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We describe the procedures that were developed to verify the consistency and combine the
multiple measurements of the muon spin precession frequency by the Muon 𝑔−2 collaboration for
the muon magnetic anomaly measurement reported in 2023. To properly verify the consistency of
different analyses up to order of 30 ppb, correlations have been modeled and estimated, exploiting
bootstrap techniques. A combination procedure has been designed to combine highly correlated
measurements to obtain a robust final result with a conservative sub-ppm uncertainty.
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1. Introduction

The recent muon magnetic anomaly measurement by the Muon 𝑔−2 collaboration [1] relies
on sub-ppm measurements of the muon spin precession frequency 𝜔𝑎 in a magnetic field, which
has been performed on three datasets collected in 2019 and 2020 (Run-2, Run-3a, Run-3b). On
each dataset, 7 independent analysis groups completed a total of 19 measurements, using different
methods and fit models. Within each dataset, the averaging of the 𝜔𝑎 measurements must be
performed by taking into account that they are highly correlated, and that the amount of correlation
is only known with limited precision, especially when it involves systematic uncertainties. In the
following, we describe the procedures that have been designed and used.

2. Consistency checks and averaging with two measurements

It is well known [2] that when averaging two measurements 𝐴 and 𝐵with uncertainties𝜎𝐴 < 𝜎𝐵

with the minimum 𝜒2 method (identical to the Best Linear Unbiased Estimator (BLUE) method),
the weight of the less precise measurements (labelled 𝐵) is:

𝑤𝐵 =
𝜎2
𝐴
(1 − 𝜌(𝜎𝐵/𝜎𝐴))

𝜎2
𝐴
− 2𝜌𝜎𝐴𝜎𝐵 + 𝜎2

𝑏

, (1)

which is positive when the correlation 𝜌 < 𝜎𝐴/𝜎𝐵, zero for 𝜌 = 𝜎𝐴/𝜎𝐵 (referred to as “critical”
correlation hereafter), and negative for 𝜌 > 𝜎𝐴/𝜎𝐵. When two measurements performed on the
same data differ only for their statistical precision, 𝜌 < 𝜎𝐴/𝜎𝐵 and the optimal average weights
are both 𝑤𝑖 ≥ 0, as discussed for a specific example in section 7.6.2 of Ref. [2]. The less precise
measurement 𝐵 contributes to the precision of the optimal average, and even in the limit case of
𝜌 = 𝜎𝐴/𝜎𝐵 and 𝑤𝐵 = 0 its consistency with the more precise measurement is useful to check on
procedural errors and systematic uncertainties. The pull between two measurements defined as

𝑝𝐴𝐵 =
𝑣𝐵 − 𝑣𝐴

𝜎𝐵−𝐴

, (2)

and corresponds to the difference or residual between the two measurements values 𝑣𝐴 and 𝑣𝐵

divided by its uncertainty 𝜎𝐵−𝐴. Assuming Gaussian uncertainties, 𝑝𝐴𝐵 is expected to be Normally
distributed. The residual uncertainty is 𝜎2

𝐵−𝐴
= 𝜎2

𝐴
− 2𝜌𝜎𝐴𝜎𝐵 + 𝜎2

𝐵
and, for critically correlated

measurements, 𝜎2
𝐵−𝐴

= 𝜎2
𝐵
− 𝜎2

𝐴
.

3. Correlations between 𝝎𝒂 measurements

The statistical uncertainties of the 19 𝜔𝑎 measurements reported in Table 1 are determined by
the respective analysis method categories, labelled A (asymmetry), T (threshold) and Q (charge).
To a first but good approximation, the A measurements are known to be statistically optimal [3],
and it is expected and observed that 𝜎𝐴 < 𝜎𝑇 < 𝜎𝑄, with A and T critically correlated. Since the
Q method analyses differ in several respects from the A and T ones, the expected correlation cannot
be reliably estimated and we have assumed that they are also critically correlated to both the A and
T measurements, i.e., 𝜌𝑄𝑋 = 𝜎𝑋/𝜎𝑄, with 𝑋 = 𝐴,𝑇 . When performing consistency checks, this
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Table 1: Run-2, Run-3a and Run-3b dataset 𝜔𝑎 measurements’ values and statistical uncertainties, expressed
as ppm deviations from a reference 𝜔𝑎 value. The “Group”, “Method category”, “Ratio”, “Reco” columns
report measurements’ properties that are discussed in the text.

Group Method Ratio Reco Run-2 Run-3a Run-3b
category [ppm] [ppm] [ppm]

Gr1 T Ra1 Re1 -99.147(382) -98.726(329) -97.304(528)
Gr2 T Ra1 Re4 -99.047(378) -98.581(325) -97.145(522)
Gr3 T Ra1 Re3 -99.198(377) -98.690(323) -97.267(520)
Gr4 T Ra1 Re4 -99.029(378) -98.603(325) -97.191(513)
Gr5 T Ra1 Re2 -99.112(377) -98.682(320) -97.298(520)
Gr6 T Ra1 Re1 -99.171(376) -98.700(323) -97.274(519)
Gr1 A Ra1 Re1 -99.199(344) -98.430(295) -97.438(476)
Gr2 A Ra1 Re4 -99.157(340) -98.397(293) -97.316(470)
Gr3 A Ra1 Re3 -99.253(337) -98.416(291) -97.422(468)
Gr4 A Ra1 Re4 -99.134(340) -98.416(291) -97.337(466)
Gr5 A Ra1 Re2 -99.197(339) -98.355(290) -97.453(468)
Gr6 A Ra1 Re1 -99.232(338) -98.408(290) -97.407(467)
Gr1 T Ra3 Re1 -99.160(383) -98.710(329) -97.244(529)
Gr3 T Ra2 Re3 -99.189(383) -98.693(334) -97.279(533)
Gr4 T Ra2 Re4 -99.006(384) -98.549(324) -97.158(513)
Gr1 A Ra3 Re1 -99.180(345) -98.432(297) -97.372(477)
Gr3 A Ra2 Re3 -99.222(345) -98.458(301) -97.402(480)
Gr7 Q Ra1 Re5 -99.191(543) -98.555(414) -96.875(663)
Gr7 Q Ra2 Re5 -99.300(491) -98.638(386) -97.239(616)

is a conservative choice, because if the actual correlation is smaller, the residual uncertainty would
be larger and the pull would be smaller. Actual correlations larger than the critical threshold are
not expected for measurements performed on the same data and differing only for their statistical
precision, as already mentioned in Section 2. Analyses differ for a series of features in addition to
the method category. Two features, reported on Table 1 are relevant for estimating the correlations:
the use of the “Ratio” method, which has three options reported in the table column “Ratio”, and
the reconstruction of the energy deposited in the calorimeter by a muon-decay positron, which has
5 options reported on the table column “Reco”. Further details on the above-mentioned analysis
features are not relevant for this document and are reported elsewhere [4]. The 𝜔𝑎 measurements
uncertainty is primarily determined by the method category A, T and Q, and analyses that only
differ by one or both “Ratio” or “Reco” features have approximately the same total uncertainty, in
comparison. We model the covariance between two measurements 𝐴 and 𝐵 as:

𝑉𝐴𝐵 =
©­«

𝜎2
𝐴

𝜎2
𝐴
+𝜎2

𝐵

2 − |𝜎2
𝐵
−𝜎2

𝐴 |
2 −

(∑
𝑖 𝜎

2
𝑟 ,𝑖

)
· 𝜎2

𝐴
+𝜎2

𝐵

2
𝜎2

𝐴
+𝜎2

𝐵

2 − |𝜎2
𝐵
−𝜎2

𝐴 |
2 −

(∑
𝑖 𝜎

2
𝑟 ,𝑖

)
· 𝜎2

𝐴
+𝜎2

𝐵

2 𝜎2
𝐵

ª®¬ , (3)

where the dimensionless relative uncorrelated uncertainty 𝜎𝑟 ,𝑖 corresponds to the fraction of the
total uncertainty that is uncorrelated between two measurements that differ by one feature. The
subscript 𝑖 denotes an analysis feature difference, for instance one analysis using reconstruction Re1
and the other one using Re4. The first two terms of the off-diagonal terms correspond to the square
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Table 2: Relative uncorrelated uncertainties 𝜎𝑟 ,𝑖 for a subset of 𝜔𝑎 analysis feature differences, for either A
or T method category measurements. The relative precision of the reported numbers is estimated to be order
10% relative, and the amount of reported digits has been chosen for presentation convenience.

method category A

Reco Re1 Re2 Re3

Re2 0.03788
Re3 0.03157 0.02020
Re4 0.08334 0.07450 0.07955

method category T

Reco Re1 Re2 Re3

Re2 0.03632
Re3 0.02951 0.02270
Re4 0.18728 0.18047 0.18160

method category A

Ratio Ra1 Ra2

Ra2 0.07730
Ra3 0.09289 0.07606

method category T

Ratio Ra1 Ra2

Ra2 0.06421
Ra3 0.08393 0.07266

of the smaller of the two uncertainties, and when the third term is not present it corresponds to a
critical correlation. With this covariance, the uncertainty on the residual between two measurements
with 𝜎𝐵 > 𝜎𝐴 is:

𝜎2
𝐵−𝐴 = 𝜎2

𝐵 − 𝜎2
𝐴 +

(∑︁
𝑖

𝜎2
𝑟 ,𝑖

)
·
(
𝜎2
𝐴 + 𝜎2

𝐵

)
. (4)

The model assumes that the amount of uncorrelated uncertainty component related to the flavour of
“Reco” method is independent of the uncorrelated uncertainty component related to the flavour of
“Ratio” method. Table 2 reports measurements of a subset of the relative uncorrelated uncertainties
𝜎2
𝑟 ,𝑖

for 𝜔𝑎 measurements that differ by a single feature. The relative uncorrelated uncertainties
have been obtained by measuring the spread of the residual of 𝜔𝑎 measurements with analyses
with one feature difference on ∼200 bootstrap [5] samples, assembled by randomly extracting >200
subsamples of our datasets, with replacement. The measured spreads with real data bootstrap
samples confirm previous studies for the “Ratio” feature differences, performed with simplified
simulated toy Monte Carlo samples. They also confirm on real data that the measurements using
the A and T method categories are consistent with being critically correlated. Finally, they are
consistent with the model hypothesis that the amount of uncorrelated uncertainty for a feature
difference is a constant fraction of the total uncertainty.

4. Consistency of the 𝝎𝒂 measurements

We use the modeled covariance to obtain pulls for all 𝜔𝑎 measurements using the same dataset,
for all the datasets used for the muon 𝑔−2 measurement published in 2023. When dedicated
studies for relative uncorrelated uncertainties are missing for a feature difference, we assume that
the information for the A method category can be used for the Q method category measurements,
and that when considering analyses with differing method categories one can use the geometric
average of the measured relative uncorrelated uncertainties. The resulting correlation of the 𝜔𝑎
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Table 3: Statistical correlation of the 𝜔𝑎 measurements. Each row and column identify a measurement
analysis group, followed by the method category prepended with “R” for measurements using the “Ratio”
technique, in order to distinguish measurements made by the same group, with the same method category,
and with or without the “Ratio” technique. More details on each measurement features are reported in
Table 1. The amount of reported digits has been set for the convenience of the presentation and does not
imply a corresponding precision of the reported numbers.

Gr2-T Gr3-T Gr4-T Gr5-T Gr6-T Gr1-A Gr2-A Gr3-A Gr4-A Gr5-A Gr6-A Gr1-RT Gr3-RT Gr4-RT Gr1-RA Gr3-RA Gr7-Q Gr7-RQ

Gr1-T 0.967 0.999 0.967 0.999 1.000 0.900 0.871 0.884 0.867 0.884 0.884 0.993 0.995 0.963 0.895 0.904 0.765 0.824
Gr2-T 0.967 1.000 0.965 0.967 0.891 0.900 0.875 0.896 0.874 0.875 0.961 0.963 0.996 0.887 0.895 0.756 0.815
Gr3-T 0.967 0.999 0.999 0.913 0.885 0.898 0.880 0.898 0.897 0.993 0.996 0.963 0.909 0.918 0.753 0.811
Gr4-T 0.965 0.967 0.897 0.906 0.881 0.902 0.880 0.880 0.961 0.963 0.996 0.892 0.901 0.751 0.809
Gr5-T 0.999 0.915 0.886 0.900 0.882 0.902 0.899 0.992 0.995 0.961 0.911 0.920 0.751 0.809
Gr6-T 0.915 0.887 0.899 0.882 0.899 0.899 0.993 0.995 0.963 0.911 0.919 0.752 0.810
Gr1-A 0.994 1.000 0.994 0.999 1.000 0.890 0.886 0.887 0.991 0.994 0.688 0.740
Gr2-A 0.994 1.000 0.993 0.994 0.862 0.857 0.896 0.986 0.988 0.681 0.732
Gr3-A 0.994 0.999 1.000 0.875 0.871 0.871 0.991 0.994 0.676 0.727
Gr4-A 0.993 0.994 0.858 0.853 0.892 0.986 0.988 0.678 0.729
Gr5-A 0.999 0.875 0.871 0.870 0.990 0.993 0.677 0.728
Gr6-A 0.875 0.870 0.871 0.991 0.994 0.676 0.727
Gr1-RT 0.994 0.962 0.902 0.907 0.758 0.825
Gr3-RT 0.967 0.895 0.901 0.767 0.837
Gr4-RT 0.895 0.901 0.750 0.819
Gr1-RA 0.994 0.682 0.743
Gr3-RA 0.689 0.754
Gr7-Q 0.994

Entries    513

RMS       1.04
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Figure 1: Residual pulls for 𝜔𝑎 measurements on the Run-2, Run-3a and Run-3b datasets.

measurements is reported in Table 3. In order to compare also measurements that only differ
by additional minor analysis features other than the “Ratio” and “Reco” features, the residual
uncertainty has been increased in quadrature by an additional estimated systematic uncertainty of
28 ppb. Figure 1 reports the observed pulls, which are consistent with being Normally distributed.
There is one single outlier with |pull| > 3 , correspondig to the pull between two “Ratio” features of
Q method category measurements on one dataset. That is considered acceptable, since there have
been no studies for this feature difference in Q method category measurements, and its corresponding
relative uncorrelated uncertainty has been estimated to be the same as the one measured for the
A measurements. Furthermore, as detailed in the next section, the Q (and T) method category
measurements are not used to compute the per-dataset 𝜔𝑎 averages.
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5. Averaging of the 𝝎𝒂 measurements

Although the estimated covariance for the 𝜔𝑎 measurements might be used to compute the
optimal average of all 𝜔𝑎 measurements on each dataset, the resulting average of these highly
correlated measurements would be very sensitive to the uncertainties on the measured correlations,
as mentioned in Section 7.6.2 of Ref. [2]. The per-dataset 𝜔𝑎 averages are therefore obtained by
evenly averaging one representative measurement performed by each of the 6 analysis groups that
performed the most precise A-method-category measurements. This choice is expected to minimize
the total systematic uncertainty of the measurement. The uncertainty on this average is computed
by using a conservative covariance corresponding to 100% correlation between the 6 averaged
measurements. Using the estimated covariance for the 𝜔𝑎 measurements we are able to estimate
that the statistical uncertainty of the even average with the conservative covariance is only about
1.5% larger than the optimal statistical uncertainty.
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