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Abstract

Longitudinal ionization cooling of a muon beam is essential for muon colliders and
will be useful for neutrino factories. Bent-solenoid channels with symmetric focusing
has been considered for beam focusing and for generating the required dispersion in
the “emittance exchange” scheme of longitudinal cooling. In this paper, we derive
the Hamiltonian that governs the linear beam dynamics of a bent-solenoid channel,
solve the single-particle dynamics, and give equations for determining the lattice
functions, in particular, the dispersion functions.
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1 Introduction

To build muon colliders with luminosity interesting to high-energy physics
experiments, the phase-space distribution of a muon beam collected from de-
cay of pions created on a proton target, needs to be reduced by 10°. Both
transverse and longitudinal cooling are required [1,2]. For neutrino factories
[3], cooling in the longitudinal direction will help to increase the intensity and
reduce the cost. To obtain the desired cooling, ionization cooling channels are
being developed. When passing through absorbers, muons’ momentum vectors
are reduced due to ionization energy loss. By accelerating muons only longi-
tudinally in the rf cavities, transverse cooling can be achieved. However, the
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ionization process itself does not effectively cool the longitudinal momentum
spread because the energy-loss rate is not sensitive to beam momentum ex-
cept for very low-energy muons. To achieve longitudinal cooling, a promising
option is the “emittance exchange” scheme: introducing dispersion to spa-
tially separate muons of different energies and then using wedge absorbers to
discriminatively cool them [2].

Since solenoid channels are well-suited for focusing low-energy muon beams
with large acceptance, they are the primary candidate for a transverse cool-
ing channel [1,3]. Thus, a natural choice of transport channel for emittance
exchange is to add dispersion in a solenoid channel. The straightforward ap-
proach is to superimpose a dipole field with the solenoid field and make the
solenoids bend along the curved reference orbit determined by the dipole field.
Since the main solenoid field continuously rotates the beam and tends to make
the beam rotationally symmetric, it is advantageous to have symmetric focus-
ing in a bent-solenoid channel. To achieve this, gradient dipoles (with field
index n=1/2) could be used.!

In a bent-solenoid cooling channel, neither the solenoid nor the dipole field can
usually be treated as piecewise constant elements. Thus the lattice consists
of rather complicated combined function magnets. In this paper, we study
the single-particle linear dynamics in such a bent-solenoid channel with no
absorbers. The result, especially the equations for the dispersion functions,
can be useful for designing a bent-solenoid focusing channel with the desired
dispersion. Our result is also useful as a basis for a comprehensive ioniza-
tion cooling theory or for studying the nonlinear dynamics in a bent-solenoid
channel.

2 Hamiltonian

The magnetic field guiding muons in a bent-solenoid channel consists of a
longitudinal solenoidal field for focusing, a vertical dipole field for dispersion,
and a quadrupole field from gradient dipoles for symmetric focusing. The mag-
netic field and vector potential in the usual Frenet-Serret coordinate system
{z,y, s} can be written, up to the linear order, as [4]

1
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1 R. Palmer first suggested the possibility of replacing some of the weak solenoids
of a transverse cooling channel with gradient dipoles to keep the required focusing
while introducing the dipole field.
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where by, by, by are the solenoidal, dipolar, quadrupolar components. They are
all s-dependent to account for the fringe field. A prime denotes differentiation
with respect to s. k(s) is the curvature of the reference orbit and is normally
chosen to be ¢by(s)/po for a reference particle of charge ¢ and nominal mo-
mentum pg. Here A; is the normal, instead of the canonical, s-component of

A.

The Hamiltonian for a bent-solenoid channel, with s as the independent vari-
able, can be derived from the standard procedure. We start from the basic
expression [5,6]
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Here p,, p, are the normalized momenta with respect to p, 0 = (p —po)/po is
the relative momentum deviation, and z is the longitudinal position relative to
the reference particle. Inserting the vector potential in Eq. (2) and expanding
the Hamiltonian up to the second order yields the linear Hamiltonian as

1
H =

=5 (B 28) + 5 (o2 +0) ~ e @

&
p(s) — 2p(s)?

+ %I;l (xZ—yQ) , (5)

R 1 = K = ibo g
piOBy(O, 0, s). The canonical angular momentum L, = zp, — yp,. Note that, at
linear order, the fringe field terms (b, b)) and curvature terms (rbs, kby) do
not appear in the Hamiltonian, and the potential part of the Hamiltonian is

additive for superimposed magnets.
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For symmetric focusing channels, the quadrupole components of the gradient
dipoles must be tied to the bending radius as b (s) = —1/2p(s)2. Thus the
total focusing strength becomes K(s) = by(s)? + 1/2p(s)?. The Hamiltonian
reduces to
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Here, for simplicity, we added a simple oscillator with focusing strength V' (s)
as the longitudinal Hamiltonian and assumed no acceleration of the reference
particle.

3 Dispersion and beta functions

To solve the Hamiltonian of Eq. (6), we transform it to the Larmor frame (a
rotating frame that rotates at half of the cyclotron frequency) so that the z-y
coupling term L, is removed. Using the ~ over a symbol to indicate that it is
in the Larmor frame, the transformation reads

x=7Tcosf+7gsinf, y=7gcosh—Tsinf, etc., (7)

where 0(s) = [by(5)d5 is the rotating angle of the Larmor frame. The gener-
ating function is

Fy = x [pycos + pysinb] + y [p, cos @ — p, sin 6] (8)

In the Larmor frame, the Hamiltonian becomes
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To further decouple the transverse and longitudinal degrees of freedom, we in-
troduce the dispersions D,, D, and a corresponding canonical transformation
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which can be generated by the generating function
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The transformed Hamiltonian H 3 is complicated. However, it can be dramati-
cally simplified and decoupled by requiring 1) the cavity regions are dispersion
free and 2) the dispersion functions satisfy the differential equations
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These are similar to the well-known dispersion equation in quadrupole chan-
nels. However, because of the solenoidal field, a vertical dipole will generate
dispersion in both horizontal and vertical planes with driving terms depending
on the Larmor rotation angle through the cos# and sinf. It is more difficult
to find a dispersion solution for bent-solenoid channels because there are two
equations to satisfy and furthermore the right-hand-side driving terms depend
on the focusing strength K(s) due to the focusing from the gradient dipole.

Under the above two conditions, the new Hamiltonian [:Ig is reduced to a
simple form

iy =5 (2, + ) + 556 (B4 ) + 5 [[00Ve2]. (13)
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Here I(s) = 1—2= (;O(ss[f(s)] —— Spi?s[)a(s)] reflects the momentum compaction effect.
Now that all three degrees of freedom are decoupled in H 3, we can introduce
lattice functions for them in analog to the Courant-Snyder theory [5]. There is
one set of lattice functions (Br, ar, 1) for both transverse degrees of freedom
and one set (81, ar, v1) for the longitudinal motion, which satisfy the familiar
equations
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With appropriate boundary conditions, these two sets of lattice functions de-
fine the transverse and longitudinal machine ellipses that characterize the
betatron and synchrotron oscillations. Using the lattice functions determined
by Egs. (12, 14, 15) and the transformations in Eqgs. (7, 10) it is straight-
forward to write down the complete solution for single-particle motion in a
bent-solenoid channel.

4 Design of dispersion functions

As in storage rings, optimizing the dispersion is an important part of a lon-
gitudinal cooling lattice design. Dispersion functions need to fulfill many con-
ditions for a lattice to function well. Equation (12) provides a useful tool for
dispersion design in a symmetrically focused bent-solenoid channel. Successful
design of a longitudinal ionization cooling channel is still under investigation.
In this section, we provide an example to illustrate some of the issues and
compare the result of Eq. (12) with simulation.

The thoughts behind this example are as follows. Since longitudinal cooling
is in fact achieved via transverse cooling, a natural starting point for a bent-
solenoid cooling channel is to add dispersion in suitable regions of a successful
transverse (straight) solenoid cooling channel while maintaining the original
transverse focusing properties, especially the periodicity and beta function
that are critical to transverse cooling. This can be achieved by reducing the
solenoid focusing to balance the focusing from added gradient dipoles, i.e., ad-
just p(s) as desired but keep the total focusing strength K (s) = b2 +1/2p* un-
changed. Obviously there is a limit on the dipole strengths and locations. Also,
the dispersion design is complicated because reducing the solenoid strength
will affect the Larmor rotation angle and thus the dispersion driving terms in
Eq. (12). Other conceivable conditions are: 1) Cavity regions should be dis-
persion free in order to decouple the transverse and longitudinal degrees of
freedom. Thus the dispersion has to be localized between the cavities, which
cannot be too far apart due to longitudinal focusing requirement. 2) Maximum
dispersion better occurs in a minimum beta region due to the large beam size
and limited aperture. 3) The dispersion insertion is better if it is a first-order
achromat.

In the example shown in the figure, we start with a “superFoFo” lattice used
in the transverse cooling channel of the neutrino factory feasibility study-
IT [3]. Two periods of the periodic solenoid field (b,) and beta function (f)
of the superFoFo lattice are shown as a thin dashed line and a thick solid
line, respectively. To generate a closed dispersion bump that fulfills the above
conditions and the more stringent requirement that D, = D} = D, = D; =0

at both ends for three different muon energies (to control chromatic effect),



twenty short piecewise-constant vertical dipoles with fringe field are added. By
adjusting the dipole strengths and the solenoid focusing as discussed above,
we found a solution of Eq. (12) and plot the D, (D,) as thick (thin) dotted
line. The added dipole field (1/p) is plotted as a thin dash-dot line and the
adjusted solenoid strength (by) as a thin solid line. This bent-solenoid channel
was tracked with the ICOOL simulation code [7] and the tracked dispersion
D, (D,) is also shown as thick (thin) gray line. We see that the tracking result
and Eq. (12) agree very well. This example demonstrates that Eq. (12) can be
used to design sophisticated dispersion functions.

Since the dispersions begin and end with zeros and the beta function is un-
changed, such a dispersion section could be used to implement longitudinal
ionization cooling by replacing certain periods of the original straight solenoid
channel. We emphasize that this is just an example solution. Much simpler
dispersion solutions exist if we require the zero boundary condition for only
one muon energy. Furthermore, if the solenoid and dipole fields do not over-
lap, the channels discussed in this paper reduce to simpler separated function
lattices as proposed in Ref. [8].
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Fig. 1. Dispersion example of a bent-solenoid channel. Lattice functions 8, D,, and
D, are in [m]. Field strength functions bs and 1/p are in [1/m]. The original and
adjusted solenoid strengths are in dashed and solid (adjusted) lines. The dispersions
calculated with Eq. (12) and ICOOL tracking are in dotted and gray (simulated)
lines.



