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Abstract

The continual production of long wavelength gravitons during primordial inflation endows

graviton loop corrections with secular growth factors. During a prolonged period of

inflation, these factors eventually overwhelm the small loop-counting parameter of GH2,

causing perturbation theory to break down. A technique was recently developed for

summing the leading secular effects at each order in non-linear sigma models, which

possess the same kind of derivative interactions as gravity. This technique combines a

variant of Starobinsky’s stochastic formalism with a variant of the renormalization group.

Generalizing the technique to quantum gravity is a two-step process, the first of which is the

determination of the gauge fixing condition that will allow this summation to be realized;

this is the subject of this paper. Moreover, we briefly discuss the second step, which shall

obtain the Langevin equation, in which secular changes in gravitational phenomena are

driven by stochastic fluctuations of the graviton field.

Keywords: resummation; quantum gravity; inflation

PACS: 04.50.Kd; 95.35.+d; 98.62.-g

1. Prologue

The geometry of cosmology can be characterized by a scale factor a(t) and its two first

time derivatives, the Hubble parameter H(t) and the first slow roll parameter ϵ(t):1

ds2 = −dt2 + a2(t) dx · dx =⇒ H(t) ≡ ȧ

a
, ϵ(t) ≡ − Ḣ

H2
. (1)

In the very early universe, primordial inflation is an era of accelerated expansion (H > 0

with 0 ≤ ϵ < 1). During this era virtual particles are ripped out of the vacuum [1] and the

phenomenon is largest for particles such as massless, minimally coupled (MMC) scalars and

gravitons, because they are both massless and not conformally invariant [2,3]. This particle

production is thought to be the physical mechanism causing the primordial tensor [4] and

scalar [5] power spectra.

Many fascinating effects can be studied [6–8]. Of particular interest to us are those

associated with the fact that, as inflation progresses, more and more quanta are created so

that correlators which involve interacting MMC scalars and gravitons often show secular

growth in the form of powers of ln[a(t)] [9].2 An excellent example is provided by the
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theory of an MMC scalar with a quartic self-interaction and the study of the perfect fluid

form the expectation value of its stress tensor takes in de Sitter background (ϵ = 0):

L = −1

2
∂µϕ ∂νϕ gµν

√
−g − λ

4!
ϕ4

√
−g , (2)

⟨Tµν⟩ = (ρ + p)uµuν + pgµν . (3)

The 2-loop dimensionally regulated and fully renormalized expectation value of the stress

tensor equals [10–12]:

ρ(t) =
λH4

27π4
×ln2(a) + O(λ2) , (4)

p(t) =
λH4

27π4

{
− ln2(a)− 2

3 ln(a)
}
+ O(λ2) . (5)

In the correlators of this theory, for each factor of the coupling constant λ, up to two

factors of ln(a) can be associated. When this bound is saturated, the contribution is known

as leading logarithm (LLOG), for instance, in the pressure (5) the factor of − ln2(a) is a

leading logarithm. Contributions which have fewer factors of ln(a) are known as subleading

logarithm, for instance, in the pressure (5) the factor of − 2
3 ln(a) is subleading.

Many similar effects have been studied [13,14]. During a long period of inflation,

factors of ln[a(t)] can grow large enough to overwhelm even the smallest coupling constant.

Obviously the most interesting particle to study is the carrier of the gravitational force,

the graviton. Can the universally attractive nature of the gravitational interaction alter

cosmological parameters, kinematical parameters and long-range forces? A preliminary

study of this, albeit with “semi-primitive” for the intended purpose quantum field theoretic

tools, indicated a positive answer [15,16].

After the subsequent development of the appropriate tools, we revisit pure quantum

gravity and try step by step to re-sum its leading logarithms and hopefully obtain the

late time limits of cosmological correlators. The dimensionless coupling constant of pure

quantum gravity is GH2, and at some time the secular increase by powers of ln[a(t)] will

overwhelm GH2, causing perturbation theory to break. It is always a formidable affair to

decipher the dynamics of a theory after its perturbative analysis becomes invalid. While it

is easy to state what is needed—a re-summation technique for the leading logarithms—its

realization is very hard. It is also easy to perhaps contemplate that developing such a

technique to sum up the series of leading logarithms may eventually be as important for

cosmology as the renormalization group summation of leading momentum logarithms

was to flat space quantum field theory. The re-summation technique we shall consider, and

which, in our mind, has been adequately developed, is the stochastic technique pioneered

by the late Alexei Starobinsky [17–19].

This paper consists of five sections and one appendix, of which this prologue is

the first. In Section 2 we briefly present the relevant facts from pure quantum gravity

in general, from its form in de Sitter spacetime, and from the stochastic re-summation

technique. Section 3 contains the main result of this paper; it extends the quantum gravity

perturbative setup to arbitrary constant H backgrounds, including the appropriate gauge

fixing condition. Section 4 gives an example of how the results of Section 3 shall give the

desired stochastic (Langevin) equations that pure quantum gravity implies. Section 5 is the

epilogue where we discuss the physical implications and prospects. Finally, some useful

identities are catalogued in Appendix A.
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2. Quantum Gravity

Pure gravity defined by the Lagrangian:3

Linv =
1

κ2

[
R
√
−g − (D − 2)(D − 1)H2

√
−g

]
, (6)

is a two-parameter theory:4

κ2 ≡ 16πG , Λ ≡ (D − 1)H2 , (7)

with the following equations of motion:

Rµν −
1

2
R gµν +

1

2
(D − 2)(D − 1)H2gµν = 0 . (8)

In terms of the full metric gµν, the conformally rescaled full metric g̃µν and the graviton

field hµν are defined thus:

gµν ≡ a2 g̃µν ≡ a2
[
ηµν + κhµν

]
. (9)

It is straightforward to express (6) in terms of the graviton field as follows:

Linv = aD−2
√
−g̃ g̃αβ g̃ρσ g̃µν

{
1
2 hαρ,µhνσ,β − 1

2 hαβ,ρhσµ,ν +
1
4 hαβ,ρhµν,σ

− 1
4 hαρ,µhβσ,ν

}
+ (D

2 − 1)aD−1H
√
−g̃ g̃ρσ g̃µνhρσ,µhν0 , (10)

which is the form of Linv we shall use thereafter.

2.1. The de Sitter Case

The standard paradigm of a primordial inflationary spacetime is the de Sitter (dS)

maximally symmetric geometry:

g̃dS
µν = ηµν . (11)

For our purposes we only need the Feynman rules associated with this geometry, which

allow successful computations. Not surprisingly, it seems that one gauge fixing choice5

has almost always been used to successfully compute Feynman loop diagrams, starting

with the first [20] and proceeding to ten dimensionally regularized and fully renormalized

results [21]:6

Fµ = ηρσ
[
hµρ,σ − 1

2 hρσ,µ + (D − 2) a Hhµρ δ0
σ

]
. (12)

The gauge fixing Lagrangian is the usual one:

LGF = − 1
2 aD−2ηµν Fµ Fν , (13)

and so is the ghost Lagrangian:

Lgh = −aD−2ηµν cµ δFν . (14)

In terms of the ghost and antighost fermionic fields cµ and cµ:

δFν = ηρσ
[
δhνρ,σ − 1

2 δhρσ,ν + (D − 2) a H δhνρ δ0
σ

]
, (15)

δhµν = −cµ,ν − cν,µ − 2aH(ηµν+κhµν)c
0 − κhµν,α cα − 2κhα(µ cα

,ν) . (16)
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In this gauge, the graviton propagator takes the form [22,23]:

i
[

αβ∆ρσ

]
(x; x′) =

[
2 ηα(ρησ)β − 2

D−3 ηαβηρσ

]
i∆A(x; x′)

−4 δ0
(αηβ)(ρδ0

σ) i∆B(x; x′)

+ 2
(D−3)(D−2)

[
(D − 3)δ0

αδ0
β + ηαβ

][
(D − 3)δ0

ρδ0
σ + ηρσ

]
i∆C(x; x′) , (17)

while the ghost propagator equals [22,23]:

i
[

α∆ρ

]
(x; x′) = ηαρ i∆A(x; x′)− δ0

αδ0
ρ i∆B(x; x′) . (18)

In the propagators (17) and (18) i∆A(x; x′) is the massless minimally coupled scalar

propagator in de Sitter spacetime [10,11]:7

DA i∆A(x; x′) = iδD(x − x′) , (19)

while i∆B(x; x′) is the massive scalar propagator with m2 = (D − 2)H2 [24]:

DA i∆B(x; x′) = iδD(x − x′) + (D − 2)H2aDi∆B(x; x′) , (20)

and i∆C(x; x′) is the massive scalar propagator with m2 = 2(D − 3)H2 [24]:

DA i∆C(x; x′) = iδD(x − x′) + 2(D − 3)H2aDi∆C(x; x′) (21)

Moreover, the graviton and ghost kinetic operators are, respectively:

Dµναβ =
[

1
2 ηµ(α ηβ)ν − 1

4 ηµνηαβ
]
DA + (D − 2)H2aDδ

(µ
0 ην)(αδ

β)
0 , (22)

Dµα = ηµαDA + (D − 2)H2aDδ
µ
0δα

0 , (23)

and satisfy, respectively:

Dµναβ i
[

αβ∆ρσ

]
(x; x′) = δ

µ

(ρ
δν

σ) iδD(x − x′) , (24)

Dµα i
[

α∆ρ

]
(x; x′) = δ

µ
ρ iδD(x − x′) . (25)

2.2. The Leading Logarithm Approximation

The leading logarithm approximation (LLOG) becomes a very essential field theoretic

tool to face the simple fact that the presence of secular leading logarithms eventually causes

the breakdown of perturbation theory. As a result the only reliable computing method has

to be non-perturbative, and LLOG is such a method, which seems to be appropriate for the

specific physical environment of interest.

In this physical environment the significance of the leading logarithms is a very slow

process that requires a very long time evolution to become noticeable due to the smallness

of the gravitational dimensionless parameter GΛ. Hence, the graviton field hµν changes

significantly less than the scale factor a(t) with time; it is always better to act derivatives on

the scale factor a(t) than to act them on hµν.

The purpose of the LLOG technique is to sum the leading logarithms coming from all

orders of perturbation theory. How does this goal translate into a specific set of practical

steps for the theories at hand? It turns out that after the dust settles, it is only two operations

that determine the simplified form the field equations take. The first of these—which we

could call “stochastic reduction”—operates on the classical level, while the second—which

we could call “integrating out”—operates on the quantum level.
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We start by considering some theory of a quantum field in the presence of the cos-

mological background (1). Suppose the theory develops secular leading logarithms in its

perturbative development.8 The relevant question to ask is whether the interactions of the

field possess derivatives.

- The case where they do not is the one Starobinsky successfully addressed in his original

analysis of a single scalar field ϕ with a potential V(ϕ):

L = −1

2
∂µϕ ∂νϕ gµν

√
−g − V(ϕ)

√
−g , (26)

for the particular case of V(ϕ) = λ
4! ϕ

4 [17]. Starobinsky’s formalism was based on replacing

the full field operator ϕ(t, x) with a stochastic field φ(t, x), which commutes with itself

[φ(t, x), φ(t′, x′)] = 0, and whose correlators are completely free of ultraviolet divergences.

This stochastic field φ(t, x) is constructed from the same free creation and annihilation

operators that appear in ϕ(t, x) in such a way that the two fields produce the same leading

logarithms at each order in perturbation theory. The Heisenberg field equation for ϕ gives

rise to a Langevin equation for φ:

δS[ϕ]

δϕ(x)
= ∂µ

[√
−g gµν∂νϕ

]
− V′(ϕ)

√
−g (27)

−→ 3Ha3
[
φ̇ − φ̇0

]
− V′(φ)a3 . (28)

Here φ0(t, x) is a truncation of the Yang–Feldman free field with the ultraviolet excised and

the mode function taken to its limiting infrared form:

φ0(t, x) ≡
∫

d3k

(2π)3
θ
(
aH−k

) θ(k−H)H√
2k3

{
αk eik·x + α†

k e−ik·x
}

. (29)

We can derive (28) from QFT by first integrating the exact field equation to reach the Yang–

Feldman form. We then note that reaching leading logarithm order requires each free field

to contribute an infrared logarithm, so there will be no change to correlators, at leading

logarithm order, if the full free field mode sum is replaced by (29). Differentiating this

truncated Yang–Feldman equation gives Starobinsky’s classical Langevin equation [25].

Furthermore, Starobinsky’s technique can be proven to reproduce each order’s leading

logarithms [25] and—when V(ϕ) is bounded below—all orders can be summed up to give

the late time limits of cosmological correlators in those cases for which a static limit is

approached, as is the case for V(ϕ) = λ
4! ϕ

4 [26]. The “bottom line” of this analysis is the

following “stochastic reduction” rule:

• Rule for field with non-derivative interactions:

δS[ϕ]

δϕ

∣∣∣
LLOG

≡ δS[φ]class

δφ

∣∣∣
stoch

= 0 . (30)

The rule says that the equation of motion capturing the leading logarithms to all orders—

the LHS of (30)—is tantamount to a classical Langevin equation—the RHS of (30)—derived

from the full Heisenberg equation of motion
δS[ϕ]

δϕ by:

(i) At each order in the field, retain only the terms with no derivatives and with the

smallest number of derivatives,

(ii) For the linear terms in the field, each time derivative has a stochastic source subtracted.
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Hence, according to our “stochastic reduction” rule, the full Heisenberg equation of

motion (27) emanating from (26) becomes:

δS[ϕ]

δϕ
= ϕ̈ + 3Hϕ̇ − ∇2

a2 ϕ + V′(ϕ) (31)

−→ δS[φ]class

δφ

∣∣∣
stoch

= 3H
(

φ̇ − φ̇0

)
+ V′(φ) . (32)

The enormous advantage of the method becomes apparent should we be interested in the

all-orders LLOG re-summation; we must deal with a classical stochastic equation instead

of the Heisenberg field equations of an interacting QFT.

- The extension to theories with interactions that possess derivatives was addressed

in [27–30]. We shall concentrate on theories with field equations containing derivative

interactions of a single field because it is the case relevant for pure gravity. From the

point of view of LLOG, the field has a “dual role in the sense that:

(i) when undifferentiated it can and does produce leading logarithms;

(ii) when differentiated it does not produce leading logarithms due to the action of

the derivatives.

Thus, we need a (simple) way to isolate only the gravitons that contribute leading

logarithms. In other words, we need a (simple) way which distinguishes and separates

undifferentiated from differentiated field bilinears. In the presence of a constant field

background, the only bilinears that will survive are the undifferentiated ones; the differ-

entiated ones contribute constants in time due to the action of the derivatives. Since only

the undifferentiated bilinears furnish leading logarithms, we have our (simple) way at

our disposal.

Therefore, in the case of a “dual role” field, the “stochastic reduction” rule gets aug-

mented with the “integrating out” rule, which integrates out the differentiated field bilinears

from the equations of motion and adds the induced result to the stochastically reduced

equation of motion:

• Rule for field with derivative interactions:

δS[Φ]

δΦ

∣∣∣
LLOG

≡ δS[Ψ]class

δΨ

∣∣∣
stoch

+ T[Ψ]
∣∣∣
ind

= 0 . (33)

- Perhaps it would be appropriate, before embarking in quantum gravity, to review a

simple and well-studied non-linear σ-model example for a single scalar Φ [28]:

L = −1

2

(
1 + λ

2 Φ
)2

∂µΦ ∂νΦ gµν
√
−g . (34)

A single field non-linear σ-model can be reduced to a free theory by a local field redefinition.

Nonetheless, although the S-matrix is unity, interactions can still cause changes to the

kinematics of Φ particles and to the evolution of the Φ background.

The field equation obtained from (34) is:

δS[Φ]

δΦ(x)
=

(
1 + λ

2 Φ
)
∂µ

[(
1 + λ

2 Φ

)√
−ggµν∂νΦ

]
. (35)

* Dual Role I: The “stochastic reduction”
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The stochastic form of (35) as a homogeneous evolution equation in co-moving time is

obtained in three steps:9

δS[Φ]

δΦ(x)
−→ −

(
1 + λ

2 Φ
) d

dt

[(
1 + λ

2 Φ
)
a3

Φ̇

]
(36)

−→ −3Ha3
(
1 + λ

2 Φ
)2

Φ̇ (37)

−→ −3Ha3
(
1 + λ

2 Ψ
)2[

Ψ̇ − Ψ̇0

]
≡ δS[Ψ]class

δΨ

∣∣∣
stoch

. (38)

* Dual Role II: The “integrating out”

We must add to the stochastic equation of motion (38) the induced effective force

arising from the contribution of undifferentiated fields Φ in the constant background Φ0:10

δS[Φ]

δΦ(x)
−→ −

(
1 + λ

2 Φ0

) d

dt

[
λ
4 a3 d

dt ⟨Φ2⟩Φ0

]
(39)

−→ −
(
1 +

λ

2
Φ0

) d

dt

[
λ
4 a3 H3

4π2

(
1 + λ

2 Φ0

)−2
]

(40)

−→ −3λH4

16π2

a3

(
1 + λ

2 Ψ
) ≡ T[Ψ]

∣∣∣
ind

, (41)

where we have replaced the constant field Φ0 with the spacetime field Ψ.

Adding the two contributions (38) and (41) gives the desired Langevin equation

associated with (34):

δS[Φ]

δΦ

∣∣∣
LLOG

≡ δS[Ψ]class

δΨ

∣∣∣
stoch

+ T[Ψ]
∣∣∣
ind

= −3Ha3
(
1 + λ

2 Ψ
)2[

Ψ̇ − Ψ̇0

]
− 3λH4

16π2

a3

(
1 + λ

2 Ψ
) = 0 (42)

=⇒ Ψ̇ = Ψ̇0 −
λH3

16π2

1
(
1 + λ

2 Ψ
)3

. (43)

We should mention that the above procedure has been thoroughly checked against perturba-

tive computations up to 2-loop order and the highly non-trivial agreement is complete [28].

- We conclude by noting that to arrive at the elusive equations which describe LLOG

pure quantum gravity, we simply have to effect the two operations which will allow

us to do that:11

(i) the “stochastic reduction” of the field equations to a classical Langevin equation;

(ii) the “integrating out” of the differentiated fields in a constant background to obtain

the induced stress tensor.

3. The Extension to Any Constant Graviton Background

In order to accomodate the LLOG approximation in pure gravity (6), we should like

to integrate out the differentiated graviton fields in the presence of a constant graviton

background. Thus, we first consider the general class of conformally rescaled backgrounds

with constant H and arbitrary g̃µν because the ultimate object of our study is after all the

time evolution of constant H spacetimes:

gµν(x) ≡ a2 g̃µν(x) ≡ a2
[
ηµν + κhµν(x)

]
, a = −(Hη)−1 . (44)
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When we restrict ourselves, for LLOG reasons, to constant g̃µν, the curvature tensor takes

the form:

R
ρ
σµν

∣∣∣
g̃µν=c

= −H2 g̃00
(
δ

ρ
µ gσν − δ

ρ
ν gσµ

)
, (45)

and we recognize a de Sitter geometry, albeit with a different cosmological constant:12

g̃µν,ρ = 0 =⇒ H2 −→ −g̃00H2 . (46)

However, because gravitons have tensor indices, the gauge fixing procedure must be

extended to accomodate the arbitrary constant graviton background. The most efficient way

to extend the graviton Feynman rules from de Sitter to any spacetime such that g̃µν,ρ = 0

starts with the 3+1 decomposition.

3.1. The 3+1 Decomposition

The standard 3+1 decomposition of the metric tensor was pioneered by Arnowit,

Deser, and Misner (ADM) to formulate the Hamiltonian dynamics of general relativity [31].

The full metric is expressed in terms of the lapse function N, the shift function Ni, and the

spatial metric γij:

g̃µν =



−N2+γkl N

k Nl −γjl N
l

−γik Nk γij


 (47)

=




γkl N
k Nl −γjl N

l

−γik Nk γij


−



−N

0




µ



−N

0




ν

≡ γµν− uµuν , (48)

which implies the following form for its inverse:

g̃µν =



− 1

N2 − N j

N2

− Ni

N2 γij− Ni N j

N2


 (49)

=




0 0

0 γij


−




1
N

Ni

N




µ


1
N

N j

N




ν

≡ γµν− uµuν . (50)

In relations (48) and (50), we have expressed the 3+1 decomposition in the form convenient

for our purposes; γµν is the “spatial part” and uµ is the “temporal part”.

Finally, in the appendix some identities associated with the 3+1 decomposition just

described are recorded (A1) and (A2).

3.2. The Gauge Fixing Extension

In analogy with (13), the extended gauge fixing Lagrangian term equals:

L̃GF = − 1
2 aD−2

√
−g̃ g̃µν F̃µ F̃ν , (51)

and, similarly, in analogy with (12) and taking into account (A2), the extended gauge

condition becomes:

F̃µ = g̃ρσ
[

hµρ,σ − 1
2 hρσ,µ − (D − 2)aH̃hµρuσ

]
, H̃ ≡ H

N
. (52)
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Substituting (52) into (51) we arrive at the desired form for the gauge fixing Lagrangian

term:

L̃GF = aD−2
√
−g̃ g̃αβ g̃ρσ g̃µν

{
− 1

2 hµρ,σhνα,β +
1
2 hµρ,σhαβ,ν − 1

8 hρσ,µhαβ,ν

+(D − 2)aH̃hµρ,σhναuβ − (D
2 − 1)aH̃hρσ,µhναuβ

− 1
2 (D − 2)2a2H̃2hµρhναuβuσ

}
(53)

3.3. The Graviton Propagator

In analogy with (17), and using the 3+1 decomposition (48) and identities (A2), we

deduce the extension for the graviton propagator:

i
[

αβ∆̃ρσ

]
(x; x′) =

[
2 γα(ργσ)β − 2

D−3 γαβγρσ

]
i∆̃A(x; x′) (54)

−4 u(αγβ)(ρuσ) i∆̃B(x; x′)

+ 2
(D−3)(D−2)

[
(D − 3)uαuβ + γαβ

][
(D − 3)uρuσ + γρσ

]
i∆̃C(x; x′) .

The corresponding quadratic operator equals:

D̃µναβ = 1
2

[
g̃µ(α g̃β)ν − 1

2 g̃µν g̃αβ
]
D̃A + (D − 2)H̃2aD

√
−g̃ u(µ g̃ν)(α uβ) , (55)

and allows us to check that indeed the proper condition is satisfied:

D̃µναβ i
[

αβ∆̃ρσ

]
(x; x′) = δ

µ

(ρ
δν

σ) iδD(x − x′) . (56)

Finally, in the appendix we have catalogued the coincidence propagator limits

(A6)–(A12) of potential interest and we should like to emphasize that of these, only

i∆̃A(x; x′) contains a divergence.

3.4. The Ghost Contribution

The contribution to the action of the ghost and antighost fermionic fields cµ and cµ is

the usual one:

L̃gh = −aD−2
√
−g̃ g̃µνcµ δFν , (57)

where in the infinitesimal variation δFν of the gauge fixing functional (52), the variation

parameter is the ghost field c:

δFν = g̃ρσ
[
δhνρ,σ − 1

2 δhρσ,ν − (D − 2)aH̃ δhνρ uσ

]

+δg̃ρσ
[

hνρ,σ − 1
2 hρσ,ν − (D − 2)aH̃ hνρ uσ

]
, (58)

so that:

δhµν = −cα
,µ g̃αν − cα

,ν g̃αµ + 2aH̃ g̃µνuαcα − κhµν,α cα (59)

δg̃ρσ = −g̃ρα g̃σβ κ δhαβ . (60)

The ghost propagator (18) generalizes to:

i
[

α∆ρ

]
(x; x′) = γαρ i∆̃A(x; x′)− uαuρ i∆̃B(x; x′) . (61)
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The action of the ghost kinetic operator:

D̃µα = g̃µαD̃A + (D − 2)H̃2aD
√
−g̃ uµuα , (62)

on (61) gives:

D̃µα i
[

α∆̃ρ

]
(x; x′) = δ

µ
ρ iδD(x − x′) . (63)

4. What Follows

The LLOG methodology was extensively analyzed in Section 2.2, where the relevant

rule for the pure gravitational case was identified:

δS[h]

δhµν

∣∣∣
LLOG

≡ δS[h]class

δhµν

∣∣∣
stoch

− a4
√
−g̃ T[h]µν

∣∣∣
ind

= 0 . (64)

The main purpose of this paper—the complete set of the relevant Feynman rules—was

achieved in Section 3. The natural next step is to use them and derive the appropriate

dynamical equations for LLOG pure quantum gravity using (64). Although this is work in

progress [32], we shall present herein an example of this process, since obtaining the LLOG

gravitational equations and ultimately solving them is the primary objective.

An important simplification can be made a priori since it turns out that all coincidence

limits that appear in the computations required by (64) are finite and the only one that

is not does not appear.13 Hence, we can take the D = 4 limit, which shall considerably

simplify the intricate tensor algebra that must be done.14

It turns out that it is preferable to add the contributions of Linv (10) and L̃GF (53)

because some of their terms simplify against each other. The six terms comprising Linv+

L̃GF can be grouped into three convenient parts:

Linv + L̃GF ≡ L1+2+3 + L4+5 + L6 , (65)

where these three convenient parts equal:

L1+2+3 = a2
√
−g̃ g̃αβ g̃ρσ g̃γδ

×
{
− 1

4 hαρ,γhβσ,δ +
1
8 hαβ,γhρσ,δ + a2H̃2hγρuσhδαuβ

}
, (66)

L4+5 =
√
−g̃ g̃αβ g̃ρσ g̃γδ∂β

[
− 1

2 ∂σ

(
a2hγρhδα

)
+ a2hγρhδα,σ

]
, (67)

L6 = κa3H
√
−g̃ g̃αβ g̃ρσ g̃γδhρσ,γhδαh0β . (68)

The reduction process described in Section 2.2 is a straightforward but cumbersome

procedure. As an example we present the results coming from (66):

- The “stochastic reduction” of the full field equation from L1+2+3 furnishes the following

classical Langevin form:

δS[h]class
(1+2+3)

δhµν

∣∣∣
stoch

= (69)

a4
√
−g̃

{
3
2 g̃00H

[
g̃ρµ g̃σν − 1

2 g̃ρσ g̃µν
][

ḣρσ − χ̇ρσ

]
+ 2H̃2u(µ g̃ν)(αuβ)hαβ

+ κH̃2
[

1
2 g̃µνu(α g̃β)(ρuσ) − 2u(µ g̃ν)(α g̃β)(ρuσ) − u(α g̃β)(µ g̃ν)(ρuσ)

]
hαβhρσ

}
,

where χµν denotes the stochastic jitter.
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- The corresponding “integrating out” operation leads to the following induced stress

tensor:

−a4
√
−g̃ T[h]

µν

(1+2+3)

∣∣∣
ind

= a4
√
−g̃

κH̃4

8π2

[
− 1

2 g̃µν+ 6uµuν
]

. (70)

5. Epilogue

The continual production of inflationary gravitons tends to endow graviton loop

corrections with secular growth factors. During a prolonged period of inflation, these

factors eventually overwhelm the small loop-counting parameter of GH2, which causes

perturbation theory to break down. Developing a re-summation technique that permits

one to evolve to late times has been a long struggle owing to the derivative interactions of

gravity. The analogous problem for non-linear sigma models was recently solved by com-

bining a variant of Starobinsky’s stochastic formalism with a variant of the renormalization

group [28]. The technique has recently been generalized to scalar corrections to gravity [30],

and here we took the first essential step for its definitive extension to pure gravity.

The basic assumption in our analysis is that changes in the geometrical background

are significantly slower than the changes in the scale factor. The basic goal is the derivation

of the Langevin equation for pure quantum gravity on de Sitter background. The basic

advantage of this equation is that the leading logarithm (LLOG) approximation it represents

is valid to all orders of perturbation theory.

To achieve this entails doing two things:

(i) Generalizing the gauge fixing condition by replacing ηµν with g̃µν.

(ii) Integrating out differentiated graviton fields to produce a leading logarithm stress

tensor and stochastically simplifying the classical equation.

In this paper we completed the first of these, while the second is work in progress [32].

The extension of the gauge fixing condition—necessary since the graviton has tensor

indices—was achieved by employing the 3+1 decomposition.

By far the most interesting physical applications are those where perturbative results

exhibit a secular effect which leads to a breakdown of perturbation theory. In that case, a

re-summation technique is necessary and the natural technique is to re-sum the leading

logarithm effects in each order of coupling constant perturbation theory [15,16]. This

problem has been much studied by other authors [33–36] and by ourselves [9].

We should close by commenting on the fascinating issue of the extent to which this

stochastic formalism can be extended from de Sitter, and related cosmological backgrounds,

to the anti-de Sitter (and related backgrounds), of great interest to fundamental theory.

The simple answer is that we do not yet know. The physics of quantum fields on anti-de

Sitter differs greatly from that on de Sitter. Whereas de Sitter fields experience a continual

redshift of modes from the ultraviolet to the infrared, anti-de Sitter fields experience the

opposite blueshift. It is not known if this injects time dependence into simple correlators the

way it does in cosmology. Some things are known, for example, the first order formalism

allows one to establish a connection between the braneworld and cosmology [37]. This has

been much studied [38–40] but it is still not known if there is a stochastic realization.
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Appendix A. Useful Identities

* Some relations from the 3+1 decomposition:

H̃ =
H

N
, H̃2 =

H2

N2
= −g̃00H2 , (A1)

δ0
µ = − 1

N
uµ , g̃0µ = − 1

N
uµ , g̃µνuµuν = −1 = g̃µνuµuν . (A2)

* Some tensor algebra identities:

g̃µν = ηµν − κh
µ
α g̃αν , (A3)

ηµν = ηµν − δ0
µδ0

ν , δ
µ
ν = δ

µ
ν + δ

µ
0δ0

ν , (A4)

δ
µ
αδν

β = δ
µ

(αδ
ν
β) + 2δ

(µ
0 δ

ν)
(αδ0

β) + δ
µ
0δν

0δ0
αδ0

β . (A5)

* The various propagator coincident limit identities:

i∆̃A(x; x′)
∣∣
x=x′ =

H̃2

4π2
ln a + “∞” , i∆̃B(x; x′)

∣∣
x=x′ = − H̃2

16π2
, (A6)

i∆̃C(x; x′)
∣∣
x=x′ = +

H̃2

16π2
, (A7)

∂′σ i∆̃A(x; x′)
∣∣
x=x′ = − H̃3

8π2
a uσ , ∂′σ i∆̃B(x; x′)

∣∣
x=x′ = 0 , (A8)

∂′σ i∆̃C(x; x′)
∣∣
x=x′ = 0 , (A9)

∂ρ∂′σ i∆̃A(x; x′)
∣∣
x=x′ = − 3H̃4

32π2
a2 g̃ρσ , (A10)

∂ρ∂′σ i∆̃B(x; x′)
∣∣
x=x′ =

H̃4

32π2
a2 g̃ρσ , (A11)

∂ρ∂′σ i∆̃C(x; x′)
∣∣
x=x′ = − H̃4

32π2
a2 g̃ρσ . (A12)

Note: In the above relations, we first take the derivatives and then the coincidence limit

x′ → x.

* The D̃A operator equals:

D̃A ≡ ∂α

[
aD−2

√
−g̃ g̃αβ∂β

]
, (A13)

and its operation on the three kinds of scalar propagators gives:

D̃A i∆̃A(x; x′) = iδD(x − x′) , (A14)

D̃A i∆̃B(x; x′) = iδD(x − x′) + (D − 2)H̃2aD
√
−g̃ i∆̃B(x; x′) , (A15)

D̃A i∆̃C(x; x′) = iδD(x − x′) + 2(D − 3)H̃2aD
√
−g̃ i∆̃C(x; x′) . (A16)
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Notes

1 It is more often than not convenient to employ conformal instead of co-moving coordinates: ds2 = −dt2 + a2(t) dx · dx =

a2(η)
[
− dη2 + a2(η) dx · dx

]
, with t the co-moving time and η the conformal time.

2 Examples of this particular secular growth behavior can be found in citations [14,16,24,38,44,72,73,77,78] therein.
3 Hellenic indices take on spacetime values, while Latin indices take on space values. Our metric tensor gµν has spacelike signature

(− + ++) and our curvature tensor equals Rα
βµν ≡ Γ

α
νβ,µ + Γ

α
µρ Γ

ρ
νβ − (µ ↔ ν).

4 Notice that even for a cosmological mass scale M∼1018 GeV close to the Planck scale MPl, the dimensionless coupling constant

is very small: GΛ= M4

M4
Pl

∼10−4.

5 The graviton propagator in this particular gauge is simple in two essential ways: (i) it is the sum of three scalar propagators times

spacetime constant tensor factors; (ii) in D = 4 the three propagators only have one or two terms.
6 Examples of such regularized and fully renormalized results can be found in citations [14,47–56] therein.
7 The de Sitter DA operator is: DA ≡ ∂α

[
aD−2∂ α

]
.

8 Fields like gravitons and MMC scalars will do precisely that.
9 As described above, the first step (36) follows since only time derivatives matter, the second step (37) follows since the evolution

of Φ is much slower than that of the scale factor a = eHt so that the largest contribution comes from the external derivative acting

on a3, and the third step (38) follows from the stochastic rule whereby the full stochastic field Ψ has its associated stochastic jitter

Ψ0 subtracted.
10 Again only time derivatives matter, while ∂ν⟨Φ2⟩|Φ0

= 2δ0
ν H H2

8π2

(
1 + λ

2 Φ0

)−2
. Moreover, the process of integrating out,

for instance, singly or doubly differentiated scalar bilinears amounts to replacing them with singly or doubly differentiated scalar

propagators in the presence of a spacetime constant scalar, and this is tantamount to changing the scalar field strength [28].
11 Although only theories with a single field were discussed, it is clear that the same operations apply to theories with many fields.

Such analysis can be more intricate when some of the fields can produce leading logarithms, e.g., gravitons, MMC scalars, while

others cannot, e.g., fermions, photons, conformally coupled scalars. Examples of such theories which were fully studied can be

found in [27–30].
12 The process of integrating out, for instance, singly or doubly differentiated graviton bilinears amounts to replacing them with

singly or doubly differentiated graviton propagators in the presence of a constant graviton background, and this is tantamount to

replacing them with singly or doubly differentiated de Sitter graviton propagators with a different Hubble parameter.
13 All propagator coincidence limits are displayed in Appendix A (A6)–(A12). Of these, only i∆̃A(x; x′)

∣∣
x=x′ is not finite.

14 Some of the identities used in the algebraic tensor steps can be found in Appendix A (A3)–(A5).
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