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Abstract

Supersymmetric gauge theories have been at the heart of research in theoretical physics for

the past five decades. The study of these theories holds not only the promise for the ulti-

mate understanding of Nature, but also for discoveries of new mathematical constructions and

phenomena. The latter results from a highly geometrical nature of these theories, which is

prominently carried by the moduli space of vacua.

This thesis is dedicated to the study of moduli spaces of supersymmetric quiver gauge the-

ories with 8 supercharges. Typically, such moduli spaces consist of two branches, known as

the Coulomb branch and the Higgs branch. Following a review of the Higgs and the Coulomb

branch computational techniques in the first part of this thesis, it is shown how the study

of Coulomb branches of 3d N = 4 minimally unbalanced theories is used for developing a

classification of singular hyperKähler cones with a single Lie group isometry. As another appli-

cation, three-dimensional Coulomb branches are used to study Higgs branches of a stack of n

M5 branes on an A-type orbifold singularity. Analysis of such systems gives rise to a discrete

gauging phenomenon with importance for both physics and mathematics. From the physics per-

spective, discrete gauging solves the problem of understanding the non-classical Higgs branch

phases of the corresponding 6d N = (1,0) world-volume theory, even when coincident subsets

of M5 branes introduce tensionless BPS strings into the spectrum. From the mathematical

perspective, discrete gauging provides a new method for constructing non-Abelian orbifolds

with certain global symmetry. The thesis also includes an investigation of theories associated

with non-simply laced quivers. Remarkably, the formalized analysis of the so-called ungauging

schemes and the corresponding Coulomb branches reproduce orbifold relations amid closures

of nilpotent orbits of Lie algebras studied by Kostant and Brylinski. Finally, three-dimensional

Coulomb branches are employed to understand the Higgs mechanism in supersymmetric gauge

theories with 8 supercharges in 3,4,5, and 6 dimensions. It is illustrated that the physical

phenomenon of partial Higgsing is directly related to the mathematical structure of the moduli

space, and in particular, to the geometry of its singular points. The developed techniques pro-

vide a new set of algorithmic methods for computing the geometrical structure of symplectic

singularities in terms of Hasse diagrams.
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Chapter 1

Introduction

1.1 Historical Aperçu

Historically, the two main roles of physics has been to explain new physical phenomena and to

foretell the future by predicting outcomes of experiments that match the observed outcomes of

physical processes in Nature. A typical example comes from the classical theoretical mechanics

where the energetics of a studied system is defined by the Lagrangian functional, or more pre-

cisely, by the action for that system. Calculus of variations is employed to find the extremum of

the action with respect to its variations. Obtained are Euler-Lagrange equations [1], solutions

to which are the equations of motion which govern the evolution of the system and foretell the

state of the system at any given time in the future.

A more involved model, developed for describing particle interactions, is that of classical field

theory. Therein, the interactions of particles are modelled as an intricate interplay of simple

harmonic oscillators residing at each point of space. Accordingly, a propagating particle is

described as a wave pocket comprised of collaborative excitation of simple harmonic oscillators.

Hence, particle interactions are realized as a beautiful symphony preformed by an infinite or-

chestra of simple harmonic oscillators.

1
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In describing ever smaller systems, one is led into the realm of quantum physics. The foretelling

role of physics is blurred by the Heisenberg’s uncertainty principle, leaving one with probability

amplitudes as outcomes of theoretical predictions. The first field theory framework to achieve

full agreement of quantum mechanics and Einstein’s special relativity was quantum electro-

dynamics (QED). In 1928 Paul A.M. Dirac laid the first foundations for the full development

of QED by Richard P. Feynman, Julian S. Schwinger, and Shin’ichirō Tomonaga which came

some ten years later. QED succeeded in giving very accurate predictions of luminosity and

the anomalous magnetic dipole moment of the muon. The central idea behind QED is the

realization that the electromagnetic force has a U(1) gauge symmetry associated with it. In

theoretical physics, forces are mediated as an exchange of the force particles (i.e. gauge bosons)

in Feynman diagrams and therefore the identification and realization of the gauge symmetry is

paramount. In the subsequent years after the formulation of QED, the SU(2) gauge symmetry

of the weak nuclear force (mediated by Z0, and W ± bosons) and the SU(3) gauge symmetry of

the strong nuclear force (exchange of gluons) were identified. The theory of the strong nuclear

interactions formulated in 1973 by Murray Gell-Mann, Harald Fritzsch, and Heinrich Leutwyler

is an SU(3) gauge theory known as quantum chromodynamics (QCD). Given the underlying

symmetry, it is only natural that gauge theories are very elegant mathematical objects to study.

What had still been lacking in the picture was unification of fundamental forces. This is

precisely the effort which was initiated by Abdus Salam’s, Steven Weinberg’s and Sheldon

Glashow’s introduction of the electro-weak theory. In their model, above the unification en-

ergy of 246 GeV, the electromagnetic and weak nuclear forces merge into a single electro-weak

force. Among other pioneering advances of the 50’s one should also include the introduc-

tion of renormalisation techniques. Another celebrated advance, the mass generation via the

Englert–Brout–Higgs–Guralnik–Hagen–Kibble mechanism, pioneered by Tom Kibble’s ideas,

came in 1964. The decades of effort culminated in a consistent theoretical model for which the

last missing piece of puzzle - the Higgs boson - was discovered in 2012 at CERN. The three

fundamental forces of Nature are beautifully encapsulated in the celebrated Standard Model of

Particle Physics (SM) - without a doubt one of the most colossal intellectual achievement of
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mankind.

The fourth fundamental force - gravity - described classically by Einstein’s General Relativity

[2] - still to this day remains as an outlier with respect to the other three fundamental forces.

From the point of view of ultimate unification1 the search is still on for a consistent formulation

of quantum gravity and an all-encompassing Theory of Everything in which all fundamental

forces are accounted for. Historically, the hottest candidate for such all-encompassing theory

came in form of String theory which has already seen two superstring revolutions during the

periods of 1984–1994 and 1994–2003, respectively. The main realization of the first super-

string revolution was that string theory is capable of describing all elementary particles of the

Standard Model as well as the interactions between them. The revolution took off after the dis-

covery of anomaly cancellation in Type I string theory via the Green–Schwarz mechanism [3, 4].

David Gross’, Jeffrey Harvey’s, Emil Martinec’s, and Ryan Rohm’s ground-breaking discovery

of the heterotic string [5] followed in the subsequent year, together with Philip Candelas’, Gary

Horowitz’s, Andrew Strominger’s, and Edward Witten’s discovery that N = 1 supersymmetry

is obtainable by compactifications on Calabi-Yau manifolds [6]. By the end of the first rev-

olution, and accompanied by the ideas in [7], an astonishing yet mesmerizing picture of five

superstring theories arose. The five theories included in the picture are Type I, Type IIA, Type

IIB, Heterotic SO(32), Heterotic E8 ×E8.

Second superstring revolution was triggered with the realisation that the five superstring the-

ories are different facets (or limits) of a more fundamental 11-dimensional theory known as

M-theory [8, 9]. Simultaneously, it was shown that the various string theories are all intercon-

nected by a web of dualities. Many other ground-breaking discoveries were made including the

discovery of D-branes by Joseph Polchinski [10] (and independently by Petr Hořava [11]), and

the relationship between string theory and N = 4 super-Yang-Mills gauge theory [12] which has

led to the AdS/CFT holographic principle. Both of the mentioned discoveries have far-reaching

1It should be pointed out that experts might disagree on whether ultimate unification should even be expected
to exist. In fact, hereby inclining to one versus the other means to indulge in a metaphysical polemic.
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applications (Black Holes, large scale cosmological features of the Universe, and many more).

All in all, both superstring revolutions significantly contributed to the status of String theory

becoming a supreme monumental theoretical framework of tremendous mathematical beauty.

In the context of this thesis, let us return and adopt perhaps a more pragmatic viewpoint.

Before extracting important information (such as the scattering amplitudes) from a physical

theory one needs to discern whether the theoretical model is promising or not. The question

of how to discern such models brings us to the topic of gauge theory and the moduli space of

vacua.

1.2 Gauge Theory and the Moduli Space of Vacua

Gauge theory is one of the most remarkable concepts of modern science. The motivation under-

lying its development was mainly as a tool for describing fundamental physical processes, and

indeed, its predictions fit experimental data with striking precision. However, it soon became

clear that its ability to describe physics was only one of its merits and that its rich structure

provides a natural habitat for exploring novel phenomena in mathematics and geometry.

The elegance of gauge theory goes without saying since it is ultimately based on the closest

synonym of beauty - symmetry.2 In the language of gauge theory, particles are classified as

irreducible representations of the Poincaré symmetry further characterized by their charges (i.e.

mass, spin, charge, color, etc.). Drawing inspiration from superstring theories, it seems only

natural to incorporate supersymmetry (susy) into gauge theories. More symmetry enjoyed by

the theory causes the solutions to be more likely to exist and more constrained, hence, easier

to compute. Figuratively speaking, more symmetry also implies more freedom (bigger play-

ground) for solving puzzles. It is then no wonder that supersymmetric gauge theories firmly

hold their place at the center of fundamental theoretical physics research. The absence of their

experimental confirmation is balanced by the colossal mathematical machinery they provide.

2Here we take caution by understanding beauty in the sense of [13].
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Part of the raft of challenges posed by the study of such complicated structures as gauge theo-

ries arises at low energies and in the corresponding strong coupling limit. Example is provided

by the phenomenon of quark confinement. However, the problematic low energy limit of gauge

theories without susy becomes more accessible once susy is present. The insight comes from

geometrical arguments starting with the pioneering work of Seiberg and Witten [14, 15]. It

turns out that the understanding of the low energy limit involves the understanding of the

moduli space of vacua!

Moduli space of vacua of a gauge theory is the space parametrised by scalar field configurations

which minimize the energy. Moduli spaces come in various levels of geometric intricacy and

endowed with various structures such as the metric or the singularity structure, the letter being

of particular interest in the following chapters. In general, there exist inequivalent vacua as

massive and massless particle excitations, topological quantities, and other physical quantities

depend on the position in the moduli space. There may exist degenerate parts of the moduli

space subject to uplifting by quantum corrections. Since some structures are simultaneously

preserved even upon quantum corrections are taken into account it makes sense to treat moduli

space both classically as well as in the realm of quantum. In addition, there is an important side

to the story of low energy physics of susy gauge theories starring instantons. Instantons arise

as Euclidean action solutions responsible for the largest path integral contribution in the weak

coupling, however they are absent in the perturbative loop expansions and thus are consid-

ered non-perturbative. Notably, the vacuum field configurations corresponding to instantons,

usually termed instanton moduli spaces, belong to a family of hyperKähler (or Calabi-Yau) va-

rieties which are of particular interest thanks to their simplicity and nice properties. Instanton

moduli spaces commonly appear throughout this thesis.

Perhaps one of the most important merits of supersymmetric gauge theories is their natural

embedding (or brane engineering) in String theory. Using brane engineering, a complicated
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susy gauge theory can be encoded by a simple brane picture.3 Crucially, the power of this

feature lies in the multitude of languages that can be used in the description of the same gauge

theory problem. As we will see in later chapters, a problem in gauge theory immediately admits

a geometrical interpretation in the brane picture, and vice versa.

Let us remind ourselves how the brane picture arises. Upon constructing maximal supergravity

in 11 dimensions, the spectrum of massless particles (derived from representation theory of the

little group SO(9)) is made of the desired spin-2 graviton gµν , spin 3/2 gravitini ψaµ and the

3-form Cµνρ and it is easy to see that the bosonic and fermionic massless degrees of freedom

separately total to 128. The ideas of [16] teach us to employ the differential geometry analysis

of generalised Maxwell’s electromagnetism, taking the field strength of the 3-form dC = H as

the source. Solutions of these equations are Dp-branes with p even in Type IIA and with

p odd in Type IIB string theory, respectively. These solutions correspond to magnetically

charged, electrically charged, or dyonic extended objects occupying part of the full space-time.4

Crucially, there are susy gauge theories living on the Dp-branes! Out techniques for studying

susy gauge theories are based precisely on this multitude of description arising from the brane

embeddings of the theories in string theory. In the 1995 paper of Witten [17] it is shown that

the moduli space of k instantons in SO(32) heterotic string theory is the same the moduli

space of k coincident D5 branes in Type I string theory, and furthermore that the parameters

in the string embedding match those of the ADHM construction [18]. This was the starting

point for a ground-breaking realization that any brane system of Dp and D(p-4) branes, with

light branes living inside heavier branes, gives rise to a supersymmetric gauge theory in the

corresponding world-volume.

As is discussed in chapter 2, the original maximal supersymmetry of the Type IIB 10-dimensional

supergravity theory is halved by the presence of NS5 branes and halved again by the presence

of D5 branes. Hence, this configuration leaves 1/4 of the original SUSY preserved. By the

sequel, the corresponding world-volume susy gauge theory living on a D3 stretched between

3Suddenly, such problem falls into the student-friendly family of napkin exercise problems.
4Dp-branes are also defined as endpoints of strings.
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five-branes has 8 supercharges. Moreover, moduli spaces of supersymmetric gauge theories

living on brane systems are identified with the moduli spaces of brane systems in the sense

that the parameters of such string embeddings reproduce the parameters of the susy gauge

theories. Since the brane systems are described by combinatorial data, so should be the susy

gauge theories and the corresponding moduli spaces. This is precisely where the notion of a

quiver enters the stage. Quiver provides a combinatorial description of a matter content of a

supersymmetric gauge theory. In a sense, a quiver encodes the abstract representation content

of the Lagrangian. Quivers are introduced in section 2.6 and are abundantly exploited to en-

code and study theories throughout the thesis.

As soon as the identification between moduli spaces of brane systems and susy gauge theories is

established one is immediately invited to go one step further. Dualities between string theories

become dualities between various susy gauge theories, producing a plethora of new interesting

results for free. Perhaps the most powerful example of this paradigm shift is the celebrated

3d mirror symmetry of Seiberg and Intrilligator [19] which has been generalized using brane

engineering in [20]. Three-dimensional mirror symmetry relates two supersymmetric gauge the-

ories with different three-dimensional Lagrangians in the UV by suggesting their equivalence

in the IR. As was elegantly demonstrated by Amihay Hanany and Edward Witten using brane

cartoons in [21] mirror symmetry is actually a consequence of stringy S-duality. The brane

picture perspective on the 3d Mirror symmetry transforms its computation into an extremely

user-friendly one to perform (see the illustration in section 2.8.1).

Typically, the structure of the moduli spaces of theories with 8 real supercharges (i.e. in three

dimensions) involves a product of two hyperKähler cones [22]. This follows from amount of

supersymmetry which amounts to having two types of scalars. First type of scalars comes from

the hypermultiplets and the second type from the vector multiplets, respectively. As a result,

the moduli space sees a splitting into two branches. The first branch is known as the Higgs

branch and corresponds to scalar field configurations such that all vector multiplet scalars are

vanishing and the hypermultiplet scalars assume non-zero VEVs.5 If on the other hand, all

5Note that Lorentz invariance of vacuum states automatically requires vanishing of all fields of spin other
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hypermultiplets scalars are zero, and the vector multiplet scalars assume non-zero VEVs, one

is on the Coulomb branch of the theory. At the origin of the moduli space, where all scalars

are vanishing, the scale-less conformal field theory (CFT) resides.

Apart from a review of the background material, this thesis presents outcomes of author’s

collaborative effort published in [23, 24, 25, 26]. The mentioned work is directed towards the

study of vacuum moduli spaces of theories with 8 supercharges. It is hoped that the presentation

in the thesis puts these results into a wider context with an emphasis on the underlying twofold

motivation. On one hand, the collection of new results on three-dimensional N = 4 Coulomb

branches provides new insight into the physics of Higgs branches of theories with the same

amount of supersymmetry in 3,4,5, and 6 dimensions. It is not merely thanks to the Coulomb

branch computational techniques (such as the monopole formula) but primarily thanks to the

intuitive geometrical nature of quivers and the associated brane picture that makes many new

results in physics and geometry of moduli spaces ever more accessible. On the other hand,

many novel mathematical constructions and phenomena are being discovered and understood

precisely through the correspondence with physics of vacuum moduli spaces (i.e. massless state

excitations, partial Higgs mechanism, etc.). In this sense, the exploration of moduli spaces

of supersymmetric theories and the structures within, using the techniques that the thesis

showcases, has been very rewarding for the author. We hope that at least some of the ideas

presented along the course of this writing will be of use to future students and researchers.

1.3 Outline of the Thesis

• Chapter 2 overviews the essential background material such as a review of most relevant

supersymmetric multiplets, the notion of the moduli space of vacua as well as its branching

into the Coulomb and the Higgs branch. Included is also a recollection of the methods

used for the computation of the two branches. The classical computation of the Higgs

branch proceeds from the F and D-terms via the hyperKähler quotient construction. For

than zero.
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the computation of the more complicated unprotected Coulomb branch, one employs

the counting of dressed monopole operators via the monopole formula.6 As part of of

chapter 2 the notion of a quiver is encountered and examples of simple theories are used

to illustrate how the computation methods are put into use. Readers familiar with these

concepts might wish to skip directly to chapter 3.

• Chapter 3 draws from the techniques of chapter 2 to showcase the first mathematical

insight susy quiver gauge theory offers. By systematically studying all possible families

of minimally unbalanced quiver gauge theories we find the classification of hyperKähler

cones with a single isometry group of finite Dynkin type. The results in this chapter form

a subset of the complete classification in [23].

• Chapter 4 contains a novel construction of Abelian and non-Abelian orbifolds using a

particular action on three-dimensional N = 4 Coulomb branch quivers [24]. Physically,

this action enables us to understand various Higgs branch phases of 6d N = (1,0) world-

volume theory corresponding to a system of M5 branes on A-type orbifold singularity.

In particular, the appearance of tensionless BPS strings in systems with coincident M5

branes renders the standard Higgs branch computation insensible. The description of the

same system in terms of 3d Coulomb branches provides the answer in form of a discrete

gauging action on the corresponding 3d quivers.

• Chapter 5 explores Coulomb branches of non-simply laced quiver theories using the un-

gauging scheme analysis of [25]. Interestingly, the analysis recovers many of the orbifold

relations amid closures of nilpotent orbits of Lie algebras studied by Kostant and Brylinski

[27].

• Chapter 6 is concerned with Higgs branches of supersymmetric gauge theories with 8

supercharges in 3,4,5, and 6 dimensions. In particular, a direct correspondence between

the Higgs mechanism and the singular geometry of the Higgs branch is shown using

the techniques developed in [26]. This allows us to analyse the geometry of such Higgs

6Although other methods for the computation of the Coulomb branch exist (i.e. Abelianisation, or the
mathematical programme of Nakajima), these are not discussed.
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branches in terms of Hasse diagrams consisting of symplectic leaves and transverse slices.

Surpassing the finite coupling Lagrangian theories, the described methods open up new

avenues for the analysis of Higgs branches of theories at infinite coupling as well as some

non-Lagrangian theories. Mathematically, this provides a novel method for a computation

of the geometry of more general symplectic singularities (i.e. beyond the cases of nilpotent

orbits studied by Kraft and Procesi [28]).

• Conclusions of the thesis are discussed in chapter 7.

• Appendices declutter the main text by containing some technical aspects of ungauging

scheme analysis, magnetic quivers, Kraft-Procesi transition with 5d brane webs and 6d

brane systems, and quiver subtraction.



Chapter 2

Preliminary Background

2.1 Supersymmetry

The research contained in the present thesis concerns theories with 8 supercharges, therefore

it is instructive to start with a review of supersymmetry multiplets and implications for the

properties of the vacuum thereof. For a complete pedagogical review of N = 1 and N = 2

supersymmetry, refer to [29, 30] and [31, 32], respectively.

To begin with, consider 4d N = 2 SU(n) gauge theory with N flavors. The fields in the theory

are packaged into N = 2 vector multiplets (Vplets) and hypermultiplets (Hplets). Working

with the theory on-shell guarantees that the the multiplets can be recast in the form of N = 1

multiplets. The N = 2 Vplet decomposes as

VpletN=2 Ð→ VpletN=1 +CpletN=1, (2.1)

where the new multiplets both transform under the adjoint representation of SU(n). The N = 2

Hplet decomposes into chiral and anti-chiral N = 1 multiplets

HpletN=2 Ð→ CpletN=1 +CpletN=1, (2.2)

11
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both transforming under the fundamental representation of U(N) and the anti-fundamental

representation of SU(n). The fields also transform under the R-symmetry of the theory

SU(2)R × U(1)R which acts as an outer automorphism of the supersymmetry algebra. The

subsets of supercharges {Q1,Q2} and {Q̄1, Q̄2} transform as doublets with respect to SU(2)R

and with charges 1 and −1 with respect to U(1)R, respectively. The field content and the rep-

resentations under which the fields transform are summarized in table 2.1. The full Lagrangian

N = 2 multiplet N = 1 multiplet Fields SU(2)R
Vplet Φ Vplet V

Cplet Φ
Aµ, λα
φ, ζα

(λα
ζα

)→ [1]

Hplet H Cplet Q

Cplet Q̃†
q,ψα
q̃†, ψ̃†

α̇

( q
q̃†)→ [1]

Table 2.1: Field content and representation behaviour of the relevant components of multiplets under
SU(2)R.

of the 4d N = 2 SU(n) gauge theory with N flavors consists of two contributions

L = LVplet +LHplet. (2.3)

The Vplet contribution takes the form

LVplet =
1

8π
Im [τ (∫ d4θTr (Φ†eV Φ) + ∫ d2θ

1

2
TrW 2)] (2.4)

where W 2 =WaW a is the contraction of the field strength Wa, Tr denotes the trace under the

adjoint representation, and where the gauge coupling constant g appears in the definition of τ

τ = 4πi

g2
+ θ

2π
, (2.5)

Which can be regarded as a constant chiral superfield. The Hplet contribution has the form

LHplet =
1

8π
Im [τ (∫ d4θ tr (Q†

ie
VQi +Qi

†eV Q̃ie
V Q̃i†) + ∫ d2θW)] , (2.6)

where tr denotes the trace under the fundamental representation and W denotes the N = 2
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superpotential, which is constrained by supersymmetry to be of the form

W =
√

2QiΦQ̃i, (2.7)

with the proper gauge invariant contraction implicit. With the aim of studying the vacuum,

Lagrangian 2.3 can be expanded, keeping only scalar field components

L ∼ 1

g2
Tr [∂µφ∂µφ†] + tr [∂µqi∂µq†

i ] + tr [∂µq̃i∂µq̃i†] − V (φ,φ†, qi, q̃i, q
†
i , q̃

i†) . (2.8)

The scalar potential in 2.8 is given by

V (φ,φ†, qi, q̃i, q
†
i , q̃

i†) =∑
θ

∣Fρ(θ)∣2 +
1

2g2
D2, (2.9)

where θ denotes various scalar fields in the theory (i.e. φ, qi, and so on). The two terms on the

right-hand side of 2.9 are of the form

Fρ(θ) =
∂W
∂θ

(2.10)

DA =∑
θ

Tr (θ†tAρ θ) (2.11)

and are known as the F and D-terms, respectively. The scalar fields θ transform in representa-

tions ρ(θ). Note that the trace in 2.11 is under the representation ρ(θ) and A = 1, . . . ,N2 −1 is

the adjoint index of the SU(N) flavor group. The solution of equations 2.10 and 2.11 implies

the existence of a vacuum of a supersymmetric gauge theory. In general, there exists more than

one solution to the F-term and D-term equations, giving rise to a whole space of solutions - the

moduli space of vacua.

2.2 Moduli Space of Vacua

To consider a theory at its minimum energy means that all operators involving field derivatives

must yield zero such that the kinetic terms are vanishing. Therefore, all fields can be at most



14 Chapter 2. Preliminary Background

space-time constants. Moreover, the Lorentz invariance of the vacuum forces all fields with

non-zero spin to be automatically zero. Hence, the vacuum state corresponds to configurations

with all fields vanishing except the scalar fields, which are at most space-time constants.

By the sequel, consider only the scalar sector of the effective low-energy UV Lagrangian of the

theory in the last section. It is proportional to

Leff ∼ KIJ̄(θ, θ†)∂µθI∂µθ†J̄ − V (θ, θ†) (2.12)

which describes a non-linear sigma model with the target space metric KIJ̄ with I, J and Ī , J̄

labelling the scalar fields and their complex conjugates, respectively. Moreover, the potential

as a function of the scalar fields obeys V (θ, θ†) ≥ 0. Thus, minimizing the energy requires

V (θ, θ†) = 0. This imposes the conditions

{θ, θ† ∣ ∂µθ = 0, ∂µθ† = 0 ∧ V (θ, θ†) = 0} = M̃. (2.13)

Conditions 2.13 define a hermitian manifold parametrized by a set of constant scalar fields

configurations corresponding to the minimum energy state(s) of the theory. The amount of

supersymmetry in a supersymmetric gauge theory imposes further constraints, endowing M̃

with additional geometric structure according to:

N = 1Ð→ M̃ is Kähler

N = 2Ð→ M̃ is HyperKähler

(2.14)

Space M̃ is parametrised by constant scalar field configurations which are related by gauge

transformations. In order to eliminate the over-counting and obtain the space of fields config-

urations corresponding to the true physical vacuum, one takes a quotient by the gauge group

G of the theory:1

M = M̃/G. (2.15)

1An important feature of the quotient construction 2.15 is that the Kähler (resp. hyperKähler) structure of
M̃ is still present in M.
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The obtained spaceM is the moduli space of vacua of a supersymmetric gauge theory. Crucial

difference between the moduli spaces of non-supersymmetric gauge theories and their super-

symmetric cousins comes from the existence of continuous solution to the equation V (φ,φ†) = 0,

which for the latter, gives rise to continuous (or flat) directions in M called moduli. We will

interchangably refer to these scalar field configurations parametrising M as moduli or VEVs

(vacuum expectation values).

2.2.1 Two Branches of the Moduli Space

Next, we will be interested in the structure ofM. Recall that the quotient construction of 2.15

(called Kähler resp. hyperKähler quotient) preserves the Kähler resp. hyperKähler properties

of M̃. The target metric in 2.12 is Kähler, meaning that locally it can be written in terms of

the second derivative of the Kähler potential K(θ, θ†):

KIJ̄ =
∂2K(θ, θ†)
∂θI∂θ†J̄

. (2.16)

Recall that the scalars {θa} of theory 2.3 come from a copies of Vplets labelled by a = 1, . . . , n.2

In addition, {qi, q̃i†} scalars come from Hplets labelled by i = 1, . . . ,N . Constraints of N = 2

supersymmetry guarantee that the Kähler potential splits into two separate contributions:

K(θ, θ†) = KC(φa, φ†ā) +KH(qi, q̃i, q†̄i, q̃†̄i) (2.17)

The two models taken separately differ since the hypermultiplet part of the potential is hy-

perKähler whereas the vector multiplet part is actually special Kähler [33, 34]. Although the

vector multiplet comes from one N = 1 chiral multiplet, it still inherits some constraints from

the original N = 2 supersymmetry, making KC(φa, φ†a) special Kähler.

The splitting of the Kähler potential induces a local factorisation of the moduli space of vacua

2Tracelessness of SU(n) implies that only n − 1 vector multiplet scalars are independent.
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into two branches denoted by MC and MH:

M =MC ×MH (2.18)

When all the VEVs of the hypermultiplet scalar components are zero and the vector multiplet

scalar components assume non-zero VEVs, the theory is in the Coulomb phase and the

corresponding part of the moduli spaceMC is called the Coulomb branch . On the Coulomb

branch, the gauge group G is at most broken to its maximal torus U(1)rank(G) ⊂ G. On the

other hand, if all vector multiplet scalar components have zero VEVs and hypermultiplet scalar

components assume non-zero VEVs, the theory is in the Higgs phase and the corresponding

part of the moduli space MH is called the Higgs branch . On the Higgs branch, the gauge

group G of the theory can be fully broken. The special Kähler and hyperKähler structure of

2.17 is inherited by the geometry of Coulomb branch MC and Higgs branch MH manifolds,

respectively. The Higgs and Coulomb branches should be regarded as special subspaces of the

entire moduli space. Generic configuration of VEVs of the scalar components of hypermultiplet

and vector multiplet corresponds to the so-called mixed phase of the theory. In such case,

the generic point lies in some mixed branch of the moduli spaceMmix
i . Globally, the moduli

space can be regarded as a union of MC, MH and Mmix
i with non-trivial intersections

M =MC ∪MH ∪iMmix
i (2.19)

Mixed branches are not discussed in chapters 3, 4 and 5 since the theories studied therein are

in the Coulomb phase. The notion of a mixed branch makes appearance in the discussion of

brane webs and magnetic quivers later on in chapter 6.

Classically, we can study the Coulomb and the Higgs branch starting from the scalar UV

Lagrangian such as 2.8. The target space M̃cl. of this sigma model is endowed with a canonical

metric for the Vplet and a canonical metric for the Hplet scalars, respectively. Thus, the target

space locally factorizes as:

M̃cl. = C(n2−1) ×C2Nn. (2.20)
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In order to obtain the moduli space from 2.20, the following two steps are performed.

First, one separately takes one quotient per each term in 2.20. The quotients are given by the

conditions such that:

• V = 0 on the Coulomb branch only

• V = 0 on the Higgs branch only

For both cases, the scalar potential 2.9 is zero iff both the D-terms 2.11 as well as the F-terms

2.10 are vanishing. In particular, we have

[Φ,Φ†] = 0,

νδba = Qi
a(Q†)bi − (Q̃†)iaQ̃b

i ,

(2.21)

and

ρδba = Qi
aQ̃

b
i ,

Φb
aQ

i
b = Q̃b

iΦ
a
b = 0,

(2.22)

where ν, ρ are arbitrary real and complex numbers, respectively. In the Coulomb phase, Φ

satisfies [Φ,Φ†] = 0 and Q = Q̃ = 0, therefore in terms of the VEVs (here labelled by lower-case

φ, q, q†) we can express the vanishing condition on the classical Coulomb branch as

{V = 0}
C
= {φ ≠ 0 ∣ [φ,φ†] = 0, qi = 0, q̃i = 0} . (2.23)

In the Higgs branch phase, Φ = 0, and of interest are now the solution to equations in 2.21

and 2.22 which do not contain Φ. In terms of the VEVs, the vanishing condition on the Higgs

branch is expressed as

{V = 0}
H
= {φ = 0, qi ≠ 0, q̃i ≠ 0 ∣ qia(q†)bi − (q̃†)iaq̃bi = νδba, ρδba = qiaq̃bi} . (2.24)

Finally, the last step is to mod out the gauge equivalent vacua by taking a quotient by the
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gauge group G. One finds that the form of the full classical moduli space is given by 2.25.

Mcl. =MCcl. ×MHcl. = (C(n2−1)/{V = 0}C/G) × (C2Nn/{V = 0}H/G) (2.25)

The transition to the quantum-corrected moduli space is generally non-trivial. However, there

exist non-renormalization theorems for N = 1 theories [35] and N = 2 extensions [36] which

state that the Higgs branch is protected against quantum corrections. One of the ingredients in

the non-renormalisation theorem is the fact that scalar components of vector superfields cannot

appear in the metric for the hypermultiplets and vice versa [37]. All in all, the Higgs branch

computation in 2.25 is classically exact. There exist exceptions where the above arguments no

longer hold but we refrain from discussing these in the thesis.

Before proceeding to study moduli spaces in more detail and explaining how to set up their

computations, we briefly introduce an important mathematical concept, used for the description

of the Higgs and Coulomb branches, called the Hilbert series.

2.3 The Hilbert Series

In this section, we introduce a mathematical concept which is central for the study and descrip-

tion of moduli spaces in the present thesis. Sections 2.4 and 2.5 demonstrate that a moduli

space is parametrized by scalar VEVs of certain operators which are subject to further restric-

tions. The VEVs play the role of coordinates and the restrictions play the role of algebraic

conditions which define an affine algebraic variety.3 Algebraic varieties are described using

the Hilbert Series (HS). The Hilbert series of variety V is a graded generating function that

counts the number of linearly independent holomorphic polynomials at each degree d in V .4

The Hilbert series takes the form of an infinite power series in single variable t:

HS V =
∞

∑
d=0

aV (d)td, (2.26)

3Moduli space is called an affine algebraic variety as soon as it arises as a zero locus in affine space Kn of
finite family of polynomials of n variables with coefficients in K that generate a prime ideal. Main difference
between an affine algebraic variety and a manifold is that singular point are allowed to exist.

4Such polynomial are constructed from the coordinates of the variety.
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where aV (d) are integer coefficients (termed Hilbert functions [38, 39]) which represent the

number of linearly independent holomorphic polynomials with degree d.

For illustration, consider the simple variety V = C. The variety is generated by a single complex

coordinate z. The holomorphic polynomials at each degree are:

• At degree 0, there is a single trivial polynomial, that is, the constant function 1.

• A degree 1, the only holomorphic polynomial is z.

• At degree 2, one has z2.

• At degree d, one has zd, and so on...

Thus, ∀d we have aC(d) = 1 such that the Hilbert series is simply

HS C =
∞

∑
d=0

td = 1

1 − t , (2.27)

which takes a simple form of a rational function after summation. In order to build some

intuition, lets find the Hilbert series of V = C2. Let z1, z2 be the two coordinates on C2. At

degree 0 the only polynomial is again the constant function 1. At degree 1, one has z1 and

z2. At degree 2, one finds three holomorphic polynomials z2
1 , z

2
2 and z1z2. At degree d we have

zd1 , z
d−1
1 z2, . . . , z1zd−1

2 zd2 . Hence, aC2(d) = d + 1 and the Hilbert series is given by 2.28.

HS C2 =
∞

∑
d=0

(d + 1)td = 1

(1 − t)2
. (2.28)

More generally, consider the variety Cn, parametrised by complex coordinates z1, . . . , zn. The

number of linearly invariant holomorphic polynomials at degree 0,1,2,3,4, . . . is

0 ∶ 1

1 ∶ n

2 ∶ n(n + 1)/2

3 ∶ n(n + 1)(n + 2)/6

4 ∶ n(n + 1)(n + 2)(n + 3)/24

(2.29)
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and so forth. Upon inspection, the general Hilbert coefficient can be written as

aV (d) =
1

d!

d−1

∏
m=0

(n +m). (2.30)

One expects no relations between the generators as the variety is freely spanned by all gener-

ators. Indeed, variety Cn is described by Hilbert series 2.31 which can be summed to yield a

rational function.

HS Cn =
∞

∑
d=0

( 1

d!

d−1

∏
m=0

(n +m)) td = 1

(1 − t)n . (2.31)

The fact that variety Cn is generated by n polynomials of degree 1 is reflected by the denomi-

nator in the rational expression in 2.31 which is a product of n factors, each containing t to the

power of 1. Next step up in the hierarchy of complexity, let us consider variety C2/Z2. The Z2

acts with the trivial action {z1, z2}Ð→ {z1, z2} or with the non-trivial action:

z1 Ð→ −z1

z2 Ð→ −z2

(2.32)

The holomorphic polynomials constructed in this case must be invariant with respect to the

transformations 2.32. These are 1, z2
1 , z1z2, z2

2 , z
3
1z2, z2

1z
2
2 , z1z3

2 , and so on. Observe that all such

polynomials are of even degree d. The Hilbert coefficients are the same as for Cn except for d

odd, for which all are zero. The Hilbert series can be expressed as

HS C2/Z2
=

∞

∑
j=0

(2j + 1)t2j = 1 − t4
(1 − t2)3

. (2.33)

The denominator signifies the existence of three generators of degree 2, namely:

l1 = z2
1

l2 = z2
2

l3 = z1z2

(2.34)
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The three generators, as seen from the numerator of 2.33, are subject to a single degree 4

relation:

l1l2 = l23. (2.35)

Variety C2/Z2 is called a complete intersection as its dimension D, number of generators G,

and number of relations R satisfy

D = G −R. (2.36)

Complete intersection varieties are particularly nice since much information about the space is

easily extracted from its Hilbert series. Varieties 2.27 and 2.28 are called freely generated since

they are freely spanned by their coordinates which are subject to no relations (i.e. D = G).

Variety C2/Z2 is one of the most important examples of moduli spaces which are symplectic

(hyperKähler) singularities. This variety shows up in later chapters under the name A1 Kleinian

surface singularity. It is natural to wonder about the Hilbert series of Ak Kleinian singularity.

To provide the answer, let us first try to work out the Hilbert series for variety V = Cn/Zk. This

time, the complex coordinates z1, . . . , zn are acted on by the action of Zk which is generated by

ω satisfying ωk = I. The case of n even and odd shall be considered separately.

Case n even: The action of ω on the coordinates is the following

ω(zi) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

e2πi/kzi, i = 1, . . . , n2

e−2πi/kzi, i = n
2 + 1, . . . , n

(2.37)

The ring of holomorphic polynomials invariant under the Zk action is generated by n generators

of degree k and one generator of degree n:

li = zki , i = 1, . . . , n

ln+1 = z1z2 . . . zn

(2.38)
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Moreover, one also finds a degree nk relation

l1l2 . . . ln = lkn+1. (2.39)

Hence, the Hilbert series for variety V = Cn/Zk, with n even is given by 2.40.

HS Cn/Zk
= 1 − tnk

(1 − tk)n (1 − tn) . (2.40)

Case n odd: The action of ω on the coordinates is

ω(zi) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

e2πi/kzi, i = 1, . . . , n − 1

e−2πi/kzi, i = n
(2.41)

The ring of holomorphic polynomials invariant under the Zk action is generated by n generators

of degree k and one generator of degree 2n − 2:

li = zki , i = 1, . . . , n

ln+1 = z1z2 . . . zn−1z
n−1
n

(2.42)

In this case, one finds a degree 2k(n − 1) relation

l1l2 . . . ln−1l
n−1
n = lkn+1. (2.43)

Hence, one can write down the Hilbert series for variety V = Cn/Zk, with n odd:

HS Cn/Zk
= 1 − t2k(n−1)

(1 − tk)n (1 − tn) . (2.44)

Finally, the Hilbert series of the Ak−1 Kleinian surface singularity C2/Zk is the even case above

for n = 2:5

HS C2/Zk
= 1 − t2k

(1 − tk)2 (1 − t2)
. (2.45)

5Note, that Ak singularity is defined such that A0 = C2.
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2.4 Computing Higgs branch via HyperKähler Quotient

As previously mentioned, Higgs branch calculation benefits from its classical exactness. In this

section, we outline some of the computational methods developed in [40] which are used in the

computation of the Higgs branch algebraic variety. For this purpose, consider the example of

3d N = 4 SQED with N flavors. The Higgs branch is parametrized by the scalar VEVs in the

hypermultiplets. Moreover, of particular interest are gauge invariant combinations of scalar

fields. Recall the form of the superpotential 2.81. The chiral superfields Qi, Q̃j transform un-

der the fundamental and anti-fundamental representations of the flavor group SU(N) and with

charges −1 and +1 under the U(1) gauge group, respectively. The gauge invariant combina-

tions are of the form qiq̃j, where lower-case q-s denote the corresponding VEVs. It turns out

such combinations form the so-called chiral ring of the theory. Lets recall the definition of a ring:

Ring R is a set equipped with two binary operations + and ⋅, satisfying the following three ring

axioms:

(I) R is an Abelian group under addition (i.e. + is associative, commutative, there is an

additive identity as well as an additive inverse)

(II) R is a monoid under multiplication (i.e. ⋅ is associative and has a multiplicative identity)

(III) Multiplication is distributive with respect to addition (i.e. left-wise distributive a ⋅(b+c) =

(a ⋅ b) + (a ⋅ c), and analogously right-wise distributive, ∀a, b, c ∈ R)

All elements of a ring R can be generated by linear combinations of generators {g1, g2, g3, . . .}

with (possibly complex) coefficients. Typically, one writes R = C[g1, g2, g3, . . . ]. In the example

of SQED with N flavors, one can consider the ring generated by linear combinations of qi and

q̃j:

R0 = C[qi, q̃j], (2.46)

however, in the Higgs branch analysis, it is important to consider the ring of gauge invariant
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operators

R = C[qiq̃j]. (2.47)

This ring corresponds to a variety that can be defined as the set of all complex matrices MN×N

with rank (M) ≤ 1. Thus, the chiral ring of gauge invariant operators of SQED with N flavors

is associated with the variety

VR = {MN×N ∣Mi
j ∈ C, rank (M) ≤ 1} . (2.48)

Let us now take into account the restriction to the vacuum, in particular, that the scalar VEVs

minimize the scalar potential. Minimizing the superpotential

W(q, q̃, φ) =
√

2Tr (q̃φq) (2.49)

corresponds to vanishing of the derivative6

W (q, q̃, φ)
(∂φ) = 0 ⇒ qiq̃

i = 0 (2.50)

The obtained relations qq̃ = 0 are imposed on the level of the variety VR. This leads to a

quotient ring where the quotient is given by the ideal I =< qiq̃i >:

RH = R/I. (2.51)

The Higgs branch variety associated with the quotient ring RH is better understood in ma-

trix form (similarly to 2.48). For the restriction 2.50 to hold, the matrices must satisfy the

conditions:

Tr M = 0 (2.52)

M2 = 0. (2.53)

6Note that here the analysis is restricted to the Higgs branch of the theory.
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As a result, the Higgs branch variety is given by 2.54.

H = {MN×N ∣M i
j ∈ C, M2 = 0, TrM = 0, rank (M) ≤ 1} (2.54)

Variety 2.54 is a member of a larger class of varieties called closures of nilpotent orbits of Lie

algebras [41]. Nilpotent orbits are conjugacy classes of nilpotent representative elements inside

semi-simple Lie algebras. The Higgs branch of SQED with N flavors is an example of the closure

of the minimal nilpotent orbit of sl (N,C) algebra. Nilpotent orbits not only play a prominent

role in the study of moduli spaces in the present thesis but are themselves the fundamental

building blocks of most moduli spaces of supersymmetric gauge theories with 8 supercharges.

Their essential role has been recognized in a series of works including f.i. [42, 43].

2.4.1 Hilbert series for the Higgs branch

Let us now show how to compute the Higgs branch of SQED with N flavors using the machinery

of Hilbert series. It is the Higgs branch Hilbert series which best encodes all gauge invariant

combinations of hypermultiplet scalar fields (satisfying the conditions for minimizing of the

scalar potential), the generators of such combinations, their degrees as well as the relations

they satisfy.

To establish some nomenclature, recall ring R0 given in 2.46. Note, that it describes a ring

already encountered in section 2.3, namely the ring associated with the Hilbert series 2.28.

Indeed, R0 is associated with variety C2N , with the Hilbert series given by

HS C2N = 1

(1 − t)2N
. (2.55)

Expression 2.55, or equivalently 2.28, is called the unrefined Hilbert series. Unrefined Hilbert

series does not explicitly carry information about the representations under which the operators

transform. One of the next steps towards the refined Hilbert series is the assignment of U(1)

representation characters x and x−1 to q and q̃ operators, respectively, making their respective

+1,−1 charges under the U(1) gauge group manifest. Hilbert series 2.55 can now be re-expressed
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including the gauge group fugacity x:

HS C2N = 1

(1 − xt)N (1 − x−1t)N
. (2.56)

In addition to the information carried by the unrefined Hilbert series, 2.56 also encodes the

representation behavior of the operators with respect to the gauge group.

In order to obtain the unrefined Hilbert series corresponding to Higgs branch of SQED with

N flavors (2.54), one needs to project HS C2N onto the gauge invariant sector. This is done by

integrating the expression HSC2N over the U(1) group with the Haar measure, expressed using

fugacity x, and multiplying with a character of complex conjugate representation (in this case

the trivial representation):

HS = ∮
x=1

dx

2πix

1

(1 − xt)N (1 − x−1t)N
(2.57)

In addition, the condition of the minimizing of the scalar potential needs to be imposed. The

degree 2 condition transforms trivially under U(1) and results in (1−t2) factor in the numerator

of 2.57. Hence, the expression for the Hilbert series reads:

HSH = ∮
x=1

dx

2πix

1 − t2

(1 − xt)N (1 − x−1t)N
(2.58)

Evaluating expression 2.58 produces the unrefined Hilbert series for the Higgs branch of 3dN = 4

SQED with N flavors. In particular, for N = 2, one finds the Hilbert series

HS C2/Z2
= 1 − t4

(1 − t2)3 = 1 + t2
(1 − t2)2 (2.59)

which describes the surface Kleinian singularity A1.7 More generally, the Higgs branch of

3d N = 4 SQED with N flavors is the closure of the minimal nilpotent orbit of SU(N) with

7Note that in this case, the Higgs branch is the same space as the Coulomb branch since the SQED theory
for N = 2 corresponds to the maximal nilpotent orbit of SU(N) and thus is self mirror dual.
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associated unrefined Hilbert series [44]

HSH,N = ∏
N
i=0 (Ni )

2
t2i

(1 − t2)2N
(2.60)

Let us now show how we can refine result 2.58 to include information about the representation

behavior of the operators under the flavor symmetry group SU(N). To illustrate this, take N =

4. Operators qi and q̃j transform under the fundamental and anti-fundamental representation

of SU(4) flavor group, respectively. Using the Dynkin labels and the corresponding characters

of the representations one writes

q Ð→ [1,0,0]Ð→ a + b
a
+ 1

c
+ c
b

(2.61)

q̃ Ð→ [0,0,1]Ð→ 1

a
+ a
b
+ b
c
+ c (2.62)

Now, the integrand of the Hilbert series is written such that each monomial contained in the

characters appears in front of one operator:

1 − t2
(1 − axt) (1 − bxt

a
) (1 − xt

c
) (1 − cxt

b
) (1 − t

ax
) (1 − at

bx
) (1 − bt

cx
) (1 − ct

x
)

(2.63)

After the integration, the refined Hilbert series for the 3d N = 4 SQED with 4 flavors is

obtained:8

HSref
HN=4

= A
B
, (2.64)

8An agile implementation of Hilbert series integrations is owing to the automated routines of Rudolph
Kalveks which further build on the LieART package [45] in Mathematica.
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where

A =a2b2c2(−a8b2c4t8(1 + t2) − b6c4t8(1 + t2) + a7b(1 + b2)c3(b + c2)t6(1 + t6)+

ab4(1 + b2)c3(b + c2)t6(1 + t6) + a5b(1 + b2)c(b + c2)t4(1 + t6)(b2t2 + c4t2+

bc2(−2 + t2 − 2t4)) + a3b2(1 + b2)c(b + c2)t4(1 + t6) (b2t2 + c4t2 + bc2(−2 + t2 − 2t4))−

a6c2t4(1 + t2)(b6t4 + c4t4 − bc2t2(1 − t2 + t4) − b5c2t2(1 − t2 + t4) + 2b3c2(1 − t2 + t4)2+

b4(1 − 2t2 + (2 + c4)t4 − 2t6 + t8) + b2(t4 + c4(−1 + t2)2(1 + t4)))−

a2b2c2t4(1 + t2)(b6t4 + c4t4 − bc2t2(1 − t2 + t4) − b5c2t2(1 − t2 + t4) + 2b3c2(1 − t2 + t4)2+

b4(1 − 2t2 + (2 + c4)t4 − 2t6 + t8) + b2(t4 + c4(−1 + t2)2(1 + t4))) + a4b(b6c2t6(1 + t6)+

c6t6(1 + t6) + b4c2t4(−2 + (2 + c4)t2 − 2t4)(1 + t6) − bc4t4(1 − t2 + c4t4 + c4t6 − t8 + t10)+

b3c4(1 + 3t2 + 8t6 + 8t12 + 3t16 + t18) − b2c2t4(1 + t6)(−t2 + 2c4(1 − t2 + t4))−

b5t4(t4 + t6 + c4(1 − t2 − t8 + t10))))

(2.65)

and

B =(ac − t2)(bc − at2)(b − a2t2)(a2 − bt2)(c2 − bt2)(c − abt2)

(ac − b2t2)(ab − ct2)(1 − act2)(b2 − act2)(a − bct2)(b − c2t2).
(2.66)

The Hilbert series 2.64 can be expanded around t = 0 such that the coefficients in the expansion

at td are the characters of the representation under which the operators of degree d transform.

In terms of SU(4) Dynkin label characters χ[a,b,c], the expansion has the form:

HS ref
HN=3

= 1 + χ[1,0,1]t
2 + χ[2,0,2]t

4 + χ[3,0,3]t
6 +O(t7) (2.67)

Observe that the refined Hilbert series can be written as the infinite sum

HSref
HN=4

=
∞

∑
d=0

χ[d,0,d] (a, b, c) t2d. (2.68)

More generally, the refined Hilbert series of the Higgs branch of 3d N = 4 SQED with N flavors
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can be expressed as the sum

HSref
HN

=
∞

∑
d=0

χ[d,0,...,0,d]SU(N)
t2d, (2.69)

where the coefficient at each degree d, is the character of the SU(N) representation under

which the operators with degree d transform.

Let us define a new set of fugacities µ1, µ2, . . . , µN−1 such that µmk denotes the character of

SU(N) representation corresponding to the Dynkin label [0, . . . ,0,m,0, . . . ,0], where m is the

k-th Dynkin label. For example, the character of the adjoint representation of SU(4) is written

as µ1µ3. Fugacities µi are called the highest weight fugacities. Using these, the Hilbert series

2.69 can be written in a concise and elegant form termed the highest weight generating function

[46]:

HWGHN
=

∞

∑
k=0

µk1µ
k
N−1t

2k = 1

1 − µ1µN−1t2
(2.70)

which succinctly encodes the infinite pattern of representations contained in the refined Hilbert

series.

Hopefully, the application of Hilbert series techniques for the computation of the Higgs branch

of 3d N = 4 SQED with N flavors facilitates how adroit and powerful these techniques are.

Another favorable point to stress is that the set-up of algorithmic calculations of moduli spaces

considered in our study, only requires certain input data such as the gauge group, number

of flavors and so on. The input data typically comes encoded in a combinatorics of a quiver

diagram which is conceptually introduced in section 2.6.

2.5 Computing Coulomb Branch using Monopole For-

mula

Let us now focus on the more complicated quantum-corrected Coulomb branch of 3d N = 4

theory. Typically, the gauge group G is a product of unitary groups, the vector multiplets
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transform under the adjoint representations of the gauge group, and the matter hypermultiplets

transform under some representations of the gauge and flavor groups, respectively. At a generic

point of the Coulomb branch, the gauge group is broken to its maximal torus U(1)rank(G) and

the scalar components of the vector multiplets acquire non-zero VEVs. W-bosons and matter

fields acquire mass and are typically integrated out. The gauge field (e.g. photon in SQED

theory) which is dualizable to scalar in three dimensions remains massless. However, at the

origin of the Coulomb branch (where one has flown to the IR SCFT), the residual gauge group

can be non-Abelian, rendering the above description no longer suitable.

However, it turns out that non-perturbative operator counting techniques can be employed

similarly as in the description of the chiral ring of the Higgs branch. Indeed, it is more useful

to adhere to a description in [47] which uses certain disorder operators defined at the IR fixed

point, and in particular, a type of disorder operators called t’Hooft monopole operators [48].

Such operators are defined by insertions of Dirac monopole singularities in the Euclidean path

integral.

All monopole operators correspond to a certain embedding of U(1) in the gauge group G,

and are therefore labelled by magnetic charge m. Based on the Dirac general quantisation

procedure [49] these operators are valued in the lattice of GV, the Langland (GNO) dual group

of the gauge group G. This is referred to as the magnetic weight lattice:

ΓGV (2.71)

Non-trivial magnetic flux m breaks the gauge group G into a residual gauge group Hm via the

so-called adjoint Higgs mechanism.

Let us yet again consider the simple SQED theory with N flavors. In order to understand

the Coulomb branch of this 3d N = 4 theory we concentrate on the vector multiplet, where

the relevant scalar fields reside. The N = 4 vector multiplet decomposes into N = 2 vector

multiplet V and adjoint chiral multiplet Φ, each having a distinct role in the study of the

Coulomb branch.
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In [50], it is shown that for every configuration of the magnetic flux m in 3d N = 2 theory,

there exists a unique BPS monopole operator Vm which lives in the chiral ring of the theory.

For a N = 4 theory, the operators Vm become dressed by the complex scalar field operator φ

from the chiral multiplet Φ.

Therefore, the description of the Coulomb branch begins with the vector fields in the vector

multiplet (V,Φ) supplying the soliton-creating monopole operators Vm. Operator Vm creates

soliton corresponding to the magnetic charge m. Operators Vm are dressed by the complex

scalar field operators φ from the chiral multiplet Φ. Moreover, these must be counted by the

Hilbert series in combinations which are invariant under the unbroken part of the gauge group

such that the same supersymmetry as that of the chiral multiplet is preserved.

The product operators constructed from a single monopole operator and a collection of scalar

field operators invariant under Hm are called dressed monopole operators. The gauge invariance

is achieved by averaging over the action of the Weyl group WG. The Coulomb branch is then

parametrized by gauge invariant dressed monopole operators whose counting is encoded in the

Coulomb branch Hilbert series.

For U(n) gauge group, the monopole operators Vm carry magnetic charges m = diag(m1, . . . ,mn).

The weight lattices are self-dual, and, in particular:

ΓU(n) = {mi ∈ Z, i = 1, . . . , n} = Zn (2.72)

Modding out by the Weyl group Sn of U(n) gives

ΓU(n)/Sn = {m ∈ Zn ∣ m1 ≥m2 ⋅ ⋅ ⋅ ≥mn} (2.73)

There is a classical topological U(1)J symmetry which coincides with the center of any non-

simply connected dual gauge group Z (GV ) (i.e. U(n)). Monopole operators are classically

charged under this U(1)J . The associated current ⋆TrF can be constructed from the field

strength F of the gauge group. The counting fugacity associated with U(1)J is z. Quantum-

mechanically, Coulomb branch monopole operators are also charged under the Cartan subgroup
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of the SU(2)R R-symmetry which is U(1)R. In the nomenclature of [51], for good and ugly

Lagrangian theories, this charge coincides with the scaling conformal dimension of the IR SCFT

at the origin of the Coulomb branch. The formula for the conformal dimension reads

∆(m) = ∆(m)V +∆(m)H = − ∑
α∈∆+

∣ α(m) ∣ +1

2

n

∑
i=1

∑
ρi∈Ri

∣ ρi(m) ∣ . (2.74)

The two terms of the conformal dimension formula ∆(m)V and ∆(m)H account for vector

multiplet and hypermultiplet contributions, respectively. ∆+ is the set of positive roots of the

gauge group. Hypermultiplets transform in representations Ri with weights ρi. Formula 2.74

is obtained using radial quantization in [47].

In anticipation of later chapters, we remark that to treat theories described by non-simply laced

quivers9, [52] introduces a modification of the hypermultiplet contribution in the conformal

dimension:

1

2
∣ ρi(m) ∣→ 1

2

N1

∑
j=1

N2

∑
k=1

∣ λm(1)
j −m(2)

k ∣, (2.75)

where ρi is the irrep corresponding to the hypermultiplets assigned to the edge between two

nodes U(N1) and U(N2). Setting λ = 1 recovers the formula for a simple laced quiver, λ = 2 is

used for a double laced edge, λ = 3 for a triple laced edge, and so on. The direction of the edge

points from N1 to N2. Written in vector form, m(1) and m(2) denote the magnetic fluxes for

U(N1) and U(N2), respectively. We adopt the convention that the fugacity used for counting

of the R-charge ∆(m) (i.e. the spin of the operators under the R-symmetry) is t2 in order

to prevent non-integer powers of t. This can be contrasted with [53] where the authors use t

instead.

2.5.1 Hilbert series for the Coulomb branch

The Coulomb branch of a 3d N = 4 theory is mathematically described using the Hilbert series

generating function which counts all gauge invariant dressed monopole operators together with

their grading with respect to the charges they carry. The Coulomb branch Hilbert series for a

9Quivers are introduced in section 2.6.
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theory with gauge group G is given by the monopole formula [53]:

HSG (t, z) = ∑
m∈Γ

GV/W
GV

zJ(m)t∆(m)PG(t,m), (2.76)

where m is the magnetic flux valued in the GNO dual magnetic weight lattice ΓGV , WGV is the

Weyl group of GV, and J(m) denotes the topological charge counted by the fugacity z. The

dressing factor PG is a generating function for Casimir invariants of the unbroken gauge group.

For U(n) gauge group, PG takes the following form:

PU(n) (t;m) =
n

∏
k=1

1

(1 − t2k)σ(k)(m)
, (2.77)

where σ(k)(m) encodes the various configurations of the gauge symmetry breaking in form of

a partition. As a simple illustration, for U(2) gauge symmetry and magnetic flux m = (m1,m2)

the dressing factor reads

PU(2) (t;m1,m2) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
(1−t)(1−t2) if m1 =m2

1
(1−t)(1−t) if m1 ≠m2.

(2.78)

Expression 2.77 can be written more generally for any gauge group G using degrees of Casimir

invariants dk(m) of the residual gauge group Hm:

PG(t;m) =
rank(G)

∏
k=1

1

1 − t2dk(m)
. (2.79)

There are certain restrictions to the applicability of the monopole formula which are related

to the existence of extra operators with scaling dimension ∆(m) < 1. Precisely this yields

the classification of 3d N = 4 gauge theories of Gaiotto-Witten [51] shown in table 2.1.10 In

Conformal dimension of operators Theory
∆(m) ≥ 1 good
∆(m) = 1 ugly
∆(m) < 1 bad

Figure 2.1: Good, ugly, and bad 3d N = 4 gauge theories.

10The identity operators in a theory have vanishing conformal dimension.
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anticipation of the latter chapters, we emphasize that these restrictions are related to the balance

(or excess) of quiver nodes. For ADE quivers, the balance b ADE(i) of a particular U(ni) gauge

node is defined as [44]:

b ADE(i) = ∑
j∈ adjacent nodes

nj − 2ni. (2.80)

For BCF and G quivers, the long node directly adjacent to the NSL edge gets double, and

triple the contribution from the short node on the other side of the NSL edge, respectively. A

quiver is said to be balanced iff the balance of all its nodes is zero. If all the unbalanced nodes

in the quiver have positive balance the quiver is said to be positively balanced. A quiver with a

single unbalanced node is termed minimally unbalanced [23]. Minimally unbalanced quivers are

studied in chapter 3. For balanced and minimally unbalanced quivers the conformal dimension

satisfies ∀m ∈ ΓGV , ∆(m) > 0, which guarantees that the monopole formula can be suitably

applied to calculate the Coulomb branch of the corresponding 3d N = 4 quiver gauge theory.11

As will be demonstrated in later chapters, it is remarkable how much information about a

theory can be inferred by inspection of the balance of its corresponding quiver - concept which

is now due for introduction.

2.6 Quiver

This section introduces a concept that is central in all the developments contained in the present

thesis. This concept is that of a quiver. Consider a 4d N = 2 gauge theory with gauge group

G, with massless vector multiplets (V,Φ) transforming under the adjoint representation of G

and massless hypermultiplets (Q, Q̃) transforming under the complex representation of G such

that Q̃ transforms under the dual representation compared to Q. Let the gauge group be U(n)

and furthermore let there be N copies of massless hypermultiplets. Numbers n and N thus

refer to the number of colors and flavors, respectively. It is convenient to think of Q, Q̃, and Φ

as n×N , N ×n, and n×n matrices, respectively. As a result, the superpotential can be written

11There exist balanced quivers which are not good theories and their corresponding Coulomb branches are
not hyperKähler cones. Amongst examples of such quivers are multiplicities of affine Dynkin diagrams.
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n

N

Q̃ Q

Φ

Figure 2.2: Quiver diagram for 4d N = 2 theory with gauge group U(n) and N flavors.

in the form:

W =
√

2Q̃iΦi
jQj =

√
2Tr (Q̃ΦQ) . (2.81)

The key idea is that the superpotential of the theory can be encoded in an oriented graph

called a quiver, depicted in figure 2.2. Let us inspect the elementary components of the quiver

in figure 2.2 (or equivalently, summarize the recipe for building one):

• Circle node denotes the gauge group U(n) with the rank n indicated inside the node.12

There is a vector superfield V transforming under the adjoint representation of each gauge

node.

• Square node denotes the flavor group SU(N) with N indicated inside the node.

• Arrows represent chiral superfields transforming under the fundamental representation

of the group corresponding to the node from which they emerge, and anti-fundamental

representation of the group corresponding to the node they end on. In the present case, Φ

transforms under the adjoint representation of U(n) which is indeed the tensor product

of its fundamental and anti-fundamental representations.

Quivers can be defined across dimensions and with various amount of supersymmetry. As such,

they are extremely powerful tools for many reasons most of which will hopefully be appreci-

ated by the end of the thesis. In addition to encoding the particle content of a theory, quiver

is also a visual representation of the symmetry structure of a Lagrangian! Thus, it permits

an immediate study of theories on a more abstract level! The hierarchy of complexity in the

12Gauge groups other than unitary ones are typically denoted by circle node together with a label of the
particular group.
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space of theories is straightforwardly translated into the much more transparent hierarchy of

complexity of (quiver) graphs.

Let us return to the example of the theory in this section. Although the quiver given in figure

2.2 is drawn in the N = 1 language, the recipe given above actually allows to build theories

with various types of superfields. Restriction to theories with only hypermultiplets and vector

multiplets allows to recast the quiver in a more succinct form shown in figure 2.3. In N = 2

language, the gauge node is associated with a vector multiplet in the adjoint representation of

the gauge group automatically and the oriented arrows between the nodes are substituted by

an unoriented edge corresponding to a hypermultiplet transforming under the bi-fundamental

representations of the neighbouring nodes. Note, that the number of colors and flavors is

written outside the node for esthetical reasons. Preempting the typographics of later chapters,

equation 2.82 shows the down-to-bone concise depiction of the same theory.

n

N

Figure 2.3: Quiver diagram for 4d N = 2 theory with gauge group U(n) and N flavors in N = 2
language.

N
◻

∣○
n

(2.82)

2.7 Branes

One of the key virtues of supersymmetric gauge theories heavily exploited in the study of

moduli spaces is their geometric brane construction in string theory backgrounds. Let us

review the set-up in [21] in the case of 3d N = 4 gauge theories. One starts with ten-dimensional
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Type IIB string theory background wherein D3, D5 and NS5 branes are used as ingredients to

manufacture branes systems with world-volume susy gauge theories living on them.

To begin with, consider a single NS5 brane occupying spatial directions x1, x2, x3, x4, x5 and

temporal direction x0 as indicated in table 2.2. The presence of the NS5 branes breaks half

Brane x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

D3 × × × ×
D5 × × × × × ×
NS5 × × × × × ×

Table 2.2: Space-time dimensions occupied by D3, D5 and NS5 branes in supersymmetric preserving
Type IIB string background with 8 supercharges. Dimensions which are spanned by the corresponding
brane are marked with ×.

the original maximal supersymmetry of IIB from 32 to 16 supercharges (see f.i. section 3.2

in [54]). One can add more NS5 branes without breaking any more susy given that their

position along directions x7, x8, x9 and x6 are constant. Now, lets add a D5 brane such that

it spans spatial directions x1, x2, x7, x8, x9 and the temporal direction x0 as indicated in table

2.2. This configuration further breaks the supersymmetry by half from 16 to 8 supercharges.

One can add more D5 branes without further breaking the susy, provided that their positions

along directions x3, x4, x5 and x6 are constant. As a next step, add D3 branes in a way which

preserves the 8 supercharges. This is achieved provided that their positions along directions

x3, x4, x5 and x7, x8, x9 are constant. Hence, the D3 branes span directions x1, x2, x6 and the

temporal x0 directions as indicated in table 2.2. Moreover, D3 branes must either end on NS5

or D5 branes or one of each. This results in three different cases shown in figure 2.4.

D3

D3

D3

D5 D5

D5

NS5NS5

x6

x3, x4, x5

x7, x8, x9

Figure 2.4: Type IIB brane setup with three different cases of D3 branes. Directions x7, x8, x9 are
perpendicular to the plane of the paper.
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In the absence of other branes, a single D3 brane, infinite in directions x1, x2, x6, carries a vector

multiplet and a hypermultiplet. The brane is free to move in 6 directions and accordingly there

are 6 real scalars in the bosonic spectrum. The ends of F1 and D1 strings act as electric and

magnetic sources on the D3 brane, respectively. The gauge group is U(1) and the 4d N = 2

vector multiplet and hypermultiplet transform under the adjoint of the gauge group. When

the D3 brane ends on the 5-branes, the theory becomes macroscopically three-dimensional as

one of its infinite dimension is now an interval. On the note of the bosonic spectrum, the three

directions in which the D3 brane can move when the endpoint are NS5 branes correspond to

three scalars (x3, x4, x5). On the other hand, when the D3 brane ends on D5 branes the other

three directions represent the other three scalars (x7, x8, x9). In 3d, a massless vector field aµ

can be dualized into a scalar field a called the dual photon. Moreover, the part of the 4d vector

potential Aµ along direction x6 corresponds to a scalar field b in three dimensions. All in all,

in 3d, the original 6 scalars of the infinite D3 brane rearrange into bosonic part of the 3d N = 4

vector multiplet (a, x3, x4, x5) and bosonic part of the hypermultiplet (b, x7, x8, x9) [21].

For D3 brane ending on NS5 branes, the vector multiplet fields satisfy Newman boundary con-

ditions so that the fields as well as the brane itself are free to move along directions x3, x4, x5.

At the same time, the hypermultiplet fields satisfy Dirichlet boundary conditions, hence are

fixed in directions x7, x8, x9.

On the contrary, for D3 brane ending on D5 branes, the fields in the vector multiplet sat-

isfy Dirichlet boundary conditions, and the hypermultiplet fields satisfy Newman boundary

conditions.

There is a very important duality between vector multiplet and hypermultiplet, which is made

possible by the structure of the scalar components, known as the 3d Mirror symmetry [19]. It

is illustrated using SQED example in the following section. Momentarily, let us mention that

3d Mirror symmetry bridges the developments in the study of Higgs and Coulomb branches. It

does so by permitting to use the techniques for the computation of the Higgs branch to learn

about the Coulomb branch and vice-versa. After the brief exposition of the brane setup, let us

investigate the moduli spaces of theories corresponding to the simplest brane constructions.
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D3

D5D5

NS5NS5

Figure 2.5: Brane system for the 3d N = 4 SQED with 2 flavors in the Coulomb phase.

2.8 Branes and the Moduli Space of 3d SQED with 8

Supercharges

After having introduced brane systems of 3d N = 4 theories, let us now put the concepts of

previous section into use and study the moduli space of the simplest of such theories.

Consider a 3d N = 4 theory with gauge group U(1) and N = 2 flavors (i.e. with SU(2) flavor

group). The theory is prescribed by quiver 2.83 and it is engineered using Type IIB brane

system 2.5. There is a single vector multiplet (photon), transforming under the adjoint of the

gauge group, and two hypermultiplets (electrons) together with the corresponding antiparticles

(positrons), which are charged under the gauge group (single F1 string can stretch between the

D3 and D5 brane). Without the loss of generality, the masses of the hypers can be set to zero

by the movement of the D5 branes in the x3, x4, x5 direction.

2
◻

∣○
1

(2.83)

Brane system 2.5 depicts the theory in the Coulomb branch phase since the D3 brane can

move along direction x3, x4, x5 consistently with the Newman boundary conditions imposed by

the NS5 branes. On the Coulomb branch, vector multiplet scalars have non-zero VEVs and

remain massless whereas the hypermultiplets acquire mass. One can go to the origin of the

moduli space by making all VEVs zero. From the origin of the moduli space, one can move

onto the Higgs branch by giving non-zero VEVs to the hypermulitplet scalars. This fully breaks
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D3
D5D5

NS5NS5

Figure 2.6: Brane system for the 3d N = 4 SQED with 2 flavors at the origin of the moduli space.

D3

D5D5

NS5NS5

Figure 2.7: Brane system for the 3d N = 4 SQED with 2 flavors at the origin of the moduli space
after a rotation of axes (i.e. R-transformation).

the gauge group and the vector multiplet now acquires mass by having feasted on one of the

hypers, leaving one massless hypermultiplet. It is instructive to illustrate the movement from

the Coulomb to the Higgs branch using branes.

The movement of lighter branes corresponds to the excitations of the scalar fields of the effective

low energy theory while the motion of the heavier branes represents tuning of the masses, FI

parameters and gauge coupling.13 One starts with brane system 2.5, corresponding to the

Coulomb branch, and moves to the origin of the moduli spce by moving the D5 branes onto

the D3 brane as depicted in figure 2.6. In this case, the F1 string has the minimum length

from both the D5 as well as NS5 branes. To see how to move to the Higgs branch, perform

the R-transformation (i.e. rotation of axes in figure 2.6) resulting in figure 2.7. Whereas the

left and the right segments of the D3 brane are fixed by the boundary conditions the middle

segment is free to shift its position along directions x7, x8, x9. After the shift, one obtains the

13In the present case three-branes are considered lighter compared to the heavier five-branes since they occupy
two infinite directions less.
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D3

D5D5

NS5NS5

Figure 2.8: Brane system for the 3d N = 4 SQED with 2 flavors in the Higgs phase.

brane configuration in figure 2.8. Brane configuration 2.8 represents the Higgs branch of the

theory on which one of the hypermultiplets assumes non-zero VEVs and the vector multiplet

becomes massive via eating one Goldstone hypermultiplet. What can be deduced about the

moduli space directly from the brane picture? First of all, we see that the moduli space consists

of the two branches, both of quaternionic dimension 1 (i.e. 2 complex or 4 real dimensions).

This is because the motion of the D3 brane is parametrized by 4 real coordinates. A first guess

for the branch space is C2. Furthermore, there is a special point at the origin where all VEVs

are zero and thus indicating the form of the moduli space:

M = C ∪H, C ∩H = {0} (2.84)

Moreover, on both branches, there is an invariance of the scenarios when the D3 brane ap-

proaches the special point where it aligns with the D5s (resp. NS5s). This indicates a quotient

form of the branch space:

C2/Z2, (2.85)

which would correspond to the A1 Kleinian surface singularity. To justify the guess, one com-

putes the Hilbert series for both branches:

• The Coulomb branch C is computed using the monopole formula given in section 2.5.

• The Higgs branch H is computed using hyperKähler quotient discussed in section 2.4.
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Both computations yield:

HSC =HSH = 1 − t4
(1 − t2)(1 − t2)2

, (2.86)

which is indeed Hilbert series 2.33. Finally, this shows that the moduli space of SQED is a

union of two algebraic varieties:

M = C ∪H = (C2/Z2) ∪ (C2/Z2) , (2.87)

with trivial intersection C ∩ H = {0}, corresponding to the situation when the D3 brane is

simultaneously aligned with both D5 as well as NS5 branes. The intersection is the origin of the

moduli space (and also separately the origin of Coulomb and Higgs branch cones, respectively)

at which the scale-free SCFT resides.

2.8.1 3d Mirror Symmetry

Another feature which makes 3d N = 4 SQED a particularly nice theory is its self-duality under

3d Mirror Symmetry [19, 55]. It is manifested by the Coulomb and Higgs branch being the same

variety C2/Z2. It can be beautifully shown from the brane picture. The procedure consists of

the following steps:

• Start with the brane system for the Coulomb branch of SQED with 2 flavors given by 2.5

and move to the origin of the moduli space, thus obtaining brane system 2.6. Perform

the S-duality as shown in figure 2.9. Under the S-duality, the D3 brane is self-dual and

the D5 and NS5 branes are swapped.

• Using the S-dual brane system, perform a rotation of the axes (R-transformation), then

shift the middle segment of the D3 branes between the NS5 branes (to move onto the Higgs

branch), and finally, transition the D5 branes from the outside intervals inside into the

middle interval using Hanany-Witten transitions [21]. These steps are depicted in figure

2.10. Observe that the resulting Higgs branch brane system is identical to the Coulomb

branch brane system 2.5 we started with. Equivalently, also the quivers corresponding
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D3
D5D5

NS5NS5

S-duality
D3

NS5NS5

D5D5

Figure 2.9: S-duality of the brane system of 3d N = 4 SQED with 2 flavors.

R H-W

Figure 2.10: R-transformation, shifting of the middle D3 sector, and Hanany-Witten trasitions of
the S-dual of SQED with 2 flavors.

for both brane systems are identical (i.e. of the form in 2.83). This is the manifestation

of the self-duality of SQED with 2 flavors under 3d Mirror symmetry!

Our simple example of SQED with 2 flavors is already very illustrative of how much power

the machinery of brane systems brings into the understanding of moduli spaces of susy quiver

gauge theories. Finding 3d mirror symmetry duals, reading off the dimension of the moduli

space, and many more features follow from the data encoded in the brane picture. The same

analysis as that for SQED can be done for a generic 3d N = 4 theory with gauge group

G = U(n1) × U(n2) × ⋯ × U(nk) and flavor groups SU(N1), SU(N2), . . . , SU(Nk) attached to

the corresponding gauge group nodes in the quiver. The quiver for such generic14 theory is

given by 2.88.
N1
◻

∣○
n1

−

N2
◻

∣○
n2

−⋯ −

Nk
◻

∣○
nk

(2.88)

The dimension of the Higgs and the Coulomb branch can be expressed using the combinatorial

data of the quiver very easily. The dimension of the Coulomb branch is just the number of the

scalar components of the vector multiplets valued in the adjoint representation of the gauge

14Generic as far as the gauge nodes of the quiver form an A-type Dynkin diagram.
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n1

n2

nk

N1 N2 Nk

⋯ ⋯ ⋯

⋮

⋮

⋮
D3

D5

NS5

⋯

Figure 2.11: Brane system of the 3d N = 4 gauge theory with G = U(n1) × U(n2) × ⋯ × U(nk) and
SU(N1), SU(N2), . . . , SU(Nk) flavor groups.

group. There is one per each unitary gauge node U(ni), hence we have:

dim (C) =
k

∑
i=1

(n2
i ) (2.89)

The Higgs branch dimension is related to the hypermulitplet links of the quiver, and thus

captured by formula 2.90.

dim (H) =
k

∑
i=1

(Nini) +
k−1

∑
i

(nini+1) −
k

∑
i=1

(n2
i ) (2.90)

Theory 2.88 can be easily drawn using branes based on the following prescription:

• Draw k + 1 separated vertical NS5 branes.

• Draw ni D3 branes inside the k intervals between the NS5 branes, thereby engineering k

macroscopic U(ni) gauge groups.

• DrawNi D5 branes into ni-th interval such that the i-th gauge group sees its corresponding

SU(Ni) flavor group.

Following the prescription, one obtains the brane system for theory 2.88 depicted in figure 2.11.

Using the R-transformation, S-duality and a series of Hanany-Witten brane transitions, the 3d

Mirror dual of a given theory (providing the data {n1, n2, . . . , nk,N1, . . . ,Nk}) is straightfor-

wardly found. An example of this, useful for section 3.2 in chapter 3, is the Mirror symmetry

of 3d N = 4 SQED with N flavors. It is obtained for the initial data {n1 = U(1),N}. The brane

configuration of the Higgs branch and the brane configuration after mirror symmetry are shown
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in figures 2.12 and 2.13, respectively. The resulting brane system consists of N − 1 NS5 brane

intervals, each with a D3 brane stretched in between. In addition, there is one D5 brane in

each one of the boundary intervals. The result of the Mirror symmetry can be written using

D3

D5D5
⋯

N
NS5NS5

Figure 2.12: Brane system for the Higgs branch of 3d N = 4 SQED with N flavors.

D3

D5

NS5

⋯

N

Figure 2.13: Brane system for the Mirror of the Higgs branch of 3d N = 4 SQED with N flavors.

quivers as the equivalence of Higgs branch and a Coulomb branch spaces:

H
⎛
⎜⎜
⎝

N
◻

∣○
1

⎞
⎟⎟
⎠
= C

⎛
⎜⎜⎜
⎝

1
◻

∣○
1
− ○

1
− ⋅ ⋅ ⋅ − ○

1
−

1
◻

∣○
1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
N−1

⎞
⎟⎟⎟
⎠

(2.91)

In the light of chapter 6, 3d Mirror symmetry can be regarded as a three-dimensional analogue

of the technique of finding magnetic quivers starting with an electric quiver for a Higgs branch

of a given theory with 8 supercharges.

A time is ripe to apply the techniques reviewed in this chapter to study more complicated mod-

uli spaces and geometrical structures within them. The interplay of Hilbert series methods,

brane systems, and quivers foretells a playful journey towards a more complete understanding

of supersymmetric gauge theories. We begin the journey in three dimensions and with the par-

ticular question: ,,Given the hierarchy of complexity, what are the simplest non-trivial moduli
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spaces (i.e. Coulomb branches), and to what objects do these correspond to in mathematics?”.

Promoting the amount of global symmetry on the Coulomb branch as a parameter in this

hierarchy leads us to the study of minimally unbalanced quivers.



Chapter 3

Minimally Unbalanced Quivers

3.1 Introduction to MUQ

The understanding of the structure of moduli spaces of SQED and SQCD with eight super-

charges [15, 14, 56, 19, 21] is justifiably among important developments happening on the

interface of physics and mathematics.

The work presented in this chapter is based on [23] and it sheds light on the relationship

between the geometry of hyperKähler1 cones [58, 59, 28, 60, 41, 61, 62, 63, 64] and the physics

of gauge theories with eight superchagers.2 To begin with, lets recall some aspects of SQED

some of which are scattered over the previous chapter.

The Higgs branch H of SQED with 8 supercharges, N electrons, and at finite gauge coupling

g encountered in chapter 2 has been first computed classically in [56]. It is known that H

• does not depend on the number of space-time dimensions

1We adhere to the terminology in [57] such that hyperKähler means symplectic and holomorphic without
any statements on a metric.

2The work [65] reviews the role of sigma models and supersymmetric theories for the search for new geomet-
rical spaces. Whereas therein the emphasis is on construction of geometrical spaces with hyperkähler structure,
here we offer a complimentary effort: the action of the hyperKähler quotient on an initial Lagrangian with
hyperKähler geometry is replaced by the utilization of dressed monopole operators in the Coulomb branch of
3d N = 4 supersymmetric quiver gauge theory.

47
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• is a hyperKähler cone of complex dimension 2N − 2

• enjoys an isometry under the flavor group GF = SU(N)

• is isomorphic to the reduced moduli space of one AN−1 instanton on C2 [19]

Namikawa shows in [64] that it is actually one of the simplest hyperKähler cones with an

SU(N) isometry, meaning that the set of generators of the cone is minimal.3 Similarly as in

section 2.4, H can be understood as the set of all N ×N complex matrices such that:

H = {M ∈ CN×N ∣M2 = 0, tr(M) = 0, rank(M) ≤ 1} (3.1)

This set of matrices transforms under the adjoint representation of sl(N,C). Consider a matrix

X(2,1N−2) defined as:

X(2,1N−2) ∶=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 0 . . . 0

0 0 0 . . . 0

0 0 0 . . . 0

⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠
N×N

, (3.2)

such that X(2,1N−2) is a block diagonal matrix, and partition (2,1N−2) signifies that there is one

elementary Jordan normal block of size 2, and N − 2 elementary Jordan normal blocks of size

1. The (representative) matrix M can be conjugated by the elements of the group PSL(N,C).

The conjugation action defines the orbit O(2,1N−2):

O(2,1N−2) ∶= {S ⋅X ⋅ S−1∣S ∈ PSL(N,C)} (3.3)

such that H is isomorphic to the closure of O(2,1N−2):

H = Ō(2,1N−2) (3.4)

3By generators we mean the set of linearly independent holomorphic functions that generate the holomorphic
ring of the hyperKähler cone. Remember that in a SCFT with eight supercharges the generators of the holomor-
phic ring of a hyperKähler branch of the moduli space (i.e. Higgs branch in any dimension or Coulomb branch
in 3d) are found to be in one-to-one correspondence with chiral operators which generate the corresponding
chiral ring.
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In the same way as (2,1N−2) is a partition of the integer number N , for each partition λ of

N , there is a matrix Xλ of Jordan normal form. The orbit Oλ constructed from Xλ can be

defined such that its closure, Ōλ, is a hyperKähler cone [41]. The set of all such orbits is the set

of all nilpotent orbits of sl(N,C) and the closures thereof are the simplest hyperKähler cones

with GF = SU(N) isometry. Any other hyperKähler cone with SU(N) isometry that is not

the closure of a nilpotent orbit of sl(N,C) has extra generators in addition to the minimal set

of generators [64]. The extra generators are discussed in section 3.2.

HyperKähler cones whose isometry GF contains a single factor (i.e. SU(N)) can be classified

according to grading of the generators with respect to their charge under SU(2)R. Moreover,

the set of nilpotent orbits of Lie(GF ) is present in the simplest level of the classification.

Accordingly, supersymmetric quantum field theories whose Higgs branches are hyperkähler

cones posses a similar stratification, hence are subject to the same classification.

Three-dimensional N = 4 supersymmetric gauge theories typically have Coulomb branches that

are hyperKähler cones. They are often dual to hyperKähler 3d Higgs branches under 3d mirror

symmetry. Hence, when their isometry group GF contains a single factor, they also admit the

same classification!

To ascribe yet a broader significance to this classification, in the limit of infinite gauge coupling

g, Higgs branches of 5d N = 1 and 6d N = (1,0) SQCD have also been found to have description

in terms of 3d Coulomb branches [66, 67, 68, 69]. All of these recent developments are suggestive

of the essential role the classification of 3d N = 4 Coulomb branches plays in the systematic

study of hyperKähler moduli spaces in various dimensions.

Theories whose Higgs or Coulomb branches are closures of nilpotent orbits have seen an exten-

sive analysis [51, 70, 71, 72, 73, 74, 75, 76]. The main result presented in this chapter is the

classification of 3d N = 4 gauge theories with the property that their Coulomb branch has a

single factor isometry group GF , but need not necessarily be a closure of a nilpotent orbit of

Lie(GF ).

The classification is adroitly obtained especially because for 3d N = 4 theories that have an
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associated quiver, the isometry group GF of C has a powerful connection with the structure

of the quiver. We exploit this fact, and the understanding of dressed monopole operators

[77, 78, 47, 50, 79, 51, 53] on C. The key idea is that the classification problem is translated

into a classification problem of quiver graphs with certain simple properties. Before proceeding

with the classification, let us discuss the set of generators of a hyperKähler cone Coulomb

branch.

3.2 Coulomb Branch with SU(N) isometry and a mini-

mal set of generators

Recall that mirror symmetry of 3d N = 4 quiver gauge theories [19] relates the Higgs and

Coulomb branch for a pair of dual theories. In particular, for SQED with N flavors recall the

result of the mirror symmetry 2.91:

H
⎛
⎜⎜
⎝

N
◻

∣○
1

⎞
⎟⎟
⎠
= C

⎛
⎜⎜⎜
⎝

1
◻

∣○
1
− ○

1
− ⋅ ⋅ ⋅ − ○

1
−

1
◻

∣○
1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
N−1 nodes

⎞
⎟⎟⎟
⎠

(3.5)

where H denotes the Higgs branch of the 3d quiver at finite coupling and C denotes its Coulomb

branch. Following the notation of section 2.6, the gauge and flavor groups are denoted by

round and square nodes, respectively. Both the Higgs as well as the Coulomb branch spaces

in equation (3.5) equal to hyperKähler cone (3.4). Both spaces are described by the Highest

Weight Generating function [46]:

HWG(µ1, . . . , µN−1, t) =
1

1 − µ1µN−1t2
. (3.6)

The highest weight fugacities µ1µN−1 signify that the generators of the holomorphic ring trans-

form under the representation with highest weight [1,0, . . . ,0,1], i.e. the adjoint representation

of the isometry group SU(N) (see 2.70). Observe that on the RHS of equation (3.5) the gauge

nodes form the Dynkin diagram of Lie(SU(N)). Also observe that all the gauge nodes are
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balanced (see definition 2.80). Every balanced node contributes to the holomorphic ring of the

Coulomb branch with polynomials of degree4 d = 2 (i.e. at the IR SCFT there are chiral opera-

tors Oi with conformal dimension ∆(Oi) = 1). The set of all linearly independent holomorphic

polynomials with degree d = 2 transforms under the adjoint representation of the isometry

group GF = SU(N) [64]. This means that the number of such polynomials in the example at

hand is N2 − 1. The work [64] also shows that if the Coulomb branch is generated only by

operators with degree d = 2, then it is the closure of a nilpotent orbit of sl(N,C) = Lie(GF ):

Given an isometry GF , the set of hyperKähler cones with solely generators of degree d = 2 (all

necessarily transforming under the adjoint representation of GF ), is equivalent to the set of

closures of nilpotent orbits of Lie(GF ).

Furthermore, there is a one-to-one correspondence between the set of nilpotent orbits of N and

the set of partitions of N , denoted by P(N). Therefore, there is a finite set of hyperKähler

cones with isometry SU(N) and minimal number of generators (i.e. N2 − 1 ) transforming in

the adjoint representation. Each hyperKähler cone corresponds to a different partition of N .

Lets illustrate this point using a simple example.

3.2.1 Example: GF = SU(3)

First, we discuss the minimal set of generators. Let the isometry group be GF = SU(3).

The set of partitions of 3 is P(3) = {(3), (2,1), (1,1,1)}. There are three different hyperKähler

cones corresponding to {3}, {2,1} and {13}, respectively.5 For each different nilpotent orbit

4The degree of the polynomials is represented in the highest weight generating function by the power of the
fugacity t.

5We use exponential notation for partitions. For instance, partition {5,4,4,2,1,1,1} is denoted by
{5,42,2,13}.
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closure there is a corresponding 3d N = 4 quiver [51]:

(3)→

3
◻

∣○
2
−○

1

(2,1)→

1
◻

∣○
1
−

1
◻

∣○
1

(13)→ ○
0
−○

0

(3.7)

such that

C
⎛
⎜⎜
⎝

3
◻

∣○
2
− ○

1

⎞
⎟⎟
⎠
= {3}

C
⎛
⎜⎜
⎝

1
◻

∣○
1
−

1
◻

∣○
1

⎞
⎟⎟
⎠
= {2,1}

C (○
0
− ○

0
) = {13}

(3.8)

The quiver with nodes of zero rank has a trivial Coulomb branch. The remaining two quivers

have Coulomb branches described by the Highest Weight Generating functions:

HWG(3)(µ1, µ2, t) =
1 − µ3

1µ
3
2t

12

(1 − µ1µ2t2)(1 − µ1µ2t4)(1 − µ3
1t

6)(1 − µ3
2t

6) (3.9)

and

HWG(2,1)(µ1, µ2, t) =
1

1 − µ1µ2t2
, (3.10)

respectively. Both Coulomb branches are generated solely by holomorphic polynomials of degree

d = 2 in the adjoint representation of GF = SU(3), denoted by the term µ1µ2t2 in the HWG.

Recall that the degree of these polynomials, i.e. power of td, determines their spin s = d/2 under

the SU(2)R R-symmetry. In this case the generators have spin s = 1 (equivalently, the chiral

ring associated with the Coulomb branch is generated by eight operators Oi in the adjoint

representation of GF = SU(3) with conformal dimension ∆(Oi) = 1). Any other 3d N = 4

Coulomb branch C with isometry SU(3) is either isomorphic to C(◻
3
−○

2
−○

1
) or C(◻

1
−○

1
−○

1
−◻

1
), or

has extra generators Oi′ with spin s > 1 under SU(2)R. In the latter case, the extra operators

O′ have conformal dimension ∆(O′) > 1.
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3.2.2 Example: GF = SU(10)

Now consider the partition λ = (25) ∈ P(10). The quiver with Coulomb branch {25} ⊂ 10 takes

the form:6

C
⎛
⎜⎜
⎝
○
1
− ○

2
− ○

3
− ○

4
−

2
◻

∣○
5
− ○

4
− ○

3
− ○

2
− ○

1

⎞
⎟⎟
⎠
= {25} (3.11)

This Coulomb branch is minimally generated by operators Oi satisfying ∆(Oi) = 1, and trans-

forming under the adjoint representation of SU(10). The HWG reads:

HWG(µ1, . . . , µ9, t) =
5

∏
i=1

1

1 − µiµ10−it2i
. (3.12)

To arrive at an extension of the minimal set of generators, let us consider the quiver on

the LHS in 3.11, but with a gauge node instead of the flavor top node. The resulting quiver,

given in (3.13)

○
1
− ○

2
− ○

3
− ○

4
−

2○
∣○
5
− ○

4
− ○

3
− ○

2
−○

1
(3.13)

now has the top unbalanced gauge node with excess e = 1 (recall the definition of balance 2.80).

Written using the Plethystic exponential (PE) [80], the HWG reads [81]:

HWG(µ1, . . . , µ9, t) = PE[µ1µ9t
2 + µ5t

3 + (1 + µ2µ8)t4 + µ5t
5 + µ3µ7t

6 + µ4µ6t
8] (3.14)

The effect of the unbalanced node on the Coulomb branch is the appearance of new operators

O′
i which are also the generators of the chiral ring. Since the conformal dimension of the new

operators is ∆(O′
i) = 3/2, they do not modify the global symmetry of the Coulomb branch

(which is only determined by the operators Oi with ∆(Oi) = 1). Hence, the Coulomb branch

of (3.13) still has an isometry group which contains a single factor GF = SU(10), but it is no

longer a closure of a nilpotent orbit. This is an example of a theory that is included in the

classification in [23]. The next section contains a formal definition of the set of theories which

have this property.

6In the classification of this chapter, all quivers contain unitary gauge nodes and no flavor nodes.
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3.3 Classification of Minimally Unbalanced Quivers

This section provides the answer to the main question: Given a Lie group G, what is the set

of 3d N = 4 quivers such that their Coulomb branch C is generated by:

• operators Oi with ∆(Oi) = 1 in the adjoint representation of G (this set of operators is

always present if G is an isometry of C)

• a set of extra operators O′
i with ∆(O′

i) > 1, such that G remains the isometry of the

Coulomb branch

In order to address this question, let us employ the following claim, which results from the work

on monopole operators in the 3d N = 4 Coulomb branch [50, 47, 51, 53, 52]: A gauge node

of a 3d N = 4 quiver determines the presence of operators Oi with ∆(Oi) = 1 in the Coulomb

branch in the following way:

• If the node has excess7 e > 0, it contributes with a single Casimir operator φi, such that

∆(φi) = 1.

• A set of nodes with excess e = 0, in the form of a Dynkin diagram of a Lie group G, con-

tributes with a number of operators Oi (with ∆(Oi) = 1) which is equal to the dimension

of G. There will be one Casimir operator φi per gauge node. The remaining operators are

bare monopole operators Vi that correspond to the different roots of the algebra Lie(G).

• For flavorless (unframed) quivers, one Casimir operator with ∆(φi) = 1, corresponding

to the adjoint representation of the decoupled U(1) center of mass, needs to be removed

from the counting.8

Two different cases of 3d N = 4 quivers with isometry G on the Coulomb branch C can be

readily identified employing this claim:

7The notion of balance and excess are used interchangeably.
8The decoupling of the U(1) symmetry for flavorless non-simply laced quivers is studied in chapter 5.
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1. Closure of a Nilpotent orbit: C = Ōλ ⊂ Lie(G). All the generators of C have dimension

∆(Oi) = 1. The gauge nodes of the quiver form the Dynkin diagram of Lie(G), for a

classical or an exceptional Lie group G. All gauge nodes of the quiver are balanced. Flavor

nodes are added to ensure such balance condition. Moreover, the rank of the flavor nodes

always follows the pattern of the weighted Dynkin diagram [41] of the corresponding

nilpotent orbit Oλ. This can realise nilpotent orbit’s closures of height ht(Ōλ) = 2.9

2. Minimally Unbalanced Quiver: The gauge nodes of the quiver form a minimal ex-

tension of the Dynkin diagram of Lie(G). By minimal extension we mean that there

is a single extra gauge node, connected to the other gauge nodes that form the Dynkin

diagram. There are no flavor nodes. All gauge nodes in the Dynkin diagram are balanced

(with e = 0) except for the extra node which is unbalanced.10

Theories (3.8) and (3.11) are examples of the first case whereas theory (3.13) is an example

of the second case. Both cases have the number of generators Oi, with ∆(Oi) = 1, equal to

the dimension of G. In all three examples the Coulomb branch has the same isometry G. The

difference is that the first two theories have no extra generators of C, while the third theory

has extra generators O′
i with ∆(O′

i) > 1. As mentioned before, 3d N = 4 quiver gauge theories

whose Coulomb branches are closures of nilpotent orbits have already been extensively studied

(note the recent progress for exceptional G in [43]). Herein we aim to present results contained

in section 4 of the classification of all minimally unbalanced quivers in [23], for simply laced

classical Lie group G of type ADE. It is emphasized that all quivers presented in [23] are in

the basic form such that the ranks are the lowest possible. Other theories can be obtained by

multiplying the basic forms of the quivers by an integer number.11

9The height of a nilpotent orbit is defined as in [82, sec. 2]. Note that for G of A-type, this construction can
be extended to nilpotent orbits of all heights ht(Oλ), where the flavor nodes are determined by the partition λ
of the nilpotent orbit. See [51, 44, 73] for examples.

10In the following sections the cases with e = −1 are discussed separately from generic cases with e < 0. If all
nodes have e = 0, the quiver forms an affine or twisted affine Dynkin diagram of the global symmetry G and
these cases are also discussed separately.

11Note that the multiplication does not modify the isometry of the Coulomb branch.
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Construction of Minimally Unbalanced Quivers. We are in the position to present the

general solution for finding all minimally unbalanced quivers with a Coulomb branch isometry

G, where G corresponds to a single Dynkin diagram.

Complete results of the classification for all the different types of Lie groups can be found in

[23]. In the present thesis, part of the results are recollected for illustration. Let us look at the

construction of minimally unbalanced quivers.

As the first step, consider a 3d N = 4 quiver Q with the shape of a particular Dynkin diagram

and with an extra node attached to it in the simplest fashion.12 All nodes are U(ni) gauge

nodes, where ni is the number of colors of the i-th node. The nodes in the Dynkin diagram

need to be balanced (i.e. with excess e = 0). In order to impose the balancing condition, one

recalls the vectors v⃗ and w⃗ defined for Nakajima’s quiver varieties [61]. The vectors shall be

used slightly differently. Lets use n⃗ instead of v⃗. Let n⃗ be the vector with the ranks of all

the nodes of the part of the quiver that forms the (balanced) Dynkin diagram. Let C be the

corresponding Cartan matrix. Then, define vector w⃗ as:

w⃗ ∶= C ⋅ n⃗ (3.15)

Observe that w⃗ measures the excess in each of the nodes encoded in n⃗ in the presence of no

other nodes in the quiver. Now, one sets to zero the all components of w⃗ except of one. The

non-zero component can be set to k. This corresponds to attaching an extra node of rank k

(i.e. playing the role of the single unbalanced node) at the position of the non-zero element of

w⃗ and simultaneously balancing all nodes in n⃗. After fixing the rank of the unbalanced node

(node with e ≠ 0) to k, the ranks of the balanced nodes are uniquely determined:13

n⃗ = C−1 ⋅ w⃗ (3.16)

Finally, the value of k can be chosen to be the smallest value such that all the other ranks

12Simplest fashion means that the extra node is attached by a simply laced edge to only one of the nodes of
the balanced Dynkin diagram.

13Note that the inverse of the Cartan matrix exists for all finite-dimensional Lie algebras.
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are integer numbers. In the following sections this computation is repeated (as in [23]) for

all different choices of the position of the non-zero component of w⃗. As a result, one obtains

all possible minimally unbalanced quivers with a balanced subset of nodes corresponding to a

given Dynkin diagram.

3.4 Simply Laced Minimally Unbalanced Quivers

The classification begins with minimally unbalanced quiver gauge theories with Coulomb branch

isometry G, corresponding to a simply laced Dynkin diagram, and with the unbalanced node

connected via a simply laced edge.

3.4.1 G of Type AN

Let us show one example of the construction described in section 3.3. Choose G = SU(9), with

the Dynkin diagram of the form:

○ − ○ − ○ − ○ − ○ − ○ − ○ − ○

Let the Dynkin diagram be the balanced part of the quiver Q. Vector n⃗ = (n1, n2, . . . , n8)

denotes the number of colors of each node:

○
n1

− ○
n2

− ○
n3

− ○
n4

− ○
n5

− ○
n6

− ○
n7

−○
n8

(3.17)

Let us attach an extra node with k colors to the fourth node (which has the number of colors

n4). This determines w⃗:

w⃗ = (0,0,0, k,0,0,0,0) (3.18)

The resulting quiver reads:

Q ∶= ○
n1

− ○
n2

− ○
n3

−

k○
∣○
n4

− ○
n5

− ○
n6

− ○
n7

−○
n8

(3.19)
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Employing the Cartan matrix C of SU(9),

C ∶=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

2 −1 0 0 0 0 0 0

−1 2 −1 0 0 0 0 0

0 −1 2 −1 0 0 0 0

0 0 −1 2 −1 0 0 0

0 0 0 −1 2 −1 0 0

0 0 0 0 −1 2 −1 0

0 0 0 0 0 −1 2 −1

0 0 0 0 0 0 −1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (3.20)

the imposed balancing condition on ni:

n⃗ = C−1 ⋅ ω⃗ (3.21)

determines the ranks of the remaining nodes of the quiver. The resulting quiver takes the form:

Q = ○
5k
9

− ○
10k
9

− ○
15k
9

−

k○
∣○

20k
9

− ○
16k
9

− ○
12k
9

− ○
8k
9

− ○
4k
9

(3.22)

The ranks of the gauge groups are integer if k = 9p, with p ∈ N. All the nodes in the bottom

row have excess e = 0. The excess of the top gauge node with k = 9p colors is:

e = 20p − 18p = 2p (3.23)

The lowest value of k such that all other ranks ni are positive integers is obtained for the choice

p = 1. Therefore the quiver we are interested in has the form:

Q = ○
5
− ○

10
− ○

15
−

9○
∣○

20
− ○

16
− ○

12
− ○

8
−○

4
(3.24)

where the top node (drawn red) has excess e = 2. Following [51] and the discussion in section

2.5, a bare monopole operator Vi minimally charged under a node with excess e has conformal
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dimension:

∆(Vi) = (e + 2)/2. (3.25)

For e = 2, there is a bare monopole operator V , charged only under the magnetic dual of the

unbalanced node and with dimension ∆(V ) = 2. This is part of the set of extra generators O′
i of

the Coulomb branch. In particular, we say that all the extra generators (with ∆(O′
i) = 2) can

be obtained by a procedure similar to that explained in [51], by turning on minimal charges

of the balanced sector of the quiver. There is a total of 252 such operators, transforming

in the fourth antisymmetrization of the fundamental representation of G = SU(9), denoted by

Dynkin labels [0,0,0,1,0,0,0,0], and its complex conjugate representation [0,0,0,0,1,0,0,0].14

The various choices of w⃗ produce different quivers Q where the extra node is attached either to

the fourth, the third, the second, or the first node in the Dynkin diagram of G = SU(9).15 In

each case, k is chosen to be the smallest value such that the rest of the ranks are positive integers.

The different results and the excess of the extra node are depicted in table 3.1. It is crucial

to distinguish four cases based on the excess of the unbalanced node which in turn determines

the presence of extra operators with various values of the conformal dimension. Using the

terminology of [51] discussed in section 2.5, the possible types of theories are summarized in

table 3.2. The first and the second row in table 3.1 contain good theories that are: unbalanced

with positive excess and fully balanced, respectively. The third and fourth row in table 3.1

contain bad quivers that are both unbalanced and with negative excess.

General case: All quivers Q that can be obtained with this procedure are summarized by

a two parameter family, depicted in figure 3.1. The quiver in figure 3.1 contains a + b gauge

nodes, of which a+ b−1 are balanced. The remaining unbalanced node (conveniently drawn red

14Note that the appearance of the 252 new operators can be read off the quiver since the unbalanced node is
attached to the fourth Dynkin node, indicating that the extra generators transform in this representation and
its complex conjugate representation.

15The quiver in figure 3.1 enjoys outer Z2 automorphism symmetry therefore other choices of w⃗ yield equivalent
quivers to those already included.
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Quiver Excess Type

○
5
− ○

10
− ○

15
−

9○
∣○

20
− ○

16
− ○

12
− ○

8
− ○

4
2 Good

○
2
− ○

4
−

3○
∣○
6
− ○

5
− ○

4
− ○

3
− ○

2
− ○

1
0 Good

○
7
−

9○
∣○

14
− ○

12
− ○

10
− ○

8
− ○

6
− ○

4
− ○

2
−4 Bad

9○
∣○
8
− ○

7
− ○

6
− ○

5
− ○

4
− ○

3
− ○

2
− ○

1
−10 Bad

Table 3.1: Quivers with A8 balanced subset of nodes and a single unbalanced node.

Excess Type of the theory ∆ of extra generators
e > 0 Good ∆ ≥ 1
e = 0 Good ∆ = 1
e = −1 Ugly ∆ > 0
e < −1 Bad not applicable

Table 3.2: Types of minimally unbalanced quiver gauge theories based on excess of the extra node.

ab
s

. . .

3b
s

3a
s

2a
s

a
s

2b
s

b
s

. . .

a+b
s

Figure 3.1: Generic quiver with G = SU(N) global symmetry, with N = a + b, where a, b ∈ N and s
is the greatest common divisor of a and b. The excess of the bottom nodes is e = 0. The excess of the
top node is e = (ab − 2a − 2b)/s. We are interested in the subset of quivers with (ab − 2a − 2b)/s ≠ 0.

The formula for the quaternionic dimension of the Coulomb branch is: dimH = (ab+2)(a+b)
2s − 1.
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throughout the thesis) has excess:

e(a, b) = ab − 2a − 2b

gcd(a, b) , (3.26)

where gcd(a, b) denotes the greatest common divisor of a and b. For e(a, b) > 0 the global

symmetry of the Coulomb branch is SU(N), where N = a + b, and one says that the quiver is

minimally unbalanced with positive excess. Therefore, the quiver in the first row in table 3.1

with e(5,4) = 2 corresponds to a good theory with positive excess. The quiver in the second

row with e(2,1) = 0 represents a good theory that is fully balanced since all nodes have excess

zero. The two bad theories with e(7,2) = −4 and e(0,1) = −10 are contained in the third and

the fourth row of table 3.1, respectively. Typically, minimally unbalanced quivers with the

unbalanced node with excess e = −1 have either the entire or a part of the Coulomb branch

freely generated (see f.i. observation 3.1 in [83]). In order to proceed, let us define a function:

e ∶ N ×N→ Z

(a, b)↦ e(a, b)
(3.27)

that maps the two parameters of the family a and b to the excess of the top node of the

corresponding quiver. This function can be visualized by defining a matrix M , with elements:

Mab = e(a, b) (3.28)
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Let a and b run from 1 to 16, then M is 16 × 16:

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−3 −4 −5 −6 −7 −8 −9 −10 −11 −12 −13 −14 −15 −16 −17 −18

−4 −2 −4 −2 −4 −2 −4 −2 −4 −2 −4 −2 −4 −2 −4 −2

−5 −4 −1 −2 −1 0 1 2 1 4 5 2 7 8 3 10

−6 −2 −2 0 2 2 6 2 10 6 14 4 18 10 22 6

−7 −4 −1 2 1 8 11 14 17 4 23 26 29 32 7 38

−8 −2 0 2 8 2 16 10 8 14 32 6 40 22 16 26

−9 −4 1 6 11 16 3 26 31 36 41 46 51 8 61 66

−10 −2 2 2 14 10 26 4 38 22 50 14 62 34 74 10

−11 −4 1 10 17 8 31 38 5 52 59 22 73 80 29 94

−12 −2 4 6 4 14 36 22 52 6 68 38 84 46 20 54

−13 −4 5 14 23 32 41 50 59 68 7 86 95 104 113 122

−14 −2 2 4 26 6 46 14 22 38 86 8 106 58 42 34

−15 −4 7 18 29 40 51 62 73 84 95 106 9 128 139 150

−16 −2 8 10 32 22 8 34 80 46 104 58 128 10 152 82

−17 −4 3 22 7 16 61 74 29 20 113 42 139 152 11 178

−18 −2 10 6 38 26 66 10 94 54 122 34 150 82 178 12

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(3.29)

The elements in bold are those that correspond to the quivers of length a+b−1 = 8, i.e. those in

table 3.1. One can see that for a generic quiver the excess is positive. A theory with a+b−1 > 8

is bad (negative excess) only if one of the two parameters is either 1 or 2. Furthermore, there

are only three cases where the extra node is also balanced, i.e. excess e(a, b) = 0. These are:

(a, b) = (3,6), (a, b) = (4,4) and (a, b) = (6,3). The first and last cases correspond to an

enhancement of the global symmetry of the Coulomb branch from SU(9) to E8. The case

(a, b) = (4,4) sees a similar enhancement, this time from SU(8) to E7. The three cases with

e = −1 are obtained for (a, b) ∈ {(3,3), (3,5), (5,3)}. For (a, b) = (3,3) the greatest common

divisor is gcd(3,3) = 3, therefore, the quiver takes the form:

Q(3,3) = ○
1
− ○

2
−

2○
∣○
3
− ○

2
−○

1
(3.30)
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and the Coulomb branch of this quiver is a freely generated variety (see 3.10 in [69]):16

C = H10. (3.31)

For (a, b) = (3,5) (or equivalently (a, b) = (5,3)) the quiver takes the form:

Q(3,5) = ○
3
− ○

6
− ○

9
− ○

12
−

8○
∣○

15
− ○

10
−○

5
(3.32)

The quaternionic dimension of the Coulomb branch in 3.32 is 67. The unbalanced node con-

nects to the Dynkin node that corresponds to the SU(8) representation with Dynkin labels

[0,0,0,0,1,0,0] and with dimension 56. Drawing intuition from the quiver in 3.30, one would

expect 112 new operators transforming in the [0,0,0,0,1,0,0] representation of SU(8) and its

complex conjugate rep [0,0,1,0,0,0,0]. Note that although the excess is e = −1 (i.e. same as in

freely generated 3.30) the Coulomb branch of 3.32 is more complicated (i.e. has both a freely

generated as well as a non-trivial part).

A formula for the HWG for minimally unbalanced A-type quivers with a = b, s = 1 (i.e. with

outer Z2 automorphism symmetry) is given by equation (23) in [81]. Minimally unbalanced

quivers belonging to the general class in figure 3.1 show up in the study of Higgs branches of

5d N = 1 theories with 8 supercharges [66]. In a similar fashion, we proceed to construct the

classification of minimally unbalanced quivers with G corresponding to the D-type and E-type

simply laced Dynkin diagrams.

16Since the balanced sub-quiver corresponds to A5 global symmetry, but H10 has isometry Sp(10), we find
an embedding: SU(6) ↩ Sp(10). In particular, the pseudo-real fundamental rep of Sp(10) projects to the
pseudo-real 3-rd rank antisymmetric rep of SU(6): [1,0,0,0,0]Sp(10) ↪ [0,0,1,0,0]SU(6).
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3.4.2 G of Type DN

Let us focus on minimally unbalanced quivers with Coulomb branch isometry G = SO(2N).

The Dynkin diagram of so(2N) is of the form:

○ − ○ − ○ − ⋅ ⋅ ⋅ − ○ −
○
∣○ − ○

We find a two parameter family a,N , where a is the position of the extra node starting from

the left, and N is the total number of balanced nodes. Based on whether the unbalanced node

attaches to one of the nodes on the main chain (i.e. a < N − 1) or to one of the spinor nodes

(i.e. a = N) two categories with two further sub-categories are to be distinguished:

• Unbalanced node is attached to a node on the main chain:

– Unbalanced node of rank 1 connects to an even node and the total number of bal-

anced nodes is either even or odd. This family of quivers is contained in the first

row in table 3.3.

– Unbalanced node of rank 2 connects to an odd node and the total number of balanced

nodes is either even or odd. This family of quivers is depicted in the second row of

table 3.3.

• Unbalanced node is attached to one of the spinor nodes:

– Unbalanced node is of rank 2 and the total number of balanced nodes is even. This

family of quivers is depicted in the third row in table 3.3.

– Unbalanced node is of rank 4 and the total number of balanced nodes is odd. This

family of quivers is contained in the fourth row in table 3.3.

Note that the excess depends on a single parameter a. It is given by linear equations shown in

the third column in table 3.3.

Note that the following special cases are found:
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a Quiver Excess

a < N − 1
a = 2m

2m

. . .

321 2m

. . .

1

N − a − 1

m

m

a − 2

a < N − 1
a = 2m + 1

2 4 6

. . .

2(2m + 1)
. . .

2(2m + 1)

2

N − a − 1

2m + 1

2m + 1

2a − 4

a = N
a = 2m

2m − 2321

. . .

m

m − 1

2 a
2 − 4

a = N
a = 2m + 1

2(2m − 1)642

. . .

2m + 1

2m − 1

4 a − 8

Table 3.3: Classification of minimally unbalanced quivers with G = SO(2N).
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• In the first row:

– for a = 2 the quiver has zero excess and corresponds to the reduced moduli space of

one DN instanton on C2.

• In the third row:

– for m = 4 one obtains the affine E8 Dynkin diagram corresponding to the reduced

moduli space of one E8 instanton on C2. The Coulomb branch is denoted as C =

minE8 .

• In the last row:

– for m = 3 (or equivalently N = 7) one obtains a peculiar quiver with e = −1 of the

form:

○
2
− ○

4
− ○

6
− ○

8
−

5○
∣○

10
− ○

7
−○

4
(3.33)

Similarly as for the quiver in 3.32 the unbalanced node does not connect to a node

corresponding to a pseudo-real representation. In the case of 3.33, the unbalanced

node has negative excess e = −1 and it connects to a Dynkin node corresponding to

the complex spinor representation with dimension 64. The dimension of the Coulomb

branch is 45.17

The HWG for the case in the third row in table 3.3 is given using DN highest weight fugacities

by equation (26) in [81].

3.4.3 G of Type EN

Finally, let us analyze simply laced theories with G of type En. All the different minimally

unbalanced quivers with a certain E-type exceptional global symmetry can be written down

explicitly. We report the excess of the unbalanced node in the second column of the classification

17Recall that the quaternionic dimension of the Coulomb branch (in absence of flavor nodes) can be read off
from the quiver as: dim(C) = ∑i ri − 1, where ri denotes the rank of the i-th node.
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Quiver Excess

6 4 24 5

33

−2

12 8 45 10

63

4

6 4 22 4

1 3

4

3 2 11 2

2

1

0

Table 3.4: Minimally unbalanced quivers with G = E6.

tables. Note that all the quivers in the classification that are balanced (extra node drawn

orange) are the affine Dynkin diagrams of the corresponding global symmetry, where the affine

node has rank 1. Such quivers corresponds to both the closure of the minimal nilpotent orbit

of eN algebra, and to the reduced moduli space of one EN instanton on C2 [53].

G of Type E6

For G = E6 one explicitly writes down all the cases as displayed in table 3.4. Note that there

are only four distinct cases due to the Z2 outer automorphism of the E6 Dynkin diagram. The

last row in table 3.4 is special (with excess e = 0) as its Coulomb branch is the reduced moduli

space of one E6 instanton on C2 [19, 53]. The HWG for this quiver is given in terms of the

SU(6) × SU(2) highest weight fugacities by equation (28) in [81].
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G of Type E7

Next, we consider minimally unbalanced quivers with E7 global symmetry. One proceeds by

attaching the unbalanced node from leftmost to the rightmost node. Due to the lack of any

automorphism of the E7 Dynkin diagram one has to exhaust all 7 cases. The resulting minimally

unbalanced quivers are collected in table 3.5. The first row in table 3.5 is again a special case

and its Coulomb branch is a reduced moduli space of one E7 instanton on C2 [19, 84]. The

HWG for this theory is given in terms of SU(8) highest weight fugacities in equation (44) in

[81]. The last row of table 3.5 depicts a theory with excess e = −1. The Coulomb branch is

freely generated variety:

C = H28 (3.34)

and one finds the embedding [1,0,0,0,0,0,0]E7 ↩ [1,0,0,0,0,0,0]Sp(28) of E7 inside Sp(28).

Both of these 56 dimensional representations are pseudo-real which is consistent with the ex-

pectation from H28. More generally, Hn variety is always generated by 2n generators that

transform under the pseudo-real fundamental representation of Sp(n).
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Quiver Excess

4 3 1

1

22 3

2

0

8 6 2

1

43 6

4

4

12 9 64 8 3

1 6

10

12 9 3

2

64 8

7

3

18 15 5

1

106 12

9

13

6 5 2

1

42 4

3

2

6 5 3

2

42 4

3

−1

Table 3.5: Minimally unbalanced quivers with G = E7.
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G of Type E8

Finally, we present all minimally unbalanced theories with global symmetry G = E8 in tables

3.6 and 3.7. Again, all eight distinct cases are exhausted. The quiver in the shape of an affine

E8 Dynkin diagram in the last row of table 3.7 associates with the moduli space of one E8

instanton on C2 [19, 84]. In terms of SO(16) highest weight fugacities, the HWG for this

quiver is given by equation (142) in [81].

Quiver Excess

8 6 474 210

51

2

7 14 20 16 12 8 4

101

12

10 20 30 24 18 12 6

1 15

28

5 10 15 12 9 6 3

8

1

6

Table 3.6: First set of minimally unbalanced quivers with G = E8.

The classification further proceeds with minimally unbalanced quivers with Coulomb branch

isometry of type BCFG as in section 5 in [23]. Another step is to allow a scenario where the

extra unbalanced node attaches to the rest of the quiver via a double or triple laced edge. Such

exotic classification is developed in sections 6 and 7 in [23].
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Quiver Excess

8 16 24 20 15 10 5

12 1

18

6 12 18 15 12 8 4

9 1

10

4 8 12 10 8 6 3

6 1

4

2 4 6 5 4 3 2

3 1

0

Table 3.7: Second set of minimally unbalanced quivers with G = E8.

3.5 Concluding Comments for Minimally Unbalanced Quiv-

ers

In this chapter we presented a part of the complete classification of minimally unbalanced

quiver gauge theories with the isometry on the Coulomb branch corresponding to a single fi-

nite Dynkin diagram. This concurrently provides a classification of hyperKähler cone moduli

spaces of supersymmetric gauge theories with 8 supercharges in various dimensions with the

same isometry group.

Minimally unbalanced quivers with A-type global symmetry form a two parameter family de-

scribed by a and b. Minimally unbalanced theories with global symmetry of BCD-type are

classified based on the position of the unbalanced node and the total number of balanced nodes.

Minimally unbalanced quivers with exceptional global symmetry (i.e. of EFG-type) are found
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for each different case (i.e. for each possible node to which the unbalanced node is attached).18

An extension of the effort to the work in this chapter is the classification of minimally unbal-

anced quivers with global symmetry of the form:

Gglobal = G1 ×G2, (3.35)

where G1 and G2 are any two Lie groups. Such extended classification is obtained by working

out all possible pairings of minimally unbalanced quivers found in [23]. The extended classifi-

cation is available online at:

https://www.wolframcloud.com/obj/b52c6446-64dc-45af-a6b6-692b9b6ac382

A possible follow-up work is the classification of unbalanced quivers with M unbalanced nodes,

where M > 1. In such scenario, the global symmetry takes the form:

Gglobal =∏
i

Gi ×U(1)M−1, (3.36)

where Gi are the groups corresponding to the Dynkin sub-diagrams formed by the subsets of

balanced nodes. The number of the U(1) Abelian factors in the global symmetry is one less

than the number of unbalanced nodes. Quivers with more than one unbalanced node often turn

out to be realisations of 5d and 6d Higgs branches [66, 69, 24] as spaces of dressed monopole

operators.

Hopefully, the exposition in this chapter manages to pass onto the reader at least some appre-

ciation of how, thanks to the graph-theoretic nature of quivers, the study of moduli spaces of

complicated gauge theories comes about in a playful form. Let us now continue to chapter 4,

where quivers star in the novel phenomenon of discrete gauging.

18In case of E6, the number of cases reduces to 4 due to the Z2 outer automorphism invariance of the E6

Dynkin diagram.

https://www.wolframcloud.com/obj/b52c6446-64dc-45af-a6b6-692b9b6ac382


Chapter 4

Discrete Gauging

4.1 Introduction to Discrete Gauging

As we have seen in the previous chapter, 3d N = 4 quiver gauge theory typically has a Coulomb

branch of the moduli space that is a hyperKähler singularity [85, 62, 86, 87]. Moreover, the

graph theoretical nature of quiver gauge theories opens a large field for the study of orbifold

and other actions of discrete groups [88]. This chapter is devoted to a particular action on

quivers which has both, a gauge theoretic, as well as a geometric interpretation.

The results of this chapter are based on [24] where a large class of bouquet quivers (i.e. quivers

which have a set of U(1) nodes attached to a common pivot node) is considered. Apart from

such complete bouquet1 of nodes, the rest of the quiver is arbitrary as the statement to be made

on the quiver is a purely local one. The action on the quiver can be summarized by taking

the set of n U(1) nodes and replacing them with an adjoint n node.2 The construction is

formulated by Conjecture 1, which is a more general version of Conjecture 1 in [89].

1Complete means that all the nodes of the bouquet are of rank 1. Generically, bouquet can consist of nodes
of any ranks, not necessarily the same within the bouquet.

2Note that in this chapter, n denotes the number of bouquet nodes whereas in previous chapters, n denotes
the number of colors or a rank of a gauge group.

73
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Conjecture 1 (Discrete Gauging) Given a 3d N = 4 quiver Q[1n]
3 with n nodes of rank 1

attached to another node of rank k, (gauge node or global node4) (Fig.(4.1)), one can construct

k

. . .. . .

1 1

. . .

n

Figure 4.1: Q[1n] quiver.

a new 3d N = 4 quiver Q[n], with an adjoint node of rank n attached to k (Fig.(4.2)). Then,

k

. . .. . .

n

Adj

Figure 4.2: Q[n] quiver.

relation (4.1) between the Coulomb branches of these quivers holds

C (Q[n]) = C (Q[1n]) /Sn , (4.1)

where Sn is the discrete symmetry group of permutations of n elements.

The quiver in figure (4.1) has a natural Sn symmetry which permutes the U(1) gauge nodes, and

the corresponding Coulomb branch inherits this symmetry as a discrete global symmetry. A

natural step in a geometric construction of moduli spaces is to gauge a subgroup of the discrete

global symmetry, resulting in a new moduli space. From the gauge theoretical perspective,

one constructs a new theory, given by the quiver in figure (4.2), such that the corresponding

Coulomb branches satisfy equation (4.1) of Conjecture (1).

The physical motivation for discrete gauging begets interpretation for a particular class of 6d

N = (1,0) supersymmetric theories that describe low energy physics of a set of n M5 branes on

3The partition notation for bouquet quivers is explained later in this section.
4The special case when the pivot node is a global flavor node is discussed in section 4.1 in [85].
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a C2/Zk singularity [89]. The Higgs branch of such theories at infinite coupling can be expressed

as a Coulomb branch of a 3d N = 4 quiver gauge theory. System of n separated M5 branes on

C2/Zk singularity, has a discrete Sn global symmetry on the moduli space. This arises from

the manifest permutation symmetry of the corresponding M5 branes (i.e. the positions of the

separated M5 branes). By making some of the M5 branes coincident, a subgroup of the discrete

global symmetry Hλ ⊆ Sn is gauged. Hλ corresponds to a partition λ that describes subsets of

M5 branes that are coincident. For every partition, different Hλ is gauged, producing a theory

with a Coulomb branch that is (generically non-Abelian) orbifold of the parent Coulomb branch

(Cλ, λ = 1n), corresponding to n separated M5 branes.

In a wider context, the study of discrete gauging belongs to a more general program of under-

standing infinite coupling non-Lagrangian 6d theories arising for systems of n M5 branes on

ALE singularities C2/Γ, where Γ is a discrete subgroup of SU(2). When the singularity is of

D or E type, the system has additional massless tensor multiplets at the limit of zero string

tension and exhibits the small instanton transition [90]. This is absent in the simpler case of A

type singularity considered here.

Conjecture (1) applies to any 3d N = 4 quivers which need not necessarily describe low energy

dynamics of a systems of M5 branes on ALE singularity. In the present work, Conjecture (1)

describes a phenomenon purely in 3d without any reference to other dimensions.

In order to test and provide evidence of Conjecture 1, we focus on a class of quivers which

contain a sub-quiver such as depicted in figure (4.1), consisting of a bouquet of n rank 1 gauge

nodes that stems from a rank k gauge node. Below is an example of a simple construction of

a bouquet quiver starting from a generic unitary quiver with flavors:

• From a generic unitary 3d N = 4 quiver with rank n flavor node attached to a rank k

gauge node, one obtains a complete bouquet quiver by simply gauging the whole global

symmetry into n separate rank 1 nodes. In particular, consider the quiver in figure (4.3).

As before, round and square nodes denote gauge and flavor groups, respectively. After

the gauging of the flavor node into separate U(1) gauge nodes the quiver shown in figure
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k

. . .. . .

n

Figure 4.3: Local part of a quiver with a rank n flavor node attached to a rank k gauge node.

(4.4) is obtained. The form of the bouquet arrangement is denoted by partition P[1n](n).

The Coulomb branch of quiver (4.3), denoted by C1, and the Coulomb branch of quiver

k

. . .. . .

1 1

. . .

n

Figure 4.4: Local part of P[1n](n) complete bouquet quiver.

(4.4), denoted by C2, satisfy

C1 = C2 /h U(1)n (4.2)

where /h denotes a hyperKähler quotient.

Following [24], the discrete gauging construction prescribed in Conjecture (1) is performed on

quivers with unitary gauge nodes, however, it should be emphasized that analogous construc-

tion can be formally defined for much broader class of quivers.5

In terms of notation, note that various arrangements and ranks of the bouquet nodes of a

given quiver are in one-to-one correspondence with partitions of n. In figure (4.5) and figure

(4.6) the arrangement of the upper nodes is denoted using partitions P[1n](n) and P[2,1n−2](n),

respectively. This notation is used throughout the chapter.

In order to perform discrete gauging, let us gauge H, a subgroup of the discrete symmetry

Sn that acts as a permutation group of the bouquet in figure (4.5). For H = Z2, according to

Conjecture (1), one obtains the daughter quiver depicted in figure (4.6). The bouquet of the new

5Strictly speaking, one only requires a presence of a bouquet without any additional requirements on the
node from which the bouquet stems. In particular, the pivot node can be an ortho-symplectic (i.e. O, SO or
Sp) gauge node.
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k

. . .

121 2

. . .

1 1

. . .

n

Figure 4.5: A-type quiver with P[1n](n) bouquet.

k

. . .

121 2

. . .

2 11

. . .

n − 2
Adj

Figure 4.6: A-type quiver with P[2,1n−2] bouquet.

quiver in figure (4.6) consists of n−2 copies of U(1) nodes and a single U(2) node with an adjoint

loop. The adjoint loop adds extra hypermultiplet contributions to the conformal dimension ∆

of BPS operators that live in that particular node. The addition of extra hypermultiplets is

straightforwardly adjusted for, and implemented, in the monopole formula 2.76, used for the

computation of the Coulomb branch. Examples of quivers with adjoint nodes recently appeared

in [91, 92].

Herein, from the possible vast landscape of bouquet quivers, the following three families are

studied:

• Star-shaped quivers with a central 2 node and a bouquet of 1 nodes

• Quivers consisting of a chain of n2 rank 2 nodes with two bouquets:

– The first bouquet with n1 rank 1 nodes is attached to the leftmost chain node

– The second bouquet with two rank 1 nodes is attached to the rightmost chain node

• A-type quivers with outer Z2 automorphism symmetry and a bouquet that stems from

the central node6

Figure (4.5) and (4.6) show examples of quivers which belong to the third family. This family

6Compare with (2.12) in [89].
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can be parametrized by n and k. For k = 2 the first family of quivers is recovered. Considering

the quivers belonging to the second family and setting n2 = 1 (i.e. if the “chain” contains only

a single 2 node), one also recovers the first family.

Starting with figure (4.5), quivers for all partitions of n can be drawn. For each U(r) node with

r > 1 in the bouquet, an adjoint loop is added. By gauging the entire global Sn symmetry of the

theory in figure (4.5), followig Conjecture (1), one obtains the quiver in figure (4.7), correspond-

ing to the last partition P[n](n). It is natural to study the relations between Coulomb branches

k

. . .

121 2

. . .

n

Adj

Figure 4.7: A-type quiver with P[n](n) bouquet.

corresponding to the various partitions P(n). Generically, let P[λ](n) denote a daughter theory

constructed from the parent complete bouquet quiver P[1n](n). Conjecture (1) implies that the

Coulomb branches satisfy

C[λ] = C[1n]/Γ, (4.3)

where Γ is a discrete symmetry group that corresponds to the difference of the global permuta-

tion symmetry between the complete P[1n](n) bouquet and the P[λ](n) bouquet, respectively.

Equation (4.3) has the following implication on the volumes of the two Coulomb branches. One

can expand the unrefined Hilbert series around the t = 1 pole

HS(t) ∣t→1∼
R

(1 − t)d , (4.4)

where d is the complex dimension of the Coulomb branch and R denotes the value of the residue

at the pole. Then, since equations (4.5) and (4.6)

vol(C[λ]) = Rλ (4.5)

vol(C[1n]) = R1n (4.6)
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define the volumes of the Coulomb branch algebraic varieties, equation (4.7) must hold.

vol(C[1n])
vol(C[λ])

= R1n

Rλ

= ord (Γ) (4.7)

Note, that ord (Γ) denotes the order of the discrete group Γ. In the following sections discrete

gauging construction of Conjecture (1) is applied to all three aforementioned families of quivers.

As a result, for all possible gauged subgroups Hλ ⊆ Sn of the discrete global symmetry, one can

study the obtained Coulomb branches and perform a collection of non-trivial tests verifying that

the daughter Coulomb branches are Abelian and non-Abelian orbifolds of the parent Coulomb

branch. The full analysis is contained in [24].

The comparison of the Coulomb branch volumes of the unrefined Hilbert Series is used as a

necessary non-trivial test of equation (4.1). Direct comparison of the refined Hilbert Series can

be used for an exact verification of Conjecture (1). For the latter, one needs to study how

the refined Hilbert series of theory P[1n](n) maps to that of the P[λ](n) theory. In particular,

one can use the character maps between the corresponding character expansions of the Hilbert

series. In section 4.2 the discrete gauging analysis is carefully performed for the first family of

bouquet quiver theories. The structure of the analysis is precisely that of [24]:

The Analysis Assuming Conjecture (1) holds, for each partition (corresponding to different

gauging of the discrete global symmetry), the quiver is displayed. The balance (excess) of the

unbalanced node as well as the quaternionic dimension of the Coulomb branch are included in

the captions of figures. The simple root fugacities used in the monopole formula computation

of the Hilbert series are shown inside the quiver nodes or in a separate figure. The rest of the

analysis aims to provide evidence for Conjecture (1).

First, the anticipation of the global symmetry Gglobal on the Coulomb branch, based on a

conjectured claim about Gglobal of unbalanced quivers, is stated. For the discussion of global

symmetry of minimally unbalanced quivers refer to chapter 3, section 3.3. The analysis then

further proceeds by the following steps:
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• After a computation of the Hilbert series using simple root fugacities the unrefined Hilbert

series (HS) is obtained by setting all root fugacities to unity.

• The Plethystic Logarithm (PL) of the unrefined HS is taken7. The t2 coefficient is com-

pared with the dimension of the adjoint representation of the expected Gglobal. This

provides a necessary confirmation that the anticipated Gglobal is correct. In cases of

Coulomb branches which have a free sector (this happens for quivers containing a node

with balance of −1, see chapter 3) the global symmetry consists of two parts:

– Firstly, the freely generated part of the Coulomb branch is determined.

– Secondly, this free sector is factored out so that the non-trivial part of the Coulomb

branch can be further analyzed.

• The fugacity map, that turns the simple root fugacities into the appropriate fugacities of

the Gglobal is given. One then shows that the t2 coefficient of the refined HS is the character

of the adjoint representation of Gglobal. This serves as a direct verification of Gglobal of

the theory.8 (In case of a theory which has a free sector, the free sector appears in the

form of a character coefficient in front of t in the refined Hilbert series. Before proceeding

further with the refined analysis, the free sector is factored out by multiplying the refined

HS with an inverse of the Plethystic Exponential (PE) of the character appearing in front

of the t term.)

• Next, the Plethystic Logarithm (PL) of the refined HS is taken. The refined PL encodes

the information about the number, degree and representation behavior of generators and

relations under the global symmetry.

• The representation content of the chiral ring is then summarized by the Highest Weight

Generating function (HWG), (see section 2.4). The HWGs for the first two families of

quivers have simple forms and are therefore included.

• As the final step, the Coulomb branch is identified.

7For the definition of Plethystic Logarithm, see [93] or (4.2) in [94].
8In case of quivers with large character coefficients, this step is by-passed by showing directly the refined PL

in the next step.
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After the exhaustion of all partitions for a given parent quiver (i.e. when all quivers obtainable

by discrete gauging on the parent quiver are exhausted), the volumes of the Coulomb branches

are compared. The corresponding ratios are summarized in tables at the end of each subsection.

This provides a non-trivial check that the Coulomb branches of the constructed daughter quivers

are orbifolds of the parent Coulomb branch. Let us begin with the discrete gauging analysis

for the first family of bouquet quivers.

4.2 First Family: Quivers with central 2 node and a bou-

quet of 1 nodes

In order to begin, consider the theory in figure (4.5) and set k = 2. For k = 2 the discrete

global symmetry of the bouquet enhances from Sn to Sn+2 (i.e. the bouquet of n rank 1 nodes

enhances to a bouquet of n+2 nodes). The obtained quivers are the simplest ones for the study

of discrete gauging and orbifold actions.

4.2.1 Case: k=2, n=1

Further, lets consider the n = 1 case. The trivial S1 symmetry enhances to S3 discrete global

symmetry, which becomes the group of outer automorphisms of the quiver, permuting the bou-

quet nodes. Correspondingly, the theory is denoted by P[13](3). The quiver forms the finite D4

Dynkin diagram depicted in figure (4.8), which is the only Dynkin diagram with the the triality

property. Recall the definition of balance in 2.80. The red node of the minimally unbalanced

2

1 1

. . .

3

Figure 4.8: P[13](3) Quiver with SU(2)3 ⊂ Sp(4) global symmetry, b = −1, dim C = 4.

quiver in figure (4.8) has balance b = 3 × 1 − 2 × 2 = −1. As mentioned in chapter 3, negative
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balance indicates that the theory has a free sector, which implies that either part of, or the

entire Coulomb branch, is freely generated.9

Since the balanced sub-quivers in figure (4.8) correspond to three A1 Dynkin diagrams, the

global symmetry is expected to be SU(2)×SU(2)×SU(2). Moreover, each of the three bouquet

nodes that connects to the unbalanced node contributes with a fundamental representation of

SU(2). As a consequence, there are 8 monopole operators transforming under the three-

fundamental representation of SU(2)3, denoted by Dynkin labels [1; 1; 1]. These monopole

operators carry spin 1
2 charge under SU(2)R (i.e. the R-symmetry). As 8 is also the complex

dimension of the Coulomb branch, we learn that the whole Coulomb branch is free and it is a

copy of H4 with a global symmetry Sp(4). Hence, for the global symmetry we can write:

Gglobal = SU(2) × SU(2) × SU(2) ⊂ Sp(4), (4.8)

where the explicit embedding is given in equation (4.9).

[1; 1; 1]SU(2)×SU(2)×SU(2) ↩ [1,0,0,0]Sp(4) (4.9)

In order to find the global symmetry explicitly, one computes the Hilbert Series, utilizing

the monopole formula [85]. One first starts with the assignment of simple root fugacities

given in figure (4.9). As outlined in the section 4.1, the analysis proceeds by computing the

z0

z1 z3

. . .

3

Figure 4.9: P[13](3) Quiver with simple root fugacities.

unrefined Hilbert series (HS), which is obtained by setting all simple root fugacities to unity:

9See also observation 3.1 in [83].
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zi = 1, i = 0,1,2,3. The unrefined Hilbert series is given by equation (4.10).

HS(t) = 1

(1 − t)8
(4.10)

The expansion of the unrefined Hilbert series reads

HS(t) = 1 + 8t + 36t2 + 120t3 + 330t4 + 792t5 +O(t6). (4.11)

Taking the Plethystic Logarithm (PL) of the unrefined Hilbert series one finds

PL = 8t. (4.12)

The following can be immediately observed:

• The absence of any negative contributions (absence of relations) signifies that the entire

Coulomb branch is freely generated (see section 2.3).

• The t coefficient corresponds to dimension of some representation of the Gglobal.

The t coefficient corresponds to the dimension of the three-fundamental representation of

SU(2)3

dim[1; 1; 1] = 2 × 2 × 2 = 8, (4.13)

where [a1;a2;a3] denote the Dynkin labels of the three-representation of SU(2)×SU(2)×SU(2).

Next step is to employ the fugacity map. The simple root fugacities zi, i = 1,2,3 are mapped

to the SU(2) fundamental weight fugacities xi, i = 1,2,3 according to prescription (4.14)

zi → x2
i , i = 1,2,3 (4.14)

z0 → (z1z2z3)−
1
2 , (4.15)

and the simple root fugacity of the unbalanced node, z0, is eliminated according to substitution

(4.15). In case of a quiver with only gauge nodes, the mapping that eliminates the fugacity
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of an unbalanced node is canonically derived from the gauge fixing condition in the following

way. Consider a minimally unbalanced quiver with simple root fugacities zi, i = 1, . . . ,N and

the corresponding node ranks ri, i = 1, . . . ,N . Without the loss of generality, let zN be the

fugacity of the unbalanced node and rN its rank, respectively. Then, the elimination of zN is

derived from the constraint:

N

∏
i

zi
ri = 1 Ô⇒ zN = (

N−1

∏
i

zi
ri)−

1
rN . (4.16)

After the mapping, given by (4.14) and (4.15), the expansion of the refined HS is computed as

HS(xi, t) = 1+ ( 1

x1x2x3

+ x1

x2x3

+ x2

x1x3

+ x1x2

x3

+ x3

x1x2

+ x1x3

x2

+ x2x3

x1

+ x1x2x3) t+O(t2). (4.17)

Rewriting the t coefficient as

(x1 +
1

x1

)(x2 +
1

x2

)(x3 +
1

x3

) (4.18)

one directly identifies the character of the three-fundamental representation od SU(2)3, which

verifies the expectation of the global symmetry! The expression of the refined HS is compactly

written in equation (4.19)

HS(xi, t) = PE[[1; 1; 1]t] = ∏
εi=±1

1

1 − xε11 xε22 xε33 t
, (4.19)

where xi, i = 1,2,3 are the fugacities of the fundamental weights of SU(2)3 and εi runs over

the two weights of the fundamental representation of SU(2). Equation (4.19) coincides with

(4.1) in [94]. In general, as an (affine) algebraic variety, the Coulomb branch is specified by:

• Number and degree of generators

• Representation under which generators transform (to all relevant orders of t)

• Representations under which relations transform (to all relevant orders of t)

All this information is succinctly encoded in the Plethystic Logaritm (PL) of the refined Hilbert
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series. Taking the PL of the refined Hilbert series in equation (4.17) or (4.19) one obtains

equation (4.20),

PL = [1; 1; 1]8t (4.20)

where the subscript denotes the total complex dimension of the representation dimC[1; 1; 1] =

2×2×2 = 8. The subscript notation of the refined PL is used throughout the chapter to denote

the dimensions of the corresponding representations. The Coulomb branch is a freely generated

space of quaternionic dimension 4:

C[13] = H4. (4.21)

The representational content of the chiral ring is neatly encoded by the highest weight gener-

ating function (HWG). The HWG for the theory in figure (4.8) is given by equation (4.22),

which is in agreenment with (4.3) in [94],

HWG = PE[µ1µ2µ3t +
3

∑
i=1

µ2
i t

2 + µ1µ2µ3t
3 + t4 − µ2

1µ
2
2µ

2
3t

6] (4.22)

and where µi, i = 1,2,3 are the highest weight fugacities of the three SU(2) representations.

In terms of Sp(4) representations, the HWG takes the simple form

HWG = PE [µ1t] , (4.23)

where now µ1 denotes a highest weight fugacity for Sp(4).

Gauging Hλ = Z2

Next, let us construct a new theory with a Coulomb branch that is an orbifold of the Coulomb

branch of the previously analyzed P[13](3) theory. Assuming Conjecture (1), let us gauge

a subgroup Z2 ⊂ S3 of the discrete global symmetry of the P[13](3) theory, which acts on the

bouquet by permuting its three nodes. Following Conjecture (1), the bouquet of the constructed

quiver consists of a single rank 1 node and a single adjoint 2 node. Accordingly, lets denote

the constructed theory by P[2,1](3). The quiver and the explicit assignment of the simple root
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fugacities are depicted in figure (4.10). Note that the adjoint 2 node connected to a rank 2

node is balanced. More generally, any adjoint node, with rank N , connected to a rank 2 node is

balanced because the extra hypermultiplet contributions coming from the adjoint loop exactly

cancel the contributions from the vector multiplet. Since there are two balanced A1 sub-quivers,

2

z2

2

z1

1

z3

Adj

Figure 4.10: P[2,1](3) Quiver with SU(2)2 ≅ SO(4) global symmetry, b = −1, dimC = 4.

the expected global symmetry is SU(2)×SU(2) ≅ SO(4). After the computation of the Hilbert

series using the simple root fugacities, set ∀i, zi = 1 to obtain the unrefined HS in equation

(4.24).

HS(t) = 1 + t2
(1 − t)6(1 − t2)2

(4.24)

Equation (4.24) has the expansion of the form

HS(t) = 1 + 6t + 24t2 + 74t3 + 194t4 +O(t5). (4.25)

Taking the PL of the unrefined HS one obtains equation (4.26)

PL = 6t + 3t2 − t4. (4.26)

The term by term analysis of equation (4.26) implies the following:

• t: there is a freely generated part of the Coulomb branch with quaternionic dimension

3. Thus, the free part of the Coulomb branch is [91]: Cf.g. = H3, which is generated by

the fundamental representation of Sp(3), denoted by Dynkin labels [1,0,0]. Hence, the

global symmetry has two constituent parts:

Gglobal = Gglobal,free ×Gglobal, non−trivial, (4.27)
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such that Gglobal,free = Sp(3).

• t2: there is a non-trivial part of the Coulomb branch generated by a 3 dimensional

representation of Gglobal, non−trivial. In order to analyze the non-trivial part of the Coulomb

branch, the free part needs to be multiplied out.

• t4: there is a relation at this order that transforms as a singlet under Gglobal.

Utilize the fugacity map

z1 → x2
1, (4.28)

z3 → x2
2, (4.29)

z2 → (z2
1z3)−

1
2 , (4.30)

where the simple root fugacities z1, z3 map to x1 and x2, the fundamental weight fugacities

of the two SU(2) following prescriptions (4.28) and (4.29), respectively. Note, that the latter

SU(2) corresponds to the rank 1 bouquet node and the former SU(2) corresponds to the adjoint

2 node. The z2 root fugacity of the unbalanced node is eliminated according to prescription

(4.30), which again, follows from constraint (4.16). The expansion of the refined HS takes the

form

HS(x1, x2, t) = 1 + (x2
1 + 1 + 1

x2
1

)(x2 +
1

x2

) t + (x2
2 + 1 + 1

x2
2

) t2

+ (x4
2 + x2

2 + 1 + 1

x2
2

+ 1

x4
2

) t4 +O(t6)
(4.31)

Comparing equations (4.31) and (4.26) one infers that the t coefficient in equation (4.26) can be

regarded as the dimension of the [2; 1] two-representation of SU(2)×SU(2) (or the dimension

of the [1,0,0] fundamental representation of Sp(3)). In this case one finds the embedding:10

[2; 1]SO(3)×Sp(1) ↩ [1,0,0]Sp(3). (4.32)

10We write SO(3) instead of SU(2) given the universal double covering of the A1 algebra and since the [2]
representation is real.
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Observe in equation (4.31) that the SU(2) symmetry of the adjoint 2 node appears in the

symmetry of the free sector at order t but at higher orders of t only the SU(2) that corresponds

to the balanced 1 node appears. To proceed with the analysis of the non-trivial part of the

Hilbert Series, the free sector part is multiplied out. One takes the PE of the character in front

of the t coefficient and multiplies the whole HS by the inverse of this PE. The obtained refined

HS now describes the non-trivial part of the Coulomb branch:

PL = [2; 0]3t
2 − [0; 0]1t

4. (4.33)

The t2 coefficient can be regarded as the 3 dimensional representation of SU(2) × SU(2) with

Dynkin labels [2; 0]. The relation at t4 transforms as a singlet under the bi-representation of

SU(2)×SU(2), denoted by [0; 0]. Note that the simple PL in equation (4.33) describes C2/Z2,

i.e. A1 Kleinian surface singularity (see section 2.3). In summary, the Coulomb branch of the

theory:

C[2,1] = H3 ×C2/Z2 (4.34)

has two parts; a free sector in the form of H3, and a non-trivial part in the form of an A1

singularity [73]. The representation content of the chiral ring on the non-trivial part of the

Coulomb branch is described by the HWG in equation (4.35),

HWG = PE[µ2t2] (4.35)

where µ denotes the highest weight fugacity of SU(2).

Gauging Hλ = S3

It has been found that discrete gauging of Hλ = Z2 ⊂ S3 for the parent P[13](3) quiver produces

the P[2,1](3) quiver theory with a Coulomb branch in the form of the discrete Abelian quotient:

C[2,1] = C[13]/Z2. (4.36)
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Given the success of this construction, let us consider the P[13](3) theory where the entire

discrete S3 global symmetry is gauged. According to Conjecture (1), this theory is described

by the quiver, depicted with explicit assignment of the simple root fugacities, in figure (4.11).

The quiver consists of a single adjoint 3 node attached to the central 2 node. Accordingly, the

theory is denoted by P[3](3). The balanced part of the quiver forms the A1 Dynkin diagram,

2

z2

3

z1

Adj

Figure 4.11: P[3](3) Quiver with SU(2) ⊂ Sp(2) global symmetry, b = −1, dim C = 4.

therefore, the anticipated global symmetry is SU(2). The unrefined HS, obtained by setting

all the simple root fugacities zi to unity, takes the form given by equation (4.37)

HS(t) = 1 + t2 + 2t3 + t4 + t6
(1 − t)4(1 − t2)2(1 − t3)2

. (4.37)

The expansion of equation (4.37) yields

HS(t) = 1 + 4t + 13t2 + 36t3 + 87t4 + 190t5 + 386t6 +O(t7). (4.38)

The PL of the unrefined expression (4.37) reads

PL = 4t + 3t2 + 4t3 − 2t5 − 3t6 +O(t7). (4.39)

Let us analyze the first two terms in the last expression:

• t: there is a free sector corresponding to H2, generated by Gglobal, free = Sp(2). In par-

ticular, it is generated by the fundamental representation of Sp(2), denoted by Dynkin

labels [1,0].

• t2: the coefficient matches the dimension of the adjoint representation of SU(2). This

indicates that the expected non-trivial global symmetry is: Gglobal, non−trivial = SU(2).
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The refined expression for the Hilbert series is obtained using the fugacity map

z1 → x2, (4.40)

z2 → (z3
1)−

1
2 , (4.41)

where the simple root fugacity z1 maps to the SU(2) fundamental weight fugacity x, and the

root fugacity of the unbalanced node, z2, is eliminated according to the gauge fixing condition

(4.41). The computation of the refined HS yields equation (4.42).

HS[3](t, x) = 1 + ( 1

x3
+ 1

x
+ x + x3) t + ( 1

x6
+ 1

x4
+ 3

x2
+ 3x6 + 3x2 + x4 + x6) t2

+O(t3).
(4.42)

We see that the free sector, corresponding to H2, is spanned by generators in the fundamental

rep of Sp(2), denoted by [1,0], or equivalently, in the [3]4 rep of SU(2). The embedding found

in this case can be written as:

[3]SU(2) ↩ [1,0]Sp(2) (4.43)

Let us multiply out the free sector in an analogous manner as in the previous case. Again, one

multiplies the refined HS by the inverse of the PE of the character in front of t in equation

(4.42). The PL of the obtained refined HS for the non-trivial part of the Coulomb branch takes

the form:

PL = ( 1

x2
+ 1 + x2) t2 + ( 1

x3
+ 1

x
+ x + x3) t3

− (1

x
+ x) t5 − ( 1

x2
+ 1 + x2) t6 +O(t7).

(4.44)

The character appearing in front of t2 is the character of the adjoint representation of the

non-trivial global symmetry SU(2). This verifies that

Gglobal, non−trivial = SU(2). (4.45)
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Now, the refined PL can be written as

PL = [2]3t
2 + [3]4t

3 − [1]2t
5 − [2]3t

6 +O(t7), (4.46)

where [a] denotes the Dynkin labels of the representation of SU(2). Comparing this expression

with the refined HS:

HS = 1 + [2]t2 + [3]t3 + ([4] + [0])t4 + ([5] + [3])t5 + (2[6] + [2])t6 +O(t7) (4.47)

one sees that at order t5 there is one operator that must be set to zero, and at order t6

there are two operators that satisfy one relation, hence must be proportional to each other.

These observations are used below in the explicit construction of the Coulomb branch algebraic

variety. The HWG for the non-trivially generated part of the Coulomb branch is given by

equation (4.48)

HWG = PE[µ2t2 + µ3t3 + t4 + µ3t5 − µ6t10] (4.48)

where µ is the highest weight fugacity of SU(2).

The P[3](3) theory has none of the S3 global symmetry compared to the P[13](3) theory. There-

fore, by Conjecture (1) it is implied that the C[3] Coulomb branch is a non-Abelian S3 orbifold of

the parent C[13] Coulomb branch. Indeed, in accord with equation (4.1), the computed Coulomb

branch variety has the form:

C[3] = H2 ×C4/S3. (4.49)

This result is confirmed by explicit computations of the S3 Molien invariant reproducing equa-

tion (4.37).

Let us analyze equation (4.46) and (4.47) in more detail. In (4.46) there are generators trans-

forming under the adjoint [2] rep of SU(2) at t2, and additional generators at order t3 trans-

forming under the [3] rep. Altogether we have 7 generators. There are relations at order t5
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and t6 transforming under [1] and [2] reps, respectively. Explicitly, the generators at t2 are:

Mαβ, (4.50)

where α,β = 1,2, and they satisfy

Mαβ =Mβα, (4.51)

deg(M) = 2, (4.52)

where deg() denotes the degree of the generator which is associated with the power of t at

which they appear. The generators at t3 are:

Nαβγ, (4.53)

where α,β, γ = 1,2. These are also symmetric in all indices and with deg(N) = 3. Now,

remembering the tensor products

[2]⊗ [3] = [5]⊕ [3]⊕ [1] (4.54)

Sym2[3]10 = [6]7 ⊕ [2]3 (4.55)

Sym3[2]10 = [6]7 ⊕ [2]3 (4.56)

and observing that in expression (4.47) at order t5 the [1] is missing, one deduces that this

must be a relation. Hence, the relation at order t5 with degree 5 is:

εβδεαγMαβNγδε = 0. (4.57)

At t6 the two operators of degree 6 satisfy equation (4.58).

Mα1α2Mα3α4Mα5α6ε
α2α3εα4α5 = Nα1α2α3Nα4α5α6ε

α2α4εα3α5 (4.58)

Note that on the LHS the operator transforms in the [2] rep of (4.56) which is coming from
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the third symmetrization. The operator on the RHS transforms in the [2] rep in (4.55) which

comes from the second symmetrization. Equations (4.57) and (4.58) produce 2+3 = 5 equations

constraining the 7 generators. The Coulomb branch can be computed from this explicit analysis

employing Maclauay2.11 The computation yields an unrefined HS of the form:

HS(t) = 1 − 2t5 − 3t6 + 3t8 + 2t9 − t14

(1 − t2)3(1 − t3)4
(4.59)

which is precisely the unrefined HS obtained previously upon factoring out the free sector in

equation (4.37). Let us now use the comparison of the Coulomb branch volumes as a non-trivial

test of Conjecture (1).

Comparison of the Coulomb branch volumes

Employ the volume comparison method outlined in 4.1 for the k = 2, n = 1 theories. Expanding

the unrefined Hilbert series (4.11), (4.24) and (4.37) according to equation (4.4) and plugging

into equation (4.7) one finds:

vol(C[13])
vol(C[2,1])

=
R[13]

R[2,1]

= 1
1
2

= 2 = ord(Z2) (4.60)

vol(C[13])
vol(C[3])

=
R[13]

R[3]

= 1
1
6

= 6 = ord(S3) (4.61)

which are indeed the expected ratios. Equations (4.60) and (4.61) provide a non-trivial test

of Conjecture (1), namely, that the Coulomb branches of P[2,1](3) and P[3](3) are Z2 and S3

orbifolds of the parent P[13](3) Coulomb branch, respectively. Note, that it follows that the

Coulomb branch of P[3](3) is a Z3 quotient of the P[2,1](3) Coulomb branch. This can be tested

explicitly employing the ideas of step-wise projection [95]. Table (4.1) summarizes the ratios

of volumes between the Coulomb branches of k = 2, n = 1 theories. The relations between

the Coulomb branches of k = 2, n = 1 theories are schematically depicted in the commutative

11Maclauay2 program for computation of algebraic varieties is available at
https://faculty.math.illinois.edu/Macaulay2/.
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Volume Ratios of k = 2, n = 1 theories
Partition [13] [2,1] [3]
[13] 1 2 6
[2,1] 1 3
[3] 1

Table 4.1: Ratios of Coulomb branch volumes for k = 2, n = 1 theories.

diagram in figure (4.12), where the arrows denote quotients.

C[13]

C[2,1]

C[3]

S3

Z2

Z3

Figure 4.12: Commutative Diagram of Coulomb branch orbifolding for k = 2, n = 1 theories.
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4.2.2 Case: k=2, n=2

Now, lets study the case k = n = 2. The S2 discrete global symmetry of the bouquet enhances

to S4. The five partitions of 4 are P(4) = {[14], [2,12], [22,1], [3,1], [4]}. The first theory,

corresponding to P[14](4) is shown in figure (4.13) together with the corresponding assignment

of the simple root fugacities. The quiver is fully balanced and forms the affine D̂4 Dynkin

2

z5

1

z1

1

z4. . .

4

Figure 4.13: P[14](4) Quiver with D4 global symmetry, b = 0, dim C = 5.

diagram. After the decoupling of the center of mass U(1), one expects to find enhanced

D4 ≡ SO(8) ⊃ SU(2)4 global symmetry. SU(2)4 is the maximal subgroup of SO(8) that has

the natural S4 symmetry which plays a role in the following analysis. The computation of the

unrefined HS yields

HS[14](t) =
(1 + t2)(1 + 17t2 + 48t4 + 17t6 + t8)

(1 − t2)10
(4.62)

Equation (4.62) is consistent with previous results in [96] and in Table 11 in [44]. Expanding

equation (4.62), one finds

HS(t) = 1 + 28t2 + 300t4 + 1925t6 + 8918t8 +O(t10). (4.63)

The corresponding PL reads

PL = 28t2 − 106t4 + 833t6 − 8400t8 +O(t10). (4.64)

The t2 coefficient agrees with the dimension of the adjoint representation of SO(8):

dim [0,1,0,0]D4 = 28. (4.65)
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There is a crucial difference between the PLs in the previous subsection and the PL in equation

(4.64). The absence of the t term in equation (4.64) implies that there is no free sector (i.e.

no free hypers) in the theory. This follows from the absence of a node with negative balance

in the quiver. The simple root fugacities, indicated in figure (4.13) are treated in the following

manner. As previously, one of the fugacities is eliminated by the gauge fixing condition. Recall,

that the elimination condition follows from constraint (4.16). In this case, one eliminates one

of the bouquet fugacities such that the remaining fugacities are in the shape of the finite D4

Dynkin diagram. One declares the z4 to be the null node (i.e. the affine node in the D̂4 Dynkin

diagram) and the elimination of z4 is thus based on prescription given by (4.66). Note that z4

becomes the inverse of the adjoint weight fugacity. One uses the Cartan matrix of D4 to map

the remaining simple root fugacities zi, i = 1,2,3,5 to the fundamental weights of D4, such that

the powers in the fugacity map are determined from the components of the Cartan matrix. The

mapping is summarized as:

z4 → (z1z2z3z
2
5)−1 = y−1

2 , (4.66)

z1 → y2
1y

−1
2 , z2 → y2

2(y1y3y4)−1, (4.67)

z3 → y2
3y

−1
2 , z5 → y2

4y
−1
2 . (4.68)

Making use of the given fugacity map the refined HS is computed. One finds that the t2

coefficient is precisely the character of the adjoint representation of D4, which confirms the

expectation of SO(8) global symmetry. For the purpose of brevity, we refrain from showing the

character expansion of the refined Hilbert series and directly show the result of the computation

of the refined PL:

PL = [0,1,0,0]28t
2 − ([0,0,0,0]1 + [2,0,0,0]35 + [0,0,2,0]35 + [0,0,0,2]35)t4+

([2,0,0,0]35 + [0,1,0,0]28 + [0,0,2,0]35 + 2[1,0,1,1]350 + [0,0,0,2]35)t6 +O(t8), (4.69)

where [d1, d2, d3, d4]dim are the Dynkin labels for D4 and the subscript denotes the dimension

of the representation. Note that the relations at order t4 are manifestly invariant under the
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triality of D4. The Coulomb branch is the reduced moduli space12 of one D4-instanton on C2

[96, 97]. Geometrically, the Coulomb branch is a simple algebraic variety which is a closure of

the minimal nilpotent orbit of D4:

C[14] =minOD4 (4.70)

Similarily as the Higgs branch of SQED in 2.54, space 4.70 can be defined as the space of 8× 8

matrices M that satisfy M = −MT , M2 = 0, rank(M) ≤ 2. All the information about the chiral

ring is neatly encoded by the HWG in equation (4.71)

HWG = PE[µ2t
2], (4.71)

where µ2 is the fugacity of the highest weight of D4.

Gauging Hλ = Z2

Given the evidence for Conjecture (1) in the analysis of k = 2, n = 1 quiver theories, let us

now use the P[14](4) quiver to construct theories for all other partitions of P(4). In order to

construct the first theory, gauge Z2 ⊂ S4, a subgroup of the discrete global symmetry of the

parent P[14](4) quiver in figure (4.13). The bouquet of the constructed theory consists of an

adjoint 2 node and two rank 1 nodes. The constructed theory is denoted by P[2,12](4). The

corresponding quiver together with the simple root fugacities is depicted in figure (4.14). Note

that the adjoint node connected to rank 2 node is balanced. Since a quiver obtained by a

2

z2

2

z3

1

z1

1

z4

Adj

Figure 4.14: P[2,12](4) Quiver with B3 global symmetry, b = 0, dim C = 5.

Z2 quotient of a quiver with SO(8) global symmetry is studied and furthermore SO(7) is a

subgroup of SO(8) that commutes with Z2, the expectation of the global symmetry is B3.

12Or RSIMS for short, see [97].



98 Chapter 4. Discrete Gauging

Another indication for the anticipated global symmetry comes from comparing the quiver in

figure (4.14) with the affine B3 Dynkin diagram, depicted in figure (4.15). Upon elimination

2

1

1 1

Figure 4.15: Affine Dynkin diagram of B3.

of one of the simply connected rank 1 nodes using the gauge fixing condition, it is natural to

expect:

Gglobal = B3 ≡ SO(7). (4.72)

Before turning to the refined analysis, let us proceed by computing the HS using the simple

root fugacities, and setting all to unity in order to obtain the expression of the unrefined HS:

HS[2,12](t) =
(1 + t2)(1 + 10t2 + 20t4 + 10t6 + t8)

(1 − t2)10
. (4.73)

Indeed, note that equation (4.73) contains the HS of the closure of the next to minimal nilpotent

orbit of B3, listed in Table 10 in [44]. Expanding the unrefined HS, one obtains

HS(t) = 1 + 21t2 + 195t4 + 1155t6 + 5096t8 +O(t10), (4.74)

which has the PL of the form

PL = 21t2 − 36t4 + 140t6 − 784t8 +O(t10). (4.75)

The t2 coefficient in the last expression is the dimension of the adjoint representation of B3 ≡

SO(7):

dim [0,1,0]B3 = 21, (4.76)
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which agrees with the expected global symmetry. Now the following mapping is performed:

z4 → (z1z2
2z2

3)−1 = x−1
2 , (4.77)

z1 → x2
1x

−1
2 , z2 → x2

2x
−1
1 x

−2
3 , z3 → x2

3x
−1
2 , (4.78)

such that z4 is eliminated by the gauge fixing condition (4.77). As encountered before, since

z4 is declared to be the null node, it maps to the inverse of the adjoint weight fugacity. The

remaining fugacities are mapped to the fundamental weight fugacities of B3 using the Cartan

matrix. After the mapping, the refined HS is obtained. For brevity, only the t2 coefficient of

the expansion of the refined HS is shown:

3 + 1

x1

+ x1 +
1

x2

+ x1

x2

+ x
2
1

x2

+ x2 +
x2

x2
1

+ x2

x1

+ x1

x2
3

+ x2

x2
3

+ (4.79)

x2

x1x2
3

+ x1x2

x2
3

+ x2
2

x1x2
3

+ x
2
3

x1

+ x1x2
3

x2
2

+ x
2
3

x2

+ x2
3

x1x2

+ x1x2
3

x2

(4.80)

Indeed, this coincides with the character of the adjoint representation of SO(7). Thus, the

global symmetry B3 is confirmed, allowing one to write the refined PL in the form:

PL = [0,1,0]21t
2 − ([0,0,0]1 + [0,0,2]35)t4 + ([1,1,0]105 + [0,0,2]35)t6 +O(t8), (4.81)

where [d1, d2, d3] are the Dynkin labels of B3. Recall, that the subscripts denote the dimensions

of the corresponding representations. As an algebraic variety, the Coulomb branch is the closure

of next to minimal nilpotent orbit of so(7) algebra:

C[2,12] = n.minOB3 . (4.82)

As before, 4.82 can be defined as a space of 7× 7 matrices M , satisfying: M = −MT, Tr(M2) =

0, rank(M) ≤ 2. 13 The representation content of the chiral ring is summarized by the HWG

(4.83)

HWG = PE[µ2t
2 + µ2

1t
4], (4.83)

13In existing literature, this space is defined with the extra condition M3 = 0 but equation (4.81) shows that
this nilpotency condition is already implied by the rank and the trace conditions.
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where µi, i = 1,2,3 are the fugacities for the highest weights of B3. The computation of equation

(4.83), which is done starting from the quiver in figure (4.14), provides an independent test that

the Coulomb branch moduli space is given by (4.82) since it is consistent with results of Table 10

in [44]. The refined analysis together with the fact that the algebraic variety is multiplicity-free

determines the Coulomb branch uniquely. The Z2 quotient between HWG (4.71) and (4.83)

maps the adjoint rep of D4 into the adjoint and the vector rep of B3. Whereas the adjoint is

invariant under this action, the vector transform non-trivially with a minus sign, and hence,

comes in form of the natural invariant µ2
1t

4. Overall, the decomposition of SO(8) into SO(7)

can be written as:

µ2t
2 → µ2t

2 + µ2
1t

4 (4.84)

which is used in the analysis of the next case of discrete gauging to which we turn now.

Gauging Hλ = Z2 ×Z2

Lets turn to the construction of the P[22](4) theory, which is obtained by gauging the subgroup

Z2 × Z2 ⊂ S4 of the original permutation symmetry of P[14](4). According to Conjecture (1),

the desired quiver takes the form depicted, alongside with the assignment of the simple root

fugacities, in figure (4.16). The quiver is fully balanced and contains a bouquet of two adjoint

2 nodes that stems from the central 2 node. The anticipated global symmetry on the Coulomb

2

z2

2

z1

2

z3

Adj Adj

Figure 4.16: P[22](4) Quiver with A3 ≅D3 global symmetry, b = 0, dim C = 5.

branch is SU(4) ≅ SO(6) since the balanced nodes form a Dynkin diagram of A3 ≅ D3. More-

over, SO(6) is also the subgroup which commutes with Z2 × Z2 inside SO(8). Compute the

HS with the simple root fugacities, and set all the fugacities zi, i = 1,2,3 to unity to find the
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unrefined HS:.

HS[22](t) =
1 + 10t2 + 55t4 + 150t6 + 288t8 + 336t10 + 288t12 + 150t14 + 55t16 + 10t18 + t20

(1 − t2)10(1 + t2)5
(4.85)

The expansion of the unrefined HS yields

HS(t) = 1 + 15t2 + 125t4 + 685t6 + 2898t8 +O(t10). (4.86)

By taking PL of HS (4.85) one obtains

PL = 15t2 + 5t4 − 70t6 + 273t8 +O(t10). (4.87)

The t2 coefficient in the last equation agrees with the expected global symmetry since the

dimension of the adjoint representation of SU(4) is

dim [1,0,1]A3 = 15. (4.88)

In order to perform the refined analysis of the Coulomb branch in terms of the A3 symmetry

all three simple root fugacities are needed. This is a complication, however, since eliminating

one of the three simple root fugacities by the gauge fixing condition leaves one with just two

fugacities to work with. This indicates a presence of a certain embedding of a lower rank

symmetry inside the A3 global symmetry. In order to do the analysis in terms of the A3,

C1O1 O1

D3

Figure 4.17: Higgs branch quiver with D3 ≡ A3 global symmetry. Note that O1 ≡ Z2 and C1 denotes
Sp(2), dimH = 5.

observe that the unrefined HS computed in equation (4.85) is also the unrefined HS for a

Higgs branch quiver in figure (4.17), where gauge and flavor groups are denoted explicitly.14

14We thanks Rudolph Kalveks for discussion on this point.
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Note that the O1 nodes (or equivalently Z2) precisely realize the two Z2 actions on the Higgs

branch of a Sp(1) gauge theory with a D4 flavor group and by gauging the two factors of Z2

in the global symmetry, one recovers the quiver depicted in figure (4.17), where the remaining

global symmetry is SO(6) ≅ SU(4). Given the above motivations, let us bypass the problem

constituted by the missing fugacities in figure (4.16) and use a computation of the Higgs branch

of the quiver in figure (4.17) instead. After appropriate fugacity maps one can show that the

refined Hilbert series are equal to each other. Let us start with the quiver in figure (4.16). After

the computation of the HS using simple root fugacities zi, i = 1,2,3 impose the gauge fixing

condition:

z3 → (z2
1z

2
2)−1/2, (4.89)

eliminating the z3 fugacity. Recall, that the gauge fixing follows from constraint (4.16). The

obtained HS now only contains z1 and z2 fugacities. The t2 coefficient of the refined HS takes

the form

3 + 2

z1

+ 2z1 +
1

z2

+ 1

z2
1z2

+ 2

z1z2

+ z2 + 2z1z2 + z2
1z2. (4.90)

Written in terms of the simple roots, this is precisely the character of the adjoint representation

of A3 under the identification z3 → z1!

On the other hand, the HWG for the Higgs branch quiver in figure (4.17) is given by

HWG = PE[µ1µ3t
2 + (2µ2

2 + 1)t4 + µ2
2t6 − µ2

4t12], (4.91)

where µi, i = 1,2,3 are the highest weight fugacities of A3. One can turn this HWG into the

refined Hilbert series which is expressed using the fundamental weight fugacities xi, i = 1,2,3.

Further, lets use the inverse of the Cartan matrix to map the xi fugacities in the refined HS to

the simple root fugacities zi, i = 1,2,3. The desired fugacitiy map takes the form:

x1 → (z3
1z

2
2z3)

1
4 , x2 → (z1z

2
2z3)

1
2 , x3 → (z1z

2
2z

3
3)

1
4 . (4.92)
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At this stage, the refined HS for the Higgs branch quiver is expressed using all three simple root

fugacities. As a final step make the same identification used to recover the correct character in

front of t2 coefficient in equation (4.90). Recall, the form of the identification:

z3 → z1. (4.93)

Finally, the two Hilbert series, obtained by working from both sides of the duality and using

the fugacity maps prescribed above, are equal! This verifies that the global symmetry of the

P[22] theory in figure (4.16) is A3 and the chiral ring is described by the HWG (4.91). By the

sequel, the PL of the refined HS can be written in the form:

PL = [1,0,1]15t
2 + ([0,2,0]20 − [1,0,1]15)t4 − ([0,2,0]20 − [2,1,0]45 − [0,1,2]45)t6

+ ([2,1,0]45 + 2[1,0,1]15 + [1,2,1]175 + [0,1,2]45 − [0,2,0]20 − 2)t8 +O(t10),
(4.94)

where [d1, d2, d3] are the Dynkin labels of the A3 representations. As before, the subscripts

denote the dimensions of the corresponding representations. Consider a quiver consisting of a

chain of m rank 2 nodes such that the two boundary nodes carry adjoint loops. The quiver is

depicted in figure (4.18). A generalization of the last derivation, supported by computational

evidence up to m = 4, implies that the following conjecture holds:

The Coulomb branch of quiver (4.18) is equal to the Higgs branch of quiver (4.19). One can

. . .

2 2 22

Adj Adj

m

Figure 4.18: Coulomb branch quiver with Am global symmetry, dim C = 2m − 1.

consider a quiver for an Sp(1) gauge theory with m flavors and realize the two Z2 actions.

The same can be done for the Coulomb branch quiver in the form of the affine Dm+2 Dynkin

diagram such that the fork U(1) nodes on both ends are substituted by adjoint 2 nodes (due



104 Chapter 4. Discrete Gauging

C1O1 O1

Dm

Figure 4.19: Higgs branch quiver with Dm global symmetry, dimH = 2m − 1.

to the two Z2 actions). The obtained Higgs and Coulomb branch quivers are precisely those in

figures (4.18) and (4.19).

Gauging Hλ = S3

The next theory is obtained by gauging an S3 subgroup of the S4 discrete global symmetry of

the parent P[14](4) quiver. The result of such discrete gauging is the P[3,1](4) quiver, depicted

in figure (4.20). The assignment of the simple root fugacities is also shown in figure (4.20). The

anticipation of the global symmetry follows from the comparison of this quiver to the affine G2

Dynkin diagram in a similar fashion as in the case of the P[2,12](4) quiver. Moreover, G2 is also

the a subgroup that commutes with S3 inside SO(8). One proceeds by computing the HS and

2

z2

3

z1

1

z3

Adj

Figure 4.20: P[3,1](4) Quiver with G2 global symmetry, dim C = 5.

unrefining by setting all simple root fugacities, zi, i = 1,2,3, to 1. The unrefined HS is given by

equation (4.95).

HS[3,1](t) =
(1 + t2)(1 + 3t2 + 6t4 + 3t6 + t8)

(1 − t2)10
(4.95)

The expansion of the unrefined HS reads

HS[3,1](t) = 1 + 14t2 + 104t4 + 539t6 + 2184t8 +O(t10). (4.96)
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Note, that (4.95) agrees with the result of the HS for the sub-regular nilpotent orbit of G2 in

Table 3 in [98]. The unrefined PL takes the form

PL = 14t2 − t4 − 7t6 + 7t8 +O(t9). (4.97)

The t2 coefficient of the PL equals the dimension of the adjoint representation of G2:

dim [1,0]G2 = 14. (4.98)

The global symmetry for the quiver (4.20) is argued to be G2 in [99]. In order to confirm this

expectation on a level of the refined HS, the following mappings need to be employed.

Mapping of P[3,1](4) simple root fugacities to the highest weight fugacities of G2:

The procedure involves three steps. First step is to impose the usual gauge fixing condition

which eliminates the fugacity of the adjoint 3 node.15 The map is given by (4.99)

z1 → (z2
2z3)−

1
3 , (4.99)

which leaves one to work with fugacities z2 and z3. Second step is to map these fugacities to

the simple root fugacities of G2 (i.e. one needs to find a Dynkin map from A2 to G2). For

this purpose, consider the affine Dynkin diagram of G2, depicted in figure (4.21). The Coxeter

labels are indicated inside the nodes. In the Dynkin map, the r0 fugacity of the affine node

r1

2

r0

1

r2

3

Figure 4.21: Affine Dynkin diagram of G2 with Coxeter labels and simple root fugacities.

plays no role, hence we can express r0 in terms of the other two:

r0 = (r2
1r

3
2)−1 (4.100)

15One could equally eliminate the rank 1 node and adjust for such change in the next mappings.
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Note that all fugacities are weighted by their Coxeter labels. Further, by comparing figures

(4.20) and (4.21), one sees that, in the Dynkin map, z2 should map to r1. Moreover, the z3

fugacity maps to r0 fugacity of the affine node as these are the corresponding rank 1 nodes.

Hence, the desired Dynkin map is:

z2 → r1 (4.101)

z3 → r0 = (r2
1r

3
2) (4.102)

This concludes the second step. The last step is to map the G2 simple root fugacities r1, r2 to

the coordinates on the weight space of G2. Employing the Cartan matrix of G2 one finds that

equations (4.103) and (4.104) provide the desired map.

r1 → y2
1y

−3
3 (4.103)

r2 → y2
2y

−1
1 (4.104)

After these mappings, the t2 coefficient of the refined HS is computed as

2 + 1

y1

+ y1 +
y1

y3
2

+ y
2
1

y3
2

+ y1

y2
2

+ 1

y2

+ y1

y2

+ y2 +
y2

y1

+ y
2
2

y1

+ y
3
2

y2
1

+ y
3
2

y1

, (4.105)

which is precisely the character of the 14 dimensional adjoint representation of G2. Thus, the

expectation of global symmetry is verified, all in agreement with arguments in [99]. Finally,

one can write the refined PL in the form:

PL = [1,0]14t
2 − [0,0]1t

4 − [0,1]7t
6 + [0,1]7t

8 +O(t10). (4.106)

There are two relations at: t4 transforming as a singlet, and at t6 transforming under the 7

dimensional [0,1] representation of G2, respectively. These relations can be summarized by

the algebraic variety made out of 14 complex numbers Ma, in the adjoint representation of G2,

which satisfy the relations

MaMa = 0,
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and

MMM ∣[0,1] = 0.

The Coulomb branch of the P[3,1](4) theory is the 10 dimensional sub-regular nilpotent orbit

of G2 [98]:

C[3,1] = sub.reg.OG2 . (4.107)

The HWG is given by equation (4.108), which is equation (3.37) in [100], where the authors

used a different convention for the factor multiplying the conformal dimension in the monopole

formula (i.e. all powers of t are half of those herein).

HWG = PE[µ2t
2 + µ1

2t4 + µ1
3t6 + µ2

2t8 + µ1
3µ2t

10 − µ1
6µ2

2t20] (4.108)

Let us refer to quiver (4.20) as the G2-tail for the following reason. Consider a construction

defined by two steps:

• Consider any quiver Q, with G0 global symmetry and attach the G2-tail (which has a G2

global symmetry) to this quiver via an adjoint node16

• Multiply all the ranks of Q by 3

Then, the theory constructed by this procedure has a global symmetry:

Gglobal = G0 ×G2 (4.109)

For detailed examples of this construction, see (5.24) and (5.25) and the consequent discussion

in [91].

Gauging Hλ = S4

In order to construct the last theory, gauge the entire S4 symmetry of the parent P[14](4) quiver.

According to Conjecture (1), the desired P[4](4) quiver takes the form depicted in figure (4.22).

16In case of A-series, one needs to attach the G2-tail via both of the adjoint nodes.
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The assignment of the simple root fugacities is also shown in figure (4.22). The balanced part

2

z2

4

z1

Adj

Figure 4.22: P[4](4) Quiver with A2 global symmetry, dim C = 5.

of this quiver forms the A2 Dynkin diagram, therefore the expected global symmetry is SU(3).

It is also the subgroup that commutes with S4 inside SO(8). Moreover, as in the case of the

P[22] quiver, the number of fugacities after the gauge fixing is smaller than the rank of the

expected global symmetry. As encountered before, one expects to find a certain embedding:

SU(2)↩ SU(3). In fact, the set of all embedding of su(2) inside a su(n) algebra is in one-to-

one correspondence with the set of all nilpotent orbits of su(n) and there is a bijection between

nilpotent orbits and the partitions of P(n). As a first step, the HS is computed using the simple

root fugacities, and then unrefined by setting all fugacities to unity. The unrefined HS is given

by (4.110).

HS[4](t) =
1 + 3t2 + 13t4 + 25t6 + 46t8 + 48t10 + 46t12 + 25t14 + 13t16 + 3t18 + t20

(1 − t2)5(1 − t4)5
. (4.110)

The expansion of the unrefined Hilbert series reads

HS[4](t) = 1 + 8t2 + 48t4 + 210t6 + 771t8 +O(t10). (4.111)

The expression of the unrefined PL takes the form

PL = 8t2 + 12t4 − 6t6 − 21t8 +O(t10). (4.112)

Indeed, the t2 coefficient equals the dimension of the adjoint representation of SU(3):

dim [1,1]A2 = 8 (4.113)
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Lets proceed by mapping the simple root fugacities zi, i = 1,2 according to (4.114) and (4.115)

z2 → (z1
4)−1/2 (4.114)

z1 → x2, (4.115)

where z2 fugacity of the rank 2 node is eliminated by constraint (4.16), and x is the fugacity for

the fundamental weight of SU(2). Using this mapping, the expansion of the refined PL takes

the form:

PL = (2 + 1

x4
+ 2

x2
+ 2x2 + x4) t2 + (4 + 2

x4
+ 2

x2
+ 2x2 + 2x4) t4

− (2 + 2

x2
+ 2x2) t6 + (7 + 3

x4
+ 4

x2
+ 4x2 + 3x4) t8 +O(t9).

(4.116)

The last expression can be written as:

PL = ([4]5 + [2]3)t2 + (2[4]5 + 2[0]1)t4 − (2[2]3)t6 − (3[4]5 + [2]3 + 3[0]1)t8 +O(t9) (4.117)

where [a] denotes the Dynkin labels of SU(2) representations. One can list representations at

each order of t as follows:

• t2: generators transforming under [4] + [2]

• t4: generators transforming under 2[4] + 2[0]

• t6: relations transforming under [2]

• t8: relations transforming under 3[4] + [2] + 3 × [0]

The obtained embedding of SU(2) inside SU(3) corresponds to the homomorphism embedding

characterizing the maximal nilpotent orbit of SU(3) (f.i. see the last row of second Table in

Appendix B.1 in [44]):

[4]5 ⊕ [2]3 ↩ [1,1]8 (4.118)

This provides a verification of the expected global symmetry since the su(2) embedding in case

of the maximal nilpotent orbit of su(3) is characterized by a map where the two fugacities of
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Ratios of Coulomb branch volumes for n = 2, k = 2 theories
Partition [14] [2,12] [22] [3,1] [4]
[14] 1 2 4 6 24
[2,12] 1 2 3 12
[22] 1 3/2 6
[3,1] 1 4
[4] 1

Table 4.2: Ratios of Coulomb branch volumes for n = 2, k = 2 theories.

the A2, (y1, y2) map to (x2,1), where x is the SU(2) fugacity, and so in turn, the character of

the adjoint representation of A3 [1,1] becomes the character of [4]⊕ [2] of A1, which is the t2

coefficient in equation (4.116). In terms of the A2 Dynkin labels, the refined PL can be written

in the form:

PL = [1,1]8t
2 + ([2,0]6 + [0,2]6)t4 − ([1,0]3 + [0,1]3)t6 − ([1,1]15 + [2,0]6 + [0,2]6 + 1)t8 +O(t9).

(4.119)

The eight generators of the global symmetry transform under the adjoint representation of

A2. At order t4 there are generators transforming under the [2,0] and the conjugate [0,2]

representation, respectively. The relation at order t6 transforms under the fundamental and

anti-fundamental representations denoted by [1,0] and [0,1], respectively. Finally, the relations

at t8 transform under [1,1] + [2,0] + [0,2] + [0,0].

Comparison of the Coulomb branch volumes

Consider the unrefined HS computed for the five theories with k = 2, n = 2. Recall that these

are: (4.62), (4.73), (4.85), (4.95) and (4.110). For each pair of theories, expand the unrefined

Hilbert series according to equation (4.4) and plug into equation (4.7). The computed ratios of

the Coulomb branch volumes of k = n = 2 theories are summarized in table (4.2). The parent

Coulomb branch of P[14](4) is minOD4 . All the evidence for Conjecture (1) suggests that for

the daughter Coulomb branches, there holds:

C =minOD4/Γ (4.120)
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where Γ ⊆ S4 is a discrete group. In particular:

Γ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S2 ≡ Z2 for [2,12]

Z2 ×Z2 for [22]

S3 for [3,1]

S4 for [4]

(4.121)

Note that the obtained relations (4.122) and (4.123)

minOD4/Z2 = n.minOB3 (4.122)

minOD4/S3 = sub.regOG2 (4.123)

relate quotients of the closure of the minimal nilpotent orbit of so(8) algebra to the closures

of the next to minimal orbit of so(7) and sub-regular nilpotent orbit of g2, respectively. These

are amid the classic results of Kostant and Brylinski [27] rediscovered in chapter 5 via the

ungauging scheme analysis.

4.3 Second Family: Bouquet quivers with A1
n1 × Dn2+1

global symmetry

The analysis of the first family of bouquet quivers allows for a generalization of the results of

the HWG to a larger family of quivers. In the first part of this section a general formula for

the HWG of the second family of quivers with A1
n1 ×Dn2+1 global symmetry is derived. In the

second part of the section, discrete gauging for a particular member of this family is performed.

The main focus in this section is the derivation of the general formula for the HWG and the

analysis of the particular quivers is given in less detail. We add, that the detailed analysis can

be performed analogously as in previous section. The simple root fugacities, indicated inside

the quiver nodes in the figures, are denoted by zi and wi. The fugacity maps throughout this
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section show the mappings of the simple root fugacities to the fundamental weight fugacities

which are denoted by xi and yi. Finally, the highest weight fugacities used in the expressions

of HWG are denoted by µi and νi.

4.3.1 HWG Derivation

Consider the theory in figure (4.5) and set k = 2, n = n1. The corresponding quiver is depicted

in figure (4.23). The central node is balanced for a special case n1 = 4, which is indicated by the

radial color gradient of the node. The theory in figure (4.23) has a SU(2)n1 global symmetry

which is enhanced17 to SO(8) for k1 = 4. For n1 ≠ 4 all the bouquet nodes are balanced and

2

z0

1

z1

1

zn1
. . .

n1

Figure 4.23: P[1n1 ](n1) Quiver, b = n1 − 4, dimC = n1 + 1.

the only unbalanced node is the central one, with balance b = n1 − 4. Lets consider the n1 = 5

case. The balanced sub-quivers form five A1 Dynkin diagrams, therefore the expected global

symmetry is SU(2)5. Analogically to figure (4.13), the simple root fugacities are assigned such

that z0 is the simple root fugacity of the unbalanced node and zi, i = 1, . . . ,5 are the simple root

fugacities of the bouquet nodes. Computation of the unrefined HS yields

HS(t) = P1(t)
(1 − t)12(1 + t)4(1 + t + t2)6

(4.124)

where

P1(t) = 1 − 2t + 12t2 + 4t3 + 21t4 + 60t5 + 54t6 + 66t7

+ 120t8 + . . . palindrome ⋅ ⋅ ⋅ + t16.

(4.125)

17See section 4.2.
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The expansion of the unrefined HS is given by

HS(t) = 1 + 15t2 + 32t3 + 116t4 + 352t5 + 863t6 + 2112t7 +O(t8). (4.126)

The PL of the unrefined HS reads

PL = 15t2 + 32t3 − 4t4 − 128t5 − 285t6 + 320t7 +O(t8). (4.127)

The t2 coefficient of the last expression equals the dimension of the expected Gglobal:

5 × dim [2]A1 = 15. (4.128)

Perform the mapping according to (4.129), (4.130) and (4.131)

zi → x2
i , i = 1,2,3 (4.129)

z4 → y2
1, z5 → y2

2 (4.130)

z0 → (z1z2z3z4z5)−
1
2 = (x1x2x3y1y2)−1. (4.131)

such that the fugacity z0 of the unbalanced node is eliminated (i.e. follows from (4.16)) and

xi and yi are the fundamental weight fugacities of SU(2). Note the splitting of fugacities of

the bouquet nodes into x1, x2, x3 and y1, y2. The reason for such splitting will shortly become

apparent. After the computation of the refined HS one makes use of the HWG to describe the

chiral ring of the theory. The HWG takes the form given by equation (4.132) [94]:

HWG =PE[(ν2
1 + ν2

2 + ν2
3 + µ2

1 + µ2
2) t2 + (ν1ν2ν3µ1µ2) (t3 + t5)

+ (µ2
1µ

2
2) t4 − (µ2

1µ
2
2) t4 + t4 − (ν1ν2ν3µ1µ2)2

t10],
(4.132)

where µi, i = 1,2 and νi, i = 1,2,3 are the fugacities for the highest weights of SU(2). The t2

terms in equation (4.132) are the usual contributions of the global symmetry for each of the

balanced SU(2) nodes. The balance of the central node, b = 1, produces the t3 contribution

in equation (4.132). Furthermore, since the 5 bouquet nodes are connected to the unbalanced
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node, the resulting operators transform in the multi-fundamental representation corresponding

to all of bouquet nodes, denoted by ν1ν2µ1µ2µ3. The t5 naturally comes from the tensor product

of the adjoint and the multi-fundamental representation. It should also be emphasized that a

zero in the form of (µ2
1µ

2
2)t4−(µ2

1µ
2
2)t4 is added to expression (4.132) in anticipation of the µ2

1t
4

term of (4.141). The t4 singlet term shows up since the Casimir invariant of the five SU(2) are

all proportional to each other. Finally, there is a relation at t10 transforming under [2; 2; 2; 2; 2]

(i.e. the adjoint five-representation of SU(2)5).

Now, lets study a quiver with a rank 2 node added to obtain a chain of two rank 2 nodes.

Furthermore, split the P[15](5) bouquet into P[13](3) bouquet attached to the first 2 node and

a P[12](2) bouquet attached to the other 2 node. This splitting of nodes justifies the splitting

of the fundamental weight fugacities of the bouquet nodes into xi and yi in the previous case.

The splitting carries over to the HWG such that the highest weight fugacities split into µi and

νi. The resulting quiver, which now corresponds to a pair of partitions {P[13](3),P[12](2)}, is

depicted in figure (4.24). The balance of the unbalanced red node is (3 ∗ 1 + 2) − (2 ∗ 2) = 1.

2 2

1 1

. . .

3

1 1

Figure 4.24: {P[13](3), P[12](2)} Quiver with SU(2)3 ×D3, global symmetry, b = 1, dim C = 8.

One expects A1
3 ×D3 ≡ A1

3 ×A3 global symmetry on the Coulomb branch from simply looking

at the balanced sub-quivers. The unrefined HS is computed as

HS(t) = P2(t)
(1 − t)16(1 + t)8(1 + t + t2)8

(4.133)

where

P2(t) = 1 + 16t2 + 40t3 + 118t4 + 336t5 + 747t6 + 1344t7 + 2396t8 + 3616t9

+ 4670t10 + 5568t11 + 6060t12 + . . . palindrome ⋅ ⋅ ⋅ + t24.

(4.134)
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The expansion of the unrefined HS yields

HS(t) = 1 + 24t2 + 48t3 + 282t4 + 848t5 + 2743t6 + 7728t7 +O(t8), (4.135)

and the corresponding unrefined PL takes the form

PL = 24t2 + 48t3 − 18t4 − 304t5 − 601t6 + 1488t7 +O(t8). (4.136)

The t2 coefficient in the last equation can be identified with the total dimension of the adjoint

representations that form the global symmetry:

3 × dim [2]A1 + dim [0,1,1]D3 = 24. (4.137)

Given the simple root fugacity assignment in figure (4.25), perform a mapping according to

z4 z5

z1 z3

. . .

3

z6 z7

Figure 4.25: {P[13](3), P[12](2)} Quiver with simple root fugacities.

equations (4.138) and (4.139)

z1 → x2
1, z2 → x2

2, z3 → x2
3, (4.138)

z6 → y2
1y

−1
2 y−1

3 , z5 → y2
2y

−1
1 , z7 → y2

3y
−1
1 (4.139)

z4 → (z1 z2 z3 z5
2 z6 z7)−

1
2 = (x−2

1 x
−2
2 x

−2
3 y1y

−3
2 y−1

3 ) 1
2 , (4.140)

where xi, i = 1,2,3 are the SU(2) fundamental weight fugacities, yi, i = 1,2,3 are the D3

fundamental weight fugacities, and z4, the fugacity of the red node is eliminated according to

equation (4.140). The resulting HWG takes the form given by (4.141).

HWG = PE[(ν2
1 + ν2

2 + ν2
3 + µ2µ3) t2 + (ν1ν2ν3µ1)(t3 + t5) + µ2

1t
4 + t4 − (ν1ν2ν3µ1)2t10] (4.141)
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Note the slight change in the structure of the terms appearing in (4.141) compared to (4.132). At

order t2 there is the adjoint [0,1,1] rep ofD3 and the three-adjoint [2; 2; 2] rep of SU(2)3. Recall

that [d1, d2, d3] and [a1;a2;a3] denote the Dynkin labels of D3 and SU(2) × SU(2) × SU(2),

respectively. At t3 and t5 there are generators transforming under [1; 1; 1; 1,0,0] representation

of SU(2)3 ×D3. There are also generators transforming under [0; 0; 0; 0,0,0] and [0; 0; 0; 2,0,0]

at t4. Finally, there is a relation at order t10 transforming under [2; 2; 2; 2,0,0]. Before the

identification of a general pattern of HWG for this family of quivers is made possible, one more

case needs to be considered. For this purpose, consider the quiver in figure (4.26), with the

main chain consisting of three rank 2 nodes. The simple root fugacities are indicated inside the

nodes in figure (4.26). The anticipated global symmetry, read off as the balanced sub-diagrams,

2

z0

2

w2

2

w1

1

z1

1

z3. . .

3

w3

1 1

w4

Figure 4.26: {P[13](3), P[12](2)} Quiver with SU(2)3 ×D4 global symmetry, b = 1, dim C = 10.

is A1
3 ×D4. After the computation of the HS with the indicated simple root fugacities, the

unrefined HS is obtained by setting all the fugacities to unity. The result is given by equation

(4.142)

HS[13](t) =
P3(t)

(−1 + t)20(1 + t)12(1 + t + t2)10
, (4.142)

where

Q1(t) = 1 + 2t + 28t2 + 108t3 + 440t4 + 1482t5 + 4394t6 + 11122t7 + 25532t8

+ 52164t9 + 95692t10 + 158586t11 + 239637t12 + 328584t13 + 410844t14

+ 469872t15 + 491976t16 + . . . palindrome ⋅ ⋅ ⋅ + t32.

(4.143)

The expansion of the unrefined HS has the form

HS(t) = 1 + 37t2 + 64t3 + 630t4 + 1728t5 + 7803t6 + 22848t7 + 75858t8 +O(t9). (4.144)
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By taking the PL of equation (4.142) one finds

PL = 37t2 + 64t3 − 73t4 − 640t5 − 715t6 + 6208t7 + 23614t8 −O(t9). (4.145)

The t2 coefficient in equation (4.145) matches the dimension of the adjoint representation of

the global symmetry:

3 × dim [2]A1 + dim [0,1,0,0]D4 = 37. (4.146)

Let us employ the fugacity map

zi → x2
i , i = 1,2,3 (4.147)

w1 → y2
1y

−1
2 , w2 → y2

2y
−1
1 y−1

3 y−1
4 , w3 → y2

3y
−1
2 , w4 → y2

4y
−1
2 (4.148)

z0 → (z1z2z3w
2
1w

2
2w3w4)−

1
2 = (x1x2x3y1)−1. (4.149)

whereupon the simple root fugacities zi, i = 1,2,3, and wj, j = 1,2,3,4, map to the fudamental

weight fugacities of the SU(2) and D4, respectively, and z0, the fugacity of the red node, is

substituted according to prescription (4.149). The HWG takes the form

HWG = PE[(ν2
1 + ν2

2 + ν2
3 + µ2) t2 + (ν1ν2ν3µ1)(t3 + t5) + µ2

1t
4 + t4 − (ν1ν2ν3µ1)2t10], (4.150)

where, µ2 is the adjoint weight fugacity of D4. Recall that the vector reps appear because the

vector nodes of the balanced Dynkin sub-diagrams connect to the unbalanced node. Moreover,

these appear at orders t3 and t5 since the excess (balance) is 1, same as in the previous case.

This form of HWG is anticipated for all members of this family.

Increasing the number of nodes of the left bouquet results in a simple change of the form of the

HWG. The number of rank 1 nodes in the left bouquet only changes the unbalancing of the red

node, therefore, for higher n1, the (t3+ t5) terms will appear at higher orders of t [101]. For the

{P[14](4), P[12](2)} theory one expects the contribution to appear at (t4 + t6). More generally,

for a {P[1n1 ](n1), P[12](2)} theory, these contributions are expected at orders (tn1 + tn1+2). One

is in a position to write down a general expression of the HWG for a two parameter family
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of bouquet quivers of the form in figure (4.27). The simple root fugacity assignment is shown

2 2 2

. . .

1 1

. . .

n1

1 1

n2

Figure 4.27: {P[1n1 ](n1), P[12](2)} Quiver with SU(2)n1 ×Dn2+1 global symmetry, b = n1 + 2 − 4,
dim C = n1 + 2n2 + 1.

separately in figure (4.28) for clarity of presentation. Perform the mapping such that the simple

z0 w1 wn2−1

. . .

z1 zn1

. . .

n1

wn2 wn2+1

n2

Figure 4.28: {P[1n1 ](n1), P[12](2)} Quiver with fugacity assignment.

root fugacities zi, i = 1, . . . , n1, map to the SU(2) fundamental weight fugacities νi, i = 1, . . . , n1

and, the root fugacities wj, j = 1, . . . , n2 + 1, map to Dn2+1 fundamental weight fugacities µj,

j = 1, . . . , n2 + 1. In full analogy with previous cases, this is achieved by deriving the fugacity

map using the Cartan matrix, and the elimination of the z0 fugacity of the red node follows

from the gauge fixing condition (4.16). The HWG for the family of {P[1n1 ](n1), P[12](2)} quiver

theories takes the form given by the general formula (4.151).

HWG = PE
⎡⎢⎢⎢⎢⎣
(
n1

∑
i=1

ν2
i + µ2) t2 + (µ1

n1

∏
i=1

νi)(tn1 + tn1+2) + (µ2
1) t4 + t4 − (µ1

n1

∏
i=1

νi)
2

t10

⎤⎥⎥⎥⎥⎦
(4.151)

Formula (4.151) contains the usual generators at order t2 transforming under the adjoint rep-

resentations corresponding to the Dn2+1 and SU(2) nodes. In addition, there are generators

in the vector representation of Dn2+1 since it is the vector Dynkin node that connects to the

unbalanced node. For the same reason, the (n1)-fundamental representation of the SU(2) is

present. Formula (4.151) is verified via explicit computation of the HWG up to n1 = 4 and n2 = 4.
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General analogue of formula (4.151) for bouquet quivers with ABCEFG factors in the global

symmetry is conjectured in section 4.5.

4.3.2 Discrete Gauging of {P[13](3), n2 = 3} theory

Now, lets use the unrefined description of the Coulomb branches to provide a non-trivial test of

equation (4.1). Let us study the two parameter family of theories in figure (4.27). Note, that

the quiver has discrete global symmetries Sn1 and S2 corresponding to the left and the right

bouquet, respectively. Lets focus on the first bouquet only, such that the rest of the quiver

preserves a manifest Dn2+1 global symmetry. Such theories are denoted by {P[n1](n1), n2}. The

two parameters n1 and n2 correspond to the number of bouquet nodes and the number of rank

2 chain nodes, respectively. Let us study discrete gauging on a particular member of this family

by setting n1 = n2 = 3. The considered theory is depicted in figure (4.26). The unrefined HS is

given by equation (4.142) in the previous subsection.

Gauging Hλ = Z2

To construct a new theory, gauge a Z2 subgroup of the discrete global S3 symmetry. Follow-

ing Conjecture (1) one obtains the quiver depicted in figure (4.29), accordingly denoted by

{P[2,1](3),3}. The balanced subset of the quiver forms the A1
2 ×D4 Dynkin diagrams. Hence,

the anticipated global symmetry is SU(2) × SU(2) × SO(8). The unrefined HS is given by

2

z0

2

w2

2

w1

2

z1

1

z2 w3

1 1

w4

Adj

Figure 4.29: {P[2,1](3), n2 = 3} Quiver with SU(2)2 ×D4 global symmetry, b = 1, dim C = 10.

HS[2,1](t) =
Q2(t)

(−1 + t)20(1 + t)14(1 + t2)2(1 + t + t2)10
, (4.152)
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where

Q2(t) = 1 + 4t + 32t2 + 146t3 + 592t4 + 2052t5 + 6348t6 + 17276t7 + 42495t8

+ 94722t9 + 192829t10 + 359694t11 + 618737t12 + 983550t13 + 1449871t14

+ 1985584t15 + 2531833t16 + 3008328t17 + 3335694t18

+ 3452040t19 + . . . palindrome ⋅ ⋅ ⋅ + t38.

(4.153)

From the unrefined PL given by

PL = 34t2 + 48t3 − 66t4 − 400t5 − 129t6 + 3744t7 + 7875t8 − 28352t9 +O(t10), (4.154)

observe that the t2 coefficient agrees with the expected global symmetry:

2 × dim[2]A1 + dim[0,1,0,0]D4 = 34. (4.155)

Gauging Hλ = S3

Finally, gauge H = S3, the entire global symmetry of the {P[13](3), n2 = 3} theory to obtain the

{P[3](3), n2 = 3} theory depicted in figure (4.30). The expected global symmetry is A1 ×D4.

The unrefined HS is given by equation (4.156)

2

z0

2

w2

2

w1

3

z1 w3

1 1

w4

Adj

Figure 4.30: {P[3](3), n2 = 3} Quiver with SU(2) ×D4 global symmetry, b = 1, dim C = 10.

HS[3](t) =
Q3(t)

(−1 + t)20(1 + t)14(1 + t2)2(1 + t + t2)10
, (4.156)
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where

Q3(t) = 1 + 4t + 29t2 + 118t3 + 436t4 + 1342t5 + 3754t6 + 9232t7 + 20764t8

+ 42590t9 + 80758t10 + 141402t11 + 230675t12 + 350568t13 + 498471t14

+ 663084t15 + 827454t16 + 968184t17 + 1064154t18 + 1097832t19

+ . . . palindrome ⋅ ⋅ ⋅ + t32.

(4.157)

The unrefined PL takes the form

PL = 31t2 + 32t3 − 65t4 − 224t5 + 249t6 + 2192t7 + 22t8 − 21600t9 +O(t10), (4.158)

which is in agreement with the expectation of the global symmetry since the t2 coefficient equals

dim[2]A1 + dim[0,1,0,0]D4 = 31. (4.159)

Comparison of the Coulomb branch volumes

Expanding the unrefined Hilbert series (4.142), (4.152) and (4.156) according to equation (4.4)

and plugging into (4.7) one finds:

vol(C[13])
vol(C[2,1])

=
R[13]

R[2,1]

=
56791

3359232
56791

6718464

= 2 = ord(Z2) (4.160)

vol(C[13])
vol(C[3])

=
R[13]

R[3]

=
56791

3359232
56791

20155392

= 6 = ord(S3) (4.161)

which are indeed the expected ratios. Obtained results (4.160) and (4.161) are in accord with

Conjecture (1) and provide a non-trivial check that the Coulomb branches of {P[2,1](3), n2 = 2}

and {P[3](3), n2 = 2} quivers are Z2 and S3 orbifolds of the parent {P[13](3), n2 = 2} Coulomb

branch, respectively. Note, that it follows that the {P[3](3), n2 = 2} Coulomb branch is a

Z3 orbifold of the {P[2,1](3), n2 = 2} Coulomb branch. Again, the explicit test involves the

utilization of the methods of the step-wise projection [95]. Lets now study discrete gauging on

the third family of quivers.
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4.4 Third Family: A-type Bouquet Quivers with U(1)n ×

A2
2 global symmetry

Finally, we look at unitary bouquet quivers with U(1)n ×Ak−1
2 global symmetry, following the

parametrization in figure (4.5). Let us set k = n = 3 obtaining the theory depicted in figure

(4.31). As a gauge theory, the Coulomb branch quivers in this section correspond to the Higgs

branches18 of quivers describing 6d N = (1,0) low energy dynamics of a stack of three M5

branes on Ak Kleinian singularity [89]. The arrangement of the bouquet nodes corresponds to

three separated M5 branes, hence, the theory is accordingly denoted P[13](3). In this section,

quivers with more than one unbalanced node are encountered. Recall the extended conjecture

of section 3.5 for reading off the global symmetry for quivers with more than one unbalanced

node. For the global symmetry of a quiver with N ≥ 2 unbalanced nodes, there holds

Gglobal = G i
balanced ×U(1)N−1, (4.162)

where G i
balanced is the symmetry group that corresponds to the Dynkin diagram formed by the

i-th balanced subset of nodes. Moreover, there are N − 1 additional U(1) factors such that

the number of U(1) Abelian factors in the global symmetry is one less than the number of

unbalanced nodes. In the case of figure (4.31), one expects 4 − 1 = 3 copies of such Abelian

factors. Hence, the expected global symmetry is U(1)3 × SU(3)2. There is an additional S3

discrete global symmetry that permutes the bouquet nodes. The balance of all four unbalanced

nodes is 1. Solely for the purpose of testing formula (4.1) fugacity assignments and maps are

omitted in the following. The unrefined Hilbert Series for the P[13](3) quiver takes the form

3 2 11 2

1 11

Figure 4.31: P[13](3) Quiver with SU(2)2 ×U(1)3 global symmetry, bi = 1, i = 1,2,3,4, dim C = 11.

18Herein, when talking about the U(1) factors in the global symmetry, we are referring to 3d quivers only.
It should be emphasized that in six dimensions the anomalous U(1) factors are no longer part of the global
symmetry. Nevertheless, they remain as a part of the isometry of the moduli space.
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HS[13](t) =
P1(t)

(−1 + t)22(1 + t)16(1 + t2)8(1 + t + t2)11(1 + t + t2 + t3 + t4)5
, (4.163)

where

P1(t) = 1 + 10t + 66t2 + 343t3 + 1561t4 + 6421t5 + 24318t6 + 85373t7 + 279505t8

+ 856911t9 + 2470009t10 + 6715986t11 + 17278135t12 + 42171723t13 + 97892626t14

+ 216588291t15 + 457659547t16 + 925229636t17 + 1792503575t18+

+ 3332789141t19 + 5954799253t20 + 10236605469t21

+ 16948970150t22 + 27055291005t23 + 41673945980t24

+ 61990354851t25 + 89112653186t26 + 123875740431t27

+ 166613606315t28 + 216934711187t29 + 273547259468t30

+ 334183688804t31 + 395665660521t32 + 454128806740t33

+ 505396609910t34 + 545458043162t35 + 570976321490t36

+ 579740398924t37 + . . . palindrome ⋅ ⋅ ⋅ + t74.

(4.164)

Taking the PL of the unrefined HS yields

PL = 19t2 + 24t3 + 53t4 + 36t5 − 129t6 − 588t7 − 1347t8 −O(t9). (4.165)

The t2 coefficient agrees with the anticipated Gglobal = U(1)3 × SU(3)2 since

3 × dim U(1) + 2 × dim [1,1]A2 = 19. (4.166)

Gauging Hλ = Z2

Gauge a Z2 subgroup of the discrete S3 symmetry such that, according to Conjecture (1), the

obtained theory corresponding to P[2,1](3) is described by a quiver in figure (4.32). The two

balanced sub-quivers form A2×A2 global symmetry. Moreover, there are three unbalanced nodes

which implies that there are two additional U(1) factors in the global symmetry. Altogether,



124 Chapter 4. Discrete Gauging

we have

Gglobal = U(1)2 × SU(3)2. (4.167)

The unrefined Hilbert Series is given by (4.168),

3 2 11 2

2 1

Adj

Figure 4.32: P[2,1](3) Quiver with SU(3)2 ×U(1)2 global symmetry, dim C = 11.

HS[2,1](t) =
P2(t)

(−1 + t)22(1 + t)16(1 + t2)8(1 − t + t2)(1 + t + t2)11(1 + t + t2 + t3 + t4)5
, (4.168)

where

P2(t) = 1 + 9t + 56t2 + 276t3 + 1192t4 + 4635t5 + 16581t6 + 55030t7 + 170775t8

+ 497861t9 + 1369519t10 + 3566403t11 + 8819153t12 + 20761818t13

+ 46641268t14 + 100192056t15 + 206191600t16 + 407200034t17

+ 772867324t18 + 1411740354t19 + 2484834652t20 + 4219097138t21

+ 6917735891t22 + 10963035811t23 + 16806739624t24 + 24943050628t25

+ 35861261184t26 + 49977850045t27 + 67552995501t28 + 88601153016t29

+ 112810770236t30 + 139490143344t31 + 167556757817t32 + 195581752669t33

+ 221893836645t34 + 244734679875t35 + 262447986225t36 + 273674136136t37

+ 277519995798t38 + . . . palindrome ⋅ ⋅ ⋅ + t76.

(4.169)

The unrefined PL is given by

PL = 18t2 + 22t3 + 36t4 + 20t5 − 71t6 − 320t7 − 615t8 −O(t9). (4.170)
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The t2 coefficient agrees with the anticipation of the global symmetry:

2 × dim U(1) + 2 × dim [1,1]A2 = 18. (4.171)

Gauging Hλ = S3

Finally, let us gauge the entire S3 symmetry of P[13](3) given in figure (4.31). According to

Conjecture (1), one obtains the P[3](3) quiver, depicted in figure (4.33). Since there are two

unbalanced nodes, a single U(1) factor is expected to be present in the global symmetry. Hence,

one has:

Gglobal = U(1) × SU(3) × SU(3) (4.172)

The balance of the central and adjoint 3 node is b3 = 1 and bAdj = 1, respectively. The lack of

3 2 11 2

3

Adj

Figure 4.33: P[3](3) Quiver with SU(3)2 ×U(1) global symmetry, b3 = 1, bAdj = 1, dim C = 11.

S3 symmetry of the bouquet is hidden in the form of the Hilbert Series (4.173),

HS[3](t) =
P3(t)

(−1 + t)22(1 + t)16(1 + t2)8(1 − t + t2)(1 + t + t2)11(1 + t + t2 + t3 + t4)5
(4.173)
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where

P3(t) = 1 + 9t + 55t2 + 265t3 + 1100t4 + 4069t5 + 13742t6 + 42912t7 + 125138t8

+ 343023t9 + 888619t10 + 2184322t11 + 5112353t12 + 11424591t13 + 24436388t14

+ 50131522t15 + 98823582t16 + 187490947t17 + 342838440t18

+ 604970597t19 + 1031345366t20 + 1700334084t21 + 2713413646t22

+ 4194680213t23 + 6286332847t24 + 9138877284t25 + 12895494665t26

+ 17670886241t27 + 23526392712t28 + 30444409900t29 + 38306534638t30

+ 46880165917t31 + 55818219780t32 + 64674799961t33 + 72937612669t34

+ 80074444293t35 + 85588479301t36 + 89074448896t37 + 90267198678t38

+ . . . palindrome ⋅ ⋅ ⋅ + t76.

(4.174)

The unrefined PL is

PL = 17t2 + 20t3 + 18t4 + 2t5 − 33t6 − 122t7 − 139t8 + (t9), (4.175)

and one sees that the t2 coefficient matches the dimension of the expected global symmetry:

dim U(1) + 2 × dim [1,1]A2 = 17. (4.176)

Now, lets perform the comparison of the Coulomb branch volumes.

Comparison of the Coulomb branch Volumes

Expanding the unrefined Hilbert series (4.163), (4.168) and (4.173) according to equation (4.4)

and plugging into (4.7) one finds the ratios:

vol(C[13])
vol(C[2,1])

=
R[13]

R[2,1]

=
689419303427

773967052800000
689419303427

1547934105600000

= 2 = ord(Z2) (4.177)

vol(C[13])
vol(C[3])

=
R[13]

R[3]

=
689419303427

773967052800000
689419303427

4643802316800000

= 6 = ord(S3) (4.178)
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Ratios of k = 3, n = 3 Coulomb branch volumes
Partition [13] [2,1] [3]
[13] 1 2 6
[2,1] 1 3
[3] 1

Table 4.3: Ratios of Coulomb branch volumes for k = 3, n = 3 family

Results (4.177) and (4.178) are in accord with Conjecture (1) and provide a necessary non-

trivial check that the Coulomb branches of P[2,1](3) and P[3](3) are Z2 and S3 orbifolds of

the parent P[13](3) Coulomb branch, respectively. Note, that the Coulomb branch of P[3](3)

is a Z3 quotient of the Coulomb branch of P[2,1](3). The orbifold relations of k = 3, n = 3

theories are symbolized by the commutative diagram (4.34). In figure (4.34), vertices denote

C[13]

C[2,1]

C[3]

S3

Z2

Z3

Figure 4.34: Commutative diagram of Coulomb branch orbifold relations for n = 3, k = 3 quiver
theories.

the Coulomb branches of the three k = 3, n = 3 A-type bouquet quivers and arrows denote the

quotients between the branches. The ratios of the Coulomb branch volumes are summarized

in table (4.3). The ratios are in one-to-one correspondence with the ratios of the orders of

the corresponding quotient groups. The same analysis has been carried out for all members of

this family up to k = 4, n = 5. One can continue in a similar fashion and study the action of

discrete gauging on more interesting families of quivers, including non-simply laced theories.

For the sake of brevity we end and conclude here, however, the reader is referred to [24] for

more results.
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D2

k D6

NS5NS5
k D6k D6

Figure 4.35: Type IIA brane engineering of 4.179. D6 and NS5 branes share directions x0, x1, . . . , x5.
Horizontal direction in the figure represents x6.

M5 M5

C2/Zk

Figure 4.36: System of two separated M5 branes on A-type singularity.

4.5 Concluding Comments on Discrete Gauging

Conjecture (1), defined in section 4.1 and tested in sections 4.2, 4.3, and 4.4, formalizes a general

construction for discrete gauging of global symmetry in Coulomb branches of 3d N = 4 quiver

gauge theories. The construction illustrated in this chapter is purely local, thus applicable to

any quiver with a bouquet.

Discrete gauging has been illustrated using three families of quivers discussed in section 4.1.

Quivers belonging to the first and the third family are very important and appear as indispens-

able Coulomb branch constructions central for the understanding of Higgs branch phases of 6d

N = (1,0) world-volume theories on a stack of n M5 branes on C2/Zk singularity.

The key conceptual step is to realize the Higgs branch of such 6d non-Lagrangian theory at

infinite coupling as a Coulomb branch of 3d N = 4 quiver gauge theory. One starts with a low

energy theory of n separated M5 branes containing n− 1 massless tensor multiplets, and gauge

group SU(k)n−1. The theory is given by the 6d quiver 4.179, were all gauge nodes are SU(k).

Each tensor multiplet contains a real scalar which controls the tension of BPS string as well as

the inverse gauge coupling.
k
◻

∣○
k
− ○
k
−⋯ − ○

k
−

k
◻

∣○
k

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n−1

(4.179)

Theory 4.179 can be brane engineered in Type IIA string background as shown in figure 4.35.

The M-theory duals of NS5 and D6 branes are M5 and A-type singularities, respectively.

The M-theory picture is given by figure 4.36. Coincident M5 branes generate tensionless BPS
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strings, depicted as a blue two-brane in figure 4.35 or 4.36. From the point of view of M2 brane,

this corresponds to a strongly coupled regime. Since the physics in question involves n identical

objects, it is natural to expect a discrete Sn global symmetry which is not a priori manifest

from the 6d quiver. However, it appears rather beautifully in the 3dN = 4 Coulomb branch

description of the same problem. To see this, lets construct the 3d quiver associated with 6d

quiver 4.179. The 3d quiver consists of unitary gauge nodes and since the global symmetry of

the Higgs branch quiver is SU(k)2 ×U(1), one expects the 3d quiver to have two balanced legs

in the form of the Dynkin diagram of Ak−1. In addition, the Higgs branch quiver consists of

n − 1 balanced simply-connected nodes, hence, the Coulomb branch quiver involves an SU(n)

global symmetry (i.e. SU(n) flavor node). The 3d quiver is given by 4.180.

○
1
− ○

2
−⋯ −

n
◻

∣○
k
−⋯ − ○

2
− ○

1
(4.180)

Now, turning off all baryonic coupling amounts to substituting the SU(n) flavor node by n

copies of U(1) gauge nodes [89], a process also known as implosion [102]. One obtains a family

of bouquet quivers with global symmetry SU(k)2×U(1)n that are of the form 4.5, studied in this

chapter. Making subsets of M5 branes coincident corresponds to appearance of tensionless BPS

strings. Discrete gauging is precisely the 3d Coulomb branch description of this phenomenon

and the associated Higgs branch phases in 6d.

As per some extensions, Section 5 in [24] applies the discrete gauging construction to non-simply

laced quiver theories with C2 factor in the global symmetry. A complementary perspective on

discrete gauging and its manifestation as discrete quotients on Coulomb branches is presented

in [103].

As hypothesized in [24], an analogue of the general formula (4.151) could exists for other types

of bouquet quivers. Consider a quiver consisting of two parts:

• A bouquet that stems from a rank 2 unbalanced node

• A second part, connected to the rank 2 unbalanced node, that is itself a balanced
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ABCDEFG Dynkin diagram.

Such quivers can be constructed by attaching a bouquet via the rank 2 unbalanced node to a

minimally unbalanced quiver. Quivers constructed in this manner take the form schematically

depicted in figure (4.37). The box on the right in figure (4.37) symbolizes the balanced part of

2

1 1

. . .

n

ABCDEFG

Figure 4.37: P[1n](n) Quiver with SU(2)n ×G global symmetry, where G is any Lie group.

a minimally unbalanced quiver (see chapter 3). Based on the general formula (4.151) in section

4.3, one can speculate that the HWG for quivers of the form (4.37) involves:

• Order t2: Adjoint representations of the balanced sub-quivers (i.e. n copies of SU(2)

adjoint rep and a single adjoint rep corresponding to the balanced part of the ABCDEFG

quiver). Let νi, i = 1, ..., n denote the fugacities of the highest weights of the n SU(2)

representations.

• Order tn+tn+2: n-fundamental representation of SU(2) combined with the representation

that corresponds to the node of the ABCDEFG Dynkin diagram that is connected to the

unbalanced red node (i.e. the vector node in the case of Dn). Lets denote the highest

weight fugacity for the representation of this ABCDEFG Dynkin node by µunbal.

• Order t4: µ2
unbal contribution and the typical singlet contribution

• Order t10: Relation transforming under (ν1...νn µunbal)2

The last speculation favors the possibility of taking a moduli space with any particular isometry

on the Coulomb branch and using discrete gauging to obtain various non-Abelian orbifolds of

the original space. The action of discrete gauging on Coulomb branches of 3d supersymmetric

quiver theories with 8 supercharges thus provides a novel method for constructing non-Abelian
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orbifold geometrical spaces with a certain desired isometry.

The material of this chapter is yet another manifestation of the powerful interplay of quivers

and Hilbert series methods outlined in chapter 2. As we have seen so far, 3d Coulomb branches

provide us with great insight to many phenomena both gauge theoretic as well as purely math-

ematical. It is no less so apparent with the analysis of the so-called ungauging schemes for

non-simply laced quiver theories in the following chapter.



Chapter 5

Ungauging Schemes and Coulomb

Branches of Non-simply Laced Quivers

5.1 The Rise of Ungauging Schemes

Chapters 3 and 4 illustrate the essential role of Coulomb branch constructions taking place on

the interface of physics of gauge theories and geometry of hyperKähler singularities. A large

part of important research dedicated to the deeper understanding and computation of 3d N = 4

Coulomb branches [53, 52, 104, 62, 63] is justly associated with the understanding of 3d Mirror

symmetry [19]. Accessing information about one of the moduli space branches of theory A

through the computation of the other branch for the corresponding mirror dual theory B em-

bodies perhaps the most significant merit of 3d mirror symmetry. Such circumvention in moduli

space problems draws from our ability to compute Coulomb branches for various classes and

families of quiver gauge theories including T σρ theories, Sicilian theories, minimally unbalanced

theories, multiplicity-free varieties, and others [105, 70, 81, 23].

Amid the numerous research areas where the use of 3d N = 4 Coulomb branches brings signifi-

cant progress are 4d [106], 5d [66, 84], and 6d [69, 24, 107, 67] Higgs branches, quiver subtraction

[68], magnetic quivers [108, 109], brane webs [110, 111], and partial Higgs mechanism [26],[111],

132
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[112]. In all of the mentioned work 3d N = 4 Coulomb branches are used as an abstract con-

struction of geometrical spaces and need not necessary correspond to a vacuum moduli space

of a concrete physical theory. By the sequel, one is naturally invited to go further and explore

Coulomb branches of theories which are given by non-simply laced quivers.

In [25], we show that, in contrast to simply laced quivers and framed quivers, the data encoded in

a quiver of a non-simply laced theory is not sufficient to fully specify the Coulomb branch. The

missing information is related to what we call a choice of ungauging scheme. Most extensively

studied theories in the literature are unitary quivers with flavors, therefore the ungauging

scheme problem has not been paid attention to. In quivers containing flavor nodes (i.e. framed

quivers in the mathematics literature jargon [113]) the problem is evaded as the flavor node

gets rid of any ambiguity by being declared as the node where the residual center-of-mass U(1)

symmetry is ungauged (or decoupled). As shown in Appendix A, in simply laced flavorless

(unframed) quivers, the choice of ungauging scheme has no significance as all choices yield the

same Coulomb branch C. Hence, the following is claimed:

Claim 1 (Number of Coulomb branches of a Simply Laced Quiver): A simply laced

unitary (flavorsome of flavorless) quiver has a single unique Coulomb branch C.

As mentioned earlier, although non-simply laced quiver theories are, strictly speaking, not

gauge theories due to the absence of the Lagrangian description they are nevertheless natural

extensions of the 3d N = 4 supersymmetric quiver gauge theories and the computation of the

Coulomb branch still follows 2.5, given the amended definition of the conformal dimension 2.75.

Flavored non-simply laced quivers with single instanton moduli spaces [114] are encountered

in [52]. Therein, the Coulomb branches are obtained for a specific ungauging schemes, namely,

when it is the affine node of the corresponding affine Dynkin diagram that is ungauged. Other

works such as [115] consider framed non-simply laced quivers of B-type and compare the re-

sulting Hilbert series with the supersymmetric partition function on a 3-sphere.

Our study of flavorless non-simply laced quiver theories conducted in [25] leads us to the

following claim:
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Claim 2 (Number of Coulomb branches): Every unframed 3d N = 4 quiver theory given

by a non-simply laced quiver Q with a single non-simply laced edge of multiplicity k admits

at least ks + 1 different Coulomb branches, where ks is the number of rank 1 short nodes of Q

modulo outer automorphisms of Q.1

Furthermore, our analysis of Coulomb branches of non-simply laced quivers indicates the fol-

lowing:

Claim 3 (Orbifold Coulomb Branch for Rank 1 Short Ungauging Schemes): Let

Q be an unframed 3d N = 4 quiver with a single non-simply laced edge with multiplicity k and

with ks rank 1 short nodes. Let CL denote the Coulomb branch corresponding to the ungauging

schemes on the long side of the quiver. Then, for every choice of ungauging scheme on a rank

1 short node of the quiver, the Coulomb branch is of the form

CS = CL/Zk , (5.1)

where the action of Zk on CL is determined by the particular choice of the ungauged node. The

effect of the ungauging scheme on the resulting Coulomb branch is discussed in Appendix A.

Claim 3 formalizes an action on three-dimensional quivers which reproduces and elucidates the

results of Kostant and Brylinski in [27]. The ungauging scheme analysis in [25] reproduces four2

of the nine Kostant-Brylinski results in [27], which are summarized in table 5.1. To demonstrate

Claim 2 and Claim 3 we start with an example of a minimally unbalanced C3 quiver.

1Ungauging schemes that gauge fix the residual U(1) on a linear combination of nodes are not considered.
2Note the fifth KP result, shown in table 5.7, also appears. Its closer analysis can be found in [116], where

the notion of quiver folding [117] and discrete ungauging formalize the understanding of the remaining results
in [27].
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KB
No.

g′ QG′ g QG Action Dim

4 E6

○
1
− ○

2
−

○ 1
∣

○ 2
∣○
3
− ○

2
− ○

1

F4 ○
1
− ○

2
− ○

3
<= ○

4
− ○

2
DU 11

5 G2

1
◻

∣○
2
≡> ○

1

A2 ○
1
− ○

2
≡> ◻

1
Z3 3

6 Bn ○
1
−

1
◻

∣○
2
−⋯ − ○

2
=> ○

1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n

Dn ○
1
−
○ 1
∣○
2
−⋯ −

2
◻

∣○
2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n−1

Z2 2n − 2

7 F4

1
◻

∣○
2
− ○

3
=> ○

2
− ○

1

B4 ○
1
− ○

2
− ○

3
=>

1
◻

∣○
2

Z2 8

Table 5.1: Results 4,5,6, and 7 of Table 1 in [27]. Results are presented in terms of Coulomb branch
quivers together with identified actions and dimensions. DU denotes an action on quivers termed
discrete ungauging which is studied in more detail in [116].

5.2 Ungauging Schemes for C3

To begin with, consider the minimally unbalanced C3 quiver 5.2 which has an extra unbalanced

node (drawn red) connected to the rank 3 long node such that its excess is e = −1 (see 2.80).

○
1
−○

2
<= ○

3
− ○

2
(5.2)

The two nodes on the left in 5.2 are short and the two nodes on the right are long, respectively.

Since all nodes of the quiver are gauge nodes, in the computation of the Coulomb branch, one

of the magnetic charges is set to zero. This is known as the ungauging or decoupling of the

center-of-mass U(1) symmetry. The most natural choice is to ungauge on the unbalanced red

node since the remaining balanced part of the quiver forms the C3 Dynkin diagram which, as

seen in previous chapters, corresponds to the expected global symmetry on the Coulomb branch

(see also [24]). The ungauged node is always denoted by a squircle �.3 When one ungauges

on a rank 1 node it follows that the whole node is ungauged, hence, it becomes a flavor node

(i.e. usually denoted as a square ◻). On the other hand, ungauging on a node with rank r > 1

fixes the origin in the space of magnetic charges (i.e. introduces a delta function for one of the

3Contrary to the more common use of the word squircle, referring to a square with rounded corners, hereby
authors mean a symbiotic co-existence of a circle and a square at a particular node position.
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components of the magnetic flux at the corresponding node).

After declaring which node is ungauged (i.e. which node becomes a squircle) one says that a

particular ungauging scheme is chosen. Let us begin by ungauging on the rightmost long node.

For such choice of the ungauging scheme the quiver is given by 5.3.

○
1
−○

2
<= ○

3
−�

2
(5.3)

Computation of the unrefined Hilbert series and the corresponding Coulomb branch for the

quiver in 5.3 yields

HS(t) = 1

(1 − t)14
, C = H7. (5.4)

Observe that the Coulomb branch is a freely generated algebraic variety of quaternionic dimen-

sion 7. As before, when the excess is e = −1 and the unbalanced node is connected to a Dynkin

node corresponding to a pseudo-real representation, the Coulomb branch is freely generated

and one finds a certain embedding. In the present case we have:

[0,0,1]Sp(3) ↩ [1,0,0,0,0,0,0]Sp(7), (5.5)

(i.e. the mapping of the 14-dimensional pseudo-real fundamental rep of Sp(7) into the 14-

dimensional 3-rd rank antisymmetric pseudo-real representation of Sp(3), corresponding to the

Dynkin node to which the unbalanced node is attached). For quiver 5.3 the Highest Weight

Generating function (HWG) can be written in terms of the Sp(7) highest weight fugacities

[µ1, . . . , µ7] as

HWG = PE [µ1t] , (5.6)

or alternatively, as

HWG = PE [µ2
1t

2 + µ2
2t

4 + t4 + µ3t + µ3t
3] , (5.7)

where [µ1, µ2, µ3] denote the highest weight fugacities for Sp(3). The Highest Weight Gener-

ating function 5.7 is revisited in the derivation of the general case in section 5.6. It can be

also obtained from equation (23) in [81] by thinking of 5.3 as the folded version of the quiver
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in Figure 4 after setting N = 3. By inspection of 5.7 at order t one recognises the 3-rd rank

antisymmetric rep of Sp(3) corresponding to the node where the unbalanced node with e = −1

attaches. The balanced part of the quiver contributes with the adjoint representation of Sp(3)

at order t2, making the C3 global symmetry manifest. Working out the 2-nd, 3-rd and 4-th

symmetric product of µ3:

Sym2µ3 = µ2
1 + µ2

3 (5.8)

Sym3µ3 = µ3
3 + µ2

1µ3 + µ3 (5.9)

Sym4µ3 = µ4
3 + µ2

1µ
2
3 + µ4

1 + µ2
3 + µ2

2 + 1 (5.10)

reveals the presence of the singlet at order t4, and hence, justifies expression 5.7. Let us now

demonstrate the effect of choosing a different ungauging scheme for the quiver in 5.2. For this

purpose, one computes the Coulomb branch of the quiver depicted in 5.11, where the choice of

ungauging is on the rank 3 long node. Again, the ungauging scheme is specified by the squircle.

○
1
−○

2
<= �

3
− ○

2
(5.11)

Claim 2 implies that the Coulomb branch should be the same as in the previous case since the

new ungauging scheme remains on the long side of the quiver. Indeed, the computation yields:

HS(t) = 1

(1 − t)14
, C = H7. (5.12)

Equality of 5.12 and 5.4 is in accord with Claim 2! So far, we have found two identical Coulomb

branches for the two long ungauging schemes. Let us now consider a scenario depicted in 5.13,

where the leftmost short node is ungauged, and accordingly, denoted by a squircle.

�
1
−○

2
<= ○

3
− ○

2
(5.13)
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In this case the obtained unrefined Hilbert series reads

HS(t) = 1 + 6t2 + t4
(1 − t)10(1 − t2)4

, (5.14)

which clearly describes a different Coulomb branch! From the first term in the denominator,

observe that the computed Coulomb branch variety has a 5-dimensional free part. Furthermore,

there is a non-trivial part corresponding to a C4/Z2 singularity such that the Z2 action naturally

acts on all the coordinates of C4. To show the action explicitly, start with the HWG for the

freely generated C4

HWG C4 = PE [µ1t] , (5.15)

where µ1 is the highest wight of Sp(2). Next, construct the Z2 projection

HWGC4/Z2
= 1

2
(PE [µ1t] + PE [−µ1t]) = PE [µ2

1t
2] , (5.16)

resulting in the HWG corresponding to C4/Z2 singularity. Indeed, 5.16 describes a moduli

space of one Sp(2) instanton on C2 [114]. The Coulomb branch obtained for the ungauging

scheme depicted in 5.11 takes the form:

C = H5 ×C4/Z2. (5.17)

Finally, construct the last ungauging scheme, depicted in 5.18, by letting the rank 2 short

node be ungauged. Recall, that the ungauging scheme fixes the origin of the two-dimensional

magnetic lattice at the associated node. This is achieved by introducing a delta function which

sets to zero one of the magnetic charges at the node.

○
1
−�

2
<= ○

3
− ○

2
(5.18)

The unrefined HS computed in this case takes the form:

HS(t) = (1 + t2)(1 + 6t + 18t2 + 28t3 + 38t4 + 28t5 + 18t6 + 6t7 + t8)
(1 − t)14(1 + t)6(1 + t + t2)2

, (5.19)
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and one sees that it, indeed, differs from both Hilbert series 5.14 for the quiver 5.13 as well as

from expression 5.4 (resp. expression 5.12).

It is important to note that the variety described by Hilbert series 5.19, although still being a

Gorenstein singularity [118], does not resemble any known form of a hyperKähler moduli space.

Througout the chapter, the same problem is encountered every time the choice of ungauging

scheme involves ungauging on a short node with rank r > 1. This problem stems from the fact

that for such ungauging schemes, the monopole formula summation runs over a lattice which is

non-conformally scaled (i.e. scaled by 2 in one of its dimensions) and no longer corresponds to

the GNO dual lattice 2.71 of the gauge group at the particular node (i.e. U(2) in the present

case). On this point, see the derivation in appendix A.

In summary, one obtains two different Coulomb branches described by the Hilbert series 5.4

(resp. 5.12), and 5.14, respectively. Hilbert series 5.4 (and 5.12) describes a freely generated

Coulomb branch. Hilbert series 5.14 describes a Coulomb branch that is a Z2 orbifold of the

former. In accord with Claim 2, the number of Coulomb branches for the quiver in 5.2 equals

ks + 1 = 2, (5.20)

where ks is the number of short rank 1 nodes of the quiver. Furthermore, on the long side of

the quiver, the position of the ungauged node can be arbitrary and one computes the same

Coulomb branch CL. Table 5.2 collects the unrefined expansions of the Plethystic logarithm

for the various choices of ungauging schemes. Note that table 5.2 contains only one of the

equivalent long ungauging schemes. All these results suggest the validity of both Claim 2 as

well as Claim 3.



140 Chapter 5. Ungauging Schemes and Coulomb Branches of Non-simply Laced Quivers

Ungauging scheme Unrefined PL
○
1
− ○

2
<= ○

3
−�

2
PL = 14t

�
1
− ○

2
<= ○

3
− ○

2
PL = 10t + 10t2 − 20t4 + 64t6 − 280t8 + o(t9)

○
1
−�

2
<= ○

3
− ○

2
PL = 12t + 4t2 − 8t3 + 31t4 − 86t5 + 147t6 − 32t7 − 813t8 + o(t9)

Table 5.2: Different choices of ungauging schemes for the minimally unbalanced C3 quiver. The
ungauging scheme in the first row has a simple refined PL given by PLref = [0,0,1]Sp(3)t in terms of
the Dynkin labels of Sp(3). The ungauging in the last row yields a non-valid Coulomb branch.

Ungauging scheme Hilbert Series, HS(t) Coulomb branch, C

�
1
−
○ 1
∣○
2
=> ○

1

1+13t2+28t4+13t6+t8

(1−t2)8 minB3

○
1
−
○ 1
∣

�
2
=> ○

1

1+13t2+28t4+13t6+t8

(1−t2)8 minB3

○
1
−
○ 1
∣○
2
=> �

1

(1+t2)2(1+5t2+t4)
(1−t2)8 n.minD3

Table 5.3: Different choices of ungauging scheme for the affine B3 quiver.

5.3 Ungauging Schemes for B3

Now, consider the balanced affine B3 quiver 5.21.

○
1
−
○ 1
∣○
2
=> ○

1
(5.21)

It enjoys a Z2 outer automorphism symmetry which rotates the rank 1 ‘fork’ nodes. There

is one rank 1 short node, hence, ks = 1 and accordingly two inequivalent ungauging schemes

are expected. The results of the Coulomb branch computation for each ungauging scheme are

collected in table 5.3. The Coulomb branches in the first two rows of table 5.3 correspond to

the closure of the minimal nilpotent orbit of so(7) algebra and the highest weight generating

function is given by [44]:

HWGminB3
= PE [µ2t

2] , (5.22)

where µ2 denotes the highest weight fugacity for the adjoint representation of SO(7). The last

row of table 5.3 corresponds to the closure of the next-to-minimal nilpotent orbit of D3 ≅ A3

[44]. Lets denote by HS(t)L and HS(t)S the Hilbert series in the first two and in the last row
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of table 5.3, respectively. Comparison of the volumes of the corresponding varieties yields

HS(t)L ∣t→1∼ RL

(1−t)8

HS(t)S ∣t→1∼ RS

(1−t)8

=
7
32
7
64

= 2 = ord (Z2) (5.23)

where RL,RS denote the associated residues at t = 1 and ord() denotes the order of a group.

Expression 5.23 indicates

n.minD3 =minB3/Z2 (5.24)

since comparison of the volumes of two Coulomb branches provides a necessary check of a

particular orbifold relation between them. To see the Z2 action explicitly, first decompose the

highest weight fugacity of the adjoint representation of B3 into the highest weight fugacities of

A3:

µ2 Ð→ µ1µ3 + µ2. (5.25)

Then, the Z2 projection is constructed as

1

2
( 1

(1 − µ1µ3t2) (1 − µ2t2)
+ 1

(1 − µ1µ3t2) (1 + µ2t2)
) = PE [µ1µ3t

2 + µ2
2t

4] , (5.26)

where on the right hand side, one recognizes the HWG for n.minD3 ≅ n.minA3 . This justifies

equation 5.24, which is the sixth Kostant-Brylinski [27] result (for n = 3) advertised in table

5.1. In summary, results in this section are in accord with both Claim 2 as well as Claim 3.

5.4 Ungauging Schemes for F4

Lets study the quiver given by 5.27 which is in the form of the affine Dynkin diagram of F4.

○
1
− ○

2
− ○

3
=> ○

2
− ○

1
(5.27)

The extra affine node is connected to the adjoint Dynkin node such that its excess is zero and

the whole quiver is balanced.4 There is a single rank 1 short node, hence, ks = 1. Moreover,

4Extra balanced nodes are drawn orange similarly as in chapter 3.
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Ungauging scheme Hilbert Series, HS(t) Coulomb branch, C
�
1
− ○

2
− ○

3
=> ○

2
− ○

1

1+36t2+341t4+1208t6+1820t8+1208t10+341t12+36t14+t16

(1−t2)16 minF4

○
1
−�

2
− ○

3
=> ○

2
− ○

1

1+36t2+341t4+1208t6+1820t8+1208t10+341t12+36t14+t16

(1−t2)16 minF4

○
1
− ○

2
−�

3
=> ○

2
− ○

1

1+36t2+341t4+1208t6+1820t8+1208t10+341t12+36t14+t16

(1−t2)16 minF4

○
1
− ○

2
− ○

3
=> �

2
− ○

1

(1+t2)2(1+26t2+149t4+272t6+149t8+26t10+t12)
(1−t2)16 non-valid

○
1
− ○

2
− ○

3
=> ○

2
−�

1

1+20t2+165t4+600t6+924t8+600t10+165t12+20t14+t16

(1−t2)16 n.n.minB4

Table 5.4: Different ungauging schemes for the affine F4 quiver.

the quiver lacks any outer automorphism symmetry, thus, based on Claim 2, admits 2 different

Coulomb branches. The various choices of the ungauging schemes as well as the resulting

Hilbert series and Coulomb branches are collected in table 5.4.

In accord with Claim 2 all three ungauging schemes on the long side of the quiver, grouped in

the first three rows of table 5.4, correspond to the same Coulomb branch. In all of these cases

the Coulomb branch is the closure of the minimal nilpotent orbit of f4 algebra which is known

to correspond to the reduced moduli space of one F4 instanton on C2 [52, 43]. The resulting

HS matches (5.44) in [114] and the HWG is known to be of the form:

HWGminF4
= PE [µ1t

2] , (5.28)

where µ1 denotes the adjoint highest weight fugacity of F4. The remaining two cases, grouped in

the last two rows of table 5.4, result from ungauging schemes on the short nodes. In particular:

• For the ungauging scheme in the fourth row of table 5.4, the same problem as in section

5.2 is encountered due to the non-conformal scaling of the GNO dual lattice and the space

computed by monopole formula techniques is not a valid Coulomb branch.

• The ungauging scheme in the last row of table 5.4 yields a quiver which enjoys B4 global

symmetry and the Coulomb branch corresponds to the closure of the 16-dimensional

next-to-next-to minimal nilpotent orbit of so(9) algebra [44]. To see the orbifold action

explicitly, first inspect that the F4 adjoint highest weight fugacity decomposes as

µ1 Ð→ µ2 + µ4, (5.29)
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where on the right hand side, µ2, µ4 are the fugacities for the highest weights of B4. Next,

construct the explicit Z2 projection

1

2
( 1

(1 − µ2t2)(1 − µ4t2)
+ 1

(1 − µ2t2)(1 + µ4t2)
) = PE [µ2t

2 + µ2
4t

4] . (5.30)

RHS of expression 5.30 is the HWG for the n.n.minB4 orbit given in terms of B4 highest

weight fugacities [µ1, µ2, µ3, µ4].

The obtained results are in accord with Claim 2 and in further support of Claim 3 (which is

related to the orbifold structure of the Coulomb branch for short rank 1 ungauging schemes).

Both the comparison of the volumes of the two Coulomb branches corresponding to the first

three versus the last row of table 5.4 analogous to 5.23 as well as the explicit projection in 5.30

justify the orbifold relation:

n.n.minB4 =minF4/Z2. (5.31)

Equation 5.31 is the seventh result of Kostant and Brylinski [27]. Some of the unrefined results

based on [25] appear in [119, 120].

5.5 Ungauging Schemes for G2

It is natural to extend the analysis to quivers with a triple laced edge. For this purpose, consider

the affine G2 quiver given by 5.32. Given the lack of outer automorphism symmetry, and since

ks = 1, two different Coulomb branches are expected to exist.

○
1
− ○

2
≡> ○

1
(5.32)

The summary of results for various ungauging schemes is given in table 5.5. Let us analyze the

three different ungauging schemes contained in table 5.5:

• For the ungauging on one of the long nodes in the first row of table 5.5, the Coulomb

branch corresponds to the closure of the minimal nilpotent orbit of g2 algebra as well as
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Quiver Hilbert Series, HS(t) Coulomb branch , C
�
1
− ○

2
≡> ○

1

(1+t2)(1+7t2+t4)
(1−t2)6 minG2

○
1
−�

2
≡> ○

1

(1+t2)(1+7t2+t4)
(1−t2)6 minG2

○
1
− ○

2
≡> �

1

(1+t2)(1+t2+t4)
(1−t2)6 minG2/Z3 =maxA2

Table 5.5: Ungauging schemes for the affine G2 quiver.

to the reduced moduli space of one G2 instanton on C2 [114, 52, 43]. The highest weight

generating function has the form:

HWGminG2
= PE [µ̃1t

2] , (5.33)

where µ̃1 is the fugacity for the highest weight of the adjoint representation of G2.

• Ungauging scheme in the second row yields the same Coulomb branch described by the

same Hilbert Series. This is in accord with the prediction of Claim 2.

• Finally, third row depicts the ungauging scheme upon which the short node is ungauged.

According to Claim 3 the Coulomb branch takes the form of Z3 orbifold. To see this

explicitly, start with HWG 5.33 and decompose the highest weight of the adjoint repre-

sentation of G2:

µ̃1 Ð→ µ1µ2 + µ1 + µ2, (5.34)

where on the right side, µ1, µ2 are the highest weights fugacities of A2. The Z3 projection

is constructed as:

1

3
{PE [(µ1µ2 + µ1 + µ2) t2]+

PE [(µ1µ2 + ωµ1 + ω−1µ2) t2]+

PE [(µ1µ2 + ω−1µ1 + ωµ2) t2]},

(5.35)

where ω employs the cyclic Z3 action, satisfying ω3 = 1. After the Z3 projection the

Highest Weight Generating function for the last row of table 5.5 is obtained:

HWGmaxA2
= PE [µ1µ2t

2 + µ1µ2t
4 + µ3

1t
6 + µ3

2t
6 − µ3

1µ
3
2t

12] , (5.36)
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where µ1, µ2 denote the fugacities for the highest weights of A2.

One can also work out the comparison of the volumes of the two valid Hilbert series in table

5.5 in a similar fashion as in 5.23 in section 5.3:

vol(HSS)
vol(HSL)

= RS

RL

= 1

3
= 1

ord (Z3)
, (5.37)

where ord() denotes the order of the group. Subscripts S and L in equation 5.37 denote Hilbert

Series corresponding to short and long ungauging schemes, respectively. The analysis shows

that CS is isomorphic to the closure of the maximal nilpotent orbit of sl3 algebra, denoted by

maxA2 and moreover we have

maxA2 =minG2/Z3. (5.38)

Equation 5.38 reproduces the third result of Kostant and Brylinski shown in table 5.1 in the

introduction. This nicely demonstrates that the quiver in the third row of table 5.5 is equivalent

to the self-mirror dual quiver for the closure of the maximal nilpotent orbit of A2:

○
1
−

3
◻

∣○
2

(5.39)

Results 5.37 and 5.38 provide further evidence for Claim 3. In this section, two different

Coulomb branches are obtained in accord with Claim 2. Some of the unrefined results in this

section recollected from [25] appear in [119, 120].

5.6 Ungauging Schemes for D
(3)
4

Now, consider the twisted affine D
(3)
4 quiver depicted in 5.40. The quiver lacks any outer

automorphism symmetry and ks = 1 therefore two valid Coulomb branches should exist.

○
1
− ○

2
<≡ ○

3
(5.40)
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Quiver Hilbert Series, HS(t) Coulomb branch, C
�
3
≡> ○

2
− ○

1

(1+t2)(1+17t2+48t4+17t6+t8)
(1−t2)10 minD4

○
3
≡> �

2
− ○

1

1+12t2+25t4+36t6+25t8+12t10+t12

(1−t2)10(1+t2) non-valid

○
3
≡> ○

2
−�

1

(1+t2)(1+3t+6t2+3t3+t4)(1−3t+6t2−3t3+t4)
(1−t2)10 C

D
(3)
4

=minD4/Z3

Table 5.6: Ungauging schemes for the twisted affine D
(3)
4 quiver.

The three different ungauging schemes and the corresponding Hilbert series and Coulomb

branches are collected in table 5.6. In particular, the analysis reveals:

• The ungauging scheme on the long side of the quiver, given in the first row of table 5.6,

yields a Coulomb branch denoted by minD4 which is known to correspond to the closure

of the minimal nilpotent orbit of so(8) algebra [114]. Moreover, in terms of the Highest

Weight Generating function one has

HWGminD4
= PE [µ2t

2] , (5.41)

where µ2 denotes the highest weight fugacity for the adjoint of D4.

• Ungauging scheme in the second row of table 5.6, with ungauging on the rank 2 short node,

produces a non-valid Coulomb branch as, again, the problem with the non-conformal

deformation of the GNO dual lattice of the U(2) gauge group is encountered.

• Ungauging scheme depicted in the third row of table 5.6 produces a five-dimensional

Coulomb branch denoted with C
D
(3)
4

. This is a variety of characteristic height 3, therefore

it is beyond the characteristic height 2 family of nilpotent orbits [43]. The obtained space

is included in the Achar-Henderson analysis (see Table 6 in [121]). In order to derive the

HWG, first decompose the highest weight fugacity of the adjoint representation of D4

into:

µ2 Ð→ ν1 + ν2 + ν2 (5.42)

where on the RHS ν1, ν2 denote the highest weight fugacities of G2. After expressing the

HWG 5.41 in terms of the G2 fugacities, there is also an adjoint contribution appearing
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at order t4:

PE [µ2t
2]Ð→ PE [ν1t

2 + ν2t
2 + ν2t

2 + ν1t
4] . (5.43)

As the next step, construct the Z3 projection explicitly

1

3
{PE [(ν1 + ν2 + ν2) t2 + ν1t

4]+

PE [(ν1 + ων2 + ω−1ν2) t2 + ν1t
4]+

PE [(ν1 + ω−1ν2 + ων2) t2 + ν1t
4]},

(5.44)

where ω, satisfying ω3 = 1, employs the Z3 action similarly to 5.35. Evaluating 5.44 yields

the Highest Weight Generating function for C
D
(3)
4

in terms of the fugacities for the highest

weights of G2:

HWGC
D
(3)
4

= PE[ν1t
2 + ν1t

4 + ν2
2t

4 + 2ν3
2t

6 − ν6
2t

12]. (5.45)

Since space C
D
(3)
4

appears for the first time in the context of chiral rings, the expansion of

the refined PL is included for future reference. It is given in terms of G2 Dynkin labels

[ν1, ν2] by the expression 5.46.

PL =[1,0]t2 + ([1,0] − [0,0]) t4 − ([1,0] + [0,1] + [0,2] + [0,0]) t6−

([1,0] + [0,1] − [2,0]) t8 +O(t9)
(5.46)

Both the necessary volume comparison, similar to 5.23 and 5.37, as well as the explicit

HWG computation 5.44 imply the orbifold relation:

C
D
(3)
4

=minD4/Z3 (5.47)

Equation 5.47 relates the obtained Coulomb branch to the closure of the minimal nilpotent

orbit of so(8) (first row of table 5.6). This closely resembles the ninth results of [27] shown

in table 5.7, however, the action in our case is Z3 instead of S3. In fact, 5.47 is part of

a larger commutative diagram shown in figure 5.1. Except for the newly found C
D
(3)
4

, the

commutative diagram is obtained in the analysis of discrete gauging [69, 24]. The quiver

for the sub-regular orbit of G2 (depicted on the right side in table 5.7) is studied in detail
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KB
No.

g′ QG′ g QG Act Dim

9 D4 ○
1
− ○

2
<≡ �

3
G2

1
◻

∣○
2
− ○

3
⊃ adj

S3 5

Table 5.7: Ninth Kostant-Brylinski Result, Corresponding Coulomb Branch Quivers, Action and
Dimension. The ⊃ adj is used to denote an adjoint node ([69, 24]). The action of the permutation
group of three elements is denoted by S3.

minD4

C
D
(3)
4

n.minB3

s.reg.G2

Z3

S3

Z2

Z2

Z3

Figure 5.1: Commutative Diagram of the orbifolding of minD4, C
D
(3)
4

, n.minB3 and s.reg.G2

Coulomb Branches.

in [122, 69, 24, 43] and the HWG has the form:

HWG s.reg.G2
= PE [ν1t

2 + ν2
2t4 + ν2

3t6 + ν1
2t8 + ν2

3ν1t
10 − ν2

6ν1
2t20] , (5.48)

where ν1 and ν2 denote the highest weight fugacities for the adjoint and fundamental

representation of G2, respectively. HWG 5.48 can be obtained from 5.45 by explicit Z2

projection which acts non-trivially only on ν3
2t

6 and ν1t4 terms:

HWG s.reg.G2
=PE [ν1t

2 + ν2
2t

4 + ν3
2t

6 − ν6
2t

12]×
1

2
( 1

(1 − ν1t4) (1 − ν3
2t

6) +
1

(1 + ν1t4) (1 + ν3
2t

6))
(5.49)

One could also obtain HWG 5.48 by starting with Coulomb branch for the closure of the next-

to-minimal nilpotent orbit of B3 shown on the right side of the commutative diagram 5.1. The

corresponding Highest Weight Generating function takes the form [44, 24]:

HWG n.minB3
= PE [λ2t

2 + λ2
1t

4] , (5.50)
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where λ2 and λ1 are the highest weight fugacities for the adjoint and vector representations of

SO(7), respectively.

First, use HWG 5.50 to obtain the refined Hilbert Series corresponding to n.minB3 . Further-

more, project from the SO(7) to the G2 lattice to obtain a refined HS which is now written in

terms of fugacities for the fundamental weights of G2. Using the newly obtained HS, compute

the corresponding HWG. In terms of the G2 highest weight fugacities ν1, ν2, one finds

HWG n.minB3
= 1 + ν1ν2t6

(1 − ν1t2) (1 − ν2t2) (1 − ν2
2t

4) (1 − ν2
1t

8) . (5.51)

Next, employ the desired Z3 action using ω, similarly to 5.35 and 5.44, by performing the

averaging of 5.51.

1

3

2

∑
i=0

( 1 + ωiν1ν2t6

(1 − ν1t2) (1 − ωiν2t2) (1 − ν2
2t

4) (1 − ν2
1t

8)) (5.52)

As before, the action leaves invariant the terms involving only the adjoint fugacity ν1. In

addition, one finds that the ν2
2t

4 term is also invariant under the action. Finally, evaluating the

Z3 averaging in 5.52 yields HWG 5.48.

Summarizing the last two sections, the Coulomb branch results for the affine G2 and twisted

affine D
(3)
4 quivers unequivocally suggest the validity of Claim 2. The quivers in table 5.5 and

5.6 both lack any outer automorphism symmetry and both have ks = 1 (i.e. a single rank 1

short node). Accordingly, 2 different Coulomb branches are found per each quiver. Finally,

orbifold relations 5.38 and 5.47 constitute further evidence for Claim 3.

5.7 Ungauging Schemes and HWG for Cn Sequence

After establishing Claim 2 and Claim 3 based on the numerous evidence in previous sections,

one is justly in a position to proceed towards some generalizations. Remember that in section

5.2 two different Coulomb branches are found for the minimally unbalanced C3 quiver.

Let us now consider a more general theory given by 5.53 and termed the minimally unbalanced
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Ungauging scheme Hilbert Series & Coulomb branch

○
1
− ○

2
− ⋅ ⋅ ⋅ − ○

n−1
<= ○

n
−�

2

n HS C
3 1

(1−t)14 H7

4 (1+55t2+890t4+5886t6+17929t8+26060t10+palindrome+t20)
(1+t2)−1(1−t2)22 minE6

�
1
− ○

2
− ⋅ ⋅ ⋅ − ○

n−1
<= ○

n
− ○

2

n HS C
3 1+6t2+t4

(1−t)10(1−t2)4 H5 ×C4/Z2

4 (1+29t2+435t4+2948t6+8998t8+12969t10+palindrome+t20)
(1+t2)−1(1−t2)22 n.minF4

Table 5.8: Different choices of ungauging schemes for the minimally unbalanced Cn sequence.

Cn sequence.

○
1
− ○

2
− ○

3
− ⋅ ⋅ ⋅ − ○

n−1
<= ○

n
− ○

2
(5.53)

The various ungauging schemes are collected with their respective Hilbert Series and Coulomb

branches in table 5.8. Recall that on the long side of the quiver it suffices to show only one

of the long ungauging schemes as the other choices are equivalent. Also note that the invalid

ungauging schemes (i.e. ungauging on a rank r short node with r > 1) are omitted. The

Coulomb branches corresponding to the long and short rank 1 ungauging schemes are denoted

by Ln and Sn, respectively. Moreover, according to Claim 3, one expects that the orbifold

relation 5.54 holds.

Sn = Ln/Z2. (5.54)

First, lets study the long ungauging scheme for n = 4.

Observe that for n = 4 one obtains the twisted affine E
(2)
6 quiver with Coulomb branch corre-

sponding to the space of one E6 instanton on C2, or equivalently, to the closure of the minimal

nilpotent orbit of e6 algebra [43]. The Highest Weight Generating function written in terms of

the highest weight fugacity for the adjoint representation of E6 takes the simple form [43]:

HWGminE6
= PE [λ6t

2] . (5.55)

The ungauging scheme in the lower part of table 5.8 produces an orbifold Coulomb branch

(see section 5.2 for the case n = 3). For n = 4, one obtains the closure of the next-to-minimal
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nilpotent orbit of f4 algebra, with the Highest Weight Generating function [43]:

HWG n.minF4
= PE [ν1t

2 + ν2
4t

4] , (5.56)

where ν1 and ν4 are the highest weight fugacities for the adjoint and fundamental representations

of F4, respectively. To identify the Z2 action explicitly, first decompose the highest weight

fugacity for the adjoint of E6 in terms of the F4 fugacities:

λ6 Ð→ ν1 + ν4. (5.57)

The Z2 projection is constructed as

1

2
( 1

(1 − ν1t2) (1 − ν4t2)
+ 1

(1 − ν1t2) (1 + ν4t2)
) (5.58)

and it indeed equals the Highest Weight Generating function 5.56. Hence, in accord with Claim

3, one finds the orbifold relation 5.59.

n.minF4 =minE6/Z2 (5.59)

Equation 5.59 is the fourth result of Kostant and Brylinski given in the first row of table 5.1.

Further treatment of this case appears in [116].

Now, lets turn our attention back to the long unaguging scheme in table 5.8 and let us try to

derive the HWG in terms of the highest weight fugacities of C4. Begin with HWG 5.55 and

compute the decompositions of the E6 adjoint highest weight fugacity as well as its second and

third powers:

λ6 Ð→ µ2
1 + µ4,

λ2
6 Ð→ µ4

1 + µ2
1µ4 + µ2

4 + µ2
2 + 1 + µ4,

λ3
6 Ð→ µ6

1 + µ4
1µ4 + µ2

1µ
2
4 + µ3

4 + (µ2
2 + 1 + µ4) (µ2

1 + µ4) + µ2
3

(5.60)
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where µ1, µ2, µ3, µ4 denote the highest weight fugacities of C4. As a result, the Highest Weight

Generating function in terms of the C4 highest weight fugacities is obtained:

HWG L4 = PE [µ2
1t

2 + µ2
2t

4 + µ2
3t

6 + t4 + µ4t
2 + µ4t

4] . (5.61)

Inspection of HWG 5.7 in section 5.2 and HWG 5.61 suggests a generalization for any value of

n given by

HWG Ln = PE [
n−1

∑
i=1

µ2
i t

2i + t4 + µn (tn−2 + tn)] , (5.62)

where [µ1, . . . , µn] denote the fugacities for the highest weights of Sp(n). Prediction 5.62 has

been tested for n up to 5. Note that HWG 5.62 can also be obtained as a ‘folding’ of the quiver

in Figure 4 of [81] upon setting N = 4. A general formula for the HWG for the quotient space Sn,

corresponding to the short ungauging scheme (lower part of table 5.8) turns out considerably

more difficult compared to 5.62 due to considerably smaller global symmetry of the Coulomb

branch. Let us now summarize and comment on the results of the discrete gauging analysis.

5.8 Concluding Comments on Ungauging Schemes

The work in [25], presented in this chapter, reveals existence of various different Coulomb

branches for a given unframed (flavorless) non-simply laced quiver. The Coulomb branches

further depend on the ungauging scheme (i.e. the choice of node where a U(1) symmetry is

ungauged). All ungauging schemes on the long side of the quiver yield the same Coulomb

branch variety CL described by the same Hilbert Series. Short ungauging schemes (i.e. those

which involve ungauging on short nodes of the quiver) do not in general correspond to a valid

Coulomb branch. This is observed from the resulting Hilbert series as well as from the derivation

in Appendix A. However, there is an exception which involves ungauging on a rank 1 short node.

In such case, the Coulomb branch takes the orbifold form:

CS = CL/Zk, (5.63)
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where k counts the multiplicity of the non-simply laced edge (i.e. n = 2 for double-laced edge,

n = 3 for triple-laced edge, and so on).

For quivers in the form of affine Dynkin digrams, ungauging the affine node (which is long in

all non-simply laced cases) leads to the simplest Coulomb branch - corresponding to both the

moduli space of one G instanton on C2 [96] as well as to the closure of the minimal nilpotent

orbit of the corresponding Lie algebra g.

Remarkably, the ungauging scheme analysis reproduces the mathematical results of Kostant-

Brylinski [27], contained in table 5.1, using 3d Coulomb branch quivers. In particular, thanks to

the graph theoretic nature of the problem, formulated using quivers, and owing to the powerful

computational methods for the study of moduli spaces of supersymmetric gauge theories rec-

ollected in chapter 2, the orbifold actions among nilpotent orbit closures are yet more intuitive

and better understood.

The understanding of the the remaining results of Kostant-Brylinski [27] in terms of three-

dimensional Coulomb branch quivers follows in [116]. To systematically proceed, one could

carry out the ungauging scheme analysis for all minimally unbalanced quivers [23] with single

non-simply laced edge and at least one rank 1 short node. In addition, the ungauging scheme

analysis can be expanded to quivers with two non-simply laced edges. For the latter, one

might start amid quivers contained in the exotic classification of non-simply laced minimally

unbalanced quivers [23]. Few studied cases lead us to suspect that the orbifold relations are

transitive. The example in table 5.9 illustrates the transitive behavior of two ungauging schemes

for a quiver with two non-simply laced edges. As hinted by 5.47, there are more cases of orbifold

relations between three-dimensional Coulomb branches yet to be discovered.

In the next chapter, the contact with the physics of gauge theories is made more vivid. The

geometrical construction of space using 3d Coulomb branches makes appearance in the well-

established phenomenon of the Higgs mechanism. It not only brings new insight into the
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Ungauging Scheme Coulomb Branch
�
1
=> ○

2
− ○

3
=> ○

2
− ○

1
C

○
1
=> ○

2
− ○

3
=> ○

2
−�

1
C/ (Z2 ×Z2)

Table 5.9: Transitive orbifold behavior of Coulomb branches of quiver with two non-simply laced
edges.

physics of Higgsing of theories with eight supercharges but also provides novel techniques for a

computation of geometry for a large set of symplectic singularities.



Chapter 6

The Higgs Mechanism, Hasse

Diagrams, and Geometry of Symplectic

Singularities

6.1 Introduction to the Higgs Mechanism, Hasse dia-

grams, and Geometry of Symplectic Singularities

The aim of this chapter is to study the Higgs mechanism in supersymmetric gauge theories

with 8 supercharges from a brand new perspective using 3d Coulomb branch quivers. It turns

out, that the universal power of 3d N = 4 Coulomb branch constructions once again, manifests

itself by adding insight into Higgsing of both Lagrangian as well as non-Lagrangian theories

at finite and infinite gauge coupling, respectively. Concurrently, it provides a novel method

for computing the geometry of a broader class of symplectic singularities. The programme of

this chapter is based on the collaboration in [26], where the extensive output of results can be

found.

In theoretical physics, the phenomenon by which a gauge group G is broken to a subgroup

H by vacuum expectation values (VEVs) of scalar fields is known as the Englert-Brout-Higgs-

155
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Guralnik-Hagen-Kibble mechanism or more commonly as the Higgs mechanism. The mecha-

nism for Abelian and non-Abelian G has been described in the pioneering works [123, 124, 125]

and [126], respectively.

In the realm of supersymmetric gauge theories with 8 supercharges, the Higgs mechanism is

a phenomenon occurring in the Higgs branch since the moduli (VEVs) of scalar fields which

induce the mechanism all come from this branch. The Higgs branch of 4d N = 2 theory is

parametrised by the scalars in the hypermultiplets.1 In a theory with enough matter a generic

configuration of VEVs (corresponding to a generic point on the Higgs branch) leaves the gauge

group completely broken. There exist, however, loci of positive co-dimension in the Higgs

branch, were a certain subgroup H ⊂ G remains unbroken. Working out all the possibilities for

such unbroken subgroup H reveals an interesting hierarchy of partial Higgsings which can be

described by various subspaces of the original Higgs branch and relationships thereof. These

subspaces are naturally partially ordered by inclusion of their closures. There exists an exclusive

object used for encoding such structures in mathematics called a Hasse diagram. To demystify

the notion, a Hasse diagram simply represents a finite partially ordered set in the form of a

diagrammatical drawing of its transitive reduction. To illustrate, figure 6.1 shows the Hasse

diagram for the poset structure of the set {x, y, z}. Hence, the partial Higgsing of gauge theories

{x, y, z}

{x, y} {x, z} {y, z}

{x} {z} {y}

{}

Figure 6.1: Hasse diagram of the poset structure (of inclusions) of the set {x, y, z}.

1In this section we use 4d N = 2 language, however, as shall be shown later on, the same logic applies to 3d
N = 4, 5d N = 1 and 6d N = (1,0) theories.



6.1. Introduction to the Higgs Mechanism, Hasse diagrams, and Geometry of Symplectic Singularities157

provides the first conceptual link in [26].

H Ð→ Hierarchy of Partial HiggsingÐ→ Hasse diagram (6.1)

The second conceptual link comes from a purely geometric point of view of the Higgs branch.

The amount of supersymmetry for theories with 8 supercharges implies that the Higgs branch

is a hyperKähler cone [127], or equivalently, a symplectic singularity [128]. For a review of

symplectic singularities refer to [129].

Every symplectic space admits a natural foliation induced by the symplectic form. To see how

this comes about, remember the symplectic foliation of the phase space in theoretical mechanics

problems.

Therein, one works with the Poisson bracket {p, q} of two functions on the phase space. The

Poisson bracket (or Poisson bivector) satisfies the properties of skew-symmetry, the Jacobi

identity, and the Leibnitz rule. A variety endowed with such bracket is called a Poisson variety.

Poisson bracket can be dualized to a 2-form, yielding the definition of a symplectic variety.2

Poisson structure gives rise to a foliation of a smooth space into symplectic leaves, a feature

which extends to symplectic singularities3 [57]. Hence, a normal symplectic singularity is finitely

stratified (or foliated) as

{0} =X0 ⊂X1 ⊂ ⋅ ⋅ ⋅ ⊂Xn =X (6.2)

such that

1. Xi−1 is the singular part of Xi

2. Normalization of every irreducibile component of Xi is itself a symplectic singularity

Spaces Xi, present in the stratification, are partially ordered by their closure with respect to the

singular part. Thus, it is again a Hasse diagram which encodes the stratification of a symplectic

singularity! This tells us that the Higgs branch is partitioned into symplectic leaves which are

2Strictly speaking, the 2-form has to be non-degenerate. This condition in relaxed in Poisson geometry [130].
3The non-degenerate 2-form must extend to a non-degenerate 2-form on a resolution of X, where X is a

singular affine normal variety of even complex dimension.
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partially ordered by inclusion of their closures and hence, the symplectic structure of the Higgs

branch comes in a form of a Hasse diagram! This is the second conceptual link:

H is symplectic singularityÐ→ stratified into symplectic leavesÐ→ Hasse diagram (6.3)

Moreover, in the Hasse diagram, two adjacent leaves define a transverse slice, which is called

an elementary slice4, with dimension equal to the co-dimension of the smaller leaf inside the

closure of the larger leaf [131, 132, 133, 134, 135]. Each transverse slice in the Hasse diagram is

also a symplectic singularity, hence, all singular points inside a closure of a larger leaf define the

smaller leaf. Furthermore, the type of singularity inherited by the points of the smaller leaf is

precisely that of the origin of the transverse slice. The amalgam of the conceptual links 6.1 and

6.3 is that the partial Higgs mechanism is given by the geometrical structure of the singular

points of the moduli space and vice-versa. Moreover, on both ends, there is an underlying

Hasse diagram (figure 6.2).

Now, a ripe question is what the elementary slices and Hasse diagrams look like. For this

(partial) Higgs Mechanism Geometry of singular points of H

Hasse Diagram

Figure 6.2: Direct relationship between partial Higgsing, geometry of singular point of H and the
Hasse diagram.

purpose, remember the celebrities among the symplectic singularities and moduli spaces - the

closures of nilpotent orbits. For nilpotent orbits the structure of symplectic foliation and

elementary slices have been studied by Kraft and Procesi [133, 134] in early 80s. It has been

found that an elementary slice is either:5

• (I) ADE singularity C2/Γ, with Γ ⊂ SU(2), or

• (II) Closure of minimal nilpotent orbits of simple Lie algebra.

4Also called elementary Slodowy slice in [26].
5Assuming normality of the closure of the slice. Relaxing the assumption of normality allows for more slices

to exist [135].
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For closures of nilpotent orbits the Hasse diagrams are known. Moreover, the results are already

reproduced in the physics of 3d N = 4 theories and their brane realisation in Type IIB string

theory [136, 75].

As promised in the first paragraph of this section, the Higgs branches to be considered belong

to a broader class of symplectic singularities (i.e. beyond closures of nilpotent orbits). Imme-

diately, this poses two challenges as to what are the elementary slices that constitute Hasse

diagrams for more general symplectic singularities and how are such Hasse diagrams computed.

The answers provided by the analysis in [26] are based on the following.

• The Hasse diagram for nilpotent orbit closure moduli space is precisely reproduced by

the partial Higgsing of the corresponding theory! Thus, it is conjectured that the partial

Higgsing of a classical Lagrangian theory generates the Hasse diagram corresponding

to the stratification of the corresponding symplectic singularity. This leads to how, in

principle, elementary slices and Hasse diagrams look like for more general moduli spaces.

• A systematic method for computing the Hasse diagram comes from a mergence of recent

developments. In particular:

– Brane realisation of the Kraft-Procesi transition [136, 75] allows to understand the

Hasse diagram in terms of 3d N = 4 Coulomb branch quivers.

– The transitions (i.e. elementary slices) along the Hasse diagram are then understood

via a slight generalisation of the quiver subtraction method [68]. Thus, all transitions

found by Kraft and Procesi are quiver subtractions where the Coulomb branch of

the subtracted quiver corresponds to either the closure of a minimal nilpotent orbit

or a Kleinian surface singularity (i.e. Ak).

– Quivers fed into the quiver subtraction are 3d N = 4 ones, therefore, the Higgs

branch in question must be realised as a space of dressed monopole operators. This

is precisely the idea of the magnetic quiver, which assigns to Higgs branch quiver

in 3,4,5, and 6 dimensions a corresponding 3d N = 4 Coulomb branch magnetic

quiver. As such, the construction appeared in [106, 84, 137], even though the 5d
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and 6d brane perspective as well as the notion itself originate in [110, 108]. As

advertised in section 2.8, 3d Mirror symmetry can be regarded as technique for

finding the magnetic quiver in three dimensions. For mathematical constructions of

dressed monopole operator spaces in full rigor, refer to [138, 139].

Armed by the above machinery, and working with (strongly supported) conjecture that the

elementary slices in the Hasse diagrams belong to one of the two families discussed above,

extensive computation for large classes of theories can take place.6

After using partial Higgsing in classical theories to predict the Hasse diagrams for more general

symplectic singularity Higgs branches, moduli spaces of theories at infinite coupling are the

next to be treated using the new analysis.

The notion of Hasse diagrams already appears in physics literature, in particular, the relation

between Hasse diagrams of nilpotent orbits and 6d SCFTs is studied in [140, 141, 142]. In

[143, 144], brane systems are used to obtain Hasse diagrams corresponding to circular 3d N = 4

quiver gauge theories.

Let us begin by first remembering the Higgs mechanism for a classical gauge theory after which

we proceed with the presentation of the results. Magnetic quivers, brane webs, and quiver

subtraction techniques used for the computation of the results in [26] are outlined in Appendix

B.

6.2 Classical Higgs Mechanism and Hasse Diagrams

This section aims to illustrate the classical Higgs mechanism in the light of the new approach

described in section 6.1 using a simple example of 4d N = 2 gauge theory.

Consider a theory on a generic point of its Higgs branch. Such configuration initiates the

Higgsing of the theory since at this point, the hypermultiplet scalars of the theory are given

6It is plausible that slices beyond the two discussed families appear for Higgs branches with no known
magnetic quivers. See the discussion in section 5.3 in [26].
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non-zero VEVs, the gauge bosons can acquire mass, and the gauge group breaks into one of its

subgroups. One distinguishes three types of Higgsing:

• Complete Higgsing: All hypermultiplet scalars have non-zero VEVs and the gauge

group is fully broken.

• Maximal Higgsing: All hypermultiplet scalars have non-zero VEVs but the gauge group

is not fully broken (i.e. there remains an unbroken subgroup).

• Partial Higgsing: Subset of the hypermultiplet scalars have non-zero VEVs and there

is a subgroup of the full gauge group left unbroken.

To perform Higgsing and to find the spectrum and matter content of a theory after the Higgsing,

one uses representation theory which also allows to determine whether a specific Higgsing is

possible or not. The general prescription for a theory with gauge group G is as follows:

1. Find all candidates for Higgsing by listing all continuous subgroups Hi ⊂ G of G.

2. Decompose the adjoint representation of G into the adjoint representation of the unbroken

subgroup Hi.

3. Look for all vector bosons which are not in the adjoint representation of Hi. These are to

become massive. There need to be hypermultiplet scalars in the same representation/s

so as to be feasted on by the vector bosons. If such representations do show up, then

the scalars acquire mass, and hence the entire hypermulitplet becomes massive. On the

contrary, if such representations are not present in the decomposition, then such Higgsing

is impossible.

The following subsection demonstrates the Higgsing prescription using the example of SU(3)

theory with 6 fundamental hypermultiplets.
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6.2.1 Partial Higgsing of SU(3) theory with 6 Fundamental Hyper-

multiplets

Consider SU(3) gauge theory with 6 fundamental hypermultiplets. The continuous subgroups

of SU(3) are SU(2) ×U(1), SU(2), U(1) ×U(1), U(1) and the trivial group {1}. First, let us

study the Higgsing to SU(2).

Higgsing SU(3) Ð→ SU(2). In terms of the Dynkin labels, the SU(3) representations de-

compose as:

[1,0]A2 ↦ [1]A1 + [0]A1 ,

[1,1]A2 ↦ [2]A1 + 2[1]A1 + [0]A1´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
acquire mass

.
(6.4)

Masses for the W-bosons must come from a suitable component of the hypermultiplets. In

terms of representations one finds

6([1,0]A2 + [0,1]A2) − 2(2[1]A1 + [0]A1) = 4([1]A1 + [1]A1) + 10([0]A1) , (6.5)

which implies that an effective theory with gauge group SU(2) and 4 fundamental hypermulti-

plets remains. Moreover, the complex dimension of the subspace of the Higgs branch on which

the theory is broken to this effective theory is 10 (or 5 quaternionic dimension). The dimension

is precisely the number of massless hypers transforming as singlets. Now, let us try to Higgs to

U(1) × SU(2).

Higgsing SU(3)Ð→ U(1) × SU(2). In this case, the representations decompose as:

[1,0]A2 ↦ q−2[1]A1 + q[0]A1 , [0,1]A2 ↦ q2[1]A1 + q−1[0]A1 ,

[1,1]A2 ↦ [2]A1 + q−3[1]A1 + q3[1]A1 + [0]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

should acquire mass

.
(6.6)
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When attempting to do the computation as in (6.5), one finds that the terms do not cancel

because of non-matching U(1) charges. In turn, one concludes that Higgsing SU(3) to U(1) ×

SU(2) is not possible. Similarly, the same can be shown for the Higgsings to U(1) ×U(1) and

U(1), respectively.

Higgsing SU(2) Ð→ {1}. Higgsing SU(2) theory to {1} means to give mass to all remain-

ing gauge bosons. Such unobstructed Higgsing is naturally possible. One readily sees that

there are 10 massless moduli, corresponding to a singular locus of the original Higgs branch of

quaternionic dimension 5.

Higgs branch of SU(3) theory with 6 fundamental flavors. The Higgsing revels that the

total space7 (i.e. 10 dimensional Higgs branch of the SU(3) theory with 6 fundamental hypers)

contains a 5 dimensional locus (or symplectic leaf ) where the theory is broken to SU(2) theory

with 4 fundamental hypers. The leaf is parametrised by the 5 massless moduli which appear

in the Higgsing analysis. The residual unbroken gauge theory with its matter content resides

over each point of the symplectic leaf. Finally, there is another sympelctic leaf parametrised

by 10 moduli and corresponding to the completely broken gauge group. The Higgs branch of

SU(3) theory with 6 fundamental hypermultiplets is schematically drawn in figure 6.3.

4
◻

∣○
SU(2)

d = 5

6
◻

∣○
SU(3)

d = 0

{1} d = 10

Transverse slices with d = 5

Figure 6.3: The Higgs branch of SU(3) with 6 fundamental flavors. The unbroken theory lives at the
origin (black circle) with d = 0. After the Higgsing, the remaining SU(2) theory with 4 fundamental
flavors lives on the 5-dimensional symplectic leaf (blue line) outside of the origin. The entire 10-
dimensional plane, except the origin and the blue line, represents the symplectic leaf on which the
completely broken theory lives. This theory is effectively a theory of 10 neutral hypermultiplets. The
transverse slices in the bigger symplectic leaf at each point are represented by red lines.

The hierarchy of partial Higgsing of SU(3) with 6 fundamental flavors is encoded in a Hasse

7To be understood as the closure of the largest leaf.
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Hasse diagram Effective Theory
10

5

0

5

5

{1}
4
◻

∣○
SU(2) 6

◻

∣○
SU(3)

Figure 6.4: Hasse diagram of partial Higgsing of SU(3) with 6 fundamental hypers. The quivers
in braces are the effective theories corresponding to each leaf. The number of neutral hypermultiplets,
which matches the quaternionic dimension of the leaf, is given next to the node in the Hasse diagram.

diagram in figure 6.4. The Hasse diagram 6.4 should be understood as follows:

• The bottom node corresponds to the unbroken theory. It is the smallest symplectic leaf

(or trivially, the closure thereof). The Higgs branch of SU(3) with 6 fundamental flavors

is the space from the bottom to the top node, or equivalently, the trasverse slice between

the total space and the trivial leaf.

• The middle node corresponds to the SU(2) theory with 4 flavors. The Higgs branch of

the residual SU(2) theory with 4 flavors is the space from the top node to the middle

node (i.e. transverse slice between middle symplectic leaf and the total space - the full

Higgs branch of SU(3)). The locus where the original theory is broken to the SU(2)

theory is the space from the bottom to the middle node.

• The top node corresponds to the trivial, fully broken theory. The singular locus closure

corresponding to the Higgsing of the original SU(3) theory to {1} is the space from the

bottom to the top node. This closure eaquals the Higgs branch of the original SU(3)

theory and its transverse slice with the total space is trivial.
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6.2.2 Gauge Enhancement of SU(3) with 6 Fundamental Hypermul-

tiplets using Brane Webs, Magnetic Quivers and the Kraft-

Procesi Transition

Here, the aim is to showcase the machinery motivated in section 6.1 which involves magnetic

quivers for 5d brane webs [110], brane realisation of Kraft-Procesi transitions [136, 75, 68],

and quiver subtraction. In particular, we study the gauge enhancement (i.e. un-Higgsing)

of the SU(3) theory with 6 fundamental hypers. The gauge enhancement basically amouts

to ‘performing the Higgsing’ of section 6.2 in the opposite direction (i.e. gauge enhancing a

maximally broken theory to the fully unbroken theory). In attempt to keep the presentation

as clear as possible, the computational techniques such as magnetic quivers, brane webs, brane

realisation of KP transitions, and quiver subtraction are deferred to Appendix B.1.

As opposed to the Higgsing of the previous section, one starts with a completely broken theory,

corresponding to a generic point of the Higgs branch. In terms of brane webs, this is depicted

in the first row of table 6.2. For a dictionary between the electric quiver and brane webs, see

for instance [110]. The gauge enhancement proceeds by realigning light branes so that they

move to a singular locus of the Higgs branch such that the mixed branch opens up (recall

2.19). The working assumption of how to manipulate the branes is inspired by Kraft-Procesi

brane transitions [136, 75] and Hasse diagrams for closures of nilpotent orbits [28], wherein,

exclusively one of two types of minimal transitions appear:

• Closures of minimal nipotent orbits

• Ak−1 Kleinian Singularities

These minimal transitions have both brane web as well as 3d magnetic quiver description. Table

6.1 lists magnetic quivers for all nilpotent orbits closure minimal transitions and Ak−1 Kleinian

surface singularity transitions, respectively. By performing minimal transitions in the brane

configuration, one works out the gauge enhancement of the theory in question. At each step in

the gauge enhancement, there is a corresponding magnetic quiver (shown in the third column
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Minimal NO transition Quiver Dimension
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Kleinian Singularity Transition Quiver Dimension

Ak−1
1○ kÔÔ 1○ 1

Table 6.1: Minimal nilpotent orbit and Ak−1 Kleinian singularity transitions, the corresponding
magnetic quivers and dimensions.

of table 6.2). As a result of this, one obtains the Hasse diagram for the gauge enhancement

(un-Higgsing) of SU(3) theory with 6 fundamental hypers, which in addition to section 6.2.1,

also contains information about the geometry of each symplectic leaf in terms of magnetic

quiver! Table 6.2 should be understood from the point of view of the Higgs branch which

it describes as follows. Starting with the brane web configuration on the top, corresponding

to completely broken theory and performing 5-brane web Kraft-Procesi transitions (shown in

form of subtracting Higgs branch brane sub-webs), one generates the brane webs whose Higgs

branches are the symplectic leaves of the Higgs branch of the SU(3) theory.

The electric quivers for the effective theories (same as computed by partial Higgsing in previous

section) are given in the second column of the table. The Higgs branch of each electric theory

is the transverse slice between the symplectic leaf and the total space (i.e. Higgs branch of the

SU(3) theory).
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Brane Web Electric Quiver Magnetic Quiver

{1} 3 2 121

1 1

−
2 11

1 1

−

4
◻

∣○
SU(2)

1 1 111

1

−
1 1 111

1

−

6
◻

∣○
SU(3)

1

Table 6.2: Gauge enhancement of SU(3) theory with 6 fundamentals using 5-brane webs, the cor-
responding electric and magnetic quivers. The magnetic quivers correspond to the closures of the
symplectic leaves in the Higgs branch. The subtracted magnetic quivers correspond to the transverse
slices. Different colors of the 5-branes are at different positions along the 7-branes (depicted by circles
in the brane web picture).

Closure of each one of the three symplectic leaves is the 3d N = 4 Coulomb branch of the

magnetic quivers given in the third row of the table. Geometrically, the elementary slice which

is subtracted (via performing the corresponding minimal transition) is the Coulomb branch

of the magnetic quiver with a minus sign in the third column. The third row depicts the

computation of quiver subtraction recalled in Appendix B.2.

The outcome of the analysis of the Higgs branch of SU(3) gauge theory with 6 flavors using

brane webs, magnetic quivers, and quiver subtraction is summarized by Hasse diagram 6.5. In

comparison with the information carried by the Hasse diagram 6.4 in section 6.1, Hasse diagram

6.5 is enriched by information about the geometry of the leaves and transverse slices:

• The Coulomb branch for each magnetic quiver (i.e. the space of dressed monopole oper-

ators) associated to a particular node of the Hasse diagram is the closure of the corre-

sponding symplectic leaf.

• The links in the Hasse diagram are now assigned labels d4 and a5, meaning that the geo-

metric spaces corresponding to the transitions (i.e. Kraft-Procesi brane web transitions)
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between the leaves are characterized. In particular, these spaces are Coulomb branches of

the subtracted quivers in the third column of table 6.2, namely, nilpotent orbit closures

of D4 and A5 algebras, respectively.

Hence, the information carried by the Hasse diagram 6.5 is considerably richer. In fact, it is the

first time, that the geometry of the Higgs branch (i.e. symplectic singularity) is described in such

detail. Remarkably, the algorithm for obtaining this information is straightforward, especially

thanks to the developed dictionary between brane realisation of Kraft-Procesi transitions and

magnetic quiver subtraction. Originally, quiver subtraction [68] has been proposed as a brane

generalization of Kraft-Procesi transitions for closures of nilpotent orbits [136, 75]. Here, the

reader is referred to Appendix B.2 for an explanation of slightly more general quiver subtraction

method.

Hasse diagram Magnetic quiver

10

5

0

d4

a5

○
1
− ○

2
−

1○
Ó

1○
Ò○

3
− ○

2
− ○

1

1○
Ò Ó

○
1
− ○

1
− ○

1
− ○

1
− ○

1

○
1

Figure 6.5: Hasse diagram with magnetic quivers corresponding to the closures of symplectic leaves
of the classical Higgs branch of SU(3) theory with 6 fundamental hypermultiplets. The labels of the
edges of the Hasse diagram represent transverse slices between neighboring symplectic leaves.
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6.2.3 Partial Higgsing of SU(4) theory with a 2-nd rank antisym-

metric Λ2 and 12 fundamental hypermultiplets

The analysis in 6.2.1 is now applied to SU(4) gauge theory with a 2-nd rank antisymmetric Λ2

hypermultiplet and 12 fundamental hypermultiplets.

Again, we begin with the study of partial Higgs mechanism using representation theory. The

continuous subgroups of SU(4) are Sp(2), SU(3), SU(2), and the trivial group {1}.

Higgsing SU(4) Ð→ Sp(2). In terms of Dynkin labels, the representations of SU(4) have

the following decomposition:

[1,0,0]A3 ↦ [1,0]C2 ,

[0,0,1]A3 ↦ [1,0]C2 ,

[0,1,0]A3 ↦ [0,1]C2 + [0,0]C2 ,

[1,0,1]A3 ↦ [2,0]C2 + [0,1]C2´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
acquire mass

.

(6.7)

After the Higgsing, the computation of the massless spectrum follows 6.8.

12([1,0,0]A3 + [0,0,1]A3) + 2([0,1,0]A3) − 2([0,1]C2) = 24[1,0]C2 + 2([0,0]C2) (6.8)

One sees that it is possible to Higgs the theory to Sp(2) theory with 12 fundamental hy-

permultiplets.8 The new effective theory lives on a symplectic leaf of quaternionic dimension

1.

8This corresponds to 24 half-hypermultiplets.
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Higgsing Sp(2) Ð→ SU(2). Let us study a further Higgsing of Sp(2) into Sp(1) ≅ SU(2).

In this case, one has the decomposition

[1,0]C2 ↦ [1]A1 + 2[0]A1 ,

[2,0]C2 ↦ [2]A1 + 2[1]A1 + 3[0]A1´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
acquire mass

,
(6.9)

and the partial Higgsing

12(2[1,0]C2) − 2(2[1]A1 + 3[0]A1) = 20[1]A1 + 42[0]A1 . (6.10)

After such Higgsing one finds that the remaining effective theory is Sp(1) ≅ SU(2) theory

with 10 fundamental hypermultiplets. The remaining theory lives on a symplectic leaf with

quaternionic dimension 22, which is half the number of singlets in 6.10 plus half the number of

singlets inherited from 6.8. Note that the dimension of the transverse slice, between the leaf

with the Sp(2) theory and the closure of the leaf where the Sp(1) theory resides, is 21 (i.e.

half the number of singlets in 6.10).

Higgsing SU(4)Ð→ SU(3). Decomposing the representations yields9

[1,0,0]A3 ↦ [1,0]A2 + [0,0]A2 ,

[0,1,0]A3 ↦ [1,0]A2 + [0,1]A2 ,

[1,0,1]A3 ↦ [1,1]A2 + [1,0]A2 + [0,1]A2 + [0,0]A2´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
acquire mass

.

(6.11)

By the sequel, one computes the partial Higgsing

12([1,0,0]A3 + [0,0,1]A3) + 2[0,1,0]A3 − 2([1,0]A2 + [0,1]A2 + [0,0]A2)

= 12([1,0]A2 + [0,1]A2) + 22[0,0]A2

(6.12)

9Anti-fundamental representation [0,0,1]A3
has the same decomposition as the fundamental representation

[1,0,0]A3 .
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resulting in an effective SU(3) gauge theory with 12 fundamental hypermultiplets. The remain-

ing effective theory lives on a symplectic leaf of quaternionic dimension 11 (i.e. leaf parametrised

by 22 complex moduli).

Higgsing SU(3) Ð→ SU(2). In order to Higgs the theory to SU(2), the relevant decompo-

sition reads

[1,0]A2 ↦ [1]A1 + [0]A1

[1,1]A2 ↦ [2]A1 + 2[1]A1 + [0]A1´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
acquire mass

(6.13)

and the Higgs mechanism proceeds according to the computation

12([1,0]A2 + [0,1]A2) − 2(2[1]A1 + [0]A1) = 20[1]A1 + 22[0]A1 . (6.14)

Observe, that the obtained theory is the same as after Higgsing Sp(2)Ð→ SU(2). In particular,

one finds SU(2) gauge theory with 10 fundamentals and the number of massless singlets is

22, indicating that the symplectic leaf is of quaternionic dimension 11. Also note, that the

dimension of the transverse slice between SU(3) leaf and the closure of the SU(2) symplectic

leaf is 11.

Higgsing SU(2) Ð→ {1}. Such Higgsing into the trivial gauge group {1} is without restric-

tions and results in 34 massless moduli. This indicates that the dimension of the trasverse slice

between the leaf where the SU(2) theory lives and the closure of the leaf with the trivial theory

is 17.

Higgs branch of SU(4) theory with 2nd antisymmetric and 12 fundamental hyper-

multiplets. The partial Higgsing and the effective unbroken theories at each stage of the

Higgsing are summarized by the Hasse diagram in figure 6.6. The Higgs branches of the effec-

tive theories characterize transverse slices between the symplectic leaves and the total space.
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This is represented by the brackets in figure 6.6. Note that Hasse diagram 6.6 contains a bifur-

cation (corresponding to two possible Higgsing of the same theory) which is a common feature

in Hasse diagrams of nilpotent orbit closures [145].

Hasse diagram Effective Theory

39

22

11

1

0

17

11

11

1

21

{1}

◻10
∣○

SU(2)

◻12
∣○

SU(3) ◻12
∣○

Sp(2)

◻12
∣○

SU(4)⊃Λ2

Figure 6.6: Hasse diagram of partial Higgsing of SU(4) theory with 12 fundamentals and one hy-
permultiplet in the 2nd rank antisymmetric representation denoted by ⊃ Λ2. Effective quiver theories
at each stage of partial Higgsing are given by the brackets.

6.2.4 Gauge Enhancement of SU(4) theory with a 2-nd rank anti-

symmetric Λ2 and 12 Fundamentals using Branes, Magnetic

Quivers, and Kraft-Procesi transition

In this case, the theory is engineered as a world-volume theory in Type IIA string theory back-

ground involving D6, D8, and NS5 branes in the presence of an orientifold O8− plane. The

gauge enhancement can be understood in terms of mixed branches and can be engineered in

terms of brane configurations depicted in table 6.3.
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Brane Configuration Effective Theory
O8−

{1}
O8−

10
◻

∣○
SU(2)

O8− O8∗

12
◻

∣○
Sp(2)

12
◻

∣○
SU(3)

O8−

12
◻

∣○
SU(4)⊃Λ2

Table 6.3: Gauge enhancement of SU(4) theory with a 2nd-rank antisymmetric and 12 fundamentals
engineered in Type IIA string background. Branes of the same color other than black are frozen
together. Corresponding effective theories are shown in a separate column. The third row contains the
two different possible enhancements.

One starts with a generic point on the Higgs branch with the gauge group fully broken, corre-

sponding to the largest symplectic leaf. Such generic point is associated with the configuration

where all D6 branes (horizontal) are suspended between D8 branes (vertical) as shown in the

top row of table 6.3. For this brane configuration, there is a corresponding magnetic quiver,

shown in the top row in table 6.4.

Aligning of D6 branes and the NS5 brane (blue solid circle) in second row of 6.3 corresponds

to the gauge enhancement of the fully broken theory to SU(2) with 10 fundamental hypers

plus additional 22 neutral hypermultiplets which parametrise a 22-dimensional symplectic leaf.

The transverse slice between the leaf and the total space (i.e. the Higgs branch of the SU(4)

theory) is represented by the aligned branes, in particular, it is the Higgs branch of the effective

SU(2) theory with 10 fundamentals. Furthermore, we claim that this is precisely the 3d N = 4

Coulomb branch of the subtracted magnetic quiver shown in the second row of table 6.4.

Hence, taking off the first transverse slice corresponds to the d10 Kraft-Procesi transition, or
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Magentic Quivers

○
1
− ○

2
− ○

3
−
○ 1
∣○
4
− ○

4
− ○

4
− ○

4
− ○

4
− ○

4
−
○ 2
∣○
4
− ○

2
− ○

1

– ○
1
−
○ 1
∣○
2
− ○

2
− ○

2
− ○

2
− ○

2
− ○

2
−
○ 1
∣○
2
− ○

1

○
1
−

1○
Ò Ó

Ò○
2

− ⋅ ⋅ ⋅ −
○ 1
∣○
2
− ○

1
−Ó○

1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

11

– ○
1
−
○ 1
∣○
2
−⋯ −

○ 1
∣○
2
− ○

1
–

1○
Ò Ó

○
1
− ⋅ ⋅ ⋅ − ○

1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

11

○
1
= ○

1

1○
Ò Ó

○
1
− ⋅ ⋅ ⋅ − ○

1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

11

○
1

Table 6.4: Magnetic quivers associated with gauge enhancement of SU(4) theory with a 2-nd rank
antisymmetric and 12 fundamentals in table 6.3. The colored nodes correspond to the frozen branes
in table 6.3. Concurrently, the table visualises the quiver subtraction method.

equivalently, to the first quiver subtraction in table 6.4. The brane configuration obtained in

the second row of 6.3 (corresponding to the 22-dimensional symplectic leaf) is associated with

the magnetic quiver in the third row of table 6.4. Note that the blue frozen D6 branes are seen

as a single U(1) gauge node in the magnetic quiver. Now, there are two ways to enhance the

gauge group:

Gauge enhancement to Sp(2) (left): Aligning the remaining D6 branes produces the left

brane configuration in table 6.3 with a gauge enhancement to Sp(2) theory with 12 (massless)

flavors plus a remaining neutral hypermultiplet which parametrises a one-dimensional sym-

plectic leaf. The space associated with the closure of the one-dimensional leaf is the Coulomb

branch of the left magnetic quiver depicted in the fifth row of table 6.4, in particular, it is the

A1 Kleinian singularity (see section 2.3). Transverse slice between the one-dimensional leaf and

the total space is the Higgs branch of Sp(2) theory with 12 flavors. Transverse slice between the

one-dimensional leaf and the leaf corresponding to the brane system in the second row of table

6.3 is associated with d12 Kraft-Procesi transition since the space is the Coulomb branch of the

left magnetic quiver in the fourth row of table 6.4! Note, that the branes aligned in the first
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stage of gauge enhancement represent a single U(1) node (drawn blue) in the magnetic quiver

which is otherwise given by the (red) branes aligning in the second stage of gauge enhancement.

Finally, the alignment of the (black) NS5 brane takes one to the origin of the Higgs branch,

resulting in the brane configuration in the last row of table 6.3. In terms of magnetic quivers,

the closure of the new symplectic leaf corresponds to the Coulomb branch of the trivial quiver

in the last row of table 6.4, whereas the transverse slice is given by the left magnetic quiver in

the fifth row of the same table. Hence, this slice corresponds to a1 Kraft-Procesi transition.

Gauge enhancement to SU(3) (right): In the brane system given in the second row of

table 6.3, one could instead align the (black) NS5 brane and D5 branes with the blue branes.

This involves a splitting of the O8− brane into two half-D8 branes and an orientifold O8∗ plane

[108]. The obtained gauge enhancement, depicted as the right brane system in table 6.3, is

to SU(3) theory with 12 flavors plus additional 11 neutral hypers. The closure of the new

symplectic leaf is the Coulomb branch of the right magnetic quiver in the fifth row of table 6.4

and the transverse slice is associated with the right subtracted magnetic quiver in the fourth

row of the same table. Moreover, we see that this corresponds to a11 Kraft-Procesi transition.

Finally, moving onto to origin of the Higgs branch from the right configuration in the third row

of table 6.3, one finds that the transverse slice is the Coulomb branch of the right magnetic

quiver in the fifth row of table 6.4, i.e. the A11 affine Dynkin diagram. Hence, this is the a11

Kraft-Procesi transition.

The gauge enhancement (or un-Higgsing) of the SU(4) theory wtih one 2-nd rank antisymmetric

Λ2 and 12 fundamental hypermultiplets is summarized by the Hasse diagram 6.7, given together

with the associated magnetic quivers. Again, it contains much more information compared to

the Hasse diagram obtained using standard methods of partial Higgsing in 6.2.3. In addition

to mere dimensions of each Hasse diagram node (i.e. symplectic leaf) in 6.6, our analysis

identifies magnetic quivers associated with each leaf (i.e. Coulomb branches of the associated

magnetic quivers are the closures of the symplectic leafs in the Hasse diagram). Furthermore,

the geometry of the transitions (i.e. links in the Hasse diagram) is now available in form of a
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Coulomb branch geometry of the corresponding 3d N = 4 magnetic quivers!

Hasse diagram Magnetic quiver

39

22

11

1

0

d10

a11

a11

c1

d12

○
1
− ○

2
− ○

3
−
○ 1
∣○
4
− ○

4
− ○

4
− ○

4
− ○

4
− ○

4
−
○ 2
∣○
4
− ○

2
− ○

1

○
1
−

1○
Ò Ó

○ 1
∣○
2
− ⋅ ⋅ ⋅ −

○ 1
∣○
2
− ○

1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

11

1○
Ò Ó

○
1
− ⋅ ⋅ ⋅ − ○

1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

11

○
1
= ○

1

○
1

Figure 6.7: Hasse diagram of the classical Higgs branch of SU(4) with one 2nd rank antisymmet-
ric and 12 fundamentals together with magnetic quivers for the closures of symplectic leaves. The
associated quivers for electric theories at each leaf are given in figure 6.6.

6.3 Hasse diagrams of Higgs branches: General Features

Given the success of not only recovering the results of classical partial Higgsing for the two

theories in section 6.2 but also exploring in novel detail the geometrical structure of the Higgs

branches using the machinery of magnetic quivers, Kraft-Procesi brane transitions, and quiver

subtraction let us now conduct a more general discussion to see all that a Higgs branch Hasse

diagram encodes. For this purpose, consider the Hasse diagram in figure 6.8, corresponding to

some theory with gauge group G.10

The enumerated elements of Hasse diagram 6.8 represent the following:

10For clarity of presentation in figure 6.8 a linear Hasse diagram is used.
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(1)

⋮

(4) (2)

(6)(5)

(3)

Figure 6.8: Information encoded in the Higgs branch Hasse diagram.

• (1): Partial Higgsing breaks the theory with gauge group G into a theory with unbro-

ken gauge group H. On the original Higgs branch, parametrised by the hypermultiplet

scalar VEVs, this happens on a symplectic leaf depicted by a node in the Hasse dia-

gram. Whereas the leaf is parametrised by uncharged massless moduli obtained in the

partial Higgsing, the remaining unbroken effective gauge theory lives on every point of

this leaf. Closure of every symplectic leaf is again a symplectic singularity and together,

the closures form a partially ordered set represented by the Hasse diagram.11

• (2): The Higgs branch of the effective residual theory living on a particular leaf is the

transverse slice of this leaf inside the closure of the total space. The Higgs branches of

the unbroken theories indicated by the brackets in figures 6.4 and 6.6 are the transverse

slices between the total space (top of the Hasse diagram) and the symplectic leaves to

which the brackets extend.

• (3): The closure of the symplectic leaf to which the bracket extends (from the bottom

node upwards) is the union of all components of the Hasse diagram below and including

the leaf. Starting with a magnetic quiver for the entire Higgs branch, quiver subtraction

produces magnetic quivers for all leaves with their Coulomb branches being the closures

of the leaves. This is the space from the bottom to the node to which bracket (3) extends.

11A closure of a leaf with theory A living on it is the union of all leaves with effective gauge theories on them
which are Higgsable to theory A.
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• (4): In subtraction of the magnetic quivers, corresponding to the minimal Kraft-Procesi

brane transition between two adjacent nodes (i.e. top and the second node in figure 6.8),

the Coulomb branch of the subtracted quiver is the transverse slice between the nodes.

This gives the precise geometry of the transverse slice, not just its dimension!

• (5): Combining the above data (1) − (4), the geometry of the transverse slices between

any two nodes in the Hasse diagram can be deduced (see the following subsection).

• (6): Finally, the transverse slice between the total space (top node) and the trivial leaf

(bottom node) is the Higgs branch of the original unbroken gauge theory.

6.3.1 From Coulomb branches of magnetic quivers to Higgs branches

of electric quivers and back

All elementary transverse slices (i.e. links in the Hasse diagram) can be described using

Coulomb branches of magnetic quivers which are subtracted in the process of quiver subtrac-

tion. How about the description of the elementary transverse slices in terms of Higgs branches

of the effective unbroken electric theories? Furthermore, what can one say about the Higgs

branch description of the non-minimal transverse slices? Let us address these questions using

the Hasse diagrams for the two theories discussed in the previous section.

Transverse slices of 5d SU(3) theory with 6 fundamental hypermultiplets. The Hasse

diagram with the transverse slices, given using the associated Higgs branch quivers of electric

theories, is depicted in figure 6.9.

The transverse slice from the bottom to the top node is the Higgs branch of the original

theory. The d4 transverse slice is associated to the Higgs branch of SU(2) gauge theory with

4 flavors. New piece of information obtained from the analysis in 6.2.2 is the geometry of the

a5 slice which is conjectured to be the Higgs branch of U(1) SQED theory with 6 fundamental

hypermultiplets. In fact, as a necessary check, we should find a commutant of SU(2) inside

SU(3), which is indeed U(1).
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Hasse diagram Electric Quivers
10

5

0

d4

a5

4
◻

∣○
SU(2)

6
◻

∣○
1

6
◻

∣○
SU(3)

Figure 6.9: Hasse diagram for SU(3) theory with 6 fundamental hypermultiplets with the Higgs
branches of effective electric theories for each transverse slice. The links are labelled by the corre-
sponding Kraft-Procesi transitions they represent.

Transverse slices of 6d SU(4) theory with 2-nd rank antisymmetric Λ2 and 12 fun-

damental hypermultiplets. Similarly, let us now enrich the Hasse diagram 6.6 with the

information about the geometry of transverse slices using Higgs branches of electric quivers. In

this case, the Hasse diagram contains more symplectic leaves, and consequently, more transverse

slices. The enriched Hasse diagram with electric quiver theory associated to each transverse

slice is given in figure 6.10. Transverse slices starting from a different node than the top node

are not obtained in 6.2.3 via partial Higgsing. Inspecting the bottom a11 transition, the com-

mutant of SU(3) inside SU(4) is U(1) and moreover the slice is of dimension 11. Recalling the

formula 2.90 for the dimension of the Higgs branch of SQED with N flavors in section 2.8, one

sees that the number of flavors must be 12. The same is deduced from the inspection of the

magnetic quiver corresponding to the a11 transition. The electric quivers for d12 and c1 transi-

tions can be similarly deduced from the corresponding magnetic quivers in table 6.4. Finally,

gauge group of the theory denoted by X, corresponding to two sequential a11, or equivalently,

d12 + c1 transitions, is a commutant of SU(2) inside SU(4) which is U(2). It contains twelve

SU(2) fundamental hypers with charge 1 and two SU(2) singlet hypers with charge 2 under

U(1), respectively. In this fashion, the treatment introduced in [26] can be used to understand

(and compute) the geometry of all symplectic leaves and all transverse slices present in the

structure of a symplectic singularity Higgs branch. Let us now discuss other general features

of the Higgs branch Hasse diagram.



180Chapter 6. The Higgs Mechanism, Hasse Diagrams, and Geometry of Symplectic Singularities

Hasse diagram Transverse Slices as Electric Quivers

39

22

11

1

0

d10

a11

a11

c1

d12

10
◻

∣○
SU(2)

12
◻

∣○
1

12
◻

∣○
1

C1
◻

∣○
O(1)

12
◻

∣○
Sp(2) 12

◻

∣○
SU(2)

12
◻

∣○
SU(3)

X

◻12
∣○

SU(4)⊃Λ2

Figure 6.10: Hasse diagram of the Higgs branch of SU(4) theory with one 2-nd rank antisymmetric
and 12 fundamental hypermultiplets. Each transverse slice is expressed as a Higgs branch of the electric
quiver in the brackets. C1 denotes Sp(1) group. X denotes peculiar U(2) gauge theory with twelve
hypermultiplets transforming under [1] of SU(2), and with charge 1 under U(1). In addition, the
theory has another two hypers transforming under [0] of SU(2) and with charge 2 under U(1).

6.3.2 Global Symmetry

Based on unequivocal evidence, one striking feature of the Hasse diagram is that the non-

Abelian part of the global symmetry of the Higgs branch is precisely the global symmetry of

the transverse slices at the bottom of the Hasse diagram. For an illustration, in the case of

the SU(4) theory with one 2-nd rank antisymmetric and 12 fundamental hypers in section 6.2,

the non-Abelian part of the global symmetry is SU(12) × Sp(1). This is precisely the global

symmetry of the two transverse slices (drawn red) at the bottom of the Hasse diagram in figure

6.11. The same is seen for the SU(3) theory with 6 fundamental hypermultiplets. The non-

Abelian part of the global symmetry of the Higgs branch is SU(6). In Hasse diagram 6.5, the

bottom link corresponds to A5 symmetry.

This feature is used to determine the structure (i.e. number and type of links) of the bottom

of the Hasse diagram for more complicated theories (see sections 5.1 and 5.3 in [26]).
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39

22

11

1

0

d10

a11

a11

c1

d12

Figure 6.11: Global symmetry of the red transverse slices at the bottom of the Hasse diagram is
Sp(1) × SU(12).

Last point to stress is that although the non-Abelian global symmetry of the Higgs branch is

reproduced by the bottom of the Hasse diagram, the situation with Abelian U(1) factors in

the global symmetry is quite the opposite of clear. A systematic treatment on this point still

awaits.

6.3.3 Higgs branches consisting of more symplectic singularities

Another favorable feature of a Hasse diagram is its ability to encode a Higgs branch which is

not a single one but rather a union of two and more hyperKähler cones (i.e. union of more

symplectic singularities), possibly with non-trivial intersections. Such Higgs branches appear

in multiple works [146, 147, 110]. An example of such theory is SU(4) with 4 fundamental

hypers, where one finds a mesonic as well as a baryonic branch. The former being n.minA3

and the latter being an extension of minA3 with a common intersection minA3. For Higgs

branches of this type, the Hasse diagram exhibits a Y-shaped superstructure as seen in the

Hasse diagrams in section 5.2 in [26].
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Figure 6.12: Brane web for SU(3) gauge theory with 6 fundamental hypermultiplets and with CS
level κ = 0 at infinite coupling. The brane web describes a generic point of the Higgs branch. Circle
nodes represent 7-branes.

6.4 Hasse Diagrams and Infinite Coupling Higgs Branches

Now, lets consider Higgs branches of the theories in section 6.2 in the regime of infinite gauge

coupling. Remarkably, the machinery of magnetic quivers, KP transitions with brane webs,

and quiver subtraction can be applied in full analogy as before. First, consider SU(3) gauge

theory with 6 flavors at infinite coupling.

6.4.1 Higgs branch of SU(3) theory with 6 flavors at infinite gauge

coupling

Based on [110], the magnetic quiver for the Higgs branch of SU(3) theory with 6 fundamental

hypermultiplets and a vanishing Chern-Simons (CS) level κ = 0 is obtained from the 5d brane

web in figure 6.12. It is given by the top magnetic quiver in figure 6.13. Performing the

brane transitions and quiver subtractions (starting from the top) results in the Hasse diagram

depicted in figure 6.13.

Observe, that it differs substantially from the finite coupling case 6.5. It now contains a

bifurcation. The two e6 KP transitions appear due to the outer Z2 symmetry of the top magnetic

quiver. It does not contain the finite coupling Hasse diagram as a sub-diagram. Most crucially,

this result is only obtainable by our new approach (i.e. standard partial Higgsing analysis is

insensible to the new BPS states arising at infinite coupling)! All in all, the computation of

the Hasse diagram for a Higgs branch at infinite gauge coupling is as straightforward as in the

finite case. Let us now do the same for the next theory.
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Hasse diagram Magnetic quivers

10
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1

0

d4
e6 e6

a5
a1 a1

○
1
− ○

2
−

1○−2○−1○
∣○
3
− ○

2
− ○

1
1○

Ò Ó

○
1
− ○

1
− ○

1
− ○

1
− ○

1

○
1
= ○

1

○
1

Figure 6.13: Hasse diagram of the Higgs branch of 5d SU(3) gauge theory with 6 fundamental
hypermultiplets at infinite gauge coupling and the corresponding magnetic quivers. The colored nodes
of the top magnetic quiver correspond to the colored branes in figure 6.12.

O8−

Figure 6.14: Type IIA brane engineering of SU(4) theory with one 2-nd rank and 12 fundamental
hypermultiplets at infinite gauge coupling. The corresponding magnetic quiver is given on top of figure
6.15.

6.4.2 Higgs branch of SU(4) theory with one 2-nd rank antisym-

metric and 12 fundamental hypermultiplets at infinite gauge

coupling

The starting point for the analysis is the Type IIA brane configuration 6.14, or equivalently,

the corresponding magnetic quiver [108], depicted at the top of figure 6.15. Performing the

brane manipulations, or equivalently, quiver subtraction, one computes the Hasse diagram in

figure 6.15. In this case, the Hasse diagram resembles the finite gauge coupling case 6.7 except
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Hasse diagram Magnetic quivers
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Figure 6.15: Hasse diagram of the Higgs branch of 6d SU(4) gauge theory with one 2-nd rank
antisymmetric and 12 fundamental hypermultiplets at infinite gauge coupling and the corresponding
magnetic quivers.

the e8 transition at the top. This is precisely the small E8 instanton transition for 6d N = (1,0)

theories, first pointed out in [90] (see also [148, 149, 150, 151, 152]) and explored in detail in

the context of Kraft-Procesi transitions in [67]. Once again, the transition from the finite to

the infinite gauge coupling case does not poses any conceptual challenge in the light of our new

approach.
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6.5 Results

Here we come to appreciate the power of the program developed in [26] and recapped in the

previous sections by presenting a sub-selection of resulting Hasse diagrams. These are divided

into subsections in the following manner:

• Hasse diagrams of symplectic structure of Higgs branches of theories with simple gauge

groups of type ABCDG are contained in section 6.5.1.

• In section 6.5.2 a few results for 5d theories at infinite coupling are shown to merely glance

at the type of Hasse diagrams these theories have.

• Hasse diagrams of 6d SCFTs are shown in section 6.5.3.

• Four-dimensional generalised Argyres-Douglas theories, whose magnetic quivers are com-

plete graphs, are included in section 6.5.4.

6.5.1 Hasse diagrams for theories with simple gauge groups and

fundamental matter

Assuming there is enough matter12, the theories considered here are among the most studied

supersymmetric quiver gauge theories thanks to their nice properties. One of such properties

is the classical exactness of the Higgs branch which guarantees that its computation yields the

same result across various dimensions. Another one is the crosscheck of the results obtained

by the new methods with the results from partial Higgsing using usual representation theory

method (see sections 6.2.1 and 6.2.3). The results for unitary and special unitary gauge groups

are contained in table 6.5. Note that the Hasse diagrams for U(k) gauge theory in table 6.5 is

a sub-diagram of the Hasse diagram for the nilpotent orbits of sl(N,C). This can be compared

to the slightly different case of SU(k) with Higgs branch which is an extension of sl(N,C)

nilpotent orbit by baryonic operators (i.e. extra gauge invariant baryonic operators which

12Theory with enough matter is taken to be any theory with enough flavors to be completely Higgsable.
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THEORY U(k) with N ≥ 2k flavours SU(k) with N ≥ 2k flavours

Electric quiver

SU(N)
◻

∣○
U(k)

U(N)
◻

∣○
SU(k)

Magnetic quiver ○
1
− ○

2
−⋯ −

1○
Ò Ó

○
k
− ⋅ ⋅ ⋅ − ○

k
−⋯ − ○

2
− ○

1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

N−1

○
1
− ○

2
−⋯ −

○ 1
∣○
k
−⋯ −

○ 1
∣○
k
−⋯ − ○

2
− ○

1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

N−1

Hasse diagram

k(N − k)

⋮

aN−2k+1

aN−2k+3

aN−2k+5

aN−2k+7

aN−1

k(N − k) + 1

⋮

dN−2k+4

aN−2k+5

aN−2k+7

aN−1

Table 6.5: Hasse diagrams for U(k) and SU(k) gauge theories with enough fundamental matter (i.e.
N ≥ 2k). The two a-transitions at the top of the U(k) Hasse diagram merge into a single d-transition
in SU(k) Hasse diagram. In the magnetic quiver, this corresponds to an extra U(1) node.
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THEORY Sp(k) with SO(2N), N ≥ 2k Sp(k) with SO(2N + 1), N ≥ 2k

Electric quiver

SO(2N)
◻

∣○
Sp(k)

SO(2N+1)
◻

∣○
Sp(k)

Magnetic quiver ○
1
− ○

2
−⋯ −

○ 1
∣○

2k
−⋯ −

○ k
∣○

2k
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
N−2k−1

−○
k

○
1
− ○

2
−⋯ −

○ 1
∣○

2k
−⋯ − ○

2k
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

N−2k

=> ○
k

Hasse diagram

2kN − 2k2 − k

⋮

dN−2(k−1)

dN−2

dN

2kN − 2k2

⋮

bN−2(k−1)

bN−2

bN

Table 6.6: Hasse diagrams for Sp(k) gauge theories with special orthogonal flavor groups and enough
fundamental matter (i.e. N ≥ 2k).

generate the ring apart from mesonic generators). See [111] for further analysis.

The results for symplectic gauge group Sp(k) and flavor group SO(2N) and SO(2N + 1) are

given in table 6.6. For even number of flavors (i.e. flavor group SO(2N)), the Higgs branch

is a nilpotent orbit of so(2N,C). However, for odd number of flavors (i.e. flavor symmetry

SO(2N +1)), there arises a problem of odd number of half-hypermultiplets, making the theory

anomalous in 4d. Nevertheless, this is circumvented by considering non-zero CS level in 3d.

The Higgs branch is (height 2) nilpotent orbit of so(2N + 1,C) algebra. The Hasse diagram

contains links corresponding to non-simply laced B-type quivers.13 To our knowledge, there is

no formalism to systematically subtract non-simply laced quivers although a development of

one is due. Finally, table 6.7 shows the Hasse diagrams for the O(k) gauge group with Sp(N)

flavor group and the case of exceptional G2 gauge group with Sp(N) flavor group, respectively.

The Hasse diagram for O(k) gauge theory mimicks the structure of nilpotent orbits of sp(N,C)

with transitions with non-simply laced labels (i.e. involving non-simply laced quivers). Refer

to figure 17 in [26] for a detailed Hasse diagram of G2 with N ≥ 4 flavors together with the

corresponding electric quivers for each transverse slice. The computation of Hasse diagrams

13The appearance of NSL quivers in the Hasse diagrams can be regarded as another motivation for the
programme in chapter 5.
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THEORY O(k) with Sp(N), N ≥ k G2 with Sp(N), N ≥ 4

Electric quiver

Sp(N)
◻

∣○
O(k)

Sp(N)
◻

∣○
G2

Magnetic quiver ○
1
− ○

2
−⋯ −

○ 1
∣○
k
−⋯ − ○

k
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

N−k

<= ○
k

no unitary known

Hasse diagram

kN + k
2
(1 − k)

⋮

cN−(k−1)

cN−1

cN

7N − 14

3(N − 1)

N

d2N−4

a2N−3

cN

Table 6.7: Hasse diagrams for theories with gauge group O(k) and G2 and flavor groups Sp(N) with
enough fundamental matter (i.e. N ≥ k resp. N ≥ 4), respectively.

for other exceptional gauge groups is more subtle due to the appearance of non-simple gauge

groups and the appearance of matter in other than fundamental representations during the

partial Higgsing.

6.5.2 Hasse diagrams for 5d SQCD theories - One result sample

In [26], the studied 5d SCFTs with 8 supercharges are all strong coupling limits of SU(Nc)

SQCD theory with Nf fundamental flavors, and Chern-Simons level κ. The CS level is even or

odd integer, depending on whether Nf is even or odd, respectively. Such theories constitute a

family with three parameters Nc,Nf , κ, satisfying 2∣κ∣ ≤ 2Nc −Nf + 4, similarly as in the brane

web analysis in [110]. In general, Higgs branches of such theories are unions of more cones with

non-trivial intersection. For each cone, one starts with the associated magnetic quiver given in

[110] and performs the analysis using quiver subtraction.

Here we showcase a single Hasse diagram result for a theory in the second region of the pa-

rameter space (see 5.2 in [26]), and in particular, for 0 = 2∣κ∣ = 2Nc −Nf . The Hasse diagram is

given in table 6.8. The diagram inherits the Z2 outer automorphism symmetry of the magnetic
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Phase Quiver Hasse diagram

I′

○
1
− ○

2
− ⋅ ⋅ ⋅ −

1○− 2○ −1○
∣○

Nf
2

− ⋅ ⋅ ⋅ − ○
2
− ○

1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Nf−1

⋮

d5

e6 e6

e7

a5

a7

a9

aNf−1

a7 a7

a9 a9

a9

a1 a1

a1 a1

a1

a1

a1
a1

a1 a1

a1

a1

a1 a1

Table 6.8: Hasse diagram for the single cone component of the H∞ of SU(Nc) SQCD theory with

even Nf flavors in the region 0 = ∣k∣ = Nc − Nf

2 . This is the result of Table 20 in Appendix C in [26].

quiver. For Nf = 6, the e7 transition disappears and one recovers the Hasse diagram 6.13 in

section 6.4. For full list of results, please refer to Section 5.2 and tables in Appendix C in [26].

6.5.3 Hasse diagrams for 6d SCFTs

The gauge anomaly cancellation conditions for 6d SCFTs yield a selection of anomaly-free

theories [153], consistently obtained as F-theory constructions [154], with the theories classified

by their rank (or equivalently, by the dimension of the tensor branch). Among the anomaly-free

six-dimensional theories a subset is known to be realised on complex P1 curves with negative
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self-intersection number [141]. Such theories exhibit a small E8 instanton transition at the

tensor branch origin (i.e. jump by 29 dimensions between generic point of the Higgs branch

and the origin of the tensor branch) [90, 148, 149, 150, 151]. For a study of 6d Higgs branches

at the tensor branch origin refer to [155, 67, 152].

Following [26], table 6.9 presents the Hasse diagram for 6d SU(N) gauge theory with one 2-nd

rank antisymmetric Λ2 and N + 8 fundamental hypermultiplets. The starting point for the

quiver subtraction are the magnetic quivers for even and odd rank special unitary gauge group

in [108]. Note that a lower rank theory is completely included in the Hasse diagram for a higher

rank theory. Also note that for N = 4, we recover the case studied at finite and infinite coupling

in sections 6.2 and 6.3, respectively. Left side of table 6.10 shows the Hasse diagram for Sp(k)

gauge theory with N = 4k + 16 fundamental half-hypermultiplets. The starting point for the

quiver subtraction is the corresponding magnetic quiver in [108]. For the G2 theory with 7

flavors, the magnetic quiver is not known. Nevertheless, the Hasse diagram for the classical

case and the conjectural e8 transition in the limit of strong gauge coupling already yield the

Hasse diagram shown on the right side of table 6.9. Note that the non-Abelian part of the global

symmetry of the Higgs branches in this section is indeed represented by the bottom-most links

in the resulting Hasse diagrams. For further elaboration and discussion of a broader context

into which the six-dimensional theories in this section fit, consult the original work in Section

5.3 in [26].
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6d SCFT SU(2k) with N=2k+8 and Λ2 SU(2k+1) with N=2k+9 and Λ2

Magnetic quiver ○
1
− ○

2
−⋯ −

○ k+3
∣○

2k+6
− ○
k+4

− ○
3

○
1
− ○

2
−⋯ −

○ k+3
∣○

2k+7
− ○
k+5

− ○
3

Hasse diagram

2k2 + 15k + 30

⋮

e8

d10

d12

A1

a11

a11

a12

a13

d14

A2

a2k+7

d2k+8

Ak−1

2k2 + 17k + 38

⋮

e8

d10

d12

A1

a11

a11

a12

a13

d14

A2

a2k+7

d2k+8

Ak−1

a2k+8

Table 6.9: Hasse diagrams of 6d SCFTs: SU(N) with N + 8 fundamentals and one 2nd rank anti-
symmetric. Note that the two diagrams differ only at the bottom.
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6d SCFT Sp(k) with N = 4k + 16 flavours G2 with 7 flavours

Magnetic quiver ○
1
− ○

2
−⋯ −

○ k+3
∣○

2k+6
− ○
k+4

− ○
2

Not known

Hasse diagram

2k2 + 15k + 29

⋮

e8

d10

d12

d2k+8

64

35

18

7

e8

d10

a11

c7

Table 6.10: Hasse diagrams of 6d SCFTs: Sp(k) family and G2 theory.
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6.5.4 Hasse diagrams for generalised Argyres-Douglas theories in

four dimensions

Let us finally apply the program of this chapter to four-dimensional theories. We consider

non-Lagrangian 4d N = 2 theories studied in [156], denoted by (An,Am). These are Type IIB

string theories on a Calabi-Yau space given by equation 6.15 in C4.

xn+1 + ym+1 + z2 +w2 = 0 (6.15)

These theories provide a generalisation of the Argyres-Douglas theories (An,A1). The starting

point for the computation of the Hasse diagram is the magnetic quiver of the full Higgs branch,

which is the quiver obtained from a given (An,Am) theory upon a circle compactification to 3d.

Here, we consider a two parameter family of generalised AD theories (AN−1,AkN−1), consisting

of N U(1) gauge nodes and k edges between any two of the nodes. The quivers for k = 1 belong

to a category of complete graphs. The complexity of the Hasse diagram grows immensely with

the number of nodes of the magnetic quiver, especially due to the automorphism symmetries of

the quiver. For illustration, the Hasse diagrams for the Higgs branch of generalised AD theory

with parameters k = 1, N = 2,3,4,5 and k > 1, N = 2,3,4 are given in tables 6.11 and 6.12,

respectively.

N = 2 N = 3 N = 4 N = 5

H

2

0

a2

3

1

0

a2

A2

4

2

1

0

A2

a2

A3

Table 6.11: Hasse diagrams for generalised AD theory with k = 1 and N = 2,3,4,5.
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N = 2 N = 3 N = 4

1

0

Ak−1

2

1

0

Ak−1

A2k−1

3

2

1

0

Ak−1 A2k−1

Ak−1

A3k−1A4k−1

Table 6.12: Hasse diagram for generalised AD theory with k > 1 and N = 2,3,4.

6.6 Concluding Comments on Hasse Diagrams

Hasse diagrams provide deep insights into partial Higgs mechanism of gauge theories with 8

supercharges and the singularity structure of their Higgs branches. Different partial Higgsings

correspond to different singular loci on the Higgs branch. The pattern of partial Higgsing is

described by the hierarchy of symplectic leaves, parametrised by VEVs along which the gauge

group is broken to one of its subgroups, and with closures corresponding to the Higgs branches

of the unbroken residual theories. Closures of symplectic leaves are partially ordered and en-

coded in a Hasse diagram. Simultaneously, the original Higgs branch is a sympletic singularity

with stratification into leaves assorted in the form of the same Hasse diagram.

The analysis in [26], presented in this chapter, provides novel techniques for computing the

Hasse diagram starting with a brane system or a brane web and the associated magnetic

quiver. Crucial ingredient is the realisation of the Higgs branch as a space of dressed monopole

operators, and in particular, as the Coulomb branch of the associated 3d N = 4 magnetic

quiver. From a magnetic quiver for the entire Higgs branch the analysis takes off thanks to

Kraft-Procesi brane transitions and quiver subtraction. As demonstrated in section 6.2 using

two theories, the new techniques not only allow one to easily reproduce the Hasse diagram

of the partial Higgsing but also provide clear insight into the geometry of both the sympletic

leaves as well as the transverse slices! Some general features of Hasse diagram discussed in
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section 6.3 such as reading off the global symmetry and possibility of encoding a superstructure

for multiple-cone Higgs branches into a Hasse diagram are mere elephants in the room.

As is further demonstrated, the practice of associating partial Higgsing and the singularity

structure of the Higgs branch into a unified Hasse diagram picture can be applied straight-

forwardly to both; theories at infinite gauge coupling as well as to non-Lagrangian theories,

provided a brane construction or a magnetic quiver is accessible.

From the exhaustive list of results in [26], section 6.5.1 contains Hasse diagrams for the classical

Higgs branches of gauge theories with gauge groups ABCD and G2 and fundamental matter.

Consistently with the previous study of nilpotent orbits, the Hasse diagrams of U(k), Sp(k),

and O(k) gauge theories are Hasse diagrams for the closures of height 2 nilpotent orbits. A

single representative of non-classical instanton enhanced 5d SQCD Higgs branch at infinite

coupling is given in section 6.5.2.

In the realm of anamaly-free 6d N = (1,0) SCFTs defined on −1 curves, the small e8 instanton

transition between the finite and infinite coupling is observed directly in the Hasse diagrams in

section 6.5.3.

For the non-Lagrangian generalised Argyres-Douglas theories in 4d, the starting magnetic quiv-

ers obtainable from a circle compactification to 3d fall into a two parameter family of complete

graphs. The resulting Hasse diagrams presented in section 6.5.4 reveal a beautiful intertwining

structure of the Higgs branches.

Future Challenges

• Extending the techniques to analyse theories with a number of orthosymplectic gauge

groups and/or with hypermultiplets transforming under spinor representations.
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• Departing from a single gauge group and marginally fundamental matter hypermultiplets,

one immediately arrives at very complex Hasse diagrams. One example of this is the

6d N = (1,0) theory of three M5 branes on a C2/Z3 singularity in Figure 19 in [26].

The complexity of the Hasse diagram comes from the fineness of the analysis, detecting

all possible processes on the Higgs branch. This can be contrasted with the analysis in

[140, 142] where the Higgsing is constrained by the boundary conditions of the D6 and

D8 branes.

• Understanding the Abelian part of the global symmetry which is not yet accessible by

the presented methods.

• The Higgs branches considered here are described as algebraic varieties. The presence of

nilpotent operators in the Higgs branch chiral ring promotes it to a status of non-reduced

affine scheme, opening a new perspective on the structure of the corresponding Hasse

diagram [111].

• As hinted by the Hasse diagrams for Sp(k), O(k) and G2 gauge groups in tables 6.6 and

6.7, a missing systematic generalisation of quiver subtraction to non-simply laced quivers

is desirable (see the recent progress in [157]). The study of various inequivalent ungauging

schemes in chapter 5 is part of the effort towards a more throughout understanding of

quiver subtraction with NSL quivers.



Chapter 7

Thesis Conclusions

In all fields of science, continuous scientific progress comes from a systematic study of new

research avenues, in particular, by addressing outstanding problems that are next-in-line in the

hierarchy of complexity. How to identify the basis by which to determine what the next-in-line

problems are poses a challenge in itself. Adhering to the words of Francis Bacon ,,A prudent

question is one-half of wisdom.”, the work included in this thesis hopefully contributes to the

course of systematic development in the study of moduli spaces of vacua of supersymmetric

gauge theories with 8 supercharges. In particular, the thesis can be summarized into four

avenues:

• Ideas leading to the classification of minimally unbalanced quiver gauge theories in [23]

are reviewed in chapter 3. From the point of view of a systematic study of vacuum moduli

spaces, minimally unbalanced supersymmetric quiver gauge theories play a very important

role. Having a single Dynkin global symmetry on the Coulomb branch, they are the next

simplest examples of such theories beyond theories with trivial and nilpotent orbit closure

moduli spaces. The amount of intuition gained thanks to the Coulomb branch computa-

tional techniques reviewed in chapter 2 allows us to read off the global symmetry of a given

theory from merely observing the balanced nodes in the quiver. Simultaneously, our ex-

haustive analysis of minimally unbalanced quivers provides a classification of hyperKähler

cones with isometry of the corresponding Dynkin type (i.e. ABCDEFG). It would be inter-

197
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esting to build on, and extend, the classification to unbalanced theories with global sym-

metry in form of a product of n finite Lie groups. For n = 2, the classification can be found

at https://www.wolframcloud.com/obj/b52c6446-64dc-45af-a6b6-692b9b6ac382.

• The study of the Higgs branch of 6d N = (1,0) world-volume theory on a system of n

M5 branes on ALE singularity in the infinite gauge coupling regime is an important

problem which is not fully understood. However, as demonstrated in [89], once the

background singularity is an A-type orbifold singularity Cn/Zk, remarkably, the 6d Higgs

branch problem admits a 3d Coulomb branch description in which a systematic analysis

becomes available. In contrast with typically classical descriptions of Higgs branches, the

6-dimensional N = (1,0) world-volume theory for a system of n M5 branes on Cn/Zk

singularity develops various non-classical Higgs branch phases due to the appearance of

tensionless BPS strings [69]. In the light of chapter 4, the movement between these

various Higgs branch phases in 6d is understood as an action of discrete gauging on the

corresponding 3d N = 4 Coulomb branch quivers [24, 107]. In the (purely local) action of

discrete gauging on 3d quivers a bouquet of k U(1) nodes is substituted for a collection of

higher rank adjoint nodes (possibly with some rank 1 nodes remaining). After the action,

the resulting new bouquet follows a partition of n, which is in one-to-one correspondence

with the subsets of coincident M5 branes in the underlying M-theory system. In chapter

4, this operation is investigated using three families of 3d bouquet quiver gauge theories,

producing a myriad of interesting theories along the way. It would be interesting to relate

discrete gauging to phenomena involving singularities of D and E type.

• Theories associated with non-simply laced quivers see little, if any, treatment in the

literature - the lack of Lagrangian description being the main reason. Nevertheless, these

theories are inspired by 3d N = 4 quiver gauge theories and make appearance alongside

their simply laced cousins (i.e. as magnetic quivers in Hasse diagrams with non-simply

laced Kraft-Procesi transitions).

Using the techniques of section 2.5 (and modifications of the conformal dimension 2.75 in

the monopole formula), analysis of Coulomb branches of non-simply laced quiver theories

https://www.wolframcloud.com/obj/b52c6446-64dc-45af-a6b6-692b9b6ac382
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is carried out in chapter 5. It is shown that the data encoded in a given NSL quiver is

not enough to specify the Coulomb branch. The missing data is provided by declaring

what we call the choice of ungauging scheme (decoupling of U(1) gauge symmetry).

It is thus demonstrated that every unframed (flavorless) non-simply laced quiver theory

admits a number of different Coulomb branches which are further shown to depend on the

ungauging scheme (see Claim 2 in chapter 5). In particular, there is an orbifold action (see

Claim 3 in chapter 5) relating Coulomb branches for short and long ungauging schemes,

respectively. Some of the surprising outcomes of the analysis include:

– The predictions for the twisted affine D4 Coulomb branch, encountered for the first

time, and the interesting commutative diagram of orbifold relations thereof (figure

5.1).

– The analysis reproduces Kostant-Brylinski orbifold actions among nilpotent orbit

closures [27] in an intuitive new graph-theoretical way using three-dimensional Coulomb

branch quivers. It is hoped that the program reviewed in chapter 5, together with

related recent works such as [116], will help to understand the precise relationship

between geometrical operations on quivers and the underlying theories.

– Perhaps even more surprisingly, recent progress in understanding the rank r 4d

SCFTs (arising as Zk S-fold theories) establishes a connection between the existing

classifications of such SCFTs (see f.i. [158, 159]) and Coulomb branches of NSL

quiver theories. In spite of this, prediction of Claim 2 actually suggests that the

previous classifications of 4d SCFTs are incomplete and need to be revisited.

• The interplay of ideas which culminated in [26] is recollected in chapter 6. It provides a

new way of thinking about the Higgs mechanism in supersymmetric gauge theories with

8 supercharges. The Higgs mechanism is both originating from as well as probing the

very geometry of the Higgs branch. In particular, the sub-spaces (i.e. Higgs branches

of partially Higgsed theories) involved in the partial Higgsing constitute a hierarchy of

partial inclusions which is described by a Hasse diagram. The same Hasse diagram encodes

the singular geometrical structure of the symplectic singularity that is the original Higgs
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branch. The amalgam of ideas such as the Kraft-Procesi transition with branes [136, 75],

quiver subtraction [68], and magnetic quivers [106, 84, 137, 110, 108], creates an elegant,

self consistent picture developed in [26]. The physical phenomenon of Higgs mechanism

is shown to be a direct manifestation of the singularity structure of the geometry of the

Higgs branch. Novelties of the developed methods include:

– the ability to compute precise geometry (i.e. symplectic leaves and transverse slices)

of symplectic singularities that are more general than the known closures of nilpotent

orbits [28]

– the ability to compute partial Higgsing (and the geometry of Higgs branch) for large

classes of Lagrangian and non-Lagrangian theories both at finite as well as infinite

gauge coupling

All of the research endeavour presented in this thesis univocally re-establishes the central role

of 3d N = 4 quivers in the study of supersymmetric gauge theories as well as in the exploration

of new geometrical constructions and phenomena. Presumably, the geometry of moduli spaces

of supersymmetric gauge theories provides one of the most natural habitats for understanding

of many other phenomena, both in physics and mathematics, which remain successfully hidden

before the eyes of researchers.

We hope that the reader finds joy and perhaps some useful information in the present writing.

Without the puniest doubt, my PhD journey, results of which are partially presented herein,

has been interwoven with truly joyful strings.



Appendix A

Choice of Ungauging Scheme and

Conformal Dimension

Let us show how choosing a particular ungauging scheme effects the monopole formula cal-

culation of the Coulomb branch. The monopole formula 2.76 contains a sum over magnetic

charges which are valued in the lattice 2.71 (see section 2.5). The difference between two un-

gauging schemes corresponds to a shift in the values of magnetic charges, or in other words, to

the change of the magnetic lattice over which the summons run in 2.76. The dressing factors

PG(t,m) in 2.76 are invariant under any shifts in m. Conformal dimension ∆(m), spelled out

in 2.74, is the only part that is affected. Furthermore, the vector multiplet contribution ∆(m)V

is invariant under shifts of m and only ∆(m)H changes non-trivialy. To see the effect, consider

quiver A.1, where k denotes the multiplicity of the non-simply laced edge and a, b, c, d, e denote

the magnetic flux vectors at the corresponding nodes. Let the ranks of the nodes be ri, where

i = a, b, c, d, e.

○
a
− ○
b
−○
c
<k= ○

d
−�

e
(A.1)

The relevant hypermultiplet contribution to the conformal dimension formula for quiver A.1

takes the form

∆(a, b, c, d, e)H =∑ (∣a − b∣ + ∣b − c∣ + ∣c − kd∣ + ∣d − e∣) × δ(e1), (A.2)

201
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where δ(e1) signifies that the ungauging scheme requires one of the magnetic charges on the

long e node to be set to zero. To see what happens when a different ungauging scheme is chosen

such that we ungauge on the d node, shift the magnetic charge vectors

e→ e + d1, (A.3)

resulting in the following form of the terms in the conformal dimension

(∣a − b∣ + ∣b − c∣ + ∣c − kd∣ + ∣d − e − d1∣) × δ(e1 + d1). (A.4)

Now, shifting d → d − e1, shifting c → c − ke1, b → b − ke1, a → a − ke1, and leaving out d1 which

is guaranteed to be zero because of the delta function, one arrives at

∆H =∑ (∣a − b∣ + ∣b − c∣ + ∣c − kd∣ + ∣d − e∣) × δ(d1), (A.5)

which is readily identified as the conformal dimension corresponding to the ungauging scheme

for which one ungauges on the long d node. This shows that the Hilbert series and hence

the Coulomb branch is the same for both long ungauging schemes. Carrying out this analysis

for a generic quiver provides a proof that all ungauging schlemes on the long side of a non-

simply laced quiver yield the same Coulomb branch denoted by CL. This proves fully Claim

1 and partially Claim 2. To see the effect of ’jumping’ with the ungauging schemes over the

non-simply laced edge, perform a shift d→ d + c1. One obtains

(∣a − b∣ + ∣b − c∣ + ∣c − k(d + c1)∣ + ∣d − e + c1∣) × δ(d1 + c1). (A.6)

Next, make the shifts

a→ a − d1, b→ b − d1, c→ c − d1, e→ e − d1 (A.7)

to get

(∣a − b∣ + ∣b − c∣ + ∣c − kd + (k − 1)d1∣ + ∣d − e∣) × δ(c1). (A.8)
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Note, that for a simply laced quiver, k = 1, expression A.8 reduces to expression A.2 with

c1 ←→ e1. Hence, ungauging on the c node would yield the same Coulomb branch. Let us

proceed to see how the ungauging on the b node changes the expression for the conformal

dimension. Performing the shifts

a→ a − c1, b→ b − c1, c→ c + b1 − c1, d→ d − c1, e→ e − c1, (A.9)

and taking into account that the delta function sets b1 to zero, results in the hypermultiplet

contribution of the conformal dimension associated to the ungauging on the b node

∆H =∑ (∣a − b∣ + ∣b − c∣ + ∣c − kd + (k − 1)d1∣ + ∣d − e∣) × δ(b1). (A.10)

Finally, shift

a→ a − b1, b→ b + a1 − b1, c→ c − b1, d→ d − b1, e→ e − b1, (A.11)

taking into account that δ(a1) sets a1 zero, to obtain

∆H =∑ (∣a − b∣ + ∣b − c∣ + ∣c − kd + (k − 1)d1∣ + ∣d − e∣) × δ(a1). (A.12)

Expression A.12 shows the structure of the hypermultiplet contribution in the conformal di-

mension for the ungauging scheme on the leftmost a node of quiver A.1.

The difference between the hypermultiplet contributions to the conformal dimensions for the

ungauging schemes on the long side versus on the short side of the quiver i.e. A.2, A.5 versus

A.8, A.10 and A.12 boils down to the scaling of one of the axis of the discrete magnetic lattice

at the respective node. In general, the magnetic lattice over which the monopole formula

summation runs is squashed by this scaling in a non-conformal manner and produces a lattice

that does not belong to any family of simple Lie algebra lattices - hence it is not a valid magnetic

lattice of the gauge group at the particular node. This means that the Coulomb branch for

such choices of ungauging schemes is not a well defined object.
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However, if a short rank 1 node is ungauged (i.e. ra = 1), the discrete magnetic lattice at that

node is one-dimensional to start with, in particular, it is Z since the gauge group is U(1). The

effect of the rescaling of the lattice due to the choice of short ungauging scheme is that of the

scaling of the lattice: ZÐ→ kZ, where k is the multiplicity of the non-simply laced edge. Now,

the monopole formula summation runs over every k-th point compared to the summation for

any long ungauging scheme. Hence, the computed Coulomb branch is of the form:

CS = CL/Zk. (A.13)

This provides a schematic proof of Claim 3. By the sequel, Claim 2 follows.



Appendix B

Branes, Magnetic quivers,

Kraft-Procesi transitions and Quiver

subtraction

The present appendix aims to declutter chapter 6 from technical aspects of the underlying

computations which involve brane constructions of five and six-dimensional theories with eight

supercharges, magnetic quivers, and quiver subtraction.

B.1 Brane constructions of 5d and 6d theories and mag-

netic quivers

Five and six-dimensional theories studied in chapter 6 arise as world-volume theories on brane

configurations in Type IIB and Type IIA string backgrounds, respectively. Whereas the former

involves (p, q)-branes (i.e. bound states of p D5 and q NS5 branes [160, 161]) ending on

accordingly labelled [p, q] D7 branes, the latter involves D6 and D8 branes in the presence of

orientifold O8 planes. Let us first recall brane construction of the five-dimensional theories.
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Type IIB x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

(p, q)5-brane × × × × × ×
[p, q]7-brane × × × × × × × ×

Type IIA x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

NS5 × × × × × ×
D6 × × × × × × ×

D8, O8 × × × × × × × × ×

Table B.1: Directions spanned by (p, q)-5-branes and [p, q]-7-branes in Type IIB string background
and directions spanned by D6, D8, and O8 branes in Type IIA string background. The last direction
of the (p, q)-5-brane is (p, q) slope along x5 and x6.

B.1.1 Brane Web Engineering of 5d N = 1 theory

As was already mentioned, the bending of the D5 branes ending on NS5 branes results in (p, q)-

branes. Brane configurations involving (p, q)-D5-branes are called brane webs. In a brane web,

the (p, q)-D5-brane can end on a [p, q]-D7-brane. This string background can be specified by the

directions spanned by the branes given in chapter 2 in table 2.2 and the directions occupied by

the (p, q) 5-branes and [p, q] 7-branes indicated in table B.1. Such brane configurations engineer

world-volume theories according to how fundamental strings are suspended. The suspension

of fundamental strings is giving rise to electrically charged massless degrees of freedom, hence

the reason why the 5d theories in chapter 6 are referred to as electric theories and the quivers

thereof as electric quivers. From the brane web configuration corresponding to finite gauge

coupling (i.e. when all NS5 branes are separated) the electric quiver can be identified.

B.1.2 Brane Engineering of 6d N = (1,0) theory

To brane engineer a 6d N = (1,0) (world-volume) theory, one uses Type IIA string background

with the different types of branes spanning directions as indicated in lower part of table B.1

[151, 162, 163]. The electric quiver in the finite coupling regime is read off from the brane

configuration when all NS5 branes are separated and with D6 branes suspended between them.

The anomaly cancellation restrictions in the low-energy 6d theory translate into conservation

of certain charges in the corresponding brane configuration.
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B.1.3 Magnetic Quiver description of Higgs branch phases

Higgs branch phases of a 5d and 6d theories are controlled by the inverse gauge coupling

[108, 110] and for each phase, a different moduli space, possibly consisting of a number of mixed

branches, may exist (c.f 2.19). In the Higgs branch of a completely broken theory, moving to

the singular loci towards mixed branches by means of opening up Coulomb branch directions

is possible as there resides some unbroken part of the gauge group along the corresponding

singularity. The nature of Higgs branches changes significantly with the phase of the theory:

• Upon going from the finite to infinite gauge coupling phase in five dimensions the hy-

perKähler Higgs branch sees enhancement by massless BPS instantons [84, 137, 110]

• Upon going from the finite to the infinite gauge coupling phase in six dimension the theory

sees an enhancement of the Higgs branch by tensionless strings [164, 67, 69, 108]

As a result, the hyperKähler quotient computation of the 5d Higgs branch via F and D-terms

falls short in the infinite gauge coupling regime due to its lacking sensitivity to the new BPS

states. Nevertheless, the Higgs branch is still at most a union of hype-Kähler cones (i.e.

symplectic singularities) which are still perfectly describable as spaces of dressed monopole

operators. In particular, they are the Coulomb branches of the associated 3d N = 4 magnetic

quivers [108]! The same applies to a variety of theories with 8 supercharges across dimensions

3,4,5, and 6. In each such case, the Higgs branch space of the electric theory in some given

phase equals the union of Coulomb branches spaces of the associated magnetic quivers.

To harness the full power of this construction, it remains to recall how starting from a brane

configuration, the correct set of magnetic quivers is obtained. There is one magnetic quiver

per each inequivalent brane configuration with all Dp branes fully suspended between D(p+ 2)

branes. Whereas in the more familiar 3d brane configurations involving D3, D5 and NS5

branes, the NS5 branes do not carry dynamical degrees of freedom [55], here the NS5 branes

do carry them. These get passed down to the magnetic quivers. The following prescriptions for
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reading off the magnetic quivers from 5d and 6d brane systems are cited from [110] and [108],

respectively.

Magnetic Quiver for 5d Brane Web

In the 5d brane web, every semi-infinite (p, q) 5-brane ends on a [p, q] 7-brane. The brane

web obtained upon moving to the origin of the Coulomb branch is divided into sub-webs which

preserve charge conservation at every vertex as well as obey the s-rule. The magnetic quiver is

read off in the following way:

• 1. Assign U(n) gauge node to a set of n copies of independent sub-webs.

• 2. The edges (i.e. bi-fundamental hypers) and edge multiplicities between the gauge nodes

of the magnetic quiver are obtained as the intersection numbers between the corresponding

brane sub-webs.

Magnetic Quiver for 6d Brane System

In Type IIA configuration, D8 branes are pulled in from infinity in such a way that all D6

branes can be suspended between them. The magnetic quiver is then obtained by the following

prescription:

• 1. Draw U(ni) gauge node for each stack of ni D6 branes suspended between two neigh-

boring D8 branes.

• 2. Draw an edge (i.e. bi-fundamental hypermultiplet) between U(ni) and U(nj) gauge

nodes corresponding to neighboring stacks of ni and nj D6 branes.

• 3. Each stack of k coincident NS5 branes produces a U(k) gauge node in the magnetic

quiver. Moreover, there is an additional adjoint hypermultiplet associates to this node iff

the NS5 branes are free to move in x6 direction (i.e. are not stuck on the O8− plane).
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• 4. For each stack of k NS5 branes in a given interval of D8 branes with n D6 branes,

draw an edge (i.e. bi-fundamental hyper) between the corresponding U(k) and U(n)

gauge nodes.

It is remarked that the combination of magnetic and electric quiver analysis for a given Higgs

branch provides new insight into the geometry of mixed branches. On the Higgs branch,

singular loci are found upon opening up of new Coulomb branch directions in the brane web

picture. The rules for reading off the magnetic quiver are applied and the direct information

about the geometry of transverse slices as well as the symplectic leaves on the Higgs branch

becomes available. For a simple illustration of this see the discussion of 5d SU(3) theory with

6 fundamental flavors around Figure 21 in [26].

B.2 Quiver Subtraction

Quiver subtraction first appears in [68] wherein a magnetic quiver associated to a closure of

a symplectic leaf is subtracted from another magnetic quiver, corresponding to a closure of

another symplectic leaf. The result of this operation is a magnetic quiver for the transverse

slice between the two leaves.

The quiver subtraction appearing in [26] subtracts a magnetic quiver of a given transverse

slice (minimal Kraft-Procesi transition [133, 134]) from a magnetic quiver for a closure of a

symplectic leaf. The result of this operation is a magnetic quiver for the closure of a new

symplectic leaf. In this way, one can start with a magnetic quiver for the original unbroken

Higgs branch and make his way down the partial Higgsing, hence, build the Hasse diagram

top-down. Let L1 and L2 be two adjacent leaves in a given Hasse diagram such that L1 is

above L2. Further let Q1 be the magnetic quiver for the closure of the leaf L1 and QTS be the

magnetic quiver corresponding to the transverse slice between L1 and L2. Then, the quiver

subtraction calculates the magnetic quiver for the closure of the leaf L2:

Q1 −QTS = Q2 (B.1)



210 Appendix B. Branes, Magnetic quivers, Kraft-Procesi transitions and Quiver subtraction

Given that the brane picture is accessible, all three quivers in the above equation can be ob-

tained from the movement among mixed branches. Based on the cases where the brane picture

is known general rules for performing quiver subtraction, applicable also to cases with no brane

picture, can be derived. The subtraction of a minimal elementary slice corresponds to mini-

mal movement in the brane picture. As mentioned in section 6.1, the minimal transition are

conjectured to correspond to either closures of minimal nilpotent orbits or surface Kleinian

singularities. This is a vital conjecture which is consistent with the minimal manipulations

available in the brane picture.

Starting with a magnetic quiver for the studied Higgs branch, one looks for subgraphs corre-

sponding to elementary transitions listed in table 6.1 and proceeds with quiver subtraction in

accordance with the following rules:

Rules of Minimal Quiver Subtraction of Elementary Slices:

1. Subtract Q1 −QES = Q2 by first aligning quivers Q1 and QES such that QES is a sub-graph

in the graph-theoretical sense of Q1.

2. By subtracting the ranks of QES from the ranks of Q1, obtain quiver Q̃2.

3. Lastly, restore the balance by adding an extra auxiliary U(1) node and connecting it,

possibly with multiple edges, to the surviving (i.e. non-zero rank) nodes of Q̃2 such

that their balance matches the balanced of the nodes of Q1 which were originally at

these positions.1 After the re-balancing, quiver Q2 is obtained as the result of the quiver

subtraction.

When edges with multiplicities appear, it is crucial to subtract in such a way that all associated

edges have the same multiplicities and that quivers match in the graph theoretical sense. The

quiver subtraction described above is easily extended to unitary quivers with flavors. Every

SU(F ) flavor node connected to a given node is substituted by an edge with multiplicity F

going from the given node to an extra auxiliary U(1) node. In case of more flavor nodes, the

multiple edges all connect to the same auxiliary U(1) node.
1If Q1 is not balanced nor is the resulting quiver Q2.
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