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ABSTRACT The imputation of missing data is a common procedure in data analysis that consists in
predicting missing values of incomplete data points. In this work, we analyze a variational quantum circuit
for the imputation of missing data. We construct variational quantum circuits with gates complexity O(N)
and O(N2) that return the last missing bit of a binary string for a specific distribution. We train and test the
performance of the algorithms on a series of datasets finding good convergence of the results. Finally, we
test the circuit for generalization to unseen data. For simple systems, we are able to describe the circuit
analytically, making it possible to skip the tedious and unresolved problem of training the circuit with
repetitive measurements. We find beforehand the optimal values of the parameters and make use of them
to construct an optimal circuit suited to the generation of truly random data.

INDEX TERMS Imputation missing data, quantum computing, variational quantum circuit.

I. INTRODUCTION
Missing data imputation is a common task in computer sci-
ence and big data analysis. In fact, datasets are often in-
complete, as some of the data can have one or many entry
(attribute) values that are missing. The reason for this incom-
pleteness can be either because the data were not actually
collected in the first place or because they have been lost. The
mechanism of data loss itself is of great importance when
analyzing the data. Generally, we can distinguish among
three situations [1], [2] that describe when the data are either
missing at random (MAR), missing completely at random
(MCAR), or missing not at random (MNAR).
In the MAR case, the loss or presence of data is indepen-

dent of the value of the attribute, but depends on the value
of other attributes. For instance, this is often the case in
clinical surveys, where particular groups of people tend to
omit sensible data, regardless of the values themselves.
In the MCAR case, the loss or presence of the data is

truly random, and there is no correlation between the loss
and other attributes. This process can actually present itself
more often than expected, wherever communication errors or
human mistakes take place.

In the MNAR case, there is a correlation between the loss
of an attribute and its value. For instance, this happens in a
survey when the datum itself is sensible and the person does
not want to reveal it.
In order to distinguish between the three scenarios, one

should in principle know the mechanism of data loss, but
most of the times this is not clear.
In the attempt of working with a complete dataset, one

could simply delete the incomplete data. This procedure is
discouraged, as the incomplete data can be a big portion of
the collected data, and the removal of them can highly affect
the analysis. However, even when the incomplete data are
few, their instances could be of great importance for under-
standing the statistical properties of the dataset. For these
reasons, several techniques based on statistical inference are
used for the imputation of the missing data, such as maxi-
mum likelihood estimation [3], [4], [5] and Bayesian infer-
ence methods applied for single and multiple imputation [1],
[2], [4].

Single imputation methods fill in the missing values of
the dataset. Although this procedure is appealing, as it al-
lows us to work with a complete dataset, it generally has the
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FIGURE 1. QIC for the case of N = 2 input qubits and 1 output qubit. The dashed box is used during the optimization, to construct the superposition of
all the possible inputs. The LINEAR box shows the linear circuit, and the QUADRATIC box shows the additional part that constitutes the quadratic circuit.
Finally, only the output qubit needs to be measured.

negative effect of producing biased estimates [2] even in the
MCAR case. One example of a single imputation method is
the mean imputation, where missing values are filled in with
the arithmetic mean of the available values of the variable.
The cons of this approach are that it changes abruptly the
correlations among the variables and it highly reduces the
standard deviation of the dataset. A preferred strategy for
single imputation is stochastic regression that is able to avoid
biases in the MCAR case.
However, in order to deal with MCAR and MAR cases,

multiple imputation methods are preferred, as they account
for the deviation of the error that is brought by the introduc-
tion of an unobserved value in the dataset. Multiple impu-
tation is a Bayesian inference technique that uses multiple
single imputed data to generate a statistics of the missing
values. We have to point out that multiple imputation has
not the goal to impute the missing value [6], but instead it
aims to correctly use the incomplete data for extrapolating
information on the complete dataset statistics.
Nevertheless, in many cases of relevance, single imputa-

tion is what is needed. This is the case for image inpainting, a
subclass of data imputation problems where the goal is to fill
holes in images or videos. In this field, a parallel approach
has been provided by the field of machine learning (ML),
which introduced new techniques such as generative neural
networks. The ML approach has been applied successfully
both for image inpainting problems [7], [8], [9] and for single
imputation of more complicated datasets [10].
In the wake of the enormous success of ML algorithms,

the new field of quantum machine learning (QML) has born
in recent years [11], with the hope of bringing together the
versatility ofML algorithmswith the great expectations lying
in quantum computing [12].
In this work, we tackle the problem of estimating the miss-

ing value of a datum using quantum variational algorithms.
These algorithms belong to the field of QML.
A famous QML algorithm is the quantum circuit born ma-

chine (QCBM), which uses the Born rule to generate a target
distribution. In particular, the QCBM [13] with N qubits is a
quantum variational circuit that takes as input the state |0〉⊗N ,
evolves it with the parameter dependent unitary operator
Û (�), and returns the state |ψ (�)〉 = Û (�)|0〉⊗N . The M

parameters � = (θ1, . . . , θM ) are selected in order to min-
imize a chosen cost function, such as the distance between
the frequency distribution of the measured output states and
the target probability distribution. The optimization of pa-
rameters involves updating their values based on multiple
measurements of the output state. This process poses a com-
mon challenge in optimization procedures. On the one hand,
a significant number of measurements must be taken to en-
compass all potential measurement outcomes, typically on
the order of 2N , with some exception for particular distribu-
tions [14]. On the other hand, determining the optimal update
for the parameters is not straightforward, as quantum circuits
often exhibit extensive regions in parameter space where the
cost function remains essentially constant, the well-known
problem of barren plateaus (BPs) [15]. Consequently, it is a
hard problem to find the best choice of the parameters.
Inspired by the general setup of the QCBM, we define a

quantum circuit dedicated to the imputation of missing data,
the quantum imputation circuit (QIC). Our analysis of the
QIC tries to solve the two aforementioned problems.
The rest of this article is organized as follows. In

Section II-A, we describe our circuit, the QIC, that we use to
impute the missing data. In Section II-E, we show the results
obtained on several datasets with different distributions. In
Section II-F, we test the ability of the QIC to generalize
the imputation to instances that it has not seen during the
training. Finally, Section III concludes this article.

II. RESULTS
A. QUANTUM IMPUTATION CIRCUIT
We now describe the proposed QIC for the imputation of
missing data (see Fig. 1).

Suppose that our data are a collection of bit strings X ∈
{0, 1}N+1 that are composed of N + 1 binary variables and
follow a certain probability distribution p(X ). This is our
complete dataset that we will use for the training. Suppose
now that we want that our machine returns the value of the
(N + 1)th bit when the values of all the otherN bits are given,
reproducing the probability distribution p(X ). This formula-
tion is used to cope with the MCAR case, where neither the
missing value nor the value of the other bits accounts for the
reason that the (N + 1)th bit is missing.
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The QIC acts on the target qubit, initialized in |0〉, and
modifies its state depending on the values of the other qubits.
For any input state |n〉|0〉, where |n〉 is a binary representation
with N bits of the number n, the output of the circuit is

|n〉(cos θn|0〉 + sin θn|1〉). (1)

The probability that the target qubit is set to 0 or 1 is
conditioned by the dataset as

p(0|n) = cos2 θn

p(1|n) = sin2 θn. (2)

In order to represent any possible probability distribution,
we would need a parameters vector � = (θ0, . . . , θ2N−1) of
dimension 2N . Since the circuits applies a transformation
only on the output qubit and uses the input qubits as control,
the unitary transformationU (�) that represents the QIC ex-
pressed in the computational basis is a block diagonal matrix

U (�) =
2N−1⊕
n=0

Ry(θn) (3)

where Ry is the rotation matrix

Ry(θn) =
(
cos θn − sin θn
sin θn cos θn

)
. (4)

From the explicit form of the unitary operator, it is clear
that we need to give an independent value to all the 2N

parameters. U (�) can be reproduced using a sequence of
multiple-qubit controlled gates Cmnot, with m = 1, . . . ,N,
where m qubits are used as control and the (N + 1)th qubit
is the target. Each lth control gate is preceded by a rotation
Ry(αl ) applied on the target qubit. The combination of the y
rotations and the cnots leads to a global unitary that has the
form expressed in (3) as it will be shown in the next section.

The number of ways we can place the Cmnot gates using

the N input qubits is

(
N

m

)
. Using all the possible combina-

tion of Cmnot gates, we have a total number of gates that is

N∑
m=1

(
N

m

)
= 2N − 1 (5)

that corresponds to 2N − 1 parameters, as each of the control
gates is followed by a parametric rotation Ry. In order
to recover the 2N needed parameters, we apply an extra
parametric rotation on the target qubit. Therefore, our circuit
starts and ends with a parametric rotation.
Clearly, this circuit is able to reproduce any possible data

distribution, but it has the negative feature of requiring an ex-
ponential number of gates. Hence, to improve the feasibility
of the circuit, we restrict our set of gates to only cnots for re-
producing the dataset distribution. The number of controlled

gates (and consequentially of parameters) reduces to

Mlin =
1∑

m=0

(
N

m

)
= N + 1 (6)

that is linear with N. We call this ansatz the linear QIC.
If we also introduce C2nots, the number of controlled

gates scales quadratically with N, as follows:

Mqua =
2∑

m=0

(
N

m

)
= N2 + N + 2

2
. (7)

We call this ansatz the quadratic QIC.
Note that the term with m = 0 in the summations of (6)

and (7) accounts for the extra final rotation.
In theory, following the same procedure, we could extend

the circuits by adding multicontrolled gates acting on a larger
number of qubits (C3not, C4not, . . . ) followed by paramet-
ric rotations on the target qubit, up to amaximum number 2N .

We call this the exponential circuit, which, having an ex-
ponential number of parameters, can attain a perfect repro-
duction of the original dataset [16]. The exponential circuit is
analogous to the one proposed in [17], which was given in its
generalized form by allowing the rotations in (3) to be along
the x- and z-axis. This was used for the generation of quantum
states, for which the component values are constrained by
the available pieces of information. Conversely, QIC aims
to reproduce classical states, thus permitting us to use only
the rotation along y-axis. Clearly, the growing number of
cnotsmakes both the circuit construction and the parameters
optimization unfeasible. For these reason, in this work, we
only analyzed the linear and quadratic circuits, which are
shown to have good performance with less parameters.

B. ANALYTICAL DESCRIPTION OF THE OUTPUT STATE
Since the QIC has a well-defined structure, we can recover
the analytical expression of each θn angle expressed in (3) as
a function of the rotations Ry(αi), with i = 1, . . . ,M present
in the circuit. In fact, we can pull all the Ry rotations at the
beginning of the circuit and collect them into a single rotation
operator.
Starting with the linear circuit, there are in total N + 1

rotation angles αi and N + 1 qubits qn, with n = 0, . . . ,N
and q0 being the imputation qubit. Thanks to this particular
topology, the circuit’s unitary matrix is in a block-diagonal
form. There are N blocks where each is a (2 × 2) matrixUb,
which form the total matrix

U =
⊕
b

Ub, b = {b1, . . . , bN} ∈ {0, 1}N (8)

where b is every possible input bit string. To understand the
shape of each Ub, we can simplify the circuit structure by
commuting all the Ry rotations to the beginning of the cir-
cuit. Let us start with an example: move the second rotation
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Ry(α1) to the left of the first cnot (see Fig. 1). This means

Ry(α1)q0CNOTq1,q0 = Ry(α1)q0 [|0〉〈0q1 | ⊗ 1q0

+ |1〉〈1q1 | ⊗ Xq0 ]

= [|0〉〈0q1 | ⊗ Ry(α1)q0

+ |1〉〈1q1 | ⊗ Xq0Ry(−α1)q0 ]
= CNOTq1,q0Ry[(−1)b1α1]q0 (9)

where b1 = 0 (or 1) if qubit q1 is in state |0〉 (or |1〉). This
commutation tells us that if the control qubit q1 is in |1〉,
the gate Ry(α1) becomes Ry(−α1) (because it anticommutes
with X). Now, both Ry(α0) and Ry(α1) are at the beginning
of the circuit, and we can combine them into one rotation

Ry[(−1)b1α1]Ry(α0) = Ry[α0 + (−1)b1α1]. (10)

Now, by commuting all the rotations at the beginning of the
circuit, we have a simpler structure: a single initial rotation
Ry(θb) followed by all the cnots. The total angle of rotation
θb is given by

θb = α0 + (−1)b1α1 + (−1)b1+b2α2 + . . .

+ (−1)b1+b2+...bNαN

= α0 +
N∑
n=1

(−1)
∑n

j=1 b jαn (11)

while the action of all the cnots introduces a possible X
rotation conditioned on the bit string values

Xb1+···+bn

where all the sums are intended modulo 2. In this way, it is
easy to obtain a relation for the matricesUb of (8) by defining
the bit-string-dependent partial sum up to qubit n

Sn(b) =
n∑
i=1

bi mod 2

where the sum runs from i = 1 because only the input qubits
can affect this sum, and we set by definition S0(b) ≡ 0. For
instance, if the bit string of input qubits is b = 101, then

S0(101) ≡ 0

S1(101) = 1

S2(101) = 1 ⊕ 0 = 1

S3(101) = SN = 1 ⊕ 0 ⊕ 1 = 0.

Consequently, we can write θb = ∑N
n=0(−1)Snαn. Then, for

every possible bit string of the input qubits, we have the
corresponding 2 × 2 matrix

Ub = XSNRy(θb). (12)

Note that the explicit expression of Ub can be related to the
general formula of (3), since if SN = 0, then Ub = Ry(θb),
and if SN = 1, thenUb = Ry(θb + π/2).

For the quadratic circuit, we can repeat the similar steps
and obtain the analytical form of the circuit function

Ub = XSN+QN−1,NRy

(
N∑
n=1

θn

)
(13)

where QN, θn, and other details of this derivation are in
Appendix B along with the exponential circuit analytical
form.

C. LIMITS OF THE QIC
Our purpose is to use the QIC to reproduce the target state

|φT 〉 = 1√
2N

∑
a={0,1}

2N−1∑
n=0

√
p(a|n)|n〉|a〉 (14)

where the conditioned probability p(a|n) are defined in (2).
When a numberM ≤ 2N of parameterized rotations is used

in the circuit, the output state |ψ (�̄)〉 is a function of the
2N-dimensional parameters vector �̄ = (θ̄0, θ̄1, . . . )

|ψ (�̄)〉 = 1√
2N

2N−1∑
n=0

(cos θ̄n|n〉|0〉 + sin θ̄n|n〉|1〉) (15)

where only M of the angles θ̄n are linearly independent.
A common measure that accounts for the similarity be-

tween two distributions p and q is the Hellinger distance [18],
defined as

dH (p, q) =
√
1 −

∑
x

√
pxqx (16)

where the term
∑

x
√
pxqx is known as Bhattacharyya co-

efficient. The Hellinger distance is chosen for its simplic-
ity and for its property of being a monotone function of
other commonly used distances between distributions, such
as the Jensen–Shannon distance and the Bhattacharyya dis-
tance [19]. We can calculate this value between the target
distribution represented by the state |φT 〉 and the output state
as

dH (φT , ψ (�̄)) =
√
1 − |〈φT |ψ (�̄)〉|

=
√
1 −

(∑2N−1

n=0

cos(θn − θ̄n)

2N

)
(17)

with −π
2 ≤ θn − θ̄n ≤ π

2 . In order to understand what is the
error that we could get in reproducing |φT 〉 using only M
parameters, we calculate the maximum distance we can get
between all the possible distributions |φT 〉 and the output
state when the rotation parameters �̄ are optimized, namely

max
|φT 〉

min
�̄

dH (φT , ψ (�̄)).

The minimization of the distance is provided by the ansatz
|φ̃〉 that has, without loss of generality, the firstM parameters
equal to the correspondent target angles θ̄i = θ̃i = θi. With
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this choice, we can write the minimum of the distance as

min
�̄

dH (φT , ψ (�̄)) = dH (φT , φ̃)

=
√
1 −

(
M

2N
+
∑2N

i=M+1

cos(θi − θ̄i)

2N

)
. (18)

The resulting 2N −M angles are linearly dependent on the
first M fixed angles. Hence, the ansatz does not ensure that
the other parameters can be made equal to their correspon-
dent targets. The maximum value of the Hellinger distance
among all the possible distribution represents the maximum
error we can get when we have optimized over the M pa-
rameters. It is obtained when the remaining angles are θi =
θ̄i + k π2 , with i = M + 1, . . . , 2N , and k ∈ Z. This yields

max
|φT 〉

min
�̄

dH (φT , φ̄) =
√
1 − M

2N
. (19)

The ansatz |φ̃〉 represents a circuit that has learned perfectly
a subset of M parameters. Equation (19) provides an upper
bound of the Hellinger distance between |φT 〉 and |ψ (�)〉 if
the optimization over the rotation parameters vector � was
successful.
Thus, the upper bound we have found in (19) tells us what

is the maximum error we can get when we use the QIC.

D. PARAMETER OPTIMIZATION
One of the benefits of using the QIC for imputation and
reproduction of conditional distribution probabilities is given
by the optimization of the parameters. Usually, a quantum
variational circuit, in particular the QCBM, has to deal with
a series of measurements and subsequent updates of pa-
rameters. However, this procedure presents many problems.
First, in order to get some significant statistics of the gen-
erated distribution, we need to take an exponential amount
of measurements, as an N-qubit circuit has 2N potential out-
comes. Second, the optimization process of the circuit is
itself problematic, as it has to deal with BPs [15], which
represent a significant portion of the parameter space where
the cost function remains flat, thereby offering little guidance
on how to proceed with the optimization process. This makes
gradient-based methods utterly nonefficient, but it poses a
fundamental challenge also to the application of gradient-
free methods, such as the Bayesian optimizations strategy.
In Appendix A, we provide evidence for the presence of BPs
within our circuit by analyzing its entanglement entropy [20].
In addition, we demonstrate the limitations of standard pa-
rameter measurement and update procedures in the context
of BPs. While we attempted to employ Bayesian optimiza-
tion, its effectiveness was ultimately compromised by the
plateaus, preventing us from successfully minimize the cost
function. We have included these findings in Appendix A to
distinguish our proposed method from previous approaches.
In the QIC in fact, the optimal parameters can be found

just solving a constrained problem. In order to reproduce the
results, the target distribution has to be such that for each

input value n, p(n, 0) + p(n, 1) = 1/
√
2N . This is a required

preprocessing that we need to do on the dataset. Finally,
the optimal parameters are chosen such that the Hellinger
distance (16) is minimal, where �̄n = arccos

√
p(0|n). The

analytical description of the circuit we have described in Sec-
tion II-B and detailed in Appendix B allows us to efficiently
solve the optimization problem.

E. IMPUTATION OF PROBABILITY DISTRIBUTIONS
In this section, we test the variational circuit for imputation
of missing data. We create several ad hoc datasets where the
probability of the state |n〉|0〉 follows different distributions
listed here.

1) Gaussian distribution: The Gaussian like distribution
is defined as

p(n, 0) = 1√
2N

1√
2π

e−(n−(N−1)/2)2

p(n, 1) = 1√
2N

(1 − p(n, 0)). (20)

The distribution can be seen in Fig. 2(a) (dark his-
togram).

2) Majority distribution: The majority distribution shown
in Fig. 2(b) (dark histogram) assigns to the target qubit
the value that corresponds to the most frequent value
in the input. We define the function fx(n) that gives
the frequency of the bit x in the binary representation
of the number n. With fx(n), we create a probability
distribution in which each bit string has probability

p(n, x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1√
2N
, if fx(n) > fx̄(n)

1

2
√
2N
, if fx(n) = fx̄(n)

0, otherwise

(21)

with x̄ = x⊕ 1.

1) NUMERICAL SIMULATIONS
We have tested the performance of both the linear circuit and
the quadratic circuit on either the Gaussian or the majority
distribution, using the sequential least squares programming
(SLSQP) classical optimizer to minimize expression (17) .
From Fig. 2, we can grasp how the target distributions are
reproduced by the circuit. For example, in Fig. 2(a), both the
linear and quadratic QICs are successful at reconstructing the
Gaussian distribution, while in Fig. 2(b), we see that the lin-
ear circuit was not able to reproduce themajority distribution,
while the quadratic circuit could reach a much more similar
output. The similarity between the distributions is given by
the Hellinger distance defined in (16), and it is plotted in
Fig. 3 for the Gaussian and the majority distributions as a
function of the number of input qubits.
In the case of the Gaussian distribution, the linear and

quadratic circuits give a similar output. The quadratic circuit
gives aworse result than the linear circuit forN > 10 because
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FIGURE 2. (a) Gaussian distribution of (20) and the respective output of the linear and quadratic QICs. (b) Majority distribution of (21) and the
respective output of the linear and the quadratic QICs. The plots show a number of input qubits N = 3 and represent the output of the circuit after the
optimization of the parameters. The linear circuit is able to reproduce well the main features of the Gaussian distribution, whereas the quadratic circuit
is needed to reproduce the majority distribution.

FIGURE 3. Hellinger distance between the target distribution and the output distribution of the optimized circuit. In (a), the target is the Gaussian
distributions g of (20), and in (b), the target is the majority distribution m of (21). In (c), the mean value of dH obtained for 100 random distributions for
each number of input qubits N. The colored area represents the variance obtained from the different random distributions.

of optimization errors. Both the distances reach a plateau
for large enough N. In the case of the majority distribution,
we see a great improvement when using the quadratic QIC.
We see that the circuit is more prominent to reproduce the
distribution for even values of N, which in the case of a same
number of 0 and 1 gives an equal probability to assign 0 or 1
to the output qubit. This can be explained by the fact that the
quantum circuit is more capable of reproducing distributions
similar to the uniform distribution, in line with the results
found in [21] and [22], where the authors found efficient
circuits for the generation of distributions with coefficients
characterized by small deviations. Indeed, the majority dis-
tribution for even values of 0 and 1 assigns equal probability
to the two possible outcomes.
In Fig. 3(c), we plot the mean value of dH and its standard

deviation obtained optimizing the circuit for 100 random
distributions for each number of input qubits. Generally, both
the linear and quadratic QICs reach a plateau value of the
Hellinger distance of less than 0.06 for large N.

F. DOES THE QIC GENERALIZE?
By generalization, we mean the ability of the parametric
circuit to correctly complete the input data that were not

present in the training set. The question whether a QCBM
does generalize has already been posed in the literature [13],
[23], [24], and the answer reflects the fact that the QCBM
takes as input a vector where all qubits are set to |0〉 and ap-
plies a global unitary transformation to reproduce the dataset
distribution. As a consequence, the generalization to unseen
data is possible only if the cost function during training does
not go to zero, an event that would signify mere memoriza-
tion of the available data. This behavior is related to the
expressibility [25], [26] of the circuit, which accounts for
how much of the Hilbert space is spanned by the circuit. The
QIC is inherently different. Since the circuit acts only on the
target qubit, there has to be an output for any configuration
x̃ of the input qubits, even if x̃ is not present in the target
distribution. The unseen data x̃ are expressed as a hole in
the probability distribution, which corresponds to the values
px̃,0 = px̃,1 = 0. The contribution in the Bhattacharyya co-
efficient in (16) for the unseen data is null, and the training
tends to optimize with respect to the seen data.
Because of the normalization of the probability distribu-

tion output of the QIC (
∑

x px = 1), the distance dH cannot
be 0, even in the case of optimal reproduction of the training
dataset. In order to encompass this issue, we calculate dH

2500712 VOLUME 5, 2024
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FIGURE 4. Generalization capability of the QIC for the Gaussian
distribution. The Hellinger distance between (a) the partial distribution gp

and the corresponding output distribution φp, (b) the distribution of the
unseen data gn and the corresponding output distribution φn, and (c) the
complete distribution g and the optimized output distribution φ. Different
colored curves correspond to different percentages of missing data.

only on the support provided by the seen data. This allows
the minimum of dH to be 0, a condition that would reflect
a perfect reproduction by the circuit of the distribution of
the seen data. In the following, we will show dH calcu-
lated on the probability distribution with partial (seen) data
pp, and with new (unseen) data pn, both renormalized such
that

∑
x p

p
x = ∑

x p
n
x = 1. Note that this condition represents

another important difference between the QIC and the
QCBM: even when the Hellinger distance vanishes, the cir-
cuit is able to generalize to unseen data, as we will show next.

1) NUMERICAL SIMULATIONS
In order to understand if the QIC is able to generalize, we
subtract from the target distribution a certain percentage of
data (10%, 30%, 50%, and 70%) and optimize the QIC with
respect to the partial distribution. Fig. 4 shows the dH ob-
tained for the Gaussian distribution using the linear QIC.
The results we have obtained for the quadratic circuit are
similar up to 10−2. In Fig. 4(a), we see that the distance
between the partial Gaussian distribution gp and the partial

FIGURE 5. Generalization capability of the QIC for the Majority
distribution m. In the figure, we show the ratio of the correct outcomes
from No = 1024 random extraction from the optimized random
distribution φ in the case of a missing portion of 70%. (a) Ratio Np/No of
extractions that belong to partial distribution mp. (b) Ratio Nn/No of
extractions that belong to the unseen distribution mn. (c) Ratio Na/No of
correct or extractions from the original distribution m.

output distribution φp tends to a constant value for N > 10.
This is reflected in the Hellinger distance between the unseen
Gaussian distribution gn and the new output distribution φn,
plotted in Fig. 4(b), where the distance decreases for larger
N, till it reaches a plateau. Fig. 4(c) shows the distance of the
outcome distribution φ with the Gaussian distribution g.
The different curves converge to the same value for larger

N (see Fig. 4), and this is due to the fact that increasing the
number of qubits, the dataset becomes large enough that even
after losing 70% of it, the algorithm can still find the pattern
in the data to reconstruct the distribution.
We see, therefore, that for a large number of N, the QIC is

able to produce the distribution of dataset and generalize to
unseen data.
To analyze the behavior of the circuit with the majority

distribution m for a partial vision of the data, we choose a
different approach. When for a given input string n, there is
only one possible output x, i.e., p(n|x) = 1, as it happens
for the distribution m, we can describe the generalization
capability of the QICs in terms of the number of correct
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strings that we obtain as output of the circuit. We define, out
of No random outcomes, the number of strings that belong to
mp as Np, and the one that belong to mn as Nn. In Fig. 5, we
plot the results obtained when the portion of missing data is
70%. For this distribution, the results obtained by the linear
and quadratic circuits are very different, since the latter is
more able to reproduce the original distribution m. We plot
the ratiosNp/No,Nn/No, and the ratio of acceptable outcomes
Na/No withNa = Np + Nn, in Fig. 5(a)–(c), respectively. The
results show that even with a 70% of unseen data, about 90%
of the outcomes followed the original rule in the case of 24

input data, and about 70% of them in the case of 216 input
data.

III. CONCLUSION
In this article, we have explored the possibility of using a
quantum computer to impute a missing attribute of a data
point, given a statistical distribution of the attribute within
a dataset. We have given a brief introduction to the most
commonly used classical techniques, whether they are based
on statistical inference or ML algorithms. Consequently, in-
spired by the quantum born machine, we have proposed a
quantum circuit, the QIC, for imputing classical data by em-
ploying parametric gates.
In the first part of this article, we introduced the QIC algo-

rithm. We calculated the theoretical upper bound of the loss
function used for optimization depending on the number of
parameters of the algorithm. This limit can be used as a red
flag. If the final Hellinger distance exceeds this upper bound,
it signals issues within the optimization process.
Since the QIC has a relatively simple structure, we were

able to find the analytical solution of the optimal angles.
However, our circuit was still able to develop entanglement.
We have tested this feature by calculating the entanglement
entropy between the input qubits and the target qubit and by
verifying the presence of BPs, which are characteristic of cir-
cuits with entanglement. Furthermore, our method avoids the
problem of sampling the output of the quantum circuit. We
acknowledge that this is not a standard procedure. However,
by leveraging the particular circuit ansatz, we were able to
avoid the optimization through successive measurements.
In the second part of this article, we have tested our circuit

to reproduce several types of probability distributions, find-
ing that the optimization goes well below the upper bound
limit, reaching values of the Hellinger distance in the order
of 10−2 even for randomly generated distributions.
Finally, we have addressed the ability of the QIC to gen-

eralize to unseen data in the dataset, i.e., we questioned if,
given an implicit rule, the output of the optimized QICwould
follow that rule even for data points that did not belong to the
training set. We have tested the QIC on the Gaussian and the
majority distributions with an increasing portion of missing
data. We have found that the algorithm was able to recover
the true value of the missing data even when the available
data were a small fraction of the dataset.

Before concluding, it is worth mentioning that QML algo-
rithms are neither the only possible direction for tackling the
imputation of missing data nor the problem of reconstructing
a desired distribution function. Another interesting direc-
tion points toward tensor-network-based circuits [27], [28],
where the matrix product state (MPS) architecture allows for
a classical optimization of the parameters [29]. This has a
remarkable overlap with our proposed circuit. The MPS ar-
chitecture has a nearest neighbor interaction between qubits
organized in the 1-D chain topology, whereas our circuit has
the topology of a star graph, with the central vertex (the
output qubit) connected to all the other vertices (the input
qubits). We believe that the analogy between the two sys-
tems and the application of tensor networks for imputation of
missing data should be addressed in future research, given the
positive results the approach has obtained for the generation
of classical probability distributions [30].
We believe that our results can lead the way to the use of

quantum circuits for the imputation of classical data.

APPENDIX A
BARREN PLATEAUS IN THE QIC
In this appendix, we analyze the emergence of BPs in the
circuit. BPs are large portions of the parameter space where
the gradient of the cost function ∂θiC for all the different
parameters θi is zero. The BPs are the consequence of the
concentration of measure in the exponentially increasing vol-
ume of the Hilbert space of N qubits [15]. In such spaces,
the variance of the gradient decays exponentially with the
number of qubits, as 〈(∂θiC)2〉 ∼ 2−N . This kind of behavior
is an obvious problem for gradient-based optimization meth-
ods, but it can raise issues also for other global optimization
methods, as the Bayesian optimization strategy we adopt in
this analysis. In order to avoid the BPs, different strategies
have been explored in several papers [31], [32], but, in sum-
mary, they all convey that the BPs emerge when the system
is subjected to large entanglement, either in the circuit [31],
[33] or in the definition of the cost function [20], [34], [35].
We found this behavior also in our circuit.
In fact, the presence of BPs in the parameter space highly

affects the ability of the optimization algorithm of finding
the global minimum. Fig. 6(a) shows that the Hellinger dis-
tance reached by the Bayesian optimization algorithm at
a certain step. We stop the optimization algorithm after a
number of steps increasing with the number of qubits, with
tmax = 100 + 50(N − 3) × max(3,N). Fig. 6(b) shows the
value of the Hellinger distance found after the optimization,
varying the number of input qubits N. Note that in Fig. 6(a)
and 6(b), the target distribution is the Gaussian distribution,
but analogue results have been obtained for the other tested
distributions.
In Fig. 7, we show the mean value and the variance of the

gradient of the cost function in the parameter space for (a)
the linear circuit, where the number of parameters scales as
N, and (b) the quadratic circuit, where the number of param-
eters scales as N2. In both the cases, we see the exponential
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FIGURE 6. Training of the Gaussian distribution using measurements for
the linear and quadratic circuits. (a) Distance dH at different steps of the
Bayesian optimization algorithm. (b) Optimal value of dH varying the
number of input qubits N.

decrease of the variance and of the mean value, in agreement
with the expectation.
In Fig. 7(c), we show how the mean value and the vari-

ance of the gradient vary when the number of parameters is
increased. In order to do so, we fix the number of qubits to
N = 9 and we add C2not> gates to the linear circuit until it
becomes the full quadratic circuit. Contrary to the behavior
obtained for Fig. 7(a) and 7(b), those curve do not follow an
exponential trend. We can explain this behavior by analyzing
the entanglement in the circuit.
In fact, the emergence of BPs in the parameter space is

related to the presence of entanglement in the circuit. We
calculate the entanglement entropy S = −Tr[ρt log ρt ], on
the state of the target qubit ρt , obtained tracing out the N
input qubits. S quantifies the entanglement between the tar-
get qubit and the rest of the circuit. In order to relate the
entanglement of the circuit to the landscape on the parameter
space, we average S over the volumeVM of theM parameters
α1, . . . , αM , yielding

S̄ = 1

VM

∫
VM

dMαS(α1, . . . , αM ) (22)

that is the expectation value of Swhen we run the circuit with
a random choice of the parameters.

FIGURE 7. Mean value and the variance of the gradient of the cost
function in the parameter space varying the number of qubits N for (a)
the linear circuit and (b) the quadratic circuit. (c) Mean value and the
variance of the gradient of the cost function varying the number of
parameters M, with fixed N = 9.

In Fig. 8(a), we plot S̄ for N = 3 and N = 4 as a function
of the number of parametersM. The entanglement increases
until it reaches a plateau, when the number of cnots (and
therefore the number of parameters M) is the same as the
number of qubits. When the number of parameters exceeds
the number of qubits, we introduce C2NOTs in the circuit.
We see that the addition of the C2NOTs does not change
the level of entanglement in the circuit, and this is in accord
with the curves in Fig. 7(c). In Fig. 8(b), we consider the
linear circuit, with M = N + 1, and we plot the mean value
of the entanglement entropy as a function of the number of
qubits. In this case, we have found S̄ ∼ 1 − a−b(N−c), with
a ≈ 1.2, b ≈ 3.2, and c ≈ 0.8, thus following an exponential
function of N.

APPENDIX B
ANALYTICAL SOLUTION
In this appendix, we show an example of matrix form of the
unitary of the linear circuit and then derive the formula for
the quadratic and exponential cases.
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FIGURE 8. (a) Mean value of the entanglement entropy S̄ as a function of
the number of parameters of the QIC, at fixed number of input qubits. (b)
Mean value S̄ obtained by the linear QIC varying the number of qubits.

1) LINEAR CIRCUIT
In the main text, we derived (12) for the linear circuit case.
Let us as an example plot the matrix form for a circuit with
N = 3 imputation qubits.

For instance, the matrix of the circuit with two input qubits
and one imputation qubit is the diagonal block matrix

U = diag
{
Ry[θ0 + θ1 + θ2],XRy[θ0 − θ1 − θ2],

XRy[θ0 + θ1 − θ2],Ry[θ0 − θ1 + θ2]
}

(23)

where

Ry(θ ) =
(
cos θ − sin θ

sin θ cos θ

)

and

XRy(θ ) =
(
sin θ cos θ

cos θ − sin θ

)
.

2) QUADRATIC CIRCUIT
The quadratic circuit introduces a series of Toffoli gates that
raises the total parameters (and rotations) to a number pro-
portional to the square of the input qubits. A quadratic circuit
is composed of an initial linear part, equivalent to the last
section, plus the set of parametric Toffoli gates, as shown in
Fig. 9.

Notice that the second set of angles is named αi, j, where
i and j represent the set of control qubits in the preceding
Toffoli gate.

As done before, to understand the shape of the total uni-
tary, we shift every rotation to the beginning of the circuit.
Starting with Ry(α1,2), we notice that the angle acquires a
phase −1 only if b1b2 = 1 mod 2, that is, (−1)b1b2 . The ro-
tation Ry(α1,3) consequently acquires a phase (−1)b1b2+b1b3
that depends on both Toffoli gates preceding it. The same
goes for the third rotation. We can simplify the exponent by
defining

Qn,m(b) =
n∑
i=1

m∑
j=i+1

bib j mod 2 (24)

which is the exponent of the phase acquired by the angles
when commuting with the Toffoli gates. In this way, we
obtain the rule

Ry(α) = Ry

[
N−1∑
n=1

N∑
m=n+1

(−1)Qn,mαn,m

]
(25)

where α represents the sum of all the angles. The same rule
applies to the X rotation enforced by the Toffoli gates, so the
total action of only the quadratic part gives us block matrices
such as

Uq = XQN−1,NRy

[
N−1∑
n=1

N∑
m=n+1

(−1)Qn,mαn,m

]
. (26)

Now, since these angles also need to commute with the
cnots, in addition to Qn,m, we need to add the contribution
from Sn to the phase. Putting it together with the results of
the linear part (12), we obtain

Uq = XSN+QN−1,N × Ry

[
N∑
n=1

[
(−1)Snθn

+
N∑

m=n+1

(−1)Qn,m+Snαn,m

]]
. (27)

3) EXPONENTIAL CIRCUIT
We define the exponential circuit as the circuit composed of
the linear circuit plus all possible combination of n-Toffoli
gates with n = 2, . . .N. Notice that, with this nomenclature,
the quadratic is the subcircuit of the exponential circuit with
n = 2.

To unify and simplify notation, we define the exponential
phase

EJ (n1, . . . , nJ; q) ≡
n1∑

a1=1

n2∑
a2=a1+1

. . .

nJ∑
aJ=aJ−1+1

ba1ba2 . . . baJ mod 2 (28)
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FIGURE 9. Example of a quadratic circuit with N = 3 input qubits.

so that we can regain the two previous phases

E1(n1; b) =
n1∑

a1=1

ba1 ≡ Sn1

E2(n1, n2; b) =
n1∑

a1=1

n2∑
a2=a1+1

ba1ba2 ≡ Qn1,n2 . (29)

In this way, we can define the (2 × 2) matrix blocks with the
recursive formula

Uq = XE1(N )+E2(N−1,N )+...EN (1,...,N )

× Ry

⎡
⎣ N∑
n1=1

⎡
⎣(−1)E1αn1 +

N∑
n2=n1+1

(−1)E2αn1,n2

+ · · · +
N∑

nN=nN−1+1

(−1)ENαn1,...,nN

⎤
⎦
⎤
⎦ (30)

where each summation in the second line runs over
subsequent indices.
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