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Abstract

In 1952 David Bohm proposed an interpretation of quantum mechanics, in which the evolution of
states results from trajectories governed by classical equations of motion but with an additional
potential determined by the wave function. There exist only a few experiments that test this concept
and they employed weak measurement of non-classical light. In contrast, we reconstruct the Bohm
trajectories in a classical hydrodynamic system of surface gravity water waves, by a direct measurement
of the wave packet. Our system is governed by a wave equation that is analogous to the Schrodinger
equation which enables us to transfer the Bohm formalism to classical waves. In contrast to a quantum
system, we can measure simultaneously their amplitude and phase. In our experiments, we employ
three characteristic types of surface gravity water wave packets: two and three Gaussian temporal slits
and temporal Airy wave packets. The Bohm trajectories and their energy flows follow the valleys and
bounce off the hills in the corresponding quantum potential landscapes.

1. Introduction

Almost a hundred years ago, that is in 1924, Louis de Broglie proposed an explanation of quantum phenomena
based on nonclassical trajectories guided by a wave field [1]. This revolutionary idea was followed by Erwin
Madelung’s re-formulation [2] of Schrodinger’s equation in terms of hydrodynamic variables which provides
the foundations of the interpretation of quantum mechanics put forward by David Bohm known as Bohmian
mechanics [3, 4]. This theory makes a proposal for how the microscopic world might work that agrees with all
tests of quantum mechanics [5]. In contrast to the Copenhagen interpretation [6] which assumes that the wave
function determines only the probability of measuring a particle at a certain position, according to Bohmian
mechanics, particles have well-defined positions at all times [ 7], and follow trajectories, known as Bohm’s
trajectories [8]. Furthermore, in Bohmian mechanics the wave function is used to construct a quantum potential
that, when combined with Newton’s equations, draws the Bohm trajectories [3].

Comprehensive discussions of Bohmian mechanics, which has recently received renewed attention can be
found at several places in the literature [9—13] and many interesting applications beyond the interpretation of
quantum mechanics have been proposed. For example, Bohmian mechanics is utilized for a better
understanding of the quantum-—classical transition [ 14] as well as, nanoscale electron devices and electron
transport in open systems [15]. Bohmian equations sometimes provide more efficient computational tools than
those obtained by orthodox methods [16] and are now routinely used in quantum chemistry [17, 18]. In
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Table 1. Bohmian mechanics of classical surface gravity water waves motivated by its quantum
counterpart. Here tand x denote time and space, whereas 7and § are dimensionless transverse and
propagation coordinates. In this transition [27] from a quantum wave to a classical surface gravity wave
we make the replacements b — 1,i — — iand m — 1/2.

Quantity Quantum mechanics Surface gravity water waves
Complex-valued function wave function ¥(x, ) surface envelope A(, £)
Propagation coordinate t I3
Transverse coordinate x T
. R oL A 9%A
Wave equation ihg = —o- o 5 = o2
idi i i) =2 _ 1 9y, d=6) = 1_ 8
Guiding equation Ex(t) = Im { GO (%?1,1} dgr(f) =2Im { TG U?A}
; _ R d _ 1 92
Quantum potential Q= 7ﬁmﬁ|w| Q= T2 872|A|

addition, it was recently argued that this formalism can also be employed to gain insight into concepts in
cosmology [19].

However, despite being covered by a wide spectrum of different physical systems, an experimental
observation of Bohm trajectories is challenging [20] and we are only aware of a few experiments using weak
measurements [21, 22] of either single photons [23] or entangled photons [24]. In the present article we study
experimentally Bohmian mechanics for a classical system of surface gravity water waves. This unusual
application of a concept from quantum mechanics to a classical wave, and its verification by an experiment, is
made possible by three physical properties of surface gravity water waves: (i) they obey a wave equation that is
analogous to the Schrédinger equation of a quantum particle. (if) We can define the ingredients of Bohmian
mechanics such as trajectories or the quantum potential as demonstrated by table 1, and (iii) it is possible to
measure the amplitude and determine the phase of a surface gravity water wave [25, 26].

We further emphasize that the ability to reconstruct trajectories of a wave packet is not limited to quantum
mechanical waves, but is useful also for classical waves. In fact, intriguing concepts, such as the trajectories in
double-slit or multiple-slit wave interference experiments are present for both quantum waves as well as classical
surface gravity water waves. Moreover, the measurement we perform does not disturb the propagation
dynamics, nor does it cause a collapse of the wave function.

Our article is organized as follows: in section 2 we lay the foundations for the discussion of our experiments
on the observation of Bohmian trajectories and quantum potentials corresponding to classical waves. In
particular, we compare and contrast typical elements of Bohmian mechanics as defined in quantum theory to
the analogous expressions of surface gravity water waves. We then devote section 3 to our experiments and
report the time evolution and the quantum potentials for four configurations: (i) The familiar double-slit
arrangement with an initial zero transverse momentum, (ii) the three-slit experiment again with zero
momentum, (iii) the double-slit version with non-zero momentum, and (iv) a truncated Airy wave packet. We
conclude in section 4 by briefly summarizing our results and presenting an outlook.

In order to keep our article concise while self-consistent we have included an appendix. Here we first briefly
review the Hilbert transform which allows us to extract the phase of the wave function, and then we provide
explicit expressions for the wave packets used in our experiments.

2. Surface gravity water waves

In a frame moving with the group velocity ¢, the evolution of the complex-valued envelope A = A(T, §) of a
surface gravity water wave follows from the wave equation

0A  0%A

e T o )

reminiscent of the Schrodinger equation of a free particle as summarised in table 1. The scaled dimensionless
variables £ and 7 are related to the propagation coordinate x and the time tby £ = e’kgxand 7 = ewy(x/ g — t).
The carrier wave number k, and the angular carrier frequency w satisfy the deep-water dispersion relation

wj = kog with gbeing the gravitational acceleration, and define the group velocity ¢, = wy/2k,. The parameter
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Amplitude

Figure 1. Concept of our experiment to observe Bohm trajectories and the quantum potential of surface gravity water waves (top) and
photographs of the key ingredients of the set-up (bottom). At one end of the water tank (a) four computer-controlled wave makers (b)
create surface gravity water waves whose elevations are measured by wave gauges (c) based on time-dependent resistance. The wave
gauges measure the height of the water surface, practically without disturbing the propagation dynamics. From the collection of
envelopes in time and space we reconstruct the Bohm trajectories as well as the quantum potential.

€ = koay characterizing the wave steepness is assumed to be small, that is € < 1, in order to ensure [28] the
linearity of the wave equation.

From equation (1) and table 1 we note that for spatially evolving surface gravity water waves, the roles of time
and space are interchanged compared to quantum mechanics [29-31]. Hence, the guiding equation

d 1 0
—7 (&) =2Im {7—AIT_?@} (@)
dg A6 T(©) OT
in terms of the complex-valued amplitude A and its time derivative determines the surface gravity water wave
trajectories 7 = 7 ().
Another way to obtain trajectories in a wave theory is motivated by classical mechanics and involves [7] the
quantum potential. For surface gravity water waves this potential reads

= ————|A| €)
T

where |A| is the absolute value of the complex water wave envelope governed by the wave equation equation (1).

We note that the elevation of the surface gravity water wave is real, and connected to the complex envelope A
by being its real part. Hence, the imaginary part of A follows from the Hilbert [32] transform of the real-valued
elevation, as outlined in the appendix.

3. Experimental realization

The experiments discussed in our article were performed in a 18 mlong, 1.2 m wide, and h = 0.6 m deep
laboratory wave tank shown in figure 1. Water waves are generated by a computer-controlled wave maker placed
at one end of the tank. Four wave gauges supported on a bar connected to a computer-controlled carriage
measure the elevations of the surface gravity water waves at any location along the tank [25, 26]. For our
experiments they are placed at 30 different locations in the region of interest of 0.4 — 12 m to eliminate residual
reflections from the absorbing beach placed at the other end of the water tank, resulting in 120 spatial
coordinates.

We have used a carrier wave frequency and wave number of wy = 9 rad/sand ko = 8.3 1/m giving rise to a
group velocity ¢, = 0.54 m/s, and the amplitudes are ay = 6 mm for the two-slit and three-slit experiments, and
ap = 5 mm for the self-accelerating Airy wave packet shown in figures 2 and 3. For all cases, k satisfies the deep-
water condition [31] koh > 7, and the corresponding steepness is € < 0.05 guaranteeing the validity of the linear
Schrodinger equation.
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Figure 2. Experimentally obtained surface gravity water wave evolutions (top) and corresponding quantum potentials (bottom) of
two-slit (a), (¢) and three-slit (b), (d) envelopes |A|. Bright and dark colors reflect high and low values, and the color bar units are
millimeters. The Bohm trajectories indicated by dashed lines in the 2D-intensity plot underneath (a), (b) and following from
equation (2), run in the valleys of the landscape formed by the quantum potentials (), (d). The tall mountain ranges lead to low
amplitudes |A|. A key difference between the two-slit and three-slit results is the dark island apparent in the 2D-plot of (b) which the
Bohm trajectories seem to avoid, and the corresponding crater in the envelope, both of which result from an additional mountain at
the center of the quantum potential (d).

In figures 2 and 3 we show the absolute value |A| of the wave-function analogue in a two- and three-
dimensional representation together with the Bohm trajectories using equation (2), as well as the quantum
potentials defined by equation (3) for four different wave packets: the two-slit and three-slit experiments with
zero momentum in figures 2(a), (b), a two-slit experiment with a non-zero momentum, and a truncated Airy
wave packet displayed by figures 3(a), (b).

The temporal-slit experiments were performed with a temporal width of t, = 1.7s and temporal distances
t,= 8 sand t, = 4 s for two and three slits, respectively. We note that for the three-slit experiment we chose an
initial wave packet with a partial overlap between the wings of the three Gaussian lobes, in order to highlight the
appearance of additional features compared to the two-slit experiment. For the explicit form of the wave packets
we refer to the appendix.

In figure 2(a) we show the case of two-slit interference, a cornerstone of quantum mechanics. Here the Bohm
trajectories are marked by black dashed lines. The average trajectory (white line) follows a straight line in
accordance with the Ehrenfest theorem [33, 34], i.e. the average trajectory is identical to the classical propagation
of the particle which is in this case stationary owing to the fact that the particle exits a slit with zero momentum.

The interference pattern at the end of the water tank, thatis at x = 12 m, is intimately linked to the quantum
potential. Figure 2(c) shows that the trajectories avoid the regions of destructive interference where the quantum
potential exhibits very high values. In contrast, the trajectories concentrate in the domains of constructive
interference, where the quantum potential assumes small values.

For the three-slit experiment displayed in figures 2(b), (d), we observe a spot at x = 6 m where destructive
interference accrues, and the corresponding trajectories avoid this region during propagation. From the view of
the quantum potential which is presented in figure 2 (d) this avoidance results from a sharp hill in this region.

Next we examine two slits with an effective initial non-zero momentum [27] po = — 2 rad/s. From figure 3
(a) we note that the particles exiting the two slits have Bohm trajectories propagating at a negative constant
velocity. The quantum potential shown in figure 3(c), has its repulsive walls shifted in the momentum direction,
providing canals of linearly shifted trajectories with the corresponding initial momentum.
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Figure 3. Experimentally obtained surface gravity water wave evolutions (top) and quantum potentials (bottom) of two-slit envelopes
with non-zero initial momentum (a), (c) and a truncated Airy wave packet (b), (d). Bright and dark colors reflect high and low values of
|A|, and the color bar units are millimeters. The Bohm trajectories indicated by dashed lines in the 2D-intensity plot underneath (a) are
tilted in comparison to the ones shown in left column of figure 2, and result from the tilted valleys of the quantum potential (c). The
quantum potential of the truncated Airy wave packet (d) consists of narrow and rather deep valleys that curve to the right indicating
the familiar self-acceleration and guide the Bohm trajectories. However, there also exist trajectories bending to the left and the average
trajectory is straight, in complete agreement with the free propagation of the center of mass of the truncated Airy wave packet.

Finally, we study the Airy wave packet which is a solution of the time-dependent Schrédinger equation for a
quantum mechanical particle in a linear potential. It was predicted [35] in 1979 and experimentally verified
[25,31, 36—40] for optical, matter and water waves that the wavefronts of freely propagating Airy wave packets
self-accelerate and follow a parabolic trajectory. However, in the case of zero initial momentum the center of
mass of an Airy wave moves at the group velocity which is zero. For a pure Airy wave packet which is infinitely
long and non-normalizable there is no contradiction with Ehrenfest’s theorem, as the state has an undefined (r)
for all coordinates.

However, in our experiment we generate fruncated Airy wave packets with fy = 0.65 s and the truncation
parameter oy = 0.1, which are indeed normalizable with (f) = 0. We chose a relatively small value of t, in order
to bring out most clearly the essential features of the propagation dynamics [38]. For the analytic form of the Airy
wave packet we refer to the appendix.

Figure 3(b) shows that the wavefront self-accelerates even for surface gravity water wave packets. The
quantum potential depicted in figure 3(d) brings out the deeper reason: it exhibits a strong repulsive hill at the
right corner, causing most trajectories to lean towards the opposite direction. Interestingly, the Bohm
trajectories also reveal that the self-acceleration of the wavefront is a consequence of accelerating particles.
However, there are also particles which decelerate, and move with almost constant negative velocity. As a result,
the center of mass of the entire wave packet is maintained at () = 0 thus, preserving the Ehrenfest condition.

4. Conclusions

In our article we have applied the Bohm interpretation of quantum waves relevant to the microscopic world to
macroscopic surface gravity water waves and have gained deeper insight into their propagation dynamics. We

have not only observed Bohm trajectories of two-and three-Gaussian slits and Airy wave packets but have also

measured successfully the corresponding quantum potentials. Our experiments reveal that the shape of the
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quantum potential indeed dictates the propagation of the waves and provides a detailed visualization of their
dynamics.

We emphasize that our experimental setup is neither limited to slits, nor to a free propagation. Indeed, it
allows us to study the time evolution of an arbitrary wave packet, and even Bohmian mechanics in the presence
of an external potential [25]. The methods we have demonstrated can be generalized to several other
macroscopic types of waves including electromagnetic as well as acoustic waves.
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Appendix. Wave function essentials

In this appendix we briefly elaborate on the data analysis and the form of the wave packets. First, we discuss the
Hilbert transform and its relation to the imaginary part, as well as the phase and amplitude of the wave function.
Second, we define the temporal envelopes of the initial wave packets used in our experiments.

A.1. Phase and amplitude measurement from Hilbert transform
In order to measure the imaginary part, phase and amplitude of the wave we use the Hilbert transform [32]. The
amplitude and phase induced during the pulse propagation can be determined by creating a complex signal

z(t) = u(t) + iv(t) = u(t) + i - Hilbert{u(t)} 4)

from areal signal u = u(f) with the help of the Hilbert transform

Hilbert{u ()} = — f RRIOFN )

mJ-oo t—5
Next, using the polar decomposition
z(t) = A(t)e'e®, 6)

we arrive at the instantaneous amplitude

A(t) = Ju?(t) + v2(1), 7)

and the instantaneous phase

p(t) = arctan [M] (8)
u(t)
We obtain z = z(#) from the toolbox function ‘hilbert’ [41] of Matlab. This function computes the Hilbert
transform for a real input sequence u, and returns a complex result of the same length, z = hilbert(u), where the
real part of zis the original real data and the imaginary part is the actual Hilbert transform defined by
equation (5). In order to bring out most clearly the difference between the toolbox function ‘hilbert’ of Matlab
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and the Hilbert transform of equation (5) we use small and capital letters. We note that zis called the analytic
signal, in reference to the continuous-time analytic signal.

A.2. Form of the initial wave packets
The temporal variation of the initial surface elevations 7 and 7 corresponding to the two-slit and three-slit
experiments is based on Gaussian envelope slits of the form

n@(t, 0) = aplexp[—t?/t5] + exp[—(t — t,)?/t71}, ©)
and
N, 0) = aglexp[—12/t3] + exp[—(t — t)?/t5] + exp[—(t + t)?/131}, (10)

respectively, where f; is the temporal width of the slits and t, denotes the slit separation.
We also study the truncated Airy wave packets [35, 38] generated by the truncated Airy envelope

740G, 0) = ag Ai(_ti)e’(p(_%i)’ o

0 to

where ay is the truncation parameter.
Finally, we analyze two slits with initial non-zero momenta [27], corresponding to wave packets generated by
the two-slit function

n(izpo = n@exp(xip,t), (12)

with a negative or positive initial momentum p,and 7> is given by equation (9).
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