-shell conformal modes have the wrong
sign, and arguably also over quadratic gravity where ghost-like modes arise at least superficially,
cf. [33,34]. On the other hand, the radial modes are unstable here, which however could be cured
by a radial constraint.

There are several issues which deserve to be studied further. For example, the Poisson calculus
developed here should be extended to the fully non-commutative case. Likewise, the relation of
the present higher-spin gauge theory with Vasiliev theory should be clarified. In view of the H*
geometry, it is natural to contemplate possible applications of holography. Some of the structural
statements in sections 3.5 and 3.6 would deserve a more rigorous treatment. Furthermore, the
1-loop computation in [3] could easily be adapted, since H* is locally very similar to S*. This
would allow to make more specific statements about the induced gravity terms, although to obtain
the Einstein-Hilbert term may require a more refined approach. Finally, the minimal case n =0
is very remarkable and special, because it does not correspond to a quantized symplectic space.

The main physics motivation for the present work is the close relation to the cosmological
FLRW-type solutions M?>! of [1], which are obtained from a projection of H,f . The fluctuation
analysis on M>! can largely proceed along the same lines, with some important differences. In
particular, the radial modes will disappear while the signature becomes Lorentzian. Furthermore,
field redefinitions such as (5.101), which are responsible for the non-propagating nature of the
graviton on H*, should no longer cancel the propagator. Therefore ./\/lf’l’1 is a very promising
candidate for a quantum space-time with interesting gravitational physics in the framework of
matrix models. However, we postpone a detailed analysis of M>! to future work.
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Appendix A. Some aspects of SO (4, 2)

The Lie algebra so(4, 2) is defined by

[Map, Mcgl = i (nacha’ - nadec + nbdMac - 7Ibclwad) , (Al)

where n,, = diag(—1,1,1,1,1,—1) with a,b,... =0,1,2,3,4,5. Unitary representations
of SO(4,2) are given by Hermitian M“’. The maximal compact subgroup of SO(4,2) is
SUR)L x SUR)r x U(1)E, generated by the following generators:

1/1
Ly, = 5 <55mnanl + Mm4) — SU2)L

1/1
R, = 5 <§8mnanl - Mm4) — SU@)g
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with m,n,l =1, 2, 3. They satisfy

[Lmn, Lnl =iemni Ly,
[Ry, Ryl =iemm Ry, (A.2)
[Lim, Ry]=[E, Ly]=[E, Ry]=0

The U(1)g generator E = Mys is the conformal Hamiltonian, whose spectrum is positive in a

positive energy representation. Denoting the maximal compact Lie sub-algebra of SU(2); X
SU2)r x U(1) g as £°, the conformal algebra g has a three-graded decomposition

g=LTeL’eL, (A.3)
with respect to E, such that
(£, L¥1=LF, [E.LF]==%LF, (A4)

and LF are the non-compact generators. The six roots of s0(6)c decompose accordingly into

two compact roots X; and four non-compact roots X +; . The latter transform as (2); ® (2)r

i.e. as complex vectors of SO (4), and satisty (X4, ==X Fai;
Spinorial representations of SO (4, 2) are obtamed in terms of the SO (3, 1) gamma matrices
v satisfying {y,, yo} = =2, for w,v=0,1,2,3 and y4 == yoy12)3 as follows?°:

1 i 1 1
Xy = T [V ] Y4 = 5 Yuls X5 = 5 g5 = v (A5)
We adopt the gamma matrix conventions
1 0 0 -0 (0 1
yo = ( 0 _12) Y = (Gm 0’") > n =1<12 02) (A6)

where o;,, m = 1, 2, 3 are the usual Pauli matrices. They satisfy

V= —vn® =wvayy ', a=0,1,2,3,4

T aa’ bb' __ —1 b= 5 (A7)
Eab—za’b’n n J/()Zaby() s a,b=0,1,2,3,4,

as it should be. The universal covering group of SO(4,2) is SU (2, 2), which is the group of
4 x 4 complex matrices with

Ut =pUty,! (A.8)
which respects the indefinite sesquilinear form

Y = ’”)/Ollfz . (A.9)

The 15-dimensional Lie algebra su(2, 2) = so(4, 2) can thus be identified with the space of trace-
less complex 4 x 4 matrices Z%‘ with real structure

Zh=wzy; . (A.10)

26 To maintain a consistent notation for SO (4, 2), our y4 is what is usually called ys; this will not arise explicitly and
should not cause confusion.
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Appendix B. Conventions and identities for Gamma matrices

Using the sign conventions 74, = diag(—1, 1, 1, 1, 1) and ng4p = diag(—1, 1, 1,1, 1, —1), the
Gamma matrices of so(4, 1) are

{Vaa Vh}z_zﬂah’ avbzoa-~~a4 (Bl)

such that yoz =1 and yg = yp, and more generally

Ya =V0Ya¥y ' = —TabVs = —V*. (B.2)
Then

Yay® =51 (B.3)
We can evaluate the SO (4, 1) intertwiner

> Bap ® 5% = C*[s0(4. D)@ — 2C3[s0(4, D) (B.4)

a,b<4
acting on

(4’) ® (4’) = ((10)5 D (6)AS)50(4’2) = ((IO)S @ (S)AS @D (l)AS)50(4’]) (BS)

Using the well-known eigenvalues of the quadratic Casimirs (which coincide with those of the
compact group), it follows that

Y Zwez?| =1, (B.6)
a,b<4 S
ab 3
Y Saest| = 1. (B.7)
a,b<5 S
This implies
Y (ra®y)y=-1 and Y Tpu?=5. (B.8)
a<5 a,b<5

Similarly, there is an so(4, 2) identity

. y . v 1
Nee (5% ® 27 + 27 @ £%) s = Sna (B.9)

This holds because both sides are symmetric, therefore it acts on (0, 0, 1)®5% = (0, 0, 2); the re-
sulting symmetric tensor operator % would have to be in o, 1, O)‘X’S2 =(0,2,0)+ (0,0, 0), but
(0,2,0) ¢ End(0, 0, 2), thus only 1,5 can occur. We also note the following so0(4, 2) identities:

(€abeder T @ BU) ¢ =2(Zef @1+ 1 ® Tey) (B.10)
and
{Eab ch}+ — (nacnbd _ nadan)]l + leabcdef Eef (B.11)
s 2 . .
In particular,

gabedef sabshed _ 1osef (B.12)
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Appendix C. Basic identities for fuzzy H}

We provide the proofs for the identities given in section 3.4. First, (3.34) is obtained from
AX X =Py Y vy’
=Py yal A2y ® vy
= =5y — Yy Yy
= =529y =Y (=8 + Yy
=—N(N +4)r? (C.1)
using the (B.3). Similarly, (3.35) follows from
C’lsod, D= YUYy Supy’

a<b<4

= > (lpzﬂbzabwwﬁlﬁ/z“b@mbww)

a<b<4

—SN o=
=5 +§1/”/f‘ﬁ¢
1

= 51(7(1(7 +4) (C.2)
and (3.36) follows similarly
C’lso@,2)]= Y UEYy'Supy’

a<b<5
= 3 (I3 + 9IS © Sauy)

a<b<5
R A
4 4
3. 4
=NV +4) (C.3)
using (B.7). The identity (3.40) is obtained as
6abcde-/\/lab-/\/lCd = Gabcdelﬁxabw&/zujw/
= Ifoabcde EahECdI/f + IZ”/Pfabcde »ab by ECdl/“/f/
=120 ZCY + 209/ (2C®@ 1 + 1 ® ZC)yy’
= 12y 50y + 4(NYZCY — Y TCY)
=4~ (N +2)X, =4nr"'X, (C4)
using (B.12) and the Euclidean identities (B.10). Finally, (3.41) is obtained from
éabcdeMabXC = reabcdﬁ&zabw&/zcsw/
= rl/_feabCSde EahZCSW + rl/_fv;/fabcﬁde Eab 02y 2651/”/’/

_ 1 -
=3ry Zgey + E”/“///(Ede RI+1® Iy’
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=3r U ZaeV +r(NU e — ¥ Sae )
= (N +2)r My, =nr My, (C.5)

using €,pc5de »abyeS — 33de which follows from (B.12).
C.1. Functions on H,, spin Casimir S? and quantization

First we argue that any “reasonable” operator ® € End(H;,) (in particular any Hilbert-Schmidt
(HS) operator) can be written as quantization (3.32)

¢ = Q(¢)=fdu¢(M)IM) (m| (C.6)

of some (square-integrable, in the HS case) function ¢ (m) on CP!2. To see this, assume that
some operator A is orthogonal to the space spanned by (C.6), i.e. Tr(A®) = 0 for all ® as above.
Then

[ dieoon) tmi a1y =0 )
for all (square-integrable, say) functions ¢ (m), and therefore

(m|Alm)=0 Vm (C.8)

i.e. the symbol of A vanishes. It is well-known that then A also vanishes, cf. [43]; indeed
(m'|A|lm) is holomorphic in 7’ and m, and therefore vanishes identically if it vanishes on the
“diagonal” (m| A |m). The point is that coherent states |m) are holomorphic in m.

Now consider the spin operator (3.44)

§*=Cso4, Dl+0= > [Map, IMP ]+ [Xa. [X, 1] (C9)
a<b<4

acting on End(?{). We can write this in a Lie algebra basis adapted to H* at the reference point
Ee H* as follows. Let Mi;j, i, j=1,2,3,4be the SO (4) generators, E = Mos the energy and

1
+ .
be the non-compact root generators. Then
S? = (C*[s0(4)] — 8 MigM o) + (8" Mis M j5 — Mos Mos)
= C?[s0(4)] — 5’72;2; +i87 (MigM s + MisM jo) — E*

= C?[s0(4)] — 5172;2]7 — E? (C.11)
using (3.37)
8 (MigM js + MjsMio) = nos =0 (C.12)

Now let |0) be the ground state of #,,, which satisfies
Z;710)=0. (C.13)
Then
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0= (2 (5 1) -2) 0= (3+1) (5 1)
— 5210) (C.14)
using C?[50(4)]]0) = 2% (4 + 1) |0) and E [0) = (1 + %) |0), see (3.28). Now consider
S?>10)(0]
=25710){0] — M 10}{0IM™ + 8 (Mi0|0) (01 M jo — Mis|0)(01M js5) + 2E[0) (0| E
=285710)(0] — M;;10) (0l MY + %zj+|0><0|zj+ + %ZﬂO) (01Z7 +2E|0)(0|E,

noting that the cross-terms cancel. Then Z7|0) =0 = (O|Z}', and for the minimal case Ho we
have moreover M;;|0) =0 and E|0) = |0). We conclude

S? 5 10)(0] = 25310) (0] + 2[0) (0] =0 (C.15)

The same argument applies for any point £ € H*, and (C.6) implies that End(#,) contains only
spin S? = 0 states.

For ‘H, with n > 1, we have to consider the entire SO (4) orbit g > |0)(0| =g - |0)(0] - g =:
|m)(m| over & where |m) = g - |0) for g € SO(4). We can express Mijlm)(ml/\/li-j in terms of
the SO (4) Casimir

— Mj|m) (m| MY = <C2[50(4)] 42 (E + 1)) m) (m|

2\2
n
= (@2s(s+1)1s —n(n+2)> lm) (m| . (C.16)
s=0
n
Here @ 2s(s + 1)1; is the decomposition of C 2[s0(4)] into spin s irreps of SU(2). Moreover,
s=0
8 (Miolm) (m| M jo — Mis|m)(m| M s) =0 (C.17)

by SO(4) invariance. The same argument applies for any point & € H* in (C.6). Therefore S>
decomposes End(#,,) into spin s irreps as follows

n
n
Staacr,) = @ (287 +2s(s + DIy —n(n +2) + 2(5 +1)?%)
s=0

=@ 2s(s + D1, (C.18)

s=0

which implies (3.55) and (3.56). This respects the structure of a C° module, hence C can be
viewed as a bundle over H* with fiber given by the space of functions on the fuzzy sphere S,%,
with all multiplicities equal to one.

C.2. Minimal fuzzy Hu—o
Consider the minireps (3.28) for the minimal case n = 0 = j; = jr. Then the lowest weight

state [€2) = [1, 0, 0) of Hy is the unique eigenspace with eigenvalue of E'= 1, and there are only
four non-vanishing operators with L™ |Q) = a'b’/|Q2) # 0, while the SO (4) generators vanish on
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@J|Q)=0, i,j=1,...,4. Hence the X* generate a 4-dimensional quantized hyperboloid HS‘
without extra fiber. This does not seem to correspond to a coadjoint orbits of SO (4, 2), and the
coherent states SO (4, 2)|§2) form a trivial U (1)-bundle over H*.

Consider the structure of H in some detail. Then spec(Ey) = {1, 2, 3, ...}, and the sub-space
for each given eigenspace of E( has the structure

Hole, = (Eo)L ® (Eo)r (C.19)

where (m)LV_R denotes the m-dimensional irrep of SU(2)r g. Clearly X0 =rEy is diagonal,
while the X/ = ﬁ (Zj+ — Z;), j=1,...,4(C.10) link the neighboring sub-spaces of (C.19)

with Eg and Eg =+ 1, and similarly the eV = % (Zj' + Z;). On the other hand, the ®¥ are the

SO (4) generators acting within (C.19). Therefore (Q|©9°|Q) = 0 vanishes for the local coherent
states, but nevertheless @? = 0 as operator. Hence Hy is a non-commutative space which is not
the quantization of a symplectic space. This is very interesting and should be investigated in more
detail elsewhere. For some related mathematical results see [44].

The structure of H, with n € N is analogous, where (C.19) is replaced by

Holg, = (Eo - %)L ® (Eo + %)R : (C.20)

Appendix D. Auxiliary identities for semi-classical H,;‘

For any tangential ¢, € C, the following identity holds:
X 0pa = —Ga0px" = =Py = —¢p . (D.1)
For any tangential, divergence-free ¢, € CY, formula (3.67) yields
{09, ¢} = r* (x“0” — x"0)pp = —r2x"0 ¢y = 20" . (D.2)

Moreover, one can verify for any ¢ that
(e, 0B} = — =53 b 0 g, )
Xcs ¢ - r2R2 Xes -xda¢

1

= s (e, 0}k ) + 0 e Lxa, 81))
1

= o (7250 8} = 560 16ea. 9))

=0. (D.3)

Furthermore, one computes

! ({xa, 9)) = Oaa(x, (x, $}) = 0,al0, ¢} =0 (D.4)

for any ¢ € C, and

P 0f = =" x4, e, £ = 6 (P xa), 1) = 1 e (67 £
=—{0", {xa. £} — (x“ (6", 1+ OGx", D)
= —{{6", xa}, f}} — 2{x {67, f}} + 0", )
= —{{6", xa}, 1} — 2r*{x", (xPB — x“Bp) £} + O, £

r2R? 2r2R?
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= —4r2{x", f} = 2r20°"0, f + O({x", )
=@ -2r)x", £ (D.5)
for any scalar function f € C°, using (D.3). Finally,
06 Ap) = 6P 0 Ap + (O6°P) Ap — 2{x, 09P}{x€, Ap)
=004, + (@) Ay — 2r2(n®xb — nbx®){xC, Ap}
=004, — 220" A — 2P (—{x®, xP} Ap — x“{x€, Ac))
=00Ap — 220" Ap 4+ 22 (0% Ap + x4 {x€, Ac))
=004, + 2rx4x¢, A} . (D.6)
For the reducible tensor contributions (4.23), we need

{xb, 6u¢b} = 9b6506a¢b = 9b66u50¢b + th[écv 8a](f)b

. . 1 .
= 0,(0°Depp) — (B,0°)Depp — Z—Rzeb‘{e‘“, ob)

I ‘
= 5a{xbv 05} — 75 (0" — 6" x)Bey + (PP, o) + 5 6107 )

2R2
1

=09 — 273 1" ) + o7 (e, ¢b}—0“”¢b>— = Rze“‘ﬂm

=0, + —9“”¢b + —(x“qs 0% pp) — a0 T(90)

—6a¢+ 5P~ Rzewwc) D.7)

using (5.16), for any tangennal ¢y with ¢ .= {x?, ¢,}. Finally, we provide a proof for (3.65): We
compute

39p = xp {07, xa{60°%, $})

r4 R4

=~z (10 xa 10 9} + xpxal0™ 10, 91 )

1
=~ (RO )+ xxa 100, @) + xpxal6” 10, 91 ) (D)

using (3.58a). Hence

(39, 0p = 2R}, ¢} + r2 (x“xa {60, §) — (x°xa169?, $})

1
4R4<
+xpxa (67, (6, @) — (6°4, (6", 91D))

— W(ZRZVZ{GM, ¢} +r2(xaxd{96‘d’ ¢} —XCXd{ead, (p})

+ x4 ((6°, 6°1). 0))

7 (2RO @)+ 12 (" xa(0°Y, 9} — x“xa 0%, )

+xexal0°0, 9) + xpx (67, §) — (6%, 4)))
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1
= 7 (2R 6} — R0 )
1 ac
2—132{0 P} (D.9)
Covariant derivative V. Recalling V,V ¢ = P, 0,0, ¢, we obtain

, 1 1 .
[Va. Vel = [0, 016 + =5 (xaDe — xc0) + = xx” (x/8, — x84 ) ¢

g o (52 (070 107 1) — xx 10 (6. 91
1
= [5a’ 66]‘1’ + F(xg%ic - xc6a)¢
1 / / ! !
o (—xx (9, (0.0 )) + 67 (g, (60 07

1
= [6(1 6C]¢ + z(xa ¢ — Xc0a)P

= e (16°.9) = (B — 509

- Paa’Pcc’ {Qa’c’, P} = Paa’Pcc’ [6a” 80’]¢ (D.10)

r2R2
Hence, the V, commute on scalar functions. For generic tensor fields ¢y, .., we have to be more
careful and proceed as follows:

Va Vc¢b1 ..by
= Va (Pblb,1 "'Pb"b;5c¢b1...b,’,)

— pec pbiby . pbibig, (pb’lbﬁ’ ... pbuby 60,45,),1,._,7;{) (D.11)
Al / / / / N VN
= e PP PP BBty iy PO PO (P PY) By
Inspecting the second term in more detail, we arrive at

n n n n
byl b.b" byl Z b b’
1_[ Pok kaa l_[ P7ivi 6(‘¢b’{,_,b}’1’ = HP Pk (551}) J J)HP et 6C¢b/{...b;{
k=1 j=1

k=1 j=1 i#j

Rzz pabi /npb v | 5, Ony 1y

i#]
== Z (P“”f [1P"" x"50ctyy 4 )
i#]
¢h” h” cb” 4
1 « .
=23 2 P bbby kit (D.12)
j=1

Consequently, the commutator looks as follows:
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n
Ve Vel = [ | P27 P2 P (10,1, 016;..1,) (D.13)
Jj=1

1 n
abj chj
- F Z (P /¢h1...b_/_1cbj+1bn - P ]¢b|4..hj_1ab_,‘+1...bn) .
j=1

With a little relabeling, we obtain

1 z b:b / / ’
(Va: Veltn,..b, = ==z [T P71 PUC PO ¢y )
j=1

1 n
ab; ch;
- F Z (P / ¢b1‘..bj,10bj+1‘..bn — P d)b]...bj,]aijr].‘.bn)
j=1
1~ /
_ bjb’ paa’ pec’y, a'c
=z [ P77 PO Peim®™ gy i)
Jj=1
1

n
) Z (Pabj ped _ peb; P“d) @by ...bj_1dbjy1...b (D.14)

Jj=1
= Rac‘f’b]‘..bn .

For an ordinary tensor field ¢y, 5, € CY, the first term coincides with Vis,,3,] due to (3.65),
which means that curvature coincides with that of the Levi—Civita connection on H,

n
Rab®by..by = Y Racib;dPby...b;_1dbj41..by »
j=1

1
Raciba = & (PabPed — Peb Pad) - (D.15)

As a further check, consider ¢p,p, = 92152 ¢ ¢l where both contributions in (D.15) are non-
vanishing but cancel:

[Va, V167122

— 1 Pblb/1 szb/z Paa/Pcc’{ea/c” Gb/lb/z}

T 2R2
_ L aby Pcd _ Pcb1 Pad 9db2 _ L Pabz Pcd _ Pcbz Pad 9b1d
R? R?
1 ’ / ’ 4 1! 1! 1/ 1
— prlbl szbz Paa PCC (na’b/lec b2 _ na’b’zec bl _ nc’b/l ea b2 + nc/b/zgtl b|>
_ iz (PabIGCbz _ PCbleabz + Pabzeblc _ PCbzebla)
R
-0 (D.16)

as it must, since V%102 = (. Similarly, we can check

[V, Velx? =

’ / ! 1. / 1
_r2R2 paa th pee {9“ c ’xb }— F(Pabpcd _ PCbPaa’)xa’
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1 aa’ pbb' pcc’ (pad'b’ b ad
= P PP (67 x — 6" x') =0. (D.17)

Identities for spin 1 fields. In order to derive (4.9), consider

2(xa, ¢V} = {xa. Fpc0”} = Fpelxa, 07} + {xa, Foc}0™
=12 Fpe Mapx® — Necax®) + {xa, Fic}0"
= 12 (Fuex® — Fpax®) + {xa, Fipc}0"
=2r¢q + (x4, Fpc )0’
=212y + Bq Fpc0°0"¢ (D.18)

where one recalls 0°¢ = —r2 M>¢. The averaged second term can be evaluated as follows

R2r2 xe
BaFpcl099671 = T5d]:bc(Pab Peq — PacPpa + ESudbce)

2R?r2 Rr?
= Py 0 Fpe + Txegadbceadfbc
2R%r2 2Rr?
= Pab80(66¢b — Opope) + xegadbce5d80¢b
2R*r? . 1 x¢
= Pu,0°0c¢pp — 5 (2Pah{9b07 o} — Esadche{edc’ ¢b}>
2R?r? 2
== Pa0 ety — 37 (D.19)
using (D.2), (3.65) and 0°¢. = 0, self-duality (D.23) and the identity (D.24). Noting that
xP0D. ¢y, = 00 x P, — 20" Degpp =0 (D.20)
we obtain
Pab666c¢b = 8680(]561 P (D~21)

i.e. O respects divergence-free tangential vector fields. Collecting all the pieces, one obtains
(4.9).

Identities for spin s fields. The following identity holds for any tangential traceless divergence-
free spin s field ¢, € C:

/ P 0y, 0" = / Opa 0”9 + %(x“a%a)(x%m)
- f 03006 + 300"
[ rois=- [ rooug
[#0i0u=— [ 600 - 25 [ x0u0u

4
=—/¢a[5‘1,5“]¢d+ ﬁ/?)”xd%(ﬁd



M. Sperling, H.C. Steinacker / Nuclear Physics B 941 (2019) 680-743 739

1 4
_ f Bul6° 60) + = f s

r2R2

x¢ x¢ x¢
f Esa’”d%b@éd@:— f ;a“b“’%ﬁbawc: / Wsd””d%a{ebd,«m} (D.22)

and x?d,¢ = 0. Here 8 - 3 is the Euclidean Laplacian on H*. Further, using the self-dualit
¢ p g y

1
ﬁgadcbe {xBuc, ov} = {Oup- db) (D.23)

we have the identity

e

X 1
Pup{Ope, O} — == €adebelOde, Pv} = == Paa'€a'dcbeOacix®, di}

2R 2R
1 .
= ﬁ Paa/ga’dcbegdceef 5f¢b
= _,,ZPaa/(ga’fxb - gb/xa,)éf(bb
=12 PyxP0 e = r’¢, (D.24)

using irreducibility, (3.58a) and
Eabede°10°" = £apeactd{x*, x '}
= eapade (1605, x T} = x (00, x 1))
=2R(0°, xT} + rPeapcaex® (Nepx® — 1 pax©)
= —2r2R(napx” — nprx)

Eeadcp9°0°" = —8r? Rx” (D.25)
which is (2.22). Note that (D.24) holds for any divergence-free, tangential ¢, € C.
Graviton identity. The following identity will be useful

04 H[A] = 80 (0°“ {Ac, x} + 0P {Ac, x))

= (0a0°“){Ac, ") + 000 {Ac, 2%} + (00PN (Ac, x7)) + 0 Daf Ac, x7)
=000 (A, 2%} + {2, (Ae 2"} + (B8N [(Ac, )

= e b0 = [, (1, A + 2 (05 — 07 x) A, x)
=T(Ap) — (2%, {(x¢, A} — r2(xP3C A, — x°BpAL)
=T(Ap) — r?Ap — {xP, (x°, AN (D.26)

for tangential A, using (D.4) and (5.7); note that J, respects the projection [-]o.
D.1. Casimirs, positivity, and eigenvalues of D*
In order to show that the kinetic term is positive, we need some positivity results. A first

result for spin 1 is the following. Assume that ¢(!) is Hermitian and determined by the tangential
divergence-free vector field ¢, as in (4.7). Then
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0< / pg = / (Xar ")V = / 6 (X0, 6V)
}"2
== f $9 (=2 — R20 - B)¢, (D.27)

This implies that (0 — 2r%)¢, is positive for divergence-free square-integrable tangential tensor
fields, cf. (4.39). In particular, this gives

2
&1 = %(—R28~5—2)¢a, bacCl,  @>0. (D.28)

‘We also observe
/¢(S)D¢(s) x / 5a¢(s)5a¢(s) > 0’ ¢(s) cC* (D29)

using (3.78), since x - 0 =0, i.e. d¢ has no radial components, hence the metric is Euclidean.
Therefore O is a positive operator on any square-integrable ¢ € C*.
For higher spin, we need the following intertwining property of the vector fluctuations

r2C%so(4, D1MD A (@O ] = —(0 + 27 — r*(S* + 4) Aulp®)]
= A [r*C*s0(4, 1)]pW]
= A2 CEyls0(4, DD ] =...
= A[r*Ciy[s0(4, D]ga,...a,] (D.30)

using (5.8). The various forms on the right-hand side can be evaluated using the quadratic Casimir
acting on the spin s field ) in its various realizations:

—r2C%Y = (@ - 87"
= (0 —2rs(s + 1) (D.31)
and
—r2C b = (O + 27 — r3(S? + 4)p
=(O+27 Q2 —5) —r2@2s(s — 1) +4)¢Y
= (@ —2r’s")pL (D.32)
and similarly
—r*Ciy®ay...a, = (O + 2L — r*C*[s0(4, D]5.0)Par...a; ]
=@ +2r%s —rs(s +3)) ¢y ..q,
=@ —r%s(s + 1D))a,..q, (D.33)

because S2 = 0 on Quay..a; € CY. Here we define a generalized intertwiner Z for spin s tensor
fields

I(¢a1 ...as) = {Gaal ) ¢a1...a:} +...+ {Qaas ) ¢a1.4.a5} = S{Gaal ) ¢a1...a;}
=125 Pay..q, (D.34)

for symmetric ¢y, .. 4,, and the Casimir of SO (4, 1) on its indices in (5)®s5 is
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C?[s50(4, D0y =5(s +3) . (D.35)

This is consistent with (D.38) for s = 1. In particular, the action of O on various realizations of
the same spin s field is related as follows

Al(@ = 2r25(s + 1)W1 = Al(O — 2r25H9) = A(@ — r25(s + 1))ay..a,] - (D.36)
Now we can evaluate (D.30) for the individual spin s modes. For B, we obtain
(042 —r*(S* +9)BP (o)1= BP (0 +2Z — r*(S* + )91,
@ —2r%(s + 1)’BP [ = BP[(0 - 225D
D*BP ¢ = (0 - 27 + 4rHBP 61 = BP (0 +2r25)9] . (D.37)
For B®, we obtain
(0427 —r2(S? + 4)BP ¢ = B [(O 42T — r2(S? + 497,
@ =227 BP 1”1 = BPIO - 2801
D’BP [N = (@ - 2L +4HBWP 91 = BP (0 - 2r25)¢ ] . (D.38)

For BD we obtain similarly

(0427 —r2(S? +4)BP ¢ = B[O+ 2T — r2(S? + 4)9],

D*BV[9 ] = @+ 271+ 5)BP [ = BPHO +2r*Bs +2)91 (D.39)
and finally for 5 S}

D?’BP o = (0 - 2L +4HBP 901 = BO (O 4 2r25)¢ ] . (D.40)
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