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Abstract

The continual production of long wavelength gravitons during primordial inflation endows
graviton loop corrections with secular growth factors. During a prolonged period of
inflation, these factors eventually overwhelm the small loop-counting parameter of GH?,
causing perturbation theory to break down. A technique was recently developed for
summing the leading secular effects at each order in non-linear sigma models, which
possess the same kind of derivative interactions as gravity. This technique combines a
variant of Starobinsky’s stochastic formalism with a variant of the renormalization group.
Generalizing the technique to quantum gravity is a two-step process, the first of which is the
determination of the gauge fixing condition that will allow this summation to be realized;
this is the subject of this paper. Moreover, we briefly discuss the second step, which shall
obtain the Langevin equation, in which secular changes in gravitational phenomena are
driven by stochastic fluctuations of the graviton field.

Keywords: resummation; quantum gravity; inflation

PACS: 04.50.Kd; 95.35.+d; 98.62.-g

1. Prologue

The geometry of cosmology can be characterized by a scale factor a(t) and its two first

time derivatives, the Hubble parameter H(t) and the first slow roll parameter €(t):!

ds* = —dt? + a?(t) dx - dx = H(t) = g , e =—=. (1)
In the very early universe, primordial inflation is an era of accelerated expansion (H > 0
with 0 < e < 1). During this era virtual particles are ripped out of the vacuum [1] and the
phenomenon is largest for particles such as massless, minimally coupled (MMC) scalars and
gravitons, because they are both massless and not conformally invariant [2,3]. This particle
production is thought to be the physical mechanism causing the primordial tensor [4] and
scalar [5] power spectra.

Many fascinating effects can be studied [6-8]. Of particular interest to us are those
associated with the fact that, as inflation progresses, more and more quanta are created so
that correlators which involve interacting MMC scalars and gravitons often show secular
growth in the form of powers of In[a(t)] [9].> An excellent example is provided by the
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theory of an MMC scalar with a quartic self-interaction and the study of the perfect fluid
form the expectation value of its stress tensor takes in de Sitter background (e = 0):

1 A
L=—359up98" /=8 = 9"V =¢, @)
<Ty1/> = (P + p)l/lyuv + ngu . (3)

The 2-loop dimensionally regulated and fully renormalized expectation value of the stress
tensor equals [10-12]:

4

(1) = Sy xind(a) + O(A) @
4

p(t) = oy~ 10%(@) ~ Fin(a) } + O(2). ®)

In the correlators of this theory, for each factor of the coupling constant A, up to two
factors of In(a) can be associated. When this bound is saturated, the contribution is known
as leading logarithm (LLOG), for instance, in the pressure (5) the factor of — ln2(a) is a
leading logarithm. Contributions which have fewer factors of In(a) are known as subleading
logarithm, for instance, in the pressure (5) the factor of —% In(a) is subleading.

Many similar effects have been studied [13,14]. During a long period of inflation,
factors of In[a(t)] can grow large enough to overwhelm even the smallest coupling constant.
Obviously the most interesting particle to study is the carrier of the gravitational force,
the graviton. Can the universally attractive nature of the gravitational interaction alter
cosmological parameters, kinematical parameters and long-range forces? A preliminary
study of this, albeit with “semi-primitive” for the intended purpose quantum field theoretic
tools, indicated a positive answer [15,16].

After the subsequent development of the appropriate tools, we revisit pure quantum
gravity and try step by step to re-sum its leading logarithms and hopefully obtain the
late time limits of cosmological correlators. The dimensionless coupling constant of pure
quantum gravity is GH?, and at some time the secular increase by powers of In[a(t)] will
overwhelm GH?, causing perturbation theory to break. It is always a formidable affair to
decipher the dynamics of a theory after its perturbative analysis becomes invalid. While it
is easy to state what is needed—a re-summation technique for the leading logarithms—its
realization is very hard. It is also easy to perhaps contemplate that developing such a
technique to sum up the series of leading logarithms may eventually be as important for
cosmology as the renormalization group summation of leading momentum logarithms
was to flat space quantum field theory. The re-summation technique we shall consider, and
which, in our mind, has been adequately developed, is the stochastic technique pioneered
by the late Alexei Starobinsky [17-19].

This paper consists of five sections and one appendix, of which this prologue is
the first. In Section 2 we briefly present the relevant facts from pure quantum gravity
in general, from its form in de Sitter spacetime, and from the stochastic re-summation
technique. Section 3 contains the main result of this paper; it extends the quantum gravity
perturbative setup to arbitrary constant H backgrounds, including the appropriate gauge
fixing condition. Section 4 gives an example of how the results of Section 3 shall give the
desired stochastic (Langevin) equations that pure quantum gravity implies. Section 5 is the
epilogue where we discuss the physical implications and prospects. Finally, some useful
identities are catalogued in Appendix A.
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2. Quantum Gravity
Pure gravity defined by the Lagrangian:®

1
Liny = 5 [Ry/ =g = (D =2)(D - 1)H*\/~¢], ©)
is a two-parameter ’fheory:4
k*=16nG , A=(D-1)H?, @)

with the following equations of motion:

1 1
Ryv = SR g + E(D —~2)(D—1)H?gy = 0. 8)

In terms of the full metric g;v, the conformally rescaled full metric g,y and the graviton
tield hy, are defined thus:

S = gy = @ [y + Ky ] - )

It is straightforward to express (6) in terms of the graviton field as follows:

Liy = aP72/—55"Pg7g" V{%hﬂp,uhwrﬁ — Shap phopy + ghap el

~haphpon } + (B = 1)aP  H /=228 Moo o (10)
which is the form of £;,,;, we shall use thereafter.

2.1. The de Sitter Case

The standard paradigm of a primordial inflationary spacetime is the de Sitter (dS)
maximally symmetric geometry:

gflf/ = Ny - (11)

For our purposes we only need the Feynman rules associated with this geometry, which
allow successful computations. Not surprisingly, it seems that one gauge fixing choice’
has almost always been used to successfully compute Feynman loop diagrams, starting
with the first [20] and proceeding to ten dimensionally regularized and fully renormalized
results [21]:°

Fy =1 [hypoc — 3hoo + (D —2) a Hhyy 5] . (12)

The gauge fixing Lagrangian is the usual one:
Lep = —3a" " F,F,, (13)
and so is the ghost Lagrangian:

Lo, = —aP~ 2y ¢, 0F, . (14)

gh —

In terms of the ghost and antighost fermionic fields ¢, and ¢,:

SF, = 1?7 [Shype — 30hpoy + (D —2) a Héhyp 8], (15)
Shyy = —Cupy — Cop — 2aH(17P,,+KhW)cO — Khyy,a ¢ — 26hy c”‘,v) . (16)



Universe 2025, 11, 223 4 0f 14

In this gauge, the graviton propagator takes the form [22,23]:
i upoo] (1) = (27 rp — D5 Mapllae | B (x37)
—484,75)(,0% ibp (% x')
+ sy | (D — 3)8%% + | [(D = 3)0%8% +77,, |idc(x:¥) (17)
while the ghost propagator equals [22,23]:
o] (') = T i (') — 0005, iAp (x5 ') (18)

In the propagators (17) and (18) iAo (x; x’) is the massless minimally coupled scalar
propagator in de Sitter spacetime [10,11]:”

DpiAg(x;x") = i6P(x —x'), (19)
while iAg(x; x') is the massive scalar propagator with m? = (D — 2) H? [24]:
D, iAg(x;x') = i6P (x — x') + (D — 2)H?aPiAg(x; %) , (20)
and iAc(x; x') is the massive scalar propagator with m? = 2(D — 3)H? [24]:
Daidc(x;x") = i6P (x — x') +2(D — 3)H2aPiAc(x; x') (21)
Moreover, the graviton and ghost kinetic operators are, respectively:

pHveB [%Uy(a Uﬁ)v - %17;41/770(/3] Dy + (D o Z)quDé(g ’71/)(04553 , (22)
DM = 5D, + (D —2)H?aP s 0% , (23)

and satisfy, respectively:

DW“ﬁi[aﬁAW} (x2) = o

DW:‘[NAP} (x;%') = o 6P (x— ). (25)

0y 107 (x =), (24)

2.2. The Leading Logarithm Approximation

The leading logarithm approximation (LLOG) becomes a very essential field theoretic
tool to face the simple fact that the presence of secular leading logarithms eventually causes
the breakdown of perturbation theory. As a result the only reliable computing method has
to be non-perturbative, and LLOG is such a method, which seems to be appropriate for the
specific physical environment of interest.

In this physical environment the significance of the leading logarithms is a very slow
process that requires a very long time evolution to become noticeable due to the smallness
of the gravitational dimensionless parameter GA. Hence, the graviton field ,, changes
significantly less than the scale factor a(t) with time; it is always better to act derivatives on
the scale factor a(t) than to act them on .

The purpose of the LLOG technique is to sum the leading logarithms coming from all
orders of perturbation theory. How does this goal translate into a specific set of practical
steps for the theories at hand? It turns out that after the dust settles, it is only two operations
that determine the simplified form the field equations take. The first of these—which we
could call “stochastic reduction”—operates on the classical level, while the second—which
we could call “integrating out”—operates on the quantum level.
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We start by considering some theory of a quantum field in the presence of the cos-
mological background (1). Suppose the theory develops secular leading logarithms in its
perturbative development.® The relevant question to ask is whether the interactions of the
field possess derivatives.

- The case where they do not is the one Starobinsky successfully addressed in his original
analysis of a single scalar field ¢ with a potential V (¢):

1
L=—=39009g" V=g = V(P)V=g, (26)

for the particular case of V(¢) = %4)4 [17]. Starobinsky’s formalism was based on replacing
the full field operator ¢(t, x) with a stochastic field ¢(t, x), which commutes with itself
[p(t,x), ¢(t',x')] = 0, and whose correlators are completely free of ultraviolet divergences.
This stochastic field ¢(t,x) is constructed from the same free creation and annihilation
operators that appear in ¢(t,x) in such a way that the two fields produce the same leading
logarithms at each order in perturbation theory. The Heisenberg field equation for ¢ gives
rise to a Langevin equation for ¢:

B~ VTR ] - Vo)V @)

— 3Ha®[¢ — o] — V/(¢)a® . (28)

Here @q(t,x) is a truncation of the Yang-Feldman free field with the ultraviolet excised and
the mode function taken to its limiting infrared form:

3
Po(t,x) = /(;;;3 0(aH—k) O(IC\/;?’)H {“k Xyt eﬂk.x} ' (29)
We can derive (28) from QFT by first integrating the exact field equation to reach the Yang-
Feldman form. We then note that reaching leading logarithm order requires each free field
to contribute an infrared logarithm, so there will be no change to correlators, at leading
logarithm order, if the full free field mode sum is replaced by (29). Differentiating this
truncated Yang-Feldman equation gives Starobinsky’s classical Langevin equation [25].
Furthermore, Starobinsky’s technique can be proven to reproduce each order’s leading
logarithms [25] and—when V(¢) is bounded below—all orders can be summed up to give
the late time limits of cosmological correlators in those cases for which a static limit is
approached, as is the case for V(¢) = %474 [26]. The “bottom line” of this analysis is the
following “stochastic reduction” rule:

*  Rule for field with non-derivative interactions:

oS [¢] — 5S[¢]Class

= = 30
6¢ lLLOG o stoch (30)

The rule says that the equation of motion capturing the leading logarithms to all orders—
the LHS of (30)—is tantamount to a classical Langevin equation—the RHS of (30)—derived

from the full Heisenberg equation of motion osll by:

op
(i) At each order in the field, retain only the terms with no derivatives and with the
smallest number of derivatives,
(ii) For the linear terms in the field, each time derivative has a stochastic source subtracted.
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Hence, according to our “stochastic reduction” rule, the full Heisenberg equation of
motion (27) emanating from (26) becomes:

5‘;? = ¢ +3Hp — %224)"_‘//(4’) (31)
05(@]class . ) ,
7 [550201 stoch 3H((P_ (PO) +V'(g) . (32)

The enormous advantage of the method becomes apparent should we be interested in the
all-orders LLOG re-summation; we must deal with a classical stochastic equation instead
of the Heisenberg field equations of an interacting QFT.

- The extension to theories with interactions that possess derivatives was addressed
in [27-30]. We shall concentrate on theories with field equations containing derivative
interactions of a single field because it is the case relevant for pure gravity. From the
point of view of LLOG, the field has a “dual role in the sense that:

(i) when undifferentiated it can and does produce leading logarithms;
(ii) when differentiated it does not produce leading logarithms due to the action of
the derivatives.

Thus, we need a (simple) way to isolate only the gravitons that contribute leading
logarithms. In other words, we need a (simple) way which distinguishes and separates
undifferentiated from differentiated field bilinears. In the presence of a constant field
background, the only bilinears that will survive are the undifferentiated ones; the differ-
entiated ones contribute constants in time due to the action of the derivatives. Since only
the undifferentiated bilinears furnish leading logarithms, we have our (simple) way at
our disposal.

Therefore, in the case of a “dual role” field, the “stochastic reduction” rule gets aug-
mented with the “integrating out” rule, which integrates out the differentiated field bilinears
from the equations of motion and adds the induced result to the stochastically reduced
equation of motion:

*  Rule for field with derivative interactions:

05 [CD] 55[1{/]61%55
= ——= T|Y¥Y =0. 33
0d oG oY stoch + [ } ind ( )

- Perhaps it would be appropriate, before embarking in quantum gravity, to review a

simple and well-studied non-linear c-model example for a single scalar ® [28]:

%(1 +10Y9,00,08"/—3 . (34)

A single field non-linear o-model can be reduced to a free theory by a local field redefinition.

L=—

Nonetheless, although the S-matrix is unity, interactions can still cause changes to the
kinematics of ® particles and to the evolution of the ® background.
The field equation obtained from (34) is:

IRV R

* Dual Role I: The “stochastic reduction”
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The stochastic form of (35) as a homogeneous evolution equation in co-moving time is
obtained in three steps:’

sS[@ d i

S a0 o] 9
— —3Ha*(1+ 1)d 37)
s aHA (1 )8 ) = e @)

* Dual Role II: The “integrating out”

We must add to the stochastic equation of motion (38) the induced effective force

arising from the contribution of undifferentiated fields ® in the constant background ®;:'

5S[® d
SO (i don 140, &
— (14 50 g [ 1+ ) 7] o)
3AH* ad _
6 1239 = M), (41)

where we have replaced the constant field ®g with the spacetime field ¥.
Adding the two contributions (38) and (41) gives the desired Langevin equation
associated with (34):

(I)] 5S[W}c1ass
—_ = — TV
0® ILLoG oY stoch [ }ind
o 3AH* 4B
:—3H31 A‘Fz‘f/—‘f’ —_— = 42
11(+2 )[ 0] 1672 (l—i—%"f/) ( )
3
— oy oy M ] (43)

167> (14 4w)°

We should mention that the above procedure has been thoroughly checked against perturba-
tive computations up to 2-loop order and the highly non-trivial agreement is complete [28].

- We conclude by noting that to arrive at the elusive equations which describe LLOG
pure quantum gravity, we simply have to effect the two operations which will allow
us to do that:!'!

(i) the “stochastic reduction” of the field equations to a classical Langevin equation;
(if) the “integrating out” of the differentiated fields in a constant background to obtain
the induced stress tensor.

3. The Extension to Any Constant Graviton Background

In order to accomodate the LLOG approximation in pure gravity (6), we should like
to integrate out the differentiated graviton fields in the presence of a constant graviton
background. Thus, we first consider the general class of conformally rescaled backgrounds
with constant H and arbitrary g,, because the ultimate object of our study is after all the
time evolution of constant H spacetimes:

S (x) = a? Suwl(x) = a? [T + b (%)), a= —(Hn)™ L. (44)
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When we restrict ourselves, for LLOG reasons, to constant §HV' the curvature tensor takes
the form:

RP‘WV . = _H2§00(‘5py 8ov _5pvgrfi4) ’ (45)

Euw=¢
and we recognize a de Sitter geometry, albeit with a different cosmological constant:!?
Sup=0 = H> — —g"H>. (46)

However, because gravitons have tensor indices, the gauge fixing procedure must be
extended to accomodate the arbitrary constant graviton background. The most efficient way
to extend the graviton Feynman rules from de Sitter to any spacetime such that g, = 0
starts with the 3+1 decomposition.

3.1. The 3+1 Decomposition

The standard 3+1 decomposition of the metric tensor was pioneered by Arnowit,
Deser, and Misner (ADM) to formulate the Hamiltonian dynamics of general relativity [31].
The full metric is expressed in terms of the lapse function N, the shift function N', and the
spatial metric 7y;;:

—N2+’)’klNkNl —’)/lel

S = (47)
—vikNF Yij
TaNEND - — N —-N\ [N
= — = Y Upltly , (48)
—7ikNF Vij 0/, \ 0/,

which implies the following form for its inverse:

_1 _N
N2 NZ
gh=1 y (49)
v N
1\F / 1\
0 0 N ~
= - =y"—utu" . (50)
ij N NJ
U N/ \N

In relations (48) and (50), we have expressed the 3+1 decomposition in the form convenient
for our purposes; 7" is the “spatial part” and u, is the “temporal part”.

Finally, in the appendix some identities associated with the 3+1 decomposition just
described are recorded (A1) and (A2).

3.2. The Gauge Fixing Extension
In analogy with (13), the extended gauge fixing Lagrangian term equals:

Lor = —1aP72\ /-3 E,F,, (51)

and, similarly, in analogy with (12) and taking into account (A2), the extended gauge
condition becomes:

Fu =8 [hupo — Shpoy — (D —2aflhyous| , H (52)

Il
zlxz
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Substituting (52) into (51) we arrive at the desired form for the gauge fixing Lagrangian
term:

EGF = aD_2 \/ 7§§zxﬁ§p0§yv{ - %hplp,ahwx,ﬁ + %hyp,ahlxﬁ,v - %hpﬂ,yhocﬁ,v
+(D — Z)QHhW,gthﬁ — (% — 1)aﬁhpgl},hmuﬁ
—}(D = 2@ Whyphyaugis | (53)

3.3. The Graviton Propagator

In analogy with (17), and using the 3+1 decomposition (48) and identities (A2), we
deduce the extension for the graviton propagator:

i{aﬁ&oa} (x;x') = [2%@%)5 = %ﬁpa] iAa(x;x) (54)
—4 1, gy (plo) iAg(x;x")
—O—W [(D —3)uqup + 7,,43} [(D —3)upus + Vpa} iAc(x;x") .
The corresponding quadratic operator equals:
Drvep = 1 [gw g — g gwﬁ} D+ (D — 2)H2aP \/fguw g yp) (55)
and allows us to check that indeed the proper condition is satisfied:

Dhvap ; [aﬁng} (x;x') = 8, 8%, i6P (x = ') (56)

Finally, in the appendix we have catalogued the coincidence propagator limits
(A6)-(A12) of potential interest and we should like to emphasize that of these, only
iA4(x;x") contains a divergence.

3.4. The Ghost Contribution

The contribution to the action of the ghost and antighost fermionic fields ¢, and ¢, is
the usual one:

Loy = —aP~2,/-5§"¢, 0F,, (57)
where in the infinitesimal variation §F, of the gauge fixing functional (52), the variation

parameter is the ghost field c:

6F, = §[Shype — 16hg — (D — 2)aH dhyp s

+63°7 [hvw — hpoy — (D —2)aH hy, ug} , (58)

so that:
Ohyy = _Cofﬂ Sov — € Gup + 2aH§MV”“C“ — Khyya c* (59)
0877 = —3gP xSl - (60)

The ghost propagator (18) generalizes to:

i[aAp} (x;x") = Yo iAg(x;x") — UgUp iAg(x;x') . (61)
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The action of the ghost kinetic operator:
DH* = "D, 4 (D — 2)H?aP (/- ulu® (62)
on (61) gives:
ﬁW{JAQmU:%w%x—w. (63)

4. What Follows

The LLOG methodology was extensively analyzed in Section 2.2, where the relevant
rule for the pure gravitational case was identified:

—a* /=3 TIhW
stoch ? 8 []

The main purpose of this paper—the complete set of the relevant Feynman rules—was

58[17] — és[h]class

= =0. 64
Ohyy 1LLOG Shyy (64)

ind

achieved in Section 3. The natural next step is to use them and derive the appropriate
dynamical equations for LLOG pure quantum gravity using (64). Although this is work in
progress [32], we shall present herein an example of this process, since obtaining the LLOG
gravitational equations and ultimately solving them is the primary objective.

An important simplification can be made a priori since it turns out that all coincidence
limits that appear in the computations required by (64) are finite and the only one that
is not does not appear.13 Hence, we can take the D = 4 limit, which shall considerably
simplify the intricate tensor algebra that must be done.'*

It turns out that it is preferable to add the contributions of £;,;, (10) and [ZGF (53)
because some of their terms simplify against each other. The six terms comprising L, +
Lcr canbe grouped into three convenient parts:

Linp+ Lor = L14243+ Lats+ Lg, (65)

where these three convenient parts equal:

Lij243 = ﬂz\/ —-gg'Pgrogr

X {_ %hap,'yhﬁrf,é + %haﬁ,vhpa,b‘ + azﬁzhvpuahéa”ﬁ} ’ (66)
£4+5 =\ _§§aﬁ§p0§ydaﬁ { - %80’ (ﬂzhwh&x) + azhvphéa,a} ’ (67)
Lo = xa®H\/—88P3P7 8" Moo yhsuhop - (68)

The reduction process described in Section 2.2 is a straightforward but cumbersome
procedure. As an example we present the results coming from (66):

- The “stochastic reduction” of the full field equation from £, 3 furnishes the following
classical Langevin form:

SIS,

Sl
ot -g 3EH [T = 43R oo — R + 2FPU0 G g

+ kH? [% (e gh)(oyy0) — 0y (ngv)(agh)pyyo) u("‘gﬁ)(ﬂgv)(ﬁ’u”)} hlx,shpa} )

= (69)

stoch

where Xuv denotes the stochastic jitter.
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- The corresponding “integrating out” operation leads to the following induced stress

tensor:

.S o B P
g = gsnz{ 78" +oeulu’| . (70)

—a* Y, -8 T[h]?;+2+3)

5. Epilogue

The continual production of inflationary gravitons tends to endow graviton loop
corrections with secular growth factors. During a prolonged period of inflation, these
factors eventually overwhelm the small loop-counting parameter of GH?2, which causes
perturbation theory to break down. Developing a re-summation technique that permits
one to evolve to late times has been a long struggle owing to the derivative interactions of
gravity. The analogous problem for non-linear sigma models was recently solved by com-
bining a variant of Starobinsky’s stochastic formalism with a variant of the renormalization
group [28]. The technique has recently been generalized to scalar corrections to gravity [30],
and here we took the first essential step for its definitive extension to pure gravity.

The basic assumption in our analysis is that changes in the geometrical background
are significantly slower than the changes in the scale factor. The basic goal is the derivation
of the Langevin equation for pure quantum gravity on de Sitter background. The basic
advantage of this equation is that the leading logarithm (LLOG) approximation it represents
is valid to all orders of perturbation theory.

To achieve this entails doing two things:

(i) Generalizing the gauge fixing condition by replacing 77, with g,
(ii) Integrating out differentiated graviton fields to produce a leading logarithm stress
tensor and stochastically simplifying the classical equation.

In this paper we completed the first of these, while the second is work in progress [32].
The extension of the gauge fixing condition—necessary since the graviton has tensor
indices—was achieved by employing the 3+1 decomposition.

By far the most interesting physical applications are those where perturbative results
exhibit a secular effect which leads to a breakdown of perturbation theory. In that case, a
re-summation technique is necessary and the natural technique is to re-sum the leading
logarithm effects in each order of coupling constant perturbation theory [15,16]. This
problem has been much studied by other authors [33-36] and by ourselves [9].

We should close by commenting on the fascinating issue of the extent to which this
stochastic formalism can be extended from de Sitter, and related cosmological backgrounds,
to the anti-de Sitter (and related backgrounds), of great interest to fundamental theory.
The simple answer is that we do not yet know. The physics of quantum fields on anti-de
Sitter differs greatly from that on de Sitter. Whereas de Sitter fields experience a continual
redshift of modes from the ultraviolet to the infrared, anti-de Sitter fields experience the
opposite blueshift. It is not known if this injects time dependence into simple correlators the
way it does in cosmology. Some things are known, for example, the first order formalism
allows one to establish a connection between the braneworld and cosmology [37]. This has
been much studied [38—40] but it is still not known if there is a stochastic realization.
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Appendix A. Useful Identities

* Some relations from the 3+1 decomposition:

g H i H> 50072

N TN 8
1 1 ~
5?1 =-—qln ¥ = —Nu;‘ ;o §Mupuy = =1 = gutu .

* Some tensor algebra identities:
g’]ﬂ/ _ 17;41/ _ KhP:X g"tkl/ ,

’7]41/ = ﬁyv - 50}1(5(3/ ’ 5‘11/ = 35 + 5;([)501/ ’

3" 5 (1 5v)
040y = 8,0 gy +28'5 6", 0%

* The various propagator coincident limit identities:

)+ 0190%0%0% -

Hz " XN / H2
)|x:x':Rh‘“+ c” zAB(x;x)|x:x/:_167/
B2
1672’
H3
= = g

iAg(x;x

iAc(xx)| _, =+

x=x'
ol iA4(x; x|
! iAc(x;x") |x:x/ =

00, iAp(x; x’)‘x:x, = 35,27 8po s

300, iAg(x; Ny = 3227 8or s

0pdy ibc(x;x")| _ = — 3527 8o -

(A1)

(A2)

(A3)
(A4)

(A5)

(A6)
(A7)

(A8)
(A9)

(A10)
(Al1)

(A12)

Note: In the above relations, we first take the derivatives and then the coincidence limit

x' = x.
* The D 4 operator equals:

Dy =04 [ﬂD_2\/ _§§aﬁaﬁ] ’

and its operation on the three kinds of scalar propagators gives:

Daidg(x;x") = i6P(x —x'),

jjA iKB(x; x’) =

EA igc(x; x’) =

i0P (x —x') + (D —2)H?aP /-3 iAg(x; 1),

i0P (x — x') +2(D — 3)H%aP \/—F iAc(x;x') .

(A13)

(A14)
(A15)

(Al6)
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Notes

1

It is more often than not convenient to employ conformal instead of co-moving coordinates: ds?> = —dt? + a*(t)dx - dx =
a?(n7)[— dn? + a®(y7) dx - dx], with t the co-moving time and 7 the conformal time.

2 Examples of this particular secular growth behavior can be found in citations [14,16,24,38,44,72,73,77,78] therein.

3 Hellenic indices take on spacetime values, while Latin indices take on space values. Our metric tensor g, has spacelike signature
(= + ++) and our curvature tensor equals R”‘ﬁw = F“Vﬁ,y +T% l"pvlS —(n o).

4 Notice that even for a cosmological mass scale M ~10'8 GeV close to the Planck scale Mp;, the dimensionless coupling constant
is very small: GA= ]{\Aﬂ—f ~1074.

Pl

5 The graviton propagator in this particular gauge is simple in two essential ways: (i) it is the sum of three scalar propagators times
spacetime constant tensor factors; (ii) in D = 4 the three propagators only have one or two terms.

6 Examples of such regularized and fully renormalized results can be found in citations [14,47-56] therein.

7 The de Sitter D4 operator is: D4 = 9, [aP729%].

8 Fields like gravitons and MMC scalars will do precisely that.

9 As described above, the first step (36) follows since only time derivatives matter, the second step (37) follows since the evolution
of @ is much slower than that of the scale factor a = ¢! so that the largest contribution comes from the external derivative acting
on %, and the third step (38) follows from the stochastic rule whereby the full stochastic field ¥ has its associated stochastic jitter
¥, subtracted.

10" Again only time derivatives matter, while 9, (®?)|p, = 269 H 8H722 (1+ %@0)72. Moreover, the process of integrating out,
for instance, singly or doubly differentiated scalar bilinears amounts to replacing them with singly or doubly differentiated scalar
propagators in the presence of a spacetime constant scalar, and this is tantamount to changing the scalar field strength [28].

1 Although only theories with a single field were discussed, it is clear that the same operations apply to theories with many fields.
Such analysis can be more intricate when some of the fields can produce leading logarithms, e.g., gravitons, MMC scalars, while
others cannot, e.g., fermions, photons, conformally coupled scalars. Examples of such theories which were fully studied can be
found in [27-30].

12 The process of integrating out, for instance, singly or doubly differentiated graviton bilinears amounts to replacing them with
singly or doubly differentiated graviton propagators in the presence of a constant graviton background, and this is tantamount to
replacing them with singly or doubly differentiated de Sitter graviton propagators with a different Hubble parameter.

13 All propagator coincidence limits are displayed in Appendix A (A6)—(A12). Of these, only iAg (x;x") |x:x, is not finite.

14 Some of the identities used in the algebraic tensor steps can be found in Appendix A (A3)—(A5).
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