UNIVERSITA DEGLI STUDI DI TRENTO

Department of Physics

Quantum computing for biophysical
and optimization problems

SUPERVISORS:

Prof. Pietro Faccioli
Prof. Philipp Hauke
Prof. Davide Pastorello
Prof. Enrico Blanzieri

REFEREES:

Prof. Roberto Covino
Prof. Mikel Sanz
PH.D. CANDIDATE:

Veronica Panizza

Academic Year 2024/2025






iii

Ad Enrico, per laffetto che ci lega,
a mia sorella Anna, per essere da sempre la mia ancora,
al nonno Marco, per aver sempre incoraggiato le sue “bambine”






Acknowledgements

First and foremost, I would like to express my deepest gratitude to my
supervisors, Pietro Faccioli, Philipp Hauke, Davide Pastorello, and Enrico
Blanzieri. I owe special thanks to Pietro Faccioli, with whom I had the
pleasure of working in strict collaboration and quite intensively throughout
this PhD journey. Looking back, I imagine I will once again see Pietro
at the blackboard — the eyes twinkling with enthusiasm — after long
hours of discussion on a stifling summer day. I don’t just thank Pietro
for the physics he taught me but especially for sparking a genuine love
for curiosity and research, for knowing ezactly when to push me, and
for offering unwavering encouragement when I felt “lost in research”. I
would also like to express my deepest gratitude to Philipp, who encouraged
and supported me in pursuing an interdisciplinary research line. While I
had the freedom to explore the applications of quantum computing in
biophysics — what I consider one of the “Far West” of science, both in
terms of its vast potential and the risk of getting lost in it — I always
knew I could count on Philipp’s solid scientific guidance.

I am sincerely grateful to Roberto Covino and Mikel Sanz for their time
and dedication in carefully revising this manuscript.

I would also like to extend my sincere thanks to my collaborators,
Cristian Micheletti, Alessandro Roggero, and Ricardo Costa de Almeida.
Working with them has been an enriching experience, and I greatly ap-
preciate their contributions, expertise, and stimulating discussions, which
have helped shape the direction of my work.

A special mention goes to my colleagues (in Trento, Milano, and Tri-
este), whose support and good company have made this journey all the
more enjoyable. The stimulating conversations we had during our fruit
breaks and shared challenges — comprising quests for chairs in Palermo,
fence jumping, burocratical via crucis at the Commissariato del Governo,
and other adventures — have been as valuable as the research itself. It
was a pleasure to be part of a group where birthdays and happy moments
are celebrated with such enthusiasm — and possibly with delicious indian
home-cooked food for everyone. Special thanks to Matteo and Danial,
who generously dedicated some of their time to reviewing this disserta-
tion. Their insightful feedback significantly enhanced the quality of this
manuscript.

Lastly, I am immensely grateful to my loved ones, especially my sister,



vi

Anna, my grandfather, Marco, and my dear Enrico. Marco is not “just”
a grandfather; he is a teacher, a passionate geologist, and a great lover of
mountains. Above all, he has always placed immense value on knowledge
and continuously encouraged my sister and me to seek it. My little Anna
is my colorful and chaotic sunshine. Ever since she stormed into my life
like a hurricane, she has continued to astonish me with her intelligence,
humanity, and courage. Now, as a teacher, she cultivates curiosity in her
students with passion and diligence. I profoundly admire her! As for
Enrico, with whom I have chosen to share my life, I have always found
him to be much more than just a partner. He is a compassionate listener,
always there to hear my thoughts and concerns, no matter how big or small.
He has stood by my side through difficulties, offering his unwavering love
and care.

These years have had their share of challenges, and only a fraction of
them were related to physics. We helped one another and stuck together
— and we did great!

To all of you — THANK YOU!



vii

Summary

The remarkable progress of quantum technologies over recent years has
driven significant efforts toward developing algorithms with applications
to a wide range of research fields. Beyond fully quantum algorithms —
whose efficacy remains constrained by technological limitations — hy-
brid quantum-classical algorithms and quantum-inspired methods have
emerged as promising avenues for tackling real-world problems. In this
study, we focus on two particularly challenging biophysics problems: pro-
tein design and polymer sampling.

Protein design involves engineering the primary sequence of a protein
to ensure that it folds into a specific target conformation of biological in-
terest. Our approach employs a physics-based machine learning model
that incorporates a QUBO (Quadratic Unconstrained Binary Optimiza-
tion) encoding of the design problem that is amenable to adiabatic quan-
tum platforms such as the D-Wave device.

For the polymer sampling problem — where the objective is to sam-
ple both the sequence and the conformation of polymers according to a
thermal distribution — we establish a deep connection with an Abelian
lattice gauge theory populated with fermions. Building on this theoretical
framework, we develop a quantum-inspired Monte Carlo protocol that not
only eliminates the sign problem but also features a decorrelation time
that scales linearly with the system size in the dense-melt polymer regime,
providing a novel approach to computational polymer physics.

Within the framework of lattice gauge theories, where physically realiz-
able measurements are heavily constrained by local symmetries, we analyze
from the quantum-information perspective the problem of pinpointing en-
tangled states by resorting to entanglement witnesses. Furthermore, we
develop a numerical optimization protocol that enhances the effectiveness
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of entanglement witnesses while ensuring their physical implementation
within the lattice gauge theory framework.
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INTRODUCTION






Chapter 1

Quantum computing

The first theoretical investigations concerning the possibility of devising
quantum mechanical systems reproducing arbitrary computational pro-
cesses can be traced back to 1980 [1]. These first investigations laid the
basis for the idea — introduced in the famous Feynman’s speech “Simu-
lating physics with computers” |2] — of simulating physics using a well-
controlled quantum system. A key motivation for this approach is the
potential to efficiently simulate strongly correlated quantum systems, a
task that would otherwise be exponentially hard on a classical computer.
Further theoretical developments showed that a quantum generalization of
a universal Turing machine exists and is compatible with the foundations
of quantum mechanics [3]; in addition, Deutsch intuited the potential ad-
vantages of quantum machines with respect to classical ones, especially
in terms of speed, owing to ‘quantum parallelism’. A couple of decades
later, the minimal requirements featuring a quantum computer were for-
mulated [4]. According to these criteria, any quantum platform has to be
a scalable quantum system equipped with well-characterized qubits, whose
idle state can be initialized by applying a suitable protocol. Moreover, the
system has to be fully tunable, so that any unitary evolution operating
on the qubits can be established. To support the entire computation, the
qubits’ decoherence time must be sufficiently long. Finally, the availability
of a measurement protocol is crucial, as it allows reading-off the outcomes
of the quantum computation.

The approach adopted in manipulating these quantum platforms to
perform quantum computing tasks is not unique. Indeed, several paradigms



exist for approaching quantum computing, including the gate-based model,
adiabatic quantum computing, and the measurement-based approach.

The growing interest in quantum computers resulted in many efforts to-
ward developing applications extending beyond the simulation of physical
systems. Indeed, significant milestones in quantum computing include the
formulation of a quantum algorithm to factorize integer composite num-
bers [5] and search in a large and unstructured database [6]. On the one
hand, these works corroborate previous theoretical studies concerning the
capability of quantum computers to reproduce arbitrary classic processes;
on the other hand, they prove that quantum algorithms, due to inher-
ited quantum mechanical features, achieve substantial speed-up. Specif-
ically, Shor’s algorithm offers exponential speed-up with respect to the
best-known classical algorithm, whereas Grover’s search gives a quadratic
gain in speed. With the passing of years, the applications of quantum com-
puting extended to other relevant problems, such as Knapsack, traveling
salesman, max-cut, bin-packing, and minimum k-cut problems.

Since the foundations of quantum computing were established, a pri-
mary goal has been to identify the potential advantages offered by this
fundamentally different approach to computation. Initially, the advantage
was mostly intended as a gain in speed, but in recent years, other factors,
such as energy efficiency and reduced memory requirements, have also
been considered. Stronger claims regarding quantum computers’ capabil-
ities — known as quantum supremacy claims — involve the possibility
that for certain problems, the time required by quantum computers to
solve them scales much more favorably with respect to the system’s size
compared to classical computers. In such cases, solving large problem in-
stances classically would become practically infeasible, whereas quantum
computers could provide solutions within reasonable timeframes. Refer-
ence [7] addresses the theoretical limitations of classic computers by relying
on complexity theory results and states the minimal requirements that ex-
periments need to meet to prove quantum supremacy. One of the first
attempts to prove quantum supremacy involved an experiment conducted
on the Sycamore 53-qubit quantum processor produced by Google. This
allowed successful sampling of the output of pseudo-random quantum cir-
cuits with a time rate of an instance every 200 s [8]; it was argued that
the same task would have required state-of-the-art supercomputers 10,000
years. This claim was soon disproved, as the novel tensor-network al-
gorithm named “big-batch method” succeeded in predicting the outcome
probability distribution deriving from random quantum circuits within a
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reasonable timescale [9]. Another attempt to prove quantum supremacy
consisted in an experiment that employed a squeezed source of light and
threshold detectors to perform boson sampling [10]. Indeed, the outcome
distribution of such a setup can be predicted classically through repeated
evaluations of Torontians, leading to a total computational complexity
comparable to that of evaluating the Hafnian, a generalization of the per-
manent [11]. Several years later, the trotterized dynamics for the Kicked
Ising Model was implemented on the IBM’s 127-qubit processor [12]. By
pushing the simulation into a strongly entangled regime, where brute-force
classical computing techniques break down, the solutions retrieved using
the quantum computer were proven to be accurate. However, more re-
cently, a novel tensor network approach was employed to efficiently derive
even more accurate results than those obtained using the IBM’s quantum
platform [13]. Another recent claim [14] of quantum supremacy is based
on experiments carried out on the D-Wave quantum annealing supercon-
ducting platform, where it was possible to simulate the non-equilibrium
dynamics of large ferromagnetic systems through a quantum phase transi-
tion, a result that is expected to take to the Frontier supercomputer order
of millions of years to be reproduced. Despite these claims, there is still
considerable debate regarding quantum advantage and supremacy, partic-
ularly in the Noisy Intermediate-Scale Quantum (NISQ) era of quantum
technologies, where fault-tolerant systems are out of reach due to current
technological limitations.

In the following sections, we specialize the discussion on digital and
analog quantum computers and review relevant notions of information
theory.

1.1  Digital quantum computers

As we have anticipated, the fundamental degrees of freedom that are em-
ployed in quantum computing are qubits, which are elements of a Hilbert
space — the so-called qubit Hilber space — that is spanned by two states,
namely |0) and |1). Quantum computation can be achieved by manipulat-
ing these elementary units, a task that can be approached in several ways.
One of these is known as the gate-based paradigm of digital quantum com-
puting and requires to decompose generic unitaries acting on a system of
qubits — initialized in an idle state, usually chosen to be |0) =[], |0x) —
as a concatenation and/or tensor product of simpler unitaries that typi-
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cally act on either single qubits or pairs.

To allow the representation of any unitary evolution, it is necessary
to dispose of a so-called universal set of gates. In general, proving a set
of gates to be universal is not an easy task, but once one such a set has
been singled out, it is possible to combine elements therein to produce
other universal sets. An example of a universal set of gates is embodied by
{Rz(g), H,Chot}, where RZ(%) acts on a single qubit shifting the phase
of |1) by & with respect to |0), H is a single-qubit gate capable of creating
and destroying balanced superposition among |0) and [1) states, and Coy
— known as controlled-not gate — is a gate operating on two qubits that
unlocks the possibility of generating quantum correlation (i.e., entangle-
ment). This universal set is often referred to as elementary set and usually
serves as a reference to build different sets of universal gates that better
suit the technological requirements of individual quantum platforms.

To design a quantum circuit implementing an arbitrary unitary of in-
terest, U, it is necessary to decompose U in terms of gates belonging to
a universal set. This operation, known as quantum compilation, has no
unique outcome, as potentially many quantum circuits can feature the
same unitary evolution. Usually the aim of quantum compilation is not to
reproduce the unitary of interest exactly, but rather to reproduce it within
a fized tolerance. This is so especially when devising algorithms addressing
current NISQ technologies. Indeed, given the limitations of these devices,
a viable strategy for choosing among different circuit designs is to minimize
both the circuit depth and the number of gates employed. The number of
gates necessary to approximate with accuracy 4 a generic unitary U acting
on N qubits scales as O(e™)poly(log(5))) [15]. However, by restricting U
to establish up to two-body interaction terms among qubits, i.e., avoiding
higher-order interactions, O(Npoly log %) elementary gates are sufficient

for approximating U.

In designing the quantum circuit, it is also necessary to plan how to
extract the relevant information from the outcome wavefunction. To this
end, projective measurements of all qubits or a subset of the register are
taken and the measured outcomes are stored as classic bit strings. In
most applications, the whole procedure has to be repeated several times
to ensure robust statistics associated with the output wavefunction.

There are several kinds of quantum platforms that support a univer-
sal set of operations, including trapped-ions and neutral-atoms platforms,
superconducting chips, semiconductor systems, and photonic devices. In
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what follows, we outline the main features of the most common available
technologies.

In devices based on trapped ions [16H18], the two-level system is real-
ized using two hyperfine atomic levels, which can be manipulated through
laser controls to perform single-qubit rotations. In this device, two-qubit
gates are realized by coupling the atomic degree of freedom of two qubits
with the phononic degree of freedom of the ions in the trap. The main
advantage of this platform stems from the long coherence time, on the
order of 1 minute [19], which compares well with the typical gate’s speed,
as gates operate within the timescale of microseconds. A drawback asso-
ciated with the design of this technology is the difficulty in scaling up the
system, as implementing 1D traps containing more than a few dozen qubits
remains challenging [20]. Overcoming this technical challenge potentially
amounts to implementing smaller clusters of trapped ions that are allowed
to exchange qubits by resorting to dynamic electric fields [21].

Another technology, instead of involving ions, employs neutral atoms.
These are arranged on a lattice by means of optical tweezers (Rydberg
atoms) or optical lattices (ultracold atom platforms). When optical tweez-
ers are involved, the two-level system featuring a qubit stems from the two
states that an atom can assume: groundstate or Rydberg state, where the
valence electron is excited to a very high energy orbit. Relevantly, digital
quantum computation is enabled when using optical tweezers, as a phe-
nomenon known as Rydberg-blockade offers the possibility of establishing
a native two-qubit gate [22}[23].

Regarding superconducting facilities [24-29], which can be directly con-
trolled with electronic devices, the two-level system adopted as a qubit is
obtained by shifting the equally-spaced energetic levels of an LC oscillator
with the aid of a non-linear device (i.e., a Josephson junction). Despite
this platform lacking the possibility of having all-to-all connectivity, it al-
lows parallel implementation of several gates. A drawback associated with
this technology lies in the short coherence time of qubits, which is typically
in the order of hundreds of microseconds. However, with gate operation
times around 10ns, many operations can be executed within the coherence
window [20].

Another relevant class of solid-state platforms consists of semiconductor-
based systems, where a lattice of semiconductor islands on a silicon sub-
strate is used to isolate electrons. In this case, the two electronic spin
states form a two-level system that represents a qubit. In this framework,
single-qubit gates are induced by magnetic fields, while two-qubit gates
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naturally arise from direct magnetic coupling between electrons lying in
neighbouring dots. To achieve a tunable coupling, it is necessary to employ
an additional quantum dot to mediate the interaction [30]. With respect
to superconducting facilities, a system of quantum dots operates at higher
temperatures, in the order of 1K.

In the next section, we introduce another relevant paradigm of quantum
computing, on which we resorted to extrapolate results in Chapter

1.2 Analog quantum computers

In the analog paradigm of quantum computing, instead of manipulat-
ing an initial state to produce the desired output, |¥), the Hamiltonian
governing the system is chosen to encode |¥) in its ground-state (i.e.,
H |¥) = egna |¥)). Importantly, it was proven that any quantum circuit
in the gate-based model can be efficiently mapped to a Hamiltonian in the
analog quantum paradigm reproducing the same outcome [31]. It is worth
noticing that this result proves that adiabatic quantum computing, being
equivalent to circuit-based models, allows universal quantum computation.
However, no quantum adiabatic processor capable of implementing univer-
sal quantum computation has been developed yet, so current technologies
remain purpose-specific.

Turning our focus to the implementation of analog quantum computa-
tion, once a suitable Hamiltonian, H p, for the application at hand has been
singled out, it is necessary to lead the system toward its ground-state. To
do so, an alternative to decreasing the temperature to reach the absolute
zero is establishing a quantum anneal. This protocol finds its theoretical
foundation in the adiabatic theorem [32], which ensures that a system ini-
tially in the ground state of a given Hamiltonian, Hp, will remain in the
instantaneous ground state of the time-dependent Hamiltonian

A(t) = (1 - i) Hp+ ézfzp (L.1)

as long as the evolution is sufficiently slow. In the previous, Hp is the
Hamiltonian governing the system at the end of the annealing process and
it encodes in its ground state the solution of a given problem. For this rea-
som, it is often referred to as problem Hamiltonian, while Hp goes under
the name of driver Hamiltonian and, if chosen to be non-commuting with
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H p, it stimulates the quantum fluctuations that are necessary for quan-
tum tunneling to take place. A crucial request on Hp prescribes that its
ground state has to be easily reached by the quantum platform. With this
premise, for the quantum annealing to be successful, the annealing time 7
has to be sufficiently long to guarantee the applicability of the adiabatic
theorem. As a general rule, the annealing time 7 is inversely proportional
to the minimum energy gap separating the instantaneous ground- and
first-excited states.

Biamonte and Love [33] proved that the simplest problem Hamiltoni-
ans, Hp , supporting quantum universal computation are given by

Hp :Zui(}fz) +ZA15'1(x)

+3 66 + 3 K6 Mel
i>j i>j
and
Z'“l A(Z)_i_ZA - (x)
(1.3)

ZJO.(@ (z)+ZKO. A‘

i>]j i>j

Even if current adiabatic technologies do not support universal quantum
computation, their applications proved successful in approximating solu-
tions to integer optimization problems including the Traveling Salesman
problem, Knapsack problems, portfolio optimization, max-cut problems,
and other relevant NP-hard problems [34H36].

In modern technologies, spurious interactions between the quantum
processor and the environment cause decoherence of qubits and the adia-
batic theorem is hardly satisfied so that the system behaves as if operating
at a finite low-temperature regime. At first sight, this could be interpreted
as a heavy short-coming of the whole approach, but it can be turned into
a useful tool, as quantum annealers can be used to sample thermal distri-
butions as an alternative to classic Markov-chain algorithms.

One appealing application of adiabatic machines, even if not universal,
is the solution of integer optimization problems by encoding them into the
problem Hamiltonian, Hp. In the following section, we discuss the encod-
ing of integer optimization problems on quantum adiabatic machines and
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propose an illustrative example based on the Knapsack problem. In Chap-
ter [3] we will make use of these strategies to encode a particular integer
problem — connected to the optimization of an amino-acid sequence —
as a QUBO.

1.2.1 QUBO problems

The problem Hamiltonians that most common quantum analog devices
allow to implement take the form of Ising Hamiltonians, namely

Hp =Y o+ J617 6 (1.4)
i i>]

where y; and Jj; are real parameters defining, respectively, local fields and
couplings acting on the qubits. The driving Hamiltonian is given by a uni-
form transverse field, i.e., Hp = — > &i(m). As mentioned in the previous
section, these systems are not capable of reproducing arbitrary Hamil-
tonians and consequently do not support universal quantum computing.
Nonetheless, the applications of these quantum solvers range from find-
ing solutions to relevant optimization problems [37-40], simulating phase
transitions |[41H43], and sampling from thermal distributions [44-46].

To illustrate how these machines can be harnessed to solve optimization
problems, let us consider the minimization of the quadratic expression
defined by

n
fl@= > aQiq, (1.5)
i<j=1
where q = {q1,...,¢n} is an array of binary variables that are uncon-

strained and take values in {0,1} and Q;; are arbitrary real parameters.
The previous expression can be regarded as the eigenvalue equation corre-
sponding to the operator identity

n
Hq = Z ¢ Qi Gy » (1.6)
i<j=1

where ¢; are operators having eigenvalues 0 and 1, corresponding, respec-
tively, to the eigenstates |0) and [1). Then, the binary array  minimizing
f(q) is related to the ground-state, |¥), of Hg though

W) = iy @) - (1.7)

CHAPTER 1. QUANTUM COMPUTING



11

Notably, ¢; operators can be recast as %, causing Eq. , up to an
irrelevant additive constant, to be equivalent to Eq. (1.4). Hence, by per-
forming adiabatically a quantum anneal having as problem Hamiltonian
fIQ, the final state will be its ground-state, |¥). Consequently, to read
off the sought solution to the integer binary problem, it will be sufficient
to measure all qubits along the z direction. This concludes that the so-
lution to a Quadratic Unconstrained Binary Optimization problem, such
as minimizing f(q), can be successfully retrieved by resorting to adiabatic
computing protocols leading to Ising-like problem Hamiltonians, as the
one in Eq. . Naturally, not all problems are natively formulated as
QUBOs and these cases require some additional manipulation, as outlined
in Appendix [A]

To better illustrate the process of deriving a QUBO formulation for an
integer programming optimization task, the following section provides an
example based on the Knapsack problem.

1.2.1.1 QUBO formulation of the Knapsack problem

Suppose we have a bag with a maximum weight capacity, W, and a set of
N objects, each characterized by a specific value, v;, and a positive integer
weight w;. The Knapsack problem consists in determining how to select
the objects to be packed into the bag such that (i) the total weight of the
objects does not exceed the bag’s weight limit, W, and (ii) the total value
of the packed objects is maximized. Concretely, by describing the content
of the bag using a binary string x = (21, z2,...,2n), where x; = 1 (z; = 0)
if the i-th object is packed, the Knapsack problem can be expressed as

N N
x; = argmaXin v; subject to fo w; <W. (1.8)

* i=1 i=1

The inequality constraint appearing in Eq. can be manipulated into
an equality constraint at the cost of introducing W additional binary vari-
ables — known as slack variables —s = (s1,...,sw), where s,, = 1 signals
that the total weight of the bag corresponds to n. In this setting, it is nec-
essary to impose that exactly one slack variable is active and that the total
weight packed in the bag is in agreement with the active slack variable,
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leading to a reformulation of the Knapsack problem in form of

N ZnW:1832=1

x*, 8" = argmaxei v; subject to (1.9)

o Sy wi =Y, s

Yet, Eq. (1.9) does not describe a QUBO problem, as the binary arrays
x and s are subject to constraints. However, it is possible to show that,
finding the solution to Eq. (1.9) is equivalent to minimizing

x*, 8" = argmin — H, [x] + Hc, [s] + He,[X, 8], (1.10)

Xx,S

with

He,[s] = A <Z Sp — 1) (1.11)

In the limit of Ay, A3 > A, > 0, the binary sequence minimizing
satisfies both constraints in Eq. and, by minimizing *Zi]\; xi vj,
adapts the packed content so to maximize the overall value carried in the
bag. Further, Eq. is a QUBO problem, as the binary variables are
not subject to a hard constraints. Indeed, configurations (x, s) not meeting
the requirements correspond to Hc, [s] > 0 or He, [x,s] > 0 and thus do
not minimize the objective function.

As discussed in the previous section, the solution to QUBO problems
can be encoded in the ground-space of the Ising Model. As an instance, the
problem Hamiltonian required to solve Eq. operates on a N x W-
dimensinal Hilbert space and is given by

I:Ip = —HU + ﬁcl + IA{CQ s (112)
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with

w 2
He = A (Z §p — 1> (1.13)

In the previous, the operators ¢; and §,, are, respectively, projectors on
active x; and s, states and can be linearly mapped to standard Pauli
operators.

In the next section, we briefly present the main features of the D-Wave
superconducting analog device we adopted to derive results in Chapter

1.2.2 Embedding of QUBOs on the D-Wave chip

In this section, we will outline how QUBOs can be implemented on the
D-Wave chip (see Appendix [B|for a detailed description of the platform).

The quantum anneal implemented on this device consists in a slow
transition from the driver Hamiltonian Hp = —)_; &i(m), having non-
degenerate ground-state given by ®i%, to the problem Hamiltonian,

taking the form

Hp = mol? + > 617617, (1.14)
i (i.))eg

Due to the technological implementation of qubits, bringing two of them
to interact requires their topological vicinity. More formally, only cou-
plings between pairs of qubits belonging to a well-defined graph, G, can
be established. Fig. [I.]] illustrates one of the possible architectures that
can be implemented on the D-Wave platform (i.e., the so-called Chimera
topology). The specific structure of G depends solely on fabrication de-
tails. Equation , while seemingly equivalent to Eq. 7 exhibits a
key difference: due to the limited connectivity of physical qubits, directly
embedding arbitrarily dense problems is usually not feasible and thus it re-
quires additional manipulations. In what follows, we will refer to problem
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Hamiltonians in the form of Eq. as logical Hamiltonians, involving
logical qubits that can be arbitrarily connected.

To effectively reproduce a logical Hamiltonian on a device with limited
connectivity, there are several viable options. The first, consists in em-
ploying the so-called LHZ architecture , where the relative orientation
of pairs of logical qubits are regarded as the relevant degrees of freedom
and as such they are represented on the quantum device. This comes at
the expense of introducing additional consistency constraints, coming as
4-body interaction terms that are prone to be ancillarized to match the
form of Eq. .

Yet another possibility consists in mapping each logical qubit, |Q,),
to a chain of ferromagnetically coupled physical qubits, {q%a), . ,q,(la)}.
Exploiting this overhead, individual couplings involving the logical qubits
|Q.) and |@Qp) are realized by coupling two arbitrary physical qubits rep-

Figure 1.1: A cropped view of two unit cells of a Chimera graph. Qubits are arranged
in 4 unit cells (translucent green squares) interconnected by external couplers (blue
lines). Reproduced from Ref. .
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resenting them, e.g., |qi(a)> and |qj(b)). Implementing this strategy requires
careful consideration of two aspects: the mapping of logical qubits to phys-
ical ones, known as minor embedding, and the selection of the strength of
the ferromagnetic couplings among physical qubits representing the same
logical one, referred to as chain strength. As for the first aspect, the prob-
lem of finding an embedding to a problem while minimizing the overhead in
quantum resources employed is on its own account an NP-complete prob-
lem [49]. Nonetheless, various protocols and algorithms exist to determine
a feasible minor embedding [48,/50], even when the problem Hamiltonian
cannot be fully represented on the quantum chip [51,/52].

Regarding the second aspect, since the chain strength dictates the ten-
dency of each physical qubit to align with others representing the same
logical qubit, an infinitely strong chain would in principle be ideal. In-
deed, this would allow interpreting unambiguously the outcome, i.e., with-
out resorting to major-vote criteria that would otherwise introduce biases
in the outcome distribution [53|. Unfortunately, the limit of infinite chain
strength incurs the risk of losing the resolution of low-energy levels, as the
intensity of couplings that can be established on the D-Wave platform is
limited. For this reason, the D-Wave software implements an auto-scaling
feature that adapts all couplings (including chain strengths) to fall within
the range [—1, +1] [54].

Once a suitable minor embedding and corresponding chain strengths
have been selected, the logical Hamiltonian is effectively reformulated in
the form of Eq. (1.14)), making the system ready for the annealing protocol
to initiate. Ideally, the annealing protocol should proceed slowly enough
for the dynamics to be adiabatic, but in practice, the annealing time is
limited by the coherence time of qubits. Indeed, the annealing time, 7, on
the D-Wave Advantage platform is comprehended between 1us and 2ms,
while the time-dependent Hamiltonian governing the system is given by

H(t=s7)= A(s) Ho+ B(s) Hp . (1.15)

The scheduling functions A(s) and B(s) in the previous equation satisfy
A(s =0) > B(s =0) and A(s = 1) < B(s = 1), as depicted in Fig. [1.2
It is possible to customize the annealing schedule by combining the na-
tive schedules, A(s) and B(s), with a user-defined function f(s) satisfying
f(s =0) =0 and f(s = 1) = 1. This approach modifies the anneal-
ing process by adopting the new schedules A(f(s)) and B(f(s)). Such
customization is particularly beneficial when the approximate size and po-
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Figure 1.2: Annealing functions A(s), B(s). Annealing begins at s = 0 with A(s) >
B(s) and ends at s = 1 with A(s) < B(s). Data shown are representative of
D-Wave 2X systems. Reproduced from Ref. [55].

sition of avoided crossings along the annealing protocol are known. In
these cases, slowing down the annealing process at avoided crossings low-
ers the probability of having diabatic transitions taking place.

This concludes the introduction of the main features of the quantum plat-
form we used to derive the results in Chapter In the next section, we
review the quantum information theory concepts that underpin the con-
tents of Chapter [f]

1.3 Entanglement

In a famous “gedanken Experiment” proposed by Einstein, Podolsky, and
Rosen [56], it was proposed to consider a wave function defined on two
spatially separated domains A and B. Then, supposing to perform a mea-
surement in A, it was shown that a spooky action at large distance was
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also forcing the collapse of the wave function localized in B, leading to the
breaking of the local-realism principle. This opened the door to alterna-
tive theories to quantum mechanics, such as the Local Hidden Variables
Model (LHVM), which aimed at completing quantum mechanics with ad-
ditional variables in a way that locality and realism were restored. For
the LHVM to be consistent, it was necessary to satisfy a set of constraints
known as Bell inequalities [57], which curiously happen to fail when spe-
cific quantum states — that were successully experimentally prepared —
are considered. This invalidates the LHVM and points to the conclusion
that the spooky action at large distace is a consequence of a fully legiti-
mate feature that only quantum systems possess. This feature was later
on baptized as quantum entanglement and opened new fields of research,
both theoretical and technological. It is worth stressing that a violation of
the Bell inequalities irrefutably signals that the considered quantum state
is entangled; however, the inverse does not hold. Indeed, there are entan-
gled quantum states for which the Bell inequalities are verified.

Entangled states among domains A and B are, by definition, not sepa-
rable between these domains. Concerning the definition of separability, a
pure state |®) belonging to Ha @ Hp BS separable if there exist two states,
|pa) and |¢p), such that |®) = |pa) ® |dB).

Alternatively, if |®) is separable, it factorizizes the expectation value
of any observable taking the form T @ T into <TA ® 1113)(1, X (]lA ® TB>¢,
where Ty and Tg are arbitrary hermitian operators acting, respectively,
on Ha and Hp. Differently, a mixed state p, is separable if it can written
as a convex sum of pure separable states, namely if

p= pupn with Vn {’ig = |#u){0ul, (1.16)

) : isseparable.

In the following sections, we elaborate more on the technological ap-
plications of entanglement and the techniques that are capable of discrim-
inating entangled states from separable ones.

1The tensor product of two spaces Ha and Hp, respectively having

{ ‘¢(A>> ’¢5A>> e } and { ’¢5B)> , ’¢§B>> e } as base, is the Hilber space spanned

by the states ‘¢<A) ,}?’>, withn =1,...,dim(A) and m = 1, ..., dim(B).

1.3. ENTANGLEMENT



18

1.3.1 Entanglement as a resource

In this section, we introduce some of the most relevant applications that
use entanglement as their main ingredient.

In quantum teleportation [58-60], a two-qubit system is initialized as a
maximally entangled state (i.e., a Bell state). After the initialization, these
two qubits are shared between the two parties, Alice and Bob, establishing
a communication channel between them. Suppose that Alice has in her
possession an additional single-qubit state 1)) and wants Bob to have it.
It is sufficient for Alice to measure her two qubits against the orthogonal
base defined by the four Bell states and to communicate classically the
outcome of her measurement to Bob, who, depending on it, will adjust his
state by applying a specific qubit rotation. At the end of the protocol,
Alice has a collapsed state with no memory of the initial state she sent to
Bob, while Bob’s state is exactly the one Alice wanted him to have.

Entanglement finds a significant application in cryptography, where
many protocols are initiated with two parties, Alice and Bob, sharing a
key for encrypting and decrypting messages over a potentially insecure
channel. Ensuring the security of this shared key is essential. One ap-
proach, introduced in [61], involves initializing a two-qubit state into one
of the four Bell states and sending a qubit to each party. In this setup,
measurements performed by Alice are perfectly correlated (or anticorre-
lated) with those of Bob. If the shared state is partially measured by an
eavesdropper, it would collapse to a separable state. Thus, a certification
test that would grant Alice and Bob the integrity of their shared key con-
sists in verifying whether Bell inequalities are violated. If they are, the
shared state is entangled, certifying that no eavesdropper tampered with
it. Then, the key is trusted and can be safely used.

Entanglement enables quantum-dense coding [62], a protocol that al-
lows the communication of two classical bits using a single qubit, appar-
ently challenging the Holevo bound [63], which constrains the accessible
classical information encoded in a n-qubit system to be at most n bits.
The process begins with the establishment of a communication channel
between Alice and Bob, who share a maximally entangled two-qubit state.
Next, Alice selects one of four possible messages — 00, 01, 10, 11 — and
applies the corresponding rotation — 1, 6, 0y, 0, — to the qubit in her
possession. She then sends this qubit to Bob, who decodes the message
by identifying the resulting two-qubit state as one of the four Bell states.
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This protocol demonstrates that Alice can communicate two classical bits
to Bob by transmitting a single qubit. However, it is worth noticing that
this does not violate the Holevo bound, as the shared state was a priori
entangled. Indeed, a deeper analysis reveals that the algorithm requires 1
ebit — 1 unit of bipartite entanglement — and the transmission of 1 qubit
to communicate 2 classical bits.

While not exhaustive, these examples highlight the wide range of appli-
cations involving entanglement as a key element. In the following section,
we consider a technique that can be easily implemented in experimental
setups to qualify a state as entangled.

1.3.2 Entanglement witnessing

In principle the quantity of bipartite entanglement a state possesses is re-
lated to its Von Neumann entropy, logarithmic negativity, entanglement
cost, and other measures [64,/65]. Unfortunately, prior to quantifying these
measures, it is usually necessary to perform full or partial tomography [66]
of the state under consideration, which is known to be a costly opera-
tion, even if more efficient and sophisticated tomography techniques are
a current field of research [67]. Hence, quantifying entanglement can be
prohibitively expensive.

Similarly, even with full availability of the system’s state, determining
whether a state is separable based on Eq. is generally hard. How-
ever, as we shall discuss later on, entanglement witnessing [68-72] is an
approach allowing to detect some entangled states through measurements
of purposely chosen observables.

To fix the notation, the tested states belong to Ha ® Hp and can be
either separable or entangled between regions A and B. An entanglement
witness is an observable W acting both on A and B regions such that (i)
it acquires a non-negative expectation value on any separable state,

V@) € Ha®Hp = (We, >0, (1.17)

sep sep

and (i) there exists at least one entangled state |®) featuring (®|W|®) <
0. In mathematical terms, the first condition is equivalent to asking W to
be block positive semi-definite when considering the bipartition between
domains A and B, while the second excludes completely positive observ-
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ables from serving as entanglement witnesses. There are two crucial obser-
vations concerning Eq. . First, it is not sufficient to have <W>q> >0
to guarantee the separability of |®). Second, it is sufficient to measure
(W)s < 0 to qualify |®) as entangled. Under this circumstance, we will
say that W detected |®) as being an entangled state.

To exemplify this, consider the entanglement witness defined on a two-
qubit system

Wy =1-6"6" -5 ay). (1.18)
To prove that (W)g, o > 0, we build |®)

sep

|®1) = sin 6y |0) + cos Orei?1 [1)

. 1.19
|@3) = sin By |0) + cos Oae'?2 [1) (1.19)

@) gep = [P1) ©[®@2)  with {

and we evaluate the associated expectation value of Ws as

<W2>¢. =1- (cos2 61 — sin? 91) (c052 g — sin® 92) +
— 25sin 6; cos 6y sin 0, cos O (cos(¢1 + ¢2) + cos(dr — ¢2))
>1-— ((2052 61 — sin? 91) (COS2 0y — sin® 92)

— 4] sin 61 cos 67 sin O cos O]

sep

(1.20)
and consequently

(Wa)e.. >1—cos(20, +26,) > 0. (1.21)

sep —

Then, considering the Bell state given by |¥) = %, we recover

(U|W,|W) = —1, and this corroborates the fact that |¥) is an entan-
gled state. On the contrary, when considering another Bell state, say
|\Il > [01)+]10)

V2
(W'|W,|®’) = 1, and thus it would fail in detecting |¥’) as being entangled,
even if it is a maximally entangled state!

As we have seen, a witness typically can pinpoint only a fraction of
entangled states. Then, it is reasonable to wonder whether some entangle-
ment witnesses may be “better” than others. To formalize this discussion,
let us define Sy the set of states that are detected as entangled by the
witness W. Then, we will say that another entanglement witness W is
finer than W if Sw D Sw. In other words, if W' detects all the entangled

, the entanglement witness would give as expectation value
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states that W does, plus additional ones. In the case where is not possible
to find a finer witness that W', this is regarded as optimal.

In a more rigorous language, W’ is optimal if it does not exist any
positive semi-definite operator P such that W” = W’/ — AP is a valid
entanglement witness for some strictly positive A [73,74]. In Chapter
we will address the problem of optimizing entanglement witnesses in the
special context of lattice gauge theories where local symmetries pose ad-
ditional challenges.

1.3. ENTANGLEMENT
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Chapter 2

Soft-matter physics
applications

Proteins stand as a prototypical example of soft matter objects whose
study is computationally challenging. As such, it offers the opportunity of
devising relevant applications of quantum technologies to real-world prob-
lems.

A protein’s sequence typically comprises 50 to 2,000 amino-acid units,
each of which can be chosen in a set of 20 possible chemical identities
[75]. Despite the remarkable variety of sequences available a priori, only a
fraction of it is found in Nature. This obervation already poses a concern
regarding the circumstances allowing an amino-acid sequence to fold into
a stable configuration. We will refer to protein-like sequences as those
that fold into a well-defined and stable conformation — native state —
within timescales ranging from milliseconds (ms) to microseconds (us).
Predicting the native state given the amino acid sequence, known as the
problem of protein folding, is highly challenging. Indeed, this problem has
no deterministic solution in polynomial time (i.e., it falls in the NP class
of computational complexity).

Another important challenge arise from reverse engineering the folding
process to predict which protein-like sequences — if they exist — give rise
to specific conformations. This challenge, referred to as the inverse or pro-
tein design problem, holds significant promise for real-world applications
and falls within the category of NP-complex problems. In Section we
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provide a detailed introduction to the topic of protein design.

Another intriguing research line involves sampling simultaneously amino-
acid sequences and backbone conformations based on a given distribution.
Indeed, this offers the opportunity of gaining insight into the statistical
mechanical features of proteins. Unfortunately, from a computational per-
spective, sampling compact backbone configurations that satisfy topolog-
ical constraints (e.g., continuity and self-avoidance requirements) is al-
ready a computationally demanding endeavor, as Markov chain techniques
typically lead to high rejection rates and consequent long autocorrelation
times. Additional detail concerning polymer sampling is provided in Sec-
tion

2.1 Protein folding and design

Before introducing the protein design problem, it is propedeutic to out-
line first the common models that have been adopted to study statistical
mechanical features of proteins (see Section and to consider the
conditions under which an amino-acid sequence is protein-like (see Sec-
tion . In Section we formalize in mathematical terms the prob-
lem of protein design, and in Section [2.1.4] we report relevant related work.

2.1.1 Protein models

In this section, we overview the most relevant models that have been
adopted to study proteins and polypeptides. The main features distin-
guishing different protein models are (i) the choice of the spatial degree
of freedom, which can be discrete or continuous, (ii) the solvent degrees
of freedom, which can be implicit or explicit, (iii) the chosen resolution
on the degrees of freedom associated with the polymeric chain, which can
have atomistic detail or can be coarse-grained [76L[77].

Although there are research lines considering full-atomistic detail and
explicit solvent degrees of freedom [78H80], many applications allow for
avoiding the computational effort required to simulate such models in full
detail. For this reason, coarse-grained units are employed to describe the
polymer, while the solvent degrees of freedom are integrated out. This
results in an effective potential governing the remaining coarse-grained
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degrees of freedom. The coarse-graining technique, while substantially re-
ducing the computational cost of simulating proteins, has to be handled
carefully. Indeed, unwise choices of the coarse-grained degrees of freedom
can lead to models that fail to reproduce relevant physical phenomena,
leading to incorrect results. In what follows, we reference typical models
adopted in the study of polymers.

Examples of coarse-grained models realized in the spatial continuum
are given by those employed in [81-83], where “patchy monomers” are
shaped as hard-spheres having specific sites on their surface — called
patches — that interact anisotropically. Covalent bonds are realized as
spring-like interactions among adjacent monomers; depending on the model,
these binding forces are applied to anchors placed on the surface of the
monomer (freely-rotating chain) or to their center of mass (freely-joint
chain).

Another class of models employs coarse-grained units constrained to lie
on the vertices of a lattice. The most simplified model involves only two
kinds of elements: those that are attracted by water — hydrophilic (P) —
and those that are repelled by it — hydrophobic (H) [84-88|. The ratio-
nale underlying this choice is guided by the observation that hydrophobic-
hydrophilic forces are mainly responsible for protein’s collapse into a folded
configuration. Indeed, HP heteropolymer sequences typically fold into con-
formations having H residues buried in the core, and P chemical entities
lying on the surface of the globule, exposed to the solvent. Thus, by inte-
grating out the solvent degrees of freedom, the effective potential provides
an attractive force among H-type monomers. For this reason, a typical ap-
proach consists in accounting only for the H-H non-covalent interactions to
contribute to the effective potential, though alternative parametrizations
have also been explored [89].

Another coarse-grained model relies on 20 types of amino-acids, where
residues interact through a potential that is statistically inferred from
large protein data banks [90]. This stands as the so-called quasichemi-
cal approximation and is employed in many studies concerning proteins
(e.g., [85,91H99)).

Both the HP and the 20-letter lattice models introduced so far associate
to the oriented sequence S = {s1, ..., sy} disposed on the structure I" the
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energy
N

E(F,S) = Z Cij Aij 6(51,8j), (21)

i>j=1

Here, s; is the chemical identity of the i-th amino-acid of the sequence,
e(si, sj) are the entries of a suitable D x D symmetric matrix — D being
the size of the amino-acids chemical alphabet employed— and C(T") is the
contact map of the conformational state I', with entries Cj;(I") equal to 1
if the amino-acids i and j establish a non-covalent contact and zero oth-
erwise. The Aj; term serves to weight the contribution to the potential
energy given by monomers establishing a non-covalent interaction depend-
ing on their distance. In models accounting only for nearest-neighbor
interactions, Ayj is 1 if i and j are first-neighbors on the lattice, and it is
zero otherwise.

2.1.2 Funnel theory and protein folding

In this section, we introduce the concept of protein-like sequences, along
with the features characterizing the cooperative folding process they un-
dergo.

First: do polymers fold into their native structures following a defi-
nite pathway towards it? To answer this question, we start by considering
how the dimensionality of phase space scales with the number of degrees
of freedom associated with the polymer chain. Consider, for example, a
polypeptide chain comprising L amino-acids. To define the spatial ar-
rangement of this amino-acid chain it is sufficient to specify the relative
orientation of consecutive covalent bonds. This amounts to specifying the
angles between adjacent bonds (L — 2 real-valued parameters) and the di-
hedral angles formed by planes comprising consecutive adjacent covalent
bonds (L — 3 parameters). Assuming that each parameter can assume
n > 1 stable configurations, the lower bound on the number of confor-
mations available to the protein is n?/~ and thus grows exponentially
with the length of the polypeptide chain. Now, assuming that the folding
process consists in uniformly sampling this vast space of configurations to
find the native structure, the time required for a protein to fold correctly
would exceed the age of the Universe (even if one could sample a config-
uration on a timescale of picoseconds). This contrasts with the behavior
of real proteins, whose folding time ranges from milliseconds to microsec-
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onds. These considerations are at the basis of the paradox posed in 1969
by Levinthal [100/101], which stimulated research efforts towards revealing
the processes that allow the folding of polymers.

In principle, to find a solution to the Levinthal paradox, it would be
necessary to address directly the folding dynamics of polymeric chains.
Luckily, there is experimental evidence [103}/104] suggesting that the na-
tive state associated with a polymer is the one minimizing the Helmholtz
free energy, thus circumventing the necessity of simulating its dynamics.
This observation was formalized as the “thermodynamic hypothesis” and
was also successfully reproduced in Monte Carlo simulations involving a
simplified lattice model of proteins |105].

Furthermore, there was evidence indicating that cooperative mecha-
nisms guide the polymeric chains toward their native state, thereby avoid-
ing uniform sampling of configurations and significantly reducing the time
required to achieve the native state compared to Levinthal’s prediction.
Qualitatively, when the correct folding of a protein’s segment has a bene-
ficial effect on the folding process of the rest of the amino acid chain, the
protein is said to fold cooperatively.

To better define these cooperative mechanisms, Wolynes and cowork-
ers [106] proposed that the energy landscape associated with the folding
process of protein-like amino-acid sequences is a funnel, namely it is a

=
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Figure 2.1: Funnel energy landscape (reproduced from Ref. [102]).
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compromise between a smooth and a rough surface (as the one depicted
in Fig. . The ripples in the free energy landscape are associated with
rapid and local conformational changes, while the smooth component takes
care of more complex and slower rearrangements of the backbone.

Let n(T") be a similarity measure between the backbone configuration
I and the native one, so that n(I') = 1 if T is the native configuration and
0 < n(I") < 1 otherwise. Then, the energy of a n-similar state is assumed
to be distributed as

(B E<n>12
Pu(E) = N sz (2.2)
where E(n) is modeled to decrease as n approaches 1, while AFE(n) sets the
order of magnitude of energy fluctuations arising from local rearrangements
of the backbone With the number of n-similar conformational states being

So(n
Qn) =e ’“B , the joint probability of having a configuration that is n-
similar and has energy F is

So(n) _ [E-Em)]?

P(n,E) = Ne *5 ¢ 2BBmZ ¢~ PE, (2.3)

The most probable energy of a mn-similar conformation can be found by
solving g P(n, F) |E = 0, leading to

Emp. = E(n) — B[AE(n)]), (2.4)
so that the saddle-point approximation of Eq. (2.3)) is

Pln) ~ Ne%_,_%ﬂz[AE(n)]z—ﬂE(”), (2.5)

which corresponds, up to an additive offset value, to the free energy profile
given by

F(n) ~ E(n) — éﬁAE(n) —TSy(n). (2.6)

At high temperatures, when the entropic term dominates, the system will
preferably populate conformations that are largely dissimilar to the native
state (i.e., the minimum of F' is located at n ~ 0). On the contrary, at low
temperatures, the energetic term favors the population of conformations
that are similar to the native state (i.e., the minimum of F' is located at
n ~ 1). An intermediate value of T corresponds to a free energy landscape
with two local minima: one close to n = 0 and one to n = 1. The basic
thermodynamic assumption for a protein to fold into its native state is
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having as global minima the one located close to n = 1.

This seminal work shed some light on understanding the statistical and
dynamical properties of protein folding; more importantly, it clarified the
requirements on the free energy landscape that allow a protein to reach its
native state. Later investigations [|76}/107,|108] aimed at finding patterns
that underlie protein-like amino-acid sequences based on simplified protein
models. Up to this point, we have discussed properties that characterize
protein-like sequences for which the folding problem is well-posed. In what
follows, we formulate the protein folding problem in a manner that well-
suits the application we develop in Chapter

Protein folding: Let us suppose that S is known to be a protein-like
sequence with respect to a given energy model E(S,T"). Then, owing to
the thermodynamic hypothesis, solving the direct protein folding problem
involves finding the conformer(s) I with the largest occupation probability
in canonical equilibrium,
e—BE(T.S)
Pope(LIS) = max S e BEITS)

= max e AETS)=F(S)) > Ptold (2.7)

where 3 is the inverse thermal energy in physiological conditions and
F(S) = —% In 3" e PEI5) s the free energy of sequence S, which in-
volves the sum over the possible conformational states. As S is assumed
to be a foldable polypeptide chain, such as naturally-occurring proteins, it
is characterized by the thermodynamic stability of the state I' maximiz-
ing Eq. , i.e., Popt(I'|S) > piola, where prolq is a suitable threshold,
typically larger than 0.5. In this case, I' is the native state of S.

In the following section, we turn our attention to the inverse problem of
protein folding, which consists in finding protein-like sequences that have
a target conformation as their native state.

2.1.3 Engineering protein-like sequences folding in a
target configuration
As we have seen in introducing the problem of protein folding, only a small

fraction of sequences have the right properties allowing cooperative folding,
which means that the majority of sequences do not identify as protein-like.

2.1. PROTEIN FOLDING AND DESIGN
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Analogously, it is tempting to ask whether all structures allow for a design-
ing sequence (i.e., a protein-like sequence that quickly reaches the desired
structure, resulting in a thermally stable conformation), and, if not the
case, to investigate the features of designable structures.

Results derived by considering simplified lattice models indicate that only
a small fraction of structures are designable [109-112] and that, among
these designable structures, a minority is supported by a large number of
designing sequences, whereas most are associated with only a few possible
designs.

Given these premises, how is it possible to associate a designable struc-
ture with its designing sequences? Despite the huge progress in the field of
protein design — culminated in 2024 with the awarding of the Nobel Prize
in Chemistry to Baker for his endeavors on the subject |[113] — the tech-
niques employed to solve this problem remain computationally expensive.
To understand the origin of these computational costs, let us consider the
most intuitive attempt to find designing sequences for a target structure.
That consists in searching the sequences that, once installed on a target
structure, minimize the energy functional. Yue and coworkers tested this
hypothesis using an HP on-lattice model [114], obtaining that, contrary
to expectations, the native states associated with such sequences do not
correspond to the target structure. These results indicate that solving the
inverse folding problem requires more than simply swapping monomers
on a fixed, presumed native structure. Indeed, solving the inverse folding
problem for a given target state ['y amounts to finding a sequence S, if
any exists, such that

Popt (S|P'7) = max e PETTS)=FS) > peig. (2.8)

Sequences that satisfy inequality are said to design the target state
Tr (111115

Thus, solving the design problem is equivalent to finding sequences that
minimize the function

G(S)=E(r,S)—F(S), (2.9)

and satisfy the inequality in Eq. .

A key point is that the computational demands for solving the above
rigorous physics-based formulations of the direct and inverse folding prob-
lems differ greatly. Solving the former involves, in principle, computing the
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energy of the sequence of interest over the entire set of physically viable
conformational states. Conversely, to solve the design problem, it is not
sufficient to compute the energy of all viable sequences on the given tar-
get structure, I'r. Indeed, the sequences that minimize the energy when
mounted on I'r may fold into a different structure, I, with even lower
effective energy, i.e., E(I",S) < E(T'r,S) [111,[115]. Hence, solving the
design problem involves two nested searches: one over the sequences and
one over the structures [85,/111,/115/116]. For this reason, much effort has
been spent on finding practical schemes and approximations to curb the
computational expenditure entailed by this problem [85,/111L{115-119].

2.1.4 Related work on protein design

A novel twist in this field of research has come from recent advancements in
machine learning [120-122]. Relevant examples include the development of
Bayesian learning design strategies |123], and the experimental validation
of deep-learning models [124], including generative ones [125[[126]. On the
one hand, these approaches provide elegant and valuable demonstrations
of the striking extent to which sequence-structure correlations present in
protein databases might be harnessed by empirical scoring functions for
protein design. In perspective, such endeavors could emulate the break-
through in the empirical solution to the direct folding problem, where deep
neural networks now yield remarkably reliable predictions [127].

On the other hand, an inherent limitation of all such empirical meth-
ods is the lack of interpretability. In contrast, physics-based approaches,
based on an explicit definition of the energy function E(T',.S), would enable
abstracting principles applicable to more general contexts [128]. For this
reason, the quest for computationally-amenable physics-based approaches
to the protein design and related problems remains an active research av-
enue as well as a natural testbed for new computing hardware paradigms,
including quantum computing [87}/88]/97,(99}/129], as we shall discuss in
Chapter [3]

In physics-based schemes, the cornerstone notion is that the energy
function E(T',S) in Eq. is the only theoretical ingredient needed to
solve both the direct and the inverse folding problems. However, in de-
tailed atomistic approaches, even a single computation of E(T', S) would
require extensive calculations, e.g., to integrate out the solvent degrees of
freedom. Customarily, this prohibitively expensive computation is alle-
viated by resorting to coarse-grained models and implicit-solvent energy
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functions (see Section. At the same time, coarse-graining also tames
the complexity of the sampling problem by smoothing the energy land-
scape and drastically reducing the number of conformational degrees of
freedom [130H135]. Yet, reliably estimating the functional form and the
parametrization of the effective energy E(T', S) remains challenging.

In recent years, several quantum-inspired algorithms have been pro-
posed to unveil protein sequence-structure relationship [87,88./97H99./136],
compute protein folding pathways [44}/137], and more generally address
equilibrium properties polymeric systems [138]/139]. By contrast, the pro-
tein design problem has been tackled by comparatively fewer attempts
using algorithms designed for quantum hardware. Such pioneering efforts
have relied on lattice protein models [84,105/109l140] because their discrete
nature enables a straightforward mapping onto the quantum simulation
hardware. In Ref. [129], the authors used a gate-based quantum algorithm
to reshuffle a sequence to minimize its energy on a reference structure. In
contrast, in Ref. [141] a quantum-annealing platform was used for an anal-
ogous objective. Both studies employed a simplified two-letter amino-acid
alphabet and postulated the effective amino-acid interactions.

2.2 Polymer sampling

In the previous section, we introduced two relevant problems in biophysics,
namely the protein folding and design problems. In protein folding the pri-
mary sequence is held fixed, while the polymer’s conformation is adapted
to minimize its free energy. In protein design, the search scans primary
sequences to find the ones that exhibit a free energy minima in correspon-
dence to the target configuration. This results in a nested search both in
sequence and configuration spaces, which can be addressed asynchronously.

A completely different standpoint can be taken by allowing synchronous
sampling of both primary sequence and backbone conformation according
to an established statistical mechanical ensemble. Despite this approach
is not expected to capture the intricate evolutionary processes likely to
occur in Nature, it offers the opportunity to gain insight into the statistical
properties of heteropolymers, such as average length, relative abundance
of chemical species, average end-to-end point distance, and other relevant
quantities.

In Section 2.2.1] we outline the close connection that exists between
statistical polymer models and quantum field theories, which can be ad-
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dressed by leveraging path-integral Monte Carlo techniques. Nonetheless,
there are polymer models whose statistical properties are associated with
path integrals that exhibit frequent fluctuations in sign, leading to poor
convergence of stochastic methods such as Monte Carlo chains. Crucially,
self-avoiding polymer models fall into this category. This stimulated new
research efforts, including those harnessing quantum technologies. In Sec-
tion we discuss relevant details of a recently established mapping
of the self-avoiding polymer model to a QUBO function that finds im-
plementation on existing quantum platforms. Building on this formalism,
our research aims to circumvent the limitations arising when incorporating
chemical identities and their interaction into the model and when further
restricting the ensemble of polymers to account only for structures dis-
playing no isolated rings.

2.2.1 Polymer field theory

The pioneering work of Edwards [142] and De Gennes [143] established
deep theoretical connections between the statistical mechanical models
adopted to describe polymers and several quantum field theories.

As an illustrative example, we consider the freely joint model of poly-
mers, where each covalent bond has a fixed length, b, and an orientation
that is uniformly distributed and is statistically independent of the ori-
entation of other covalent bonds. The partition function of a canonical
ensemble populated by N freely joint covalent bonds, each characterized
by its displacement vector r;, in three dimensions writes

> 6l =b) ... 6(|ew| = D). (2.10)

Lseees

Z =

This causes the end-to-end point vector distribution of the polymer, R =
>_; ri, to be approximated by

3
2 3R?

e 2Nb2 | (2.11)

P(N,R) = (273\[62)

Crucially, Eq. (2.11)) is the solution of the diffusion equation given by

(aN — bgva) P(N,R)=0. (2.12)
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Considering the Shrédinger equation of a free quantum particle, namely
h2
(ih Or + mvi) U(t,x) =0, (2.13)

it becomes apparent that applying the Wick rotation N — —it to Eq.
yields an equation that is equivalent to Eq. (2.13). Then, the statistical
properties a freely joint chain can be encoded in the wave-function of a free
quantum particle having mass m = ‘Z—Q, where b is the length of covalent
bonds. The potential of this mapping lies in the possibility of leveraging
the powerful path integral formalism when dealing with classical models
of polymers. Indeed, the probability of having a random walk joining two
points, x; and x¢, results from considering all polymer paths joining x; and
x¢ according to their statistical weight. Namely, the polymer “propagator”
of a freely joint chain composed of N covalent bonds between points x;
and Xy is

x¢
P(xi, x¢, N) :/ Dre w2 Jo dsHx(s)] (2.14)
where H[r(s)] = (%)2 and r(s) represents the polymer’s conformation.

Deepening the connection between polymer physics and quantum me-
chanics, we now focus on deriving a field theory and the associated path
integral representation associated with polymers. To do so, we write

Eq. (2.12)) as R
On |PN) = —H |Pn) , (2.15)

where H is the Hamiltonian that is represented in spatial coordinates by
the operator —% V% and the state |Ps) encodes the probability distri-
bution associated with the position of the s—th residue constituting the
polymer chain. Building on this, it is possible to evolve a polymer state,
|Po), up to “time” N by resorting to

Py} = IV |Ry) (2.16)
which enables us to rewrite the polymer propagator in the form of
P(xi, %1, N) = (Pxle™TV|Py) . (2.17)

A mathematical expedient to evaluate Eq. (2.17) involves introducing co-
herent fields of bosons, [¢), that satisfy

ax 1) = (x) ) and  (y]al = (W]v*(x), (2.18)
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where al and ay are, respectively, bosonic creation and annihilation op-
erators. Adopting coherent states, |1}, as a base for the Fock space, the
resolution of the identity writes

1= /DWYM [)wle ", (2.19)

where ¢* - ) is a shorthand for [dx¢*(x)i(x). The usefulness of these
states is apparent when evaluating matrix elements associated with nor-
mally ordered operators, i.e., operators having creation operators on the
left of annihilation operators (e.g., &Ld;&x&y). Indeed, considering such a

quadratic operator, A, we have

WIAR) = (] oy alay|y)
Xy
=3ty U (y)e? (2.20)

= A[p*, e’ .

This result extends to the matrix elements of any normal-ordered operator,
(| X |4, which is recast as X [1*, 1] e¥" %", where X [¢*, 1] is a function
involving the fields amplitudes.

With this, we return to the evaluation of Eq. (2.17). Upon expressing

. \M
e HN ag (e_%H) and resolving the identity as in Eq. (2.19)), we obtain

P(xi,x¢, N) :/Dﬂ)DW (x¢|[toar) (volxi) x

M (2.21)

M
_N§ —ah*.
<¢n|6 MH|1/)n_1> He Yo ’Pn’
n=0

n=1

where [ Dy*Dy collectively addresses the integration on all the (M + 1)
coherent fields. In the limit where a large number of Trotter steps, M, is
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employed, we can rewrite Eq. (2.21]) as

Plxi, xt, N) = / DYDE* vy (1) (1) X

M M

H e~ wr HYn n—1] g=05 o1 H e Yntn

n=l n=0 (2.22)
= [ DUDG" bar (o) x0)

M A

[ e At bnmal =i @n—vns) o=vi-vo

n=1

where we leveraged the properties of coherent fields defined in Eq. (2.20).
In the same limit, we can apply the mapping

Yy — P(s)  with SZ%E[O,N]G[R
N
Yn — 1 — M 85'(/1(3) (2.23)
N N
Z M — o dS7

so that Eq. (2.22)) is expressed as

P(xi, x¢, N) :/Dqﬂ)w* (N, x¢)* (0, x;) X

o S ds (H™ (), ()] =07 (5)- :00(s)) =97 (0)- (0)

(2.24)

Until now, we have not specified the modes that are created and destroyed
by al and ay. If we choose these to be real space modes, then we have

PGx,x1, V) = [ DUDU 6N, (0.x) %
— [Nas x ™ (s,x _biy2 s,X 2.2
o I as J k(30 (0, 592 U(s) (2.25)

o= J v (0.05(0,%)

Due to the prescription of causality, the previous path integral is equivalent
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to

P, xp, N) = / DYDY (N, x1)* (0, x1) X

(2.26)
o fON ds [dx ™ (s,x) ((%—%Vi)w(s,x) .

Crucially, when the action is at most quadratic in the field amplitudes, the

path-integral is Gaussian and can be analytically evaluated. Otherwise, it

is possible to take a perturbative approach, leading to Feynmann diagrams

and related rules.

While several polymer models, including the random self-avoiding walk
model, can be reformulated in terms of quantum field theories, the latter
features a path integral with a complex term contributing to H[r(s)]. As
a consequence, computational methods based on Markov Chains aiming
at sampling from the distribution defined through Eq. suffer the
so-called sign problem. This is encountered when integrating a highly
oscillating function, causing poor convergence of the Markov Chain, and
can be mitigated by employing sophisticated, model-specific techniques,
such as the one described in [144].

With the emergence of quantum computing as a powerful tool for sam-
pling from established distributions [145], significant efforts have been de-
voted to exploring its applications to the polymer sampling problem. In
the following section, we introduce a recent QUBO formulation of the ho-
mopolymer sampling problem that inspired the binary encoding underlying
the sampling algorithm outlined in Chapter [4

2.2.2 QUBO formulation of the homopolymer sam-
pling problem

In Ref. |13§], the problem of sampling self-avoiding configurations on a
lattice was recast as a QUBO problem whose minimization is amenable
to quantum analog devices such as the one provided by the D-Wave Inc.
company.

In particular, homopolymer configurations are encoded into an array of
binary variables, I' = {I';, I';j}, where I'; = 1 if the lattice site i is occupied
by a polymer’s bead, and I';; = 1 if the lattice edge ij is populated with
a covalent bond. In this work, the simplest ensemble that is addressed
consists of polymers characterized by a fixed number of beads, N, and
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covalent bonds, L. Configurations satisfying the constraints introduced so
far are the degenerate minima of the functional

H[F] = Hbeads + Hlength + Hconsistency ) (227)

2
where Hpeads = Abeads (Zl I — N)2 and Hiength = Alength (Eﬁ,j) Ty — L) .
When Apeads > 0 and Ajength > 0 the sum of these two terms is minimized
when the binary field describes configurations having the proper number
of beads and covalent bonds. The consistency between the binary fields
I'; and I'yj, is favored by incorporating into the Hamiltonian functional the
term

Hconsistency = Aconsistency Z 1_\ij (1 - Fi) ) (228)
(i, 3)

where i and j are bound to be first-neighboring lattice sites. It is worth
noticing that, by choosing Aconsistency > 0, Eq. penalizes energeti-
cally all those configurations where lattice sites not belonging to the poly-
mer chain (i.e., I'; = 0) establish covalent interactions with neighboring
sites, which corresponds to the situation where at least one edge connected
to iis active (i.e., Iy = 1).

To address an ensemble of polymer configurations that have no self-
intersections nor branches, it is necessary to introduce an additional set of
binary variables, I'j;i, to describe trimer states associated with consecutive
lattice sites i, j, and k. More specifically, only when both the edges ij and
jk are populated with a covalent bond, the corresponding trimer variable,
[jjk, is activated. It is worth noticing that the new set of variables I'jjx is
fully determined by the binary field I';j and it is thus necessary to introduce
suitable quadratic energy penalties to favor binary field states that locally
satisfy I'jjx = I'jj I'jk. Indeed, the Hamiltonian functional chosen to address
this polymer ensemble was

H/[F] =H+ Htrimcrs + 7'lSA s (229)

where I' = {T';, I'jj, ['jjx} collectively represents all the binary fields de-
scribing polymer configurations, Hirimers implements consistency relations
between binary fields associated with trimers and edges, and Hga ex-
ploits trimer variables to penalize the formation of branches and self-
crossings of the polymer’s backbone. As a result, configurations minimiz-
ing Eq. are valid configurations that display no branching points
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nor self-intersections.
Concretely, Hga writes

/
Hsa = Asa Z Lijk Dijm (2.30)

ij,k,1,m

where Aga is a positive multiplier and the (/) in the summation imposes
{i,j,k} to be a different set of vertices with respect to {l,j,m}. In light
of this, Eq. provides a positive energy shift to binary vector states
where two distinct trimers of edges sharing the central site are active.
Indeed, this circumstance qualifies the polymer configuration to be either
branched or self-intersecting. Further, consistency relations between the
binary fields encoding edges and trimers were enforced with the term

Htrimers = Atrimers Z 31_‘ijk + 1_‘ij ij - 2Fijk (Fij + ij) ) (231)
ijk

with Agrimers being a positive multiplicative factor. As it can be easily
checked, the minima of Eq. are binary fields that locally satisfy
Dije = Iy Tjie.

Notably, the binary field configurations that minimize Eq. in-
clude configurations representing polymeric backbones comprising isolated
rings. To avoid such states, it was proposed to introduce additional terms
contributing to the Hamiltonian functional in Eq. involving ancil-
lary binary fields. Indeed, to prevent the formation of 2n—long rings, it was
necessary to employ binary fields describing the state of all n-long strings
composed of consecutive edges. While this mapping holds the potential
to harness NISQ devices in the context of homopolymer sampling, the
large overhead in quantum resources required to penalize configurations
containing rings up to a given size motivated us to explore the alterna-
tive algorithm discussed in Chapter [ Although our algorithm does not
entail a QUBO problem, it highlights deep connections between lattice
gauge theory (LGT) and polymer sampling, which can be exploited to
design Monte Carlo trial moves that naturally preserve the continuity of
the backbone chain. In addition, we introduce fermionic auxiliary degrees
of freedom coupled to the electric fields of the LGT, which, once inte-
grated out, yield an ensemble where loopy confomations are assigned with
vanishing canonical weight.
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Chapter 3

Protein design by
integrating machine
learning and
quantum-encoded
optimization

As anticipated in Sec. [2.1.3] to design the structure I'r, it is necessary to
find a sequence, S, such that

Popi(S|I't) = max e PETTS=FS) > pea, (3.1)

where pgo1q is a suitably chosen constant, typically greater than 0.5, and
F(S) is the free energy associated with the sequence S, namely

F(S) = —% In (Zeﬁ E(RS)) . (3.2)

Solving Eq. (3.1 turns into minimizing

G(S) = E(I'r, S) — F(S) (3.3)
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with respect to S and check if the constraint in Eq. holds. The first
challenge lies in E(I",S) not being known a priori; in addition, the es-
timation of F(S) hinders a search in structure space that, if addressed
exhaustively, makes the overall computation untractable even for moder-
ately large systems.

The main goal of the present study is to demonstrate that it is pos-
sible to integrate advancements in both machine learning and quantum
computing technologies to tackle the design problem without abandoning
the physics-based standpoint of Egs. and . In this context, the
research in quantum computing may also drive the development of rad-
ically new physics-based formulations that are advantageous even when
implemented on classical machines [139].

In our first illustrative application, we resort to minimalistic lattice
protein models. This choice is particularly suited to assessing the accuracy
of our scheme, allowing us to better control the sources of errors. Indeed,
it eliminates the uncertainties associated with heuristic machine-learning
algorithms for protein folding, as they can be replaced by an exhaustive
search of the conformational space. Furthermore, it enables to assess the
accuracy through which our iterative learning scheme is able to learn the
underlying physics-based energy function.

Even after this major simplification, the combinatorial search over the
sequence space can be computationally demanding. Quantum annealing
machines are ideally suited to solve this kind of discrete combinatorial
optimizations after a suitable mathematical reformulation, or encoding,
of the original problem. A very relevant question to address is if such
reformulation can lead to performance improvement even when adopted
on classical machines [139].

We answer this question in the affirmative. Indeed, in our proof-of-
concept study, quantum-encoded approaches implemented on both classi-
cal and quantum computers outperform a well-established scheme based
on simulated annealing. At the same time, our iterative machine learning
scheme enables us to reach solutions to the design problem with a high
success rate. Our algorithm’s main merit is its ability to simultaneously
harness the new possibilities offered by Machine Learning applications and
promised by the advancements in quantum computing hardware, while re-
maining rooted into the physics-based modelling paradigm. Furthermore,
its portability to off-lattice all-atom molecular representations paves the
ways to perspective realistic applications. Collectively, our results suggest
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that, if the size and performance of quantum simulators continue to im-
prove over the next several years, the integration of quantum annealers and
classical machine learning may represent a transformative new paradigm
with broad implications in several areas of Life Sciences and Pharmacology.

In Section [3.1] we introduce the approximation adopted to address the
term F'(S) in Eq. . Despite this approximation, the problem remains
NP-hard and is tackled using the iterative scheme extensively discussed
in Section This protocol is applied to the simple lattice model in
Section [3.3] leading to the results presented in Section 3.4 The details
concerning the numerical simulations presented are enclosed in Section [3.5
while in Section we discuss how the present study can be extended to
realistic off-lattice protein models.

3.1 Approximate scoring function G(S)

We simplify the complexity of the design problem by introducing two ap-
proximations to circumvent the nested sequence-structure search implied
by the minimization of the design scoring function in Eq. (3.3)).

First, we resort to a customary linear Ansatz for E(I", .S):

N
E(F,S) ~ Z Cij(l“) E(Si7Sj). (34)
i>j=1

Importantly, this equation, despite being formally identical to Eq. (2.1)
introduced in Section does not directly address a model with dis-
cretized space. Indeed, the entries of the contact map C(I') can span the
entire [0 : 1] interval and thus weigh the interaction between residues based
on their distance. When choosing a sharp cutoff to pinpoint interacting
residues, the entries of C(I') take the discrete value 1, if an interaction
between residues takes place, and 0 otherwise. We recall that in Eq.
s; is the chemical identity of the i-th amino acid of the sequence S, which
has length n, and £(s;, s;) are the entries of a suitable D x D energy matrix
— D being the size of the amino acids chemical alphabet.

In Eq. (3.3]), the energy of the sequence S mounted over the target
structure is computed relative to the sequence free energy F'(S). Evaluat-
ing the latter implies computing the energy of S mounted over all possible
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states, a computationally prohibitive task. A key approximation of our
approach consists in replacing this reference with the average energy eval-
uated over a database of known native structures,

N

F(S) ~ Z E(Si,Sj) <CI]> . (35)

i>j=1

In the expression above, (C};) is the average contact map of those struc-
tures in the database that have the same length as the target one. In more
general contexts, this restriction can be relaxed by setting (Cj;) equal to
the contact probability of amino acids at chemical distance |i—j| computed
over all database entries that are sufficiently longer than |i — j|, to avoid
end effects.

The gist of the approximation in Eq. is to yield a free energy es-
timate that, while remaining computationally amenable, is still informed
by the structural properties of viable states. The average pairwise contact
probabilities appear to be the most natural and effective choice in this
respect, considering that the approach could be systematically generalized
to include three-body and higher-order contact probabilities.

With this proviso, our approximation to the design scoring function
G(S) becomes

N
G(S) ~ Z e(si, s5) (Cy(T'1) — (Cyj)) - (3.6)
i>j=1

Minimizing this function thus selects sequences whose native energy is as
low as possible compared to the average state in the database. Importantly,
the energy matrix (si, s;) does not need to be known a priori. Instead,
we propose an iterative approach, discussed in the next section, through
which an initial guess is refined until consistency between the direct and
inverse folding problems is reached.

3.2 Iterative scheme to tackle the design prob-
lem

Key parameters of our design scheme are the entries of the D x D symmet-
ric energy matrix € of Eq. (3.6)). Inspired by earlier work on the extraction
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of effective potentials for protein folding or design [146H149], we adopted
an iterative scheme based on enforcing consistency between the solutions
of the direct and inverse folding problems. Our choice is motivated by the
increasing availability of reliable and fast algorithms for predicting protein
folds even in realistic contexts [127]. In principle, this opens the possibility
of harnessing these efficient methods for tuning e to design a specific type
or family of target structures. Such optimized schemes would also limit
adverse effects inherent to structural coarse-graining, which inevitably im-
pacts the transferability of potential energies obtained by thermodynamic
integration. For the same reason, it is not apparent a priori that database-
wide schemes for extracting interaction potentials, including the powerful
quasichemical approximation [90L(91,/94-96] for capturing amino acids in-
teraction propensities, are ideally suited to the design task at hand based
on the minimization of Eq. .

3.2. ITERATIVE SCHEME TO TACKLE THE DESIGN PROBLEM
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Target
Structure

Random initialization of
the energy matrix

Sequence selection

Passed

Predicted

Consistency

check sequence

¢ Failed
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the energy matrix €

Figure 3.1: Schematic representation of our protein-design algorithm. Alternating
steps of sequence selection and structure prediction are repeated. The energy map
from an initial guess is updated until the algorithm passes consistency checks. The
result is a sequence that folds into the desired target structure. Importantly, sequence
selection and structure prediction can be integrated from different algorithmic or
hardware platforms, permitting leveraging on rapid and complementary progress in
technologies such as Al and quantum computing.
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The key steps of our iterative scheme are sketched in Fig. Given
the target structure to be designed, I't, and a random initialization of
the energy matrix €, the scheme proceeds by iterating at each cycle the
following steps:

1. Sequence selection. Explore the combinatorial space of sequences
with fixed chemical composition N = {Ny,..., Np} — where N,,
specifies the abundancy of the chemical identity m in the sequence
— to find the set S = {57, 53, ...} corresponding to the lowest values
of G(S).

2. Structure prediction. For each sequence in S obtain a reliable predic-
tion of the native state. We shall indicate such corresponding native
set as N = {I'1, o, ...}

3. Energy function refinement. Assess whether the states in N match
the target structure I't within a specified tolerance. If so, the design
problem of I't is solved, and the procedure ends. Otherwise, the
symmetric energy matrix € is refined to impose a consistency with
the structure prediction results, i.e., to account for the fact that the
native states of S do not include I't.

A fixed point in this iterative scheme embodies the highest achievable
consistency between our heuristic scoring function and the chosen protein
structure prediction algorithm. In the following sections, we individually
examine the three steps mentioned above, emphasizing how quantum tech-
nologies and advanced deep-learning tools can contribute.

3.2.1 Step 1: Sequence selection.

The first step of our iterative scheme involves solving a combinatorial opti-
mization problem over the space of amino acid sequences. We will perform
this step by constraining the overall amino acid composition, i.e., the abun-
dances of the different types of amino acids. Thus, the first step involves
minimizing Eq. over the possible reshuffling of a given initial se-
quence with the desired composition. This task is an integer programming
problem that can be carried out on conventional computers. However,
considerable speed-ups for the same NP-complete class of problems may
be achieved with quantum annealers. [150H153].

3.2. ITERATIVE SCHEME TO TACKLE THE DESIGN PROBLEM
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In the following, we illustrate two viable QUBO encodings of the con-
strained integer optimization problem set by Eq. , which can be either
solved by resorting to the use of the quantum D-Wave facility or on the
heuristic industry-grade software GUROBI. Further, we discuss the encod-
ing employed in the Simulated Annealing protocol adopted to benchmark
results obtained relying on the QUBO encoding.

In Sec. we introduce the encoding of the constrained optimiza-
tion of Eq. (3.6) on the Advantage quantum platform that is chosen to
derive results in while in Section we report an alternative en-
coding to the one adopted in the present work. In Section [3.2.1.3] we
discuss the technique employed to derive classical results.

3.2.1.1 QUBO linear encoding

The quantum solver to whom we address the present discussion is the
superconducting quantum annealer provided by the D-Wave Inc., whose
features we discuss in greater detail in Appendix We recall that, the
problem Hamiltonians are limited to have the form

HQUBO :Zﬂia’i(Z) —|—ZJ1J' &fz) a'j(z), (37)
i i>]
where &i(z) single qubit operators have eigenvalues +1 and both local fields,
i, and couplings, J;;, are tunable in sign and intensity. To shift the values
of the binary variables involved to be in {0,1}, it is customary to set
Eri(z) =1 —2¢; in Eq. , where ¢; operators have eigenvalues 0 and 1.
To solve the optimization problem set by Eq. using this quantum
solver, it is necessary to (i) introduce suitable binary variables to describe
the system undergoing optimization, (ii) manipulate the constraints into
energy penalties targeting binary strings that are constraints-violating,
and (iii) express both penalty and objective functions in a form that can
be reproduced by plugging suitable local fields, p;, and couplings, Jjj, in

Eq. (377).

Encoding To recast the minimization of G(S) in Eq. (3.6) as a QUBO
problem, we introduce binary variables to describe the chemical type of
each amino acid in the sequence. Specifically, to the i-th element of the

sequence we associate an array of D binary variables, qﬁ,‘l), with m =
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{1,...,D}. With this choice, if the i-th element of the primary sequence

corresponds to the m-th chemical identity in the dictionary, then q( - ;

otherwise, if the m-th identity does not appear at position 4, then q( -

To prevent two or more monomers from occupying the same site and to
impose the global chemical composition given by the occupation array N =

{Ny,...,N D}Elz we enforce, respectively, the excluded volume condition
D .
Vi=1,...,N, > ¢)=1 (3.8)
m=1

and the composition constraint

N
Vm=1,...,D, > ¢% =Np. (3.9)
i=1

The constraints in Egs. and are not linearly independent; to
see this, let us consider Em 1 Zl 1 qm and using Eq. 1.} express it as
Zil 1 = N. The same result can be derived using Eq. l) combined
with the fact that the composition array is satisfies 272:1 N,, = N. This
allows us to remove at least one of the constraints appearing in Egs.
and . In particular, we retain the constraints given by

D

Vi=1,...,N, Y ¢i)=1 and (3.10)
m=1
N

Vm=2,...,D, Y q)=Np. (3.11)

It is worth noticing that the variables q() no longer appear in the con-
straints in Eq. (3.11] - As a next step, we leverage Eq. (3.10)) to reduce the
number of binary variables required to describe the sequence. Namely, we

set qii) =1- 2222 qﬁ,il) and we subject the remaining N (D — 1) variables

L As the protein sequence has length N, the compostion array N = {N,...,Np} is
bound to satisfy 2221 Ny, = N.
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to the new set of constraints given by

(3.12)
N .

Vm=2,...,D, > ¢¥=N,.
i=1

With this, we conclude that (D — 1) binary variables are sufficient to spec-
ify the chemical identity of a residue along the polymer chain and that
N(D —1) logical qubits satisfying Eq. describe valid sequences hav-
ing the right composition.

Penalty terms featuring constraints To embed the conditions set
through Eq. (3.12) on the quantum platform developed by D-Wave Inc.,
we need to express them in terms of quadratic penalties.

To manipulate the first constraint, it is worth noticing that, since q,(;? €

{0,1}, the excluded volume condition is satisfied if an;i only if 22:2 )
is 0 or 1, which is equivalent to enforce (ZZ:Q q,(,il)) = ZZ:Q ¢ and

leads to the quadratic penalty term

N D
Hocc - Al Z Z qr(é)qs)a (313)
i=1 m#n=2
which, for A; > 0, penalizes cases where more than one entry of the q,(,il)
array is equal to 1.

The second constraint is recast as the quadratic term

D /N 2
Hcomp = A2 Z (Z q'E:L) - Nm> y (314)
m=2 \i=1

where Ay > 0 and N, is the assigned number of amino acids of type m.
Minimizing this term ensures that the non-zero entries of the q( arrays
are consistent with the prescribed composition.
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Egs. (3.13) and (3.14]) are quadratic expressions involving the binary

variables qwll) € {0,1} and are reproduced, respectively, in the eigenvalues
associated with the operators

N D
I:IOCC = Al Z Z (j,(,ll) qfl) and (315)
i=1 m#n=2
2
]:Icomp Z (Z qm _nm> ) (316)
m=2

i—c(®

which, by applying the substitution ¢!, = —5™, match exactly the form

of Eq. (3.7).

Objective function Let us now show how Eq. (3.6]) can be expressed as

a quadratic form involving the binary variables q,,iI , where m =2,..., D
andi=1,...,N.

With our definition of q,(TiL), e(si, s5) = ZZ =1 q,(l)q,(n) e(n,m), so that

Z Z CJq()q(J) n)+

i>j=1m,n=2

Z Z Cij a9 gV e(m, 1)+

i>j=1m=2

(3.17)
N D

Z ZC q() U e(1,n)+

i>j=1n=2

N

Zcij q()q§J)g(171)

i>j

where C = C(I't) — (C), C(I't) is the contact map assosciated with the
target structure (I't), and (C) is the average contact map evaluated on a
database of representative native structure. Using the q§‘) =1- 22:2 qffl)
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identity yields

N D
GI,8) =Y > Cyala e(m,n)+

i>j=1m,n=2

N D
> D> Cydl) (1 -3 qﬁ”) e(m, 1)+
i>j=1m=2 n=2

. 5 (3.18)
IDINE <1 -y q;;)) G) e(1,n)+

1>}]V_1n7 . m= .

> (1= 32 ) (1- 3 ) e

i>j=1 =2 n=2

and finally

N D
G(F’S>:.Z Z Ci; qWqW[e(m,n) —e(m,1) —e(1,n) + (1, 1)]+

N D N
>3 Gy (af) +a) E(Lm) — (L 1]+ Y Cye(L1).
i>j=1m=2 i>j=1

(3.19)

Building on these premises, the quadratic objective function associated
with a given target structure, I'r, is

D
7_[contact - ( Z Z q Cljamn+

1m,n=2
=t (3.20)
D
> 3 (4 o) Gonet 3 G
i>j=1 m=2 i>j=1
Wher67 B > 0, dmn = €mn — €m1 — En1 + €11, and Ym = €ml — €11-

Consequently, the problem Hamiltonian that reproduces in its eigenvalues
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the behavior of Eq. (3.20]) is

N D
Hcontact = B( Z Z qA’I(’I}L) qg)élfi»

i,j=1mn=2

N D ) ) R N ~
Z Z (ny(r? +(Z(7JL)> Cijym + Z CijEu) )

i>j=1m=2 i>j=1

(3.21)

Final problem Hamiltonian The overall problem Hamiltonian results
from combining the constraint terms in Eqs. (3.15) and (3.16)) with the
objective in Eq. (3.21)), resulting in

I;[ = I;[(;omp + ﬁocc + ﬁcontact . (322)

We emphasize that f[occ and ﬁcomp encode the strong constraints, while
f[comact represents the molecular energy. As long as A;, A; > B, the
ground state solutions of Eq. simultaneously satisfy all the hard
constraints and correspond to sequences that minimize G(s) for the given
chemical composition.

The sought ground states of the QUBO Hamiltonian can be found
with various methods, including the purely classical heuristic search im-
plemented in GUROBI and the hybrid-quantum scheme provided by the D-
Wave OCEAN library. The latter combines classical taboo search heuristic
optimization with quantum annealing steps [154].

3.2.1.2 QUBO Logarithmic encoding

In this section, we introduce an alternative encoding that reformulates the
optimization problem defined in Eq. as a QUBO. While this approach
is theoretically valid, it is less intuitive than the encoding presented in
Section [3.2.1.1] and does not offer any advantage in terms of quantum
resource requirements. For these reasons, this alternative encoding is not
used to derive the results discussed in Section Instead, this section
serves to illustrate with an example that QUBO formulations of a given
optimization problem are generally not unique.
Considering an alphabet of D monomers, this encoding makes use of
an array of d = log, qZhubits to identify each monomer of the sequence.
In particular, if the n-th monomer of the alphabet occupies the i-th

2For the sake of simplicity, let us consider the case where D = 2,
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position in the sequence, then q) = n, with n = (n1,...,nq) being the
binary representation of n, with the convention that the first element of
the alphabet is associated with n = 0.

To exemplify the use of this encoding, let us suppose that the alpha-
bet consists of four letters — A, B, C, and D. According to the encod-
ing described sofar, the binary representation of the sequence “ACBD” is

q® = (0,0), 9® = (1,0), 9® = (0,1), and ¢ = (1,1).

In this setting, there is no necessity to impose excluded volume con-
ditions, as any configuration of the d-binary array q() uniquely identifies
a chemical species. Besides, the sequence must be compatible with the
composition constraint, which is specified through the occupation array
N = {Ny,...,Np}. Before moving to the description of the associated
quadratic functional, it is worth noticing that to identify the chemical
species corresponding to the i-th residue along the sequence, it is nec-
essary to rely on functions 6(n,q®) — with n = 1,...,D — such that
§(n,q) = 1 if and only if @) = n, so that qV accounts for the presence
of the n-th monomer in site i.

With the aid of such functions, we rewrite the composition constraint

Heomp = Z (Za m, q") > , (3.23)

m=1

as

and the G(S) functional as

N
=> > C4(1) 6(n,qP) 5(m, qV) e(n,m). (3.24)

i>j n,m

Relevantly, Egs. and are bound to contain terms like

§(m, q®) §(n,qW) that need to be manipulated into quadratic expressions
involving the binary variables qgi) withi=1,...,Nands=1,...,d. This
implies expressing each function 6(m, q(i))7 whose expansion is

d
3(m, qV) = T (ms,q), (3.25)

s=1

as a linear term in the qgi) variables. It is worth noticing that the terms
d(ms, qgl)) are linear. Indeed, when m, = 1, it is sufficient to set d(ms, ¢ (i ))
qgl), otherwise if mgs = 0, the delta function is faithfully reproduced by the
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term (1— qgi)). Then, it is clear that Eq. is in general a d-body term
that needs to be recast in a linear term by adding ancillary variables. To
evaluate the number of such ancillary variables it is convenient to proceed
by induction.

First, notice that anicillarizing d(m,q") for any choice of binary ar-
ray m involves linearizing 2-, 3-, ..., d-body intraction terms involving
any subset of the d variables. Further, observe that any k—body inter-
action can be obtained by “gluing” two (k — 1)-body terms by means
of an additional ancillary variable (e.g., (¢g190) = (q1)(qo0), (¢2q190) =
(201)(q190), (93929190) = (939241)(g29190), etc.). Considering all possi-
ble combinations of k variables belonging to a set of d elements giving

_
d] = Wa—mi

cillary variables are necessary to degrade any k-body interaction term.
Finally, summing the required additional variables to represent 2-, 3-, ...,
d-interaction terms, we find that the total amount of ancillas employed for
each bead is

rise to a k—-body interaction term, we deduce that

i@):i(@_l—d:?d—l—d (3.26)

k=2 k=0

Adding the d qubits initially employed to encode the chemical identity of
residues through the q' = (q%l)7 . ,qg)) array, the total number of neces-
sary qubits required per bead amounts to 2¢ — 1 = D — 1. This concludes
that the total amount of qubits that are needed to reproduce Egs.

and (3.24) in the eigenstates of QUBO Hamiltonian is N(D — 1).

The encoding introduced in this section is physically less transparent
than the one discussed previously, in Section and does not imply a
saving in terms of quantum resources. For these reasons, the logarithmic
encoding is not employed to derive results in Section [3.4

3.2.1.3 Simulated annealing on classical machine

In this section, we provide information regarding the classical combinato-
rial optimization algorithms employed in the sequence optimization step of
our iterative algorithm. In our approach, we employed an improved version
of the simulated annealing scheme to retain only trial moves that preserve
the global relative abundance of chemical identities in the chain, thereby
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ensuring a much larger acceptance rate. In this approach, the chain se-
quence was not specified by means of binary variables (as in the QUBO
formulation), but rather directly as a sequence (X1, Xs,...) of alphabet
elements ( X; € D). Trial moves were proposed by swapping randomly
chosen pairs of monomers in the sequence. For example, given a sequence
S = (X1,Xs,...) of alphabet elements, selecting i-th and j-th monomers,
proposes the sequence

S = (o XL X ) = e Xy Xy ). (3.27)

We stress that this prescription automatically avoids configurations where
several monomers occupy the same site; in addition to this, since moves
conserve the composition of a given sequence, it is sufficient to select as
initial state a sequence that meets the composition constraint.

In all annealing simulations, we relied on the Simanneal package for
python [155], with the following choice of parameters: Tiax = 100, Tinin =
10~%, and Ngteps = 10%.

3.2.2 Step 2: Structure prediction.

The second step of the iterative scheme involves the application of structure
prediction methods to the sequences identified from the minimization of
G(S) at the previous step. The key point is that the native states of such
sequences are obtained with an independent structure prediction method.
In particular, the scheme used to predict native structures given a sequence
is not informed by the energy matrix defining the design scoring function
G(9).

In realistic off-lattice applications, the go-to structure prediction meth-
ods would naturally be those based on heuristic machine-learning algo-
rithms, which have proved to be reliable and efficient. Considering the
minimalistic nature of the protein model that we adopt as an illustrative
example in this work (see Section , we opted for the most transpar-
ent and feasible method: an exhaustive search of conformational space to
identify the lowest energy state(s) of a sequence based on a ground-truth
energy matrix. This ground-truth energy matrix is used solely in this
step and for selecting viable target structures for the design problem, as
detailed in Section and is never used in the G(S) definition.
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3.2.3 Step 3: Energy function refinement.

The third step in the proposed iterative scheme involves updating the en-
ergy matrix entering G(S) to improve consistency with the chosen ground-
truth structure prediction algorithm.

To this end, we have devised the following scheme: At the k-th step
of the iterative procedure, let S be a putative designing sequence ob-
tained by minimizing G(S) based on the current energy matrix, e®). The
external protein structure prediction algorithm may find several struc-
tures for the sequence S that are better faring than 't as native states.
Let {T'9(S),T1(S),...,Tn(S)} be a ranked set of such competing struc-
tures, ordered by increasing ground-truth energy, i.e., decreasing confi-
dence score.

Since the structure prediction step is assumed to be reliable (and it cer-
tainly is in our minimalistic context where it entails an exhaustive search in
structure space), the observation that the competing structures I'g, ..., T,
have a higher confidence score than I't signals the imperfect parametriza-
tion of the e(®) matrix.

To compensate for this, we move to a new iteration where the energy
matrix e*t1) is updated over the k-th one by requiring that I'o,..., T,
have a lower energy than I't, consistent with the outcome of the ground-
truth predictor:

ECD(T,, 8) < ECD(Ty,8), i <n, (3.28)

where E**1 is the energy function of Eq. informed by the interaction
matrix ¢*+1),

Let us consider the case where the canonical weight associated with S
disposed along the best ranking structure, I'g, exceeds a given threshold,
Prold, indicating that, according to Eq. 7 T'p is the native structure of
S. In this case, we impose that the energy of 'y should be significantly
lower than that of all competing structures:

B8, 1) > E®TD(S,To) + Aproa, ), Vi >0, (3.29)
where A(pgora, 8) = %lnlgf”% is the minimum energy gap separating

ground— and first—excited state energies of a protein-like sequence S —
that would fold into its native state with probability > pgq at inverse
temperature (.
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To derive the term A(pfod, ) contributing to Eq. (3.29)), let S be
a protein-like sequence having I'y as its native conformation, i.e., sat-

isfying % > proia- Considering the ordered spectrum of S,
v ={Ty,T1,...,T'ar}, we rewrite this expression as

1> prowa (1 + e PR0t 4 e7FRoz g e=FBon) (3.30)
where Ay, = E(S,T',) — E(S,T). If the previous inequality holds, then

1

- —-1> e BAo
Ptold
(3
_ 1. 1—prola
E(S,T'1)— E(S,Ty) = Ap1 > 3 In o A(pord, B) (3.31)

setting a necessary but not sufficient condition for S to be protein-like at in-
verse temperature /3. As a consequence, the constraint in which A(psoia, 5)
is involved is quite a loose constraint; nonetheless, it can be employed with-
out requiring to know the details of the ground-truth energy spectrum of S.

Settled this point, we go back to the task of optimizing the coefficients
entering Eq. to satisfy conditions in Egs. and . Given
that the coefficients to be learned enter linearly in the approximated scor-
ing function G(.9), fulfilling the set of inequalities is equivalent to solving
a linear separability problem. This task can be conveniently tackled using
established algorithms [156H{159]. In what follows, we discuss our imple-
mentation based on the perceptron technique [156}(160-162], which has
been previously used in different protein folding and design contexts to
iteratively learn interaction potentials between amino acids [92,/148].

In our algorithm, e**1) is required to satisfy a heuristic set of con-
ditions that depend on the set Séﬁl)n formed by all the sequences that
have been generated by minimizing G(S) up to k-th iteration: Sc(ﬁzn =
Sk ySk-1) y...u80).

We adopt the notation I'; <g I'r if the ground-truth energy of sequence
S mounted on I'; is lower than the one of S mounted on I'r. With this,
the set of constraints is expressed as
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vSesSH® T, <sTr

cum?

U
EFD(1,, 8) < EFHD(Typ, 9),

V foldable S € 8¥) Vi >0

cum?

¥
E®O(T,,8) > E®TD(Dy, S) + A(prowa, B) - (3.32)
Using the notation

D

N
Do D GiaPa) | eV (nm) =

n,m=1 \i>j=1

=n(T,S)-ek+D), (3.33)

E(k-i-l)(F7 S)

we compactly rewrite the previous constraints as
E(k+1) - X; —+ c; Z O7 (334)

with suitably chosen arrays x; and constants ¢;. To refine the parameters
entering in the designing scoring function so that they minimally violate
constraints in Eq. (3.34), we resort to a procedure inspired by Ref. [156].

In particular, the refinement protocol sketched in Fig. is initiated
by setting the temporary parameters €* to the last available coefficients,
i.e., e®). At each refinement iteration, the temporary parameters are
used to evaluate the quantities in Eq. and to find the most violated
inequality, which is used to update the temporary parameters, as follows

e > e* +nx;+, with " =argmine™ - x; + ¢;. (3.35)
i
In the previous, 7 is a regularizing parameter and can be regarded as a

“learning rate” in the context of machine learning.

This iterative update proceeds until one of the following conditions
occurs: (i) the maximum number of iterations is reached or (ii) all con-
straints are simultaneously satisfied.
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start £* = g(k)

True Return

Areall y; = 0 or

ok e ,
Compute ¥; =€ - Xy + ¢ max iterations achieved?

elk+1) — o

Find most violated constraint: i* = argmin;y;

* *
Correct parameters: E" — &7 +nxy+

Figure 3.2: This algorithm takes as inputs the parameters entering in the designing function G(S) at k—th cycle and refines

them to minimally violate the set of constraints in Egs. (3.32) and (3.33).
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The number of constraints that are simultaneously applied to the pa-
rameters of the energy model underlying the definition of G(S) increases
at each refinement iteration k. Hence, it is convenient to adapt the param-
eter n to decrease at each iteration, leading to finer and finer updates of
the energy matrix entries. In particular, we set n = % The numerical
values of 79 adopted in our simulations are specified in Section [3.5

3.3 Lattice protein model

We test the algorithm discussed so far on a protein lattice model defined
on a two-dimensional lattice (square) and involving coarse-grained chem-
ical identities. The two-dimensional lattice is customarily preferred over
the cubic lattice because it offers a more realistic surface-to-volume ratio
of compact structures of small length, < 100 amino acids. We consider
sequence alphabets of D = 3,4, and 5 letters and target structures filling
4 x4,5x 5, and 6 x 6 lattices.

In our proof of concept application, we choose to define the ground-
truth energy functional as

N
Bgna(T,8) = Y Cyj(T) egnalsi, 1) , (3.36)
i>j=1
where S = {s1,...,sy} is the primary sequence, which is composed of

chemical entities s; € {1,...,D}, C(I') is the contact map of the confor-
mation I', and € is the ground-truth symmetric D x D matrix.

The ground-truth interaction potential — employed only in the struc-
ture prediction step — has to be chosen in a way that as many structures
as possible are designable. To achieve this, we developed a systematic ap-
proach for selecting the e4nq matrix that defines the ground-truth poten-
tial. Specifically, we generate a set of 1,000 candidate matrices, each rep-
resenting a viable interaction potential. These potentials are then tested
by attempting to fold a sample set of sequences. By analyzing the fold-
ing outcomes, we assess each candidate’s ability to support designable
structures. Based on this evaluation, we select the energy matrix that
maximizes the number of designable structures. The numerical choices of
the ground-truth energy matrices for the different alphabets are detailed
in Section

3.3. LATTICE PROTEIN MODEL
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3.4 Results

In our iterative design strategy, the optimal parameters of the scoring
function G(S) are obtained by comparing the results of direct vs. in-
verse folding predictions. Several factors may determine the quality of the
predictions: (i) the feasibility of minimizing G(S) in the combinatorial
space of sequences, (ii) the accuracy of the “external” structure prediction
method, (iii) the viability of the functional form of G(S) for yielding ac-
curate design predictions when suitably parametrized, (iv) the feasibility
of identifying such optimal parametrizations of G(S) using the iterative
scheme.

In this proof-of-concept study, the uncertainties associated with points
(ii) and (iii) are ruled out from the outset. Indeed, modeling proteins as
compact structures on square lattices makes it possible to perform exhaus-
tive searches in structure space, thus enabling the exact determination of
the lowest energy state(s) of any given sequence. In addition, the functional
form of the scoring function G(.S), namely a pairwise-contacts Hamilto-
nian, was purposely chosen to match that of the ground-truth Hamilto-
nian used to pick designable structures as viable targets in Eq. ,
thus guaranteeing that suitable parametrizations of G(S) exist and are, in
principle, learnable.

In our context, where we shall use alphabets of limited size, D = 3,
4, 5, point (i) could be addressed by exhaustive enumeration, similarly to
the structure prediction step. However, in realistic contexts the exhaus-
tive search of sequence or structure spaces would be unfeasible. While the
structure space search can today be circumvented using the now available
rapid and accurate structure prediction methods based on machine learn-
ing, the challenge of minimizing G(5) in sequence space still persists. For
this reason, we address point (i) by recasting the minimization of G(S) as
a QUBO problem, which can be tackled with classical and quantum com-
binatorial algorithms. As we demonstrate by considering various values of
D, such an approach is straightforwardly adapted to amino acid alphabets
of any size. In connection to points (iii) and (iv) outlined above, we first
assess the viability of the approximate functional form of G(S) as a scor-
ing function to tackle the sequence optimization step. We considered two
different contexts. In the first, the € matrix is not learned but is set equal
to that used in the ground truth protein folding predictor. In the second,
e is learned through our iterative procedure.

To carry out this assessment, we take the compact structure I'r of
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Fig. as the design target. We use an alphabet of D = 3 letters and
set the composition to [N; =5, N; = 5, N3 = 6], a choice that combines a
sizeable combinatorial space of sequences with the existence of numerous
solutions to the design problem.

For both e choices, we computed G(S) for all sequences with the above
composition. We then obtained the receiver-operating curve (ROC), y(z),
where z is the rank index for increasing G(S) and y indicates what fraction
of the exhaustive set of design solutions are found up to that value of the
scoring function.

A perfect design performance would yield the steepest ramping ROC
curve, where all the design solutions are exclusively at the highest-ranking
positions (lowest values of the scoring function). Accordingly, a customary
measure of ROC performance is the so-called normalized area under the
curve, @, i.e., the area between the curve and the diagonal divided by
the area of the upper triangle. The aforementioned perfect performance
would correspond to  ~ 1. In contrast, in a baseline performance —
where solutions are discovered with uniform probability independent of
their G(S) ranking — @ would be close to 0.

The results of our ROC analysis are shown in Fig. As anticipated,
we preliminarily tested our G(S) approximation by plugging the ground-
truth potentials in place of the € matrix. The corresponding ROC curve,
shown with a dashed line in Fig. shows a near-ideal performance,
@ > 0.99. This demonstrates that the heuristic scoring function G(S) of
Eq. , which is based on average contact probabilities, is indeed viable

sl L
4 x4 5 x5 6 X 6

(a) (b) (c)

Figure 3.3: Selected target structures for different lattice sizes.
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for design purposes, as it can lead to a near-perfect scoring when informed
by suitable potentials.

We then moved to the second assessment, aimed at ascertaining if
suitable parametrizations of G(S) can be learned by our iterative design
procedure starting from arbitrary initializations of the € matrix. A further
question is how many iterations are required for convergence.

For these tests, we applied the iterative procedure to the same des-
ignable target structure starting from 50 different random choices of the
initial matrix. The results are summarized in Fig. which shows the
ROC curves at different iteration stages, averaged over the different ini-
tializations — see Fig. for the individual ROC curves.

The blue curve in Fig. 3.4 shows the average performance at the begin-
ning of the iterative procedure (labeled cycle 0) when the energy matrix is
yet to be learned. The curve is near-diagonal in this case, demonstrating
the expected baseline performance. The performance steadily improves at
each iteration, converging to a nearly perfect parametrization, correspond-
ing to @ > 0.99, in as few as three iterations.
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Figure 3.4: Solid lines: ROC curve at different iterations tests the goodness of
G(S) (see Eq. (3.6)) as a threshold binary classifier distinguishing designs for I'n
from arbitrary sequences. These results show that classifiers based on G(.S) evolve
from being nearly random (at cycle 0) to nearly optimal (at cycle 3). Dashed line:
Plugging the ground-truth energy map in G(S) produces a nearly-optimal classifier.
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Figure 3.5: Individual ROC curves of threshold binary classifiers based on the scoring
function G(S) at different iteration steps. Each plot accounts for the evolution of
50 parametrizations of G(S) that are randomly initialized at cycle 0. The averaged

results are enclosed in Fig.
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3.4.1 Performance scaling with lattice and alphabet
size.

We next turned to larger lattice sizes and amino acids alphabets; see Sec-
tion for numerical details. In such cases, ROC curves are not the best
way to assess the design performance as they require exhaustive coverage
of sequence space, which becomes rapidly impractical with growing protein
length and alphabet size.

Instead, we estimate the design success rate using a sampling scheme.
Specifically, at each iteration, we select the 30 best-scoring sequences ac-
cording to G(S) and compute which fraction of them, f., admits the target
structure as the unique ground state and satisfies Eq. .

The results are given in Fig. and show that, for all three alphabet
sizes considered, D = {3,4,5}, our algorithm reaches a success rate of
about 80% after just a few iterations. Notably, the highest performance is
achieved with the largest alphabet size, corresponding to 5 amino-amino
acid types. Importantly, this trend is robust over different choices of the
target structure (see Figs. and [3.7D)).

In Fig. |3.6b] we report the results of a similar analysis for a fixed
alphabet of D = 3 letters but for three compact structures filling lattices of
increasing sizes. Again, in all cases, the algorithm reaches a plateau after a
few iterations. For the systems we have considered, the overall success rate
ranges from about 65% up to nearly 100%. While these specific instances
do not show a clearly identifiable trend with lattice size, when the analysis
is extended to an ensemble of structures, we observe that the success rate
decreases with increasing chain size (see Figs. and .

3.4.2 Comparison of conventional and QUBO-based
minimizers.

A key feature of our approach, is that the combinatorial search underpin-
ning the sequence selection step is formulated as a QUBO problem, which
is, in principle, amenable to quantum annealers. This poses two questions:
(i) Does the QUBO encoding boost the design performance compared to
working directly in sequence space? (ii) How do currently available quan-
tum annealers fare at the design task compared to state-of-the-art classical
QUBO solvers?

To address these questions, in Fig. 3.8, we report, for compact struc-
tures of different sizes, the lowest values of G(.S) obtained after many runs

3.4. RESULTS
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Figure 3.6: Fraction f. of correctly identified sequences as a function of refinement
iterations for different alphabet and lattice sizes. In (@), we consider a fixed structure

on a 4 x 4 lattice, see Fig. and vary the size D of the alphabet. In (b), we
fix the alphabet size D = 3 and span over different lattice sizes. The corresponding

target structures are in Figs. B3} and
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Figure 3.7: Fraction of sequences correctly folding to the target structure, f., scaling
alphabet size and chain size. (a) We test our algorithm using 10 target structures
lying on a 4 x4 lattice with a variable alphabet size, D. (b) Average values associated
with data in (a), indicating that our algorithm improves when considering larger
alphabets. (c) Maintaining the alphabet size fixed to 3, we test our algorithm on
different lattice sizes, L x L, where for each lattice format, we select 10 target
structures. (d) Average values associated with data in (c), showing that, as the
protein size increases, the performance of our algorithm decreases.
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Figure 3.8: Statistics of the G(S) values resulting from the use of different optimiza-
tion approaches (simulated annealing, hybrid annealing on D-Wave, and GUROBI
optimizer). In particular, we represent 1000 samples obtained by using simulated
annealing, 1000 using the GUROBI optimizer, and 100 using the D-Wave hybrid
optimizer. In (a) we consider a structure on a 9 x 9 lattice, while in (b) we consider

a 13 x 13 lattice.
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of classical optimizations of the scoring functions, parametrized with the
ground-truth potentials, with different encodings and hardware at equal
duration (3s). The red histogram corresponds to the results of simulated
annealing directly formulated in sequence space, where the moves corre-
spond to composition-preserving reshufflings of the sequence. Instead, the
blue curve was obtained using GUROBI, an industry-grade QUBO solver.
Finally, the green histogram reports the results of 3s runs on D-Wave us-
ing the hybrid classical-quantum solver, given that the complexity of the
problem at hand exceeds the size currently addressable with fully-quantum
annealing algorithms.

The most striking feature of these results is that the G(S) distributions
of the minimizers based on the QUBO formulation (green and blue) extend
well below the lower tail of the distribution generated with a conventional
optimization based on the combination of sequence reshuffling and simu-
lated annealing (red). Hence, the QUBO reformulation required to harness
quantum computing technologies has generated a major improvement in
the sequence optimization step even when adopted on classical machines.
Notably, this difference in performance is enhanced for the largest lattice
size.

Focusing on QUBO solvers, we note that the best performance is
achieved by GUROBI, an entirely classical scheme based on heuristic
searches. This result highlights the maturity reached by classical opti-
mizers following from decades of hardware and software development. At
the same time, we emphasize that the hybrid scheme implemented in D-
Wave interleaves classical and quantum steps with internal criteria that
are not easily controllable by the user. Thus, the results of the hybrid
algorithm arguably represent a lower bound of the performance achievable
by optimal combinations of classical and quantum steps.

3.5 Numerical details

In this section, we provide the parameters that are necessary to reproduce
the results reported in Section [3:4 The model used in our application is
intended to serve as a comprehensive benchmark for our approach, rather
than to investigate the protein design problem within a specific physical
regime. As a consequence, the choice of parameters has to be regarded as
purely illustrative.

The inverse thermal energy parameter § was arbitrarily fixed to 3 (in

3.5. NUMERICAL DETAILS
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appropriate units), the probability threshold defining foldable sequences
Prold Was set to 0.8, and the ground truth energy maps, for dictionaries
Ds, Dy, and D5 are, respectively,

—0.35346  0.30399  0.42582
ez = 030399  0.17115 —0.30167 (3.37)
0.42582  —0.30167  0.34102

0.05375  0.21861 0.00656  0.14191
0.21861 0.43261 —0.50441 —0.5146
0.00656 —0.50441 0.23041  0.34485
0.14191 —0.5146  0.34485  0.34976

£y = (3.38)

—0.05777  0.26095 —0.00228 0.26162 0.0197
0.26095 0.14214  —0.37257  0.13965 0.18096
es = | —0.00228 —0.37257 0.04771 0.12568 0.11891
0.26162 0.13965 0.12568 —0.38521  0.02284
0.0197 0.18096 0.11891 0.02284  —0.32999
(3.39)
Results in Fig. [3.:6a] of the main text are derived by designing the tar-
get structure in Fig. employing sequences with compositions {5,5,6},
{5,4,2,5}, and {3,3,2,4,4}. Fig. of the main text results when de-
signing targets in Figs. to considering, respectively, sequences
with composition {5,5,6}, {7,9,9}, and {12,18,6}. The parameter g
employed to refine the energy map in Eq. (3.35]) is set to 0.325 for D = 3,
to 0.288 for D = 4, and to 0.263 for D = 5.

3.6 Pathway towards realistic applications

In this section, we outline one possible route for transferring the method
discussed so far to realistic off-lattice design contexts. With reference to
the flowchart of Fig. this endeavor would involve three main chal-
lenges: (i) the generalization of the design scoring function of Eq. to
off-lattice models (ii) the use of tools such as AlphaFold for the structure
prediction and energy refinement steps, and (iii) the generalization of the
energy and free-energy terms of Egs. and to account for the
amino acid structure and cooperative interactions. In addition to these
conceptual points, one should additionally consider on how the extension

CHAPTER 3. PROTEIN DESIGN BY INTEGRATING MACHINE LEARNING AND
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from a minimalistic to a realistic setting can impact the required compu-
tational resources.

Generalization to an off-lattice protein representation: Our pro-
tein design strategy is based on the scoring function of Eq. , where the
structural information is encoded through contact maps. The discretized
nature of lattice configurations is only reflected by the binary nature of the
first matrix Cjj; in Eq. (3.6), i.e., the contact map of the target structure.
However, the binary nature of Cj; is not a requirement of our method.
This is manifest by the fact that the second matrix in Eq. is an av-
erage contact map, and hence real-valued even in lattice contexts. In fact,
the structural encoding based on contact maps is inherently robust and
general because it does not hinge on explicit Cartesian coordinates repre-
sentations nor the discreteness of the embedding space, and not even its
dimensionality. Therefore, our formulation of the design scoring function
is manifestly transferrable to off-lattice models.

Use of AlphaFold to perform protein structure predictions: The
minimalistic lattice model used in our proof-of-concept application enabled
us to obtain protein folding predictions from a pre-determined (ground-
truth) energy function, resorting to the exhaustive exploration of all com-
pact protein structures.

The generalization from minimalistic to realistic models requires a re-
liable tool to perform protein structure predictions. AlphaFold provides
the most accurate option for this task, to date. In this scheme, the native
structures are predicted by a deep neural network trained on a databank,
not by a physics-based model. This structure prediction tool can be seam-
lessly integrated in our energy-refinement step. In fact, Alphafold calls do
not return a single structure, but rather a set of ranked structure predic-
tions. The ranking is based on a physical measure (pLDDT) that reflects
the propensity of amino acids to adopt local structures different from the
target one. Thus, the ranked set of structures and their pLDD¢t scores
can be seamlessly used to select the competing structures to use in the
energy-refinement step based on Eq. .

Improvement of the energy model in the scoring functional: Since
the goal of the protein design problem is to identify sequences that yield
a given fold, it is natural to resort to a scoring function based on a coarse-

3.6. PATHWAY TOWARDS REALISTIC APPLICATIONS
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grained representation of the chain. Our minimalistic energy model is al-
ready equipped to account for pairwise interactions of the coarse-grained
amino acids. However, in realistic applications, two-body interactions
would not typically suffice, and effective many-body interactions would
be needed to implicitly account for, e.g., internal degrees of freedom of
the amino acids, such as rotameric states of the sidechains. While this
multi-body approach is entirely general, its viability in the protein design
context is ensured by Anfisen’s principle, which guarantees that it is pos-
sible to define a scoring function, depending on an effective energy E, that
discriminates between native and competing folds on the basis of the sole
sequence information. Indeed, such expansions have been exploited before
in accurate coarse-grained protein contexts, such as the UNited RESidue
models developed by Scheraga and coworkers [163[164]. Thus, both the
energy and free-energy expressions of Egs. and may be extended
through a many-body expansion,

E=F +FE+FE;3+..., (340)

where Ej represents the k-body interaction.

As noted above, the minimalistic model discussed so far was based on
retaining only the E5 contribution. The inclusion in Egs. and of
unary terms, such as those needed to account for amino acid hydrophathies
or Ramanchandran angle constraints, would be straightforward. Including
three-body terms would additionally enable accounting, at least in part,
for effects arising from rotameric degrees of freedom, as well as bona fide
cooperative interactions. To this end, a natural form of three-body terms

to include in Egs. (3.4) and (3.5) would be

By =Y Tii(T) €q)q(ate) (3.41)
ijk

In this equation, ['jx(I') € [0,1] is a rank-3 tensor determined entirely
by the structure upon which a sequence ¢(1),...,q(/N) is mounted. This
tensor is defined to approach 1 only when residues i, j, and k are simulta-
neously within a cutoff distance. Similar expressions can be provided for
the order N terms and involve rank-NN tensors.

Computational challenges for realistic protein design: Upgrading
from a minimalistic to a realistic calculation will impact the computational
cost of our algorithm. Most importantly, including many-body interactions

CHAPTER 3. PROTEIN DESIGN BY INTEGRATING MACHINE LEARNING AND
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greatly enlarges the space of parameters to be learned iteratively, thus re-
quiring a larger training data set.

A possible strategy to balance the accuracy of the energy map and the
computational cost of learning it consists of using physico-chemical insight
to restrict the structure of the many-body interactions, leaving only a few
phenomenological parameters to be learned.

For example, one may harness three-body interactions to penalize the co-
localization of triplets of amino acids that are seldom observed to be mutu-
ally proximal in protein data bank entries. This way, all such interactions
would be weighted by the same coupling constant, i.e., an energy penalty.
This practical and feasible scheme would greatly reduce the combinatorial
search space due to the incorporation of phenomenological information, in-
cluding steric constraints depending on rotameric degrees of freedom and
cooperative amino acid interactions.

The inclusion of many-body terms would also affect the quantum en-

coding required to perform the sequence optimization step on a quantum
annealing machine. Indeed, the current QUBO formulation is natively
predisposed to deal with one- and two-body interactions.
However, higher-order interactions can still be introduced by resorting to
ancillary variables, as explicitly shown, e.g., in [139]. We expect that such
demand of increased number of qubits will be met by the rapid growth
in size and performance of quantum annealing machines. Our basic (two-
body interactions only) QUBO formulation would require no more than
about 2000 qubits for representing sequences of 100 amino acids with the
full 20-letter chemical alphabet. For reference, the recent ground-breaking
applications of D-Wave to a physics-based problem [14] have employed
5000 qubits. We expect the next generations of quantum annealers to
leave adequate room for accounting for a sizable number of many-body
interactions in realistic design problems.

Finally, regarding the computational cost of the structure prediction
step, we note that a single call of AlphaFold-2 using the dedicated web
server takes about 10 minutes to return the structure of a globular protein
of about 100 amino acids. This time is shorter than the one required in this
work to perform the exhaustive search in the largest lattices considered,
thus supporting the viability of integrating neural-network-based structure
prediction tools.

3.6. PATHWAY TOWARDS REALISTIC APPLICATIONS
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3.7 Conclusion and perspectives

In this proof-of-concept study, we have shown that the availability of re-
liable algorithms for protein structure predictions can be capitalized to
envision efficient strategies for tackling the protein design problem. Our
iterative method has two distinctive features. First, the structure predic-
tion algorithm is used to learn an optimal scoring function for the design
problem instead of using postulated models and interaction parameters.
Second, having mapped the sequence selection step to a combinatorial
QUBO problem allows for addressing the design problem by harnessing
existing powerful classical optimizers and promising quantum technolo-
gies.

Strikingly, we found that the QUBO encoding brings per se a signifi-
cant improvement, to the point that matching the performance of classical
or quantum QUBO optimizers with conventional schemes becomes com-
putationally impractical even for modest protein lengths.

In our first illustrative benchmarks, we resorted to exhaustive enumer-
ation to remove the uncertainty associated with heuristic protein folding
predictors. This choice had the downside of considering simplified lattice
models and relatively small chains and alphabets. However, we note that
the key theoretical ingredient of our method is the scoring function G(S)
that is entirely specified in terms of contact maps, regardless of the specific
representation of protein conformations. As such, our method is primed
to be generalized to off-lattice contexts.

State-of-the-art machine-learning predictors such as AlphaFold [127]
provide the key tool to upgrade our approach to realistic applications.
Notably, these schemes return accurate folding solutions in a time much
shorter than what is required by our exhaustive enumeration in lattice
models.

Furthermore, the trajectory in addressing the technological limitations
of the existing quantum hardware has been impressive [150L(165]. This
gives hope that significantly more complex problems will become solvable
in the near future, opening the possibility of using more accurate energy
models and optimizing G(S) in the realistic sequence alphabet space.

Succeeding at this task will be transformative not only for protein
design. However, it would also pave the way towards a broad range of
related applications, e.g., protein origami, drug screening, and de novo
drug design.

CHAPTER 3. PROTEIN DESIGN BY INTEGRATING MACHINE LEARNING AND
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Chapter 4

Statistical mechanics of
heteropolymers from
lattice gauge theory

Lattice polymers have been extensively studied to gain qualitative insight
into the statistical physics of a wide class of soft matter systems [106]. In
particular, compact structures of lattice heteropolymers have emerged as
paradigmatic simplified models for protein native states. While efficient
algorithms have been developed for dilute polymer ensembles [166-168],
compact structures of heteropolymers have proven significantly more chal-
lenging to sample [169}[170|. Indeed, growth-based methods become expo-
nentially inefficient, and the low acceptance rate of pivot moves hinders
Monte Carlo (MC) schemes. Combinatorial algorithms derived from graph
theory can be more efficient in generating compact structures, particularly
Hamiltonian paths [171}{172], but do not satisty ergodicity. Recently devel-
oped advanced MC schemes overcome this limitation [173,174]. However,
despite these advances, generating uncorrelated samples of large compact
heteropolymer lattice structures remains challenging.

In recent years, the development of quantum computing hardware has
inspired alternative approaches that rely on a binary encoding of lattice
polymer configurations [138}/1754177]. The upgrade from classical to quan-
tum encoding involves replacing each binary variable with a two-level quan-
tum system (qubit). In the classical and the quantum encoding, the task
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of sampling the ergodic surface can be formulated as a Quadratic Uncon-
strained Binary Optimization (QUBO) problem, enabling the characteri-
zation of remarkably complex polymer ensembles, such as self-assembled
ring melts [177]. Unfortunately, as discussed in Section the com-
putational advantage of the QUBO encoding rapidly degrades when it is
applied to ensembles that do not contain ring polymers. In these cases,
many new hard constraints and ancillary variables must be introduced to
remove rings up to a given size. The number of these interactions and re-
lated ancillary variables diverges in the thermodynamic limit, where rings
of any size can occur. In addition, the QUBO approach cannot be directly
applied to sample heteropolymer ensembles, because the viable conforma-
tional states are not confined to a ground space. In principle, this problem
may be overcome by resorting to MC schemes. However, naive local trial
moves based on randomly flipping binary variables would not preserve the
chain’s topology, leading to exceedingly high rejection rates.

In this work, we overcome all these limitations by introducing a new
quantum encoding, in which the partition function is mapped into a vac-
uum expectation value of a quantum field theory with both fermionic and
bosonic degrees of freedom. The dynamics of this theory is shaped by
its Zo gauge symmetry, which expresses the chain’s continuity condition
and inspires MC moves that preserve the chain’s topology. By tuning the
coupling constants of our LGT, we can vary the ring density or even set
it to zero. As we show below, this scheme is particularly apt to sample
compact polymer configurations. Furthermore, this LGT can be naturally
extended to study heteropolymers by adding chemistry-specific soft inter-
actions. Finally, this encoding relies on qubits, so it provides a suitable
framework to develop future quantum computing algorithms.

4.1 From polymers to LGT

To establish our mapping, we begin by assigning a qubit state |I'j;) to each
edge connecting neighboring lattice sites i and j (see Fig. and a qubit
state |I';) to each lattice site i.

The presence (absence) of a covalent bond between residues located
at neighboring sites i and j is signaled by |I%;) = |1) (|0)), which we call
active (inactive) bond state. Conversely, a chain terminal occupies site i
if |1;) = [1). We also define the bond operator By; = |1)(1] (projector on
active bonds) and the site operator g = [1)1| (projector on active sites).

CHAPTER 4. STATISTICAL MECHANICS OF HETEROPOLYMERS FROM LATTICE GAUGE
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We now consider the tensor product states of all the qubits, |¥) =
(H®<i i |Fij>) ® 1, IT;), constituting our computational basis. In a subset
of these states, the bond qubits in the |1) state align to form continuous

paths in the d-dimensional lattice. We now show that these so-called
polymer states are solutions of

d > D ~
[T0Pme (c)Pie o) = (-1) ), (11)
k=1

where {ey}x=1,. 4 is the set of lattice basis vectors.

To prove Eq. , we first note that the computational basis states
are eigenstates of the operators at the two sides of the equation. The
corresponding eigenvalues obey

d
H(_l)r‘ii+ek+rii—ek — (_1)1—\. (42)
k=1

Equation expresses a flux conservation condition associated with a
binary field I'j; that is “emitted” and “absorbed” at the chain endpoints
(see also Fig. [4.2)). To see this, consider first a generic site i where T'; = 0.
There, Eq. is fulfilled only if the number of active bonds connected
to i, given by the sum

d
pr= (Tiite, +Tiize,) (4.3)
k=1

Figure 4.2: Example of continuous polymer configurations satisfying Eq. (4.2) at
every vertex. Indeed, the configuration of each vertex is locally among the allowed

ones illustrated in Fig.
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is even. In particular, for 3-dimensional cubic lattice it is equal to 2 along
the chain’s backbone and 4 or 6 at the intersection point between chains.
Conversely, on the same lattice, the number of active bonds attached to the
sites with eigenvalue T'; = 1 (chain’s endpoints) is equal to 1, or to 3 and
5 if chain intersections occur at the endpoint. A graphical representation
of the analog constraints for a 2-d square lattice is reported in Fig.

The continuity Eq. ( is in fact the Gauss’ law of the Zo LGT mtro—
duced by Wegner and Kogout in Ref. [178], with Bj; playing the role of the
electric operator and §; that of the topological charge operator. Inspired
by this connection, we also introduce a so-called chain deformation opera-
tor C’D, which plays the role of the magnetic operator of the Z, LGT, and
is defined on each plaquette on the lattice as

Co=]]Xe with X =[10|+[0)1], (4.4)

where k labels the edges defining the given plaquette [J. Realizing the
existence of an underlying gauge symmetry is the key to devise a new
type of MC algorithms to sample polymer configurations. Indeed, we note
that Cy commutes with the operator on the left-hand side of Eq.
This implies that if |¥) is a polymer state, then Cq|®) is a different (1.e.7

Figure 4.3: Configurations satisfying the eigenvalue Eq. at vertex i. Black
circles represent end-points with a topological charge present, described by I'; =1,
while white circles represent regular points along the chain backbone, described by
I'; = 0. Solid lines represent active bonds (I'; = 1) and dashed lines denote inactive
bonds (I' = 0). These configurations can be seen as those permitted by a local
symmetry (Gauss' law) encoding flux conservation.

4.1. FROM POLYMERS TO LGT
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locally deformed) polymer state. In practice, Ch flips the state of all
qubits assigned to the edges of a plaquette (see Fig. . Another class
of operators that preserve Eq. (4.1)) is the chain terminal displacement
operator Dij that acts on the qubits at the neighboring sites i and j and
on the bond qubit connecting them,

.Dij = Xij (AIJL flj + h.c. s (45)

where @; = |[0X1|. In a LGT, this term represents the motion of charged
matter with a corresponding instantaneous adjustment of electric field
lines. Two arbitrary polymer configurations with the same number of
open chains can be deformed one into the other by a combination of chain
deformations and terminal displacements.

Let us further restrict the set of viable tensor product states to retain
only self-avoiding polymer states. These can be identified with the ground
space of the Hamiltonian H = Heauss + Hs A, With

Hgauss = €0 Z <(1)ﬁi - (1)@)2,

Hsa=e1 Y (pi+3)(pi+ 8 —2)

(4.6)

where p; = ZZ:1 (Bl i+e, + Bii,ek) counts the number of active links at

)

Figure 4.4: Action of the chain deformation operator in Eq. 1' Active and
inactive bonds around a plaquette are inverted, while the topological charges remain
unaltered.
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i i T J
Figure 4.5: Action of the diffusion operator for the chain’s endpoints, as given in
Eq. (4.5). A topological charge is moved along one link, whose active/inactive state

is adjusted such that the vertices assume only configurations (illustrated in Fig. [4.3])
that are allowed by the Gauss' law.

the site i. If the couplings ey and e; are large and ey > ey, H implements
two hard constraints: fIGaUSS enforces the Gauss’ law in Eq. , while
Hgy the self-avoidance condition. Indeed, lattice sites where |T;) = |0)
yield vanishing eigenvalues of ffls A and ﬁgauss as long as they are either
not attached to any active bond (empty sites) or they are linked to exactly
two active bonds (backbone sites). Lattice sites where |I';) = |1) avoid
an energetic penalty if they are attached to exactly 1 active bond, thus
forming one of the chain’s endpoints.

Without loss of generality, in the following we specialize to the case of
a single open chain, i.e., we require that only two |I';) qubits must be in
the |1) state (note, at this stage this restriction still allows for an arbitrary
number of additional ring polymers). We denote with {|¥s)} _,, the
numerable set of all self-avoiding polymer states (i.e., the subset of degen-
erate ground states of H) and introduce the linear sum |Q) = > s 1¥s). The
matrix element Z = (|Q2) counts the total number of distinct self-avoiding
configurations and, thus, is identified with the classical (grand-canonical)
partition function of a system consisting of a single chain and arbitrary
rings. Upon inserting the resolutions of the identity in their respective
spaces, 1 = >r, i) (T5] and 1 = >-r, ITi)(Li], we obtain an explicit
representation:

z=3 <H5(91[F])> e”PHsAlll g — (kpT)L. (4.7)

In this expression, we have collectively denoted with I' the fields defined by
the eigenstates of the bond and chain terminal operators. In Eq. , we
have imposed the Gauss’ law via a set of delta-functions for the functions
Gi[T) = [Th_, (—1)Di+ertTiizex — (—1)T% while the self-avoiding condition

4.1. FROM POLYMERS TO LGT
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follows from choosing a large coupling e; in the Hamiltonian Hga, en-
suring fBe; > 1 for all feasible temperatures. The motivation for using
two different notations to express these hard constraints is that we can
define ergodic trial moves that preserve Gauss’ law while we resort to a
Metropolis criterion to enforce self-avoidance.

In the ensemble defined by Eq. , the density of ring polymers and
the average length of the open chain is not fixed. We now show that this
limitation is overcome by coupling the qubits |I'j;) and |I';) to “spinless
fermions” with M degenerate flavors, via the tight-binding Hamiltonian

e =35 gt (4.8)
Tij = {&j ms — g pl) >\2B1J} 5 (49)

where 1[)1(7") and @meﬁ are anti-communting fields. The motivation for
introducing these fermions into the theory is that the density of rings in
the ensemble can be tuned by varying the parameters my¢, g, and A.

Again, we consider the matrix element 2’ = (Q'|Q0’), where now |Q')
denotes the linear sum of all the degenerate ground states of H' = H+Hp.
The explicit expression for Z’ involves a Gaussian path integral over M
Grassmann fields, which we carry out analytically to obtain

2'=> " (detT[])" H §(Gi[T]) e~ PHsall]) (4.10)
r
where Tij (F) = 5ij (mf - g2pi) - >\21“ij.

4.2 Setting the density of ring polymers to
Zero

In what follows, we explicitly prove that, for a suitable choice of param-
eters, the determinant arising from integrating out Grassmann fields in
Eq. completely removes the undesired polymer rings from the sta-
tistical ensemble. Let us consider a configuration of the binary field T’
associated with an arbitrary polymer configuration containing an /—long
isolated ring (see Fig. [4.6)). To build the Fermion bilinear T'(T") defined in
Eq. (4.9), we adopt the convenient labeling of sites where the first £ nodes
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are those belonging to the ring, while the following (N — ¢) identify the
remaining vertices left on the lattice, i.e., the ones that are not connected
to the ring. Due to the fact that the ring is isolated, the T(I') matrix in
the chosen basis acquires the block diagonal form

) = (—Aw | 0 ) | (411)
0 ‘R(N—@ NxN

where Ay and R(y_g) represent, respectively, the ring and an arbitrary
configuration supported on the (N —¢) remaining vertices. The sub-matrix
A(p) is a matrix having the structure

me — 2§2 -2 0 0 -2
N2 -2 —A2 0 0
A(@) = 0 —\2 0 ,
0 - L omy — 2@2 —\2
-2 0 0 —\2 me — 2@2
Ixt
1 2 3 4 )
O O O O
14 7 6

-1 8

Figure 4.6: Ring configuration consisting of ¢ nodes and ¢ edges. In this picture,
we omit the representation of the remaining (N — ¢) nodes that do not belong to
the loop, whose contribution to the T'(I") matrix in Eq. is embodied by the
square sub-matrix R(x_¢). The contribution of the first £ sites belonging to the loop
is reflected by the square sub-matrix A, specified in Eq. (4.12)), where the entries
marked in cyan are associated with the link joining the first node to the ¢—th.

4.2. SETTING THE DENSITY OF RING POLYMERS TO ZERO
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where the entries marked in cyan are related to the connection of the first
and the /—th node, which is highlighted in Fig. with the same color.
Crucially, these contributions qualify A, as a circulant matrix having
well-studied properties [179)].

In what follows, we will establish the conditions granting det T'(T") =
0 for all those matrices with the above-mentioned form, i.e., those that
describe a configuration corresponding to an arbitrarily long isolated ring.
The condition det T'(T') = 0 is equivalent to requiring T'(T") to have at least
one vanishing eigenvalue. Since T(T") is a block diagonal matrix, a subset
of its eigenvalues are those associated with the circulant matrix Ay, which
can be evaluated exactly (see, e.g., |[180]) to be

27k
A = mg — 2@2 —2X2% cos (;)

fork=1,...,¢.
The ¢-th eigenvalue of T'(I") vanishes by setting
me = 2g% + 22 (4.12)
Among the many possible choices, this condition can be fulfilled by setting
my=4g> and g =\?. (4.13)

yielding det T'(I") = 0, for any possible ring number, size and shape.

4.3 Tuning the chain length

In Section we explicitly showed that a proper choice of the parame-
ters my, g2, and A2, completely removes configurations containing isolated
rings from the ensemble, as their canonical weight is zero due to the van-
ishing of detT'(T").

Once ring polymers have been suppressed, the length of the remain-
ing single chain is fixed by the total number of active bonds and, as
we show in the following sections, any given average length ¢y can be
set by introducing a soft constraint via the additional Hamiltonian term
Hy, = CZ(ij)(Bij —T)?%, corresponding to the new matrix element Z =

(V]|e~PHL|Q)). The parameter T € (0,1) controls the average propensity
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of bond qubits to be in the |1) state. Using the idempotence of Bij, one
can recast the operator e~PHL into the form of a chemical potential term,
yielding Z” x (Q’|65“£|Q’>l where L = £ >°; fi counts the total number of
active bonds and p = 2¢(2I" — 1).

For the sake of clarity, we divide the discussion into two parts; the first
delves into the calculations that lead to a general expression for det T'(T")
when I' describes an open-chain configuration. The second part makes
use of this result to fine-tune p in a way that the ensemble average chain
length is fixed to an arbitrary value, ¢.

4.3.1 Determinant of chain configurations

Let us now assume my, g2, and A? are chosen to obey Eq. (4.13)), such
that we are ensured the absence of any ring. To evaluate Eq. (4.10]) we

require the numerical value of det T'(T") for the case we are interested in,
i.e., binary field configurations I" corresponding to an open chain of length
£. Remarkably, the structure of the T(I') matrix does not depend on
the specific self-avoiding chain conformation, but only on its length ¢ (see

Fig. :
Betry ‘ 0

0 ‘ Dn_¢-1)

() = (4.14)

Here, D(y_,_1) is a square diagonal matrix with all entries set to 452 and
B(¢41) takes the form

3 -1
-1 2 -1
B(Z_H):f]Q . -1 . . (4.15)
2 -1
-1
(£4+1)x (£+1)
With this,
det T(T') = (4g*)N =) det B(p11) - (4.16)

4.3. TUNING THE CHAIN LENGTH
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Figure 4.7: Open chain configuration consisting of ¢ edges and ¢ + 1 nodes. In
this picture, we omit the representation of the remaining (N — £ — 1) nodes that
do not belong to the chain, whose contribution to the T'(I'") matrix in Eq.
is embodied by the diagonal square sub-matrix D(y_¢_1). The contribution of the
first £+ 1 sites belonging to the chain is reflected by the square sub-matrix B,
specified in Eq. , where the entries marked in magenta and blue are associated
to the extremes of the chain (marked with the same colors in the present figure).

To compute the determinant of B, we recall a general result con-
cerning the determinant of block matrices [181]:

A|C 1
det o5 )= det A x det (A—CB™'D) . (4.17)

To exploit this result, it is convenient to adopt a change of basis such that
the transformed Bg 0+1) acquires the block-diagonal form

3 0 Ocvovvnenns 0 -1
0 3 |-=1 0. 00ov... 0
0 -1
Bl =9 S0 x , (4.18)
S (¢-1)
0
-1 0 (£4+1)x (£+1)

where the matrix X(,_;) is a Toepliz matrix having the structure

9 -1 .0 0 0 0
1 2 -1.0 0 0
0 -1 . .0 0

X = L (4.19)
0 0 9 1 0
0 0 0 -1 2 -1
000 0 0 =1 2 /),
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The determinant of X(,_;) can be computed through successive applica-
tions of Eq. (4.17) and is found to have the simple expression

det X(g,l) =/, (4.20)

so that, by applying once more Eq. 1l the determinant of BZ@ 1) be-
comes

det B{yyq) = (5%)F! det X(p—1)x
x det (3 — (X1 _(X(gll))ll,1> (4.21)

—1

- X(é,l))l,efl 3 - (X&il))1,1

The column vectors of the inverse matrix needed to evaluate Eq. (4.21)
have the simple form

0—k
-1 -
(X(eq))M =7 (4.22)
k
_1 = - = J—
(X(Zfl))ui1 =2 k=1..0-1. (4.23)

To check Eqs. (4.22}l4.23)), it is sufficient to express the j-th row of X,_y)
as

201k — S2.k if j=1,
(X(g_l))j. =025k —0j k41— 01 if 1<j<l—1, (4.24)
2001 — Op—2, if j=0-1,

so that, plugging Eq. (4.22) in the expression (X(g,l))j,k (X(_eil))k,f we

obtain
l—k
D (K)o —— =
k
2(@—1)_5_72:1 =1
ey e R (4.25)
=  ——5— ——5—=0 if 1<j<t-1
2(@—(;—1)) B e—(i—2) —0 it o=,
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confirming that Eq. (4 is correct. To verify that Eq. (4.23) correctly

reproduces (X((_l))j’ X(el 1))k = 0j.¢—1, we evaluate

2
> (Xen)j7 =

k

2 2 1 1

A (4.26)
2R eabd U EYRYEY

A 2 it j—r—1
:6_7',@—1'

Since Bgy1) and BZ@ +1) are related by a change of basis, they share the
same determinant, and we finally obtain

9 _1 1
det B = (gt e det( ¢ ¢ )
(0+1) = (g ) % - % (4.27)

=4 (e +1).

Thus,
det T(T) =4V ~* 52N (0 +1). (4.28)

4.3.2 Tuning of average chain length

The result in Eq. (4.28) enables us to tune the chemical potential p acting
on link variables to yield any chosen average chain length. To this end, we
recall that the partition function in Eq. (4.10)

2'=> (detT(I MH5 —BHsa (4.29)
r
in the limit of Be; > 1, can we rewritten as
2/ = (et T(Tsa))™ H 5G] (4.30)
Tsa

where the summation is over the ensemble of self-avoiding lattice states

FSA.
By introducing the contribution given by the chemical potential oper-
ating on the link variables, we obtain

2" =" (det T(T'sa) MH(S JePrt (4.31)

Isa
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with £ being the total number of active links. If we consider the specific
case of a summation over ensembles featuring a single chain I'sa (i;, ;) with
endpoints i; and i (i.e., lattice sites occupied by topological charges and

thus associated to the btateb ITy,) =1|1) and |T,) ), Eq. (4.31)) reads
Z Z detT FSA MH5 Bul (4.32)
ii,i¢ Tsa (iiyir)

In light of Eq. (4.28)), det T'(T") in Eq. (4.32]) depends solely on the total
length of the chain, making it possible to rewrite Eq. (4.32) as

e —ZZ (L5, i) (et T(T)) ™ 1, (4.33)

ii,if

where n(4, i, i¢) is the number of binary field configurations describing a
chain of length ¢ having one end-point at the site i; and the other at i.

Using Eq. (4.28) we obtain:

_ Z Z (b, i) eM [2(N—£)In 24N In g +1n (¢+1) |+ Bu

ipig £

(4.34)
_ Z 2(N £)In2+NIn g% +1In (e+1)} +But

where n(f) = >, ; n(f,i;,if) is the total number of chains having length
{, irrespectively of the position of the chain’s end-points. To identify the

most probable value of the chain length ¢y we consider the saddle-point

solution of Eq. (4.34)), i.e.:

3glnn(f)|eO—M<2ln2—£0:_l>—|—5,u—0. (4.35)

Our goal is to solve this equation for u, for an arbitrarily chosen value of
£y. Unfortunately, computing 9y log n(¢) involves the challenge of estimat-
ing the number n(¢) of independent lattice field states describing polymer
configurations of length ¢. Fortunately, this problem can be overcome by
considering the regime in which the chemical potential p and the number

of degenerate fermion fields M are simultaneously large.
With this choice, Eq. (4.35) simplifies to

. po 1 1
1 2In2 — . 4.36
Mmoo M ﬂ ( " Ly + 1) (4.36)
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For any (large) choice of M, Eq. allows us to set a value of the
chemical potential p such that the most frequently sampled chains have
length £g.

In the large M limit, the distribution of £ is exponentially peaked
around the mean-value ¢3. To see this, we first re-write the partition

function of Eq. (4.34) as
Zhy =Y e 10, (4.37)
J4
with f(¢) = —Inn(¢)—M [2(N—{)In 24N In g°>+In (¢ 4 1)] — Bpl. Expand-

ing f() to second order around the saddle-point £y, where 9, f(¢)[, =0,
we obtain

F6) f00) + (0~ €0 ( = 3 1un(e)

M (£~ £)?
2 (6o +1)2°

+ )
‘o (fo + 1)2
M,,u:—>oo f(EO) +

Hence, chain length fluctuations around ¢y are exponentially suppressed
in the large M limit.

4.4 Suppressing self-intersections

In this section, we analyze the problem of fixing the order of magnitude
of the parameter e; appearing in Eq. in a way that self-crossing
configurations are reasonably suppressed. For the sake of clarity, we divide
the discussion into two parts. In Section [£4.1] we derive an analytical
expression of det T'(I") when I' describes a generic self-intersecting chain.
In Section we use this result to derive a suitable order of magnitude
for eq.

4.4.1 Determinant of self-crossing configurations

In this section, we derive the analytical expression of det T(T") when the
state |T') describes a self-intersecting chain. Assuming that the self-crossing
configuration is obtained by joining two chains, with length ¢; and ¢2, and
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a {r-long ring, as depicted in Fig. the resulting T'(T") is

C(l1, 65, r) | 0
T =
() ( 0 |D(N41424R) ’

where D(n_¢, _¢,—¢z) 18 a square matrix with all diagonal entries set to
432 and C(fy, 2, ) has the form

(4.38)

3 -1 '
0 - -1 —1-1 -1 %
X(gl_l) 0 0 :
- =1 - 6 —1
0(61,627£R) :gZ e | 1
o 0 | Xyl O :
- =1 - 2 — 1
1 . 1
. 0 0 X(ﬂufl) :
[ br —1
< * g ... L TR U L TR I —
| | \
5 8 &

(4.39)

The matrices X4, _1), X(¢,—1), and X, _1) appearing in Eq. (4.39)
are Toepliz matrices defined through Eq. (4.19). The 1-s appearing in the

first rows and columns realize the connections between the points é#, %,
and & and the rest of the configuration (see Fig. [4.8).

Straightforwardly, we have
det T(T') = (4g*)N =12~ det C(41, 4o, lR) . (4.40)

The first step towards evaluating det C'(¢1, {2, £r) consist in applying Eq. (4.17)
to integrate out the block matrix X, ,_1). With this,

det T(T) = (4g*)N =477 det X4, 1) det C(¢1,6o)

2\N—t—ly—Lp (~2)(R™1 (4.41)
= (4gH)N TR (g?) Crdet C(1, 0s),
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ly — 10
£1:1 *. lp—1
1_ 1 5
o o 3 4

Figure 4.8: A configuration having a self-intersection in % can be broken into three
pieces: two chains of length ¢; and {3, with end-points, respectively, in & and &;
and a ring involving £r edges. The colors and symbols are used to clarify the origin

of the terms in Eq. (4.39).

where
_]_ . ‘
S1 =1 - - =1
1 . ry
-1 . 1
cnty=g| - - | Ke-n 0| (4.42)
.1 . b —1
SR 0 X(£2—1) :
.1 . b —1
< .k g —-. .. v—‘i e .—|<
< )
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In the previous,
S1 = : —X1 : (4.43)
. . 3

and x1 is the sum of four elements of X(_e;_l), namely the enties (X(;;_l)) =

-1 —1 -1 .
<X(£R*1))2R71,1’ (X(fnfl))u 0 and (X(‘ZR’”)IZRA,@RA' A direct
evaluation follows from Egs. (4.22) and (4.23), yielding y; = 2.

Proceeding our calculation, we iterate the application of Eq. (4.17)) to
integrate out the diagonal block X 4,1y, which results in

det T(T) = (4g%)N—4~~4n (g2)n =1 g det X(4,_y) det C(£y)

4.44
= (453N —temtr (g2yiatla=2 b ) det O(4y). (4.44)
In the previous C(£1) is
1. P
So =1 1%
&
Ct) =g*| -1 1 (4.45)
N RN E
- =1 £ —1
€ Kop H‘
<
with
—-1 -1
Sy = 51— ' (Xézfl)zruzq (Xﬁzfl)erm =
(Xet) (Xt
e T (4.46)
3
lo—
= ' —2- 2Z21 _é
lo—
_é 3- 2521
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Applying once more Eq. (4.17)) to integrate out the sub-matrix X, 1)
gives

det T(T) = (4g*)N~“r—t—tr (g2)irtt2=2 ¢ £y det X, 1y det Rg

— (4g2)N-G—ta—tr (g2)lrtlatti=3 0Ly g det Ry (4.47)
with
-1 1
<X“1*1>>1,1 (X(elfl))mfl
Ry =g |5y — ( -1 ) ( -1 ) . _
X(Zlfl) 0—1,1 X(elfl) —1,0,-1
1 1
2+ & -
=7*| -+ A+t -+
1 1
(4.48)

Then, when the total amount of active edges is £, i.e. {1+ o+ =4,
the expression for det T'(I") is

1 1
det T(T) = —4 (4 ++ €> OGN bty tg. (4.49)

1 2
In the next section, it will be relevant to have an estimate of the upper-
bound to the absolute value of det T'(T") based on the total number of active
bonds. Once ¢ is fixed, |detT(T')| attains its maximum when ¢; = {5 =

% (E — 14+ +0+ 1) and its value scales as

|detT(I')| = 4N~ g* (;g e+ 0(62)> . (4.50)

4.4.2 Setting the order of magnitude of n

Accounting for self-avoiding configurations and those having a single point
of self-intersection as the one in Fig. the partition function in Eq. (4.10)
can be approximated with

Z' = Z <n0(€) det T(To)M e + ny(£) det T(T';)M &1 6_8551) ,
¢
(4.51)
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where ng(¢) denotes the number of self-avoiding configurations (I'g) hav-
ing length ¢ and n; (¢) represents the number of configurations (I';) with a
single self-intersection and a total length fixed at £. The term e85 comes
from evaluating e “#Hs2 (see Eq. ) on states describing self-intersecting
configurations as the one in Fig. [{.8 It is worth noticing that the con-
tribution to Eq. of configurations displaying n self-intersections is
expected to be negligible, as the canonical weight associated with such
configurations is exponentially supprssed by the factor e=®"¢1. For this
reason, their contribution can be neglected in first approximation. To sup-
press the sampling of self-crossing configurations, it is sufficient to choose
e1 so that

no(£) det T(To)M > ny (€) det T(I')M e=8Fer (4.52)

Recalling that detT'(Ty) is given by Eq. (4.28]) and that the upper-bound
of | det T'(T")| scales as in Eq. (4.50)), the condition for suppressing at first
order the self-crossing configurations is satisfied if

M

no(€) (£ + 1) > ny (0) (;g A 0(42)> e 8Per (4.53)
Further assuming that M is even and taking the limit of large M and e
values, we can neglect the terms ng(¢) and nq(¢). Moreover, since our focus
is not on fine-tuning e; but rather obtaining its order of magnitude, we can
also discard sub-leading terms in ¢, which results in e; > % In/. Since ¢
is bound to be O(N), we conclude that a safe choice relies on setting ey to
be a multiple of % In N.

4.5 Heteropolymers

Up to here, we have shown how the backbone structure of polymer chains
with the desired length can be expressed through a LGT. We now fur-
ther generalize our theory to include soft interactions that depend on the
chemical properties of the residues. To account for chemical variability,
we introduce additional qubits at each lattice site — one for each type of
residue — and a Hamiltonian that encodes non-covalent interactions:

D
Hchem = Z Z Eab Aij )A(i )Zj (1 - Bi>j) ﬁ“? ﬁj) ) (454)

ij ab=1

4.5. HETEROPOLYMERS
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where D is the size of the chemical alphabet, nf = |1,)1,]| is the lattice
site occupation operator acting on the qubit of type a located at site i,
and y; = %(,61 + §i) is an operator that identifies the sites belonging to
the chain. With the self-avoiding constraint, we have p; = 0 (site i not
occupied by the polymer), p; = 1 (site occupied by the endpoint), and
pi = 2 (site along the backbone), so x; = 1 at the endpoints and along
the backbone. The factor x;x; in Eq. ensures that the non-covalent
interaction Hamiltonian only couples qubits located at lattice sites that
are occupied by the chain. Furthermore, the term (1 — Bij) excludes non-
covalent interactions between covalently bound residues. Ajj is a decaying
function of the distance |i — j|. In a nearest-neighbor model, Aj;; = 1 if
li —j| =1 and 0 otherwise. €45 is a D x D symmetric matrix that defines
the interaction between the residue types.

Finally, to set the relative abundance of the different residue types
along the chain, we introduce the term

D 2
=g > St - ) (4.55)
a=1 i

This term can also be written as H, = — Yo uaN“ +9>., v2 > X
where N@ = > Xi i counts the number of residues of type a in the poly-
mer backbone and u, = ¢'(2v, — 1) are the associated chemical potentials.
Since for a single chain ). x; = L + 1, the second term contributing to
H,o1 can be absorbed into the chemical potential term ~ p acting on the
bond qubits. After combining all terms, we obtain the final expression for
the partition function of a single heteropolymer:

Zhet = 3 [ 1G:(1)]8[@; ()] P ELrTI=ID), (4.56)
I'n

i

The summation Zn spans the configurations of the D fields n{*, constructed
from the eigenvalues of n{, while

L0,y = pL+ > paNa + MTrlog T (4.57)
H[F7 77] = HSA + Hchem' (458)

Hchem is obtained by replacing fij and n{ with the binary fields I'j; and n{*
in Eq. |b Setting ®; = (25:1 n —1)2, so [], 8[®i] ensures that at any
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lattice site i there is exactly one active residue-type state (see bottom-right
panel in Fig. .

Importantly, the theory defined by Eq. does not allow us, in
general, to choose a specific primary sequence. Nevertheless, it can be used
to characterize the thermodynamically stable sequences along with their
structures. Specific patterns in the sequence may be imposed by additional
interactions. For example, co-polymers can be sampled by adding an “anti-
ferromagnetic” interaction, ﬁco_pol = Zmb Z<ij> ﬁfﬁ;’éﬁ, while block co-
polymers are obtained from the analog “ferromagnetic” term.

4.6 Illustrative application

To illustrate our LGT approach to polymer sampling, we choose a mini-
malistic setting based on the so-called HP lattice model [140}/182]. In this
model, the residues are grouped into hydrophobic (k) and polar (p), with
interaction matrix elements e, = —1, g, = €pp = 0. For illustration
purposes, we simulate a small chain, /; = 9, in a 10x10 square lattice
with nearest-neighbor interactions. Such two-dimensional lattice models
are commonly adopted in biophysical contexts, as they yield surface-to-
volume ratios close to that of realistic small globular proteins. Moreover,
we choose M = 120, allowing us to use Eq. to fix the chemical
potential 1 as a function of ¢y, and we set v, = v, = 0.5. In the follow-
ing section, we discuss separately the details concerning the Monte Carlo
algorithm that is employed to simulate the HP-model considered in this
section and the associated results.

4.6.1 Details on the Monte Carlo algorithm

Equation enables us to simultaneously sample the heteropolymer’s
conformational and chemical space, using a Metropolis MC scheme. To
this end, we first initialize the binary field I' to fulfill all conformational
constraints, i.e., to represent an arbitrary self-avoiding polymer configu-
ration. Likewise, the initial binary fields 7, should obey the hard con-
straint set by the term [, 6[®;] in Eq. . To propose conformational
trial moves, we act at a random location with the deformation operator,
Eq. , or with the terminal displacement operator, Eq. . New
sequences are proposed by random point-wise mutations of the chemical
residue at arbitrary positions in the lattice. These trial moves are accepted

4.6. ILLUSTRATIVE APPLICATION
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or rejected according to a Metropolis criterion defined by the probability
density oc e#(£=H),

To initialize our Monte Carlo simulations, we generate the initial con-
figuration of the binary field I';; to (i) connect two arbitrarily chosen
chain endpoints, (ii) satisfy the chain topology condition — Gauss’ law
in Eq. —, and (iii) fulfill the self-avoidance condition.

To study the NP model employed in the illustrative application, we
randomly initialize the field of binary variables 7{ associated with the
chemical residue species a = h and a = p, in such a way that at each
lattice point i either 7 =1 and n” = 0 or n? = 0 and 7 = 1.

To generate a new element of the Markov chain, we propose “back-
bone deformation” moves, “end-point diffusion” moves, and “point-wise
monomer mutation” moves, with equal probability.

To perform backbone deformation moves, we randomly pick a plaquette
on the lattice and apply the corresponding chain deformation operator
C’D, defined in Eq. The result of acting with this operator on a
plaquette is to switch the value of each bond variable, as shown in Fig. 4.4
To shift the endpoints of the chain, we randomly select one of the two
extremes of the chain, i, and one of the 2d oriented directions, e, and we
apply the operator D; i+e, defined in Eq. , which acts on the backbone
configuration as shown in Fig. [4.5]

To perform point-wise monomer mutations, we randomly select a lat-
tice site i and a chemical flavor a, defining the operator ]\Zi(a)7 which turns
the chemical element in site i into flavor a.

The Metropolis acceptance/rejection criterion for this set of moves is
simply

A, —T",17") = min (1, 7;((1;’2;)> , (4.59)

with P(T",n) defined as
P(T,n) o LM =BHenem[Tn] (4.60)
and
LT, n) = M Trlog T[]+ p Y T+ Y pand and
ij a,i

D (4.61)
HC,n) = Hsall]+ ) D can Ay xanf* (1= Ty) xj71) -

i>j a,b=1
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Symbol Definition Value
M Number of fermionic degenerate modes 120
me Mass of fermions 1
B8 Inverse temperature {0.1,1,2}
€1 Energy scale entering the repulsive 1,000
term Hgp in Eq.
- Lattice format 10 x 10
D Number of chemical elements 2
Vh = Up Abundance of h and p chemical species 0.5
fh = fp Chemical potential associated with h 0
and p chemical species
Ly Expected average chain’s length (when 9
no chemical interaction takes place)
N, Number of polymeric chains generated 1
Nsteps Number of Monte Carlo steps 106
Nie Number of Monte Carlo trajectories for 10
each parameter choice
Ao Decorrelation time when g = 0.1 1,800
Ay Decorrelation time when 8 =1 1,980
A, Decorrelation time when 5 = 2 5,040

Table 4.1: Parameters adopted in the Monte Carlo simulations reproducing results

in Figs. to

All the parameters appearing in these equations that we used in our numer-
ics, along with the number and length of the Markov chains, are reported in
Table We found these to present good performance while reproducing
the relevant physics.

4.6. ILLUSTRATIVE APPLICATION
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Autocorrelation-time analysis: The conformational decorrelation time
associated with a single Monte Carlo trajectory can be estimated from the
autocorrelation function A(A), defined as

932 (e B )
(FEmET)GEm T

(n+A4)

(4.62)

where IV, is the number of edges in the lattice, T i ) and I are binary
variables sampled at the n—th and (n+A)-th element of the Markov chain,
and the sum ) runs over the Monte Carlo steps. An analogous quantity
is employed to estimate the correlation of the monomer field. To increase
the statistics, we average the autocorrelation function over Ny, indepen-
dent Monte Carlo trajectories. The autocorrelation analysis is reported
in Fig. [£.9] For practical purposes, we consider configurational states to
have reached maximum decorrelation after Aﬁ Monte Carlo steps (see the
vertical dotted lines in Fig. and numerical values in Table . All
results reported are derived by averaging over decorrelated configurations,
sampled from Ny, independent Markov chains.

4.6.2 Results

This section presents the results generated by our Monte Carlo algorithm
when applied to the illustrative example of an HP model.

The length distributions for several values of the inverse temperature
S and parameters detailed in Tab. [{.I] are reported in Fig. [£.10] For these
parameter values, the expected average chain length when neglecting chem-
ical interactions is [p = 9. At low temperatures, where entropic contribu-
tions to the statistical properties of the ensemble are small, we expect the
sampling of low-energy configurations to be enhanced. As non-covalent
interactions among monomers can lower the protein’s energy, and since
the possible number of such interactions increases with the chain length,
we expect to sample longer polymeric chains at low temperatures. Indeed,
this is what we observe in our simulations. As the temperature increases,
the average chain length tends towards the value of Iy = 9 favoured by
the chemical potential. In all considered cases, thanks to the large value

CHAPTER 4. STATISTICAL MECHANICS OF HETEROPOLYMERS FROM LATTICE GAUGE
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Figure 4.9: Autocorrelation analysis for simulations run at different inverse temper-
atures 3. (a) Backbone auto-correlation and (b) monomer field autocorrelation as
a function of Markov chain elements A. The vertical dotted lines show the choice of
AB for 8 € {0.1,1, 2}, reported in Tab.and is used to estimate the distributions
of |i; — i¢|, of the chain's length ¢, and of the abundance of H and P residues.
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of M = 120 considered, the chain-length distribution is rather strongly
peaked around the average. In the upper-left panel of Fig. we report
the end-point distance distributions (in lattice spacing units), which shows
that the chain undergoes the hydrophobic collapse in the low-temperature
regime. Next, we examine how soft interactions promote specific primary
sequences. In the upper-right panel of Fig. we report the measured
relative occurrence of h residues at different temperatures. The latter
were arbitrarily set to explore different regimes. As can be expected, even
when pp, = pp, the h-type residues are more frequent at low tempera-

0.4

=
w

=
—_

Relative occurrence
©
DO

=
-

5 7 0 11 13 15 17 19
¢

1

Figure 4.10: Chain-length distribution for various values of the inverse tempera-
ture (8 € {0.1,1,2}). Samples are drawn from ensembles where the chain’s end-
points are delocalized on the lattice. At low temperatures, where entropic effects
are small and chemical non-covalent interaction plays a dominant role, the system
prefers longer chains. As temperature increases, the chain-length distribution be-
comes peaked more closely to the value favoured by the chemical potential of o = 9.
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tures. Finally, to highlight sequence-structure correlations, in the bottom
panel we report a sample of typical chains generated by our MC algo-
rithm. In the low-temperature regime, compact structures are stabilized
by the formation of a hydrophobic core, an effect well-known in proteins.
To quantify this effect, we compare the average number of h —h and p—p
non-covalent interactions at § = 2, finding respectively Ny, = 3.20 + 0.03
and Npp = 0.15 £ 0.01.

4.6.2.1 Computational efficiency

In this section, we showcase an example that illustrates why the LGT
approach is particularly suited to sample maximally compact polymer
configurations. Let us consider the problem of generating new compact
self-avoiding structures by acting with chain deformation operators C'p on
the specific Hamiltonian path state shown at the center of Fig. This
action yields a new viable compact structure when it acts on 4 out of the 9
plaquettes. The rejected moves are those for which C'p acts on a plaquette
that contains a path turn, i.e., those highlighted in red in Fig. Hence,
when such a spiral-shaped Hamiltonian path is embedded in a larger two-
dimensional lattice of size N, the chain deformation moves have a larger

2
success rate, E%:%?’ thus even approaching 100% efficiency in the ther-

modynamic limit.

The efficiency of the LGT moves is not surprising, since the action
of the chain-deformation operator generates chain rearrangements that
resemble those performed in graph-theory-based algorithms for sampling
Hamiltonian paths [171}j172] and state-of-the-art MC schemes for sampling
maximally compact structures [173,(174]. However, our MC algorithm
based on LGT is defined to tolerate small fluctuations in the chain length.
Hence, it generates compact structures that are not always Hamiltonian
paths. To showcase the computational efficiency of our LGT approach
we use our scheme to generate nearly maximally compact configurations
(> 98% site occupancy) of a homopolymer chain in a poor solvent. This
regime is reached by initializing the monomer’s field to n!* = 1 and 1’ =0
everywhere. Then, the MC trial moves are chosen, with equal probability,
to be either chain deformations or end-point displacements. Further, to
simulate homopolymers on a lattice comprising N vertices, we set {5 =
N — 1. The results obtained by setting 8 = 1 and M = 200, see Fig.
show that the MC decorrelation time 7 grows only linearly with the median
chain length ¢.

CHAPTER 4. STATISTICAL MECHANICS OF HETEROPOLYMERS FROM LATTICE GAUGE
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Figure 4.12: By acting with a single deformation operator (corresponding to plaque-
ttes highlighted in gray), it is possible to derive 4 other Hamiltonian paths from the
spiral-shaped configuration depicted in the center.
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Figure 4.13: Number of MC steps needed to generate decorrelated compact struc-
tures (> 98% site occupancy) as a function of the median length ¢ (decorrelation
time 7), for different two-dimensional lattice sides. 7T was estimated as twice the
exponent that leads the decay of the autocorrelation function defined in Eq.
of the SM. On the bottom-right corner we show a compact configuration obtained
for the largest lattice.
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4.7 Discussion and outlook

Starting from the pioneering work of Edwards [142] and DeGennes [143],
field theory methods have been extensively employed in polymer science
[183,/184], with applications ranging from material science |185] to bio-
physics [75/186]. A key limitation of conventional polymer field theory is
that it is very challenging to perform calculations beyond the mean-field
approximation [183] because a sign problem prevents the application of
stochastic methods. While successful heuristic applications of the complex
Langevin equation have been reported |187,/188], a general understanding
of the conditions under which these schemes converge is still lacking. In
contrast, for even values of M our LGT does not suffer from a sign problem,
and can thus be solved by MC. The Z5 gauge symmetry dictates confor-
mational moves that automatically preserve the chain continuity, while
self-avoidance and soft constraints can be implemented via the Metropolis
scheme. Moreover, since the present LGT is natively formulated in terms
of qubits, it sets the stage for developing quantum algorithms for polymer
sampling that can capitalize on the ongoing fast development of quantum
hardware.

The development of LGTs has been mainly driven by the quest for
a non-perturbative solution of quantum chromo-dynamics (QCD). The
present formulation of polymer physics may enable similar theoretical and
computational field-theoretic methods to be applied to gain insight into the
physical origin of the funneled structure of the protein energy landscape.
To implement this program, we must recognize an additional symmetry
acting on the residues’ chemical types, which can be spontaneously broken.
Remarkably, previous theoretical [189] and experimental [190] studies have
shown that the key properties of proteins’ thermodynamics are preserved
by interchanging specific types of amino acids or grouping them into a few
effective families. On the other hand, each protein is defined by a specific
primary sequence, thus providing a different realization.

Important directions to pursue in the future include exploring the im-
plications of this connection, along with assessing the computational effi-
ciency of the LGT MC approach relative to conventional real-space MC,
and designing quantum algorithms to simulate our LGT [191-193], capi-
talizing on recent rapid progress in the field.

4.7. DISCUSSION AND OUTLOOK
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Chapter 5

Optimization of EWs in
LGTs

Entanglement is a feature that only quantum systems exhibit |[194] and
constitutes the foundation of many real-world applications of quantum
computing [584(59,/62,(195/196]. Quantifying the strength of quantum cor-
relations within an entangled system typically requires prior knowledge
of the full wave function or, at the very least, the portion of the wave
function localized on a specific subsystem of interest. Unfortunately, this
piece of knowledge demands in general exponentially many measurement
operations [66,/197], even if the sought of more practical alternatives is an
active field of research [67,/19§].

Nonetheless, the mere presence of entanglement can be witnessed by
specific observables, known as entanglement witnesses (EWs) 6870471,
199|, which are prone to be directly incorporated into experimental pro-
tocols [200,201]. The two core properties of such operators are: (i) they
acquire non-negative expectation values when measured against separable
states and (ii) their measurement potentially leads to negative outcomes.
As a direct consequence, any state featuring a negative expectation value
of an EW — and one such a state certainly exists — is reported to be
entangled (i.e., non-separable).

As mentioned, entanglement characterizes all quantum systems, span-
ning from many-body systems [202] to single-particle systems [203], and
its theoretical and practical implications have been widely studied. For in-
stance, detecting and characterizing entanglement in quantum many-body
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systems is essential for their theoretical understanding [204209] and the
same holds for high-energy systems as well [210}211].

In recent years, an increasing interest in embedding lattice gauge the-
oretical frameworks on quantum devices was prompted not only by the
possibility of simulating high-energy physic and condensed-matter systems
on quantum platforms [212226], but also because LGTs offer a natural
setting for the implementation of quantum error correction and mitigation
techniques [227H233].

However, the study of LGTs from the perspective of quantum informa-
tion theory offers additional challenges, especially regarding entanglement
detection and its measures. This is because the presence of local gauge
symmetries constrains physical states and observables, with direct implica-
tions to the underlying notion of separability [234}236|, which inevitably
impacts the definition of entanglement measures [237-244]. More gen-
erally, also when considering systems exhibiting global symmetries (e.g.,
fermionic systems), it is known that the implicit selection and superse-
lection rules must be taken into consideration when studying entangle-
ment [2454250].

In this chapter, we explore theoretical aspects concerning the definition
of separable states in LGTs. In particular, in Section 5.1} we prove that at
least for Abelian gauge symmetries, separability of physical states can be
determined by testing the factorization of expectation values of operators
such as Th ® TB, where Tg are gauge-invariant operators completely sup-
ported on region R = A B. As a consequence, it is guaranteed that any

entangled state arising in a LGT is detected by at least one gauge-invariant
EW.

In Section we generalize the optimization procedure of EWs [73]
to the special case of gauge-invariant ones and in Section we test the
resulting protocol on a pure U(1) LGT.

5.1 Theoretical formalism

This section introduces the notation and theoretical concerns related to
separability and entanglement witnessing in the context of Abelian LGTs.

CHAPTER 5. OPTIMIZATION OF EWs IN LGTSs
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5.1.1 Terminology and notation

We start by considering a generic Abelian group G acting on degrees of
freedom attached to the edges of a graph G = (E, V'), which consists of
a vertex set, V, and an oriented edge set, E. Further, we associate with
every edge, e, a local Hilbert space denoted by #., so that the total Hilbert
space is the tensor product Hior = ®e€ g He. The representation of the
gauge transformation mediated by the generators g € Qﬂacting on vertex

" - ® i)e( ® ') (5.1)

e=(z,w)eEE e'=(w,x)EE

where g, is the representation of g on H.. Since our group is Abelian, it
is possible to simultaneously diagonalize all generators U¢, enabling the
decomposition of the total Hilbert space as

Hiow = P H(Z) with [0) € H(Z) « UL [Y) =22 |¢),  (5.2)
Z

where H(Z) are eigenspaces identified with eigenvalues Z with respect to
the set of generators. Indeed, to prove that generic states |¢1) € H(Z1)
and [1po) € H(Zy) are orthogonal when Z; # Zs, it is sufficient to con-
sider the quantity <w1|0£g)|w2>, which can be equivalently expressed as
Z{f’g (11]1p2) and as 22(?92 (11]12). Hence, since Zq # Zo, there will be at

least a group element g and a lattice point z where Z\9) ZQ(ZZ, so that
previous considerations directly imply (t1]1h2) = 0, confirming that #(Z)
and H(Z2) are orthogonal spaces. Due to local constraints characterizing
the LGT, physical operators, 07 are not allowed to connect different sectors

as they satisfy
VgeG, VaeV ,[d&ﬂ=®. (5.3)

Let us specialize the discussion to the case where a bipartition of the
initial graph G is introduced. By dividing the edges of G into two disjoint
sets, F; and Fs, two subgraphs of G naturally arise; namely A = (Eq,V})
and B = (E3, V), where V4 and V, denote the sets of vertices associated
with the edges in E; and FE», respectively. The local generators associated
with lattice sites lying at the interface between the two subgraphs, Viys =

1In group theory, the generators of a group G are elements therein that can be
combined to generate any transformation in G.

5.1. THEORETICAL FORMALISM
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Vi N Vs, take the form R X R
Ud = Uix ® Uéx , (5.4)

with U 1%11 being “broken” gauge generators entirely supported on region
R = A,B. Similarly to Eq. , where full generators are used to define
sectors, it is possible to use the broken gauge generators (A]}q%x to define
subsectors Hr(Zr) as

[v) € Hr(Zr) © U, |0) = Z% . V) (5.5)

so that the total Hilbert space takes the form

Mo =B (D Halza) o Hn(m) ). (5.6)

zZ (Za,Zg)

where the (/) in the summation indicates that only subsectors’ labels, Za
and Zp, that are compatible with the sector’s ones, Z, are to be considered.
In fact, Eq. establishes that such compatible labels are bound to
satisfy

VAR Zfi’z Z%ym, Vo € Vipg, VgE€G. (5.7)

Gauge-invariant operators that are fully supported on region R are said to
be locally gauge-invariant and commute with each broken gauge generator
U %’w. Hence, they are not able to connect different subsectors.

5.1.2 Separability in Abelian LGTs

In a more general context than LGTs — particularly when the total Hilbert
space admits a tensor product structure — the definition of separable pure
states can be expressed in two equivalent ways. The first requires every
pure separable state between regions A and B, |¢) € Ha ® Hp, to admit a
rewriting in the form |¢a)®|¢p). The second formulation requires that the
expectation value of any observable taking the form of Ta @ Tg factorize
as (¢|Ta ® Lple) (¢|1a ® Th|0).

Although these two definitions of separability are in principle equiv-
alent, the first becomes ill-defined in LGTs, where pure states, defined
within a sector, belong to a Hilbert space that is not supported by a
tensor product structure, as Eq. confirms. In this context, we are
left with the second definition, which relies on the factorization of suit-
ably chosen operators. Here, there are two viable options; the first is to

CHAPTER 5. OPTIMIZATION OF EWs IN LGTSs
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consider generic operators supported on the two regions, Ty € B(Htot,4)
and Ty € B(Htot,5) and test whether (TA ® ’f’13> factorizes; the second
possibility is to consider locally gauge-invariant operators only, i.e., test
separability using operators such as Opr® OB, with Oy and Og bemg7 re-
spectively, the embeddings of locally gauge-invariant operators of regions
A and B in B(Htot7A> and B(Htot7B)-

A legitimate concern is the relationship between the two possible def-
initions above. In what follows, we will distinguish between generally-
separable and gauge-separable states, which refer to physical states that
satisfy separability criteria involving generic operators and gauge-invariant
operators, respectively.

Trivially, generally-separable states are also gauge-separable, for any
gauge-invariant observable can be intended as a member of B(Hiot,4) ®
B<Ht0t,B)-

It remains for us to explore the possibility that gauge-separable states
might also be generically separable. To investigate this, we start by con-
sidering the specific case in which the gauge-separable state, p, lies entirely
in a subsector labeled by (Za,Zg). In what follows, we prove that p satis-
fies separability criteria based on the factorization of any operator in the
form Th @15, with T € B(Hiot,r) (i-€., p satisfies the general-separability
criteria).

By construction, see Eq. (5.6), the projector on H(Za) ® H(Zgp)
has the tensor product structure #(Z4) ® #(Zp) and as p belongs to
Ha(Zp) ® Hp(Zp), it is invariant under left and right multiplication by
such projector. With these premises, <TA ® TB> p writes

(Th ® Tg), = Tr {TA ® T <fr(zA) QF(Zp) p7r(Za) ® fr(ZB))ﬂ
(5.8)
= T [#(24) Ta #(2) © () T #(2) ]

Although Ta and Ty are generic operators, 7(Z ) Ta #(Z 4) and
#(Zp) Tp #(Zp) are, respectively, gauge-invariant operators entirely lo-
calized on regions A and B. Recalling that p is assumed to be gauge-

5.1. THEORETICAL FORMALISM
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separable, the following holds

(Ta ®Tp), =Tr (#(Za) Ta #(Za) ® g p)x

K . L . (5.9)
Tr (]]-A ® 7T(ZB) TB W(ZB) p) .
Reabsorbing the projectors into p, we are left with
(Ta ®Tg)p, = (Ta ®1p),(1a ® T),, (5.10)

proving that, at least in the special case of a state lying completely in a
subsector, gauge-separability implies general-separability.

To generalize this statement to any gauge-separable pure state, it is suf-
ficient to prove that any such state is bound to lie entirely on a single sub-
sector, where the equivalence of gauge-separability and general-separablity
is a consolidated result.

For instance, Eq. forces any pure state arising in a LGT to lie
within a single sector H(Z). Still, p is allowed to have components in
multiple subsectors that are compatible with #(Z). Indeed, p allows in
general to be decomposed as

— Z Z p(Za,Zp; 2, Z5) where

(ZszB) (ZA’ ]3) (511)
P(Za, Zp; Zy, Zy) = 7a(Za) © 7tn(Zp) p 7ia(Z)) © 75(Z5) -

The (/)s in the summations stress that the subsectors’ labels of regions A
and B must be compatible with the ones associated with the sector H(Z)
and thus they are required to satisfy Eq. (5.7). Since p is assumed to be
gauge-separable, it surely factorizes the expectation value of any projector
7(Xa) ® 7(Xp), so that

Tr (#(Xa) ® #(Xp) p) =

=Tr (#(Xa) ®1pp) x Tr (1 ® fT(XB) p)= (5.12)

fZTr (Xa)@7(YB)p ZTr (Ya) ® 7(Xp) )

By Eq. (5.7)), once the sector, H(Z), and the subsector’s labels of region
A (or B) have been fixed, the labels associated with region B (or A) are
univoquely determined. This also holds in the case where the regions A

CHAPTER 5. OPTIMIZATION OF EWs IN LGTSs
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and B are not complementary to one another. To show this, let us start
by denoting with C the complementary region to A U B. In doing so, we
identify with Vag, Vo, and Vac the lattice sites lying at the interface,
respectively, of regions A and B, B and C, and A and C. This allows us

to extend Eq. (5.7) as
2] =78, 7%, VYre€Vap,Vg€g
728 =2% ,Z¢ ., VreVso,Vgeg (5.13)
ng:Z:Z,wZ(gJ’x, Vr € Vac, Vgeg.

As no local operator supported on regions A or B can address degrees
of freedom belonging to region C, the state whose separability is tested
is indistinguishable from p = Trc piot, Where pyot is the density operator
supported on the whole lattice. As, in this proof, we assumed p to be a
pure state, then surely the labels associated with the subsector localized on
region C are fully fixed. Because of this and of Eq. (5.13), when fixing the
sector, H(Z), and a subsector Ha(Z4) (or Hp(Zp) ' the labels associated
with the subsector defined on B (or A) is univoquely determined.

With the above considerations, the terms #(Y ) ®@#(Xp) and #(Xa ) ®
#(Yg) in Eq. give a non-vanishing contribution only if Yy = Xa
and Yp = Xp, respectively. This leads us to

Tr ((Xa, Xp; Xa, Xp)) = Tr (5(Xa, Xp; Xa, X)), (5.14)

which establishes that any pure gauge-separable state is allowed to have
diagonal components in a single subsector. Still, this requirement is ap-
parently met by any state of the form

p=p(Zna,Zy;Zr,Zp)+

/

+ > <ﬁ(XA, Xg:Ya, Ys) + h.c.) .
(Xa,XB)#(Ya,YB)

(5.15)

Assuming such a state exists, it has to be semidefinite-positive, implying
the existence of an operator, B, featuring p = BBt. The form of p in
Eq. forces B to take components in arbitrary subsectors other than
the one labeled by (Za,Zg), causing also p to have components in every
such subsector. Since we already proved that p has diagonal components

2Which has to be in agreement with Hc(Z¢).

5.1. THEORETICAL FORMALISM
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in only one subsector, we conclude that any off-diagonal term in Eq.
has to be discarded.

This proves that any pure gauge-separable state p, is bound to lie in
a single subsector, where gauge-separability and general-separability have
been already proven to be equivalent.

Although the definitions of separability presented (i.e., general-separability
and gauge-separability) are equivalent from a theoretical standpoint, from
a more practical perspective, the definition relying only on gauge-invariant
observables has the huge advantage of requiring to test much less operators
with respect to the definition employing generic operators.

5.1.3 EW existence theorem

Outside the LGT framework, it is a consolidated result that every entan-
gled state is detected at least by one EW [68,/199]. In what follows, we
extend this result to the specific case of LGTs, where only gauge-invariant
witnesses are to be considered.

Since any gauge-entangled state, peng, is also generically-entangled, we
are provided with at least one observable W e B(H0t) reproducing a neg-
ative expectation value on pent and non-negative values on any separable
state. Until now, we are guaranteed that any entangled state arising in
the framework of LGTs is recognized by an EW, W, that is not a priori
gauge-invariant. In what follows, we illustrate how it is possible to distill
out of W a gauge-invariant operator retaining the same detection capabil-
ities as W when tested on physical states. For the purpose, let us consider
a generic gauge-invariant state p and its sector-wise decomposition

p=>Y pZ) with p(Z)=#(Z)p#(Z) € B(H(Z)), (5.16)

which enables the rewriting of (W), in the form

Tr (Wp) =Tr |W <Zﬁ(Z)ﬁfr(Z)>] =
VA
Tr (Zﬁ(Z)W%(Z)) ﬁ] = (5:17)
Z
T (W )
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Since W was chosen to be an EW able to detect Pent, as a direct conse-
quence of Eq. 7 also W’ is an EW that qualifies pent as being entan-
gled. Moreover, W’ commutes with the generators of the gauge transfor-
mation and thus is gauge-invariant.

With this, we proved in particular that any gauge-invariant entangled
state has a gauge-invariant EW capable of detecting it.

5.2 Construction of EWs in LGTs

To devise an EW that is compatible with the local symmetries that char-
acterize the LGT, we start by considering two sets of local and gauge-
invariant observables, {O A)}z and {O( )},, supported entirely on regions
A and B, respectively. Then, the operator

c=> 0oy (5.18)

is by construction a gauge-invariant observable supported on A UB. As
such, this operator will simultaneously preserve the boundary conditions
of regions A and B, enabling its rewriting as

C= Y C(Za.Zp) with
Za,Zg (5.19)

é(ZA,ZB) = ﬁ'A(ZA) X 7AT']3(ZB) C ﬁ'A(ZA) ®7?(']3(ZB) .

The next step, consists in optimizing (C’(ZA, Zp)) on the set of separable
states residing in each subsector Ha (Z4) @ Hp(Zp), leading to real-valued

extremals wy'™ = and wmm . At this point, the operators

Z Wy, #a(Za) ® 7p(Zp) — C(Za. Zp)
Za,Zy

W= =Y C(Za,Zp) — iy, wa(Za) ® 75(Z5)
Za,Zp

(5.20)

are by construction block semidefinite positive. Before validating these
observables as EWs, it is necessary to make sure they can detect at least
one entangled state. Formally, this corresponds to checking if the observ-
ables W have at least a negative eigenvalue. If they do, they meet all
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theoretical prescriptions to be qualified as EWs. In addition, they are in-
herently gauge-invariant, as they result from a linear combination of two
gauge-invariant operators: the projectors #a(Z4) ® #p(Zp) and C (see
Eq. (5.20)).

Until now, we have outlined a viable protocol to construct gauge-
invariant EWs; in the following section, we focus on the problem of opti-
mizing EWs within LGTs.

5.3 EW optimization algorithm

As a starting point for this section, we review some basic definitions con-
cerning the optimality of EWs. Afterward, we describe the specific con-
cerns for LGTs and the implications that come from the presence of local
constraints. As a concrete example, an explicit analytical result describing
how to optimize a witness in a pure U(1) LGT is provided.

Wy=0 m'y=0

Figure 5.1: Both W and W’ are valid EWs, as the set of separable states lies
completely on one side, respectively, of the hyperplanes (W) =0and (W) =0. As
W' = W AP detects all the entangled states that W does, along with additional
ones, W' it is said to be finer than W. Crucially, to qualify W' as an optimal EW, it
is not sufficient to have a non-empty intersection between the hyperplane associated
with W’ and the set of separable states. On the contrary, W' is optimal if any
possible positive operator, once subtracted from W' results in an operator that no
longer meets the requirements for being an EW.
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5.3.1 Optimality of EWs

Before specializing the discussion to the optimization of EWs within LGTs,
it is conventient to first consider the more general case of EW optimization
[73]. In this broader setting, there is no need to impose gauge invariance on
the EW or its refinements, nor to account for the presence of superselection
sectors.

Given an EW, W we say it is optimal if, for every positive operator P,
the operator W’ = W — P is not an EW [73]. Concretely, this means that
for every positive operator P there is a product state |1sep) satisfying

<¢sep| W |wsep> < <1/)sep| p |¢sep> ; (5.21)

which obstructs any potential refinement to the witness. Conversely, when
this is not the case, we can search for a positive operator P without this
obstruction and use it to construct a finer witness. After all, the positivity
of P ' guarantees that W' = W — P detects all entangled states detected
by W, plus additional ones. Thus, the problem of optimizing an EW
boils down to finding a suitable positive operator to subtract from it. A a
priori strategy is to randomly select P and test if it is possible to remove
a finite fraction of it from the EW. However, as the optimization protocol
proceeds, this approach would be increasingly inefficient, as fewer P can
be employed. To overcome this, as reported in Ref. |73], a convenient
approach to find viable candidate directions for optimization, ]5, consists
in first identifying a set, Py, of separable states, |1)a) ® |1B), satisfying

(s Wihats) = 0. (5.22)

Then, for any choice of P that does not annihilate all states in Py — l.e.,
it exists a state |Ugep) € Pw such that P |Wgep,) # 0 — we will have

(W =Py, = —MP)u., . (5.23)

which, for any A > 0, results in a negative expectation value, concluding
that P can not be adopted to refine W. T hen, the viable choices for P are
to be found among positive operators that annihilate any state belonging to
Pw , thus substantially simplifying the endeavor for potential optimization
directions. Once a suitable direction, f:’, has been singled out, we define

A= max{)\ ER|W — AP is awitness}
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to be the maximum fraction of P that can be removed from W while
preserving W/ = W — AP as a valid EW. By construction, W’ = W — A P
is the finest EW that can be obtained by subtracting the positive operator
P to W. This procedure is iterated until no viable positive operator P can
be subtracted, namely when the EW is optimal.

5.3.2 Optimality of EWs in LGTs

In this section, we detail the case in which the optimization of the EW
has to be consistent with local symmetries. In this case, the optimization
process has to employ gauge-invariant positive operators, P, having the
form

P= Y P(Za,Zp) with
ZaZs (5.24)

P(Za,Zp) = 7a(Za) ® 75(Zp) P 7a(Za) @ 75(ZB) .
An approach to refine W is to consider

> W(Za,Zg) — Az, 2, P(Za, Zs), (5.25)
Za,Zp

where subsector-specific multipliers Az, z, are involved. It becomes ap-
parent that the request of W’ to be a valid EW can be equally expressed
by asking each

W' (Za,Zp) = W(Za,Zp) — Mz,.25 P(Zn,Z5) (5.26)

to be a \[alid EW. The finest refinement of W that can be achieved em-
ploying P, makes use of the multipliers defined by

AZ,Zp = Max {Azsz ER| W(ZA, Zg) — Az, 7y P(ZA, Zp) is a witness}
(5.27)

The optimality criteria for W is satisfied if each of its projections is opti-
mal. Stated differently, W is optimal if there is no subsector Ha(Z4) ®
‘Hp(Z ) where a positive gauge-invariant operator defined therein, If’(Z A, L),
can be further subtracted from W. With this proviso, we approach the
optimization process by focusing sequentially on individual sectors, where
only the relevant projection of the witness is treated.

In the following section, we adopt this approach to optimize an EW
within a pure U(1) LGT.
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E,
(b)
l3
ly by My=6y, ®6, ®6) @6
b M,
/\
\_/
M}
(c)

Figure 5.2: In (a) we graphically represent the basis vectors that span the local
Hilbert spaces attached to edges. Horizontal (vertical) edges, ¢, whose orientation
points upward (rightward) are in the state |1). Otherwise, they are in the |]) state.
In (b) we depict the action of electric field operators, while in (c) is represented the
action of magnetic operators.

5.3.3 Analytical example concerning a pure U(1) LGT

We consider a pure U(1) LGT where electric charges are not involved and
the only degrees of freedom are electric fields defined on the (oriented)
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lattice’s edges, E. For illustration purposes, we model these degrees of
freedom as two-dimensional Hilbert spaces spanned by the basis states
{I1), {)}, whose graphical representation is depicted in Fig,. In par-
ticular, we interpret vertical (horizontal) edges whose orientation points
upward (right) to be in the |1) state, otherwise, they are in the ||) state.
As the U(1) group is entirely generated by a single group element, g, every
rotation is expressed as €'%9, and the generators acting at vertex z are

0 = [ eena T (9w0)". (5.28)
(z,y)€E (y,x)EE

From the elementary properties of the commutator, every operator com-

muting with
(zy)EE (y,z)EE

also commutes with operators defined through Eq. . In the present
framework, the representation of the group element g is given by ¢ =
M1 = [4)(L|. There are two kinds of gauge-invariant operators; these
are (i) electric field operators, E;r=q (whose action is depicted in Fig. ) ,
and (ii) magnetic operators acting on plaquettes, p, Mp = Gy, ®&/2 ®6,, ®
Ue , where ¢; are the edges enclosing p and &y = [{){1| (see Fig. . From
these operators derive two kinds of non-diagonal gauge—mvarlant observ—

ables, namely M”” M + MT and My = zM — zM , where ¢; are the
edges enclosing the plaquette p (the actlon of such observables is depicted
in Fig. [5.3). Gauge-invariant witnesses can be built by linearly combin-

M My
T S
iz v I 2 M
(a) (b)

Figure 5.3: Action of U(1) gauge-invariant observables having non diagonal entries.
(a) If the plaquette p has a defined orientation, M flips it; otherwise the state is
annihilated. (b) /\;l}i applied to a positively (negatively) oriented plaquette gives a
negatively (positively)-oriented plaquette with a 7/2 (=7/2) phase. If Mg is applied
to a plaquette having no orientation, the state is annihilated.
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ing and/or taking tensor products of Eg, /\;lg, and ./\;lg In the application
below, we consider a rectangle R and two disjoint subregions of it, A
and B (see Fig. ; the EW we optimize targets bipartite entanglement
among these subregions. The superselection sector associated with region
R is chosen as in Fig. [5.4D] so that two pairs of compatible superselection
sectors associated with subregions A and B arise (see sketch in Fig. [5.4c)).

W =1+ (M @M, + MY @MY ) +(ME, oM + MY, @MY ) . (5.30)

ay a2 b1 b2

(2)

0 —1/2 +1/2 —1/2 +1/2 0

0 +l2 -1p +lfa -1/ 0
(b)

o Y2 41 -1 tY2 g

Hi
dim(Hy) =4

0 +1/2 -1 +1 ~1/2 0

o Y2 o o T2 o

Hu
diIIl(’Hn) =9

0 +1/2 0 0 71/2 0
(c)

Figure 5.4: Details concerning geometric and boundary conditions choices for our
proof-of-principle application. (@) bipartition of region R into two subregions A
(red) and B (blue). (b) labels identifying the sector we choose for region R. (c)
labels associated with the two possible subsectors, H, and H,, of regions A and B
that compatible with Hg.
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As a first step, we adopt the base elements represented in Figs. and
and we use them to project the EW, respectively, onto H; and Hip,
yielding

Wi=1+2 (‘a(l)b(l) ><a§1)bg)’ + h.c.)

Wir=14+2 (‘a(u) b§”)><a§“) b(H)‘ + h.c.) n (5.31)

2 (‘aén) b(H)><a(H) b(ln)’ + h.c.) .

It is possible to verify that both observables in Eq. (5.31]) take non-negative
expectation values when evaluated on separable states in H 1) and in H ).
To do so, it is sufficient to define the generic separable states

) = (o) 0 7)) = (o5) )
‘\Ilégp> (a ‘a(H)> + o ‘agn)> + ag ’aén)>) ® (5.32)
(517 + o) = 2 o))

and optimize the complex-valued parameters appearing in Eq. to
minimize <\I/£2p|WI|\I/£?p> and <W££Q|WII|\P££2> As, in both cases, the min-
imal expectation value attained by Wi and W(H) is zero, then W satisfies
the first condition to be a valid EW — namely it acquires non-negative
expectation values when measured against separable states.

To confirm W as an effective EW, it is sufficient to consider the pure
states

040 — o0

@
) =
en \/i
5.33
o pdD\ 1 Dy ( )
(H) 2 1
’\Ilent > - \@ )

and the related expectation values (WEQJVAVI\\IJQt
(WO W ey = 1.

ent ent

While W stands as a valid EW, it is not guaranteed to be optimal. In
the following section, we undertake the task of optimizing W by following
the protocol discussed in Section Namely, we apply the refinement

strategy in 73| by addressing individual subsectors.

)y =—1and
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- [T o)+ |ETD)

b)Y = ‘ - >m ) = ‘ ; >

(b)

Figure 5.5: Base of subsector H; = Hi* ® HF. In (a) we report the base of H{* and
in (b) the base of 1.
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‘a(II)>: ‘ X o >
MH/ )
=D - )

!b(H)>: ‘ o X >
M{(}V \Vll(,f)
iy =) - - )

(b)

Figure 5.6: Base of subsector Hy = H{i ® HE. In (a) we report the base of Hj}
and in (b) the base of HJ}.
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Concerning WI, it is possible to verify that the separable states

)= (B o)) o () -

with a € {+1,—1,i}, are such that <¢S)|W1\w£})> = 0 i.e., according to
the definitions in Ref. [73], they belong to the set P‘(/II,). Based on Ref. |73],
candidate positive operators to be subtracted from W(I) must annihilate all

b§”> ) , (5.34)

elements in 77‘(,‘1/) . In other words, as P operators are hermitian, their range
has to be circumscribed to (’PI(/II,))L, which in this case is a 1-dimensional
space spanned by the state |Q1) = %(|a(1)b(1)> + |a§1)bé1)>). This con-
cludes that the only positive operator that can be adopted to refine Wy is

proportional to

PO = 10MWy®]|, (5.35)

Removing this positive operator from WI, we register an increase of the
fraction of detected entangled states from 6.30 4= 0.08 % to values as high
as 12.4 + 0.1 %. These estimates are derived from evaluations performed
on 100 batches, each containing 1,000 pure states randomly drawn from
Hr.

Concerning the optimization of WH, we notice that the states

) =303 ) ) )

o () )= 7))
) =340 i) ) o () el )
%) =340 ol o () -s14))

with a, 8 € {+1,—1,i}, belong to Pi{- and span a 6-dimensional space. It

(5.36)
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is also straightforward to check that the states

11 1 1), (IT 1), (11
o) = (o) - [af ) ).

I\ _ 1 (I1) 3, (IT) (IT) ¢ (11)
Qf > ﬂ(a b >+a1 b > : (5.37)

(N _ 1 (I1) 3 (IT) (IT) 7 (11)
Q3> \/§<a b1>—|—a2b>,

span the orthogonal space to 73 and thus can be employed to optimize
Wir. Removing sequentially the positive operators P{™ = |Q§I)>(le)\,
we estimate the fraction of detected entangled states at each iteration.
The results, shown in Fig. [5.7] indicate an increase in the percentage of
detected entangled states from 0.96 & 0.03 % up to 14.39 + 0.05%. This
result is derived by testing at each refinement iteration 100 batches, each
consisting of 1,000 random pure states, all belonging to Hi.

15

—_
jan)

ot
*

% of detected states

[teration

Fraction of detected entangled states throughout the optimization

Figure 5.7:
The positive operators employed are based on the directions in

process of Wi.

Eq. (37,
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5.4 Numerical implementation and results

In this section, we discuss the details concerning the numerical imple-
mentation of the protocol outlined in Section [5.3.2] Further, we present
additional results obtained by applying this algorithm to the case of the
pure U(1) LGT introduced in Section

5.4.1 Algorithm implementation

In this section, we describe the details concerning the implementation of
the algorithm we employed to derive the results in Sec. The theoret-
ical basis for our algorithm is detailed in Ref. [73]. Here, we discuss how
the most crucial points are implemented.

The tasks that are needed to undertake a single refinement step are:

1. find the set of separable states Py that produce a vanishing expec-
tation value on W,

2. consider positive operators, ]5, that annihilate states in Py, and

3. evaluate the maximum amount of P that can be subtracted from W
without invalidating the resulting EW.

Task 1. This problem traces back to finding the set Py, of states [1)5) ®
lp) such that (Yathp|W]atbp) = 0, which is equivalent to optimiz-
ing the components of 14 (a)) = >°, @y [n), so that the partial operator
Wp(a) = (¥a(a)|W]iha(e)) has at least a vanishing eigenvalue. In prac-
tice, the algorithm optimizes a based on the objective

fle) = Wa(a)] (5.38)

min. eigenvalue *
Since W is an EW, f(a) is inherently a non-negative function that, when
attaining its minima at zero for some parametrization &, defines two states
la(@)) and |[¢p(@)) € Ker(Wg(@)) whose tensor product state belongs
to Pw .

Due to limited machine precision, in our numerical implementation,
we define the states belonging to Py up to a threshold value e = 10714,
Namely, we consider

Piy = {[Ya) @ [¢B) | — €< (an|W|han) < e}. (5.39)
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Task 2. Once the set Pj;, is known, its orthogonal directions — if they
exist — {|o1),|d2), ..., |dm)} can be employed to build a positive opera-
tor, P, that is to be subtracted from W. The most general operator that
can be considered writes

P= Zpk 79N (5.40)
k=1

where py are non-negative values that sum up to 1 and |{2x) are arbitrary
linear combinations of |¢;) states. In our algorithm, P are chosen to be
rank-1 operators achieved by setting all but one p; to 0 and randomly
choosing |Q) to be an arbitrary linear combination of |¢;) states.

Task 3. As a next step, it is necessary to evaluate the maximum A such
that W — A P is a valid EW (i.e., it is block semidefinite positive). In our
application, we implement the scheme summarized in Fig. |5.8

This protocol is a variation of the binary search algorithm that, despite
converging at a slower pace, is more resilient to errors. To clarify the
source of these errors, let us consider the problem of deciding whether
W’ = W—M\P is an EW. This is done by testing if W' acquires non-negative
expectation values on separable states and testing their expectation values
against W’. This can a priori be fully settled by extensively enumerating
all separable states. Clearly, this approach is impractical, so we must resort
to a different strategy. Indeed, we implement an optimization protocol
aiming at finding the parametrization o that minimizes

g(a) = WB(a)’min.eigenvalue’ (541)
with . .
[a(e)) =32, an|n)

Despite this setting is formally identical to the one in Eq. (5.38), here g(cx)
is not guaranteed to be non-negative as, potentially, W’ is not an EW. In
principle, if the optimization technique were to be accurate, its outcome
can be unambiguously employed to accept or reject W’ as an EW. How-
ever, the numerical optimization is not guaranteed to converge to its global
minimum, causing the interpretation of its results to be somewhat uncer-
tain. To mitigate this we implement multiple times (10) the optimization
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procedure set by Eq. and reject W' as an EW by checking if the
attained minimum by g(e) is strictly lower than —ve, where v € [0, 1].
To calibrate 7, we note that two distinct scenarios may arise. When 7y
is too small, the rejection criteria for candidate EWs W’ becomes overly
stringent. As a result, the accepted operators feature a Py set whose
dimensionality does not improve compared to that of Py . Conversely, if
~ is too large, the selection criteria may become too relaxed, leading to
the incorrect classification of W’ as an EW. In our numerical derivations,
we adopted several values for this parameter, ranging from % to %

Until this point, we have discussed the mitigation techniques designed
to assess whether W/ = W —\P satisfies the necessary conditions to qualify
it as an EW. To further allow for some misclassification to take place, we
modify the standard binary search as follows. Starting with a given search
interval for A, [Amin, Amax), having width A = Apax — Amin, We test block
semidefinite positiveness of W/ = W — A* P, where \* = W Based
on the heuristic criteria described above, we accept or discard W’ as a
valid EW. As a consequence, when accepting W’ , the new search interval
is updated to be

!/ !/
[ min» >‘max

roo—= ) A
] with {mm +3 (5.43)

/ —
)‘max - )\max .

On the countrary, when rejecting W', the new search interval is refined as

i = 0,A—2
N M) With { min = X {0, = 5 (5.44)

/ —
)‘max - )\max 1

Importantly, the width of the refined interval equals 34/4, guaranteeing
convergence of the method.
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Figure 5.8: Variant of the binary search algorithm we implemented to find the maximum X for which W — AP is a valid
EW. For each \* tested, we minimize 10 times €>§w_&\ —\* @_ei\:wv. Depending on the optimal values reached by
optimizing Eq. (5.41), the interval's extremes are shifted. Irrespectively of the acceptance/rejection of A*, the width of
the updated interval corresponds to 3/4 of the original one, which guarantees the convergence of our method. Although
this algorithm converges at a slower pace than standard binary-search protocols, it is less sensitive to misclassifications of
W' =W — X\*P as an EW.
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5.4.2 Results

In section the optimization of Wi could be managed by subtracting
a well-defined positive operator with no room for further freedom. The
situation is completely different in the case of WH, which allowed three
directions for optimization, which, differently from what we did in the
previous section, can be a priori linearly combined.

In this section, we explore the possibility of subtracting, at each op-
timization step, a positive operator P that arises from a random linear
combination of the n available optimization directions {|¢1),...,|dn)}.
More specifically, we consider

P with [9) =& o) (5.45)

and uniformly sampled complex components £. The full-optimization pro-
cess, also referred to as optimization trajectory, is repeated 100 times and
results concerning individual optimization trajectories are summarized in
Fig. while Fig. reports the statistics associated with the ensem-
ble of trajectories. These results confirm that our algorithm is capable of
selecting a viable optimization direction as the refinement process takes
place. In addition to this, in all cases, the dimensionality of Pyy,, where
Wi is the entanglement wintess obtained after 3 optimization steps, satis-
fies the spanning propertyﬂ meaning that it is guaranteed to be an optimal
EW [73].

3If the Py set associated with the EW W € B(#) is spanned by dim(#) linearly
independent vectors, then W is said to satifAy the spanning property, which constitutes
a sufficient condition for the optimality of W.
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Figure 5.9: The results shown concern the optimization of the EW defined in
Eq. , within the superselection sector Hy. Further details — including the
lattice dimensionality, the selected region and its boundary conditions, the biparti-
tion used to define bipartite entanglement, and the characterization of the sub-sector
Hy — are provided in Fig. (a) Estimated performance of individual optimization
runs at each iteration step and (b) Histogram showing improvement of detection
probability after multiple optimization rounds. The horizontal (vertical) line in the
upper (lower) panel indicates the fraction of detected states that are accessible be-
fore undertaking the optimization procedure. The estimates reported in this graph
are based on direct evaluation of the expectation value of EWs along the optimiza-
tion trajectory on 10° randomly chosen pure states belonging to ;.
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5.5 Outlook

Despite in the framework of LGTs the structure of the Hilbert space does
not naturally support the common definiton of separable states based on
the existence of a decomposition in terms of a tensor product, it is viable
to characterize separable states resorting to an operational approach based
on the factorization of the expectation value of operators in the form of
OA ® OB In this regard, the operators OA and OB can in principle be
either generic bounded operators supported, respectively, on A and B or be
gauge-invariant. In this work, we proved that at least when Abelian LGTs
are involved, the derived definition of separability remains unaffected by
the choice of operators that are employed to test the separability. Crucially,
in experiments dealing with systems that display Abelian local symmetries,
the separability of a state can be fully accessed by resorting to operators
that can be realized within the LGT. An interesting direction for future
research would be to investigate whether this result also holds for non-
Abelian LGTs.

In addition to this, in the present work, we extended an existing proto-
col to optimize EWs [73] for the case of LGTs, where physically meaningful
operators are required to be gauge-invariant.

To conclude, we tested the optimization procedure in the case of a pure
U(1) LGT, finding that the numerical algorithm we developed is capable of
autonomously selecting an optimization direction and using it to improve
the EW until the optimality criterium is met.

5.5.  OUTLOOK
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Conclusions

The first part of this thesis is devoted to approaching relevant soft-matter
applications either by directly employing quantum solvers, or by connect-
ing the problem under study with a framework that is amenable to quan-
tum simulation.

It should be apparent that, despite this thesis is concerned with “quan-
tum computing”, only a fraction of its content is directly connected with
the use of quantum platforms. Paradoxical as it may seem, this is what
we should be expecting when approaching real-world problems disposing
of quantum computers that have of a limited capability — whether in
terms of the number of qubits, their quality, or gate’s fidelity. Indeed, it
is not currently possible to feed a real-world problem in its full complez-
ity to quantum computers and perform the simulation in its full extent.
One way to overcome this challenge is by integrating the use of quan-
tum technologies with state-of-the-art classical algorithms. In this case,
classical algorithms can assist in reducing the number of variables describ-
ing the real-world problem while preserving relevant physical properties,
minimizing the number of gates required in gate-based quantum simula-
tions, or generating quantum annealing schedules that suppress diabatic
transitions.

Given the remarkable progress in machine learning, deep learning, and
other heuristic techniques in recent years, these algorithms arguably serve
as the most natural complements to quantum computing at its current
stage of technological maturity.

Another critical area of research in quantum computing focuses on
understanding the origins of the quantum advantage that is observed in
various applications. A key feature that has been identified in this context
is entanglement. Although extensively studied, many aspects of entangle-
ment remain open for further exploration. One such aspect is addressed
in the final chapter of this thesis, where we analyze the interplay between
quantum entanglement and lattice gauge theories, in which the degrees of
freedom are subject to constraints.

In conclusion, it is my belief that research in quantum computing has
reached a level of maturity sufficient to fuel innovative solutions to practi-
cal, real-world problems. The current technological limitations have stim-
ulated a broad range of original approaches, which will continue to hold
value even as higher-quality quantum platforms emerge.
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Appendix A

Ancillarization of
polynomial binary
optimization problems

Let us suppose that the integer optimization problem involves an array,
x = {x1,...,x,}, of binary variables taking values 0 or 1 that are subjected
to a set of constraints Ly(x) = 0 (k = 1,...,m). Further, assume that C(x)
is the objective function whose minimization is addressed. The solution to
this binary optimization problem where binary arrays are explicitly subject
to constraints can also be found by minimizing the functional

F(x) =C(x)+ > MLi(x), (A1)
k

where \; are sufficiently large multipliers. Importantly, the binary arrays
entering Eq. are no longer explicitly constrained, as configurations
violating the constraints are associated with a significant increase of the
new cost function F(x). If the expression in Eq. contains only linear
and quadratic terms, namely if it allows a rewriting as

F(x) = ZCia:i—i—ZCijxixj -‘rz Zgi(k)ji‘i‘zgi(jk)xixj ,

i k i
(A.2)
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where Cj, Cj, Ei(k), and Ei(jk) are real parameters featuring both the cost
function and the constraints, then it is a QUBO problem whose solutions
can be encoded in the ground-space of the Ising-like Hamiltonian given by

Hp = ZCiQi—i—ZCijﬁin +Z Z£i(k)cji+Z€i(jk)}(jj ,
i i Ko\ i i

A (=

—0. ) . . . . .
where ¢; = L 5-—, making Eq. 1} an Ising-like Hamiltonian.

Until now, we have considered the specific case where both the objective
function C(x) and the penalties L?(x) contain terms up to second order.
In cases where this condition is not met, the problem set in would
be a polynomial unconstrained binary optimization problem (PUBO). In
this case, a viable approach involves identifying quadratic approximations
of F(x) that share the same minima. As we will see later, this operation
— known in the literature as ancillarization — does not require a priori
knowledge of the minima’s position. However, this comes at the cost of
introducing additional variables, known as ancillary”variables.

We will proceed by degrees of increasing difficulty, and, without loss of
generality, we will start by considering the case of F(3)(x) = z; z5 x3. The
ancillarization consists in introducing an ancillary variable, e.g., a1z, and
imposing that low-energy states satisfy ai;2 = z1 x4. Clearly, we can not
reproduce this by involving the penalty term (a2 — 24 x2)2, as it would
contain a cubic term. To circumvent this, let us consider a function involv-
ing x1, 9, and the ancilla a1 such that (i) has degenerate minima when
a1 = 1z and (ii) contains only linear and quadratic terms. Observing
that f(-) is symmetric with respect to the exchange of 1 and x5, enables
reducing the number of parameters characterizing f(-).

It turns out that the most general expression with these features is

f(z1,22,a12) = axy 2 + Bais (X1 + z2) + ya12, (A.4)

where the parameters simultaneously satisfy

a>0
B < —a (A.5)
v=—a—20.

These conditions trivially imply 8 < 0,y >0, a+v > 0, and 8+ v > 0.
All combinations of binary values and the respective values assumed by

APPENDIX A. ANCILLARIZATION OF POLYNOMIAL BINARY OPTIMIZATION PROBLEMS
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Table A.1: Choosing the parameters defining f(-) as in Eq. (A.5), the quadratic
function yields a vanishing result when its arguments satisfy a12 = x1x2 and a
positive value otherwise.

f() are reported in Table The entries of the first four rows satisfy
a1z = x1 o2 and correspond to vanishing values of f(+), while the remaining
violate the constraint and thus are correctly penalized in energy.

With this intermediate passage, the solutions of the integer optimiza-
tion problems set by

]-'(3)()() =x1a2x3 and ]-'(2)()(, a12) = a12 &3 + Aay, f(21, T2, a12)
(A.6)

provided the multiplier A,,, is large enough, coincide.

To extend this strategy to arbitrary p-order cost functions, F®) =
Z1 ... Tp, we introduce a first ancilla featuring a,—1 , = x,—1 x, effectively
down-grading the initial problem to integer problem to

.F(pil) =21 ... Tp—20p_1p+ >\p—l,p f(l‘p_l, Tp, ap,p_l) R (A?)

which can be understood as a (p — 1)-order function involving (p + 1)
binary variables.

With this, we conclude that a generic p-order cost function can be re-
duced to a quadratic function that involves the p original variables, plus
p—2 ancillary ones. As seen in Section the final step involves embed-
ding the Ising-like Hamiltonian in Eq. (1.14) onto the quantum platform,
which includes mapping logical qubits to physical qubits and setting up
the appropriate local fields and couplings.
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Appendix B

D-Wave superconducting
quantum solver

In this appendix, we discuss technological details concerning the specific
quantum platform we leveraged in tackling the protein design problem in
Chapter

The qubits that constitute the quantum chip provided by D-Wave Inc.
are realized with superconducting rings having Josephson junctions suit-
ably disposed along them. Depending on the disposition of the Josephson
Junctions and the regimes in which they operate, it is possible to distin-
guish different kinds of emergent qubit architectures: charge qubits, phase
qubits, and flux qubits. In the D-Wave platform, a particular implemen-
tation of flux qubits is adopted. That is the Composite Josephson junc-
tion radio frequency superconducting quantum interference device (CCJ
rf-SQUID) [2511252], where the main superconducting loop is interrupted
by a secondary one that has two Josephson junctions on it. The main
advantage of CCJ rf-SQUIDs is that, by regulating the magnetic flux ap-
plied on the loop containing JJs, it is possible to fine-tune the properties of
individual qubits to compensate for fabrication defects. Apart from this
feature, their working principle is not different from regular rf-SQUIDs,
which we briefly illustrate.

To understand the physics that makes rf-SQUIDs effectively a two-level
system, let us consider the behavior of a Josephson junction, a thin layer
of insulating material separating two superconducting channels. When a
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potential V() is applied to the two ends of a Josephson Junction, Cooper
pairs tunnel through it, resulting in an effective current I(¢) flowing from
one superconductor to the other. The equations regulating this process
are given by

oY(t) _ 2e

{](t) = I, sine(t) B.1)

where ¥(t) is the phase difference between the wavefunctions residing on
the two sides of the insulating layer and I. is its critical current. The
energy shift associated with this element is E(¢) = —FEj cos, where E;
is a characteristic parameter of the Josephson junction. Then, by inserting
a Josephson junction in a superconducting loop that is equipped with a
linear inductor L, the total energy reads

B() = Br (¢ —te)® — Ejcos, (B.2)

where ). corresponds to the phase shift induced by an external bias flux

. . 2 .
addressed to the superconducting wire and Ej; = % (Q‘frOL) characterizes

the energy scale associated with the inductance. When Eq. describes
a bistable potential, the two local minima become degenerate at 1, = m.

Moreover, due to the non-harmonicity of Eq. , the associated en-
ergy levels are not equally spaced, making it possible to decouple the two
lowest-lying states from the others, resulting in an effective two-level sys-
tem defining a qubit.

To fix the reference frame, let us consider the situation in which the
energy potential has two degenerate minima and let us define |0) and |1)
the two states localized on individual minima, corresponding to clockwise
and anticlockwise persistent currents flowing in the superconducting loop.
In this situation, the groundstate is the balanced superposition given by
lg) = % (|0) 4+ |1)), which corresponds to the groundstate of the single-

qubit gate —6(*). By tuning away the external magnetic potential from
%, it is possible to raise the energy of one of the two minima, guiding
the ground-state of the system towards |0) or |1). As a matter of fact, the
final state is the ground-state of the single qubit operator of u6(*), where
the sign of p is fully determined by the instantaneous external magnetic

field applied to the qubit.

Until now, no coupling between qubits has been introduced. From a
technological point of view, one possible way of coupling rf-SQUIDS is

APPENDIX B. D-WAVE SUPERCONDUCTING QUANTUM SOLVER
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making superconducting loops of different qubits overlap, enhancing their
inductive interaction. Despite the effectiveness of this method, it does not
provide a switchable and tunable coupling between qubits. To overcome
this limitation, the interaction between adjacent rf-SQUIDS is mediated
by an additional superconducting loop whose activity is regulated by a
dedicated external magnetic field |253}[254].

Overall, the magnetic fields regulating individual qubits and their cou-
plings define a transverse-field Ising Hamiltonian taking the form

leatform - — Z (05 a_l(l‘) + Z Bi &EZ) + Z ’Yij OA_I(Z) a-j(Z) . (BS)
i i (i,j)eg

Importantly, this platform can not reproduce arbitrary Hamiltonians and
thus can not be used for universal quantum computation. We also stress
that the couplings 7;; can be established only between topologically close
qubits, as direct inductive phenomena mediate their interaction. To ex-
plicit this, we will refer to G = (Q,C) as the non-directed graph rep-
resenting the device, where @ = {¢}; is the set of physical qubits and
C = {(gi, ¢j) }i,; are the available connections among them [255-257].
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