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Abstract

The description of the program DELTGC suitable for four-fermion calculations is

presented. DELTGC is designed with a special attention to the Anomalous Gauge

Boson Couplings and can be used for total and differential cross-section calculations

as well as for event generation.





1 Introduction

The DELTGC package offers powerful and convenient tools for the calculation of the
cross section for the processes e+e− → 4f with special attention to the triple gauge boson
couplings. It also supports the generation of single-weighted events for a particular final
state or a mixture of them.

A number of packages can perform at present the same task (see, for example, the
review in [1]). They give different possibilities and features and are widely used in prac-
tical calculations. In addition to the properties and features that are common to all the
packages dealing with the 4-fermion final states at LEP II energies, DELTGC gives:

• Neutral TGC (Zγγ, ZZγ, and ZZZ vertices) in addition to the charged couplings;

• TGC decomposition of the amplitudes, so all the information suitable for the TGC
studies for any particular process can be obtained in a single DELTGC run;

• Processes with CKM mixing;

• Careful treatment of the gauge cancellations, so the integration behavior remains
stable in the full angular interval for the final-state fermions for all processes;

• Direct access to the matrix element, so it is possible to perform unbinned likelihood
fitting using all the kinematical information without referring to any particular
variable or distribution;

• Arbitrary complex cuts on the final fermion configurations;

• User-driven integration behaviour, so that if the user is not satisfied with the results
of the integration (especially with the errors of any particular TGC-expansion co-
efficient), the integration can be continued without losing the information already
obtained;

• Convenient access to the internal physical parameters;

• Z ′-related cross-section expansion coefficients.

DELTGC is designed as a set of libraries to perform different actions:

• General Spirality and TGC Library (GSTL): a collection of routines to maintain
the spirality calculus technique described in Section 2.1 as well as VVV vertex
calculation in the representation of Section 2.2 with a set of initialization and general
(such as Lorentz transformation, ISR, QCD and Coulomb corrections) routines;

• Amplitudes of 2 → 4 Library (A24L): a collection of routines to perform calculation
of the matrix element squared for the process e+e− → 4f;

• Adaptive Integration Library (AIL): a set of routines to perform kinematics trans-
formations from the internal VEGAS [2] variables to the physical momenta and also
containing the VEGAS routines;
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and the DELTGC steering routines maintain an overall package behaviour.
These libraries are not independent and can be used as separate tools only after quite

serious modifications, that can be hardly done by the user.
The next version of the DELTGC package will release more advanced, powerful, fast

and package-independent libraries to make their usage more convenient in other applica-
tions. Additional features in the next DELTGC release will be:

• Calculation of cross-sections not only for single processes but for large classes of
processes with definite signature;

• Matrix element access for definite or flavour-independent final states containing
quarks, so the natural mixture of all flavours with all possible permutations and
symmetrizations can be calculated in a single call;

• DELTGC - JETSET interface.

The DELTGC package was created and tested under VAX-VMS and DIGITAL UNIX.
The current version of the library is placed in

disk$delphi2:[ioucht.deltgc]deltgc.olb VAX-VMS version (VXCERN)

/afs/cern.ch/user/i/ioucht/deltgc/deltgc.o DIGITAL UNIX (dxplus)

The library requires CERNLIB to be linked.
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2 Theoretical Background

2.1 Spiral Calculus

It is common knowledge that the calculation of diagrams with more than 5 external lines
using a conventional spurs calculation technique is a tedious task. Instead of summing
the matrix element squared over the external particle polarizations, a number of methods
were proposed [3, 4, 5], based on the calculation of amplitudes for different polarization
states. For fermions the natural polarization states are those with definite spirality: in
particular, this reduces the number of amplitudes if massless fermions are involved.

The projection on the spirality states can be easily done by expressing any vertex in
terms of left- and right spirality projectors:

PL =
1 − γ5

2
and PR =

1 + γ5

2

For example, the γff vertex can be expressed as:

iQfγµ = iQfγµ(PL + PR).

Then, applying the well known relations

γ5γµ − γµγ5 = 0, and PiPj = δijPi,

any Dirac string will take the form ψ̄(1)[a]PL/Rψ(2) (or the sum of such forms), where ψ
denotes either u or v Dirac spinors and [a] represents any sequence of gamma matrices.

Here the method of handling spirality projected amplitudes that is suitable for the
numerical and analytical calculation of Feynman diagrams with a large number of external
particles is presented. This technique is an extension of the one proposed by Hagiwara
[5].

2.1.1 General case

Let us consider u and v spinors that are the eigenstates of the chiral operators:

u±(q) =
1

2
(1 ± γ5)u

±(q), u±(q) = u±(q)
1

2
(1 ∓ γ5),

v±(q) =
1

2
(1 ∓ γ5)v

±(q), v±(q) = v±(q)
1

2
(1 ∓ γ5).

The γ-matrices in the chiral representation have the form:

γ0 =

(

0 −1
−1 0

)

; ~γ =

(

0 ~σ
−~σ 0

)

; γ5 =

(

1 0
0 −1

)

,

with the Pauli matrices:

σ1 =

(

0 1
1 0

)

, σ2 =

(

0 −i
i 0

)

, σ3 =

(

1 0
0 −1

)

,
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Making use of the Weil spinors

χ+

p =
1

2|p|(|p| + pz)

(

|p| + pz

px + ipy

)

,

χ−
p =

1

2|p|(|p| + pz)

(

−px + ipy

|p| + pz

)

,

and ω± =
√

E ± |p|, the Dirac spinors can be represented as:

u+(p) =

(

ω+χ
+
p

ω−χ
+
p

)

, v−(p) =

(

ω+χ
+
p

−ω−χ
+
p

)

u−(p) =

(

ω−χ
−
p

ω+χ
−
p

)

, v+(p) =

(

−ω−χ
−
p

ω+χ
−
p

)

Or in a shorthand notation:

ψ =

(

ψU

ψD

)

, ψ = (ψ†
D, ψ

†
U),

and
uσ

U/D(p) = ω±σ(p)χ
σ
p , vσ

U/D(p) = (∓)ω∓σ(p)χ−σ
p ,

where σ is the spirality of the fermion. These spinors are normalized as follows:

u(p, λ)u(p, λ) = 2m, v(p, λ)v(p, λ) = −2m.

If |p| = −pz the above spinors can be simplified to the form:

u+(p) =















0
√

E + |p|
0

√

E − |p|















; v−(p) =















0
√

E + |p|
0

−
√

E − |p|















u−(p) =















−
√

E − |p|
0

−
√

E + |p|
0















; v+(p) =















√

E − |p|
0

−
√

E + |p|
0















;

To fulfill the notation the explicit expressions for polarization vectors of the external
bosons should be given. Let the momentum of the external boson with mass m in some
coordinate system be pµ = (E, px, py, pz), then in the same system its polarization vectors
are:

ǫµ(1) =
1

|p|pt

(0, pxpz, pypz,−p2

t ),

ǫµ(2) =
1

pt

(0,−py, px, 0),

ǫµ(3) =
E

|p|m

(

|p|2
E
, px, py, pz

)

,
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where vectors ǫ(1) and ǫ(2) represent transverse polarization states, while ǫ(3) gives the
longitudinal one and should vanish for massless bosons.

Generally speaking this explicit form of Dirac spinors and polarization vectors is quite
sufficient to perform numerical calculations for any kind of Feynman diagram. The nu-
merical procedure of the matrix element calculation can be as follows:

1. For any particular set of the external particle spirality states and momenta, construct
general four-tensors originating from the Dirac strings in all diagrams. Any partic-
ular diagram is now a product of four-tensors and external particle momenta and
polarizations.

2. Contract all indices performing explicit matrix and vector multiplication. Any partic-
ular diagram becomes a scalar after this procedure.

3. Add propagator factors for all diagrams.

4. Sum all spirality and polarization states and calculate the modulus of the sum. The
resulting scalar represents the matrix element squared for the particular phase-space
point.

The integration of the matrix element squared over the whole phase-space should be
performed by a suitable integration procedure.

2.1.2 Massless case

Considering particular processes, say those involving massless fermions, the spirality tech-
nique gives the possibility to perform the calculations in a much more compact form,
making use of explicit gamma-matrix decomposition, Fiertz identities for Weil spinors,
and the special relations for Weil spinor products.

For zero mass fermions, the explicit form of the u and v spinors becomes:

u+(p) =
1

√

|p| + pz











|p| + pz

px + ipy

0
0











= v−, u−(p) =
1

√

|p| + pz











0
0

−px + ipy

|p| + pz











= v+,

and for the case |p| = −pz:

u+(p) =













0
√

2|p|
0
0













= v−, u−(p) =













0
0

−
√

2|p|
0













= v+.

The next step in the spiral calculus technique is the method of handling the scalar
products of the external four-vectors (momenta or polarization vectors) and the gamma
matrix.

Making use of the explicit form for the Dirac matrices, the “hat” value â can be
expressed in the following form:

â = a0γ0 − ~a~γ =

(

0 a0 + aiγi

a0 − aiγi 0

)

=

(

0 a+

a− 0

)

,
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where

a+ =

(

a0 + az ax − iay

ax + iay a0 − az

)

; a− =

(

a0 − az −ax + iay

−ax − iay a0 + az

)

.

In practical calculations a lot of simplifications will occur after “hat” decomposition for
an arbitrary 4-vector a:

a± = a±χ+(a)χ†
+(a) + a∓χ−(a)χ†

−(a),

where a± = a0 ± |a|.
Considering how the matrix â acts on the different spinors in the massless case, one

obtains:

âu+ =

(

0 a+

a− 0

)(

ψ
0

)

=

(

0
a−ψ

)

; âu− =

(

0 a+

a− 0

)(

0
ψ

)

=

(

a+ψ
0

)

.

Thus the string of the matrix â acts on the spinor like:

â1 . . . â2n

(

χ
0

)

=

(

a+
1 a

−
2 . . . a

+
2n−1a

−
2nχ

0

)

; â1 . . . â2n+1

(

χ
0

)

=

(

0
a−1 a

+
2 . . . a

+
2na

−
2n+1χ

)

.

Analogously:

â1 . . . â2n

(

0
χ

)

=

(

0
a−1 a

+
2 . . . a

−
2n−1a

+
2nχ

)

; â1 . . . â2n+1

(

0
χ

)

=

(

a+
1 a

−
2 . . . a

−
2na

+
2n+1χ

0

)

.

These relations lead to a quite simple technique for reducing the string composed of
Dirac spinors and gamma matrices to one of Weil spinors:

ū−(1)
v̄+(1)

∣

∣

∣

∣

∣

γ1 . . . γ2n+1PL

∣

∣

∣

∣

∣

u−(2)
v+(2)

= χ̄−
1 γ

+

1 γ
−
2 . . . γ

+

2n+1χ
−
2

ū+(1)
v̄−(1)

∣

∣

∣

∣

∣

γ1 . . . γ2nPL

∣

∣

∣

∣

∣

u−(2)
v+(2)

= χ̄+

1 γ
−
1 γ

+

2 . . . γ
+

2nχ
−
2

ū+(1)
v̄−(1)

∣

∣

∣

∣

∣

γ1 . . . γ2n+1PR

∣

∣

∣

∣

∣

u+(2)
v−(2)

= χ̄+

1 γ
−
1 γ

+

2 . . . γ
−
2n+1χ

+

2

ū−(1)
v̄+(1)

∣

∣

∣

∣

∣

γ1 . . . γ2nPR

∣

∣

∣

∣

∣

u+(2)
v−(2)

= χ̄−
1 γ

+

1 γ
−
2 . . . γ

−
2nχ

+

2 ,

where γ± denotes the upper-right or lower-left blocks of the gamma-matrix. Similar
relations, slightly more complicated, can be obtained for arbitrary mass assignments for
the Dirac spinors.

After such reduction, one is left with the products of Weil strings with arbitrary
contraction of indices either between strings or between strings and external bosons. The
indices contraction between Weil strings can be easily performed by means of Fiertz
identities (si represents any sequence of gamma matrices and “hat” momenta):

{χ̄1[s1]γ
±
µ [s2]χ2}{χ̄3[s3]γ

∓
ν [s4]χ4}gµν = 2{χ̄1[s1][s4]χ4}{χ̄3[s3][s2]χ2}

{χ̄1[s1]γ
±
µ [s2]χ2}{χ̄3[s3]γ

±
ν [s4]χ4}gµν =

2{χ̄1[s1][s2]χ2}{χ̄3[s3][s4]χ4} − 2{χ̄1[s1][s4]χ4}{χ̄3[s3][s2]χ2}
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Using explicit reduction of Dirac strings to Weil ones, Fiertz identities and “hat”
decomposition, one can reduce any Feynman amplitude to a product of bi-spinor “building
blocks” of the form [χ̄i

1χ
j
2] that can be easily calculated numerically or analytically.

Additional simplifications can be obtained if one uses some relations among spinor
products. A lot of different relations can be obtained that help in complicated cases, but
the most useful ones that should be used practically in any calculations are:

[χ̄+

i χ
−
j ] = −[χ̄+

j χ
−
i ], [χ̄+

i χ
+

j ] = [χ̄−
j χ

−
i ], [χ̄i

kχ
j
k] = 2E(k)δij ,

[χ̄−
i χ

−
j ] · [χ̄−

k χ
−
l ] − [χ̄−

i χ
−
l ] · [χ̄−

k χ
−
j ] = [χ̄+

l χ
−
j ] · [χ̄−

i χ
−
k ]

Making use the above technique, all amplitudes for the process e+e− → 4f can be
reduced to an extremely short form that is quite convenient for numerical calculations.

This technique can be used also for massive particles if the ratio m2/E2 is sufficiently
small. In this case all “non-natural” spiralities in u/v spinors will be suppressed by this
factor. At LEP II energies the relative difference between the exact and quasi-massless
techniques is less than 10−4, and it can be at most as large as 10−3 for processes that
involve b-quarks.

2.2 TGC parameterization

2.2.1 Charged couplings

The most general phenomenological parameterization of the effective Lagrangian can be
found in [6, 7, 8] (below the subscript V denotes γ or Z until stated definitely):

iLV WW = gV WW

[

gV
1 V

µ(W−
µνW

+ν −W+

µνW
−ν) + κVW

+

µ W
−
ν V

µν+

λV

m2
W

V µνW+ρ
ν W−

ρµ + igV
5 ǫµνρσ

(

(∂ρW−µ)W+ν −W−µ(∂ρW+ν)
)

V σ + (1)

igV
4 W

−
µ W

+

ν (∂µV ν + ∂νV µ) − κ̃V

2
W−

µ W
+

ν ǫ
µνρσVρσ − λ̃V

2m2
W

W−
ρµW

+µ
ν ǫνραβVαβ

]

,

where Wµν = ∂µWν −∂νWµ and Vµν = ∂µVν −∂νVµ. The convention of Ref.[9] is adopted,
where gγWW = −e and gZWW = e cot ΘW .

Within the SM, at tree level, the couplings are given by gγ
1 = gZ

1 = κγ = κZ = 1,
with all other couplings in (1) vanishing. For on-shell photons, electromagnetic gauge
invariance fixes the values gγ

1 = gγ
5 = 1. The terms proportional to gV

1 , κV and λV

conserve C and P separately, while gV
5 violates C and P but conserves CP . Other terms

in (1) are connected with a possible CP violation in the bosonic sector.
It is well known (see, for example, [10]) that C and P conserving terms in LγWW

correspond to the lowest order terms in a multipole expansion of the W − γ interactions.
The charge QW , the magnetic dipole moment µW and the electric quadrupole moment
qW are defined as:

QW = egγ
1 , µW =

e

2mW

(gγ
1 + κγ + λγ), qW = − e

m2
W

(κγ − λγ). (2)

The general form of the VWW vertex is considered, taking all the external particles
off their mass-shell. Expressing anomalous couplings in terms of the deviations from the
expected SM values one obtains:

∆g1 = (gZ
1 − 1) = tan θW δZ , gγ

1 = 1
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∆κγ = κγ − 1 = xγ , ∆κZ = κZ − 1 = tan θW (xZ + δZ), (3)

λγ = yγ, λZ = tan θW yZ ,

In the above notation the explicit VWW vertex takes the form (neutral/charged
bosons are considered to be incoming/outgoing):

ΓV WW
µαβ = gV WW

{(

1 + ∆g1 +
λV

2m2
W

p2

)

gαβ(q − q̄)µ − λV

m2
W

pαpβ(q − q̄)µ+

(2 + ∆κV + ∆g1)(gµβpα − gµαpβ) +
λV

m2
W

(gµβpαq
2 − gµαpβ q̄

2) + (4)

(

1 + ∆g1 +
λV

m2
W

p · q̄
)

gµαq̄β −
(

1 + ∆g1 +
λV

m2
W

p · q
)

gµβqα +

λV

m2
W

[

gαβpµ
q̄2 − q2

2
− pαq̄µq̄β + pβqαqµ

]

+ ig5ǫαβµγ(q − q̄)γ −

ig4(gµβpα + gµαpβ) − κ̃ǫαβµγp
γ +

λ̃

m2
W

pγ (ǫβργµq
ρq̄α + ǫραγµqβ q̄

ρ − ǫβαγµq · q̄)
}

where gγWW = −ie, gZWW = ie cot ΘW , and ǫ1234 = −1.
The general three-boson vertex with arbitrary values of the couplings is not locally

gauge invariant and this fact leads to some difficulties, such as violation of tree unitarity
in scattering processes and bad divergences in loop corrections. Some symmetry require-
ments, however, can be imposed on the general Lagrangian to ensure the absence of the
most serious divergences [11]. These requirements appear as relations among a priori

arbitrary anomalous couplings, and reduce the number of them.
Turning from the phenomenological Lagrangian, one can consider SU(2)⊗U(1) oper-

ators of high dimensions to reproduce all couplings in (1). Depending on the new physics
dynamics, such operators could be generated at the mass scale Λ, with a strength which
is generally suppressed by a factors like (mW/Λ)d−4 [12]. As the reduced three-boson
vertex contains only d = 4, 6 operators, it should be stressed that it represents the low-
energy limit of the general Lagrangian expansion over relative operator strengths if only
the leading terms are kept. This method reproduces the so-called “Linear Realization” of
the gauge invariant three-boson vertex parameterization. The Lagrangian that generates
these couplings is as follows:

iL = g′
αBφ

m2
W

OBφ + g
αWφ

m2
W

OWφ + g
αW

m2
W

OW +
gg′

2

α̃BW

m2
W

ÕBW + g
α̃W

m2
W

ÕW (5)

where g, g′ are SU(2)L and U(1)Y couplings respectively.
Replacing the Higgs doublet field by its vacuum expectation value, one obtains:

∆g1 =
αWφ

c2W
, ∆κγ = −c

2
W

s2
W

(∆κZ − ∆g1) = αWφ + αBφ, λγ = λZ = αW (6)

κ̃γ = − cot2 θW κ̃Z = α̃BW , λ̃γ = λ̃Z = α̃W .
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2.2.2 Neutral couplings

In addition to charged couplings WWγ and WWZ, neutral ones can also be defined.
The well known representation by Hagiwara et al.[7] gives these couplings, fixing selected
bosons at mass-shell. Generally speaking, this representation cannot be satisfactory for
general amplitudes due to the finite width of Z-boson. Adequate treatment of neutral
couplings requires careful operator analysis and is not performed yet. DELTGC adopts the
simplest parametrization presented in [7]. Particular vertices have the form:

ΓV ZZ
µαβ = i

s−m2
V

m2
Z

{

fV
4 (pαgµβ + pβgµα) + fV

5 ǫµαβρ(q − q̄)ρ
}

, (7)

and

ΓV Zγ
µαβ = i

s−m2
V

m2
Z

{

hV
1 (q̄µgαβ − q̄αgµβ) +

hV
2

m2
Z

pα(p · q̄gµβ − q̄µpβ)

hV
3 ǫµαβρq̄

ρ +
hV

4

m2
Z

pαǫµβρσp
ρq̄σ

}

(8)

In the above expressions the indices and momentum flows are the same as for charged
couplings.

2.3 Gauge Cancellations

Some processes from the e+e− → 4f set contain singular diagrams that show bad t-
channel divergences. Nevertheless, the final result after integration over the whole phase-
space should be finite. This means that gauge cancellation should occur between singular
diagrams, leading to an integrable matrix element.

To handle the gauge cancellations, two aspects should be taken into account.

2.3.1 Input Parameters

Calculating the cross section for the processes e+e− → 4f one deals with parameters such
as: αe, MZ , ΓZ , MW , ΓW , sin ΘW (the QCD related parameter αs and external fermion
masses are omitted because they do not affect the gauge behaviour of the calculations).

The value of the electroweak coupling constant αem can also be separated from the
problem of gauge cancellation because it appears as a common factor for all diagrams.
It must be noticed that one needs two different values of this constant: αem(0) and
αem(2MW ). The first one is used for the calculation of the initial state radiation, while
the other is the electromagnetic coupling constant at the LEP-II energy scale.

The remaining set of parameters is over-defined, as any SM process can be described
by means of four independent parameters (αem is already removed from this set). It is
well known that at tree-level the gauge cancellations are exact and the relations among
the parameters can be used to reduce the number of them.

One can choose the well-measured set of independent parameters such as GF , MZ ,
MW , and ΓZ , with ΓW and sin ΘW calculated from:

ΓW =
3GFM

3
W√

8π
and sin2 ΘW =

πα(2MW )√
2GFM2

W

.
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2.3.2 Gauge Boson Propagator Treatment

One may consider this problem simply by calculating all the diagrams in the “zero-width”
approximation, which obviously ensures gauge invariance and good high-energy behaviour
of the amplitudes. On the other hand, these amplitudes result in quite hard problems
during the phase-space integration, due to the explicit poles for the time-like gauge-boson
momenta. Some prescriptions were developed to soften this problem [13, 14]. The recipe
consists in the multiplication of the zero-width amplitudes by the factor (q2 −M2)/(q2 −
M2 + iMΓ). This factor cancels the contribution of the pole to the amplitude, at the
price of mistreating the non-resonant parts.

Another way to solve the problem is to use the “fixed-width” propagators of the form
1/(q2 − M2 + iMΓ) both for time- and space-like momenta. This procedure ensures
U(1)em current conservation, but it has no physical motivation because the propagator
does not develop an imaginary part for space-like momenta (q2 < 0) in the perturbative
theory. Additional problems in the “fixed-width” approximation will occur when one
deals with WL final state re-scattering, for example in e+e− → 6 fermions processes. The
“fixed-width” propagators will explicitly violate SU(2)⊗U(1) invariance and develop bad
high-energy behaviour.

The most theoretically motivated approach is based on the consideration of the
fermion-loop corrections to the three-boson vertex that compensate the imaginary part
in the Ward identities. The systematic study of this method can be found, for example,
in [15, 16]. The resulting prescriptions are described below:

• the time-like gauge boson propagators are treated with s-dependent widths;

• the space-like propagators are taken in the “zero-width” approximation;

• the three-boson vertex is multiplied by a factor (in the simplified approach [15])

1 + i
ΓW q̄

2

MW (q̄2 − q2)
. (9)

The above prescriptions ensure electromagnetic current conservation and gauge can-
cellations.

A much more elaborated technique is developed in [16].
Another approach was developed in [8] where the method of applying correction factors

to the gauge boson propagators was proposed. This method assumes the constant width
approximation for both time- and space-like propagators with substitutions:

M̃V =
MV

√

1 + γ2
V

, Γ̃V =
ΓV

√

1 + γ2
V

,

where γV = ΓV /MV .
This method is extremely simple and gives quite the same numerical results as more

theoretically elaborated ones.

2.4 Z ′-related coefficients

Despite its tremendous success in describing the experimental data within the range of
energies available today, the SM based on the gauge symmetry SU(3)C ⊗SU(2)L ⊗U(1)Y
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is widely believed not to be the ultimate truth. Different theoretical arguments can be
presented in the favour of SM extension. Well known among them are the reduction of the
parameters introduced by hand and possible unification of the electro-weak and strong
interactions.

Different models based on the extension of the symmetry group have been proposed
(for a review see, for example [17]).

All these models predict the existence of (at least) one additional neutral gauge boson
Z ′. The Z ′ search strategy can be based on different approaches. One of them is the
direct search for a new physics signal in e+e− → f f̄ at current or higher energies: this
can manifest itself as a resonance peak or as a strong interference effect on the SM cross-
section.

Another approach is connected with W production, where it can be shown (see, for
example [18]) that the effect of an additional gauge boson can be absorbed in a mod-
ification of the SM triple gauge couplings gZ and gγ . The resulting expressions are as
follows:

∆gγ = gZ′WW
q2

M2
Z′ − q2

gV l(ξV l − ξAl),

∆gZ = −gZ′WW
q2 −M2

Z

M2
Z′ − q2

gV lξAl,

where the functions ξAl and ξV l absorb Z ′ − l couplings. DELTGC calculates the convo-
lution of the amplitudes with the q2 and mass dependent form-factors:

Fγ =
cw
sw

q2

M2
Z′ − q2

MZ

MZ′

,

FZ =
q2 −M2

Z

M2
Z′ − q2

MZ

MZ′

.

By default the mass of Z ′ = 1000 GeV but it can be changed by the user.
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3 The Program Description

3.1 Program Features

DELTGC performs an adaptive integration, with optional subsequent event generation,
for processes of the type e+e− → 4f with special emphasis on anomalous triple gauge
couplings. The program calculates the cross-section for any particular set of the TGC,
as well as the coefficients in the cross-section decomposition in terms of the TGC. All
the coefficients can be obtained in one single program run. The program supports two
different TGC representation schemes: one is the standard scheme of g, κ, λ coefficients
(see, for example, [7]), and the other is the commonly used α-representation.

Special attention was devoted to the gauge cancellation of singular diagrams that
ensures a high stability of the calculations in a singular region. For example, the range of
the integration with respect to the outgoing electron can be extended to the full angular
interval with fast convergence of the integral. The gauge boson propagators have been
treated by the modified width scheme by Berends [8].

The program implements complex cuts on the final state fermion momenta. Some cuts
can be implemented through the external interface file, and non-standard situations can
be treated with an optional user-supplied routine.

DELTGC supports two methods of amplitude calculation. One is based on the quasi-
massless treatment of the Dirac spinors. This method assumes finite masses for the
fermions while all right/left spiralities for u/v spinors are suppressed due to the factor
m2/E2 arising in the Dirac spinor expansion in terms of the inverse energy. It gives an
excellent agreement with the calculations of other programs and is very fast. This method
is very convenient for calculations at high energies.

Another method is based on exact calculation of the amplitudes with possible arbitrary
mass assignment to the fermions. It is much slower, but is suitable for calculations in a
wide energy interval, including quite low

√
s.

DELTGC v.1.0 is installed in the fast mode and cannot be switched to the extended
amplitudes calculations by the user.

3.2 Program Input

During initialization, the program reads the input file from the FORTRAN logical unit
19. If the user does not assign any file on this unit, the standard file DELTGC.INP from
the directory where DELTGC starts is opened.

An example of the input is given in Appendix A. In this file the user should define the
process under study (the processes are listed in Appendix B), ISR, QCD and Coulomb
correction switches, cuts, and other parameters. The details are given in Appendices A
and B.
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3.3 The Program Layout

3.3.1 Initialization

The user-called initialization routine

subroutine Init_Model (iret)

reads the external user-assigned file or the file with the default name DELTGC.INP. The
parameter INTEGER iret returns a non-zero value if errors have been detected during
initialization.

This routine initializes all suitable constants and flags. It also checks the consistency of
the problem defined, and prepares special flags and internal parameters for the subsequent
integration of the matrix element.

Some internal parameters can be changed before the main initialization. This can be
done by calling

subroutine TGC_Parameters (NAME, Value)

character*4 NAME

real*8 Value

The meanings and default values of the parameters that can be changed by the user
are:

NAME Meaning Default NAME Meaning Default

ME me GeV 0.511d-03 MMU mµ GeV 0.106
MTAU mτ GeV 1.777 MZ mZ GeV 91.188
GZ ΓZ GeV 2.03 MW mW GeV 80.23
MUQ mu GeV 0.05 MDQ md GeV 0.05
MCQ mc GeV 1.5 MSQ ms GeV 0.3
MTQ mt GeV 170. MBQ mb GeV 5.0
ALPE α−1

em 128.07 ALPS αQCD 0.12
MZP MZ′ GeV 1000. VUD Vud 0.9751
VUS Vus 0.2225 VUB Vub 0.0035
VCD Vcd 0.221 VCS Vcs 0.9743
VCB Vcb 0.041 VTD Vtd 0.009
VTC Vtc 0.04 VTB Vtb 0.9991

Please note that αQCD does not affect the value of the final state QCD corrections
because the running coupling constant is used for correction calculations that depend on
the W mass: αQCD is used for the calculation of diagrams with time like hard gluons.

CKM mixing constants accept the specified values only if the CKM flag in the file
DELTGC.INP is set to a non-zero value (see Appendix A). Zero value for this flag will force
DELTGC to set all diagonal mixing parameters to 1 and non-diagonal ones to 0.
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3.3.2 Integration and Distributions

The routine

subroutine Get_CS (sig,err,chi2)

performs an adaptive integration of the matrix element using a user-defined number of
iterations and function calls per iteration.

The data flow and the routines interdependence during integration is given in Figure.1.

Internal_Cuts

Get_CS VEGAS

Amplitudes

User_Cuts

Spirality Library

|M|

YES/NO

2

Pi

P i P i

|M|
2

P i

Xi

iX
P i

Get_Kinematics

User_DistributionsME_Squared

Figure.1. Data flow during integration.

Get_CS is in fact a dummy routine that calls VEGAS to perform adaptive integration.
The algorithm of Lepage [2] for multidimensional numerical integration using importance-
and stratified samplings is used. The number of integration variables is either 7 (no ISR
corrections) or 9 (ISR corrections on).

VEGAS is designed in such a way that the integration is always performed over the unit
hypercube, so the relevant transformation from VEGAS variables to the physical momenta
should be performed. Moreover, the meaning of the variables depends strongly on the
process under study. The transformation from VEGAS variables Xi to momenta Pi is
designed in such a way that non-regular matrix element behaviour is concentrated along
separate variables Xi. This is quite an important point because any adaptive algorithm
gives an advantage only when non-regularities in the integrand can be separated along
different coordinate axes.

This is a non-trivial task and the routine Get_Kinematics performs the transformation
from VEGAS variables to the physical ones taking into account the resonance structure,
t- and u-channel singularities of the matrix element. Obviously, in complex cases it is
impossible to separate the singularities completely and the convergence of the integration
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depends strongly on the process. Nevertheless, the usual time to integrate the amplitude
by adaptive methods is 2-3 orders of magnitude less than for non-adaptive methods.

After creation of the external particle momenta, Get_Kinematics calls two logical
functions: Internal_Cuts that checks the consistency of the momenta generated and
the cuts defined in DELTGC.INP, and User_Kinematics that treats non-standard cuts. If
both functions returns logical .TRUE. the resulting momenta are passed to the routine
that calculates amplitudes.

Finally, the user-defined routine User_Distributions is called to provide the user
with the momenta and the matrix element squared to perform actions on the accumulating
distributions. An example of the program can be found in Appendix C. Please, note, that
the WGT parameter passed to the user is constructed in such a way that it can be used
directly for the distributions accumulation, and is measured in [pb].

The user-defined routine User_Distributions has the parameters:

subroutine User_Distributions (p,wgt,imode)

real*8 p(4,6) ! particles momenta in the order:

! e-, e+ and other momenta in the order

! of process table

real*8 wgt(327) ! weights for the current event

integer imode ! switch parameter

The switch parameter imode can accept two values: 0 and 1. The value 0 corresponds
to the call of the User_Distributions from the main iterations loop.

DELTGC provides another possibility to obtain the distributions of the external particles
kinematical functions. It consists in a separate call to the routine

call Get_Distributions (nevent)

that should be done after the main integration loop. In this case the parameter imode=1.
The parameter nevent informs DELTGC how many events should be generated during

the run. Please note that the efficiency of the generation algorithm varies from one process
to another depending on the complexity of the underlying kinematics and is never 100%.
The typical value varies from 30 to 60%.

Only events that were effectively generated are passed to the user routines. The final
number of events passed to the subroutine User_Distributions will always be less than
nevent. So, the recommended value for the parameter nevent is 2−3 ·105. The resulting
number, around 105 events, is sufficient to have meaningful distributions in all cases.

Some explanations should be given concerning weights passed while creating the distri-
butions. The array wgt(327) contains the full TGC-decomposition of the matrix element
for both κ− λ and α representations, as well as Z ′-related coefficients.
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The first 300 elements of this array contain the upper right triangle of the coefficient
matrix for the κ− γ representation, together with the neutral TGC parameters, written
by rows. The order of the TGC parameters is as follows:

SM, gZ , kZ , kγ, λZ , λγ , g4, g5, κ̃Z , κ̃γ , λ̃Z , λ̃γ, f
Z
4 , f

γ
4 , f

Z
5 , f

γ
5 , h

Z
1 , h

γ
1 , h

Z
2 , h

γ
2 , h

Z
3 , h

γ
3 ,

hZ
4 , h

γ
4 .

So, the term wgt(1) gives the SM value, wgt(2) gives the interference term SM-gZ for
gZ = 1, wgt(25) gives the term proportional to g2

Z , and so on.
The elements from 301 to 306 give the Z ′-related coefficients in the order:

SM, g′Z , g
′
γ.

The terms from 307 to 327 contain the upper right triangle for the α coefficients matrix
in the order:

SM, αWφ, αBφ, αW , α̃BW , α̃W .

Passed to User_Distributions array always contains the full matrix element decom-
position regardless of the parameters defined in DELTGC.INP. This gives the possibility to
have the “distribution decomposition” in terms of the TGC parameters.

The VEGAS routine creates an optimized grid using the user defined number of itera-
tions and accumulates internal weights to be used during the optional subsequent event
generation.

3.3.3 Access to the Results

If the fixed mode of the calculation has been chosen (see Appendix A), Get_CS returns
the value of σ in [pb], its error and χ2 value. If the χ2 value is much larger than 1, this
indicates a bad convergence.

If the full table mode was chosen, the returned parameters have the Standard Model
value for the process calculated and all other parameters can be obtained via a call to the
routine

subroutine Get_Full_Table (i,j,sig,err,chi2)

that returns the coefficient σij in the cross section decomposition:

σ(~x) =
∑

i,j

σijxixj

where xi = 1.
The order of TGC parameters is as follows:

- SM(0), gZ(1), κZ(2), κγ(3), λZ(4), λγ(5), g4(6), g5(7), κ̃Z(8), κ̃γ(9), λ̃Z(10), λ̃γ(11),
fZ

4 (12), fγ
4 (13), fZ

5 (14), fγ
5 (15), hZ

1 (16), hγ
1(17), hZ

2 (18), hγ
2(19), hZ

3 (20), hγ
3(21),

hZ
4 (22), and hγ

4(23) – for the standard representation,

- SM(0), αWφ(1), αBφ(2), αBφ(3), α̃BW (4) and α̃W (5) – for the α-representation.
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So, the coefficient 1, 1 for the standard representation corresponds to the coefficient
at g2

Z in the cross section decomposition and 0, 1 to that of the SM-gZ interference term.
Setting one of the parameters i or j to a negative value will cause the retrieval of the

Z ′-related coefficients. The meaning of these parameters is as follows:

SM(0), g′Z(1) and g′γ(2)

The user can check the quality of the integration using the errors and χ2 returned,
and can repeat the call to Get_CS. The integration procedure will then continue the grid
optimization using all the information from the previous iterations.

To calculate the value of the cross section for a particular value of a TGC parameter
the function

real*8 function Get_Current_Sig (itgc,vtgc)

integer itgc ! Number of the TGC parameter (see p.16)

real*8 vtgc ! TGC parameter value

can be used.
The routine

real*8 function Get_CS (sig,err,chi2)

described above returns a cross-section table that can be used for most calculations, but
DELTGC provides the possibility to obtain the TGC dependences with much higher
precision.

Routine

real*8 function Get_All_Dependencies (sig)

real*8 sig(327) ! The cross-section decomposition

will perform the calculations with high precision. The coefficients are calculated by a
parabolic interpolation of the cross-sections calculated at three different values of the
particular TGC parameter. One value coincides with the SM and two others are chosen
at +v and −v, where v is a value supplied by the user in the file DELTGC.INP for the
particular TGC parameter.

To save calculation time, not all TGC coefficients will be calculated. Only those with
non-zero values in DELTGC.INP will be used. The value (v) supplied by the user for
the particular TGC parameter should not be either too small (because it will decrease
the final precision) or too large (in this case the integration can become unstable). The
optimal value is typically in the interval 2 − 4.
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3.3.4 Matrix Element Access

To access the matrix element squared for any particular process and configuration of
external momenta, the user should (after normal DELTGC initialization) call the routine

subroutine Get_Matrix_Element (ipro,p,sig)

integer ipro ! The process label

real*8 p(3,4) ! final particles momenta (WITHOUT ENERGY)

real*8 sig(327) ! Matrix element square decomposition

The user can choose any process regardless of the value specified in DELTGC.INP.
DELTGC will initialize the masses of the final state fermions, perform the transformation
to the center-of-mass system, and calculate the cross-section for the given phase-space
point. Note, please, that DELTGC does not perform any check of the consistency of
the momenta supplied with the user-defined cuts, and will not call User_Kinematics.

From the supplied values of the final-state particle momenta, DELTGC will define
the fractions of the colliding energy carried off by the ISR photons from the e− and e+,
calculate the relevant weight of the ISR correction function, and correct the resulting
values of the cross-section decomposition by the resulting factor.

The returned values of the decomposition (sig) can be used to calculate the value of
the matrix element squared for the particular value of TGC. The function

real*8 function Get_Current_Ratio (sig,itgc,vtgc)

real*8 sig(327) ! The matrix element decomposition

integer itgc ! Number of the TGC parameter (see p.16)

real*8 vtgc ! TGC parameter value

will return the value of the ratio of the matrix element squared calculated for the specified
value of the TGC to the SM value.
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Appendix A.

An example of the input file DELTGC.INP

25 ! IPROC

1 ! Fermion mass flag

172. ! SQS

1 ! ISR switch

1 ! QCD corrections switch

1 ! Coulomb corrections switch

0 ! CKM flag

1 ! external mass cuts

5. 5. 5. 5. 5. 5.

172. 172. 172. 172. 172. 172.

1 ! External energy cuts

3. 3. 3. 3.

170. 170. 170. 170.

1 ! Angular cuts

0. 0. 0. 0.

170. 180. 180. 180.

1 ! Separation cuts

0. 0. 0. 0. 0. 0.

180. 180. 180. 180. 180. 180.

1 ! PT cuts

0. 0. 0. 0.

170. 170. 170. 170.

1 ! Acoplanarity cuts

0. 0. 0. 0. 0. 0.

180. 180. 180. 180. 180. 180.

20 ! Number of iterations

20000 ! Number of function eval./iteration

1 ! Select TGC representation

1 ! Select fixed/table mode

0. 0. 0. 0. 0. ! TGC values for charged couplings

0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. ! TGC values for neutral couplings

IPROC The value of the process to be calculated. See Appendix B. for the list of the
processes.

Fermion mass flag Normally, should be set to 1. Turning it to 0 the user will set all
the external fermion masses to zero. This can lead to hard integration behaviour
and should be avoided by the user.

SQS The value of
√
s in GeV.
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ISR switch The corrections for soft photon bremsstrahlung in the initial state switched
on/off (2/1/0). The value 1 corresponds to collinear ISR in the structure function
approximation, and 2 corresponds to the final PT ISR. In the last case during event

generation DELTGC will return into common /sa_phot/ phot(3,2) the REAL*8
momenta of the photons generated.

QCD switch The corrections from soft gluon radiation from the final quarks switched
on/off (1/0).

Coulomb switch The Coulomb corrections switched on/off (1/0).

CKM switch Normally should be set to 0. In this case no CKM mixing processes will
be calculated and diagonal mixing parameters will be set to 1. Turning it to 1 the
user restores the pre-defined CKM mixing parameters and obtains access to the
processes with CKM mixing.

Mass cuts This switch indicates that the program should perform internal mass cuts.
The next two strings give the lower and upper mass cuts respectively in the order:
3+4, 3+5, 3+6, 4+5, 4+6, 5+6. The values are given in GeV.

Energy cuts This switch indicates that the program should perform internal cuts on the
energies of the external fermions. The next two strings give the lower and upper
values for the energies respectively in the order: 3, 4, 5, 6. The values are given in
GeV.

Angular cuts This switch indicates that the program should perform internal cuts on
the angle of the external fermion with respect to the z-axis. The value 1 corresponds
to degrees, while the value 2 corresponds to the cuts in radians. Note please! In
DELTGC the positive direction of the z-axis is defined along the incoming positron

momentum. The next two strings give the lower and upper angular cuts respectively
in the same order as the energy cuts.

Separation cuts This switch indicates that the program should perform internal cuts
on the opening angle between two external fermions. The value of the switch is the
same as for angular cuts, the order of fermion pairs is the same as for mass cuts.

PT cuts This switch indicates that the program should perform internal cuts on the Pt

values of the external fermions. The order of values is the same as for Energy cuts.

Acoplanarity cuts This switch indicates that the program should perform internal cuts
on the acoplanarity value for two external fermions. The value of the switch is the
same as for angular cuts, the order of fermion pairs is the same as for mass cuts.

Number of iterations Gives the number of iterations to be performed by DELTGC to
set the optimized grid in the integration variables.

Number of func. eval. Number of amplitude calls during every iteration.

TGC representation Selects between the g-κ-λ (0) and the α (1) representation.

20



Calculation mode Selects between fixed mode (1), when DELTGC calculates the cross
section for the particular set of the TGC values, and table mode (0), when the whole
table of the cross-section decomposition will be created. For the last case the values
of the TGC parameters supplied by the user are not taken into account.

Charged TGC values Supply here the values of TGC parameters for fixed mode.

Neutral TGC values As above.

Important notes

1. The lines with the values of kinematical cuts are read by the initialization routine
regardless of the values of the cut switches.

2. The generation of the events can be performed for any particular set of TGC pa-
rameters. If the user is going to perform event generation, the values of the TGC
parameters should be set.
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Appendix B.

The table below gives the process numbers as they should be referred to in DELTGC.INP

ID Final state ID Final state ID Final state ID Final state

1 e−ν̄eνee
+ 2 e−ν̄eνµµ

+ 3 e−ν̄eνττ
+ 4 µ−ν̄µνµµ

+

5 τ−ν̄τνττ
+ 6 µ−ν̄µνττ

+ 7 e−e+e−e+ 8 e−e+µ−µ+

9 e−e+τ−τ+ 10 µ−µ+µ−µ+ 11 τ−τ+τ−τ+ 12 µ−µ+τ−τ+

13 e−ν̄µνµe
+ 14 e−ν̄τντe

+ 15 µ−ν̄eνeµ
+ 16 τ−ν̄eνeτ

+

17 µ−ν̄τντµ
+ 18 τ−ν̄µνµτ

+ 19 νeν̄eνeν̄e 20 νeν̄eνµν̄µ

21 νeν̄eντ ν̄τ 22 νµν̄µνµν̄µ 23 ντ ν̄τντ ν̄τ 24 νµν̄µντ ν̄τ

25 e−ν̄eud̄ 26 e−ν̄ecs̄ 27 µ−ν̄µud̄ 28 µ−ν̄µcs̄
29 τ−ν̄τud̄ 30 τ−ν̄τcs̄ 31 e−e+uū 32 e−e+cc̄
33 e−e+dd̄ 34 e−e+ss̄ 35 e−e+bb̄ 36 µ−µ+uū
37 µ−µ+cc̄ 38 τ−τ+uū 39 τ−τ+cc̄ 40 µ−µ+dd̄
41 µ−µ+ss̄ 42 µ−µ+bb̄ 43 τ−τ+dd̄ 44 τ−τ+ss̄
45 τ−τ+bb̄ 46 uūνeν̄e 47 cc̄νeν̄e 48 dd̄νeν̄e

49 ss̄νeν̄e 50 bb̄νeν̄e 51 uūνµν̄µ 52 cc̄νµν̄µ

53 uūντ ν̄τ 54 cc̄ντ ν̄τ 55 dd̄νµν̄µ 56 ss̄νµν̄µ

57 bb̄νµν̄µ 58 dd̄ντ ν̄τ 59 ss̄ντ ν̄τ 60 bb̄ντ ν̄τ

61 ud̄dū 62 cs̄sc̄ 63 ud̄sc̄ 64 uūuū
65 cc̄cc̄ 66 dd̄dd̄ 67 ss̄ss̄ 68 bb̄bb̄
69 uūcc̄ 70 uūss̄ 71 uūbb̄ 72 cc̄dd̄
73 cc̄bb̄ 74 dd̄ss̄ 75 dd̄bb̄ 76 ss̄bb̄
77 e−ν̄eus̄ 78 e−ν̄eub̄ 79 e−ν̄ecd̄ 80 e−ν̄ecb̄
81 µ−ν̄µus̄ 82 µ−ν̄µub̄ 83 µ−ν̄µcd̄ 84 µ−ν̄µcb̄
85 τ−τ̄µus̄ 86 τ−τ̄µub̄ 87 τ−τ̄µcd̄ 88 τ−τ̄µcb̄
89 uūds̄ 90 uūdb̄ 91 cūdd̄ 92 cūdb̄
93 uc̄ds̄ 94 uc̄db̄ 95 cc̄db̄ 96 uūsb̄
97 cūsb̄ 98 cūbb̄
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Appendix C.

Examples of the programs are given below:

c

c This program calculates the particular process and saves the full table

c of the cross-section decomposition coefficients into external file.

c

c The distribution over cos(theta) of the third particle also constructed

c

implicit real*8 (a-h,o-z)

common /pawc/ hmemor(10000)

real*4 hmemor

c

c Initialize HBOOK area

c

call hmemor (10000)

call hbook1 (1,’ Cos(Theta_3) ’,100,-1.,1.,0.)

c

c Re-define some parameters

c

call TGC_Parameters (’MW ’,80.40d0) ! M_W

call TGC_Parameters (’ALPE’,130.d0) ! 1./\alpha_e

c

c Initialize DELTGC

c

call Init_Model (iret)

if (iret.ne.0) STOP

c

c All is OK. Calculate cross-section.

c

call Get_CS (sig,err,chi2)

c

c Create some distributions

c

call Get_Distributions (300000)

c

c Save the results in the external file

c

open (unit=2,file=’res.dat’,status=’new’)

do i1 = 0,5

do i2 = 0,5

call Get_Full_Table (i1,i2,sig,err,chi2)

write (2,*) sig

enddo

enddo
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c

c Save histogram

c

call hrput (0,’res.hbk’,’N’)

c

stop

end

c-------------------------------

logical function User_Kinematics (p)

c-------------------------------------------

implicit real*8 (a-h,o-z)

real*8 p(4,6)

c

User_Kinematics = .FALSE.

c Define your cuts here

if ( NOT true for your cuts ) return

c

User_Kinematics = .TRUE.

c

return

end

c-------------------------------

subroutine User_Distributions (p,wgt,imode)

c-------------------------------------------

implicit real*8 (a-h,o-z)

real*8 p(4,6),wgt(327)

real*4 cost

c

if (imode.eq.0) return ! We will use events in separate call

c

cost = p(3,3)/sqrt(p(1,3)**2+p(2,3)**2+p(3,3)**2)

call hf1 (1,cost,sngl(wgt(1)))

return

end
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c

c This program generates 1000 events for the particular process

c

implicit real*8 (a-h,o-z)

c

c Initialize DELTGC

c

call Init_Model (iret)

if (iret.ne.0) STOP

c

c All is OK. Calculate cross-section.

c

call Get_CS (sig,err,chi2)

c

c Now, generate 1000 events

c

call Get_Events (1000000)

c

stop

end

c-------------------------------

logical function User_Kinematics (p)

c-------------------------------------------

implicit real*8 (a-h,o-z)

real*8 p(4,6)

c

User_Kinematics = .FALSE.

c Define your cuts here

if ( NOT true for your cuts ) return

c

User_Kinematics = .TRUE.

c

return

end

c-------------------------------

subroutine User_Event (p,wgt)

c-------------------------------------------

implicit real*8 (a-h,o-z)

real*8 p(4,6),wgt(327)

integer nevents

data nevents/0/

save nevents

c

nevents = nevents + 1

if (nevents.gt.1000) stop

c
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c

c Do something with this event

c

c

return

end
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