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Abstract

The subject of this thesis is the investigation of the stability of a system composed of
an arbitrary number of non-relativistic electrons and an arbitrary number of static nuclei
interacting through Coulomb forces, where in addition the electrons are coupled to the
photon field, or more precisely, to the quantized ultraviolet-cutoff electromagnetic field.
Stability means that the energy per particle in the system is bounded below uniformly in
the number of particles (and in the nuclear configurations). For this system of matter and
radiation we prove two results. The first one asserts that stability holds if the values of the
fine structure constant, «, and of the product of its square with the largest nuclear charge,
Z, are not too large. These constraints are of the same kind as the ones occwrring in a
systemn of nuclei and electrons coupled to a classical external field, which are caused first
of all by the fact that the Pauli operator has zero-modes. The second result establishes
stability for every value of a and Za?, showing in this way that actually stability can no
longer manifest, once an ultraviolet cutoff is imposed on the quantized electromagnetic
field. Both results are presented in Section 1.7.

The proofs of these two results rest on two magnetic Lieh-Thirring type inequalities.
By this we mean a lower bound on the sum of the negative eigenvalues of a Pauli operator,
that deseribes the motion of one electron in an external electromagnetic field, including also
the interaction of its magnetic moment (i.e., spin) with the external magnetic field. The
original inequality stems from Elliot H. Lieb and Walter Thirring, who 1975 derived such
an estimate for the Schrodinger operator describing the motion of a non-relativistic spinless
electron in an external potential. The proofs of our two Lieb-Thirring inequalities require
the use of effective maguetic fields (i.e., smeared magnetic fields) in order to account for
the semilocal cooperation between the physical magnetic field and the potential in creating
new bound states, and to them are devoted the second and third chapter.



Zusammenfassung

Gegenstand dieser Dissertation ist das Studium der Stabilitét eines Systeins, das aus einer
beliebigen Anzahl nicht-relativistischer Elektronen und einer beliebigen Anzahl statischer
Kerne besteht, die durch Coulomb-Krafte wechselwirken, wobei die Elektronen noch an
das Photonenfeld gekoppelt sind, oder genauer, an das quantisierte elektromagnetische
Feld mit Ultraviolett-Cutoff. Stabilitit bedeutet, dass die Energie pro Teilchen im Systemn
nach unten beschriankt ist, und zwar gleichmassig in der Anzabl der Teilchen (und in den
Kernkonfigurationen). Fiir dieses System von Materie und Strahlung beweisen wir zwei
Resultate. Das erste besagt, dass Stabilitat gilt, falls die Werte der Feinstrukturkonstante
« und des Produkts deren Quadrats mit der hochsten Kernladung Z nicht zu gross sind.
Diese Einschrankungen sind von derselben Art wie sie in einem Systemn von Kernen und
Elektronen, die an ein dusseres klassisches Feld gekoppelt sind, vorkommen, und die vor
allem von der Tatsache herrithren, dass der Pauli Operator Nullmoden besitzt. Das zweite
Resultat liefert Stabilitdt fitr jeden Wert von « und Zo?, und zeigt damit, dass eigentlich
Stabilitat nicht mehr zum Vorschein kommen kann, wenn wir einen Ultraviolett-Cutoff am
quantisierten elektromagnetischen Feld einfiihren. Beide Resultate werden in Abschnitt 1.7
vorgezeigt.

Die Beweise dieser beiden Resultate beruhen auf zwei magnetischen Lieb-Thirring
Ungleichuugen. Damit meinen wir eine untere Schranke fiir die Summne der negativen
Eigenwerte eines Pauli Operators, der die Beweguug eines Elektrons in einem &usseren
elektromagnetischen Feld mitsamt der Wechselwirkung von seinem magnetischen Mo-
ment (d.h. Spin) mit dem &usseren Magnetfeld beschreibt. Die urspriingliche Ungleichung
stamnmt von Elliot H. Lieb und Walter Thirring, die 1975 eine analoge Abschitzung fiir
den Schrédinger Operator hergeleitet haben, der die Bewegung eines nicht-relativistischen
Elektrons ohne Spin in einem ausseren Potential beschreibt. Die Beweise unserer beiden
Lieb-Thirring Ungleichungen fordern die Benutzung von effektiven magnetischen Feldern
(d.h. ausgeschmierten magnetischen Feldern), uin die halblokale Kooperation zwischeu
physikalischem Magnetfeld und Potential bei der Erzeugung von neuen gebundenen Zustan-
den zu beriicksichtigen. Thnen sind das zweite und dritte Kapitel gewidmet.



I. Stability of matter

1. The constitution of matter

The microscopical structure of matter is a topic man has been interested in since the
ancient times of the Greek philosophers, among whom Leucippos and Democritos (5th-
4th century B.C.) speculated that substances consist of small particles, which they called
atoms (ddopos=indivisible), that cannot be split further. But for a detailed analysis of
the structure of matter we had to wait for a long time, until the scientific method, first
introduced by Galileo in the 17th century for the study of falling bodies, could be applied to
the problem of the constitution of matter. Necessary for that was the industrial revolution
that put at scientists’ disposal the relevant technology they needed to look for the basic
microscopic constituents of matter. It was only around 1805 that Dalton recognized that
the atomic theory was compatible with experimental data, while the first evidence for
subatomic particles was given 1897 by J.J. Thomson, who could discover the existence of
particles with negative charge, whose mass was about 1/1800 of that of hydrogen, that were
emitted by all substances he tested by putting them in a strong electric field. Thomson
postulated that atoms were made up of these new particles, called electrons, surrounded by
a continuous distribution of positive charge. This model turned out to be false when 1911
Rutherford, interpreting the data of his students Geiger and Marsden on the scattering
of a-particles (discovered meanwhile by the Curies as radioactive radiation emitted by
certain substances) off a thin gold plate, deduced from the presence of a significant part
of large scattering angles that inside an atom the positive charge must be concentrated in
a heavy particle (the so-called nucleus), which carries almost all the mass of the atom and
occupies a very small fraction of its total volume. Electrons, attracted by the nucleus with
a r~2-force (Coulomb force), orbit like planets around a nuclear sun, forming an electric
analogous of the solar system, whose laws were revealed by Kepler and Newton in the 18th
century. Calculations yielded 108 cn for the radius of an atom and 10713 c¢m for that of
a mucleus, which means that given the fact that an electron can be taken to be pointlike,
that is dimensionless, the atoms are prevalently empty.

But also this model, proposed by Rutherford in order to explain his scattering experi-
ment, possessed some failures. Indeed, it could not explain why spectra emitted by atoms
always exhibit a discrete structure, which for hydrogen for instance reads

=Ry (2 - ) (11)

n?  m?

where n and m are integers, Ry = Rydberg constant & 13,6 ¢V and /i = Planck’s constant
= 6,58 10716 eV-s. Nor could it give account of the stability of atoms, that is, of the fact
that electrons eventually do not crash onto the nucleus, nor of the reason why atoms are
that big (while atoms themselves can be tightly packed together into molecules). Indeed, if
we consider a simple atom, made up of one nucleus and one electron (a so-called hydrogenic
atom), we know that according to Rutherford’s model the electron can occupy orbits with
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very negative energies, i.e., indefinitely close to the nucleus. Therefore, the collision of two
such atoms could push an electron, revolving on an elliptical trajectory maybe at a large
distance (~ 1078 cm) from its nucleus, very close to it, in such a way that the atom itself
would no longer be recognizable as an object with the extension of 1A. Every atom would
be an (almost) infinite source of energy that could be transmitted to other atoms or to
the electromagnetic radiation. Furthermore, we know that an accelerated particle emits
electromagnetic radiation and, in this way, loses energy. This mechanism, that applies to
this “electrical solar system model”, would cause the electron to move on ever-decreasing
orbits and eventually to fall onto the nucleus, where only huge forces could then separate
themn from each other. Matter would tend to shrink into nothing or to diminish indefinitely
in size.

A first tentative answer to these problems came 1913 fromn Bolr. His postulates
state, roughly speaking, that among the classically allowed electronic trajectories those
are selected that satisfy some orbital momentum quantization condition. These lucky
trajectories are not perwmitted to radiate, while in the transition from one orbit with energy
E; to another orbit with energy Fs light is emitted or absorbed with frequency

o = (B = Bl
e

On one hand, this theory evades the problem of stability, on the other hand it reproduces
exactly the experimental structure of the hydrogen spectrum, namely formula (1.1), and
yields as minimal distance between nucleus and electron the so-called Bohr radius ¢ =
0,529 -107% cm, that would also explain the astonishing size of atoms.

A more detailed, adequate and satisfying description of atoms and molecules could
eventually be found in quantumn mechanics by Heisenberg (1925) and Schrédinger (1926).
Nevertheless, also in this theory, which is an operator-theory with a probabilistic interpre-
tation and where atomns and molecules held together by Coulomb forces have been shown
to fit in mathematically (but ouly 1951, by Kato [40], who showed the self-adjointness
of their Hamilton operators), the only case for which we have an exact solution of the
problem of stability is hydrogen, that can be shown to possess a ground state with ground
state energy Ey = —Ry. For all the other atoms and nolecules we have at our disposal
another result of Kato [41], connected with the previous one, asserting that the energy of
these quantum systems is bounded from below, i.e., they do not collapse and are in this
sense stable.

Nevertheless, we would like to know nore than that, namely whether the energy per
particle present in the system is finite or not, i.e., we would like to find a lower bound for
the total energy of the system that is linear in the total nuinber of particles, and this is the
topic of this introductory chapter and of this thesis. The importance for the energy of a
system of N particles to be proportional to the particle number N can be seen for instance
as follows. Suppose we have two half full glasses of wine. When they are far apart, their
ground state energy is approximately 2E(N), where E(N) is the energy of a closed systein
of N “wine particles”. If we now pour the content of one glas into the other one, the new
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ground state energy is F(2N). We denote by AE = 2E(N) — E(2N) the energy released
in this process of putting the two wine glasses together. If the energy is proportional to N,
then AE = o(N); if, on the other hand, E(N) «x —N?, p > 1, then AE = —(2° — 2)E(N),
and the energy released would be of the order of the energy contained in each glass of wine,
thus priming a very violent explosion [44)].

The plan of the thesis is as follows. In Section 2 we introduce the quantum mechanics
of electrons and nuclei interacting through Coulomb forces and make the statement of
stability of natter precise. In Section 3 we illustrate the basic quantum mechanical features
that produce stability and explain some ingredients occurring in the first proofs of stability
of matter (among which the Lieb-Thirring inequality), that we will also use in order to
handle with the case of stability of matter in mnagnetic fields, whose rudiments are proposed
in Section 5. Our classical stability results, together with two new Lieb-Thirring type
estimates, can be found in Section 6, while in Section 7 we present our results on stability
of non-relativistic matter coupled to the quantized ultraviolet-cutoff electromagnetic field
(a topic which is also introduced in that section) and their derivation from our classical
results from Section 6. Section 4 contains some general remarks on stability of matter,
its limits and its importance. This is the content of the first chapter, while the following
two are devoted to the proofs of our Lieb-Thirring type inequalities and of the classical
stability results of Section 6.

2. Stability of matter

From the brief and sketchy history of atomic physics outlined above we have learned that
negatively charged electrons and positively charged nuclei are fundamental constituents of
matter, which is held together by Coulomb forces. In bulk matter their number can be
very large, and the effects of Coulomb forces can be manifold and subtle: they are namely
responsible for chemical binding (e.g. covalent and ionic bonds), metallic cohesion, Van
der Waals forces, superconductivity and superfluidity, i.e., for many properties of atomic,
molecular and condensed matter physics, and, in a broad sense, for biology. To fix things we
consider an arbitrary number, N, of electrons of charge e, mass m, spin 1/2 and positions
x; (i = 1,...,N) interacting with an arbitrary number, K, of nuclei with charges —Zje,
masses M; and positions R; (j =1,..., K). Electrons are fermions, while we don’t fix the
nature of nuclei. If both electrons and nuclei are taken to be non-relativistic (we can then
forget about retardation and relativistic effects), their quantum mechanical Hamiltonian
reads N K
, fe R /
H = _gﬂ% B2 o 2r Ve

Z %( Zk62 zK: ZkZ;C
‘Lt“dJl ikl '“"'_Rk' 'Rk-Rl'

ij=1 * kl 1
i<

(2.1)

where ~ii2A in Fourier space has the familiar “classical” form p2. The Hilbert space of

7



one electron is H = L2(R*) ® C%, where C? accounts for its spin. For N electrons we
have to give account of their fermionic nature by imposing the Pauli principle, that is by
antisymmetrizing the wave functions: He; = ANH = N-fold antisymmetric tensor product
of H. We write the Hilbert space of nuclei generically as Hy,y. (it depends on the spin and
statistics of the nuclei we don’t want, and don’t need, to specify). The total Hilbert space
of the system is then My ® Hyue. Since the Laplacian —A is a self-adjoint operator on
D(-A) = H*?(R®), the Sobolev space of functions in L?(R3) with first and second weak
derivatives also in L*(R?), and V(z) = }; belongs to L*(R®) + L (R?) (decompose V (x)
as V(2)xBr)(®) + V(@) xra\Br(0)(x), where xs is the characteristic function of the set
S, and Bg(0) is a ball of arbitrary radius R < oo around the origin), this Hamiltonian
is self-adjoint on H?2(R®) and semibounded (H' > const > —oo) (Kato [40, 41]). In
this model we neglect gravitational forces (they become important only for objects of the
size of a star, due to their weakness as compared to electronic interactions), nuclear forces
(they act between the hadrons that make up the nuclei and don’t affect the stability of
the atoms), and magnetic dipole interactions, since experimentally they all give only small
corrections to the binding energies of atoins and molecules. The question we now ask is
whether this system is stable, i.e., if the ground state energy per particle remains bounded,
or, equivalently, if there exists a finite positive constant C' (called henceforth the stability
constant) depending at most on max{Z;|1 < j < K}, and with the dimension of an energy,
such that
H' > C-(N+K).

This type of stability is called H-stability, to distinguish it from thermodynamic stability
(see Section 4.a)).

Classically, a necessary condition for stability would be V4 (21, ..., 2N, Ry,...,Rk) >
—C - (N + K). But this is evidently false, unless we don't impose hard cores on the
particles, i.e., unless V5 also contains a term which is +oo if < R, for s; #
s; € {x1,...,2N,R1,..., Rg}. In this case we can think the charge of each particle to be
distributed in any spherically symmetric way within a ball of radius %R centered at the
position of that particle, because, due to the fact that the particles canuot approach each
other any closer than a distance R, the Coulomb interactions between them will remain
the same. Electrostatics now tells us that

8§ — 84

. N+K
1
Vi=— | E(x)%d® - E (self-energy of the i-th particle) > —C - (N + K) ,
8 JR3 i1

where E(z) is the electrostatic field generated by all the particles and C is the maximnn
self-energy of any of the balls. Note that classical stability implies quantum mechauical
stability, but not conversely.

What prevents quantum mechanically the energy from growing arbitrarily negative?
Before answering this question, we want to make soine general considerations about the
problem and to simplify notations.



a) As already mentioned, the electron mass is only a small fraction of that of a nucleus:
the mass M, of a proton, the smallest possible nucleus, is about 1800 times that of an
electron. We can therefore consider the nuclei to be fixed (i.e., M, = co), altough their
position will be eventually determined by the requirement that the total energy of the
electrons-nuclei system be minimal. This means that we can neglect the kinetic energy
of the nuclei, supported in this operation by the fact that their kinetic energy operator,

ZK sar; AR, , is strictly positive: in order to find a lower bound for H' we can restrict

j=1 2M
ourselves to the study of the smaller Hamiltonian

Z?n

acting on M, and look for a linear lower bound which is uniform in the positions R; of the
nuclei. We could argue that we may now further simplify the Hamiltonian by dropping the
last term in V{, that is the mutual nuclear repulsion, which is a constant positive term,
but it turns out that without this term stability does not hold, and furthermore we want
to study the R;-dependence of stability.

b) Let us take 0 < 7 < oo and scale the positions of the particles as:

m=ny, t=1,...,N; Rj=9Q;, j=1,....K.

By choosing the parameter 7 to have the dimension of a length, we can express our Hamil-
tonian as a function of the new dimensionless variables y; and Q;:

N

h? 2me?n
- (3 a,
Z 2m Ba, + = 2map? ( ; wt = VC) ’
with
Ve =Vo(y,...,yn,Q1,.-.,Qk) = Z Z f: a2
TR Pl |7h rwdl [T Qk| W= 1@k — Qi
i<j k<l

We choose 1 = h2(2me?)™! = a/2 = (Bohr radius)/2 to be our unit length. If we then
define 72(2mn?)~1 = 2me*h~? = 4Ry to be our energy unit, we end up with the Hamilton

operator
N

- Z A:c,- +Ve
i=1
after renaming the variables y; — z; and Q; — R;.
¢) Furthermore, we can set in V¢ all nuclear charges Z; equal to Z = max{Z;|j =
., K}. This is no restriction, because the energy is concave in each Z; and so when
stability holds for Z; = Z (j =1,..., K), it also holds for {0 < Z; < Z}K | [16].
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Resuming, the Hamiltonian whose stability we investigate is

N
—ZA%-E-V(,',
i=1
(2.2)
Vo =
;1 |‘Li_‘lJ| Z 'Jz"Rkl klzl |Rk—Hzl
<4

acting on He.

3. The pioneers

Among many other things, the ferments of the year 1968 produced also the first proof of
stability of matter thanks to Dyson and Lenard [18, 19]. Their proof, which is lengthy
and complicated and yields a stability constant of the order of 101Ry because of the suc-
cessive use of many inequalities, begins by decomposing the physical space into cells, each
containing one negatively charged particle, but an arbitrary number of positively charged
particles. Then they show stability for each cell and finally reassemble the fragments and
obtain the stability for the whole space and the whole system. The kernel of this proof is
an estimate of the binding energy of an electron in a periodic Coulomb potential:

/' \Vip(a)2dPe — / R(@)[¢(x)d®x > —4 . / ' [ (x)Pd® ,

where R(x) is the Coulomb potential generated by a unit positive charge at each vertex
of a cubic lattice with arbitrary lattice spacing L, with a constant negative background
density to preserve neutrality. Though the appearance of this periodicity in the poteutial,
which Dyson and Lenard conjectured not to be accidental (since “after all, the ground
states of most forms of matter are crystals in which electrons are actually moving in
periodic Coulomb potentials” [19, p.711]), gets lost in the following proofs, (despite their
assertion that “the essence of a proof of stability of matter should be a demonstration
that an aperiodic arrangement of particles cannot give greater binding than a periodic
arrangement” [ibid.]), this estiinate, representing a sort of uncertainty principle, a typical
quantum mechanical feature, is a key point for stability, together with other fundamental
aspects, and will be found in all the following proofs, maybe disguised under different
appearances: it imposes a lower bound on the binding energy of an electron in the potential
—R(x) generated by the nuclei, or it tells us that there is a balance between quantum
mechanical kinetic and potential energy according to which when the potential energy
becomes more negative, that is when the electron tries to come closer to the nuclei, the
kinetic energy must grow correspondingly to this decrease in potential energy in order for
the sum of them to remain above that given limnit. To illustrate this idea in a better way
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we can apply another form of the uncertainty principle [59], known as Hardy’s inequality,
to an hydrogenic atom:

[iwvpeaz [Hl e yecrw).

The energy of a nucleus of charge Z sitting in the origin and attracting an electron is then
(take (2.2) with N =1 and K =1)

[¥(x)) B

" (3.1)

(b, H) = / V(@) Pd% - 2

> / [ (x)|? (EJIA—P - %) 3z >-2%=-4272%Ry,
since the expression in brackets has a minimum value ~Z2 and the wave function 4 (for
simplicity we neglect spin) has unit L2-norm |92 = 1 (by || .||, we will always denote
LP-norms).

Another way to put the fact that we cannot compress a wave function without letting
the kinetic energy increase, is provided by Sobolev’s inequality [69]:

/ V@) Pl > Kswld,  Ks=3(5)3. (3.2)

Setting py(z) = |¢(z)|?, the energy (3.1) is

(¥, Hy) > Ks (/ pw(w)3d3w) " / 2o8) 3y = ()

||
> min{h(p) : p(z) 20, fp=1}> -3 Z°Ry.
A weaker formn of Sobolev’s inequality, which also yields a link to the proof of stability

of matter by Lieb and Thirring [53], can be obtained from (3.2): if we apply Holder’s
inequality to its right side,

1= ( [ ovtoress) " ([ rtrs) "

/ IV(z)2d3x > Ks / py ()33 . (3.3)

(Note besides that Kg is here not the best constant, altough it is the best constant in
Sobolev's inequality (3.2).) The minimization of the energy (3.1) can be carried out also
using this last estimate and we get only a sligthly worse constant in the result. All these
stability constants have to be compared with the exact result —Z2Ry.

we have
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Lieb and Thirring succeded 1975 in extending this kind of uncertainty principle to
many electrous by means of their well-known estimate:
Theorem I.1. [33, 55] Let —¢; < 0 be the negutive eigenvalues of the vne-particle
Schrédinger Hamiltonian h = ~A — V, acting on LE(R3), where V() > 0 is a multi-
plication operator. Then

e < 4 / Vi(z)*2d% . (3.4)

157,

Remark. If V is alternating, then (3.4) holds true if we substitute V' with its positive
part V. = max(V,0).

Proof. We express the sum of the negative eigenvalues of i as a function of Ng(V), the
number of such eigenvalues that are smaller than —FE, F > 0:

Y= AWE(JNE(V) - /:O Ne(V)dE . (3.5)

The Birman-Schwinger principle [63] states that Ng(V) is smaller than the number of
eigenvalues of
KE(V) = VI/Z(_A +E)-—lvl/2

that are bigger than 1. This comes from the fact that the Binman-Schwinger kernel Kg(V),
which is a compact positive semidefinite operator on L*(R3) for F > 0 and is monotone
increasing in —E| has an eigenvalue 1 when F is an eigenvalue of h:

h=Ey <<= Kgp=¢, ¢= Vviizy.
If we further notice that

Np(V)=N

(V= 5) S Ng((V = §)y) tr[Kg (V- §))P2, (3.6)

2

(the subscript + again means the positive part), then we have, by a change of variables,
. . i
Zei <2 / (IE/ v(zyu(y)k(e — y)2dB3a By (3.7
Jo

with v = (V — E)4 and k(p) = (2m)~%/%(p? + E)~'. The Fourier transforms are defined
by

fi(x) = (2m) 32 / k(p)e*d®p and k(p) = (27)%/2 /‘k(a:)ef"”“d%: .

Rewriting the spatial integrations in (3.7) as the L.2-scalar product of v and the convolution
of (k)? with v, and using Parseval, we come to

(v, (k)2 % 0) = (8, [(R)” x 0] ) = (8, (2m)**[(R)*] 9) = (8, (k + k)D) ,
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where the convolution of k£ with itself, (k * k£)(p), can be bounded from above by first
applying Cauchy-Schwarz and then noticing that the maximum of the resulting expression
occurs at p = 0:

(kx B < @r) [ Pula?+B) 2 = GaB ) (3.8)

Using Parseval again, together with Fubini, we have the desired result:

o0
Ye< 4—17; /0 dEE~/? / Bx(V(z) - E)} = lf V(@) dPs . (3.9)
| ]

With the help of their inequality, Lieb and Thirring attained their aim of generalizing (3.3)
to many fermions. The Lh.s. of (3.3) represents the kinetic energy of one particle, and in
the N-particle case it must be substituted by

2
Ty =N E /[Vz,ilz(wl,...,J;N;sl,...,sN)lzdswl...d3arN ,
8;=1"

for ¢ € He (we now write spin explicitly). The new r.h.s. can be found by studying
the fermionic ground state energy Ey of the N-particle Hamiltonian Hy = Zfil h;,
hi = =D, — V(x;), acting on Her, with V(z) = (38)2/3p,,(x)?/3, where now

py(z) = Nz /WJ (,22,...,2N;81,...,8N)] 2By, . . Pay
g;=1

is the single particle density. On one hand, Ej is bounded below by the sum of the negative
eigenvalues —e; of Hy (that represents the energy of the non-interacting Fermi gas in the
external potential V'), for which they already had at their disposal a lower bound given by

(3.4): "
Eo>-2Y e > -5 (3") ./p,/,(a:)s/sda.’lf

(The factor 2 comes from the inclusion of spin: each eigenvalue can be “occupied” by two
electrons.) On the other hand, by the variational principle,

2/3
Ey < (Y, Hyy) =Ty — (%) / py ()33

From these two bounds for Ey they obtained

2/3 ,
23 () [marres, (310)
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that signifies the uncertainty and Pauli principles and that can be used to make a com-
parison between the quantum mechanical energy (¢, Hy) and the Thomas-Fermi energy
functional Epr(py), where the kinetic energy term has the same form as the r.hus. of (3.10),
apart from the constant in frout of it, which is smaller. Stability of matter then immedi-
ately follows from Teller’s no-binding theorem [66, 43] (atoms do not bind in Thomas-Fermi
theory), and the stability constant is of the right order of magnitude, namely 23 Ry.

We would like to mention here a nice inequality for the Coulomb potential, that Lieb
and Yau [56] derived 1988 in order to prove relativistic stability of matter, for which the
use of Thomas-Fermi theory is not appropriate (although a modified Thomas-Fermi theory,
Thomas-Fermi-von Weizsicker, can be used [48]). This reduction of the Coulomb potential,
when combined with the Lieb-Thirring estimate, can also be exploited to prove stability
of non-relativistic matter, a method we will profit by later in our proofs for stability with
magnetic fields. We first introduce for each nucleus j = 1,. .., K the nearest neighbour, or
Voronoi, cell I'j = {« | |[# — R;| < [¢ — Rg| for k=1, ..., K} and the smallest distance,
Dy, of the jth nucleus to the boundary of its Voronoi cell I'; (consisting, by the way, of a
finite munber of planes): D; = min{|R; — Ry| | j # k}/2.

Theorem 1.2. [56] For any 0 < X < 1 the Coulomb potential given in (2.2) satisfies

N 72 K
VC('{I"h'-'11:N7R17"'aRK) > _ZW(‘IL)JF "S—ZD;I ) (311)
i=1 §=1

and, for @ in the Voronoi cell Ty, W(x) = Wj’\ () = Z|z — Rj|71 + F]-)‘ (@) with
PAe) = (2D;)71(1 = D} %o — Rj>)7Y  for v — Ry| < ADj,
’ (V2Z +1/2)|x — R;|~! for jo — R;| > ADj; .

The content of this theorem (that reduces the number of terms in Vi from O(N?) to N) is
that the Coulombic energy can be lowered if we neglect the electronic repulsion and keep
only the electronic attractions to the nearest nucleus plus a small error term, F J?‘. This is
a manifestation of screening: locally each electron feels only the attraction to its nearest
nucleus, while interactions with far off parts of the system almost mutually cancel. In this
procedure up to a quarter of the nearest neighbour nuclear repulsions can also be kept
(last term in (3.11)), and exactly this term will be responsible for stabilizing the system in
the magnetic case. Here, however, it is superfluous, if we don’t appeal to Thomas-Fermi
theory, as we now show. First we partition R® into Voronoi cells and reduce the Coulomb
potential according to Theorem 1.2. We choose a value foi A, say A = 8/9, and notice that
for x € I'; we have

W(z) < [Z + max(M1 - 2*)71/2,vV2Z +1/2)||lz = R;| ' < Qv — RI™',  (3.12)
where QQ = Z + V27 4 2.2. For any v > 0 we have then

N g2 K
H> ZIL,-—VN-I—?ZD]-“I,
i=1 j=1
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where h = —A — (W — v): we exploit the fact that W < (W — v)4 + v in order to deal
with an operator, (W — v),, which is in L5/2(R®). In this way we cut off the long-range
part of W ~ |z|~1 and we must thereby just pay the acceptable price of a term which is
linear in the number N of electrons. Application of (3.4) thus yields

N
Zhi P /(W(.L) - V)i/zdsl‘ > —Q* V2K = const Q°K (3.13)
i=1

for v = Q% < (Z+1)2. Here and in the following X < Y means that there exists a constant
C independent of the data such that X < CY. The above integral, unlike [ W (x)%/2d%,
is finite and has been evaluated decomposing R® into the union of (disjoint} Voronoi cells
and applying (3.12) in each cell. The result is

H>-C-(Z+1}(N+K).
Another proof based on an electrostatic inequality (asserting that Coulomb energies
Vo are lowered as R® is decomposed into simplices and the interaction is restricted to

points belonging to the same simplex) has been given by Graf [36], while other proofs,
based on different methods, have been given by Federbush [24] and Fefferman [29)].

4. Applications, implications and annotations

a) The question of stability of matter, which has its own intrinsic meaning, has been
raised also in relationship with the necessity of establishing a rigorous mathematical foun-
dation for statistical mechanics [33]. Once we assume that the equilibrium properties
of matter can be described by means of the canonical partition function Z = tre##,
B = (kT)~1, we still have to show that the resulting properties of matter (e.g. extensivity
of the energy) are those postulated in thermodynamics. In particular, we have to prove the
existence of the thermodynamic, or bulk, limit for the Helmoltz free energy derived from
the partition function, and, when it is established, we still have to investigate its properties,
hoping that it possesses the appropriate convexity, i.e., stability (thermodynamic stability).
Stability here means non-negative specific heat and compressibility. More specifically, the
free energy per unit volume of a neutral system of N; charged particles contained in the do-
main Q; and interacting through Coulomb potentials is F; = —871|Q;| "1 log Z(3, N;, Q;).
We choose increasing sequences (V;)32, and (€2;)32, with lim; ;00 N;/|€%] = p, where p
is the density in the thermodynamic limit. Of course, the Hamiltonian appearing in the
partition function is now the total Hamiltonian (2.1), comprehensive of the nuclear kinetic
energy, since we are interested in the study of the complete system. Lieb and Lebowitz
[46] proved the existence of lim;_,o, Fj = F(p, 8), its independence from the choice of the
particular sequences and its convexity in p resp. concavity in 71, that is

. d*BF (p, B)
specific heat = -2 o >0
and
. . 52
(compressibility) ™! = 9 (p I;ssme) =p 9 Fd(l;’ p) >0.
P p
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A basic ingredient in this proof is H-stability of matter, which is valid also for the total
Hamiltonian, as noted above in Section 2. It allows easily to find a uniform lower bound
on F' and is namely a necessary condition for the existence of the thermodynamic limit,
although it is not sufficient: H-stability solves the problem of the short range behavior
(singularity) of the Coulomb potential (heuristically, it solves the problem of collapse),
but it remains the difficulty of the long range behavior, i.e., the problem of explosion.
Thermodynamic stability doesn’t hold, for instance, for a collection of N particles all of
the same sign, though H-stability is trivial, since the energy of such a system is positive
and hence bigger than — C - (N + K).

In addition to the thermodynamic liiit for the free energy density we can also consider,
with the same notations as before, the limit j — oo of the ground state energy per unit
volume E; = E(N;, Q) = |1~ Yinfy (¢, H¢)/ (1, ¢). With the same methods as for the
free energy F the existence of the limiting function e(p) = lim;_ E; and its convexity in
p can be shown [46].

As a final remark, we point out that it is possible to define and prove the thermody-
namic limit, discussed here only for the canonical ensemble, also for the microcanonical
and grandcanonical ensembles. Their equivalence has also been shown [46].

b) We reproduce in this subsection a proof by Lieb [43] that matter is bulky, i.e., that
the radius of a system of M particles is at least of the order M1/3. For simplicity our system
will consist of M = 2N particles, N electrons and N nuclei, e.g. protons, but we could take
an arbitrary numnber K of nuclei with arbitrary nuclear charge Z;, j = 1,..., K. The proof
works for any wave function ¢ and any nuclear configuration for which Ey = (¢, Hy) <0
(by compressing matter we could shrink the size of the system, but at the cost of raising
the energy). An important fact will be stability of matter, which here takes the form
Ey, > —C - N. We begin by defining what we mean by the radius of the system:

R(p) = (%(«/ﬁj }w,-lpw))l/p . p20,

where the x; (i = 1,...,N) are the positions of the electrons measured [row an arbitrary
origin. Then we split the energy into two parts:

0> Ey = 3Ty + (¢, Hp) ,

where H is (2.2) but with a factor 1/2 multiplying the kinetic energy term. Sinee (¢, Hy) >
—2C- N (H is unitarily equivalent to 2H ), we have, taking also into account (3.10) (Pauli
principle!):

/ p¢(17)5/3d31: STy SN.

Next, we mention that for any p > 0 there is a constant C, > 0 such that for any non-
negative p(x)

(/ p(w)f’/%)p/z JZC R (/ p(a:)d%) v (4.1)
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But since {[py||; = 1, we obtain

N .
(t/}ag: lizl')’l,/l) = / 2P py(x)d3e > N - NP/3

which yields R(p) > N'/3 for each value of p > 0 and each choice of the origin of the
coordinate system (this means that by an awkward choice of the coordinate systemn we can
only make R(p) larger, but never smaller than N/3). The result holds for instance in the
center of mass frame, where R(p) should really acquire the physical meaning of a typical
mean radius for the system.

We come back to the proof of (4.1), namely of

5p/6 5p/6
CollollTH*° < llellg4e hoke Pl - (42)

We first notice that, for every ¢ > 0, |z|™® can be split as |z|™? = (|&|? —¢)4 +
min(|#| ", £), where the second term is bounded above by ¢ and the first one is in L3/2(R3)
for 0 <p < 6/5:

e=1/p
Wl - €)1 |3/2 = 4 / AP — )2 < G, 0, >0,
Jo
By Holder’s inequality,

[ el ote)cs < ellof + Gl S ol 115°
after optimization over €. Thus

[ e e Y P

1/2 1-5p/6 5p/6
S ol 2ol oligh®) 2 .

Taking the square we obtain (4.1) for 0 < p < 6/5. Estimating the third norm in (4.2) by
1/2 2
lolal®ll < 1oz o™ P ll2 = llolly” llole1"

we get then by squaring an inequality that is again (4.2) but with p replaced by 2p, thus
extending its validity to all p > 0.

c) There is an interesting result of Fefferman asserting that, at suitable temperature
and density, electrons and protons in a box Q C R? interacting through Coulomb forces
form a gas of hydrogen atoms or molecules, provided stability of matter holds true. We
now reproduce the statement of this result in better detail. The Hamiltonian of N electrons
and K protons (Z; = 1 for all j =1,..., K), using our notations (see (2.2)), is

N K
H = —¢ ZA‘“ - CzZARf + Ve
i=1 j=1
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and acts on wave functions ¢ € AVNL2(Q) ® AKL%(Q) (the spin degrees of freedom are
omitted here for simplicity) satisfying Dirichlet boundary conditions. (We pick units such
that ¢; and ¢y (~ ¢1/1800) satisfy ¢; + ¢z = 1.) The mathematical translation of the
concept of a gas of hydrogen atoms is as follows.

i)

iii)

Take R > 1. An electron z; and a proton y; are said to form an R-atom if
l#s — 2|, ly; — 2| > R|wi — y;) (4.3)

for any particle z # x;,y;, that is if #; and y; are much closer to each other than to
any of the other particles. In a gas of hydrogen atows alinost all particles are expected
to belong to R-atoms.

We expect the displacement vectors £ = x; — y; of the R-atoms to behave like in-
dependent random variables with the probability distribution typical of an isolated
hydrogen atomn in its ground state: let E C R? and 0 < e < 1, then

e—md&
JE

Number of R-atoms with £ € E . / ce. (4.4)

Total number of atoms

Finally, we expect the various atows, i.e., their positions and displacement vectors,

to be nearly independent. Let p be the density of the system; we decompose 2 into

disjoint cubes {Q,} of volume comparable to 1/p. Then we subdivide each Q, into

two halves, @', and Q. For E C R? we study the events

el: @, coutains a single atom and nothing else; and the displacement vector for that
atow lies in ¥ ;

et: Qu contains a single atom and nothing else; and the displacement vector for that
atom lies in F .

Let

,  Number of « for which €], occurs »  Number of « for which €], occurs
’ Total number of «

Total number of « ’

« _ Number of « for which €], €/, both occur
pr = .

Total number of «

The independence of different atoms is then reflected by

lp* !

| <e. (4.5)

Assumptions (stability of matter):

H® > —~E, - (N + K — 1) with E, independent of N, K, Q ;
E.,<ifor N+K>2.

This last assumnption is well established by experimental observation of hydrogen crystals,

but a rigorous mathematical proof is not known yet. To get hydrogen molecules an even
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sharper assumption is required. (Notice that 1/4 corresponds to Ry in these units, that
is to the binding energy of a hydrogen atom.) Under these assumptions the result is as
follows:

Theorem 1.3. [27, 28] Given 0 < ¢ € 1 and R > 1, there exist a density p and a
temperature T so that on o large enough box we have (4.3) with a probability at least
(1—¢). Moreover, for any E C R®, (4.4) and (4.5) hold with probability at least (1 — ¢).

This topic has been also tackled and simplified by Conlon, Lieb, Yau [12], Macris,
Martin [58], Graf, Schenker [37).

d) In order to study basic properties of heavy atoms, like the ground state energy
and the electronic density, as given by non-relativistic quantum mechanics, semiclassical
theories like Thomas-Fermi theory are often used. This last theory, despite its deficien-
cies, is found to be asymptotically exact (in the limit Z — o0), and Lieb-Thirring type
inequalities enable us to make a comparison between Thomas-Fermi theory and quantum
mechanics in this limit (see for example the review paper [45], where also other references
can be found, and also at the end of Section 6, for a remark about magnetic Lieb-Thirring
type inequalities in this context).

€) The fermionic nature of electrons is crucial for stability of matter. If electrons
were bosons instead of fermions (H.; = symmetric tensor product of %), the ground state
energy of the system of N electrons and K static nuclei would not be bounded from below
by an extensive quantity, namely N, but we would have [42]

H>-C-(N+K)*3,
while for dynamic nuclei the bound can be improved to [13]

H>-C-(N+K)"/5.

f) H-stability, that is the statement that the ground state energy is bounded from
below (by a multiple of the total number of particles), doesn’t tell us anything about the
existence of a bound state, i.e., of a ground state that minimizes the energy. In order
to make predictions about this fact we should find, by the variational principle, a wave
function 1 such that the energy in this state ¢ is smaller than the bottom, E(H), of the
essential spectrum of H: (v, Hy) < L(H). This task is unfortunately not easy (see, for
instance, [34] or [61]).

g) Generalizations to relativistic electrons and fixed nuclei are not straightforward,
but necessary in some cases. If we consider for instance an hydrogenic atom, we can easily
see that the value of the velocity v of the electrons closest to the nucleus (which are the
ones with the highest speed) is given, non-relativistically, by v = Zoc, where o = % ] -1%
is the fine structure constant and ¢ the speed of light. This means that when Z, the nuclear
charge, is large, relativistic effects become important. A “rough” Hamiltonian, which is
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meant to capture many of the relativistic effects of a correct theory, is given by

N
5
H' = Z(‘/p,?tﬂ +m2et —m*)+ Vs, p= ;_LV . (4.6)
i=1

The kinetic energy is clearly modelled on Einstein’s relativistic expression for energy, but
as an operator it is non-local and, as well as the instantaneous Coulomb interactions, it is
not Lorentz invariant. Due to

Iple > %2 + m2)Y? —me? > Iple — mc? (4.7

the stability of (4.6) is the same as the stability of

N
Z lpile + V& .
i=1

Rescaling this Hamiltonian, we caunot get rid of all the constants (as we succeeded in in
(2.2)), because of the different scaling behavior of [p| with respect to p?, or, better, because
Ip| scales in the same way as the Coulowub potential; instead we are left with

N
H:lei]—Fch,

=1

where the fine structure constant «, which is dimensionless, must stay. For the same
reason, i.e., the same scaling behavior of the relativistic kinetic energy and the poteuntial,
we see that the ground state energy Eng of H is either 0 (relativistic stability) or —oo
(relativistic instability). On the other hand, if En g (m) denotes the ground state energy

of the massive Hamiltonian
\/p? +m2 —m) + aVp

a rescaled version of H', then we have, thanks to (4.7), Eng > Enkg(m) > Enx — mN.
Thus, the finiteness of Eng is equivalent to stability for H(m).
Relativistic stability is not trivial even in the hydrogenic case, N = K = 1:

N
H(m) = Z(

i=

—

H=|P|*m~

A new “uncertainty principle” has been found in an inequality by Kato [41] and Herbst
[38]:

1910 = [ P = 2 [ el o) P
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Consequently, the hydrogenic atoms have the following ground state energy:

E11=0 if Z(JS

ERE VR NN N

Ejy=-00 if Za>—.
The one-electron relativistic molecule (N = 1, K arbitrary) has been tackled by Daubechies
and Lieb [16], while Conlon [11] proved stability for arbitrary N and K, however under
restrictive assumptions on Zw and « (that are not artifacts of the proof: see also Section
5), which yield Z = 1 and o < 1072°. He made use of a “relativistic generalization” of
the Lieb-Thirring inequality given by Daubechies [15], namely

ey (ulpl — V)] > 00258 qu™° [ U@)' e

for a density matrix « satisfying 0 < v < ¢ and for any g > 0.

Conlon’s constraints on Za and o have been subsequently mildered by Fefferman and
de la Llave [31], Lieb and Yau [56] (including spin), and Lieb, Loss, Siedentop {48].

Investigating a related model, but in the context of gravitational interactions, Chan-
drasekhar [7] could predict collapse for neutron stars and white dwarfs and give a critical
mass which is approximately correct.

From a trivial inequality, 0 < (|p| — 8/2)?, 3 € R, we can derive an estimate [54] that
gives an exact meaning to the expression that the relativistic kinetic energy operator |p| is
weaker than its non-relativistic counterpart p?:

2

A< p*+ T (4.8)

We are in a position to derive non-relativistic stability from relativistic stability. Indeed,
relativistic stability yields a lower bound on Vg > —a™! 2:11 |p;| (for sufficiently small
values of Z« and «) we can insert in the non-relativistic Hamiltonian (2.2) to obtain

N N ]
2 2 _ -1
ZP;"FVCZZ(P,‘—CV |Pi|)2-mN,

i=1 i=1

after use of (4.8) with 3 = o~!. Unfortunately, this result is not as strong as the foregoing
ones (see Section 3), because of the values of Zo and « imposed by relativistic stability.
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5. External magnetic fields

In this section we couple matter to an external magnetic field, that could represent for
example a sort of mean field generated by the motion of all the particles, in which case we
would have to do with a more realistic model of matter. The question of stability when
we plunge our collection of nuclei and electrons into an external magunetic field has also
been raised in conmection with the study of atomic properties in strong magnetic fields at
the surface of white dwarfs (magnetic fields up to 108 — 10° G) or neutron stars {which
are believed to consist mostly of iron atoms in magnetic fields of 10*! — 10'® G) (see
Chanmugam [8]).

We consider N non-relativistic electrons and K non-relativistic nuclei coupled to the
external magnetic field B = VA A (A is the vector potential and we choose to work in
the Coulomb gauge V- A = 0) by minimal substitution p — p— £A, where ¢ is the charge
of the particle in question. This takes into account the coupling of the orbital angular
momentum of the particles with the magnetic field. Furthermore we have to consider the
coupling of the maguetic moment g = g &= hS (g is the gyromaguetic factor, while iS' is
the spin operator) of the particles with the magnetic field: — - B (Zeeman term). However,
we still neglect magnetic dipole interactions, i.e., spin-spin interactions. Since the electron
has spin 1/2, i.e., Sq = 0/2, where o = (01,02,03) is the vector of Pauli matrices and

these read
(01 (0 —i (1 0
g1 = 1 0 y 02 = i 0 y 03 = 0 —1 3

the Hamiltonian H' of the system acting on He ® Hawe (see Section 2), is composed of
the kinetic energy of electrons and nuclei,

Tt T _iv: _L(;--EA(wv)Y R % Bl
el nue — an Pi ¢ N Gel 2me 2 i

i=1

K
1 Zje 2 Zjeh
+ § {M (Pj + TA(R)')) + Gnuc,j msnu(:,j . B(Rj)]

(p = —ikV), plus their Coulomb interactions Vs (2.1), plus the energy of the magnetic field,
H = (87)~! [ B(x)2d3x, which is positive and essential for the stability of the system, as
we will show below, though it is constant:

HI = Tel +Tnuc+ Vé + Hi{ .

As in the non-magnetic case we compare Ty with T),,.. Since the ratio between the mass
of an electron and that of a proton is about 1/1800, we see that T},,. can be considered
small with respect to T, for the ratio of nuclear magnetic moment to electron magnetic

moment is of the order
Z;eh

.‘]nuc,jf]f,j_c Z]-m Zj
_—erf_ ~ ~ s
(3 .
gazl " M; " 1800
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as well as the ratio of the first terms in Ty resp. Tpqye. We might therefore think that it
should be possible to disregard the nuclear kinetic energy, as we did before in Section 2, in
the spirit of the Born-Oppenheimer approximation. But this is not trivial now, since there
are many nuclei with spin > 1/2 and/or with gyromagnetic factor g,uc > 2 (the proton
has, for instance, spin 1/2 and gproton = 5,59), and for these nuclei T, is not a positive
operator (as instead it was before the case for — Z,K 13 M 537 AR;) and stability would not
hold. Fortunately, we can straighten the situation by takmg into account the finite size of
nuclei. Indeed, we introduce a form factor for the magnetic moment of the nuclei through
a non-negative function v on R® with compact support, such that I u(x d®z = 1 and
v(z) <y e~ l®l for some vy < 00, and we replace the Zeeman term Onue,j 3 1\; 'z Snuc,j* B(R;)

by
Zieh
Ziv = Gnue,j 21{4 / V(R; — )Snye,j - B(x) &3z

Its norm on the spin space of the nucleus (with R; fixed) is bounded by

Z;eh / 1 3,
”Z',V”spiu S nuc,i ong o 2M S +1 /V(R 1’) ( ( ) 2/3) &’z

for any 3 > 0 (Young’s inequality). The r.h.s. can be estimated in terms of the magnetic
field energy (e > 0):

“Z',UHsm'n < 86__" /e*|Rj—1|B($)2d3$ + Ce ’

where C; = (gnuc,j 2—1{;—Z) (£)718;(S; + 1)(vp)? is a finite constant, whose value we cannot
however expect to be small (BS compared to a typical atomic energy), despite of the factor
M ]»_2, because of the presence in it of v, that should be approximately the inverse of the
volume of a nucleus (i.e., more or less 10%% cin—3). Thus, if we are willing to pay the price
of a big stability constant, we are allowed to neglect the Zeeman energy in the definition

of Ty (this is the case of spinless nuclei):

S} Zje 2
mu_ 22 J(pj+——A(R )) .

j=1

This “magnetic Schrodinger operator” is positive, so we can neglect it in our analysis
of stability of matter, as we did in Section 2 for —Z]—l 3 M Ap,. However, we must
remember that whenever the spin of a nucleus exceeds 1/2 aud/or its gyromagnetic factor
is bigger than 2, our result will exhibit a dependence on the form factor vy.

Always keeping in mind what we just said, and expanding our system of units to the
electromagnetic case (in addition to the scaling parameters of Section 2.b) we introduce
a new one related to the vector potential as A(z) = BA(y) and use the following units:
12(2me?)~* for length, 2me*h~2 for energy and 2mech~! for the magnetic vector potential
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A, which we then rename A), we limit ourselves to consider the problem in the Born-
Oppenheimer approximation:

N
H=Y" [(l)i — A(w:))? - %’m ' B(w,-)] + Vo + Hy (5.1)

=1

where Vg is given in (2.2) and Hy = (87a?)~! [ B(x)2d®x. This operator, defined as a
quadratic form, is self-adjoint for A € L} (R, R?) and V¢ in the Kato class K3 [14]. Now
stability means that H is bounded from below linearly in the total particle number and
uniformly not only in the nuclear positions but also in the magnetic field.

Let us now have a look at the electronic kinetic energy operator. This operator, whose

nuclear counterpart was so troublesoue, for an electron (of spin 1/2) reads
g
¢25D2—J—510~B, where D=p-A.

As already mentioned before, for g, > 2 this operator is not bounded below and stability
doesn’t hold (see [35]). The physical case, g = 2, is a borderline case: ﬁ)z can in fact
be written as ¢2 = [D - 0]? and is non-negative, still allowing for the existence of zero-
modes [57, 23]. If we had g < 2, instead, 4D2 would be positive: it can be decomposed as
ﬁ =29D-o]*+(1- % g)D?, where the first term is non-negative and the second one is
positive. In the non-magnetic case the kinetic energy operator p? = —A was positive, for
¢ = 0 had no non-trivial solution for 4 € L2(R?). There we could have even forgotten
spin, provided we would have kept the antisymietry of the wave function. In the magnetic
case t0o, the case of spinless electrons is not problematic, since it can be easily brought
back to the case where there is no maguetic field at all by means of the diamaguetic
inequality,

(W, (0= A)2P) = ([p],p°[¥]) (5.2)

from which it follows, by the variational principle, that
iﬁf(z/;, (- A4)%) > i{zf('tIJ,pz‘t/))

(while (p — A)? > p? is false) (see also Lemma II1.1 and its Corollary). The case of Pauli
electrons (i.e., with gy = 2) with spin, on the contrary, is essentially different and this
arises precisely from the fact that the Pauli operator ¢ exhibits zero-modes for particular
choices of A. This implies that there are wave functions for which the kinetic energy does
not contribute with a positive term to the stability of matter, and this brings out new
aspects with respect to the case of stability of matter without magnetic fields, since the
uncertainty principle fails in this case, the same uncertainty principle that in the non-
magnetic case prevented the electrons from getting too close to the nucleus. This fact
already has repercussions on the stability of the one-electron atom, as Frohlich, Lieb, Loss
recognized in their paper [35], where the first result in the study of the stability of matter
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in magnetic fields is established (see [L, 9] for earlier partial results). For N = 1 = K the
Hamiltonian (5.1) reads

H=f - T /3(1)243

Let ¢ € H be a normalized zero-mode of P (ie., Pyp = 0). By scaling (¢(z,s) —
dal@s) = A2(%,5), A@w) » Ax() = A1A(S), B@) — Ba(w) = A2B(2)), the
energy in this state is given by

E = (y, Hy) ,——(1/) [x["24) + 2)\ / B(z)2d%z ,

since [(p ~ Ay) - alpn = 0. If Za? exceeds (87)~! [ B(x)2d3z/(y, |z|~'y) we can drive
the energy to —oo by letting A go to zero [35]: in the magnetic case we have a constraint
Za? < const in order to have stability. This shows at the same time the importance of the
magnetic energy in stabilizing the system. It is known even for constant magnetic fields [2]
that in the absence of this term arbitrarily large values of the magnetic field would drive
the ground state energy to —oo already for hydrogen.

Subsequently, Lieb and Loss [47] showed the stability of the one-electron molecule
and of the many-electron atom. In that paper a new feature of magnetic stability appears,
namely a bound also on o, besides that on Za?. It is a many body effect and we can
understand it by observing the one-electron molecule (N =1, K > 1):

H= EZ ZIL“RkI Z |Rk_Rl| - a2/B(¢)2d3

k=1
k<l

If we take again a zero-mode ¢ of y)and then rescale, the energy in this state is

7 K
=, Ho) = ng( —Rk| ) Z ]Rk——Rz| 87&'(!2/\ /B(‘L Vi

kll

The electron-nuclei Coulomb attractions and the nucleus-nucleus repulsions can be boun-
ded from above by —C,_,, - ZK /X resp. C,,_,, - (ZK)?/), where both constants C._,, and
Cy—n, are positive and independent of Z and K. Choosing the nuclear charge Z such that it
minimizes the resulting expression for the electric interactions, i.e., ZK = C._,,(2C,_»)"!,

we have
Ge n 1

23,
4Cy_n 87ra2/\ / Blayd's

But now it is manifest that for values of « large enough the first term will get the upper
hand of the magnetic energy term and the energy will become negative, and then by
letting A — 0 we can drive it to —oo. The conclusion is that a bound on « is also needed.

E<-~
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This shows that both bounds on Za? and « (compare with the bounds on Za and « for
relativistic stability) are not artifacts of the proofs, but true physical features.

Only three years ago two proofs have been found by Fefferman [30] (but see [26] for an
announcement) and Lieb, Loss, Solovej [49] for arbitrarily many electrons and nuclei. The
Lieb, Loss, Solovej result covers Z < 1050 for & = 1/137 and their stability constant is
realistic (of the order of Ry). In that paper, they show non-relativistic magnetic stability
in two different ways. The first one consists in linking it to relativistic maguetic stability,
by first eliminating Vi in favour of o~! (see Section 4.g)), then comparing this last
operator with its non-relativistic counterpart (p — 4)? and finally using the Cwickel-Lieb-
Rozenblum (CLR) bound [63]

Ng((p—A)* - V) < Lg /‘(V(ZL') - E)i/zll3:1: ,

where Lz = 0,1156 and Ng again deunotes the nunber of eigenvalues below —FE (E > 0).
(Notice by the way that it is possible to derive non-relativistic from relativistic stability
also with another method, namely through a Birman-Koplienko-Solomyak inequality [48].)
The second method they use is based on a new technique in order to handle the kinetic
energy (they call it “running energy-scale renornalization of the kinetic energy”), together
with the reduction of the Coulomb potential of Theorem 1.2, the CLR bound, and another
version of the uncertainty principle, that goes back to Dyson and Lenard [19], in order to
control the Coulomb singularity:

A / ' 1 1 3

S| dBa|(~iV = A(@) ()| — / B —|p(2))® > - ( ) / Balyp@)?,

4 Ja Ja |} A 2R
where  is a domain containing a ball of radius R around the origin and A is an arbitrary
positive real number. Moreover, they prove a Lieb-Thirring type inequality for the negative
eigenvalues —e; < 0 of the one-particle Pauli operator h = [ — V, V(x) > 0, namely

Zei < a/ V() 2d% + b (/ B(;l:)2d3:l:> v </ V(a:)4([3w> v , (5.3)

with @ = a(y) = (2%/2/5)(1 — 4)"'L3, b = b(y) = 317427947y =3/8(1 — 4)=5/8 L4, for all
0 < v < 1. However, they could not use it directly because W (z) (see (3.11)) is not
integrable neither to the power 5/2 nor to the power 4 (and not even (W(x) —v)y, v >0,
to the 4th power is integrable: see (3.13)).
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6. Two local magnetic results by means of two Lieb-Thirring type estimates
Qur intentions are to modify Hf in such a way as to retain the energy of the magnetic
field only in a neighbourhood of the nuclei, and not in all space. We namely suppose that
the role played by the magnetic energy far away from the nuclei is uninfluential. The
reason for this is twofold: first, we don’t think that a magnetic field in a region which is
well separated from the system of atoms or molecules we are studying can influence its
stability; second, electrons that are “moving” far away from the nuclei have only a small
(negative) interaction with the nuclei, precisely because of the large distance, that should
not overwheln the positivity of the kinetic energy and of the electrostatic repulsion from
the other electrons. Stability of matter stated like that has thus even a better physical
meaning. In addition, this local stability will enable us to show stability for a collection of
static nuclei and non-relativistic electrons coupled to the quantized electromagnetic field
(as noticed first by Frohlich). The result is as follows: .
Theorem 1.4. Let R = {Ry,..., Ry} be the collection of all the nuclei and L, Z, T > 0.
Then there is a positive C(Z,T'), ane > 0 and a function ®g(z) > 0 with

Ierllo ST, 8=l S L°K,

~

uniformly in R, Z, such that the Hamiltonian
N
H=Y P +Vo+T /@R(w)B(w)zdzw ,
i=1 .

acting on Hep = ANH, H = L*(R3) @ C?, satisfies
H>-C(Z,T)Z+1)L™Y(N + K)
for arbitrary L < (Z + 1)7Y, provided I~Y(Z + 1) < ¢, where

C(Z,T)=const [[(Z + 1)~' +(Z +1)].

This is however not the only result at our disposal. We also have a second local magnetic
result, that yet can be interpreted exclusively as a mean to prove stability of non-relativistic
quantum electrodynamics (QED).

Theorem L.5. Let R = {Ry,...,Rk} be the collection of all the nuclei and L, Z, T', v
> 0. Then there is a positive C(Z,T,v) and a function ®g(z) > 0 with

IP=llo0 S1,  l|®zlh S LK,
uniformly in R, Z, such that the Hamiltonian
N .
H=Y P +Vo+T / Br(2)(B(e)® + 7LV ® B)(x)?)d% ,
i=1
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acting on He = AVH, H = L2(R®) ® C?, satisfies
H>-CZT,9)(Z+1)L YN +K)
for arbitrary L< (Z4+ 1) For T <Z+1and 1<y < 2% one can take
C(Z,T,7) = const [2° + 2%y~ 2 log (57~ 1/?)]

with z =14+ (Z + )L,

We remark that the functions ®g(x) appearing in both theorems have the meaning of
approximate characteristic functions of the set Qp = {«|dist(xz,R) < L}, which is the
union of K balls of radius L, each one centered at one nuclear position. Note as well that
L < (Z +1)7! means that we nst retain the magnetic energy only in a neighbourhood
of the nuclei of size at most that of a Bohr radius for nuclear charge Z.

The main difference between these two results is that the first one imposes an upper
bound on the product T~!(Z + 1), whereas the second oune holds true for every value of
the parameters involved (as long as I < (Z + 1)~!). In the physical case I' = (8wa?)~ 1,
and Theorem 1.4 then ensures stability only for sufficiently small values of & and Za?. On
the contrary, Theorem 1.5 says that the system is always stable, but to this end we have to
incorporate the second “maguetic energy term” where the magnetic field gradient enters.

Both these results are proved by first reducing the Coulomb potential V¢ according to
(3.11) and then applying new Lieb-Thirring estimates to the resulting one-particle Pauli
Hamiltonian. The magnetic energy as well as the internuclear repulsions (see last term in
(3.11)) will turn out to be necessary for stability.

Theorem L4 has first been proved in [6] by adding a localization argument to [49]
and by Fefferman using other methods [26, 30]. Theorem L5 is a result (also obtained
by other methods) of Fefferman [25], apart from a somewhat more explicit dependence on
the parameters and from the presence in the lower bound for the Hamiltonian, besides the
number, K, of nuclei (that is the only one appearing in [25]), also of the number, N, of
electrons. Rewmark that we don’t have explicit control on the numerical constants.

Let us now come back to these “new Lieb-Thirring estimates”. For the one-particle
operator h = ¢2 ~V, V(z) > 0 a non-negative multiplication operator, acting on H =
L*(R®) ® C?, we already have (see [49] and (5.3))

Se<a[vioes o[ By " (fvere:) "

where —¢; < 0 are the negative eigenvalues of h. This estimate contains the total energy of
the magnetic field, ~ [ B(z)2d3z, but since we want to employ it in the proof of a stability
result where we retain the magnetic energy ouly in a neighbourhood of the nuclei, it is not
well-suited to this end and we have to look for a local variant of it. We could conjecture
the following estimate:

Y ea<a / V(@) 2d3% + Cy / B(x)**V (&)d®x , (6.1)
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for some constants C; and Cy. This inequality is local, since it couples B at the point « to
V at the same point z, and represents a natural generalization of (5.3), since by Holder’s
inequality we have from it

/’B(w)g/gv(w)dsw < (/B(w)2(13w>3/4 (/ V(w)“,m-) 174 ,

so that we obtain back estimate (5.3) (up to constants). Unfortunately, this estimate is
false, unless we don’t impose some restrictions on B. The first one who noticed it was
Erdés [20], who found a counterexample for the validity of the related Lieb-Thirring type
inequality

Ze,- <c / V(z)*?d%z + C" /B(:c)V(a:)3/2d3:1: ) (6.2)

that simultaneously explains why (6.1) is false, since the reasons are the same. We would
like to rephrase here this counterexample in a very illuminating but also mathematically
less involved way, following an idea of Graf. But before doing this, we observe that the
word “related” used above for (6.2) and (6.1) is motivated by the fact that (6.1) follows
from (6.2) (up to constants) by applying Holder’s and Young’s inequalities:

for every 3 > 0.

Let’s come back to this counterexample. We look at the following semiclassical picture:
we divide R3 into two parts by means of a plane; on one side of this plane, say on the left,
we set V = 0, on the other side, say on the right, we set V' # 0. We think now of a particle
coming in towards the “cut” from the Lh.s., where it travels free. Let us assume that the
potential on the r.h.s. bends the trajectory of the particle in such a way that it goes back
into the first region, where it travels again free:

V=0 V#£0

If we now turn on a constant magnetic field B on the Lh.s. only, with appropriate intensity

|B| and direction, it will bend the trajectory of the particle in such a way that we will get
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a bound state spending a very little amount of energy, namely the energy of the lowest
Landau level, which equals the kinetic energy in the direction parallel to the B-field.

V=0 . V#£0
B#0 s B=0

But we see that estimate (6.1) cannot account for it, since the second integral vanishes,
because V and B have disjoint supports. Therefore, the cooperation between V and B
in producing bound states is only semilocal, and for this reason Erdés proposed the use
of an effective (scalar) magnetic field b, i.e., of a smeared magnetic field, with a bigger
support than that of the physical magnetic field. For a homogeneous magnetic field B
the smearing should act on a length scale proportional to |B|~1/2, i.e., proportional to the
cyclotronic radius in the lowest Landau band. More generally, for non-constant magnetic
fields, the smearing should be done over a length scale proportional to b=1/2, ie., in
terms of the effective field itself. To translate these cousiderations into a mathematical
expression we choose a smooth positive radially decreasing and symmetric function ¢(z)
with [ @(z)d®z = 1, and we define

o = [ o( L)) By
for r(z) = b(x)~ Y2, that is, in terms of 'r(a:) only,

) [ ol

The length scale r(x) is well-defined, as we w1ll show in Section I1.2, and through it we
can prove

B(y)?d®y=1. (6.3)

Theorem 1.6. There are constants C', C" > 0 such that for any vector potential A €
L (R, R%)

Z e <C / Vi) 23 + C" /.b(w)3/2V(w)d3:1: . (6.4)

A. Sobolev [65, 64] has been the first one to collect the suggestion of Erdés and to
use an effective magnetic field in order to prove this same Lieb-Thirring inequality (6.4).
However, his choice for the effective field b is different from ours: his b-field dowinates |B|
pointwise, while our b-field satisfies an L2-estimate:

/b(x:)2d31: <C / B(x)2d3x
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that is, the energy of the effective field is bounded from above by the physical magnetic
energy (up to a factor C > 0). By the way, this enables us to get back (5.3) (up to
constants) by first applying Holder and then this last energy estimate.

Generalizing our definition of r, Shen [62] also proved the same bound (6.4).

Inequality (6.4) is our main tool in the proof of the first local stability result (The-
orem L4). In order to prove Theorem 1.5 we have to find a more sensitive Lieb-Thirring
estimate, where the gradient of the magnetic field also enters. While our estimate (6.4) ac-
counts for the effects of a non-vanishing magnetic field on top of the original Lieb-Thirring
estimate (3.4), to which it reduces for b = 0, we now want to find an estimate that accounts
for the effects of V@ B = (9;;)i,j=1,2,3 # 0 on top of the following Lieb-Thirring type
estimate that holds for a hoinogeneous magnetic field [51]:

Y <l / V(2)%2d%z + Ly| B / V() ?d% (6.5)

where the constants above have the values L; = 4(37)~", L, = 8/6(5x7) . Remark again
that Erdos, in the coutext of deriving a generalization of this inequality, gave an argument,
which implies that (6.2) cannot hold true in general. Qur method for estimating the effects
of a non-vanishing magnetic field gradient on top of (6.5) is analogous to that explained
before. First, we introduce a supplementary length scale [, that is related to V® B in
a similar way as r is related to B {(but notice the different scaling properties of I3 and
V® B):
y—&

e [o(f) (v o By =1.

It is well-defined, as shown in Section II1.2. Like 7, [ also satisfies a sort of energy estimate:
/ i) S < / (V ® B(z))ds .

Then we have to define a new effective field, better a new effective field gradient, that
involve 7 as well as [ and vanish for homogeneous B-fields. Our choice is

P(z) =12) " (r(2) " + U(z) 7Y,

(notice that the same gradient is more effective when it is superimposed on a strong
maguetic field) and the result is as follows:

Theorem 1.7. For sufficiently small € > 0 there are constants C', C" > 0 such that for
any vector potential A € L2 (R R?)

loc
Sea<c /.V(a:)3/2(V(z~) + Bla))d + C" / V(@)P(@)X(Pa) + B2)dz, (6.6)

where B(x) is the average of |B(y)| over a ball of radius el(x) centered at .
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This estimate, which by the way reduces to (6.5) (up to constants) for B = const,
since [ = oo in this case, can be used, as noticed in [21], to give a bound on the density
n(z) of zero-modes of ﬂ), that we denote by 1, ¢¥s,.... By the variational principle

Z(—ei) < Z(’l/)j,Hi/}j) =- / V(x)n(x)dz

3

where n(z) =32 [ ()|?. Combining this with (6.6), we have
/ V(@)n(z)ds < C' / V@2V () + Bla))d + C" / V(@) P(a) (P (e) + Be)) e
Scaling V as AV, we see, letting A getting small, that it must hold

n(w) § P(@)"/*(P(x) + B(z)

The right side vanishes in the case of a homogeneous maguetic field, consistently with the
fact that J) has in this case no zero-mode. Another estimate on n(x) could have been
obtained from (6.4) in the same way, but the result, n(x) < b(x)%/2, while true, is much to
rough.

An inequality related to (6.6) has been derived by Erdés and Solovej [21] under differ-
ent technical couditions on the effective magnetic field and magnetic field gradient. They
could employ it in the semiclassical analysis of atows in strong magnetic fields [22], be-
cause it behaves like the corresponding semiclassical expression for the sum of the negative
eigenvalues (see also [50, 51, 52]). These kind of studies, aiming at establishing basic prop-
erties of heavy atoms in strong magnetic fields (by means of semiclassical theories as for
example magnetic Thomas-Fermi) are important for atoins on the surface of white dwarfs
and neutron stars, as noticed already at the beginning of Section 5, but also for artifi-
cial atoms, so-called quantum dots [39, 52], that are two-dimensional atom-like systems
coufined within semiconductor heterostructures. The parameters of such artificial atoms
(like mass and charge) can differ appreciably from their natural counterparts because of
the interactions of the electrons with the crystal where they move in, and effects that for
natural atoms require maguetic fields with astronomical strength can be studied for ar-
tificial atoms in “normal” terrestrial laboratories. In this case, however, two-dimensional
Lieb-Thirring inequalities are needed.

As a final remark, we notice that since [ B(x)%d®z 2 [ ®r(x)B(z)2d3z, our local
result (Theorem I1.4) implies up to constants the result of Lieb, Loss, Solovej [49], that
however can also be recovered directly through Lieb-Thirring estimate (6.4) (see [4]).
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7. Non-relativistic quantum electrodynamics

The primary importance of the previous results (Theorem I.4 and Theorem I.5) is that they
enable us to show stability for a system composed of an arbitrary number, K, of static
nuclei interacting via Coulomb forces with an arbitrary number, N, of non-relativistic
Pauli electrons coupled to the quantized ultraviolet-cutoff electromagnetic field. We now
introduce quantum electrodynamics.

The Hilbert space of photons is given by the bosonic Fock space F(L%(R®) ® C?) over
L2(R3) ® C2. The C?-factor accounts for the helicity of photons. On it acts the quantized
magnetic vector potential A(z), on which we impose an ultraviolet cutoff 0 < A < oc:

Ap(z) = Ax) = A_(x) + A4 (z) Ap(z)=A_(z)*,

A (z)= 921—7/; / s(B)EI2 S ax(k)ea (k)% (7.1)
A=+

The cutoff function x(k) satisfies |x(k)| < 1 and suppx C {k € R® | |k] < A}. For each
k, the direction of propagation k=k /|k| and the polarization (e.g. right and left circular
polarization) vectors ex(k) € C3 are orthonormal. The operators ax(k)* and ax(k) are
creation and annihilation operators on F and satisfy canonical commutation relations

[aa(B)*,ax (K)*]=0,  [ax(k),an(K)*] = 6and(k — k') .

Furthermore, there exists a unitary vector Q € F, called the Fock vacuum, such that
ax(k)Q2 = 0 for both values of A and for all £ € R®. On one hand, the ultraviolet cutoff A we
impose on A(x) takes care that photons with energies large compared with typical atomic
energies (o mc?(Zw)?) are not coupled to the electrons, on the other hand it makes the
vector potential A(x) a well-defined operator-valued function in each point « € R® (since
the domain of integration is a compact set, A(x) is even an analytic function). Without
the imposition of the ultraviolet cutoff, A{(x) would ouly make sense as an operator-valued
distribution. With the energy of the free photon field given by

Hi=ao! /|k| > ax(k) aa(k)d’k (7.2)
" A==+

the Hamiltonian of our system is

N
H=Y [ +Vo+H,
i=1

where now the magnetic vector potential appearing in p = (p — A) - o is the quantized one
(7.1). The equations of motion stemming from this Hamiltonian H are the Lorentz equa-
tions for the electrons (including also a force arising from the interaction of the electron
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magnetic moment with the magnetic field) and the Maxwell equations for the electromag-
netic field, where the sources are given by matter, i.e., the correct equations for the coupled
system of matter and radiation (see [3] for some interesting property of this model).

As a final remark about the Hamiltonian we notice that the energy of the free photon
field is larger than the energy of the photons that are allowed to interact with the electrons,
which is

. 1
— ! 3 2 * ) — 3, . )2 A2 . ;
Hia=o / &Pkl (k)| )‘Zia,\(k) ax(k) = g / Bz E@)?+ B@)?:>0, (1.3)
where E(z) = —ia[Hy, A] is the transverse part of the electric field and B = V A A. The
double colon indicates Wick ordering,

: E(.L)2 + B(J;)2 := E(x)? + B(z)? — Ca,

where Ca = (Q,(E(z)? + B(2)%)) = 2(27m)~2 [ d®Kk|k(k)|?|k] > 0 is the zero-point
energy density of the field. Although H; a is a positive operator, the integrand in the
last term of (7.3) can also take negative expectation values, and therefore we may say
that this electromagnetic energy has a weaker positivity than the “classical” one. There
is already a stability result by Bugliaro, Frohlich, Graf [6] asserting that this system of
nuclei and electrons coupled to the quantized ultraviolet-cutoff electromaguetic field is
stable, provided o and Zo? are small enough. Its proof makes use of a classical stability
result that is very similar to Theorem [.4, apart from coustants, and is proved by adding
a localization argument to some results of [49]. Through Lieb-Thirring inequalities we can
obtain two different results. The first one is a “remake” of [6]:

Theorem 1.8. [6, 4] There is a constant € > 0 such that for any A > 0 the Hamiltonian
H satisfies

H > —C(Z,(I,A)(N+ K) ’

where

C(Z,a,A) =const (« >+ Z*)YA+ 2%, Z*=Z+1,
provided o*Z* < e.

Our second result is a generalization of the first one and asserts that, once we iinpose an
ultraviolet cutoff to the electromagnetic field, there is actually no eritical value aunymore
for @ and Zo?, that is, the instability explained in the previous section can no longer
manifest.

Theorem 1.9. [32, 5] For any A, o, Z > 0 the Hamiltonian H satisfies

H>~C(Z,0,A)(N +K),
where
C(Z,a, A) = coust 2*° log (1 + 2*) Z*(A + 2* 2 Z*)
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withz* =1+ Z2*a? and Z* = Z + 1.

The fundamental difference between these two results is, as already remarked, the fact
that in Theorem 1.8 we have critical values for o and Za?, while in Theorem 1.9 we don't.
On the contrary, the basic similarity between them resides in the linear dependence of
both bounds on the ultraviolet cutoff A, that causes them to diverge for A going to +oo.
Yet we have to realize that we are dealing with the non-renormalized Hamiltonian and we
should properly renormalize the theory in order to obtain bounds that are uniform in A.
However, we did not do it. We remind in this place that all the parameters appearing in
the theory represent bare quantities, like the electron mass m, the electric charge e and
the gyromagnetic factor ge;.

Theorem 1.9 is a statement of Fefferman, Frohlich, Graf [32], starting from a classical
stability result [25] analogous to Theorem 1.5 that does not however involve Lieb-Thirring
inequalities.

Ounce again we don’t have explicit values for the numerical constants, but, at least as
far as the second result, Theorem 1.9, is concerned, we content ourselves by knowing that
stability holds and let to nature the task of precisely arranging the numerical value of the
stability coustant in the way it is found to be.

As remarked already a couple of times, these results follow from the classical results
mentioned in Section 6, namely Theorem [.4 resp. 1.5, but with the help of two inequalities
for the local “energy” of the free photon field, that are the subject of the next lemma.

Lemma 1.10. [6, 32] Let f be a non-negative real-valued function in L' (R3) N L°(R3).
Then

a)
. 4
/ f(2)B(x)%d3 < 87ma?||f|lccHr a + %Hf ll1s (7.4)

b)
2(11\

/' H@)(V ® B)(2)d* < 810 A%|fllooHe,p + —5—IIf1l1 - (7.5)

Proof. Let F(z) be either B{x) = V A A(z) or V @ B(z). Notice that

B_(z)= io’/2 / K(B)EY2 Y ax(k)(k A ex(k))e*=d*k
T on ot A A ’
and
Ve B_(z)= -~/ (k) k%2 Z ax(k)(k @ (B A ex(k)))e=dk

As in (7.1), we may write F(z) = F_(z) + F;(x). Since X*X > 0 for any arbitrary
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operator X, we obtain

Fa)? < F()? + (F(2) — Fy (0))* (F_(2) — Fy (2)
= 2(Fy(x)F_ () + F_(2)Fy(x))
= 2(2F; (x)F_(w) + [F-(2), F(2)]) . (7.6)

The commutator is (Q, F_(z)F; (x)Q) = ||F(2)9]|?, where  is the Fock vacuum. Hence,
it is a multiple of the identity and is independent of z (since  is translation invariant).
In particular,

20 f aA?

2 (B2 Bk <
“B+(O)Q” (27!')2 ‘/ "‘”(k” lk‘d k = o s
2w

IVe B0 = 55

/ k()2 |k Pd®k < %{; .

Integrating (7.6) against f(z)d%x and using f(x) < ||f|le and Parseval in the first term
the lemma follows. |

Finally we can perform the proof of our main results.

Proof of Theorem 1.8. We split the total Hamiltonian into two parts [32, 6]
H = H;+ Hy;

with

N .
H=Y [ +Vo+T / ®r(2)B(z)dx
=1 "
Hy=H;~T / Or(x)B(x)d%s ,

where @z is the positive function appearing in Theoremn 1.4 and T is a parameter we will
choose later. We prove stability for the two Hamiltonians separately. In H; we added to
the electronic kinetic energy and the Coulomb potential a local magnetic energy term con-
taining the quantized magnetic field B. All the fields appearing in H commute with each
other and are therefore multiplication operators in the same Schrddinger representation
of F [32]. This would not be true if we would have added to H; a term containing also
the quantized electric field E = —ia[Hg, A], but since the fields involved are only A(y)
and B(x) this enables us to reduce the proof of the stability of Hy to a classical problem,
namely to the problem of non-relativistic matter coupled to an external electromagnetic
field, with the magnetic energy retained only in a neighbourhood of the nuclei. But this
is exactly the content of Theorem 1.4, that yields

H > -C(Z,T)(Z+1)L"Y (N + K) . (7.7)
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We are left therefore with the proof of stability of Hy, that concerns only photons. But
this can also be easily carried out, because we have at our disposal inequality (7.4), that
for f = ®g, recalling Hy o < Hs, yields, for some positive constant C,

r / O (2)B(x)?d*s < CTo?(Hy 4+ o 1A' L3K) .

The parameter I' must be chosen within the ranges allowed by Theorem 1.4 in such a way
that the factor in front of Hy is less than 1. A possible choice is I' < C~la~2, since it
follows that the condition ¢ > I'"1Z* > a?Z* for fixed € > 0 (see Theorem L.4) can be
fulfilled for a2Z* sufficiently small. For L = (A + Z*)~! we have L < Z*~! and

Hy 2 —a 'AK .
These choices for I' and L imply
Hy 2 ~(a 2+ Z*)(A+ Z*)(N + K),
and hence Theorem L8, since 1 < a1 < a2, n

Proof of Theorem 1.9. We extend the strategy of the proof of Theorem 1.8 to include
also the magnetic field gradient. When we split the total Hamiltonian into two parts,

H=H;+ Hy,

we also add the “local energy of the magnetic field gradient”:

N
Hy = Zlﬁf +Vo+T /‘D‘R(‘E) (B(‘”)2 +vL3(V® B)(;l:)z)ds:z: ,

i=1

Hy = Hy — F/(I)R(.’L')(B(.'I;)Z +vL*(V ® B)(z)?)d*z ,

where B = V A A, and P is the positive function appearing in Theorem L.5. Notice that
besides I' we have the possibility to play also with 4. Both are parameters that will be
chosen later. The next arguments are parallel to those used before. Indeed, even if we
add a term containing the magnetic field gradient (V ® B)(z), all the fields appearing in
Hj still commute with each other and are therefore multiplication operators in the same
Schrodinger representation of F [32]. Thus, we can again restrict ourselves to classical
fields, but then the stability of Hy is exactly the statement of Theorem 1.5 (for L <
(Z+1) )

Hi > -C(Z,T,7)(Z+ 1)L"YN + K) . (7.8)

We now turn to Hyy. Stability of this Hamiltonian concerns only photons, for which we
have the two inequalities (7.4) and (7.5) that together yield, for f = &g,

r / dr(x)(B(z)? + 7LV ® B)(z)?)d*s < const Ta® (1 + y(AL)?)(H; + o« 'A'L3K) .
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We may now optimize over I', v, L, within the ranges allowed by Theorem L.5, in such a
way that the factor in front of Hy is less than 1. The resulting choice is as follows: We
pick T <« Z*(1 4 Z*?) ™! and L = vy Y2(A + Z*(Z*o?)~?)~L. As a result, the factor in
front of Hy is indeed less than 1 and

Hy > —Z* oy 3?AK . (7.9)

We finally choose v = z* with 2 as in Theoremn L5, Since z ~ 1+ Z*a® we have L < Z *1
so that (7.8) applies:

Hy > —22(14+1og2) Z2' L Y(N + K) 2 —2°(1 + log 2) Z* (A + Z*(Z*a?)"*)(N + K)) .

This is also a lower bound to (7.9), because of & < 1+ Z*o% ay™3? = az7® < (1 +
Z*0?)75 <1< 2% < 25(1 + log 2). n
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I1. The first Lieb-Thirring estimate

1. The skeleton of the proof

The aim of almost the whole chapter is to establish the first Lieb-Thirring type estimate
(Theorem L6) for the negative eigenvalues —e; < 0 of the one-particle Pauli operator
h= ¢2 —V, V(z) > 0 a non-negative multiplication operator, acting on L?(R%) ® C2. We

reproduce it here for convenience:
Theorem 1.6. There are constants C', C” > O such that for any vector potential A €
leoc (R3 ? R3)

Se<c /'V(z)5/2d31:+ c" / b)YV (5)d% . (11)

The effective scalar magnetic field b(z) = r(z)~? has been introduced in Section L.6:

= [ (L) Bwrey. | (12)

As for the usual Lieb-Thirring estimate (1.3.4), the proof begins with an application
of the Birman-Schwinger principle [63] to the Pauli operator A, but slightly disguised as
another, more useful, form. We namely make use of the number n(X, i) of singular values
A > p > 0 of a compact operator X. Since n(X, i), by defintion, equals the number of
eigenvalues A2 > 12 of X* X, we can write the Birman-Schwinger principle as (see (1.3.5)
and (L.3.6))

N e< 2/00 w( + E)" V3V - E){* 1)dE . (1.3)

The advantage of this equivalent form is that, if we decompose the operator in (1.3) as
K>(E) + K<(E), with

Ko (B)= (' + %+ By VAV - B))*,

(1.4)
K(E) = + E)/* = (I +e b+ B) V(v - B)*,

we can study the contributions of the high and low modes of @2 , which are supposed to
be captured by K (E) resp. K<(E), separately because of Weyl’s inequality [17, 68]

n(Ks + Ko, 51+ 82) < n(Ks, 1) + (K, s9), (L.5)

(we take s; = so = 1/2). The value of the parameter £ > 0 will be chosen during the proof
(in order to improve the positivity of the operator K~ (E)). The first factor in K (E), in
contrast with the operator (¢2 + E)~Y2 in (1.3), which could diverge for E — 0 because of
the existence of zero-modes of ]D, is no longer sensitive to these zero-modes (the new feature
of the spin magnetic case), because of the positive term £ 35 we added, and yields therefore
the same [ V3/2-term as the original Lieb-Thirring estimate (1.3.4), up to constants. The
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second one, which is zero for b = 0 and sensitive to zero-modes, while for large values of
lb it gives no essential contribution, yields the corrections to it due to the magnetic field.
The idea behind the estimates of the singular values of these two operators is the following.
First we rewrite K< with the help of the second resolvent identity and a Combes-Thomas
argument as

K (E) = E"\2R(E)(IF’ +e7%) e 30V /2 Ry(E) , (1.6)

where ||R;(E)|| £ 1, (i = 1, 2) uniformly in E > 0. At this point we have to deal in both
terms with the operator )" + ¢~3b and we proceed by localization. Indeed, we localize to
neighbourhoods of length scale er{x) around each point x € R®. The localization error
arising from this procedure will be of the order £~ 2r(x)~2 = ¢ 2b(x) and we can control
it by playing with e in e~3b(x). Then we find an appropriate gauge where locally we have
A(z) ~ B(x)er(x). This, together with the fact that B(z) and b(z) are comparable over the
length scale er(x) (this comparison is done in some LP-norm and we make use of a Sobolev
inequality and the definition of b(z) itself), enables us to eliminate the electromagnetic
fields A and B completely from l)z =(p-A2—0-B: A% ~ B%%? ~ 20%? ~ £,
|B(x)| ~ b(z), and all these terms can be taken to be errors that we can absorb into £ 3b
by making € small enough. Now we have reduced the operator pz to the Schrodinger
operator p?> = —A and we can use the usual Lieb-Thirring techniques in order to finish
the proof.

The complete proof, whose main lines are given above, is spread over the next five
sections: in Section 2 we discuss the length scale r as well as the partition of unity we use
in the localization process; in Section 3 we localize the Pauli operator, and in Section 4 we
present the appropriate gauge for the electromaguetic field in pz ; in Sections 5 and 6 we
carry out the estimates of the contributions of the high and low modes, respectively, that
together yield the proof of our first Lieb-Thirring estimate. In Section 7, we present an
estimate for higher mowments of the negative eigenvalues —e; < 0 of the Pauli Hamiltonian
h = ¢2 —V, and finally, in Section 8, equipped with our Lieb-Thirring estimate (1.1) and
with some other nice properties of b(x), we prove our classical stability result, Theoremn 1.4
(see Section 1.6), that is the ounly part we left unproved in the proof of stability of non-
relativistic QED of Theorem 1.8.
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2. Localization tools

For the definition of the basic length scale 7 we need a smooth positive, radially decreasing
and symmetric function ¢ : B> — R with [¢(2)d®2 ~ 1, eg. 9(z) = (1 + $22)72
Important properties of this function are

2-Vp(z) <0, 2.1)
{Dy...Dup| S o, (neN) (2.2)

where D; = 8;, (i = 1, 2,3) or Dj = z- V. Our length scale is defined as the solution
r = r(z) > 0 of the equation

r '/v(g)U(y)d3y= 1,

where U = B2 > 0 belongs to L} (R3, (2)d>2), since the magnetic energy (870?)~! [ B(z)?
d3z is finite and ¢ is uniformly bounded from above by 1: ¢(z) < 1. The solution exists
and is unique, except for the case U = 0 (a.e.), where we set r = oco. In fact, the integral
is finite for all 7 > 0 and x € R®, and on the interval r € (0, +00) the Lh.s. is increasing
from 0 to co because of

%r./ sa(y—,_i)U(y)dsy = '/.(w(Z) - 2-V(2)) 1_U(y)d3y >0,

2=(y—z)/

due to (2.1). By the same reason and the implicit function theorem, r(x) is smooth, and,
together with the effective magnetic field b(z) = r(z)~2, enjoys the following “handy”
properties:

Lemma II.1.
a) For any multiindez o € N3, the length scale r is tempered in the following sense:

[6“7'(1')[ 5 7.(:”)“('0'“1) . (23)

In particular, v is uniformly Lipschita.
In terms of the effective magnetic field b this reads

|0°b()] S ba)!?V/H . (2.4)

b) For e > 0 small enough

~—

r{y .
< 1‘(—.L) <2. (2.5)

D] =

le —y| <er(z) =
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Proof of (2.3). Setting z = (y — x)/r(z) we have

0z 1 .
% = —m(l +2zQ Vr) (2.())
and
(1 — m(x))Or(x) = m;(x) (2.7
where

m(z) =r(z )/z Ve()U(pdly,  mile) = r(z )/(0 P)(2)U () d% .
We denote by V,,, (n € N), the space of finite sums of functions of the form
@) = rla) PG [ U,
where ¢ is of the form Dy... Dy and P is a monowial in the derivatives {9“7}q)<,, of

order 0 in the sense that it contains as many powers of d as of r. One verifies r~1V,, C
Vit and, using (2.6), 8;V,, C V41, Moreover, m, m; € Vo. We can now prove (2.3)

for |a| = n + 1 assuming it for || < n, the latter being true for n = 0 because of
(2.2). Then f € V, satisfies |f] < r(«)™™. By applying 8%, (Ja| = n) to (2.7) we obtain
(1 — m(x))8*9;r(x) € V,, and thus the desired bound since m < 0 due to (2.1). |

Proof of (2.5). Setting C = sup, |Vr(z)| (< 1), we have the inequality r(y) < r(x) +
Clz ~ y| as well as the one with & and y interchanged, so that

(1-Ce)r(z) <r(y) <A+ Ce)r(x) . [ |

The localization of the physical space R? to neighbourhoods of radius er(z) is done
by introducing the functions

o) = ra) ™ x(S5) . WweR)

where 0 < e < 1and x € CF(R®) with supp x C {2 | |2| < 1} and [ x(2)%dz = 1. Actually,
they coustitute a partition of unity with a special additional property:
Lemma I1.2.

/’ Jy)dy =1, (2.8)

[ 103,95, @)y S (er(a) et (29)

for any a, B € N3, where @ = 8/0x.

Proof. The proof of (2.9) is similar to that of (2.3). We set z = (x ~ y)/(er(x)), so that
0z 1

—=—-——y{1- ). 2.1

O 57‘(:1:)( €2®Vr) (2:10)
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Let V,,, (n € N), be the space of finite sums of functions of the form
1) = (er (@)~ D P({(ed) rD(2) | (2.11)

where 1) is of the form D;...Dyx and P is a monomial in the derivatives {(€0)“7}|a|<n
of order () in the sense that it contains as many powers of 9 as of r. From (2.10) we obtain
Vi, C Viq1 and hence 0%j,(x) € Vig. For fi, € Vi, (i = 1, 2) of the form (2.11) we
have

[ i@ fay @)y < const (@~ orn / (er(@) (22 (P

because the P;({(e8)®r}), (¢ = 1, 2) are uniformly bounded due to (2.3). The last integral
is seen to be uniformly bounded by means of the change of variable y — z, which also
yields (2.8). n

We now intend to prove the energy estimate mentioned in Section 1.6 and a local
variant of it, that show how the quantity b(z) = r(x)~2 is controlled by U(z) = B(z)2.
Lemma II.3.

a)
/7'(:);)'4(13:1; < /U(:L')dgwA (2.12)
b) Let Qp = {|dist(x,Q) < L} for @ C B and L > 0. Then, for any L > 0 and

Q C R® there is a function ®q 1 > 0 satisfying | Po,Lllec S 1 and |Pa,rlli S 100,
uniformly in Q, L, such that

/ r(z)4d3e < / o (@)U ()d% + QL] - L4 (2.13)
Sy,

The following lemna is at the basis of the previous inequalities.

Lemma I1.4. Let s = g4 (t) > 1 and s = g_(t) < 1 be the two positive solutions of
2 =252 - 1)1 - sV, (2.14)

fort > 0. Then

rto- (L) < vt < o () (2.15)
for all z, y € R3.

Proof. Note that the r.h.s. of (2.14) is strictly increasing (resp. decreasing) on s € [1, 00)
(resp. s € (0,1}), both having range [0, 00). Thus g4 are well defined. By scaling we may
assume r(y) = 1 and y = 0. We claim that

o (oo () 2 0(2) (216)

2—x
9+ (=)
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for all z, z € R3. Integrating against U(z)d®z gives

g+(|ar|)/ (TZ+_(|m>U(Z @z >1,

which, by definition of r(x), implies r( 1) < g4+ (|]), as was to be proved. To prove (2.16),
we raise both sides to the power —5 and multiply them by 2 to reduce matters to the
estimate

9712+ g2 —w)?) <2+ 22, (2.17)

where g, = gy (|z|). Pick a coordinate system in which = = (|z|,0) and z = (21,21) in
R x R%. Then (2.17) reads
02 @+ g7 e~ e)? + 9 %A) <24 2+ A

Since g4 > 1, this reduces to the case 2, = 0 aund, after some algebra, to the quadratic

inequality
—yr 1/2
I+

(657 = V)22 + 2alz + (267701 )~ [z} > 0.

Due to gi/ 21 > 0, it is enough to check the vanishing of its discriminant, i.e.,

alof? = 4(g5° - D[2057(0 - 97 ~ | .

A little manipulation reduces this to the definition of g4 (|z]). A similar argument proves
the other half of (2.15). ]

Proof of (2.12). The inequality

@) %0( L) < r0) 7 (9 (0¥ + 3020 7222) 7 = ri) ()

()

where z = (y — «)/r(y), follows from (2.15) by means of
@ 1\ ("'(w))3/2 1("(%'))‘1/2 2 312 4 Ly (12)" 1222
—_— = + = —= 22> g_(lz + s ga{lz])7 52" .
r(y)® ﬂﬂ(y,(_j) (y) 2\ (y) 9-(|2]) 3 9+(12])

It implies, using the change of variables z — z,
/ 7'(:17)‘330(u)d3w < / g(|2])d3= (2.18)
: () .

for all y € R3. The last iutegral is finite due to g(t) < (1 +¢)~1%/5. This follows fromn
g-(0) = 1 and from g, (t) < #*/° for large ¢. Integrating (2.18) against U(y)d3y yields
(2.12). n
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Proof of (2.13). We begin with the case of @ = {y} consisting of a single point, for
which we claim

[ r@rtees [Tt uebes 1. 21

We assume, without loss, ¥y = 0 and distinguish between SUP|z1<L er{z) > 2L and the
opposite inequality, where € is as in (2.5). In the first case, i.e., er(xg) > 2L for some
lzg| < L, we have |z — xo| < 2L for all |x| < L, which implies #(x) > r(z¢)/2 > ¢ 1L and
Jiojcr 7(@)"*d®z < L' In the second case, i.e., er(x) < 2L for |z] < L, we will first show

(=3 (Y~ E\ 3
_/|1|<L7(J,) 3(,0(7@—))(13.1 < o(y/L) . (2.20)

Integrating against U(y)d%y yields (2.19), even without the L~ term. To prove (2.20), it
suffices that the Lh.s. is uniformly bounded in y, due to (2.18), and bounded by a constant
times (L/|y|)? for |y| > 2L. Indeed, from ¢(z) < 4z~* and from |y — x| > |y|/2 for |z| < L
we have

e gymay L @) L
@ (7)) S e S

and hence the bound just stated. Then the Lh.s. of (2.20) is bounded above by a constant
times min(1, (L/|y))*) < ¢(y/L). The Lhs. of (2.13) can now be estimated by using
xe, (#) S L3 [y, x(lz — y| < L)d®y and (2.19). The result is (2.13) with

o5,

bqr(z)=L"3 /

Jy,

which clearly satisfies the claimed bounds. |
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3. Localization of the Birman-Schwinger kernel

It is from now on understood that ¢ > 0 is small enough.
As one may guess by looking at K- (E) and K (FE), equations (1.4) and (1.6), it will
turn out that it suffices to localize (ﬂ)z +e73b)%.

Lemma IL5. )
W+ > [0, + e ity (31)

For the proof of (3.1) we need some additional tools, that are provided by the following
two leminas.

Lemma IL6. Let U € LY(R3) with ¢ = 3/2, resp. 1. Then
U <35 U007, (3.2)
U < (m) Ul +17%) (3.3)

foralll > 0.
Remark. By the diamagnetic inequality ([63] and (1.5.2)), p* in (3.2) can be replaced by
D? = (p— A)?, that is,

U< 3(5) WUl D* (34)

for U € L¥*(R3).
Proof of Lemma I1.6. By Holder’s and Sobolev’s inequalities we have, for U € L3/2(R%)
and ¢ € H22(R?),

(W, Uy) = [U 2|y < [Ulls/2llellE < 5(5)*21Ulspal VI3
which proves (3.2). The other inequality is just
(%, U) < |UlIglI% < (@m)~ UL ElaglE +%vl3)

where the estimate for ||1)[|w is found in [59] ((IX.25) and proof). |

Lemma I1.7.
DbD S b+ bl + 7207 . (3.5)

Proof. We have

2DbD = D2 +bD? — [D,[D, ] = b+ bjf +2bB -0 + Ab
< PPb+ b + 20|B| + coust b2 ,

where we used ¢2 = D? — B-¢ and (2.4). The proof will be completed once we show
biB| £ eV2(DbD + c~2?) .
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To this end we set X, (z) to be the characteristic function of Izy ={z|lz -yl <er(x)}
and note that supp j, C K,. We may thus decompose

B1 = [ 3Bty
where
61 BIXy 372 < 16Xy llool| By 21X lls S b(y) - ()72 - (er () '/? = /%b(y) -
To obtain this estimate, the first factor has been bounded by using (2.5), which also yields

I?y C K, = {z | |[v — y| < 2r(y)}. The second factor is bounded in terms of (1.2), and
the third one by |K,|'/®. (3.4) now implies

b|B| < 2 [ j,Db(y)Dyj,d%y < 4¢'/? [ j,DbDj,d%y < eY*(DbD + ¢~ 2b?)
Y Y Yy Yy

where we used (2.5), the identity 2j,DbDj, = j;DbD + DbDj: +2b(Vj,)?, as well as the
bound (2.9) for |a| = |8l = 1. n

Proof of (3.1). We expand
(B +e730)2 = B+ e 3(BPb + b)) + %02,

. 4
localize l) ,

P =[G+ 30 G DD @5)
compute the double commutator
Ly, Uiy B = 2y Ui L B} + 1y, BT (3.7)

as well as the expressions

Uy, ] = ligs D1 = i(Viy - D+ D Vi), Ly iy Pl = ~2(V4y)?
iy, P12 = —4(D - V3, )(Viy - D) ~ (A4,)2 + 2V - (ViyAjy) -

The localization error for lf s
1) = [(Vie)éy,
satisfies L < e 2b and (VL)% < %% due to (2.9). Moreover, we have

(P f + fI - 2D P) S e o+ €302
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for f = L or f = ¢ 3b. Indeed, the Lh.s. is

PP = FilPD,Vf o] = -X*X + e PP+ b H(Vf)?
with X = (710)Y/2P+ i(cb1)/2Vf - 5. The contribution to (3.6) of the first term in
(3.7) is thus, up to the sign,
- / %{[Jyv Uy PZ]L ﬁ}dsy = E)ZL + LJ?)Z < 2¢L$+ const (E_lﬂ)ﬂ)-k e75b%)

< coust (e 2 PhP+ %07 < 1e73 ﬂzb + bﬁz) + conste 5b% . (3.8)

The contribution from the second term in (3.7) is, again up to the sign,
- /[Jy, ﬁ]zdsy < const (72DbD + e7*b?) < L&~ ﬂb + lez) +e7%%, (3.9)
where we used the bound on L and (2.9, 3.5). Together, (3.6-9) show that

(ﬂz +e7%)2 > /jy¢4jy(£3y + (7% — conste %02 . [ ]

4. Choice of an appropriate gauge
In the foregoing section we localized (pz +¢73b)2, obtaining (3.1):

_ L -
B +e %) > /Jy(li) + 370075, d%

In this section we are going to locally replace on the r.hu.s. the fields A by a gradient and
b by a constant. We state the result in a concise and elegant way by means of the direct
integral H = j;:i Hd®y = L*(R®; H) with elements ¥ = {4, },crs, ¥y € H. It is a Hilbert
space with respect to the scalar product (¥, ®) = [ d%y (¢, py)u, where ¥, & € # and
{-, .)a is the scalar product in H. The localization is effectively carried out with the linear
map

-®
J:H-H, J= / Ju Py
S
Q.e., J = LGyt }yens). In these terms, (2.8) simply reads J*J = 1. Remark that J* :
H — Hactson ¥ € H as J'U = [Byj,(a)y(x). As already said, we localize to
neighbourhoods where the magnetic vector potential A can be taken to be a gradient (i.e.,

B =V AA=0)and b a constant. Precisely, we want to find a gauge where the operator
@2 + £73b then takes the local form

=~ Vi) ol +e73(y),
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acting on H, where f,(z) is a function to be specified later. In terms of the direct integral
representation we have

- ®
H:H->H, H= H,d3y,
Jrs

(ie, H {¥y}yers = {Hythy }yera: H acts on fibers), and our aim is the proof of

Lemma II.8.
. 4 - . . .
P+ 3¢ )iy 2 JyH;Jy . (4.1)

Our main intermediate result in the proof of (1.1) is then obtained combining Lemma II.5
and Lemma I1.8:
W +e 3?2 2B (1.2)

As a consequence we also have
P ez 0. (4.3)

To see this, we note that J.J* < 1 yields J* H2J > (J*H.J)2. Moreover, X2 > Y2 implies
X > Y for operators X, Y > 0 (notice by the way that the converse is not true).

Our strategy relies on the choice of an appropriate gauge (we exploit of course the
freedom that is left when we work in the Coulomb gauge V - A = 0, without breaking it),
and this is done in the next lemma.

Lemma I1.9. [25] Let K = {z | || < 1} be the unit ball, and K* = 2K. Given a vector
field B € L2(K*,R%) with V- B = 0 (as a distribution), there is a vector field A such that

VAA=DB, V-A=0,
/ A(x)d3z =0 (4.4)
K

and

/ (V® A(x))2d®z < / B(z)*d%z . (4.5)
JK K+
Remark. Sobolev’s inequality and (4.4) imply
1/3
( / A(z)6d3x) < / (V & A(2))2d% . (4.6)
JK JK

Proof. The operator A ou L2(K*, R®) with boundary conditions
n-(n-VYF=0, nAF=0 (4.7)
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on K™ (with normal n) is self-adjoint. Moreover, AF = (} implies ;.. FAF = 0 and,
after an integration by parts, F' = 0, i.e., Ker A = {0}. The equation

-AF =1

has thus a solution F' with ||F|lg,x- < ||Bll2,k+: since A has discrete spectrum and is
one-to-one it has a bounded inverse. We remark that V- F is harmonic on K™ (because of
V:-B=0)with V-F =0o0n0K* by (4.7). Hence V- F =0 on K*. Setting A =V AF
we have V- A =0 and

B=-AF=VA(VAF)-V(V-F)=VAA.

The estimate (4.5) follows from (V ® A(2))? < 2V ® V ® F(x))? and from the elliptic
estimate
IV®V®Flzk S lIFll2,x + |AF|2k- . (4.8)

This, on its turn, can be proved as follows: let j € C§°(R3) be a radially decreasing and
symmetric function satisfying j(x) = 1 for € K and j{z) = 0 for z € R® \ K*. The

Lh.s. of (4.8) is smaller than [V® V ® (jF)|l2 = [[p ® p (jF)||2, by Plancherel. With
p®p < 14 p? and Plancherel again, we find

IVOV® Fll2x S|IFll2x + |85 F |2 -
Computing the last term explicitly,
AjF = (Aj)F +2(Vj-V)F + jAF ,

we easily see that the first and third term are bounded above by a constant times the first
resp. second term on the r.h.s. of (4.8). It remains to estimate the middle term:

3 .
3 / (V-(FuVE)~FAF)d% .
JK*

n=1

3 .
(VA DFIESIVeFle = 3 [ @R =
17K

i,n=

The first term vanishes because of Gauss theorem and (4.7). The second one is bounded
above by %Ff + %(AFN)Z, that is, after summation over n, by a constant times the r.h.s. of
4.8)

By adding a constant vector to A(x) we eusure (4.4) without spoiling the other prop-
erties. |

With the help of the gauge described in this last lemuina we can prove (4.1).

Proof of (4.1). Let A,(x) be the vector potential on K, = {« | |x —y| < 2er(y)} which by
scaling corresponds to the one given in Lemma I1.9 on K. Since VAA = VA A, on K, we
have A, = A—V f, for some function f, on K, (which we extend to R® arbitrarily). Upon
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making the gauge transformation ¢ s e=*fugp, A A -V fy we may assume A, = A on
Ky and H, = (p-0)%+e3b(y). The comparison of p- o and ] begins with

p? =(p-0)= (¢+A o)t = ﬁ-}—AZ-{-{A a,p} ﬂ)z—Az-l—{A,p}ﬁ—B'a,

where we used

{ﬂ),v-a}z{D,v}-!—(V/\v)-a. (4.9)

Note that A-p = p-A due to V-A = 0. We therefore have {4, p}? = 4(p-A)(A-p) < 4p(A%)p
and

pt < 4P + A+ 4p(APp + BY) . (4.10)

Upon multiplying this on both sides by j, we may replace A (resp. B) by xyA (resp. xyB),
where x,(z) is the characteristic function of K, due to suppj, C K,. To estimate
these terms, note that the scale invariant inequalities (4.6, 4.5) followed by (1.2) yield
14%xy 13 < ||B2X;||1 S r(y)~t. This implies, together with ||x,|ls = |K,['/3 < er(y),

1B2xylls Sr(y)~',
142Xy l1372 < 12Xy llslIxyll3 S,
A%yl < 1A% Bllxylls Ser(w) ™! < ry).

We then get from (3.2, 3.3) by taking I = er(y)
Jy (A* + p(A%)p + B%) jy $ gy [ep* + 7 %0(y)*] by
Fiﬂally, we apply this to (4.10) and use (2.5}, so as to obtain

[p*(1 — conste) + e 6(1 — const e®)b(y)?] 4,

Gy [P+ e0@)d, 2 G
> Ljy [+ %)) Gy = 13, H2jy - [



5. High modes

We direct our attention to high modes first. For these modes we don’t need the full power
of our main inequality (4.2), but ouly its weaker version (4.3). We let H® = jﬁg H,S(Py
with H) = [(» — V{,) - 0]* and bound the r.hs. of (4.3) from below by J *HOJ. The
contribution of K> to (1.3) is estimated by means of

(B +e b+ E) S INHA BT < T H + E)U (5.1)

The first one of these two inequalities follows from X > Y implying X~ < Y1 for
operators X, Y > 0. The second oue cowes from this and

XTI > (Xt (5.2)

for J*J = 1. This inequality {60, 67] is J*XJ > J*X'/2[1X'/2] for the orthogonal
projection Il = X ~V/2J(J*X~1J)~1j*X~1/2, By (5.1) we have

n(Ks(E), ) < n((H® + E)~"2J(V - E)}/*, const)
which is further estimated thanks to n(X,1) < tr((X*X)3?):

(K> (E),Y) S ee[(V — B)Y2J*(H® + E) ' J(V - E), J*(H® + E)"'J(V - E)}/?]

= / teljy gy eIV — B) (0 + E) Y jygye v IV - B) (0 + E)dPyd®y
: (5.3)

where we used H) = efvpe~ifyv, since V, A V,f, = 0. By the proof of the usual Lieb-
Thirring inequality (see 1.3.6-9), the trace in (5.3) is bounded by (87) *E~Y2 [(V(x) —
E)%jy()? jy (x)2d, that is, the contribution of the high modes is, with (2.8),

(K5 (E), L) < B2 /(V(a:) - E):ds. (5.4)
After integration over E we obtain
.00 .
/ (K> (E), 3)dE < / V()&% ,
J0O o

i.e., the first term on the r.h.s. of (1.1), as expected.



6. Low modes

We turn our attention to the low modes, where spin matters and causes some technical
difficulties. It is here that we use (4.2), but before we have to prove

Lemma I1.10. There are two bounded operators Ri(E) and Ry(E) satisfying ||R:i(E)| <
1, (i = 1, 2) uniformly in E > 0, such that

K (E)= E"V2Ry(E)(JF +¢%b) e~V /2Ry(E) . (6.1)

Proof. Using that X~1/2 =1 [*,~1/2 X + )"ty for X > 0, together with the second
resolvent identity X ! — (X + Y) XY(X +Y)"! we obtain

1 [ du -
K<(E)=;T-/0 “1/2JDZ+E+;L y~le3 ¢2+e b+ E+p)"(V-E)Y?.

We will prove
b + 7%+ E)"' = R(E)(IF' +¢~%b)~'b (6.2)

with supg.o ||R(EF)|| S 1, such that K.(F) is of the form (6.1) with
EI/Z
R\(E) = /0 1/2(¢2+E+u) 'R(E+p)
Jmm:v4WV—mW,

which are indeed bounded as

EY2 % dy _
ImEN 5 7 [ SEE T =1 RGBT

The proof of (6.2) runs as follows: we set f = logb and introduce the boosted Hamiltonian
(10]

Hy =bPlb ' =/ Pl = [(D+iV)-0]?,
ReHy = (Hy + Hp) = I - (V)%

With these notations, R(E) = b(}f’ +&~3b+E) b= (I +¢73b) = (H;+¢ 3+ E)" (I +
€73b) and the bound (6.2) is equivalent to

(I +e%0)2 S (Hy +e3b+ E)(Hy +e b+ E)* (6.3)

uniformly in E' > 0, because ||R||? = |[RR*||. Here the r.h.s. is (Hy + ¢ 3b)(H; +e73b)* +
E? + 2ERe(H; + ¢7b), with

Re(Hj+e3b) = I +¢73b— (Vf)2 > I’ + (¢ — const )b > 0
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due to (2.4). Tt thus suffices to prove (6.3) for £ = 0. We write H; = 11)2 + X with
X=i{Po-VI} = (Vi) =i{D,Vf} ~(V)’ =2iD-Vf g,
where we used (4.9) and set g = Af + (Vf)2 We can now estimate

(Hy +e73b)(Hy + £ %)
2 ~37\2 -3 * -3 *
=P+ + (B +e )X+ X +e7%) + XX
=L +e7%) - XX*+ L + e b+ 2X) (I + ¢ 3+ 2X)"
> L+ - XX

By using (2.4, 3.5), the last term can be estimated as X X* < 8D(Vf)2D +2¢2 < DbD +
b < ¢2b + bﬂz +e7 2 < 53@52 + ¢73b)2. This concludes the proof of (6.2). ]
The form of K.(F) found in Lemma I1.10 implies

W(K<(E), 1) S n((JF +e3b) e 30V/2, const E/?) , (6.4)

because of n(XR, ), n(RX, ) < n(X,||R||"!A). The coutribution of the low modes is
then estimated by applying to (6.4) the identity [° n(X, p*/?)dp = tr X*X:

/ (K <(E), )dE < e w(VI2U(JF + ¢ 35)2v1/?) . (6.5)
0
We see here where inequality (4.2) comes into play: from it and (5.2) namely follows
(F +e30)"2 < (JHA) < P H2

aud inserting this inequality into (6.5) we have

.00 .

/ n(K<(E), })dE S e / tr(j, VY/20H 2V 1% )dy . (6.6)
0 .

Upon inserting H, = efv (p? + e73b(y))e v, the trace under the last integral equals

| / 'y ()2V (2)b(e)2d% - (27) | / [k + e 30(y)] 2%
= (87r)*153/2b(y)_1/2/jy(:c)zV(a:)b(w)Z(P:z:,

where b(y)~/% < 2b(2)~Y/2 for & € supp j,, because of (2.5). From this and (2.8) we see
that (6.6) is bounded by a constant times e %2 [ b(2)%/2V ()d®z, i.e., by the second termn
on the r.lus. of (1.1). The proof of (1.1) is therefore complete.
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7. Higher moments

There is an easy way, due to A. Laptev [65], in order to express moments of order higher
than 1 of the negative eigenvalues 0 > —e; = —¢;(V) (we sometimes indicate explicitly,
but in this section only, the dependence on the potential) of the Pauli operator h = ' —V
as a function of their sum. Let us call M, (V) = 3} e;(V)7 the moment v (> 0) of the
eigenvalues ¢;(V). Higher moments M, (V), v > v, satisfy

MV) = gy [0 MV = (7.1)

with a,, 01 v=7=1(1 — 8)"ds = B(v — 7,7+ 1), B(z, y) being Euler’s Beta function.

Proof. Lettmg, e; > o we can easily check that
0<e(V)y—p=e(V-p). (7.2)

On the other hand, the v-th power of the eigenvalue e;(V') can be expressed as

{oo]
ei(V)” = ayq /0 u”_"_l(ei(V) - [L)}d[& ,

as we can see by making a variable transformation. Summing over ¢ and using (7.2), the
claim follows. n
Theorem I1.11. There exist two positive constants C1 and Cy, depending on v such
that the moments of degree v > 1 of the negative eigenvalues —e; < 0 of h = EZ -V satisfy

der <, / V(&) d3z + Ca, / b(«)3/2V (2)* B . (7.3)

Remark. We can give the explicit dependence of these constants Cy,, and Cs, on v, but
since they also involve the value of the constants appearing in the estimate (1.1) for the sum
of the negative eigenvalues, that are not known, their importance is relative. Nevertheless,
we find

/1 T(v+1) _
C - C \/_m Cz,,, = C . (74)

In these expressions, C’ and C” are the constants appearing in front of the first resp. second
term in (1.1), while " denotes Euler’s Gamma function.

Proof. The case v = 1 is Theorem L.6. For v > 1 we insert into the r.h.s. of (7.1) the Lieb-
Thirring type estimate (1.1) for the potential (V —pu),, since 4’)2 —-(V-p) 2 ¢2 -(V-1)+,
and obtain

{o.9) o
M,(V) < C'ay, / dpp? / Ea(V(z) - wY?
J0O N
+C"ay, / d"ﬂ"_zfdgw(V(z) _ [L)+b(.’c)3/2.
JO
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By a substitution of variables, the first term equals B(v — 1,7/2) [ V(2)¥/*d3%, while
the second integral is seen to equal the second term in (7.3), with a constant 1 in front.
Using the expansion of the Beta function in terms of the Gamma function, B(x,y) =
T(@)T ()T (x + y)] !, the computation of Cy, in (7.4) reduces to a trivial manipulation.

|

8. Local stability of matter in external magnetic fields
In this section we are concerned with the proof of local stability of matter (Theorem 1.4),
where we exploit our Lieb-Thirring inequality (1.1).

Theorem 1.4. Let R = {Ry,..., Rk} be the collection of all the nuclei and L, Z, T > 0.
Then there is a positive C(Z,T'), ane > 0 and a function ®g(z) > 0 with

[erllee ST, [orl: S LK, (8.1)

uniformly in R, Z, such that the Hamiltonian

N .
H=Y P +Ve+T [ or@Baps, 62)
i=1 .

acting on Hy = AVH, H = L*(R®) @ C?, satisfies
H>-C(Z,T)Z+1)L7YN +K) (8.3)
for arbitrary L < (Z 4+ 1)71, provided T71(Z + 1) < ¢, where

C(Z,T) =const [[(Z + 1)1+ (Z + 1)} .

Proof. The reduction to a one-body problem is as in Theorem 1.2, eq. (1.3.11), and the
subsequent application. Therefore we partition the physical space R® into Voronoi cells
Ij={«]||t—Rj| < |le—Ri|fork=1,...,K}, (j=1,..., K). Let D; = min{|R;~Ry] |
J # k}/2. Then, for any v > 0, the Hamiltonian (8.2) is bounded below as

N K
72 B '
H> E hi - vN + 5 g D; by F/ O (x)B(x) d3s , (8.4)
j=1 .

i=1

where h = ¢2— (W —v)4, and W (x) is the one-particle potential introduced in Theorem 1.2
satisfying W(z) < Qlz — R;|~! for x € T, where Q = Z + V2Z + 2.2 (see (1.3.12)). This
implies supp(W —v); C {z|e € Ty, |o — Rj| < Q/v} € Qg = {a|dist(x,Q) < L} for
Q=Rand v =QL™L.



Application of (1.1) yields
N
Y ohi>-C' / W (x) = v)5 2 d¥ - C" / b(z)¥ W (x) — v)Pa,
=1 " "

where the first integral is bounded by const @3 ~1/2K (see (1.3.13)), i.e., since L < (Z +
1)~tand Q < Z +1, by const Q*/2LY/2K < QL K. We estimate

. K
z)3/2 z) = V) ydz = 2)3/2 z) — V) dPz
/Q W)W (z) —v) 4d ;/F o YOV @) )

by splitting the iutegrals over I'; into an inner integral over U; = {u | |v — ;| < 1_~)J} and
an outer integral over (I'; \ Uj) N €1, where D; = min(D;, d - r(R;), L} with some small
d > 0. Note that U; C r, by definition. In view of (2.5), the inner integral is bounded
above by a constant, times .

b(R;) / W(a)ds < r(R;)~® - 20QD2 < 26%QD; 1
Ju;
whereas the outer integral is bounded by
(3Q61b(z)® + L Q36 W (2)*)d% < 3 Q6! / b(z)?d% + n0°QD; .
AU/, (C;\U;)NQ.

Moreover, we have

D <ot g bz)d®s + Dy + L. (8.5)
Ui
In fact, again by (2.5),

D;
or(R;)

)4
so that the r.h.s. of (8.5) is bounded below by a constant times 5}1[([)]- /6r(R;)* +
D;/Dj + 5]- /L > ]_~)]'1 Collecting these estimates and (2.13) we find

64 / b(a)2d®z 2 67*b(R;)? - 42D} > D5
o Uj

o / b(@)2(W (z) — v) , d

. K
<o | / O (2)B(x)?dPe + Q53]§ D} +QE + FILTE)  (86)

for some constant C. We may assume Z > 1, since for Z < 1 the result follows by
monotonicity in Z. Since Q@ < Z + 1, we may choose 4 so small that CQ&* < Z2/8 (see
(8.4)) for all Z > 1. Then CQ6~* < T for sufficiently small QT . The last term in (8.6)
is thus bounded above by I'Q~! + ZTZQ_I SI(Z+1)1+(Z+1),inviewof Z+1 < Q.
Not forgetting the termn proportional to N in (8.4), i.e., —const (Z + 1)L~ !N, we obtain
(8.3) with the corresponding constant C(Z,T'). |
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III. The second Lieb-Thirring estimate

1. Skeleton of the proof

In this chapter, that has the same structure as the previous one, we turn our attention
to the second Lieb-Thirring type inequality given in Theorem L7, that, together with the
reduction of the Coulomb potential given in Theorem 1.2, is one of the basic tools employed
in the proof of the stability result given in Theoremn [.5. The combination “reduction of
Ve + magnetic Lieb-Thirring estimate” is in fact again the carrying structure of the proof,
as in Chapter II. Nevertheless, we make use here of two length scales, r and [ (they were
both introduced in Chapter I):

7(11_) :_/.w(l'lr(x,) ) By, (L1)
l(ulf)S / (z( 3 ) (Ve By (1.2)

Let —e; < 0 denote again the negative eigenvalues of the one-particle Pauli operator
h= ;ﬁz — V. The Lieb-Thirring estimate suitable for the purpose of this chapter is

Theorem 1.7. For sufficiently small € > 0 there are constants C', C" > 0 such that for
any vector potential A € LE (R, R%)

Y0 [V @+ B+ ¢ [ Vr@ e + Bads, (.3)

where E(L) is the average of |B(y)| over a ball of radius el(x) centered at x.

The proof of (1.3) is close in spirit to that of our first Lieb-Thirring estimate (II.1.1),
but is modified in such a way as to estimate the effects of a non-vanishing magnetic
field gradient on top of the Lieb-Thirring inequality by Lieb, Solovej, Yngvason (L.6.5),
rather than to estimate the effects of a non-vanishing magnetic field on top of the usual
Lieb-Thirring inequality (1.3.4). We begin like before by applying the Birman-Schwinger
principle in the form (11.1.3),

Ye<2 /'oo (B + By VAV - B)/* 1)dE, (1.4)
J0

but then we “regularize” the operator on the r.h.s. by means of the new effective field
P(x) = l{z) ' (r{z)"! + {{z)!) and not of b(z) = r(x)~2, as we did in Chapter I1. The
operator whose singular values bigger than 1 we want to estimate is now split into the sum
K>(E) + K<(E) of

K>(E) =+ 3P+ E) VAV - EB)Y?,

K (B)=[(f + B)"'2 =~ (I + 2P+ B) V(v - B)Y*

58



This last operator can again be rewritten as
K<(E) = EV2RUE) I +¢73P) e > PV Y2Ry(E) (1.5)

where |[R;(E)|| < 1, (i = 1, 2) uniformly in E > 0, and by means of Weyl’s inequality
(IL1.5) we have to estimate the contributions of K5 and K. to (1.4) separately. Qur
first step is once again a localization of the problem, but now over the length scale that
“measures the variation of B”, i.e., over el(wx), for each point x € R®. This procedure
produces an error that is of the order of e=2/(z)~2 < e~2P(x). The second step is a local
comparison of the physical magnetic field B(x) with a constant one (that we denote by ﬁ),
namely the average of | B(y)| over the neighbourhoods we are considering, that is balls of
radius el(z) centered at . Decomposing B = B + B into a constant part B=VAAanda
varying part B = VAA, we find a 1 gauge, where A(z) is locally comparable with [V® B{(z)|,

ie., |A(z)| ~ [V@B(@)|l(z)?, or Ax)? ~ (V@B)(z)*U(z)* ~ () ~®U(x)* = I(2) 2 < P(a).
In this way the difference between the full Pauli operator ¢§z and [(p - A) - 6]? can be
controlled by e~3P(z) (for ¢ small enough), the term that we added to ﬂ in K5 and K.
Thus, we are left with a Pauli operator with constant magnetic field {whose spectrum is
described by the Landau bands E = p2 + 2u]§i, where v = 0,1,2,... and B is chosen
to point in the 3-direction), and we can handle this problem like Lieb, Solovej, Yngvason
did [51]. In both operators K> and K we split the contributions coming from the lowest
Landau band from those coming from higher bands. In the lowest band [(p— 4)- a)? = p3,
while in the higher baunds

(p—A) - oP=@p-A)?-0-B> (11 A)?, (1.6)

because —o-B > —1(p— A)2. This comes from the fact that on the orthogonal complement
of the lowest Landau baud, v > 1, we have (p — 2)2 -0-B> 2u|§l > o - B. So, in one
case we are back to the non-magnetic case, in the other one we have instead the “magnetic
Schrodinger operator” (p — 2)2, for which we use the diamagnetic inequality to relate it
to the non-magnetic case as well. Since we don’t make use of the diamagnetic inequality
in the form given in (I.5.2), we state it in a more general way:

Lemma IIL.1. Let A € L} (R®) with V- A =0 (in distributional sense). Then
Jemttr- Ay | < ety (1.7)

for all p € LA(R3).
Proof. Set V =0 in (15.9) of [63]. ]

Corollary. Let E > 0. Under the saume hypotheses of Lemma III.1, the diamagnetic
inequality for the resolvent reads

(@ — 4%+ E) 9| < (0* + E) 'yl (1.8)
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or, equivalently, for the resolvent kernel

[((p— 4+ E) Y(a,2')| £ @°+ B) w—2'). (1.9)

Proof. For R 2 E > 0 and an arbitrary operator X > 0 on L2(R?), we have
OO
(X+EBE) Y= / e Bte~Xydt, Ve LlXRY).
Jo

Applying this equality to the Lh.s. of (1.8), we immediately obtain the r.h.s., if we recall
that [e"P*| = e F%. The second inequality follows easily from the first one. |

In the next sections we pass to the proof of (1.3), but since it closely follows that
of (I1.1.1), we will often only indicate the small changes that we must introduce into the
proofs of Chapter II, without reproducing them in their eutirety.

2. Localization tools

In addition to the length scale r, about which we have being talking thoroughly in Sec-
tion 11.2, we define a new length scale (see (1.2)) as the solution { = I(z) > 0 of the
equation

3 '/‘<p<y;—11)(V®B(y))2d3y =1. (2.1)

The function ¢ : R® = R, ¢(2) = (1 + 322)72 is the same as in Chapter II and satisfies
again

z2-V(z) <0, (2.2)
[D1...Dypl S, (neN) (2.3)

where D; = 3;, (i =1,2,3)or D; =z V.
The solution of (2.1) exists and is unique, except for the case V® B = 0 (a.e.), where
we set [ = oo. [ as well (see Section I1.2) is a smooth function of x € R3.
The nice differentiation property of » (I1.2.3) and its commensurability (I1.2.5) carry
over to I(x), while actually, property (11.2.3) for 7 can be sharpened.
Lemma IIIL.2.
a) The length scales | and r are tempered in the following sense:

10°U)| S U)™ 0D, (la] 2 0) (2.4)

(a3 32
[9%r(2)) S 7'(;1:)7(“"_” min (1, (;8))) > , (el > 1) (2.5)
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where « € N® is a multiindex. For P(x) this (and in particular the last improvement)

wnplies
[VP(2)| S P(a)l(x)™!,  |AP(2)| S P(x)®. (2.6)
b) For € small enough we have
LR CINY @7)
|z —y| <el(z) = 1 ISJ(J;) .
2 < Pz) <2 (2.8)

Proof of a). We omit the proof of (2.4), since it consists of a minor adaptation of that
of (I1.2.3). For r(x) > I(z) (2.5) reduces to (I1.2.3), so that we may assume r(z) < l(z).
We discuss this case using a variant of the argument given in Chapter II. We recall that it
was based on the equation

(1 = m(x))dir(x) = m;(z) , (2.9
where
m{w .L)/ z- Vo(2)B(y)%d%y , mi(z) =7 L)/(d,cp) (v)%d% ,

with z = (y — z)/r(x). Moreover, we denoted by V,,, (n € N), the space of finite sums of
functions of the form

[(&) = r(z)~ =D p({oer}) / $() By,

where 9 is of the form D;...Drp and P is a monomial in the derivatives {97} q1<n
of order 0 in the gsense that it contains as many powers of 9 as of . In addition we
cousider here the subspace ‘7;, C V,, obtained by restricting f to satisfy: (i) some 8°r with
1 < o} < n occurs among the factors of P; or else (i) Dy = 9;, i.e., ¢ = By with 1 of the
form previously stated for . One verifies that 8;V,, C V,.J, 1 and r~ V,, C 17,.+ 1-

The induction assumption states that (2.5) holds for 1 < |a| < n. (It is empty for
n = 0). We now prove it for n + 1 instead of n. First, we claim that f € V,, satisfies

1@l 50 (7)"

In case (i} this follows directly from the induction assumption; in case (ii) by integration
by parts:

/' 8 (2) B(y)*dy = 2r(z) / F()B(y) - dBy)dy ,

which by (2.3) and the Cauchy-Schwarz inequality is bounded in absolute value by

(o) ([ e@ntran) ([ e e Bpen) " < v (1)
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In the last estimate we used that the first integral equals »(x)~!, whereas the second may
be estimated by replacing 2 by (y — x}/l{z), since r(x)~1 > I{x)~! and ¢(z) is radially
decreasing. Hence that integral is bounded by [(+)™3. We can turn to (2.5): Applying
8%, (|a| = n) to (2.9) and using m € Vy we obtain (1 — m(x))d*dr(x) € 8*m; + V,,. The
last set is 17,. (even for || = n = 0), since m; € {70. The result follows with . < 0. |
Proof of b). The proof of (2.7) is the same as that of (11.2.5). Combining (2.6) with (2.7)
we find that for |z — y| < el{x) we have |log P(y) —log P(x)] £ ¢, and hence, by the mean
value theorem, (2.8). [ ]

A partition of unity based on the length scale {(x) {(we localize now to neighbourhoods
of radius el(z) around each z € R®) is

SN 2372, £ Y , 3

i) = @) (52) . wer)
where 0 < € < 1 and xy € CP(R?®) with suppx C {z | |2| < 1} and [ x(2)*d3z = 1.
Analogously to Lemuna I1.2 we have

Lemma III.3. i
/jy(a:)21l3y =1, (2.10)

[ 1925, @0%, ()% 5 (et Gt (2.11)

for any «, B € N?, where & = 8/dx.

The length scale {(«x)} will be the one most frequently used in the following sections. At
one point however (in the proof of Leimmna II1.6), we will use the length scale A(z) defined
by Ma)™! = 7(2)7! + I(x)~ . Tt also satisfies (2.4) and (2.7) (with ! replaced by A), and
Lemma I11.3 applies accordingly to the partition based on A(x).

At the end of this section we discuss the equivalent of the magnetic energy estimates
(I1.2.12) and (I1.2.13), that relate ! to the physical quantity VQ B.
Lemma II1.4.

o)

/ W) 8d%x < /(V ® B(x))?d®x . (2.12)
b) Let Qp = {x|dist(x, Q) < L} for @ C R® and L > 0. Then, for any L > 0 and
Q C R there is a function ®g 1 > 0 satisfying || Pa rlle S 1 and |@olli S Q]

uniformly in Q, L, such that

/‘ I(z) 32 < / Do (2)(V® B(#))2d® + |Qr|L7° . (2.13)
Sy, ’
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Proof. The same proofs as for the corresponding estimates (I1.2.12) and (I1.2.13) for »
are valid once the following remark about the proof of Lemma II.4 has been made: We
replace there r(x) by I(z). Because of g;(jx|) > 1, (I1.2.15) implies

P
!l+(|1l7|)390(m) > (2),

which after integration against (V ® B(2))2d%z implies I(z) < g4+(|z]). Then the proof

continues as before. [ |

3. Localization of the Birman-Schwinger kernel

It is from now on understood that ¢ > 0 is small enough.
Analogously to Chapter II, we must localize the operator (¢2 +e73P)2,

Lemma IIL5.
(B +e7%P)% > / gy (B + Le0P%),d% . (3.1)
The tools we need are inequality (I1.3.4), namely
U <33 Ul D* (3.2)

for U € L¥2(R®), and the next lemma, that plays the role of Lemma IL.7 in Chapter IL
Lemma IIL.6.

DD S PP+ PP +e7 P2 (3.3)
Proof. The first step towards (3.3) consists in showing
DITPD S P2+ 172 + 7202 (3.4)
Similarly to Lemma I1.7 its proof reduces to that of
I72|B S V3 (DI72D +e72P%) . (3.5)

This is again proved as in Chapter II, except for the fact that we use here (and only here)
a partition of unity based on the length scale eX(z) as discussed at the end of Section 2,
with A(z)~! = r(&)~1 + {(z)~1. In particular, we now set K, = {x | |z — y| < eA(z)} with
characteristic function x,. It then still holds that

1721 1Xulls/2 < 117Xy lloo | BRyll21Xylle < 1) 2 r(y) =2 - er(y)V/? = € 2iy) 2,

where: we used A(z) < I(z) in estimating the first factor; A(z) < r(z) and (1.1) in the
second; and again A(z) < r(z) in the last one. We hence obtain, just as in Chapter II,

12|B V2 (DIn?D 172 / (Viy)2d%)
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with the integral bounded by (eA(x))~2 due to (2.11). The proof of (3.5), aud hence of
(3.4), is completed by noticing that 17222 = P2, We now come back to (3.3). We have

L(P'f+ [ - 2DF ) S ePPP+ e~ P2
for f =172 or f = P. Indeed, the Lh.s. is

HP D= TP Vf 0] = -X*X + PP+ 'P~H(VS)?

with X = (eP)V/2P+i(eP) Y2V f -0 and (V£)? < P due to (2.10) resp. (2.6). Taking
f =172 we first obtain from (3.4)

DI2D S PUP+epPP+e 'P? + e 2P? < 2APPP+e 2P?),

and then, with f = P, we obtain (3.3). |

Proof of (3.1). The localization argument begins as that given for (I1.3.1), with b replaced
by P, i.e., we have

P = [Gul'ss + H Ui i P15} + G BP)
with the estimate
- / %{[Jy’ [jy7¢2]]a 4172}413:!/ < %Cvs(ﬁp + P¢2) +e i p?
for the first localization error. The other one is estimated similarly:
- /.[jy,l)z]zdsy <coust (e 2DITID+ 7Y < %5*3(p2p + p¢2) +etpP?

by using (3.3). The conclusion then is as in Chapter II. ]
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4. Choice of an appropriate gauge

The strategy of this section is to locally replace in the operator on the r.h.s. of (3.1) the
magnetic field B = V A A by a constant magnetic field and P by a constant. This step
is performed by introducing, once again in the direct integral framework, the same linear
map (but the underlying partition of unity is based on the new length scale [)

- D -®
J:HoH=[| Hdy, J:/ Jyd3y
JR3 JRE

(see also Section I1.4), and the Hamiltonian

~ ~

o~ o~ .® . .
HH-H, H= / e H e fuddy
JR3

where H, = H(By) +¢*P(y), H(B) = [(p — §B A x) - 0], f,(2) is a function to be
specified later and B, = |[K,[|™! || K, B(z)d®z is the average magnetic field in the ball

Ky = {z || —y| < 2l(y)}. In summary, H acts on fibers of # as a Pauli Hamiltonian
with constant maguetic field. The comparison of l)z with this Hamilton operator is given
by
Lemma IIL.7.

BB+ 3Py 2 dye v e~ g, (4.1)

The combination of Lemma IIL5 and Lemma IIL.7 yields the important inequality
(B +e73P)2 2 J* A2 (4.2)
together with its weaker version (see (I1.4.3))
P re®P2JH). (4.3)

The key point is again a “magnetic lemma” stating that there exists a gauge where this
comparison is possible.

Lemma IIL8. [25] Let K = {x | |z| < 1} be the unit ball, and K* = 2K. Let B €
L?(K*,R%) be a vector field with V - B = 0 (as a distribution) and

/ B(z)d*z =0. (4.4)
K
Then there is a vector field A such that

VAA=DB, V-A=0, (4.5)

and
[Allo,x S1IV @ Bll2,k- - (4.6)
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Proof. A solution A to (4.5) is constructed as in Chapter IL, i.e., as A = V A F, where
F is the solution of —AF = B with boundary conditions (IL4.7). By ||F|2,x- < || B]l2,k+
and the elliptic estimate
IVEF o,k S IFl|2.k- + [ AF |2, + |V ® AF|J2,k-
(which has a similar derivation as (I1.4.8)) we have
1VE2 A2,k < I1Bllz,kc- + 1V ® Blla,xc~ S IV ® Bllz,kc- -

In establishing the last inequality we used that a Poincaré inequality (see e.g. [69], Theorem
4.4.2) applies to || B|ls, k-, due to (4.4). Another Poincaré type inequality ([69], Corollary
4.2.3) yields
14— @ = Blloo,x S VE2Alf2,x

for o = |K|™! [ Ai(w)dBx and B;; = |K|7? i 0;Ai(x)d3z. This proves (4.6) for A —
« — pr instead of A. Equation (4.5) is preserved uuder this replacement, since it implies
ﬂ'ij — ﬁ” =0 and tl’ﬂ =0. |
Proof of (4.1). Let B, = |K,|™! JK,, B(z)d3z be the average magnetic field over K, =
{# | [z~ y| < 2l(y)}. It is generated by the vector potential A,(x) = 1B, A (x ~y). On
the other hand, let Avy (z) be the vector potential of By () = B(x) — By, which by scaling
corresponds to the one constructed in the previous lemma. It satisfies

1Ay ()] < /21y~ (4.7
for ©+ € K, because of (1.2, 4.6) (pay attention: (4.6) is not scale invariant). Since

B=VA (A + Ay), we may assume, upon making a gauge transformation, A = 4, + A
The Pauli operators corresponding to ﬂ)y (p— Ay) - o and P are related as

P= B+ Ay-0) =P+ (A + (A, 0, P} = P + (A, + {4, D} + B, 0.
This and V - A, = 0 yield
P <A’ +(4,)* + 4D(A,°D + (B,)) .

After multiplying from both sides with j, we may replace A by XyA and similarly for
By, where x, () is the characteristic function of K. Note that besides (4.7), we have by

(1.2) and |jxylls < €l(y)

IBxyllsr2 < 1Bixyllslixylls S 10V @ BYxyll1llxylls S elly) 2.
We can thus estimate, using (3.2),
Gy S o (B + €3(y)~ + eDi(y) D),
and finally, using (2.7, 2.8, 3.3),
Gy, + €7 P()) 5y < 25,(B, + € P(y)*)iy
S (P + 17 P(@)? + eDl(z) 2D)j, < j,(I’ +e7°P)%, . W
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5. High modes

The contribution of high and low modes results in a combination of our approach of
Sections I1.5 and IL6 with that of Lieb, Solovej, Yngvason [51]. Let

~ ~ —~ -~ @ . .
H :H-H, H°=/ e H (B e fvdPy .
RS

Then H > HO and, as in Chapter II, we obtain from (4.3)
WK (E), ) < n((H® + E)12J(V — E)}/?, const) . (5.1)

From now on the computation closely follows the line given in [51], where the contribution
of the lowest Landau band is split from that of the higher bands. We set

A~ .® . .
MA-A,  fi= [ ehip)ehay,
Jra
where TI(B) is the projection in L2(R*) ® C? onto the lowest band of H(B). Its integral
kernel is

B B B
I(B)(z,2') = |—2-;|exp [z(.zl Az ). 7" (zL - :L’_L)2|—4—|] §(xs — a5)Pt, (5.2)
in coordinates « = (x1,x3) where B = (0,|B|), and P* = (1+03)/2 is the projection in C2
onto the subspace where B-o = |B|. We remark that II commutes with H°. The operator
appearing on the r.h.s. of (5.1) is then split as (H0+E)'1/2.I(V—E)i/2 = Ko(E)+ K\ (E),
with

Ko(E) = (H + E)"V2lJ(v - B)Y?,
Ki(E) = (H + E)"2( - ThyJ(v - E)}/?,
so that by Weyl's inequality (IL.1.5) it suffices to estimate n(K;(E),const), i = 0, 1)

separately. The first term is bounded from above by a constant times tr Ko(E)*Ko(E),
that, on its turn, equals

[ @otlinv - BB EHB,) + BBV - )%,
= [ #oydai @ (V@) - ) e B, @ )63+ B) o 20)i(es — 51)

because of (5.2), of II(B)(H(B)+ E)~! = I(B){(p% + E) ! (in the coordinates used there)
and of the cyclicity of the trace, that made the gauge transformation e*fv disappear. Using

.00 1

0h+B) Mana) = em) " [P+ B) ap = s B,
o0
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we end up with
n(Ko(E), const) < (4nEM2) 1 / Bydis (V) - B)riy(0)?]By] . (5.3)

For the second term we use inequality (1.6), which states that %H (By) > D,‘j =(p— %By A
)% on the orthogonal complement Ran(1 — TI(B,)) of the lowest Landau band. We hence
get
70 z@z‘f 2, ~ify 13, — IJ =
H” > 3'/”(3 evDevdiy = Hg (5.4)
on Ran(1 — II), as well as (1 — (A + E)~1(1 — 1) < (Hg + E)~, because {1 and fig
commnute. Together with n(X,1) < tr((X*X)?) this yields

n(K1(E),coust) S te[(V — E)Y2J*(Hs + E) '\ J(V - E)yJ*(Hs + E) ' J(V - E)Y?)
= / trfjy gy e eIV~ B) o ( %Di +E) i jpe v iv(y —E)+(%Dz, +E)y " Nd3yd3y.
Usi'ng the pointwise diamagnetic inequality (1.9) for the resolvent kernel
(%Dz + By Y, a:')l < (%p2 +E)y Y -2, {6.5)
the trace under the integral is bounded as in (I1.5.3) by
(o) [V - BRa i@

This leads to n(K1(E),coust) < E~Y2 f(V(z) —~ E)2d% by (2.10) and, together with
(5.3), to

00 . .
/ n(K>(E), $)dE < / B V()32 (V(.L) + / d3y]By|jy(w)2> . (5.6)
Jo . .

In order to put this result into the form given in Theorem 1.7 we estimate

B < K [ 1B@IE = K, [ 1BG00 -] < 2e1)z
JK, .
where 8(A) is the characteristic function of the set A, so that

[ Puiliar < [ EBE) [ @00 - vl < i 6)

We recall that supp j, C {« | |z —y| < el(x)}. Using again (2.7) and the triangle inequality
|# — 2| < |z~ y| + |2 — y| we bound (5.7) by a constant times

7 [ 2B e 21 <sel(a) [ yiyter? = 1Kl 2 B(2)],

S —z|<bel(x)
i.e., by B(x) after a redefinition of e:
[ @i s Ba) (5.8)
The bound (5.6), after application of (5.8), corresponds then to the first integral term in

(1.3).
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6. Low modes
The first necessary step is as in Chapter II the proof of (1.5).

Lemma IIL9. There are two bounded operators Ri(E) and Ry(E) satisfying | Ri(E)|| <
1, (i =1, 2) uniformly in E > 0, such that

K (E)=E YV?Ry(E)(J’ +¢7°P) e *PV'/?Ry(E) . (6.1)
Proof. The proof can be taken over literally from that of (IL.6.1), after replacing b by P.

To be checked however is that f = log P satisfies (V)2 <172 < P and |Af] < P, as well
as D(Vf)2D < PP + PJF + e~2P2. This follows from (2.6, 3.3). [ ]

The inequality
/0 w n(K<(E),})dE Se™® tr[Vl/zPJ‘fI‘zJPVll/z]
follows from (6.1), from
n(K<(E),3) S n((¢2 +e73P) e 3PVY2 const EV/?)

from [;° n(X,p!/?)dp = tr X* X, and from (4.2). We then split H2=MH"M+(1-
ﬁ)ﬁ 21~ ﬁ) The contribution of the first term is

[ Eyuli, v PTE)HB,) + e P) (B PV,
1 ; :
= ar [ €2 PO) UBIPEPY @iy Py s
because of (5.2) and of II(B)(H(B) + E)~* = II(B)(p; + E)* (see also last section). For

the second term we use (see (5.4)) H? > (Hg + P)? on Ran(1 — i), since H and Hg + P
commute, where P = ¢~3 j;:g P(y)d3y. Thl‘i yields a contribution bounded by

/ teljyV'/2P(3D} + e P(y)) "2 PV/%j,1d%y
3 f 3 1/2 2 V203 13
<= [ ; iy, (@ :
<o | Gepy)  P@V@iPEy s,
where we used again (5.5). Taking into account (2.8) and (2.10) we thus obtain

/ " (KL (E), ME < / B2V () (e‘9/2P(w)3/2+5'3/2P(w)1/2 /’dsywyuy(x)?) .
J0 o .

At this point we apply (5.8) to the last term and Theorem 1.7 is proved.
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7. Higher moments

In the same way as in Section I1.7 we can generalize Theorem 1.7 for the sum of the negative
eigenvalues —e; < 0 of the one-particle Pauli Hamiltonian b = l)z —V to motmnents of these
eigenvalues of degree > 1.

Theorem II1.10. For every v > 1 there ewist two positive constants Cq,, and Ca,, such
that

Z ey <Chy / V(w)%Jr"(V(w) + B(z))dPz + Cy, / V(J?)VP(II)%(P(.‘IT) + B(x))d®x .

Remark. The dependence on v of these two constants, Cy, and Cs,, is the same as in
(IL.7.4), where now C' and C" are the constants appearing in front of the first resp. second
term in (1.3).

8. Local stability of matter in external magnetic fields

Theorem 1.5. Let R = {Ry,..., Rk} be the collection of all the nuclei and L, Z, T, v
> 0. There is a positive C(Z,T,v) and a function ®g(x) > 0 with

[®rlleo ST, l®r]h S LK, (8.1)

uniformly in R, Z, such that the Hamiltonian
N .
H= Z% +Ve4T / Pr(@){(B@)® +vL(V @ B)(@)®)d®s (8.2)
i=1 -
acting on He = ANH, H = L2(R®) ® C?, satisfies
H>~C(Z,T,7)(Z+ 1)L YN + K) (8.3)
for arbitrary L < (Z+1)"Y. For T < Z+1 and 1 < v < 2* one can take
C(Z,T,7) = const [2% + 2%y~ log (2% */2)] (8.4)
with z =1+ (Z + 1)L
Remark. One may modify the definition (1.2) of I(x) by replacing (V ® B)? by (V&
B)? + L7 for some L > 0. Theoremn 1.7 continues to hold. On the r.h.s. of {2.13) a term
L% should also be added to (V ® B)2, but it can be absorbed iuto the last term. The

purpose of this variant is to ensure

{e) L, (8.5)
for every = € R3.
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Proof. By monotonicity, it will be enough to prove the theorem for Z > 1, T < Q and
7 < z*. We partition again R® into Voronoi cells T; = {z | jx — R;| < [z — Ry[ for k =
L,...,K},4=1,...,K). Let D; = min{|R; — Ry| | j # k}/2. For any v > 0 the
reduction to a one-body problem reads (see (1.3.11, I1.8.4))

N K
Z2
Hy > hi—vN+ 5 > Djt+r / dr(z)(B(z)? +vL*(V @ B)(z)})d3z, (8.6)
i=1 j=1
where h = ¢2 — (W —v), and W is defined in Theorem 1.2 and satisfies W (z) < Q|z—R;|™!
for x € I'j, with Q@ = Z + v2Z + 2.2 (see (1.3.12)).
We choose v = QL~! and apply Theorem L7 (in the variant discussed above) to
obtain

N . .
S hiz- / V23 — / P2y @3y — / BV3/2¢3y — / BPV?v {3y, (8.7)
t=1 h b

where V = (W — QL™1),. Comparing with (8.6) it appears to be enough to show that
each of the integrals (8.7), which we shall denote by (i-iv) below, is bounded by the bound
(8.3) or by a small (universal) constant times

72 K

5 Z Dy +T / Br(x)(B(z)? + LYV ® B)(z)?)d%z . (8.8)
i=1 ’

i) Note that suppV C Qy for Q@ = R (see proof of (I1.8.3)). This integral is thus
bounded by const Q3/2LY2K < QLK.
ii) We note that for any 8; > 0

—1
P <273 (32 L 737 < V2 '32——11"3 +vV2(1 + ‘817)1-3 (8.9)

and we estimate the contributions to (ii) of the two terms separately. For the first one we
use that

. K
/ r(@) V(2)d% < Q / Br(0)B(@)2ds + QY D' + QLK
Sy,

j=1

as was shown in (IL.8.6) (take there § = 1 for instance). We have to ensure, on one hand,
that const Q@ <« T (first term), on the other hand, that const 5;Q < Z2/8 (second term).
(By @ < b we mean a = const b for some sufficiently small universal constant). Therefore
we pick B € min(Q~IT,1). The term proportional to K is then of the order of QL 1K.
For the last term in (8.9) we use instead

/Q,‘ l(:l:)_SV((l:)ds:lf < %L, l(z‘)fsds:l: + ,327‘1 /

Q

V(x)id3x
S B / Pr(2)(VQ B) () d3x + (BL 73 + B 1Q?L)K ,
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due to (2.13). The desired bound holds provided we pick z-8y < I'vL?, because 1+3;1/2 <
z2=1+(Z 4+ 1)I'! in view of the choice for §;. Then

o (14 ﬂ‘T)ﬂzL‘sK STAL K < 22Tl 'K <2 (Z+ VLK,

for v < 24, since Tz =T+ (Z+1) < Z+1;

o (1+4+°L 51 185 QLK < 2 (2T 'y ML QALK < BQL7UK

because I'"1QQ 5 2.

ili) We split the integral into K inner integrals over U; = {x | [v — R;| < ﬁj}, ﬁj =
min{Dy, e - I(R;), L) for some small £ > 0; and one outer integral over R® \U;{:1 Uj. The
inner integrals can be estimated as
L

st sz
(ﬂeé’l ()?)

/‘ B(z)V () *dx < (qup B(x 1)) D 3/2Q3/2 —@d.
U

JU; +€Uj

MIQ

Because of (2.7) we have SI(R;) < I(z) < 21(R;) for & € U; and thus

Ba =K.l ([ 1Be) <1l [ By

x

S (ElR))® [ 0y - Byl < 3elBy) By (8.10)

Altogether we find for any 8 > 0

/‘ Ba)V ()P < B / (y)B(y)2d®y + B1Q’K ,
U .

UJ-I i

K
®(y) = > Del(R;))™*0(|ly — Ryl < 3el(Ry)) .
j=1

For 8 « T this will be bounded as claimed once we show that ® < 6o, (note that
BIQPK ST71Q(Z+1)QK < A(Z+1)L 'K sinceT 1@ <2< 22 and Q S Z+1 < L7h).
First, supp ® C Qf for small e > 0 because of (8.5), independently of the magnetic field.
It thus suffices to show ||®{|o < 1: from D < el(R;), the triangle inequality and (2.7) we
find

[l < 503 (el P00y Byl < 3e1(Ry) / 01w — Ryl < el(R,)d%
j=1
< supz el(y)~3 / 8z — yl < Bel(y) Pz <1,
F=1
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since the U; are disjoint.
The outer integral can be written and estimated as

[ PV @KL [ @yBw)oa -yl < ella)
. QL\(UJ'-(:lUj} P

<2 [ Py BWPIK6(- yl < ela)
7y, xR3
-1
+ 2 / Bz dPyV (@)K, "0(jz — y| < el(x)). (8.11)
2 JUN(E, U;)xR?
By the usual argument (2.7), the first integral is bounded by a constant times [ ®(y)
|B(y)2d%y for

B(y) = K, /Q 0(fe — | < 26I(y))d% 1.

Moreover, supp ® C Qo as before. It thus suffices to take 3; < I'. In the second term on
the r.h.s. of (8.11) the integration over y is explicit, and the integral is

K K

Vi(x)3d®x < Slog LD < 3NT LD 4+ (log By VIQPK 8.12
./9,4\(u;;.v,-> e s ;Q s LDy = AQ ,2 ;o o), (B12)
where we used that logt < Got + log By ! for ¢, B2 > 0. We shall take ™! - 5,Q%L < 1,
so that the last term is of the desired form: this means indeed that I'*(log 8; ) Q3K <
2L 1K log B3 1 while the argument of the logarithin is bounded above by a constant
times [1Q2L < 2 < 2%y~1/2, since 1 < 24272 < 244712 for 1 < 4 < 2%, The first term
in (8.12) reduces to an arbitrarily small constant times @ ZK:I ﬁj'l. Note that

R . 1/3
Dt ge( i Uz)"*d%) "+ D+ L7 (8.13)
b 7

In fact, by (2.7), the integral is bounded below by a constant times (el(Rj))‘25j, and
thus the whole r.h.s. by

5 () + 5+ 2120

by definition of ﬁj. The contribution of the last two terins of (8.13) are then controlled by
the first term (8.8), resp. by (8.3). For the integral, I, we use I'/3 < 235 72y 1851 and
choose 3 such that 8; ' ,Q3L-B3e 2 < Q-B3e~% « Tz~4L2. Note that the U; are disjoint,

allowing for the application of (2.13). In this way, Tz~4L? < TyL?, because 274 <771 <
1<, and ;7 BQ3L - g5/ % 72K < Q -T-12QV22 L 1e 3K S e323(Z + 1)L K.
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iv) Using
15t B!
PY? <722 712y < 77-*1 +(1+ T)rl , (8.14)
we estimate the contributions to (iv) of the two ters separately. The first integral is

ﬂ Eare) V@Kl [ @yBwIo( -yl < ela)
, Ca

T 2 Jo, xws

Q' / Bu Byr(a) V(@) Ky ')z - y] < el(z)) . (8.15)

@ dy|By) K| '0(x — y] < el(«))

The first term on the r.h.s. is like the Coueqpondiug oue in (8.11) and hence acceptable
provided f;-Q < T. The secoud integral, Q7" [r(x)~?V (2)?d?s, is dealt with by splitting
it with respect to U = {u ||z - Rj| < D, i}, D; = min(Dj,e - r(R;), L) (see Section IL.8).
Then .

/~ (@) 2V (@) 23 < 'I'(Rjrz /; Vie) Bz < EZQzﬁj_l R

Ju; Ju;

and

/h _ (@) V(@) P < eZ_Q*j Vie)*d3s + ZQZ/ r(z) "4 dPa
SRS\ (U QL

s\, T7) 2 Jes\un,0)

Since the first integral is bounded above by const Q4 Zle f)J_ ! we have that

Q /7(1 ZVJ,)Zd31<QZD +Q/ () *d3x

_;——1

< QZD]l +@Q / Or(2)B(x) s+ QLK
=1 :

due (I1.8.5) and (11.2.13). These terms fit (8.3) for our choice of g since £1QT < Z + 1
(first and last term).

The integral corresponding to the last term in (8.14) is estimated similarly to (iii) and
is split accordingly. The inner integrals can be estimated as

‘ ﬁ(a:)l(m)’l\/(w)daw < (sup ﬁ(u:)l(a:)_l)ﬁ?Q
Ju;

2;’2 Da(qup Ba)l(a 1)3/2 52 23,

(8.16)
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where

(BIT1Y¥2 < Ly VALY (382 4+ 4 LU0 (8.17)

The term coming from B2 will be dealt with by (8.10), the other one by using 5]3 SUPgey;
I(x)"% < jU, I(z)~8d3z. Reminding that 8 ' < T1Q < z and choosing z- B3/ 2y~ Y/4L-1/2
< T, we ensure that both terins (8.17) are controlled by (8.8) and (8.3) (from the second
term in (8.17) we also get through (2.13) a term < yTL2L73K < 2%(Z + 1)L71K, for
v < 2% € 28). The contribution of the last term (8.16) is then of order z - B3 1Q3K <
2 -T2y~ 12Q8 K < 84~ 12QL-1K < 28y~Y2QL~'K. The estimate of the
outer integral follows the line of (8.15):

/' B l(2)" V(@) [ Ky / Py Bz - y] < el(z))
QALK U;)

<P [ By B)K 0 - o] < el(w)
Sy, xR3
-1
+ By / dBx dPyl(x) 2V (2)2| K| 7 16(|z — y| < el(x)) .
2 Ja,\UK,U;) xRS
The first term just requires z - 83 < I'. The second one is
/ I(z) "2V () dPe < 28,7 / V(2)*d®s + 164 / () %d%z .
JRI\(UK_\U;) R3\(UK,U;) Q,,

To accomodate the last term, after application of (2.13), we require 3, 1,3.; L.By S22t
Bs < Tz *L? (compare with the end of the discussion of integral (iii}). The first term is
dealt as in (8.12), with 82 < 277 there, because we have to impose 8] ' 83 ! A 12 -B2@Q%L <
T72L71 - B,Q%L < 276, < 1 in order for the coefficient in front of the sum on the
r.hs. of (8.12) to be small as compared to Z2/8. The logarithmic term is thus of the
order A7 B5 8, 2 (log B V@K < 2T2QX(log 2)QL 'K < 2" (log 22z 2)QL'K S
2By 12(log 25y YA QLK. ]
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