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Abstract. We propose a category of bundles in order to perform La-
grangian reduction by stages in covariant Field Theory. This category
plays an analogous role to Lagrange—Poincaré bundles in Lagrangian re-
duction by stages in Mechanics and includes both jet bundles and reduced
covariant configuration spaces. Furthermore, we analyze the resulting re-
construction condition and formulate the Noether theorem in this context.
Finally, a model of a molecular strand with rotors is seen as an application
of this theoretical frame.
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1. Introduction

Symmetry represents the core of many (and probably the most important)
tools developed to tackle dynamical systems. In particular, since the geomet-
ric formulation of Mechanics (for example, Arnold [2], Marsden [1], Moser [20]
and the references therein, among others), special attention has been always
given to those systems endowed with a group of symmetries. When the sys-
tem is modeled on a manifold as the configuration space, the symmetry is
expressed in terms of smooth actions of Lie groups. One natural procedure
is thus the construction of the quotient of the manifold by the group in the
case of actions satisfying certain good properties. This is the so-called reduc-
tion procedure, which can be performed both in the Lagrangian and in the
Hamiltonian geometric pictures of systems and that has attired and still at-
tires the attention of many papers and books (a good reference can be [18]).
With the word system, we can include the evolution of particles governed by
variational principles, symplectic forms, Poisson brackets, or time evolution of
sections of bundles (of which Mechanics is a particular case) in a variational or
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multisymplectic approach. The latter are known as (classical) Field Theory. In
full generality, systems describing section of bundles with no-prescribed time
evolution (for example, covariant fields on space-times or geometric theories
as harmonic maps) are also included in this versatile panorama.

Restricting ourselves to the Lagrangian or variational case, the Lagrangian
functions are defined in the phase space of the system, a manifold including in-
dependent variables (as positions) together with their derivatives. The tangent
bundle is the paradigmatic example in the case of Mechanics, which is gener-
alized to jet spaces for Field Theories [15]. The constructions of the variations,
the variational principle and the equations for critical solutions are perfectly
described in terms of geometric objects. In parallel, when reduction is per-
formed, the new variations, the new variational principle as well as the new
equations are now written in the reduced phase spaces that is not a tangent or
jet space. This is the so-called Lagrange—Poincaré reduction first introduced in
Mechanics (see [9] for a historical account) and generalized for arbitrary bun-
dles in [8] and [12]. An important consequence of the new nature of the reduced
phase space arises when one needs to concatenate consecutive reductions. In-
deed, there are many situations where the symmetry group is split in two or
more parts entailing completely different properties. This difference may re-
quire a separate reduction for each part, a procedure called reduction by stages.
The work of Cendra, Marsden and Ratiu [9] gave for Mechanics the convenient
setting for this recursive reductions scheme that has been extensively used in
the literature. (Just to mention some, the reader can go to [4,10,13,14,16].)
For that, a new category of phase spaces is introduced: the Lagrange—Poincaré
category in Mechanics. See also [3] for the complete description of this category
that closes some of the issues left open in [9].

The goal of this work is the construction of the Lagrange—Poincaré cat-
egory for Field Theories. This includes the definition of the new phase mani-
folds, the variations, the variational principle and the equations for the critical
sections of the configuration bundles. As we already learned from Lagrange—
Poincaré reduction, these equations are split into two groups known as horizon-
tal and vertical equations. Everything fits in a reduction program so that the
reduced objects and principles by the action of groups remain in the category
and hence they can be object of repetitive reductions. This new category in-
cludes the Lagrange—Poincaré category in Mechanics as a particular case. The
structure of the paper is as follows. In Sect. 2, we provide the required prelimi-
naries. This section also recalls the Lagrange—Poincaré category in Mechanics.
In Sect. 3, the Lagrange—Poincaré reduction principle for Field Theories is re-
viewed. In Sects. 4 and 5, the construction of the Lagrange—Poincaré category
for Field Theories is introduced together with the detailed description of the
variational principle and equations. As we mentioned before, all this follows the
spirit and generalizes the particular case of Mechanics but, interestingly, this
particularization can be pushed back and some properties of the general case
can be directly derived from Mechanic as we show below. Section 6 analyzes
and confirms the correct behavior of the theory when successive reductions
are performed. Section 7 studies the reconstruction process from solution of
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the variational problem after reduction, to solutions of the unreduced prob-
lem. One gets the characteristic trait in Field Theories that one does not find
in the Lagrange—Poincaré category in Mechanics: A compatibility condition is
needed to perform the reconstructions. This is already present since the first
works on reduction for Field theories (see [7,8]) and continues in more recent
works (see [5,6,12]). As usual in these papers, we describe it as the vanishing
of the curvature of certain connection.

One of the most intrinsic concepts attached to the notion of symmetry is
that of Noether current. In Sect. 8, we explore this object in the new category
and analyze its conservation. In fact, it is proved that the Noether current is
not conserved in general, but it satisfies a specific drift law. The interesting
property of this law is that is makes part of the vertical equation when reduc-
tion is performed. Roughly speaking, reductions make the vertical equation
involve more and more variables (and hence, the horizontal equation becomes
successively smaller) by adjoining the successive Noether drift laws to it.

We complete the work in Sect. 9 with an example. One paradigmatic
instance of reduction by stages in Mechanics is the rigid body with rotors.
Here, we analyze the geometric setting describing a molecular strand composed
by a chain of rigid bodies (as it is done in [11]) such that each body has one
or more rotors. This could be regarded as a model of linked molecules with a
rotating side chain(s). Simple proteins of amino acids could fit in this context.
Future work will include further applications of the theory to other models
which can be inspired by the numerous applications of the reduction by stages
in Mechanics or can be taken from new systems of purely covariant nature.

2. Preliminaries

2.1. Principal Bundles

Let G be a Lie group acting freely and properly on the left on a manifold
Q. Then, the quotient Q/G is also a manifold and the projection 7¢g/c ¢ :
@ — Q/G is a principal G-bundle. We recall that a principal connection A
on Q — Q/G is a 1-form on @ taking values on g, the Lie algebra of G, such
that A(qu) =¢ forany £ € g, ¢ € Q, and p; A = Ady o A, where p; : Q — Q
denotes the action by g € G, Ad denotes the adjoint action of G on g, and

d
& = | o) 1€ TQ.

Such a principal connection splits the tangent space as T,Q = H,Q ® V,Q, for
all ¢ € Q, where

Vqu = keI'TqT(Q/G7Q = {U S TqQ|Tq7TQ/G,Q(v) = O}, q € Q,
H,Q =ker A, = {v € T,Q|A,(v) = 0}, q€Q,
are, respectively, called vertical and horizontal subspace. In fact, H Q) is iso-

morphic to T,(Q/G), x = Tg/c,(q), through Tymg,c,q. The inverse of this
isomorphism is called horizontal lift and is denoted by HorqA. The curvature
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of a connection A is the g-valued 2-form
B(v,w) = dA(Hor(v), Hor(w)),

where v, w € T,Q and Hor(v) is the projection of v € T,Q to H,Q.

The adjoint bundle to @ — @Q/G is the associated bundle (Q x g)/G
by the adjoint action of G on g. We shall denote it by AdQ — Q/G and its
elements by [q,¢]q, ¢ € Q, £ € g. Remarkably, AdQ — Q/G is a Lie algebra
bundle with a fiberwise Lie bracket given by

angl]G; [Qa 52]6'} = [q’ [51152]]G7 [Qagl]Ga [%52]6’ € Ade» T = WQ/G,Q(Q)~

The principal connection A on @ — Q/G defines a linear connection on the
vector bundle AdQ — Q/G, denoted V4 and given by the covariant derivative
along curves

Pl-S0le _ o). é(0) - 1A €]

In addition, the curvature of A can be seen as a 2-form on Q/G with values
in the adjoint bundle as for any X,Y € T,.(Q/G)

B(X,Y) = (g, B(Hor' X, Hor}'Y)] .

o

The connection A induces a well-known vector bundle isomorphism
apr:TQ/G— T(Q/G) ® AdQ
[Uq]a = TqT"Q/G,Q(Uq) @ [g, A(vy)lc (1)

used in Mechanics to reduce G-invariant Lagrangians defined on 7'Q). This is
the so-called Lagrange—Poincaré reduction.

2.2. Quotient of Vector Bundles

Given a vector bundle V' — @, we say that an action p of a Lie group G on
V' is a vector bundle action if for all g € G, p; : V — V are vector bundle
isomorphisms and the action induced on @ is free and proper. Then, there is
a vector bundle structure on V/G — Q/G with operations

[vala + [wgla = [vg + wgle and Avgla = [Avgla,
where [vg]a, [wqle € V/G stand for the equivalence classes of v, w, € V, and
A € R. In the diagram,

TvV/G, vV

v LY viG

l”Q,V J/"TQ/G,V/G

TQ/G,Q

Q—Q/G

mQ,v and mg/q v/ are projections of vector bundles, 7, ¢ is the projection
of a G-principal bundle and 7y, v is a surjective vector bundle homomor-
phism.

Suppose that V' — @ has an affine connection V or, equivalently, a co-
variant derivative Dv(t)/Dt of curves v(t) in V. A curve v(t) : I CR — V' is
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horizontal whenever Du(t)/Dt = 0, for every t € I. Let ¢(t) be a curve in @
and denote gy = ¢(tp) a fixed value of the curve, then the horizontal lift of ¢(t)
through v € V,, at to is an horizontal curve, ¢! (t), in V such that g v og? = ¢
and ¢"(to) = v.

Let v(t) be a curve in V, ¢(t) = mqv(v(t)), z(t) = 7g/c,0(q(t)) and
qo = q(to). Consider :r’;o (t) the horizontal lift through ¢ € @ of x(t) with
respect to the principal connection A, we define g4, (t) in G such that

q(t) = gao (t)g, (1),

as well as the curve v, (t) = g, (t)v(t) in V, and then,

Di . ’U(t) = Dt o 9qo0 (t)’l)h(t) = Di . g0 (t)’l)h(to) + Di . g0 (tO)'Uh(t)
=t =t —to "
D D ., D
= =3 t)v(t — t) = t = ¢
Dt t:tog%( )U( 0) + Di t:tovh( ) gqo( O)U(to) + Di t:tovh( )

Thus, the covariant derivative Dv(t)/Dt at ¢y can be decomposed in horizontal
and vertical components

D(AH) D DAV)
ot) = | (), V() = G (0) -
Dt |,_, Dt|,_, Dt |, 9010 v(to)
Consequently, given X € X(Q) and v € I'(Q, V) we can define
D(AH) D(AV)
V& () = o), V¥ u(q) = o(t),
Dty Dy,
2)

where v(t) = v(q(t)) and q(t) is an integral curve of X in @ such that go = q(to)-
Let X =Y @€ € X(Q/G)®T(AdQ) ~ T(TQ/G), using the identification
(1). There is a unique G-invariant vector field X € T'%(T'Q) on @Q projecting
to X. Furthermore, X = Y" @ W with Y" € X(TQ) the horizontal lift of Y’
and W the unique vertical G-invariant vector field such that for all z € Q/G,
&(x) = [¢, AW (q))]e with ¢ € WCS}G’Q({E). Then, for [v]¢ € I'(Q/G,V/G) with

v € T9(Q,V) a G-invariant section, we define the quotient connection by
V0] o Plo = Vsle,

the horizontal quotient connection is defined by
[VAD] e o = [Fymle = [Vl

and the vertical quotient connection is defined by

[vvm}cjy@g ble = [Vwole = €Y ]a,

where ¢ satisfies £ = [mg. v (v),€]g. Note that these are not connections in
the usual sense as derivation is performed with respect to sections of TQ/G
instead of sections of T'(Q)/G). Only the horizontal quotient connection can be
thought as a usual connection since it only depends on T(Q/G) C TQ/G.
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2.3. The £ Category

In Lagrange—Poincaré reduction, the original Lagrangian L is defined on T'Q),
the tangent bundle of the configuration space ). However, the reduced La-
grangian is defined on TQ/G = T(Q/G) @ AdQ which needs not be a tangent
bundle. To iterate Lagrange—Poincaré reduction, the category £J3 of Lagrange—
Poincaré bundles was introduced in [9]. Of course, this category includes TQ/G
and is stable under reduction.

The objects of £ are vector bundles TQ &V — @ where TQ — Q is
the tangent bundle of a manifold @, and V' — @ is a vector bundle with the
following additional structure:

(a) A Lie bracket [,] in the fibers of V;
(b) A V-valued 2-form w on Q;

(¢) A linear connection V on V;

(d) The bilineal operator defined by

(X1 @ wi, Xo ®wy] = [X1,X2] ® (Vx, w2 — Vx,w1 —w(X1, Xo) + [wi, ws]),

where [X7, X5] denotes the Lie bracket of vector fields and [wy, ws] de-
notes the Lie bracket in the fibers of V, is a Lie bracket on sections
Xpwel(TQaV).
The morphisms between two Lagrange—Poincaré bundles TQ; ® V;, i = 1,2
with structures [, ];, w; and D; /Dt are vector bundle morphisms f : TQ, &V, —
TQo & Va5 such that:
(a) f(TQ1) C TQ2 and flrg, = T fo, where fo : Q1 — Q2 is the function
induced by f in the base spaces;
(b) f(V1) C V4 and f|y; commutes with the additional structure. That is,
given v,v" € (mg,.v,) " (q), X, X' € (7g,.r0,) *(¢) and a curve v(t) in

Vi
F(w,v'h) = [f(), f(')]2, (3)
Flwr(X, X)) = wa(f(X), £(X)), (4)

Definition 1. An allowed variation of a curve ¢(t) ® v(t), t € [to,t1], on the

Lagrange—Poincaré bundle TQ @V is a smooth map ¢, (t) ®v.(t) : [to, t1] x I —

TQ @V such that §q is the lifted variation of a free variation dq of ¢(t) and
Dw

dv = e + [v, w] + wy(dg, §), (6)

where w(t) is a curve in V with w(tp) = w(t1) = 0 and mg,v (w(t)) = q(¢).

Given a Lagrangian L : TQ & V — R defined on an element of £, a
curve ¢(t) @ v(t) : [to,t1] — TQ &V is said to be critical if and only if

d

0= —
de

/ " L(g:() © v (1))dt,

to

e=0
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for every allowed variation ¢.(t) ®v.(t) of ¢(¢) ®v(t). As seen in [9], this varia-
tional principle is equivalent to the Lagrange—Poincaré equations in Mechanics.
The following result is generalized to the context of field theory in Theorem 17
within Sect. 5.

Proposition 2. Given a Lagrangian L : TQ &V — R, a curve ¢(t) ® v(t) is
critical if and only if the well-known Lagrange—Poincaré equations:

oL DL oL )
E_Eéiq = <5v’wq(q’.)>7 (7)
LOL _ D 4oL
Sy = Diso’ (®)

where ad® stands for the coadjoint action in V* — Q.

2.4. Reduction of £ Bundles

Lagrange-Poincaré bundles can be reduced as follows.

Proposition 3 [9, §6.2]. Let TQ &V — Q be an object of £P with additional
structure [,], w and V. Let p: G x (TQ & V) — TQ &V be a free and proper

action in the category LB (for all g € G, pg is an isomorphism in £B) and A
a principal connection on @ — Q/G. Then, the vector bundle

T(Q/G) & AdQ & (V/G)
with additional structures [,]%, w8 and V? in AdQ @ (V/G) given by
Vi (€ o) =ViEe (VA D)ox e - We(X,6))

w8 (X1, Xo) =B(X1, X2) @ [w]a (X1, X2),
61 [v]a, & @ [va]a]® =[61, &) @ ([V(A’V)]G,& [va]e

— [V 6 lo1le — Wle (€, &) + [vile, [”2]G]G>

is an object of the £P category called the reduced bundle with respect to the
group G and the connection A.

The variational principles set by invariant Lagrangians on Lagrange—
Poincaré bundles can also be reduced.

Proposition 4 [3, §3]. Let L : TQ ® V — R be a G-invariant, and let mg
be the projection of TQ ®V — (TQ @ V)/G and aiQ@V the identification
between (TQ ® V)/G and T(Q/G) ® AdQ & (V/G) provided by Proposition
(3). Consider
1:T(Q/G) ® AdQ @ (V/G) — R,
the reduced Lagrangian induced by L. Then, a curve ¢(t) & v(t) is critical for
the variational problem set by L if and only if the curve
#(t) & () @ ola(t) = a2 o ma(d(t) @ v(t)),

is critical for the variational problem set byl (see [3]). Equivalently, ¢(t) ®v(t)
solves the Lagrange—Poincaré equations given by L in TQ © V if and only
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if #(t) @ E(t) @ [v]g(t) solves the Lagrange—Poincaré equations given by | in
T(Q/G) @ AdQ & (V/G).

Remark 5. Reduction of variational problems set in £93 bundles is a process
than can be iterated. This allows to do reduction by stages: If we reduce by
N, a normal subgroup of G and afterward by K = G/N, the final result is
equivalent to a direct reduction by G, provided that the auxiliary connections
used along the process are conveniently chosen.

3. Lagrange—Poincaré Field Equations

Let mx.p : P — X be a (non-necessarily principal) fiber bundle. Two local
sections p : U — P and p’ : U’ — P represent the same 1-jet, jlp at x € UNU’
if and only if p(z) = p/(z) and T,p = T,,p’. This defines an equivalence relation,
and we denote by J!P the space of such classes. The 1-jet bundle is the space
JIP = Ugex JLP equipped with a natural smooth structure of fiber bundle
over P with projection jlp € J'P + p(z) € P. The bundle J!P — P is affine
and modeled over the vector bundle T* X ® p V' P, where the abuse of notation
T*X = mx pT* X has been used.

A first-order Lagrangian density is a smooth fiber map £ : J'P —
A" T*X, where n = dim(X). Suppose that X is oriented and Vol € T'(A" T* X)
is a volume form, then the function L : J'P — R such that £ = LVol is called
a Lagrangian. A section p of P — X is a critical section for the variational
problem defined by £ = LVol if

d
- L(j*p) =0
dfs—o/x (7 pe)

for all compactly supported variations p. of p that are vertical, that is for all
r € X, dp(x)/de|c=0 € Vj(g)P. This variational principle is equivalent to the
fact that p(z) satisfies the Euler-Lagrange equations, which can be written in
an implicit way as

O giwr 2L _y,

ép 6jtp
where 6L/8j'p € TX @ (VP)* is the fiber derivative in J'P, div” is defined
for (V P)*-valued fields using a connection V¥ in (VP C TP) — P and 6L/dp
the horizontal differential with respect to V.

Let ® : G x P — P be a free and proper action such that for all g € G,
nx,po®y = mx p. Then, P — ¥ = P/G is a G-principal bundle and the action
in P can be lifted to J'P. This defines ng : J'P — (J'P)/G, and according
to [12], once fixed a connection A in P — ¥, there is an identification

aq: (J'P))G —J'S @ (T*X ®x AdP)
itpjlo®lp, p* Ala 9)

where 0 = 7 p o p = [p]¢ and @ denotes the Whitney product of an affine
bundle and a vector bundle. Observe that J!3 @ (T* X ®x AdP) is in turn an



Vol. 25 (2024) Lagrangian Reduction by Stages in Field Theory 1519

affine bundle. We shall denote p = [p, p* A]g. Given a G-invariant Lagrangian
L : J'P — R and its reduced Lagrangian [ : J'¥ @ (T*X ®x AdP) — R,
the main result in [12] states that the variational principle defined by L is
equivalent to the fact that the reduced section jlo®p(x) satisfies the Lagrange -
Poincaré equations;

ol v 0l
d*— —divV — =
a T iv 5 0,

5l 5 0l 5. =
— - = (=,ir,B).
5o~ S, <5;3’ZT“ >

This is, in turn, equivalent to the variational principle

d
/ I(j'o. @ p.)Vol = 0
e=0JX

de

for variations jlo. @ p. such that 65 = VA7 — [7, p] — B(d0, To), where do
is an arbitrary vertical variation of o, 7 is an arbitrary section of AdP — X
such that ms; aqpf) = 0 and VA is the connection on AdP induced by A and
defined in §2. This procedure is called Lagrange—Poincaré reduction for field
theoretical covariant Lagrangians.

The attentive reader may have noticed that V4 is a connection on AdP —
3 and, consequently, acts on sections of AdP — X, while 7 is a section of
AdP — X. We shall now explain how to extend a connection to derive this
kind of sections. Let V' — P be a vector bundle with connection V and P — X
a fiber bundle, given f : X — V a section of V. — X, define the V-derivative
of f with respect to u, € T, X as

DV

Vel = p

f(e(t) € Vapy f(a)s
t=0

where c(t) is a curve in X such that ¢(0) = u,, DV /Dt is the usual covariant
derivative associated with V, and ¢t — f(c(t)) is a curve in V. As f is a section
onV — X,

ldx =mxvof=nxpompvolf
and p = mpy o f is a section of P — X. Then, f(c(t)) = fomx p o p(c(t))
projects to curve p(c(t)) in P with dp(c(t))/dt|i=0 = Tup(u,) and

DV _

6uarf = D f(C(t)) = vap(uw)fv
t=0

where f is a local section of V' — P around p(z) such that f|im(,(x)) = fomx,p-
Sometimes we will use the abuse of notation f = f.

4. The FT£P Category

We now define the category of bundles to perform reduction by stages of
covariant Lagrangian Field Theories.



1520 M. A. Berbel and M. C. Lépez Ann. Henri Poincaré

Definition 6. Given X a manifold called base space, the category FTL£PB(X)
of field theoretical Lagrange—Poincaré bundles over X is defined as follows:

(i) The objects of FTLB(X) are bundles of the form J'P @ (T*X ®p V) —
P, where nxp : P — X is a fiber bundle (not necessarily principal),
T*X — P is an abuse of notation for the pullback 7% 7% X — P, and
V — P is a vector bundle which is the vectorial part of an £J3-bundle. In
other words, TP &V — P is an £9-bundle, which in turn is equivalent
to the existence of a

(a) Lie bracket, [,], in the fibers of V;
(b) V-valued 2-form w on P;
(c¢) Linear connection, V, on V — P;

(d) Lie bracket operation on the sections Z @ u € I'(TP & V') defined
by

[Zl D u1,22 D UQ] = [217Z2} D VZIUQ - szul - w(Zl, ZQ) + [ul,uﬂ

(11) Let lel@(T*X(@pl‘/l) — P1 and leg@(T*X(@Pszg) — P2 be two field
theoretical Lagrange—Poincaré bundles over X with structures [,];,V; and
w; onV; — P i = 1,2. A morphism, f : J'P, & (T*X ®p, V1) —
JIP, @ (T* X ®p, Vo) is a bundle map covering fo : P, — P, that satisfies
(a) fo : P — P, is a bundle map between P, — X and P, — X
covering the identity on X,
(b) f can be written as

f=("f,id® f),

where j'fj is the 1-jet extension of fy, and f: Vi — V5 is a vector
bundle morphism that covers fy and commutes with the structures
on V; given by [,];,V; and w; on V; — P;, i = 1,2. More explicitly,
given u,u' € (V1)p,, Z,Z' € (T'P1)p, and a curve v(t) in Vi;

[f(w), f(u)]2, (10)
w2 (T fo(2), T fo(Z')), (11)

()
f(wl(Z7 Zl))

and

~(Dywt)\ Daf(v(t))
f( Dt >: Dt ’ (12)

are satisfied.

Remark 7. There are several special cases of objects in FTL£B(X) appear-
ing in the present bibliography. For V = 0, we obtain 1-jet bundles used in
Lagrangian covariant Field Theory (for example, see [15]). Another instance
of object in FTLP(X) is the quotient of a 1-jet bundle J'P by a proper
and free lifted action of a Lie group G on P, found to be isomorphic to
JYP/G)D (T*X ®(p/c) AdP) in [12]. In the case where P — X is G-principal
bundle, the quotient J'P/G is a FTLPB(X) bundle of the form T*X ® AdP
which is the vector bundle underlying the affine bundle of connections used in
[7] to perform Euler—Poincaré reduction.
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Finally, the particular case when X = R and P = R x @Q, with Q a
manifold, gives the £33 bundle

TRxQ)DAIR x Q) ~R x (TQ ® AdP)
appearing when reducing time-dependent Lagrangians in classical Mechanics.

There exists a way of thinking bundles in FTLJ(X) as £ bundles used
in Mechanics. First, we start by defining relevant subcategories of £93 bundles.

Definition 8. Given X a manifold called base space, we define the subcategory
LPB(X) of £P whose objects are £P bundles TP &V, such that P is the total
space of a fiber bundle P — X, and whose morphisms are £93 morphisms,
f=Tfo® f: TP, &V, — TPy ® Vs, such that fy : P, — P, is a bundle map
over X covering idx.

Proposition 9. The applications
F:2P(X) - FTLB(X)
TPV —J'Po(T*X ®V),

F : Hom(L£P(X)) »Hom(FTLP(X))
Tfo® f—j'(fo) ® (idg, ® f),

define a covariant functor with inverse. Thence, the categories LP(X) and
FTLB(X) are isomorphic.

Proof. Let TP @V € £P(X),
F(idrpev) = F(Tidp @ idy) = j'(idp) & (idia, ® idv) = idzrpev)-.

On the other hand, given f,g € Hom(LP(X)) it is easy to see that F(go f) =
F(g) o F(f) as T(go f) = TgoTf and ji(go f) = jlgo jif. These two
properties prove that F is a functor. It has an inverse since

G:FTEP(X) —-LP(X)
J'PO(T*X V) —=TPa&V,
G : Hom(FTLP(X)) »Hom(LP(X))
' (fo) @ (idgy © f) =Tfo® f,
is well defined, G o F = ideyp(x), and F o G = idpreqp(x)- O

Corollary 10. The following three statements are equivalent: it(fo)®(dys, @ f)
s an isomorphism; T fo ® f is an isomorphism; and f is an isomorphism.

Proof. The first two statements are equivalent since F is an isomorphism of
categories. The third statement is equivalent to the others since f fully deter-
mines both j'(fo) @ (ids, ® f) and T'fo & f. O

We shall define the notion of an action of a group G on an object of

FTLP(X).
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Definition 11. An action in the category FTL£J(X) of a group G on an object
JIP® (T*X ®@V) of FTEP(X) is a differentiable action

P:Gx (J'"PO(T*X@V))—J'Po(T*XaV)
such that for each g € G, @, : J'P @ (T*X @ V) — J'P® (T*X ® V) belongs

to Hom(FTLP(X)). We will say that this action is free and proper if the
induced action on P by the functions (@) is free and proper.

Proposition 12. Let J'P @ (T*X ®p V) be an object of FTLR(X), and let
[,], V and w be the structure in V. Let G be a Lie group acting freely and
properly on J'P @© (T*X ®p V) and A a connection in the principal bundle
P — ¥ = P/G. The bundle

J'S e (T*X @x (AdP @ (V/Q)))

with the structure [,]%, V& and w® on AAP @ V as in Proposition 3 is an
object in FTLPR(X) diffeomorphic to (J'P & (T*X ®p V))/G via the bundle
diffeomorphism

Ba:(J'PO(T*'X@V))/G — J'L @ (T*X @ (adP & (V/Q)))
[]alcs D ((pa a)a U)]G = (Tﬂ'E,P Ojisa [pa S*A]G + ((07 O‘)’ [U]G))v
(13)
where pe P, o =ms p(p) € X, z =7x p(p) € X and jys € J) P

Proof. As G acts on J'P & (T*X ® V), for each g € G there exists an isomor-
phism
Dy =71 ((®4)0) @ (id(a,), @ Py) : J'PE(T*X V) = J'P®(T"X V)
of the category FTLPB(X). Therefore, by Corollary 10, G acts on TP @V =
FYJ'Po (T*X ® V)) via isomorphisms
( ) T(® )0@@91TP69V—>TPEBV.

The quotient of TP & V by this action using connection 4 is isomorphic to
another £98 bundle, T¥ ® AdP @ (V/G) with structures [,]¢, V9 and w?. This
bundle happens to be in £(X) since ¥ — X is a fiber bundle, and then, from
Proposition 9

FTE e AdP & (V/G)) = J'Y e (T*X ® (AdP & (V/Q)))

is isomorphic to (J1P @ (T*X ®p V))/G. Finally, it can be checked that 34
is well defined and that

il T (T"X @ (AdP & (V/G)) — (J'P& (T*X @ V))/G
3o ® Lo @ ((0, ), [v]g) = [(Hor;‘\ 005 + kpols) @ ((p, ), vp)las

where v, € 7T13,1V(p) = Vp such that [v]e = [v]e and &, : (AdP), — V,P
defined by £, ([p,¢]a) = 51173’ -



Vol. 25 (2024) Lagrangian Reduction by Stages in Field Theory 1523

5. Variational Problems in FT£3 Bundles

Let JIP@® (T*X @p V) be a FTLP bundle. A Lagrangian density is a smooth
fiber map £ : J'P & (T*X ®p V) — A" TX where n is the dimension of
X. We will assume that X is orientable and we choose a volume form Vol &
A" TX, and then, the Lagrangian density can be expressed as £ = LVol with
L:J'Po(T*"X ®@pV)—R.

Let U C X be an open subset whose closure U is compact. We will
only consider smooth sections jlp v : U — J'P @ (T*X ®@p V) such that
v e (U, T*X ®@p V) projects to a section p = TpTXQV OV € I'(U, P), the 1-
jet extension of which is j!p. These sections are called allowed sections. We say
that jlpov e D(U,J'P@ (T* X ®@pV)) is a critical section for the variational
problem defined by L if

d
de

/E(jlngBVE):O (14)
e=0JU

for all smooth allowed variations j'p. ®v. of j1 p@v. Observe that we still need
to define the set of allowed variations which plays within the realm of FT £
bundles an analogous role to Definition 1 with respect to category £38. To do
this, we will first introduce a connection in 7*X ®p V from a connection V¥ in
TX — X and a connection V on V — P. In fact, given v € I'(P, T* X ®p V),
Z € X(P) and u € X(U), the connection VX on T*X ®@p V — P is given by

(VZv)(u) = Vz(r(w) = v(Vie, ,(z)0)- (15)

Definition 13. An allowed variation of an allowed section, j Loov:U — J'PO
(T*X®pV),is asmooth map jlp(z,e)®v(z,e) : UxI — JIPS(T*X®pV),
where [ is an open interval with 0 € I, such that:

1. Foralle € I, jlp.(z) @ v.(x) : U — J'P @ (T*X ®@p V) is an allowed

section and j1p. & v|ow = j'p & vou;

2. For e =0, jlps(x) ® () = jlp(x) v (w);

3. The variation of v is of the form

DVLI/
ov = =

v De

= Vi = [, v] + p*(ispw),
e=0
where w is the 2-form in the additional structure of V.,V is the V-
derivative of (V,V) — P — X and p € I'(U,V) an arbitrary section
with 7py o = p and play = 0.

Remark 14. Let j'p. ® v, be an allowed variation of j'p @ v, the variation of
Pe = TPT=X®pV O Ve is vertical in the sense that

do(a) = L B

S Vp(m)P = ker(Tp(w)T()Qp).

Consequently, 65 p(z) € V) J* P = ker(Tj1 pz)Tx, 51 p)-

Remark 15. Tt is very important to realize that since p = TPT*X@pVV, an
allowed section (jlp,v) is completely defined by v € T'(U,T*X ®p V). In
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a similar way, an allowed variation is completely determined by dv./de|c—o.

Indeed,
dv, — Hor < dv, ) + Ver (duE )
de e=0 de e=0 de e=0
dp. DY,
= HoryL < p ) + v = HoryL (6p) + ov.
de |._, De |__,
Thus,

dv,
de |._,/

Observe that throughout this paper v denotes only the vertical component
of the variation of v.

5,0 = TWP,T*X@V <

Remark 16. Given u, € T, X,

DV v (uy
- V(VIKWX,p(ap)u) = # )
e=0

Dle/6 _ Dvus(uz)

ov(uz) = De (uz) = P

e=0 e=0
where u is a local section of TX — X around x such that u(x) = u, and the
last equivalence is a consequence of dp being vertical. Thus, the variation v

does not depend on the connection VX on TX — X.

We now find the variational equations defined by these set of allowed
sections and variations. For any smooth function L : J'P & (T*X ®@p V) — R,
the fiber derivatives are defined as

5L, d | ,
(Gteena) =5 LGo+ea)em; (16
(Gwens) =g turewrs).  an

where o € T* X ® VP and # € T*X ® V. Therefore,

SLUPen eTXa (VP  Fi'per) eTX OV,

and if we compose them with a section jlp(z)@v(z) € T(U, J'Po(T* X ®V)),
we obtain 0L /3j p(x) in (U, TX @ (VP)*) and §L/Sv(z) in T(U, TX @ V*).

Given V* a linear connection on TP — P and VX a linear connection
in TX — X, using the dual and the product connections, there is a lineal
connection in T*X ®p TP. According to [17], this linear connection induces
a general connection V7 "P on JLP — P that does not depend on the choice
of VX. Furthermore, we can choose V¥ to be projectable to VX and the
connection in V/' ¥ will be affine. In addition, provided V“ "P and VL defined

using the same connection VX, we define an affine connection, vV~ P VI on
JYP @ (T*X ®p V) such that

v7/'P g vi(z,v) = (VJIPS,VLI/),
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for any section (s,v) of J'P & (T*X @& V) — X. Therefore, we define an
horizontal derivative,

5L, , d
<5p(J pEBV),Zp> =%

where Z, € T,P and ((e) is a curve in P such that ¢(0) = Z, and Q;’lp@u(e)
is the horizontal lift of ((¢) to J'P @& (T*X ® V) through jlp @ v using the
connection V7' P ¢ VL. Thus,

LGy (18)

5L, ,
= T*P.
5/)(] poOV) €

We will also need a general notion of divergence of fields with values in
a vector bundle. Let £ — P be a vector bundle with affine connection V and
P — X a fiber bundle, we define for any x € T'(X,TX ® E*) the divergence
divVy € I'(X, E*) such that, for any n € I'(X, E),

div(x,7) = (div¥x, ) + (x, V),

where div is the usual divergence of a vector field in X (with respect to the
volume form Vol). In our exposition, we will use the operators

divV : (U, TX @ V*) = T(U,V*);

div? : (U, TX @ (VP)*) = T(U,(VP)");
induced by the connection V in V' — P, and the restriction of the connection
VP to VP CTP.

Finally, we define the coadjoint operator in this context as
ad* : T(U, T*X @ V)x (U, TX @ V*) =I'(U,V*)
(v1,v2) = (p = ady, v2(p) = (v2, [v1, 1))

for all p € T(U,V).

Theorem 17. Let J'P @ (T*X ®@ V) be a FTLP bundle with a Lagrangian
density L : J'P®(T*X®V) — A" TX and a volume form Vol € \" TX, such
that £ = LVol. Let V¥ be a linear connection in TP — P. Then, an allowed
section jlp@v € T(U, J'P®(T*X ®@V)) is critical for the variational problem
defined by L if and only if it satisfies the Lagrange—Poincaré equations:

L GOl

ad E—dlv E—O, (19)
SL . p 0L 5L p\ /oL
s () = (Gme).

where TT is the torsion tensor of conmection V. Since this connection is
arbitrary, we can always choose a connection without torsion and remowve this
term.
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Proof. Using the derivatives defined by Egs. (16), (17) and (18), we rewrite
the derivative of the action as;

d q d q
a4 e e) = 1- L e 5 1
dEE_O/UE(Jp@V) d550~/U (j pe ®ve)Vo

_ oL dpe(z)

_/ <6P() de 5—0>V01

oL DlelepE T
(e
U \91°pP €

- J (o

We know from the definition of allowed variation that
Dv” Ve
De

Vol
e=0
> Vol.
e=0

=V [ ] + o (i5p). (21)
e=0

On the other hand, since the variation of p is vertical and V7 is projectable,
P,
j'pe () _ DY jlpe () (us)
S PP e =
€ e=0 € e=0

for all u, € T, X. Consider p.(y(t)) where () is a curve such that 4(0) = u,.
From the formula

DV" d DV" 4 s(d d
b 5i-0(0) o) =77 F00).
we get that

T P
DY" " jlpe(x)
De

Dlep 1

(us) = Vi, 8p(x) + T (p(2), Tup(us)) (22)
e=0

After substitution of equations (21) and (22), the derivative of the action is

d
=N Ella €
deg_o/ (J7pe ® ve)

/U<‘;i( ), 0p(x >Vol+ U< z), VEop(x )+TP(5p(x),Tp)>Vol

+/U<fsf(x> Vi = [, 0] + w(@p(a), T )>v01
:/U<§i(m) de(s‘;Lp 5% iz, T >_<§iviTpW>,5,0(x)>Vol
+/U< dlvvgf( ) +a d*;6 (@), >V01

where for the second identity it has been used that dplaoy = 0 and ploy = 0.
Finally, from the last expression it is clear that jlp(x) ® v(z) is critical if and
only if the Lagrange—Poincaré equations are satisfied. O
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6. Reduction by Stages

In this section, we shall see that the reduction procedure can be performed in
the category FTEP. Let J'P & (T*X ® V) be an object in FTEP, G a Lie
group acting freely and properly on J'P @ (T*X ® V) and A a connection on
P — ¥ = P/G. We recall from Sect. 2.2 that the connection V on V. — P
induces an affine connection [VA-H)] ay onV/G— 3, for Y € X(X). Hence,

there is a [V(A’H)]G—derivative on V/G — ¥ — X denoted by [@(A’H)} o On

the other hand, the vertical component of the reduced connection, [V(A’V)] G
is not a connection since we derive with respect to & € I'(AdP). However, given

a section [w] of V/G — X, we define for all x € X

(A,V) eV
v @) = e (),
where v € V such that my/q v (v) = [w](z), and £ = [p,{]e with p = 7y, p(v).
This is well defined since & = [gp, Ady€]e and g€} = (Adg€)Y,.

Theorem 18. Let J'P @ (T*X ® V) be an object in FTESP, G a Lie group
acting freely and properly on J*P & (T*X ® V'), Vol a volume form on X and
L:J'P@®(T*X ®V) — R a G-invariant Lagrangian.

Consider A a connection on P — X = P/G and

1 J'Y e (T"X ® (AdP & (V/G))) — R

the reduced Lagrangian induced in the quotient via the identification (9). Given

a smooth local section jlp@v € T(U, J'P&(T*X ®@V)), where v = ((p, a),v),

we define the reduced local section

jlo®p@ Vg =PBacmc(itp®v)=Trpsoj'p)®lpp*Ac® ((0,a),v),

where o € T(U,Y) is s, p o p. Then, the following statements are equivalent

(i) Section jlp@®v € T(U,J'P@® (T*X ®V)) is a critical section for the
variational problem defined by L in J'P & (T*X @ V).

(ii) Section jlpov € T(U, J'P®(T*X ®V)) satisfies the Lagrange—Poincaré
equations given by L in J'P @ (T*X @ V).

(iii) Section jlo®p®V]g € T(U,J' L@ (T*X @ (AdP®(V/Q)))) is a critical
section for the variational problem defined byl in J'L & (T*X @ (AdP &
(V/G))). _

(iv) Section jlo®pd|v)c € T(U, J'Ea (T*X @ (AdP & (V/Q)))) satisfies the
Lagrange—Poincaré equations given by | in JIX®(T* X @(AdP®(V/Q))).

Proof. From Theorem 17, statements (i) and (ii) are equivalent. In an ana-
logue way, statements (iii) and (iv) are equivalent. We will prove the result by
checking that statements (i) and (iii) are equivalent.

Let j'p. © v. be an allowed variation of j'p @ v and

jlaa D pe © [V]G,a = ﬁA o WG(jlpa 2 Z/E)a
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the projection of the allowed variation in J'P @ (T*X ® V). Since

d

de

d .
/ L(j" pe ® ve)Vol = / 1(j o @ pe @ [V]a.c) Vol
e=0JU dE e=0JU

ol doe(z
:/ <5a( )’% >V°1
e=0
1
ol DY’ Zjlag(:zc)
+ —(x), Vol
/U <6310( ) De o

5l D5 @ [V]g.e(x)
o <5(ﬁ o)™ De 5:0> Vol

the variational problem defined by L on J'P @ (T*X ® V) is equivalent to
consider variations of jlo @ p @ [v]g obtained by projecting allowed variations
of j'p @ v. Then, for all u, € T, X,

_ D% @ [V]g.e (ux)
()= De »

= V8,72 (u2) & (VA6 50 o) (ue) = W] (30, 7 (us))
= Vi, 7 (ux) @ (VN6 ol (us)

_[V(A’V)]G’,—][v]g(uz) — [w]a(do, ﬁa(um))) )

DLﬁa ©® [V]G,e
De

where 7] is such that dp = do @ 7. From Lagrange—Poincaré reduction in jet
bundles (see [12, Corollary 3.2]), we know that

Viope(uz) = Va1 = [, plus)] + B(do, To(uy)).
On the other hand, as v is an allowed variation
[V esplVle(ue) = [(ua)le = [V, = [ v(uz)] + w(3p, Tp(us))]e-
We rewrite this class in an alternative way. First,
Ve, il = Voo tle = Vo) oo Hla

= VA, 1o e + VA6 s e
= VA6 o e + VA6, (e,

where we have defined [VAY)q .. [ula = [VAY)q p(us) g We also have
that (i, v(us)]]e = (W [v(ue)lc], and

[w(dp, Tp(uz))la = [w(do @7, To(us) ® plus))]a
= [wlg (b0, To(uz)) + [wla(, To(uz)) + [wWla (0, pluz))
+ [wle(7, p(uz)).
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In conclusion, for projected allowed variations

L= v - ~
DS ee] ) = (T~ )] + B Tow,)
@ [V g, e + VAV g, e
- (e (sl - V46 o ()
+ (60, To(u,) + W (7, To(u,))
+ [wle(, pluz)),

where j € T'(U, AdP) such that s, aqp () = o, 7lsv = 0and [u]g € T'(U,V/G)
such that 7s v,¢([ula) = o, [u]alov = 0. We now see that these variations
coincide with the allowed variations in J'¥ & (T*X ® (AdP & (V/G))). An
allowed variation of section jlo @ p @ [v]¢ satisfies

DLﬁs & [V]G,s

D5|E:0

where 77 ® [u]¢ € I'(U,AdP ® (V/G)) such that ms; aape(v/c) (7 ® [Ke) = o,
and 7 @ [p|glov = 0. The additional structure in AdP @ (V/G) is the one
detailed in Proposition 3. Hence,

Ve e o) =VE, . &)
= Va0 ® (VA6 mo(un Hle — Wla(To (). 7))

= V1@ (VAD6, il + wlo(, To(u,)) )

(uz) = VE, (16 [We) — 1@ [He, 5@ [V (ua)g +w® (90, Tou,)

In addition,

7@ [, 5@ Ve (u)]E = [, p(us)] ® VAV a6 (ua)

— VAN e pun e — Wa (@, p(ua)) + (e, [v(u)]al,
and

w8 (00, To(u,)) = B(60, To(us)) ® w(do, To(us)).

These last three expressions prove that the allowed variations in J*X® (T* X ®
(AdP@®(V/@))) are the same as the projection of the allowed variations of the
original space and, consequently, (i) and (iii) are equivalent statements. O

Remark 19. Reduction of variational problems set in objects of FT£ is a pro-
cess that can be iterated in a similar way as stated in Remark 5 for variational
problems in £33 bundles. Let N be a normal subgroup of G, and K = G/N
the quotient group. We can reduce L by N and afterward by K. Let Ay be
a principal connection on P — P/N and Ag/y a principal connection on
P/N — (P/N)/K. These connections are said to be compatible with respect
to A if for all u € TP,

A(U) =0& AN(U) =0 and Ag/N(T’]Tp/N,P(’LL)) =0.
In this case, there exists a £J3-isomorphism from T'(P/G) @ AdP & (V/G) to
T((P/N)/K) ©t® (i@ (V/N))/(G/N),



1530 M. A. Berbel and M. C. Lépez Ann. Henri Poincaré

where n is the Lie algebra of N, £is the Lie algebra of K and n, £ their respective
adjoint bundles. Hence, it is equivalent to perform reduction directly than by
stages. This is exemplified in §9 below. For more details, see [9, §6.3] and [3,
§3.4].

7. Reconstruction in FT LB

Given a critical section jlo @ p@ [v]g in (U, J'L @ (T*X @ (AdP @ (V/Q))))
for I, we investigate the existence of a critical section j'p @ v in T(U,J'P &
(T*X ®V)) for the unreduced Lagrangian L.

Let o(z) = msv/c([Vla(z)) = ms,aap(p(z)). This section in T'(U,X)
defines the G-principal pullback bundle ¢*P — X

0P = {(2,p) € X x Plrs,p(p) = o(x)}

of the G-principal bundle P — . In addition, c*P can be identified with
P? ={p € Plrg p(p) € 0(X)} by p € P? = (7x p(p),p) € 0*P. As o(z) =
s, adp(p(z)), the section p(z) can be interpreted as a section of I'(U, AdP?)
and there is an equivariant horizontal 1-form w? € Q'(P?, g) such that for all
re X and u, € T, X,

ﬁ(uw) = [p7 wﬁ(up)]G’

where p € P and u, € T, P such that Tmx p(up) = 4. The connection A on
P — ¥ induces a connection A% on P° — X, and recalling that the space of
connections of a principal bundle is an affine space modeled over the space of
equivariant 1-forms taking values in the adjoint bundle, we define a connection

AP as:
AP = A% — WP,

Theorem 20. Let A be a principal connection on the principal bundle P — X3,
and let L : J'P @ (T*X ®@ V) — R be a G-invariant Lagrangian defined in
a FTEP bundle. Finally, let | : J'S & (T*X @ (AdP @ (V/G))) — R be the
reduced Lagrangian.

Then, if jpdv in T (U, J'PO(T* X ®V)) satisfies the Lagrange—Poincaré
equations given by L in J'P® (T*X ®@V), the reduced section jlo®pd [V]g €
(U, J'Se(T* X2 (AdP®(V/Q)))) satisfies the Lagrange—Poincaré equations
given by | in J*'Y & (T*X @ (AdP & (V/G))) and connection AP on P° — %
1$ flat.

Conversely, given a solution jlo ®p® [Vl € T(U, J'X® (T*X @ (AdP ®
(V/@G)))) of the Lagrange—Poincaré equations given by | such that A? is flat
and has trivial holonomy over an open set containing U, there is a family
D,(jlp@v), g € G, of solutions of the Lagrange—Poincaré equations given by
L projecting to jto ® p @ [V]g. If the connection AP is flat, one can always
restrict it to an open simply connected set contained in U so that its holonomy
on U s automatically zero.
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Proof. Suppose that jlo @ p@ [v]g is the projection of j'p @ v, in particular,
p = [p, p* Alg, where p is a section of P — X. Observe that for all p = p(z) €
P?, Ty P? = Top(T, X) @ kerT,(;yms, p and any v, € T,P? can be written
as vp = Typp(vg) + f;:, where v, € T, X and £ € g. Then,
Ap(vp) = A% (vp) — wﬁ(vp) = A(vp) — A(Top(Tpmx,p(vp)))
= A(Tup(ve) + A&)) = A(Tup(vs)) = €.
Consequently, the horizontal subbundle defined by A” is given by

Hﬁ;) = Top(T: X),

the horizontal distribution is integrable, the integral leaves are given by
{@4(p(x))lr € X, g € G} = ©y(Imp),

and A” is a flat connection on P? — X.

Conversely, given jlo @ p @ Vg and o(z) = myyva(Va(z)) =
s adp(p(z)), suppose that A” is flat and has trivial holonomy over an open
set containing U. The horizontal distribution of A” is integrable and the leaves
cover the base. Since the holonomy is trivial each fiber intersects the leaf ex-
actly once, that is, they are sections of P — X. Thus, there is a family
O, (p(x)) of sections of P — X that projects to o via mx » and such that

[0, 0" Al = [p, p* A” + WPl = [p,wf]a = P
Furthermore, there is a unique section v(z) of T*X &V — X such that
7TT*X@(V/G),T*X@V(V(x)) = [V](x), e xev(V(z)) = p(x).
In addition, ®4(r(x)) is the unique section of T*X & V — X such that
T xa(v/G) e xev Py (v(z)) = [V](2), TrrxavPe(V(z)) = By(p(x)).

Thus, the family of sections ®,(jlp@v) = j1®,(p) ®P,(v), g € G, projects to
jto® pd[V]g and, by equivalence (iv)=> (ii) in Theorem 18, they are solutions
of the Lagrange—Poincaré equations given by L. O

The curvature of connection A” can be rewritten in terms of the curvature
B of A. Then, the flatness of A” gives the following reconstruction condition

B—dV"'w —wf AwP = 0, (23)

where AV is the exterior derivative of g-valued forms induced by the covariant
derivative on AdP, V4, and the Cartan formula.

8. The Noether Drift Law in the FT£P3 and Its Reduction

In this section, we define a Noether current for symmetries in FTLP bundles
and prove that is not a constant of motion. Instead there is a drift of this
current that reduces to the new vertical equation appearing in each step of the
reduction.
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Definition 21. Let L : J'P & (T*X ® V) — R be a Lagrangian and G a Lie

group acting freely and properly on J*P @ (T*X ® V) by isomorphisms in the

category FTLY. We define the Noether current as the function
J:J'Po(T*"X ®@pV) - TX ®p g*

such that for all jlp@v e JIP® (T*X ®p V)

(G p@v), () ® (o)) = 6‘%@1,) & v)((p,0) ® ),

where (p, @) ® (p,n) € T*X ®p g and (-, -) is the natural duality pairing.

Proposition 22. Suppose that L is G-invariant and let j'p ® v(z) be a sec-
tion satisfying the Lagrange—Poincaré equations. Then, the Noether current
satisfies

div ((J(j*p @ v(2)), (p,m))) = — <§f’w(Txp(°),n§) + 773(.)> . (29)

where w(Typ(e),nt) + 771‘,/(.) € T*X ® V acts by replacing the slot e by an
arbitrary element in TX. This is called the Noether drift law of L.

Proof. As the Lagrangian is G-invariant, for all n € g,

L
0=dL (;E E:OeXp(En)(jlpEB V)) = <§p, d% s_oexp(w)p>
oL DY i)+ (08 P e
—_—, X —_—, T X V).
Sy De | CPEmite 50" D | PN

Since exp(en)jtp = jl(exp(en)p), it is the lifted variation of the vertical vari-
ation exp(en)p of p. Then, for all u, € TX;
Jlp .
DY" " exp(en)j'p
De

(1) = DV exp(en); plus)

=0 De

e=0
=Vl + TP (nF Tup(us))

Furthermore, exp(en)v is a vertical variation and

DVexp(en)v (uz)
De

DZexp(en)v
De

(um) =

e=0

\4

e=0

Then, the G-invariance of L can be written as,

oL P oL - P P P/ P oL \%
={( = T T. — . (2
0 <5p777p > + <5]1p?vulnp + (ﬁp ’ Ip(uw)) + (;V’nu(um) ( 5)
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Finally,

div ((J(§'p @ v(x)), (p,n))) = div < (;j.fp (G'pev(z), nﬁw>>

oL oL -~
_ P P P, _P
_<d1v 5j1p’np>+<5j1p’v n">
oL oL
— { qivP P P
)
5L o 5L
- <6]1P7T (77p 7T1p(.))> - <g7771/(0)
6L
:—<57W(TP(‘),775)+77L/(.)>,

where we have used relation (25) and Lagrange—Poincaré equations. d

The Noether current is G-equivariant so that it defines a bundle map in
the quotient by G

j:J'Y e (T*X ®@x (AdP @ (V/G))) —» TX @p Ad*P

such that for all jlo ® p@ [V]g € J'T @ (T*X ®x (AdP & (V/G))), and all
(o,0) @7 € T*X ®x AdP,

iGlo ®p @ [vle)((o,a) @ 1)

= I (0 & (o) = | LG+ el @nf) o)

= 2 ezol(jlo@ (P +e((o,0) @n) @ [Vla) = %(jlo@ﬁ@ Ve) (0, 0) ® 7).

Consequently, the reduced Noether current j coincides with ngs'

Proposition 23. The drift of the Noether current along critical sections j'o @
p® [V]g given by equation (24) projects to the equation

(a3 ) = (sdigtn) - (5o [V laslbla + Wa(To o pm) ).
(20

where div? is the divergence of Ad* P-valued vector fields induced by connec-
tion VA in AdP and 7(x) = [p(z),n]c

Proof. We rewrite the left-hand side of equation (24):
div (J(j'p @ v), (p,0) = div (j(j'o © p® [V]6), )
= (av4j('o @ e We)7) + (j(i'o @ p @ [a), V7)
.40l . _ N ol , . _ _
= <d1VA5p(J10 P e V) ?7> - <5p(310 @ p@[va) [P ?7]>

s sl
. A . _ % . _ _
= <dlv M(Jla@p@['/]c)—adpM(Jlo@p@[V]G)7n>-
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On the other hand, the right-hand side of equation (24) projects to

- (s Wla(To() @00 + ikl ).

I/]G
and we conclude by observing that [17;/(.)]@ = [V(A*V)]G,T—][V]G(o). O

The vertical Lagrange—Poincaré equations,

6l ol 6l 6l
g —_ — i —_— — =
aw (6;)@6@1@;) *potvlo (6/7@6[4@) v

associated with the reduced bundle J'Y & (T*X @ (AdP @ (V/G))) are an
equation in Ad* P& (V/G)* acting on vectors 7@ [u]g € AdP® (V/G). We can
decompose these equations restricting to each of the factors on AdP & (V/G).
First,

<d (Lo ) n0 ko)
wlos) e (e )
=W\ O 5g ) e
* <6[il o(Te:q >
= div <<glp@ 5[V]G> 7® [ulg > d1v<6[lj 77>+<divA§;m
IS WA S
- <div'4§i”7> <d v H)é[il}a’[“k’> * <5[i§c:’ WalTe: ’7)>

On the other hand,

(30101, (ﬁi@a%—)nmmmc>=<§é@5554p@memﬂwGQ

< r1><——¢wAW} MG*WMVWMWM*Mb@ﬁHﬂM&WbO

o[v]
= <ad*§l *> + <ad* 05[5; [u]a>

i <6[ﬁ Ve plule - Ve abe = W (s, 77)>~

Thus, the vertical Lagrange—Poincaré equations restricted to AdP are

(avASn) = (ad; 2.7m) = (G T4V el + oo @ 7.0)).
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which according to Proposition 23 coincides with the drift of the Noether
current, while the vertical Lagrange—Poincaré equations restricted to V/G are

obtained from the projections of the vertical Lagrange—Poincaré equations
induced by L.

Remark 24. In the special case V = 0, the drift law becomes a conservation
law expressed as a vanishing of a divergence. Indeed, we recover the Noether
theorem for covariant invariant Lagrangians from equation (24). In addition,
the conservation of this current is equivalent to the vertical Lagrange—Poincaré
equation of the reduced Lagrangian:

Aﬁiadfél _

di — =
iv 5 55

0.

9. The Molecular Strand with Rotors

In this section, we will discuss a problem of strand dynamics as an example
of the theory of reduction by stages. Our model is called the molecular strand
with rotors and consists of a mobile base strand repeating the same configura-
tion with different orientation. In turn, this configuration will have a moving
piece that can rotate, called rotor. In this example, we will suppose that each
configuration has three rotors, each in the principal axes. However, the case
with only one rotor or multiple rotors non-necessarily along the principal axes
follows directly from our description. The particular case of this model when
there are no rotors has been the object of research, for example, in [11] follow-
ing the same covariant Lagrangian approach.

The principal bundle that we shall use has X = R? as the base space and
P=XxR3xS0O(3) xS xS! x S! as the total space. The variables in R? will
be denoted by (s,t), and the first one can be thought as the parameter of the
strand, whereas the second is the time. The Lie group SO(3) x St x St x St
acts on P since for any (z,7,A,0) € X x R3 x SO(3) x S! x S! x S!, where
r = (s,t) € R? and 0 = (01,0,,03) € S! x S x S!, the element (I',a) €
SO(3) x St x S! x St acts by

T, ) (x,r,A,0) = (x,Tr,TA,0 4+ «).
We will first reduce by the normal subgroup SO(3) and then by S! x S x S!.

9.1. First Reduction

We denote ¥ = P/SO(3) = X x R? x St x S! x S, the first quotient space,
and (z, p,0) € X. The projection is given by

mop: X xR¥x SO(3) x S x St x §' =X x R? x §* x §* x §*
(x7’r.7A79) '_)(x7p:A'_1T76)
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, and its derivative is
Tﬂ'g’p TP —=TY%
(z,7, A, 0,0, 0, 00,09) —(x,p= Ay 0,v,,0, = A, — A topp, V).

To identify J'P/SO(3) as a FT£YP bundle, we need a connection A on P — 3.
In terms of the Maurer—Cartan connection, any connection A can be written
as

A(IvTaAa 0, Uz,UT,UA,’Ug) = UAA71 + A(I,T, A, 0,05, 0,04, UG)
such that for any n € so(3), A(naﬁr,/\,@) =0 and for all T € SO(3), v € TP,

A(T'v) = Adpr.A(v). In addition, since P — X is trivial, we can trivialize AdP
as Yo x s0(3) via the identification
[(Z‘, T, A7 9), C]SO(S) = [(37, A_lra €, 9), AdA—lC]SO(g) = (l‘, A_lra 97 AdA*IC)'
Then, the covariant derivative in AdP
DA . B
D (), (1), A7), 8(7), C(T)]s0@) = [2(7), 7(7), A7), 6(7), ((7) — (ArA '
+ A(.CU, T, A7 97 Tr,Tr, A7'7 97‘)) X C'(T)}SO@)

induces in ¥ x s0(3) the covariant derivative

o el
—A(x,p,e,0,2,p:,0,0:) x {(T)).

We lift the section (x,7(x), A(z),0(x)) of P — X to the section in J1P — X,
(x,r(x), A(z),0(x)),ds + dt, rsds + rydt, Asds + Ard, Osds + 0;dt),

where subindices on 7, A and 6 denote partial derivatives. To project this
section to J1X & (T*X ® (X x 50(3))), we evaluate

Az, r, A, 0,ds + dt, reds + rdt, Agds + Aydt, 05ds + 0,dt)
= AA"Yds + A ATEdE 4+ Az, 7, AL 0,1, 7, Ay, 0,)ds
+ Az, A, 0,1, 7, Ay, 0)dt
and
Adpy-1 A(z,r, A, 0,ds + dt, rsds + ridt, Agds + Aydt, 0,ds + 0,d¢)
= Qds + wdt + A.ds + A,dt = =ds + £dt,
where Q = A71A,, w = A71A,,
A, = AdAfl./i(x, r A0, 1,75, g, 05) = Az, p,e, 0,1, ps, 0, 0s),

A = Az, p,e,0,1,p,,0,0,), 2 =Q+ A, and ¢ = w + A,. Consequently, the
bundle J! P/SO(3) is identified with FTL£J bundle J'X & (T*X ® (X x 50(3)))

Too3) : J ' P/G =TS ® (T*X @ (T x 50(3)))
(@, (), M), 0(x)) =it (2, p(x),0(x)) @ (2, p(x), 0(x), E(z)ds + £(z)dt)



Vol. 25 (2024) Lagrangian Reduction by Stages in Field Theory 1537

and the reduced variables are p, ps, pt, 0, 05, 0¢, = and €. The vertical Lagrange—
Poincaré equations are:

ol ol

dz e e —
Mzdscar szgs reany WY S@Eds 1 edn) O
Hence, since
ads % _ g X o £ x o
=dstedt 5(2ds 4+ €dt) 0= 6’
and
ol ol - 51 — 4l
divVe—e———— =9, — — —
N GGt E M 0% 5 —A e
we conclude that the vertical Lagrange—Poincaré equations are
ol ol ol
+Qx = — 2
0= 8(L+at§ ><(L—1—w><(Sg (27)

On the other hand, the horizontal Lagrange—Poincaré equations applied to
variation dp @ §6 are

ol ol ol
— O -0 ,0p @ 660
<5(p@ ) “5(pa0.) a(pao) >

ol
<6(_ds+§dt) B((ds + dt, psds + p,dt, 05ds + 0,d¢), (0, p, 59))> )

We shall note that 61/0(p @ 6) is not a partial derivative; instead, we saw in
§ 5 that

ol d N
(oo ) = & ooz

where u(e) is a curve in ¥ = X x R? x St x St x St with «/(0) = (0, §p, 66) and
u?lpéele,Edergdt(e) = (u(e),j'p(0),316(0),v(€)) the horizontal lift to J'¥ &
(T*X ® (X x 50(3))) with v(e) = v1(€)ds + v2(e)dt such that v(0) = Eds + £dt
and v(e) is horizontal. From the connection in ¥ x s0(3) this means that

1 (e)ds + 2o (e)dt = A(0,dp,0,00) x (v1(e)ds + v2(€)dt).
In particular, for € = 0;
1(0)ds + 22(0)dt = A(0,0p,0,60) x (2ds + £dt),

and

ol ol ol
(e tees) = (55) + (5%)

+ <§%7/I(07§p,0,59) « 5> + <§%,A(O,5p70,59) « §>.
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It is possible to split the horizontal equations in ¥ in two parts. One related
to R3 for which we make 66 = 0;

a4l _
<87p 0Os apé 875 6p> <6:7A(076p7070) X h‘>

+ <§é A(0,6p,0,0) x §> <§é,B((1,ps,93),5p)> + <§é B((1, pt,6:), 5p)>7
(28)

and one related to S' x S! x S! for which 6p = 0;

ol 3l sl - _
<%_a‘9095 at 59> <6—E,A(O,O,O,69)><_>

+ <§é A(0,0,0,350) x g> <%,B((Lps,as),6e)> + <§é B((1, pr, 00, 59)>
(29)

In conclusion, the equations of motion of the molecular strand with rotors after
reduction by SO(3) are equations (27), (28) and (29). Yet, they are only equiv-
alent to the unreduced equations if considered together with the reconstruction
equation studied in §7 above. Observe that in AdP, w? = AZA~'ds+AEA1dt.
Therefore,

dAwP = Adp (B — Ay x B — & + Ay x )dt A ds,

and

W’ ANw” = (AEA"'ds + AEAT ) A (AZA 'ds + AEAT'dE) = —AdA (2 x £)dt A ds.
The reconstruction equation (23) is then written as

Ee— A X E—E + A x E—E x £+ AdpAB((0, pr, 04,0, ps, 05)) = 0. (30)

9.2. Second Reduction
The group S = S! x St x St acts on J!E @ (T*X ® (X x 50(3))) by
a-(z,p,0,ds + dt, psds + pedt, 05ds + 0,dt) @ (x, p, 0, 2ds + £dt)
= (z,p,0 + o, ds + dt, psds + pdt, Osds + 0:dt) @ (x, p, 0 + «, Eds + £dt)
for all « € St x S xSt Let R = %/(S! xSt x St) = X x R3. Since S x St x S*

is abelian, the identification AdY = R x R? is immediate and the principal
connection in ¥ — R is trivial. Consequently, we have the identification

75 : IR O (T*X @ (X x50(3))/S = J'RO(T*X ® (R x R® x 50(3)))
[jl(‘ra p($)7 9(%)) @ (‘737 P, 97 2ds + §dt)]s
— j' (x, p(x)) & (x, p, Osds + 0,dt, Eds + £dt),
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where JIR® (T*X ® (R x R? x 50(3))) is a FTLP bundle with extra structure
given by;

Vi, (@, p: B(x, p), (2, p))
= (2,0, Bo, 0, Cowro, = Bl(02,0,,0), (0,0, 8)) = A(vz, 0, 0,0) x €);
the (R® x s0(3))-valued 2-form w® = 0 @ [B]g; and the Lie bracket
[(B1,¢1), (B2,G)]° = 0@ (—A(0,0,0, 81) x ¢2 +.A(0,0,0,82) x (1
= B((0,0,81), (0,0, 82)) + G1 % G2)-

The vertical Lagrange—Poincaré equations in the second step of reduction are

ad( L — div® ol =0
(02 2)dst00.dt 509 ds + 6,dt, Zds + £dt) 5(6:ds + 0,dt, Eds + £dt)

Given (86,0m) € R? x s0(3), we obtain that, on the one hand,

ol
dig = , (60,8
<a (0::2)ds (00,04t 59 ds + 6,dt, 2ds + £dt) ( 77)>

5l 8l
- 0.ds + 0,dt, Eds + £dt), (66, 617)]°
<6(05ds T ovdn) © 5(Eds 1 gar) (Gds 0 s +&dt), (66, o)) >

- <§—i,—A<o,o,o,es> X 81+ A(0,0,0,60) x = — B((0,0,0.), (0,0,a)) + = x 6n>
+ <§é —A(0,0,0,60:) x 61+ A(0,0,0,50) x = — B((0,0,0:), (0,0,a)) + & x 6n>
On the other hand,

. dl _ o 500
<d” 5(0uds 1 fudt, Zds 1 €ap)’ O 5”)> - ( <8S 50, %5a, 59>

—|—<§é,§((0,ps,0),(0,0,59))>+<6l B((0, pi )7(070,59))>)

6¢’
sl 5l ol
@<8 5_.+8t £+A(0,p5,070)><L+A(O,pt70,0)><5£,577>~

From these two expressions, it can be proven that the vertical Lagrange—
Poincaré equations can be split into two parts related to R? and so(3). These,
respectively, coincide with Eqs. (29) and (27), except for the term /56 which
is zero from the symmetry of the Lagrangian with respect to S' x S' x S'. The
horizontal Lagrange—Poincaré equations are

sl sl sl 5l - l
<$ —85573 _atfm’ép> = <5§,B((0,ps,0),6p)> + <6€ B((0, pt, ),6p)>-

In an analogous way as we did in the first step of reduction, we express the
horizontal derivative in terms of partial and fiber derivatives as

ol ol ol _ ol
<5p 6p> <ap’5f’> ; <(E,A<o,ap,o,o> x ~> ; <5§ A(0,3p,0,0) 5>
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Therefore, the horizontal Lagrange—Poincaré equation of step two coincides
with equation (28). In conclusion, Egs. (27), (28) and (29) are obtained as
well in the second step of reduction. However, in the first step of reduction Eq.
(29) is an horizontal equation, whereas in step two it is vertical. Furthermore,
the reconstruction equation from the second step to the first one is easily seen
to be

80, = 0,0, (31)

Remark 25. The trivial Maurer—Cartan connection may not always be the
more convenient for a particular Lagrangian. In Mechanics, the study of a
rigid body with rotors in [19] is an example where the appropriate connection
adapted to the Lagrangian is the mechanical connection (the connection de-
fined by a Riemannian metric). Future work will study this example using the
techniques of reduction by stages developed in [3].

9.3. A Particular Lagrangian

We now choose the particular Lagrangian in J'P

L(r,re,me, A, As, Ay, 0,05,0,) = %<rtart> + %<A71At7]A71At>

1
+ §<A*1At + 0, K(ATA, 4 6,))

—E(A*1A5,057<r,r>),

where I is the inertia tensor of the configuration of the strand, K is the in-
ertia tensor of the rotors, and FE is a function called potential energy. This
Lagrangian combines terms appearing in the Lagrangian given for the rigid
body with rotors in [19] and the Lagrangian proposed in [11] for the molecular
strand. It is invariant by SO(3) x S x S x S. If the first step of reduction is
performed by group SO(3) with the Maurer-Cartan connection, that is A = 0,
then the reduced Lagrangian is:

1 1
l(p7psapta9a9876t597w) = §<pt +wXp,pp+w X p> + §<walw>

+ %@, + 0, K(w 4+ 0;)) — E(Q, 05, (p, p)),

For this Lagrangian, the vertical Lagrange—Poincaré equations (27) take the
form

0=px (pr+2w X pr +w X p+ (W, pw) + (I + K)w; + Kby
OF 0F
+wx ((I+K)w+K9t)—855—Q+Q X <q
while the horizontal Lagrange—Poincaré equations (28) and (29) particularize
as

(32)

oF p
prt2wXprtwxptwx (wxp)=——-—, (33)
g L 2 T/
OFE
Kwt—i—K@tt = 857. (34)

00
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The reconstruction equation (30) becomes
ws— Q% — D xw=0. (35)

Observe that on the left-hand side of equation (33), the acceleration Ry in
the inertial fixed frame is reinterpreted as the sum of the acceleration p; in a
non-inertial frame and additional acceleration terms. These additional terms
have been historically interpreted as fictitious forces: 2w x p; is the Coriolis
force, wy x p is the Euler force and w x (w X p) is the centrifugal force. Thus,
Eq. (33) states that the time evolution of p is the same as the evolution of
particle in a potential E seen from a non-inertial frame with angular rotation
w(s,t). As the potential E is radial, Eq. (32) can be rewritten as
oF OF

0:(I+K)wt+K6tt+wx((I+K)w+K9t)—asa—Q+Qxa—Q,

after substitution of Eq. (33). Equation (34) is related to the momentum of the
rotors and will appear as a new vertical equation in the next stage of reduction.
In fact, the second stage of reduction defines the reduced Lagrangian

1 1
l(p7psvptaa7baﬂaw) = §<pt FwXp,prtw X p> + §<w71w>

4+ %(w + b,K(w + b)> — E<Q7a? <p7 p>)7

whose vertical Lagrange—Poincaré equations are
0=p X (ptt + 2w X pr + we X p+ (w, pw) + (I + K)ws + Kby
oE oF
I+ K Kb) —0s— +Q x —
+wx ((I + K)w+ Kb) 5 T X 5
oFE
da’
the horizontal Lagrange—Poincaré equations are;

Kthert :85

x (p % 2p¢) X 2 OB
w PXRW—2pt) = Pt — Wt X Pp=2p 7,
d(p, p)
and reconstruction equation a; = bs, which makes this equations equivalent to
the ones in the previous step.
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