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Abstract
We incorporate the concept of dimensional reduction at high energies within
the perturbative formulation of quantum field theory (QFT). In this new frame-
work, space and momentum integrations are modified by a weighting function
incorporating an effective mass energy associated with the dimensional reduc-
tion scale. We quantize the theory within canonical formalism. We then show
that it can be made finite in perturbation theory, free of renormalon ambi-
guities, and with better analytic behavior for infinitesimal coupling constant
compared to standard QFT. The new approach reproduces the known results
at low energies. One key feature of this class of models is that the coupling
constant always reaches a fixed point in the ultraviolet (UV) region, making
the models UV complete.
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1. Introduction

The central object in quantum field theory (QFT) is the S-matrix, which is at the core of scatter-
ing evaluations and connects the quantization formalism to physical observables. While there
are rigorous, non-perturbative definitions of the S-matrix—see, e.g. [1–3]—these particular
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constructions lack contact with any fundamental theory, such as quantum electrodynam-
ics (QEDs) or the standard model (SM). Today, the Lagrangian field theories need to be
treated using perturbation theory; one quantizes the free field(s) and then evaluates the S-
matrix elements using the Feynman rules. In doing this, one ignores that within the inter-
action picture, this particular construction of the S-matrix is prevented by Haag’s theorem
(HT) [4]. Not surprisingly, calculations in perturbation theory of non-trivial S-matrix ele-
ments give divergent results, which are cured by the renormalization procedure for renormal-
izable models. By subtracting these infinities, renormalization a posteriori forces the S-matrix
to exist. In other words, by discriminating between the initial (infinite) bare parameters and
the renormalized (finite) ones, renormalization de facto makes the non-interactive and inter-
active theories non-unitary equivalent. The free and the interacting models are unitary equi-
valent if there exists some a priori, finite unitary matrix (Dyson matrix) connecting them,
and this is one of the assumptions of HT. Dyson matrix is infinite in perturbation theory
before renormalization, and hence not suitable to connect the free and interactive theories.
Therefore, renormalization circumvents HT by adding some external information designed to
make the theory finite, while unitary equivalence between the free and interacting theory is
effectively lost.

Unlike other areas of physics, perturbation theory in QFT is not only an approximation
technique but also an integral part of the renormalization procedure. Although it is a consistent
procedure—order-by-order—an improved perturbation theory should be unitary equivalent to
the free theory. Once one abandons the requirement of unitary equivalence, it is not guaran-
teed that the procedure obtained is complete, and this is what happens in the standard QFT.
The renormalized asymptotic expansions in the coupling constant need to be resummed to
achieve consistent results, but there are strong indications that such resummation is unattain-
able in four dimensions (4D). Indeed, within ϕ4 model or QED, a non-ambiguous resum-
mation is prevented by the ultra-violet (UV) renormalons, which shows the limitations of
the renormalization program [5]. In addition, there is the issue of the ‘horned-shaped’ ana-
lyticity domain in the complex coupling constant plane, which implies that the Borel trans-
form grows faster than any exponential in the Borel variable, preventing the Borel–Laplace
resummability of any 4D QFT, even for asymptotically free models [5]. The latter is also
consistent with a class of diagrams, found in [6], which makes the Laplace integral diver-
gent. It is worth stressing that these renormalization issues are absent for super-renormalizable
models. For example, the ϕ4 model in two dimensions is Borel resummable [7]. Hence, for
superrenormalizable models, perturbative renormalization suffices to obtain complete res-
ults. The reason is that only a finite set of graphs is divergent for super-renormalizable
models. Thus less information has to be added for the consistency of the interactive
theory.

In this work, we propose dimensional reduction at high energy as a solution to the problems
mentioned in the standard, 4D QFT. There are indications from quantum approaches to gravity
that space-time dimension might reduce at high-energy [8–15], and this possibility has been
already considered in light of the current particle phenomenology [16] and astronomy [17].
Focusing on the ϕ4 model for simplicity, we formulate a QFTwith an energy-dependent space-
time dimension and develop a canonical quantization formalism consistent with dimensional
reduction. Within this scenario, we introduce a mass-energy scale that signals the change in
the space-time dimension. The new scale can be thought of as the remnant of an unknown
UV dynamics of space-time, not in the usual Wilsonian sense, i.e. not through higher-order
operators suppressed by the scale of heavy particles, but instead through a classical field of

2



J. Phys. A: Math. Theor. 56 (2023) 175402 A Maiezza and J C Vasquez

geometrical origin that weights differently long and short distances contributions3. We call the
resulting theory ‘dimensionally-reduced QFT’ (DRQFT) and show that, while keeping unitary
equivalence between the free interacting theories, it avoids the problems of the standard QFT
mentioned above. As we shall show, in DRQFT, the vacuum state would not be translation
invariant; hence, it avoids one of the other assumptions leading toHT.As a result, computations
in perturbation theory within DRQFT can bemade finite, with no renormalon singularities, and
no bad analytic properties for infinitesimal coupling.

The structure of this article is as follows. In section 2, we motivate the possibility of an
energy scale in QFT associated with the space-time integration measure. The main results are
discussed in sections 3 and 4, in which we perform the canonical quantization and compute
one-loop examples within the new theory. We also study the running coupling in the ϕ4 model
and show the absence of renormalons and the good analytic properties of the theory for infin-
itesimal couplings. In section 5, we present an outlook and discuss possible implications for
realistic models. The paper is complemented by two appendices A and B, in which we elab-
orate on the HT and its implications for perturbation theory. Finally, we suggest a way of
avoiding the no-go imposed by HT.

2. DRQFT

In this section, we discuss the basis needed to elaborate on the DRQFT and discuss how our
proposal relates to the current literature. In [12, 13], the author implements multifractal modi-
fications of the physical dimensions that might also include fractional operators [19]. Previous
attempts to model QFT on fractal space-time can be found in [20, 21]. The proposed DRQFT
is not equivalent to the multifractal approach of [13], although both theories formally share
the classical-field structure. In particular, in DRQFT, there is a new energy scale signaling the
reduction of space-time. This implies a different structure at the quantum level. In this sense,
our approach is effective and closer to the one of [14]. There, the author provides a heuristic
picture of dimensional reduction versus the running coupling, via an ansatz for the momentum
integration. An akin one can be derived from the canonical quantization formalism adapted to
a scale-dependent dimensionality of space-time.

The resulting DRQFT is finite in perturbation theory, with no renormalons and likely Borel
resummable4. Furthermore, DRQFT evades the no-go imposed by HT, and we refer the reader
to appendix A for more details.

2.1. A new mass/energy scale

In standard QFT, a renormalizable Lagrangian L is made effective by adding higher-
dimensional operators Oi:

S=
ˆ
d4xL→

ˆ
d4x

(
L+

∑ Oi

Mi

)
, (1)

3 The idea that very high energy dynamics might affect low energy physics has been known in the literature. For
instance, in [18], it was argued that UV stringy dynamics might modify quantum mechanics.
4 There are other possible sources of ambiguity, the instanton [22, 23]. However, these have a semi-classical limit
that, in principle, enables one to fix the ambiguities in the Laplace integral—see, for example, [24, 25]. In this sense,
the instantons do not damage the consistency of the perturbative QFT.
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where the operators Oi are suppressed by some ‘new scale’M. The meaning of equation (1) is
that these operators are obtained after integrating out some heavy particles with mass M.

It is also conceivable that the dimension of space-time is energy-dependent and that the new
mass-scale M is not associated with some new heavy particles—as shown in equation (1) –
but with an intrinsic energy scale signaling the change in the space-time dimension. As a first
approach, we consider a QFT embedded in a flat space-time, where the space-time dimension
is energy-dependent, and gets smaller at high energies. The latter is motivated by the fact that
most known approaches to gravity at the most fundamental level suggest that the space-time
dimension is less than four at high energies—see the reviews in [26, 27]. Notice that there
is no consensus about how the dynamical dimensional reduction should work. Moreover, the
definition of physical dimension is inherently tricky at the microscopic level, and one can only
appeal to different dimensional estimators [27].

At energy E<<M, we assume an effective dimension coinciding with the standard topo-
logical one (4D), while it effectively reduces to a lower dimension at E∼M. This approach
has been suggested in [14], where the author performed a ‘hard conjunction’ between a 4D
and a 2D Lagrangians at E=M. Notice that the choice of 4D at low energies is empirical and
the formalism discussed below is generalizable to an arbitrary topological dimension.

We describe the smooth change in the space-time dimension in terms of Lebesgue–Stieltjes
integrationmeasures in coordinate (andmomentum space) as d4x 7→ dw(x) (and d4k 7→ dw(k)).
To confront the familiar dimensional regularization, one can regard the measures as

dw(x) :=M−α(x) dD(x)x with D(x) := 4−α(x)

dw(k) :=Mα(k) dD(k)k with D(k) := 4−α(k) . (2)

The function α(k) parameterizes the dependence of space-time dimension as a function of the
energy and—as we shall see in detail—has to be small only at deep IR, to match with standard
QFT (i.e. usual 4D framework). Notice also that w(x) and w(k) assume the same functional
form since probing short distances corresponds to probing high-energy scales, in agreement
with Heisenberg’s uncertainty principle.

The equation (2) resembles dimensional regularization but with a physical energy scaleM in
place of the benchmark energy µ and an energy-dependent dimension D(k). If D(k) were con-
stant, one would recover dimensional regularization. In this sense, within this approach, there
is an actual physical change in the space-time dimension, unlike dimensional regularization.
We should clarify that equation (2) only serves to compare with the standard dimensional regu-
larization, but it has no application for the rest of the paper. Indeed, the momentum dependence
of the space-time dimension entails an intrinsic difficulty in evaluating any integration. It can
be overcome by properly handling all the integrals in the theory as Lebesgue–Stieltjes ones.
Consistently, one must start with the action written as a Lebesgue–Stieltjes integral [13]:

S=
ˆ
dw(x)L . (3)

Short and long distances are ‘weighted’ differently—hence the namew(x). Unlike equation (1),
equation (3) may also be seen as an effective action because it effectively describes the reduc-
tion of the space-time dimension at high energies. One can define the Lebesgue–Stieltjes meas-
ure in each space-time direction [13]:

dx=
3∏
i=0

dxi 7→ dw(x) :=
3∏
i=0

dxi si(x) , (4)
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where we denote dx= d4x (we shall also denote dx̄= d3x, and similarly for the momentum
space). We shall assume that the weight s0(x) = 1 on the temporal direction, and si = s(x)with
i = 1,2,3. With these assumptions, the integration measure can be written as

dw(x) := dxr(x) = dx0 dx̄r(x) , (5)

with r(x) = s(x)3.
In contrast to [13], from equation (2), it follows that the function r is dimensionless—then

a function of x×M or k/M in coordinate and momentum space, respectively. In our case,
the dimension of the Lagrangian is as in standard QFT. The objectives of [13] are different
from ours, namely, the author attempts a formulation of perturbatively renormalizable quantum
gravity.

Similarly to equation (5), one has from equation (2) the weight in momentum space

dk 7→ dw(k) = dkr(k) = dk0 dk̄r(k) , (6)

having r(x) and r(k) the same functional form.
Before discussing further technical issues, a comment is in order. At first glance,

equation (3) resembles string theory dilaton, in which the field r(x) can be thought of a dilaton,
typically defined as r(x)≈ e−Φ(x) [28–31]. There are, however, deep distinctions between the
dilaton models and dimensional reduction cases. Albeit both the dilaton and the above field r
are of geometrical origin, the dilaton couples differently, for different sectors of a QFT, while r
is a global rescaling that manifests itself through a change of the integration measure, together
with a re-definition of the calculus—see next paragraph. This is a central point for the rest
of the paper. The modified calculus plays a crucial role in defining a Dirac-like distribution
which, in turn, is a fundamental object for the canonical quantization that we want to perform.

2.1.1. Calculus. The introduction of the Lebesgue–Stieltjes integration requires some spe-
cific definitions in calculus. A generalized delta function is defined as [20]ˆ

dw(x)δ(x) = 1 , (7)

and similarly in momentum space. We denote the 4D delta function as δ(4)(x) = δ(x). Con-
versely, we shall denote explicitly with δ(1) and δ(3) the one-dimensional (function of the
temporal variable) and three-dimensional (function of the space variables), respectively. One
has also to define the Lebesgue–Stieltjes–Fourier representation for the delta function,ˆ

dw(x)ei(k−k ′)x = (2π)4δ(k− k ′) , (8)

and ˆ
dw(k)e−i(x−x ′)k = (2π)4δ(x− x ′) . (9)

The Lebesgue–Stieltjes–Fourier transform for the classical field is

ϕ̃(k) =
ˆ
dw(x)ei kxϕ(x) , (10)

ϕ(x) =
1

(2π)4

ˆ
dw(k)e−ikxϕ̃(k) , (11)

such that, replacing the equation (10) in equation (11) one obtains equation (8). In this way,
the set of equations (7)–(11) generalizes the standard calculus.
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2.2. Tree-level scale invariance and the Callan–Symanzik equation

We show that the scale invariance of the action functional is not spoiled in the DRQFT. To this
end, consider the action functional

S=
ˆ
dw(x)L=

ˆ
dxr(x)L , (12)

being L= 1
2∂µϕ∂

µϕ the Lagrangian density of a free, massless, real scalar field ϕ. An infin-
itesimal scale transformation on the scalar field is given by

δϕ(x) = ϕ ′(x ′)−ϕ(x) = (d+ xµ∂µ)ϕ(x) , (13)

where d= 1 is the so-called scale dimension for the scalar field. Under a scale transformation,
the action varies as

δS=
ˆ
dxδr(x)L(x)+

ˆ
dxr(x)δL(x) . (14)

By construction, the Lagrangian is a scalar with dimension four, then it transforms as δL(x) =
(4+ xµ∂µ)L(x). The variation of the action can be written as

δS=
ˆ
dxδr(x)L(x)+

ˆ
dxr(x)(4+ xµ∂µ)L(x)

=

ˆ
dxδr(x)L(x)+

ˆ
dx∂µ (r(x)x

µL(x))−
ˆ
dxL(x)xµ∂µr(x) , (15)

in which we assume that the total derivative term vanishes. As usual, this can be achieved
by assuming that the Lagrangian and the fields vanish faster than 1/|x| at infinity. The same
assumption shall be made when deriving the equations of motion.

If one assumes that r(x) is a dimensionless scalar field, then under scale transformations
δ r(x) = xµ∂µr(x) and in this case δS= 0, i.e. scale invariance is preserved. Since scale invari-
ance is not broken at the tree level, it implies that the n-point Green functions still satisfy the
Callan–Symanzik equation [32, 33]. Therefore, in momentum space, the Feynman propagator
assumes the same form as in standard QFT. This is undoubtedly an asset of the theory because
there shall be no substantial modifications in the well-known machinery of loop calculations.
We should stress that this is a specific consequence of the assumption that the scale M enters
into r(x) as a dimensionless ratio. As already discussed, this is not the case with the approach
in [13], in which the weight function is dimensionful. However, this difference shall not affect
the equation of motion, which we shall show in the following subsection following [13].

2.3. Classical field theory

Consider the free, massive scalar field with Lagrangian density,

L=
1
2

(
∂µϕ∂

µϕ −m2ϕ2
)
. (16)

The minimization of the action in equation (12) leads to the equation of motion(
□+

∂µr(x)
r(x)

∂µ −m2

)
ϕ(x) = 0 , (17)

where □ := ∂µ∂
µ. The energy-momentum tensor is given by

T µν :=
∂L

∂(∂µϕ)
∂νϕ −Lgµν , (18)
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andwe use the convention for themetric gµν = diag{1,−1,−1,−1}. Considering a translation
of an infinitesimal parameter b, then δϕ =−∂µϕbµ and from equation (12)

δS=−r(x)∂µLbµ −L∂µr(x)bµ , (19)

and then

∂µ(r(x)T µν) =−L∂νr(x) . (20)

Defining

Pµ =

ˆ
dx̄r(x)T 0

µ . (21)

Equation (20) implies

Ṗµ =−
ˆ
dx̄∂µr(x)L , (22)

where the dot denotes the time derivative. For the scalar field, the time derivative of the 3-
momentum is of the form

Pi =−
ˆ
dx̄r(x)ϕ̇∂iϕ, (23)

where translation operator is given by T= e−iPi b
i
. Notice that from equation (22), the operator

T= e−i P⃗·⃗b for space translations is time-dependent, and we refer the reader to the appendix B
for more details and implications.

The bottom line is that the weight r(x), which is nontrivial only at energy≳M, modifies the
translation within the Poincaré group. Notice that the weight modifies also the Lorentz group
generators, but the Lorentz algebra is preserved. We refer the reader to [13] for a detailed
discussion.

3. Canonical quantization

In this section, we perform the canonical quantization for the DRQFT. First, replacing the
Stieltjes–Fourier transform of ϕ in equation (11) into equation (17), one gets

1
(2π)4

ˆ
dkr(k)

(
−k2 − i kµ

∂µr(x)
r(x)

+m2

)
e−i kxϕ̃(k) . (24)

This gives the following equations

k2 −m2 = 0 (25)

kµ ∂
µr(x) = 0 . (26)

The first equation is just the standard dispersion relation, while the second gives an additional
constraint to the function r(x). In particular, it implies that r cannot be a function of only x2:
if this were the case, it is easy to see that taking the derivative of r(x2), the equation (26)
would lead to kµxµ = 0. The latter would prevent a non-trivial Fourier representation since
both momentum and position would not be independent variables. As a consequence, xµ must
appear at least linearly inside r, and we must introduce a four-vector parameter aµ such that

r= r(xµa
µ), |a| ∼ 1/M , (27)

withM the dimensional reduction scale of section 2. Using equation (26), one obtains kµaµ =
0, which is a restriction on the possible momenta for on-shell particles. Since |a| ∼ 1/M, the
latter constraint becomes relevant only when the energy is of order or bigger than M.
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3.1. Quantization and canonical commutation relation

The canonical commutation relation (CCR) is

[ϕ(t, x̄),π(t, ȳ)] = iδ(3)(x̄− ȳ) , (28)

being π = ∂L
∂ϕ̇

= ϕ̇, but with the difference that the delta function is the generalized version
defined below equation (7). Following the standard procedure, we next introduce the ladder
operators a(k̄),a†(k̄) to rewrite the equation (11) as a quantum field:

ϕ(x) =
1

(2π)3

ˆ
dk̄√
2ωk

[
r(k̄)a(k̄)e−i kx+ r(−k̄)a†(k̄)ei kx

]
, (29)

and thus

π(x) =− i
(2π)3

ˆ
dk̄

√
ωk
2

[
r(k̄)a(k̄)e−i kx− r(−k̄)a†(k̄)ei kx

]
. (30)

We are denoting r(k̄) = r(k)|k0=ωk with ωk =

√
(⃗k)2 +m2, namely the usual dispersion in

equation (25).
The equation (29) is derived from the classical field with standard manipulations, and when

one changes the second piece in the integral k̄→−k̄ also splits the function r into two parts
(with opposite signs in the argument) because r is not a function of k̄2. This follows from
equation (27) (and the fact that the function r has the same form both in the coordinate and
momentum space, as discussed in section 2). The equations (29) and (30) give the commutation
relation

[a(k̄),a†(k̄ ′)] = δ(3)(k̄− k̄ ′) , (31)

which, again, looks like the standard one, except that the delta is the generalized one.

3.2. 3-momentum

Taking the space derivative of equation (29) gives

∂iϕ=
−i

(2π)4

ˆ
dk̄

k̄i√
2ωk

[
r(k̄)a(k̄)e−i kx− r(−k̄)a†(k̄)ei kx

]
, (32)

which, once replaced in equation (23) and after some manipulations gives

ˆ
Pi dx0 = δ(1)(0)

ˆ
dk̄
k̄i
2
[r(−k̄)a†(k̄)a(k̄)+ r(k̄)a(k̄)a†(k̄)] . (33)

Being

δ(1)(0) := lim
k̄ ′→k̄

δ(1)(ωk−ωk ′) (34)

a c-number, as in the standard case. Since momentum is not constant in time, the above
equation can be interpreted as the time average of the 3-momentum. Technically, this comes
from the necessity to complete the measure dxr(x), starting from equation (23) and using
expression (8).

8
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3.3. Action of Pi on the vacuum

The Fock space F(H) =
⊕∞

n=0H
⊗

n
0 (understanding symmetrization for bosonic states of ϕ)

is spanned as in the standard case by the ladder operators. The n−particle states are normalized,
as usual

〈nk|nk ′〉= δ(3)(k̄− k̄ ′) , (35)

such that ˆ
dk̄ ′ r(k̄ ′)〈nk|nk ′〉= 1 , (36)

which is the weighted orthonormality relation. Taking the vacuum-to-vacuum expectation
value of equation (33), one obtainsˆ

〈0|Pi |0〉dx0 = δ(0)(3)δ(0)(1)
ˆ
dk̄r(k̄)

k̄i
2
= δ(0)

ˆ
dk̄r(k̄)

k̄i
2
, (37)

where

δ(3)(0) := lim
k̄ ′→k̄

δ(3)(k̄− k̄ ′) . (38)

Notice that in the standard limit r(x)→ 1 and the equation (37), being an odd function of
k̄, is equal to zero. In the DRQFT, equation (37) is non-zero since r(k̄) 6= r(−k̄), because of
equation (27). Therefore, contrary to the standard QFT, in DRQFT, the vacuum expectation
value of the 3-momentum is time-dependent and given by

〈0|Pi |0〉=
ˆ
dx̄r(x0, x̄)

ˆ
dk̄r(k̄)

k̄i
2
, (39)

which implies

Pi |0〉 6= 0 . (40)

Finally, using the expression

T0 = eiPi bi = 1+ iPi bi+O(bi)
2 , (41)

it is easy to see that

T0|0〉 6= |0〉 (42)

thus evading HT, in agreement with appendix B.

4. A finite perturbation theory

In this section, we compute the two-point and four-point Green functions in perturbation theory
within the DRQFT

4.1. The Feynman propagator

The Feynman propagator ∆F(x,y) given by

∆F(x,y) = 〈0|T ϕ(x)ϕ(y)|0〉 ≡Θ(x0 − y0)〈0|ϕ(x)ϕ(y)|0〉+Θ(y0 − x0)〈0|ϕ(y)ϕ(x)|0〉

=
Θ(x0 − y0)

(2π)3

(ˆ
dk̄r(k̄)
2ωk

e−i k(x−y)

)
+

Θ(y0 − x0)
(2π)3

(ˆ
dk̄r(k̄)
2ωk

ei k(x−y)

)
, (43)
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where T denotes the time-order operator, as defined above. It is straightforward to show that
∆F(x,y) is the Green function associated with the differential operator in equation (17), since(
□+

1
r(x)

∂µr(x)∂
µ −m2

)
∆F(x,y) =−iδ(x− y)+

∂0r(x)
r(x)

δ(1)(x0 − y0)〈0| [ϕ(x),ϕ(y)] |0〉 .

(44)

From the equal time CCRs, one can immediately see that the second term in equation (44)
vanishes. Next, using the residue theorem for evaluating the first term in equation (44) at the
pole k0 = ωk gives

i
(2π)4

ˆ
dkr(k)e−i k(x−y)

(k0 −ωk)(k0 +ωk)
=

i
(2π)4

ˆ
dk0 dk̄r(k)e−i k(x−y)

(k0 −ωk)(k0 +ωk)
=

1
(2π)3

ˆ
dk̄r(k̄)e−i k(x−y)

2ωk
.

(45)

A similar calculation applies for the second term in equation (43), and by the standard Feynman
prescription on contour integration the equation (43) becomes

∆F(x,y) =
i

(2π)4

ˆ
dkr(k)

k2 −m2 + iϵ
e−i p·(x−y) . (46)

4.2. One-loop corrections

We now consider the one-loop corrections, induced by the interaction term in the Lagrangian

Lint =− λ

4!
ϕ4 . (47)

From equation (46), one expects loop calculations standard-like but modified due to the func-
tion r. Indeed, it can be shown that in a Feynman diagram with I internal lines, E external
lines, and L number of legs in the vertex, the function r enters in the integration of virtual
momenta with the power N=

(
L−2
L

)
I−E/L+ 1, which mean one r for each loop integration

k. In particular, the one-loop two-point correlator reads

Γ
(2)
one-loop(p1,p2)∝ (2π)4 δ(p1 + p2)

ˆ
dkr(k)

1
k2 −m2

. (48)

Similarly, the one-loop 4-point Green function is given by

Γ
(4)
one-loop(p1,p2,p3,p4) = const× (2π)4 δ(s+ q)

ˆ
dkr(k)∆F(s− k)∆F(k) , (49)

and s= p1 + p2 and q= p3 + p4.
For the most divergent integral of equation (48) to be finite, r(k) must scale at least as |k|−η,

with η > 2. For the sake of illustration, in what follows, we consider η= 3:

r(k) =

(
l2

l2 + kµlµ

)3

, (50)

being lµ a four-vector parameter with |l|=M. Equation (50) is such that it takes into account
the constraint in equation (27). Moreover, the function r(k) tends to one at long distances, in
agreement with standard QFT, which one must recover at low energies. Notice that, although
the qualitative behavior of r(k) is determined from the requirement of a 4D space-time at low
energy, the specific form to obtain finite results depends on the particular model, which in this
case is ϕ(x)4 scalar model.
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It is worth emphasizing that the choice for the weight function r(k) in [14] is not compatible
with our constraint. Notwithstanding these technical differences, the qualitative conclusions
found in [14] also hold in the DRQFT.

4.3. Loop finiteness and low-energy limit

Equation (48) is finite and, for M� m, it can be written as

Γ
(2)
one-loop =

λ
(
m2 log

(
m
M

)
+m2 +M2

)
16π 2

. (51)

We now evaluate equation (49) in two limits, namely p2 �M2 and p2 �M2. The limit
p2 �M2 gives

Γ
(4)
one-loop =

3λ2 log
(

p2

4M2

)
+ 1

32π 2
+O(p2/M2) , (52)

while for p2 �M2 we obtain

Γ
(4)
one-loop =

3λ2M2
(
4M2 log

(
p2

4M2

)
− 4M2 + p2

)
8π2p4

+O(M6/p6) . (53)

Since the Green functions obey the Callan–Symanzik equation, just as in the standard QFT—
also recall section 2—one is free to implement an arbitrary, finite subtraction to (re)normalize
equation (52) to

λp≪M
R (p)' λ+

3λ2 log
(
p2

µ2
0

)
32π 2

, (54)

where λ= λ(µ0).
The same subtraction applied to equation (53) gives in the limit p2 �M2

λp≫M
R (p)' λ+

3λ2

(
log
(

4M2

µ2
0

)
+

4M2
(
4M2 log

(
p2

4M2

)
−4M2+p2

)
p4 − 1

)
32π 2

. (55)

The equation (54) must be compared with the one-loop running in the standard QFT

λstandard
R (µ) =

λ

1− β1
2 λ log

(
µ2

µ2
0

) ' λ+
β1

2
λ2 log

(
µ2

µ2
0

)
, (56)

with β1 =
3

16π2 , which matches to equation (54) for µ2 = p2. Hence the DRQFT reproduces
the standard QFT result in the low energy limit p2 �M2. In other words, it reproduces—in
this limit—the usual renormalization, based on dimensional regularization.

On the other hand, in the limit p�M, the coupling λR (in equation (55)) rapidly approaches
a constant value. Therefore, the theory has an asymptotic UV fixed point at the one-loop level.
Since the higher loop corrections are automatically finite, it is guaranteed that higher order
terms are subleading and hence do not alter the qualitative behavior of equation (55).Moreover,
the absence of UV renormalons—which we shall discuss in the next subsection—implies no
incalculable large-order contributions, and the coupling λ remains small at all energies (if
small at low energies).

11
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Finally, in terms of the hard conjunction of [14], the running of λ in equations (54) and (55)
corresponds to the running of a 4D QFT at low energies and a 1D QFT at higher energies.
Recall that for the function r in equation (50) to give finite result in equation (48), it is sufficient
for its exponent η to be larger than 2—although we have fixed it, for simplicity, equal to 3.
In turn, the requirement of finite loop corrections implies that the reduced dimension must be
smaller than two, in agreement with the insight from the quantum gravity approach suggesting
that the space-time dimension could be smaller, but close to two [10].

4.4. Absence of renormalon singularities

We now show that renormalon singularities are absent in DRQFT. For clarity, we first recall
how renormalons appear in standard QFT. In the ϕ4 model, a specific realization of the UV
renormalons can be derived from the ‘t Hooft’s skeleton diagram [5]. Denoting it with Sn, with
n-bubbles, one has

∝ λn+1
ˆ
dk

1
(k− p)2 −m2

B(k)n , (57)

where B(k) denotes the one-loop correction of the four-point function in the ϕ4 model. Notice
that from equation (56) and for largemomentum k,B(k) is proportional toβ1 log(k/µ). Expand-
ing for large k equation (57), replacing B(k)∝ β1 log(k/µ), and reabsorbing the divergent part
of equation (57) in the proper counterterm, one gets the n! behavior

Sn ≈ λn+1βn1n! . (58)

The Borel transform (B : λ 7→ z) for the above equation is given by

B [Sn] =
1

1− zβ1
. (59)

The pole at z= 1/β1 is the first UV renormalon. Considering higher orders in k in the expan-
sion of equation (57), one gets additional renormalon singularities at z= u/β1 (u= 1,2,3, . . .).
These latter singularities imply an infinite number of ambiguities in the Laplace integral, mak-
ing it thus ill-defined and hampering the Borel–Laplace resummation in the scalar model.

Consider now equation (57) from the point of view of the DRQFT. Evident modifica-
tions concerning the standard case are dk→ dkr(k) and, more importantly, the function B(k)
approaches a constant value for large momentum k, as can be seen from equation (55). Con-
sequently, there is no logn contribution in the integral of equation (57), which is the source of
the n! contribution in equation (58). Therefore, there are no UV renormalons for the ϕ4 model
within DRQFT.

Note that both HT is evaded, and no renormalon ambiguities appear. This agrees with the
conjecture of [34], where it is proposed that renormalons could be understood as a consequence
of HT.
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4.5. On the analyticity domain of the two-point function

Renormalons are not the only source of problems when making sense out of QFT in 4D, and
other problems also arise, such as the superexponential behavior of the Borel transform [5].5

The superexponential behavior is derived from the two-point Green function’s accumulation
of singularities for infinitesimal coupling. The latter argument was built for pure Yang–Mills
(so asymptotically free) models since there are no UV renormalons on the positive semi-axis
for this model. Hence, it makes sense to investigate the presence of additional inconsistencies.
In the same vein, since we are also arguing that there are no UV renormalons on the positive
axis in the DRQFT, even for the ϕ4 model, it is worth asking whether the same problems
arise. For clarity, we first review the original argument, which relies on two footholds: the
non-perturbative insight from the Kallen–Lehmann representation of the Green function and
the one-loop running for the coupling λ.

The Green function singularities6 for Minkowskian momentum are all located in the posit-
ive real axis, where in addition to simple poles for the one-particle state, there is a branch-cut
starting at the multiparticle energy threshold p> 2m. The idea is to understand the implica-
tions of this branch cut in momentum space for the coupling constant dependence of the Green
function. Following [5], the Green function at one-loop order can be seen as a function of the
single variable X := 1

λR(k2)
+ β1

2 log
(
−k2/µ2

0

)
, namely,

G(2)(X) = G(2)

(
1

λR(k2)
+

β1

2
log
(
−k2/µ2

0

))
, (60)

where the standard one-loop running shown in equation (56) is used. The next step is to study
the analytic structure of the above Green function for complex X. The variable X can be com-
plex for real coupling and complex momentum and it can also be complex for real momentum
and complex coupling. For complex k2 and real coupling λR, the Green function has singular-
ities when k2 is real and positive (Minkowskian), i.e.

1
λR(k2)

+
β1

2
log
(
−k2/µ2

0

)
=

1
λR(k2)

+
β1

2
log
(
k2/µ2

0

)
+

β1

2
(2n+ 1)π i

= R+
β1

2
(2n+ 1)π i , (61)

and R is any real number and n is a natural number.
Conversely, one can also analyze the case of real momentum and complex coupling. The

crucial point is that for real Euclidean momentum k2 < 0, the log term in equation (60) will
not reproduce the known singularities known from the Kallen–Lehmann representation, and
it may seem that one can avoid the Kallen–Lehmann singularity in the Euclidean region. This
is not possible, and the reason is that the Green function is a function of X only. Therefore,
it must be that for Euclidean momentum; the Kallen–Lehmann singularity manifests in the
momentum dependence of the complex coupling λ(k2) as follows

1
(λR(k2))sing

= R+
β1

2
(2n+ 1)π i . (62)

5 Notice that there are diagrams—pointed out in [6]—which although do not give poles in the Borel transform at finite
locations, they destroy the Borel–Laplace re-summability. This means that these contributions, called ‘renormalons
at infinity’, make the Laplace integral not convergent, albeit Borel transform ‘locally exists’. Therefore, we interpret
these ‘renormalons at infinity’ as the diagrammatic counterpart of the argument for the superexponential behavior
found in [5].
6 The singularities for Green functions can be derived from the Kallen–Lehmann spectral representation.
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Figure 1. Horned shaped analyticity domain of the two-point correlator in standard
quantum field theory derived from equation (62). Red lines denote the singularities for
complex values of the coupling λ. Notice the accumulation of singularities around the
origin.

In the complex λR plane, the equation (62) leads to the ‘horned shaped’ domain7 shown in
figure 1. The lines represent the singularities on the complex plane. Notice the accumulation
of singularities at the origin. Such a bad analytic behavior precludes any analytic continuation
to finite values of the coupling constant and, in particular, implies a superexponential behavior
for the Borel transform of the Green functions [5].

In analogy with the renormalon issue, we now argue that the problem sketched above and
visualized in figure 1 is absent in the DRQFT.

For this purpose, notice that equation (62) follows by considering the renormalized, running
coupling in the deep UV in equation (56). In particular, the piece∝ (2n+ 1)π i comes from the
multi-valued log function of the standard running in equation (56). The presence of an unsup-
pressed imaginary piece is essential to obtain the analytic structure shown in figure 1. In the
deep UV limit p2 �M2 of DRQFT, the running is given by equation (55), where the log piece
is suppressed, in contrast to equation (56). In particular, the imaginary part in equation (55)
goes as

1

(λp>>M
R )sing

≈ R+
3M4

2π 2p4
(2n+ 1)π i , (63)

and thus, the Kallen–Lehmann singularities for complex λR are suppressed at high momenta.
In this case, there is an isolated singularity at λR = 0 in the limit p→∞.

As first noted in [36], there is a connection between such a singularity when λR = 0
and the divergent asymptotic expansion in the coupling. This suggests that the isolated
singularity is linked to the instanton’s large-order n! contributions, and the semi-classical
nature of the instantons renders them conceptually harmless. Moreover, recent resurgent
techniques allow us to tackle them—for example, see [37–40]. Therefore, we conclude
that the analytic structure of the Green functions in the coupling complex plane is such
that no insurmountable obstacles appear for an exact non-perturbative renormalization
within DRQFT.

7 t’Hooft argument was also reproduced in the formalism of resurgence (accelero-summation) [35].
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5. Outlook

Importing the notion of dimensional reduction in quantum gravity to QFT can lead to a form-
ally consistent and finite theory at all energies. While attempts to formulate a finite QFT are
not new [41, 42], our proposal goes beyond the current literature in several points: we study the
interplay between HT, the Feynman diagrams finitude, and in particular, their finitude beyond
perturbation theory. We assess the latter point through the Borel resummability, the stand-
ard way to analytically continue QFT from the perturbative to the non-perturbative regime.
We show that the renormalon issue and superexponential behavior of the Green function as a
function of the coupling are absent in the DRQFT.

We have illustrated our results in a scalar field model, and the generalization to gauge mod-
els may have additional subtleties. In particular, one may wonder whether a dimensional scale
M conflicts with the gauge symmetry principle, in analogywith the cutoff regularization.While
providing an answer to the latter question is beyond the scope of this work, we limit ourselves
to give a heuristic argument suggesting the consistency of DRQFT with the gauge principle. It
is known that a sharp cutoff is not compatible with gauge invariance since a gauge transform-
ation reads in momentum space as pµ → pµ − i eAµ(p) (being Aµ the gauge field. Demanding
|p|< cutoff is equivalent to forbidding gauge transformations for modes above the cutoff. In
contrast, DRQFT keeps all the modes, just as dimensional regularization. The energy scaleM
does not act as a cutoff, and DRQFT might be applicable in gauge theory.

However, the subject requires a dedicated analysis, and, were the answer positive, it would
open up the possibility of applications to the SM. In this case, one would have a change in
the running of its parameters. One expects that the running would reach asymptotically con-
stant values above the scaleM, making the model consistent with asymptotically safe quantum
gravity [43], which, in turn, may be intimately related to dimensional reduction [9, 44].

One further speculation is on a possible consequence of the DRQFT on the Higgs mass
hierarchy problem. This is usually stated in terms of hypothetical corrections to its mass
that are proportional to a new heavy energy scale Λ. In renormalized perturbation theory,
the problem sounds immaterial since the mass’ UV dependence can be eliminated ‘at any
order’ by the appropriate renormalization conditions. The renormalization conditions are
such that the high scale disappears from the renormalized Lagrangian. Notice that ‘at any
order’ means that loop corrections can be considered up λn, with n arbitrarily large but
finite. Since renormalization is not a convergent and complete procedure—at least spoiled
by the presence of renormalon singularities—the hierarchy problem can become real beyond
perturbation theory. In other words, the issue of the Higgs mass is a non-perturbative one,
i.e. in the limit n→∞. This is a crucial point, sometimes missed in the literature. Recently,
the authors of [45], based on the resurgent approach of [46, 47], showed that indeed the
scalar mass receives a correction from the renormalons proportional to the non-perturbative
Landau pole scale (for standard QFT). All these difficulties are not present in the DRQFT
since there are no renormalons, and the renormalization conditions are well-defined in the
limit n→∞.
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Appendix A. HT and the interaction picture in QFT

HT states that if the free and interactive fields are related by a unitary matrix (Dyson matrix),
then the free and interactive vacua coincide. In turn, this implies that all the correlators of the
free and interactive fields are the same: the interaction picture in QFT can be built only in the
trivial, non-interactive case. For completeness, here we quote the argument leading to HT in
the language of standard QFT as in [34], in contrast with the rigorous proof in the axiomatic
formalism [48, 49] (see the review [50])

Let us consider the free scalar field ϕ0 acting in the Hilbert space H0, and the interactive
scalar field ϕ acting in the Hilbert space H.

A.1. Free and interactive fields are Poincaré covariant

The spatial continuous translation operators T0(T) ∈H0(H), respectively, act on ϕ0(ϕ) as,

T†0ϕ0(x)T0 = ϕ0(x0, x̄− b̄)

T†ϕ(x)T= ϕ(x0, x̄− b̄) , (64)

being b̄ a vector parameter associated with translations.

A.2. Vacua are Poincaré invariant

The vacua |0〉(|Ω〉) ∈H0(H), respectively, are translational invariant,

T0|0〉= |0〉
T|Ω〉= |Ω〉 . (65)

A.3. Unitary equivalence of the free and interacting fields

In the interaction picture, ϕ0 and ϕ are related by the Dyson unitary matrix U:

ϕ = U†ϕ0U . (66)

Combining equations (64) and (66), the following chain of equalities holds:

ϕ(x0, x̄− b̄) = T†ϕ(x)T= T†U†ϕ0(x)UT= U†ϕ0(x0, x̄− b̄)U= U†T†0ϕ0(x)T0U , (67)

which implies

UT= T0U . (68)

Multiplying on the right equation (68) for |Ω〉 and using equation (65), one obtains

UT|Ω〉= T0U|Ω〉
U|Ω〉= T0U|Ω〉 , (69)

and employing again equation (65), one finds from the latter

U|Ω〉= |0〉 (70)
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or

|Ω〉= U†|0〉 . (71)

Finally, multiplying equation (70) by |Ω〉 (on the left), and equation (71) by |0〉 (on the left)
yields

〈Ω|U|Ω〉= 〈0|U|0〉 , (72)

which implies

|Ω〉= |0〉 . (73)

This shows that the free and interactive vacua coincide. In principle, this prevents the con-
struction of the Gell–Mann and Low formula that is the basis of any amplitude calculations.
The latter implies that the S-matrix is of the form

S= lim
t→∞

U(−t, t) = 1 , (74)

being t the time. Therefore, within the interaction picture in standard QFT, the matrix S exists
only in the trivial case of free fields.

Appendix B. Evading the no-go imposed by HT

Let us start by enumerating the basic assumptions used above, on which HT relies: (1) the
fields are Poincaré covariant, in particular, continuous translation symmetry transformations
act on the fields as in equation (64); (2) the quantum vacuum state |0〉 is Poincaré invariant;
(3) the free and the interacting fields are unitary equivalent, i.e. they are related via Dyson’s
matrix as in equation (66).

For example, if defined on a discrete space-time lattice, QFT avoids HT because it breaks
assumption (1) while maintaining assumptions (2) and (3). In this work, we consider the pos-
sibility of evading assumption (2) while keeping (1) and (3).

One way to break assumption (2) is by assuming that the translation operator T0 in
equation (64) is time-dependent T0 = T0(t). More precisely, the time dependence of T0 is due
to a time-dependent momentum operator, such that

T0(t)|0〉= e−i P⃗(t)·⃗x|0〉= |0〉 or 〈0|T†0(t) = 〈0| ∀t , (75)

where P denotes the canonical momentum of the field shown in equation (23). One can then
consider T†0(t)T0(t+∆t) 6= 1, and to first order in P⃗ one can show that

T†0(t)T0(t+∆t) = 1− i ˙⃗P · x⃗∆t+O(∆t)2 , (76)

with ˙⃗P given in equation (22).
Assuming the vacuum is invariant under translation in space for any given time t, one can

see that using equation (75), the following equality holds

〈0|T†0(t)T0(t+∆t)|0〉= 〈0|0〉= 1 (77)

while using equation (76) gives

〈0|T†0(t)T0(t+∆t)|0〉= 1− i∆t〈0| ˙⃗P|0〉 · x⃗+O(∆t)2 . (78)

If 〈0| ˙⃗P|0〉 6= 0—it is the case of the DRQFT—one reaches a contradiction between
equations (77) and (78), and thus must be that

T0(t)|0〉 6= |0〉 . (79)
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The above equation invalidates equations (70) and (71), and it is thus an explicit realization of
a quantum vacuum that is not invariant under space translations.

The generic mechanism to bypass HT, presented in this appendix, is achieved in the DRQFT
because the non-standard integration measure introduces time dependence into the transla-
tional operator. In particular, equation (42) matches equation (79).

ORCID iDs

Alessio Maiezza https://orcid.org/0000-0001-8938-9400
Juan Carlos Vasquez https://orcid.org/0000-0001-5940-4059

References

[1] Haag R and Kastler D 1964 An algebraic approach to quantum field theory J. Math. Phys.
5 848–61

[2] Haag R 1958 Quantum field theories with composite particles and asymptotic conditions Phys. Rev.
112 669–73

[3] Ruelle D 1962 On asymptotic condition in quantum field theory Helv. Phys. Acta 35 147
[4] Haag R 1955 On quantum field theories Kong. Dan. Vid. Sel. Mat. Fys. Med. 29N 1–37
[5] G ’t Hooft G 1979 Can we make sense out of ouantum chromodynamics? Subnucl. Ser. 15 943
[6] de Calan C and Rivasseau V 1981 Local existence of the Borel transform in Euclidean ϕ4 in four-

dimensions Commun. Math. Phys. 82 69
[7] Glimm J and Jaffe A 2012 Quantum Physics: A Functional Integral Point of View 2nd edn,

(New York: Springer) p 535
[8] G ’t Hooft G 1993 Dimensional reduction in quantum gravity Conf. Proc. C 930308 284–96
[9] Lauscher O and Reuter M 2005 Fractal spacetime structure in asymptotically safe gravity J. High

Energy Phys. JHEP10(2005)050
[10] Ambjorn J, Jurkiewicz J and Loll R 2005 Spectral dimension of the universe Phys. Rev. Lett.

95 171301
[11] Benedetti D 2009 Fractal properties of quantum spacetime Phys. Rev. Lett. 102 111303
[12] Calcagni G 2010 Fractal universe and quantum gravity Phys. Rev. Lett. 104 251301
[13] Calcagni G 2010 Quantum field theory, gravity and cosmology in a fractal universe J. High Energy

Phys. JHEP03(2010)120
[14] Shirkov DV 2010 Coupling running through the looking-glass of dimensional reductionPhys. Part.

Nucl. Lett. 7 379–83
[15] Modesto L 2012 Super-renormalizable quantum gravity Phys. Rev. D 86 044005
[16] Anchordoqui L, Dai D C, Fairbairn M, Landsberg G and Stojkovic D 2012 Vanishing dimensions

and planar events at the LHC Mod. Phys. Lett. A 27 1250021
[17] Mureika J R and Stojkovic D 2011 Detecting vanishing dimensions via primordial gravitational

wave astronomy Phys. Rev. Lett. 106 101101
[18] Ellis J R, Mavromatos N E and Nanopoulos D V 1992 String theory modifies quantum mechanics

Phys. Lett. B 293 37–48
[19] Calcagni G 2012 Geometry and field theory in multi-fractional spacetime J. High Energy Phys.

JHEP01(2012)065
[20] Svozil K 1987 Quantum field theory on fractal spacetime: a new regularisation method J. Phys. A:

Math. Gen. 20 3861
[21] EyinkG 1989Quantum field-theorymodels on fractal spacetimeCommun.Math. Phys. 125 613–36
[22] Belavin A A, Polyakov A M, Schwartz A S and Tyupkin Y S 1975 Pseudoparticle solutions of the

Yang-Mills equations Phys. Lett. B 59 85–87
[23] G ’t Hooft G 1976 Computation of the quantum effects due to a four-dimensional pseudoparticle

Phys. Rev. D 14 3432–50
[24] Coleman S R 1979 The uses of instantons Subnucl. Ser. 15 805
[25] Zinn-Justin J 2011 Barrier penetration and instantons Quantum Field Theory 5 70
[26] Stojkovic D 2013 Vanishing dimensions: a reviewMod. Phys. Lett. A 28 1330034

18

https://orcid.org/0000-0001-8938-9400
https://orcid.org/0000-0001-8938-9400
https://orcid.org/0000-0001-5940-4059
https://orcid.org/0000-0001-5940-4059
https://doi.org/10.1063/1.1704187
https://doi.org/10.1063/1.1704187
https://doi.org/10.1103/PhysRev.112.669
https://doi.org/10.1103/PhysRev.112.669
https://doi.org/10.1007/BF01206946
https://doi.org/10.1007/BF01206946
https://doi.org/10.1007/978-1-4612-4728-9
https://doi.org/10.1088/1126-6708/2005/10/050
https://doi.org/10.1103/PhysRevLett.95.171301
https://doi.org/10.1103/PhysRevLett.95.171301
https://doi.org/10.1103/PhysRevLett.102.111303
https://doi.org/10.1103/PhysRevLett.102.111303
https://doi.org/10.1103/PhysRevLett.104.251301
https://doi.org/10.1103/PhysRevLett.104.251301
https://doi.org/10.1007/JHEP03(2010)120
https://doi.org/10.1134/S1547477110060014
https://doi.org/10.1134/S1547477110060014
https://doi.org/10.1103/PhysRevD.86.044005
https://doi.org/10.1103/PhysRevD.86.044005
https://doi.org/10.1142/S0217732312500216
https://doi.org/10.1142/S0217732312500216
https://doi.org/10.1103/PhysRevLett.106.101101
https://doi.org/10.1103/PhysRevLett.106.101101
https://doi.org/10.1016/0370-2693(92)91478-R
https://doi.org/10.1016/0370-2693(92)91478-R
https://doi.org/10.1007/JHEP01(2012)065
https://doi.org/10.1088/0305-4470/20/12/033
https://doi.org/10.1088/0305-4470/20/12/033
https://doi.org/10.1007/BF01228344
https://doi.org/10.1007/BF01228344
https://doi.org/10.1016/0370-2693(75)90163-X
https://doi.org/10.1016/0370-2693(75)90163-X
https://doi.org/10.1103/PhysRevD.14.3432
https://doi.org/10.1103/PhysRevD.14.3432
https://doi.org/10.1142/S0217732313300346
https://doi.org/10.1142/S0217732313300346


J. Phys. A: Math. Theor. 56 (2023) 175402 A Maiezza and J C Vasquez

[27] Carlip S 2017 Dimension and dimensional reduction in quantum gravity Class. Quantum Grav.
34 193001

[28] Lovelace C 1984 Strings in curved space Phys. Lett. B 135 75–77
[29] Fradkin E S and Tseytlin A A 1985 Effective field theory from quantized strings Phys. Lett. B

158 316–22
[30] Fradkin E S and Tseytlin A A 1985 Effective action approach to superstring theory Phys. Lett. B

160 69–76
[31] Callan C G Jr., Martinec E J, Perry M J and Friedan D 1985 Strings in background fields Nucl.

Phys. B 262 593–609
[32] Callan C G 1970 Broken scale invariance in scalar field theory Phys. Rev. D 2 1541–7
[33] Symanzik K 1975 Small-distance behaviour in field theory Lect. Notes Phys. 32 20–72
[34] Maiezza A andVasquez J C 2021OnHaag’s theorem and renormalization ambiguitiesFound. Phys.

51 80
[35] Bellon M P and Clavier P J 2019 Analyticity domain of a quantum field theory and accelero-

summation Lett. Math. Phys. 109 2003–11
[36] Dyson F J 1952 Divergence of perturbation theory in quantum electrodynamics Phys. Rev. 85 631–2
[37] Basar G, Dunne G V and Unsal M 2013 Resurgence theory, ghost-instantons and analytic continu-

ation of path integrals J. High Energy Phys. JHEP10(2013)041
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