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1 Introduction

Integrability of N = 4 SYM paves the way for finite coupling description of many of its

observables. A paradigmatic example is the planar anomalous dimension of single-trace

operators (see [1] for the most efficient approach to the spectrum). Over the last few

years there have been finite coupling proposals for other observables, such as polygonal

Wilson-loops [2], three-point functions [3] and more recently n-point functions [4, 5].

It was crutial, for all these examples, to compare the results of the integrability pro-

posals with more conventional perturbative computations. For example, the integrability

proposal for the spectrum problem had to be corrected to account for the mismatch between

integrability computation and the perturbative one [6–8]. More recently, the integrabil-

ity proposal for three-point functions (from here on called hexagon approach) has been

checked by several weak coupling perturbative computations [9–14]. The four-loop check

was especially important as it confirmed the resolution of the double pole singularity that

showed up for the first time at the four loop level in the hexagon approach.

The goal of this paper is to extend the perturbative computation of the OPE coefficient

of two 20’ operators and the Konishi to five loops. From the integrability point of view,

the motivation to go ahead with such computation is to check if the regularization of the

double pole singularity continues to hold without any change at the five loop level [15].

A five-loop computation using the more standard approach involving Feynman inte-

grals seems to be a daunting task. The easiest way to extract the OPE coefficient is to

consider a four-point function where all external operators are the chiral primaries in the

20’. As these are in the same multiplet of the stress-energy tensor, it is possible to obtain

the correlator to very high loop order [16, 17]. In order to obtain the structure constant,
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it then suffices to consider the OPE decomposition in the coincidence limit. Since this

four-point function is only known at the integrand level, one has to use the method of

asymptotic expansions in order to take the OPE limit. At this point, the OPE coefficient

is expressed in terms of many Feynman integrals with two external legs (also known as

propagator integrals or p-integrals). By using integration by parts identities (IBPs), these

integrals can be rewritten in terms of a small set of simpler integrals. However, at five loops

this step turns out to be a bottleneck even using standard IBP codes such as LiteRed [18]

and FIRE [19]. At last, one has to find the expansions of the master integrals, which are

not known at five loops. We developed an efficient method of obtaining such expansions,

whose detailed explanation we defer to a separate publication [20].

Thus, the plan of the paper will be to introduce, in section two, the four-point function

of 20’ operators at five loop level and to explain how the method of asymptotic expansions

works for this case. Then we will explain the details of using IBP relations to express every

integral in terms of master integrals. After that, we will sketch the main idea of how the

master integrals can be computed. This will be only a sketch since we will prepare a second

paper just with the computation of these integrals since the master integrals are interesting

for other computations in any perturbative QFT. Then we group the main ingredients and

present the result for the OPE coefficient. There is one appendix with more details on the

use IBPs since this turned out to be a non-trivial task at the five loop order as well as

some comments on finding a basis of master integrals with uniform transcendentality at

each order in ε.

2 Four-point function and OPE limit

A direct computation of the OPE coefficient is extremely complicated. One would have to

determine not only the three-point function

〈O1(x1)O2(x2)O3(x3)〉 =
c123

(x2
12)∆1+∆2−∆3(x2

13)∆1+∆3−∆2(x2
23)∆2+∆3−∆1

, (2.1)

but also all two-point functions 〈OiOi〉 so that the operators in (2.1) are normalized.

An alternative approach has been used in the past, and it takes advantage of the fact

that the integrand of the four-point function of protected operators is known at very high

loop order [16]. The contribution of each OPE channel in the correlator can be singled out

by considering its OPE limit, which can be obtained by taking x12 to 0.

The main object of our study is then the four-point function of O20′ operators. These

operators transform in a symmetric traceless representation, so it is useful to introduce a

null polarization vector y and denote the operators by O(x, y) = yI yJ tr(φIφJ), where

tracelessness is guaranteed by the condition y2 = 0. Since they belong to the multiplet of

the stress-energy tensor and Lagrangian density L, the loop corrections to the correlator

can be shown to take a factorized form

〈O20′O20′O20′O20′〉 = F (0)(xi, yi) +
2(N2

c − 1)

(4π2)4
R(xi, yi)

∞∑
n=1

λn F (n)(xi) , (2.2)
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where λ is the ’t Hooft coupling λ = g2Nc/(4π
2), and all dependence in the SO(6) polar-

ization vectors yi is contained in the prefactor

R(xi, yi) =
y4

12y
4
34

x2
12x

2
34

+
y4

13y
4
24

x2
13x

2
24

+
y4

14y
4
23

x2
14x

2
23

+
y2

12y
2
23y

2
34y

2
41

x2
12x

2
23x

2
34x

2
41

(
x2

13x
2
24 − x2

12x
2
34 − x2

14x
2
23

)
+
y2

12y
2
24y

2
43y

2
31

x2
12x

2
24x

2
43x

2
31

(
x2

14x
2
23 − x2

12x
2
34 − x2

13x
2
24

)
+
y2

13y
2
32y

2
24y

2
41

x2
13x

2
32x

2
24x

2
41

(
x2

12x
2
34 − x2

13x
2
24 − x2

14x
2
23

)
. (2.3)

The tree-level contribution F (0)(xi, yi) will not play any role in what follows, so we refer

the reader to [21] for its definition. The functions F (n)(xi) contain the loop corrections to

the four-point function and are defined as

F (n) =
x2

12x
2
13x

2
14x

2
23x

2
24x

2
34

n!(−4π2)n

∫
ddx5 . . . d

dx4+n
P (n)(xi)∏

1≤i<j≤4+n x
2
ij

, (2.4)

where P (n)(xi) is a homogeneous polynomial in x2
ij which is symmetric under S4+n permu-

tations and has uniform weight −(n−1) at each point. These properties of P (n) follow from

the singularity structure of the four-point function and from the fact that the Lagrangian

density sits on the same supermultiplet of the external operator O20′ . The planar part of

these polynomials is given up to five loops by [16]

P (1) = 1, P (2) =
1

48
x2

12x
2
34x

2
56+S6 perm , P (3) =

1

20
(x2

12)2x2
34x

2
45x

2
56x

2
67x

2
73+S7 perm ,

P (4) =
1

24
x2

12x
2
13x

2
16x

2
23x

2
25x

2
34x

2
45x

2
46x

2
56x

6
78+

1

8
x2

12x
2
13x

2
16x

2
24x

2
27x

2
34x

2
38x

2
45x

4
56x

4
78

− 1

16
x2

12x
2
15x

2
18x

2
23x

2
26x

2
34x

2
37x

2
45x

2
48x

2
56x

2
67x

2
78+S8 perm ,

P (5) =−1

2
x2

13x
2
16x

2
18x

2
19x

4
24x

2
26x

2
29x

2
37x

2
38x

2
39x

2
47x

2
48x

2
56x

2
57x

2
58x

2
59x

2
67

+
1

4
x2

13x
2
16x

2
18x

2
19x

4
24x

2
26x

2
29x

4
37x

2
39x

4
48x

2
56x

2
57x

2
58x

2
59x

2
67

+
1

4
x4

13x
2
17x

2
19x

2
24x

2
26x

2
27x

2
29x

2
36x

2
39x

6
48x

2
56x

2
57x

2
58x

2
59x

2
67

+
1

6
x2

13x
2
16x

4
19x

4
24x

2
28x

2
29x

4
37x

2
38x

2
46x

2
47x

2
56x

2
57x

2
58x

2
59x

2
68

− 1

8
x4

13x
2
16x

2
18x

4
24x

2
28x

2
29x

2
37x

2
39x

2
46x

2
47x

2
56x

2
57x

2
58x

2
59x

2
69x

2
78

+
1

28
x2

13x
2
17x

2
18x

2
19x

8
24x

2
36x

2
38x

2
39x

2
56x

2
57x

2
58x

2
59x

2
67x

2
69x

2
78

+
1

12
x2

13x
2
16x

2
17x

2
19x

2
26x

2
27x

2
28x

2
29x

2
35x

2
38x

2
39x

2
45x

2
46x

2
47x

2
49x

2
57x

2
58x

2
68+S9 perm . (2.5)

By construction, the integrand of the four-point function has weight 4 in all integration

variables, so each term in the polynomials (2.5) leads to a conformal integral. They are

both UV and IR finite and due to their conformal nature they can only depend non-trivially
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on the two cross ratios

u = zz̄ =
x2

12x
2
34

x2
13x

2
24

, v = (1− z)(1− z̄) =
x2

14x
2
23

x2
13x

2
24

, (2.6)

where we define the complex variables z and z̄ for later use. One should note that permuta-

tions inside S4×Sn have a simple action on the cross ratios, while the permutations in the

quotient group S4+n/(S4 × Sn) can in principle produce inequivalent conformal integrals.

2.1 Asymptotic expansions

At the end of the day, the five-loop four-point function depends on 200 genuine five-loop

conformal integrals. However, this number can be reduced to 141 independent integrals

by using magic identities [22]. The idea is that any subintegral of a conformal integral is

conformal itself, and the cross ratios defined by its external points are invariant under the

permutations (12)(34), (13)(24) and (14)(23) of S4. By performing such permutations at

the level of the subintegral, one can find equivalences between conformal integrals that a

priori look distinct. For example, they can be used to identify 14 integrals to be given by

the five-loop ladder integral, which is known exactly [23]

φ(5) (z, z̄) = −
5∑
i=0

(10− i)!
5! i! (5− i)!

logi (zz̄)

z − z̄
(Li10−i (z)− Li10−i (z̄)) . (2.7)

We can use conformal symmetry to send x4 to infinity, so that all conformal integrals

appearing in the four-point function depend only on three external points. These integrals

are not known, but all we need is their behaviour in the OPE limit x12 � x13, which can

be obtained with the method of asymptotic expansions. In this way we can identify the

leading order of the conformal integrals with combinations of simpler two-point integrals,

i.e. p-integrals.

The main idea of the method is to consider regions where each integration variable is

either of the order of x2 or of the order of x3 (we set x1 to zero for simplicity). In practice,

at five loops we have to consider 25 regions, where for each the integrand can be simplified

in a different manner depending on the scale of each integration variable. For example, in

the region where all integration variables obey x2
i � x2

2 we have

1

x2
2i

=
∞∑
n=0

(2x2 · xi − x2
2)n

(x2
i )

1+n
. (2.8)

Analogously, any propagator which includes two points of different scales will be decom-

posed in a similar manner, so that denominators depend solely on variables of a given

region. In this way the two regions can only mix through numerators, where the variables

of one appear as external vectors in the integrand of the other. As we perform tensor

decomposition and write everything in terms of scalar integrals, the three-point integral is

effectively decomposed into a sum of products of two-point integrals.

However this expansion has a finite radius of convergence which is set by the ball

x2
2 < x2

i . By extending the integration regions to the whole space we make the integrals

strictly divergent which we resolve by introducing dimensional regularization.

– 4 –
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Let us note that the divergences cancel once we add all regions that contribute at a

given order in the cross ratios. This has been verified both at three and four loops, at five

loops we checked it for the ladder diagram and for conformal integrals whose asymptotic

expansions lead only to lower loop p-integrals.

At this point the conformal integrals are expressed in terms of propagator-type inte-

grals, which are given in their most generic form by∫
ddx5ddx6ddx7ddx8ddx9

(x2
15)a1(x2

16)a2(x2
17)a3(x2

18)a4(x2
19)a5(x2

25)a6(x2
26)a7(x2

27)a8(x2
28)a9(x2

29)a10(x2
56)a11(x2

57)a12
×

× 1

(x2
58)a13(x2

59)a14(x2
67)a15(x2

68)a16(x2
69)a17(x2

78)a18(x2
79)a19(x2

89)a20
, (2.9)

with all exponents ai integer. A simple dimensional analysis is sufficient to show that only

the first term in the sums coming from (2.8) contributes at the leading order in u and

(1− v) [12].

3 Evaluating propagator-type integrals

In general one would use magic identities to reduce the number of integrals needed and

also to choose the simplest possible form of the conformal integral. However, at five loops,

it will be crucial to consider as many conformal integrals as possible, so we systematically

used magic identities to create many equivalent integrals. After asymptotic expansions,

those integrals are expressed in terms of 1721 five-loop p-integrals, and also some lower-

loop ones. The integrals obtained are not all independent, as one can use Integration By

Parts (IBP) identities to find relations between them and reduce to a small set of simpler

master integrals. Such reductions can be performed with a combination of the public codes

LiteRed [18] and FIRE [19], but this can sometimes be a non-trivial task. For instance,

some of the reductions took more than 256 GB of RAM and so we were forced to ignore

conformal integrals in which those p-integrals appeared.

3.1 Master integrals

After the IBPs step all conformal integrals are expressed in terms of master p-integrals.

The last step is to obtain the expansions for these integrals, which is a new complication

compared to the lower-loop case, where all masters were known.

The evaluation of master integrals is useful on its own since its applicability goes way

outside the computation of OPE coefficients in N = 4 SYM. We will just sketch here the

main ideas that we have used, deferring to a second publication a complete analysis of all

master integrals at five loop level that were involved here [20].

In order to obtain expansions for the master integrals, it is important to stress the dif-

ferences between the original conformal integrals and the p-integrals obtained after asymp-

totic expansions. While the conformal integrals are UV and IR finite, and can only depend

on the cross ratios u and v, the propagator-type integrals are divergent and depend on the

spurious scale x13. The fact that both the divergence and the spurious scale cancel out

– 5 –
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upon summation of all regions in the asymptotic expansion introduces very strong con-

straints on the expansions of the master integrals. In order to make this clearer, let us give

a simple five-loop example. One of the conformal integrals obtained from the polynomial

in (2.5) is given by

C1 =

∫
d4x5 . . . d

4x9 x4
13x

6
24x

2
35

x2
15x

2
16x

2
26x

2
27x

2
29x

2
34x

2
36x

2
37x

2
45x

2
48x

2
56x

2
58x

2
59x

2
78x

2
79x

2
89

. (3.1)

It turns out that in the OPE limit the only region that contributes at leading order in u is

the one where all integration variables are close to the points x1 and x2

C1||x12|�|x13| ∼ x
2
13

∫
d4x5 . . . d

4x9

x2
15x

2
16x

2
26x

2
27x

2
29x

2
56x

2
58x

2
59x

2
78x

2
79x

2
89

∼ u−11+ 5d
2 (x2

13)−10+ 5d
2 P (5)(d) . (3.2)

In this way, the expansion of the conformal integral is given by a single five-loop p-integral,

whose expansion is not known. At this point one would reduce it to master integrals, but

that is not necessary for this particular example. The propagator-type integral diverges at

most as ε−5, so its expansion is in general given as

P (5)(d = 4− 2ε) =
c1

ε5
+
c2

ε4
+
c3

ε3
+
c4

ε2
+
c5

ε
+ c6 +O(ε) . (3.3)

If we use this to expand (3.2), we obtain an expression with poles in ε and powers of

log(x2
13). For the OPE limit of the conformal integral (3.1) to be finite, the coefficients in

the expansion of the propagator-type integral must obey

c1 = c2 = c3 = c4 = c5 = 0 . (3.4)

At this point the coincidence limit of the conformal integral depends only on the finite part

of P (5), which can be fixed by using the so called magic identities [22]. The three-loop

sub-integral of (3.1) formed by the integration points x7, x8 and x9 is itself a four-point

conformal integral

1

x2
27x

2
29x

2
37x

2
48x

2
58x

2
59x

2
78x

2
79x

2
89

=
1

x4
25x

2
34

Φ(ũ, ṽ) . (3.5)

Since the cross-ratios ũ and ṽ of the three-loop sub-integral are invariant under the exchange

of points x2 ↔ x3, x4 ↔ x5, we have

1

x2
27x

2
37x

2
39x

2
48x

2
49x

2
58x

2
78x

2
79x

2
89

=
1

x4
34x

2
25

Φ(ũ, ṽ) . (3.6)

In this way we find a different conformal integral which is equivalent to (3.1)

C2 =

∫
d4x5 . . . d

4x9 x4
13x

6
24x

2
35

x2
15x

2
16x

2
25x

2
26x

2
27x

2
36x

2
37x

2
39x

2
45x

2
48x

2
49x

2
56x

2
58x

2
78x

2
79x

2
89

. (3.7)
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Once again, there is only one region of the asymptotic expansions that contributes in the

OPE limit x12 → 0, but in this case it turns out to be a product of lower-loop two-point

integrals

C2||x12|�|x13| ∼ x
4
13

∫
d4x5d4x6

x2
15x

2
16x

2
25x

2
26x

2
56

∫
d4x7d4x8d4x9

x2
17x

2
18x

2
36x

2
37x

2
39x

2
78x

2
79x

2
89

∼ u−5+d(x2
13)−10+ 5d

2 P (2)(d)P (3)(d) . (3.8)

Since the expansion of these integrals is known, we are able to confirm that the spurious

scale and divergence cancel out, but also obtain the conformal integral in the OPE limit

C2||x12|�|x13| ∼
120 ζ(3)ζ(5)

u
. (3.9)

At the same time this fixes the finite term of the five-loop p-integral to be

c6 = 120 ζ(3)ζ(5) . (3.10)

While in this simple example it was not necessary to evaluate the integral C1, in most

conformal integrals there is no magic identity which leads to an expression without five-

loop p-integrals. In those cases, it is actually important to perform the reduction to

master integrals, so that the constraints obtained from convergence, conformal symmetry

and magic identites depend on the smallest possible set of variables.

This type of identities can be easily automatized providing a very large amount of con-

straints on the five-loop master p-integrals. As an example of the power of this method,

we checked that the data obtained was sufficient to match the expansions of p-integrals

obtained using integrability methods in [24]. Unfortunately, the constraints from confor-

mal symmetry presented above could not determine all master integrals that contribute

to the OPE coefficient of the Konishi operator. They have nonetheless enabled a huge

simplification of the problem, as one is left with the evaluation of only 8 single ε orders of

7 master integrals out of the original 169 masters.

The evaluation of the undetermined master integrals can be done using the code Hyper-

Int [25]. This package automatizes the computation of integrals that are linearly reducible.

The main idea is to write the Feynman parametrization of an integral and then find an

order of integration of the Feynman parameters such that at each integration step k

fk(αk+1; . . .) =

∫ ∞
0

dαk fk−1(αk;αk+1, . . .) , (3.11)

the function fk can be written as an hyperlogarithm in the next integration variable αk+1.1

An integral is linearly reducible is such an order exists, and luckily all master integrals

left had such property, so the method was applicable to them. The code works much

more efficiently for convergent integrals, but some of the masters needed were divergent.

A simple strategy to circumvent this problem is to find and evaluate convergent integrals

in d = 4 that include the required masters in their IBP reductions.

1See [25] for more details.
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4 From integrals to conformal data

The Konishi operator is the lowest dimension non-protected operator that appears in the

OPE expansion of two 20′ operators

O20′(x, y2)O20′(0, y1) ∼
(
protected

)
+ c20′20′K

y2
12

(x2)1−γK/2
K(x) + . . . , (4.1)

where γK and c20′20′K are the anomalous dimension and OPE coefficient of the Konishi

operator respectively.

We are interested in the 20 representation of the R-charge group SU(4) of the Konishi

operator. This can be obtained by an appropriate choice of the polarization vectors yi of

the external operators∑
n≥0

λnFn(xi) →︸︷︷︸
x1→x2, x3→x4

1

6x4
13

(
c2
K(a)u

γK
2 − 1

)
(1 +O(u) +O(1− v)) . (4.2)

The left-hand side of the equation can be computed in the OPE limit using the methods

explained above. In particular, we obtain

x4
13F

(5)(xi) →︸︷︷︸
x1→x2,x3→x4

−8(−7364−1812ζ3+414ζ2
3−2688ζ5−864ζ3ζ5−3717ζ7−5292ζ9)

−16log(u) (2971+468ζ3+27ζ2
3 +1080ζ5+1260ζ7)

+96log2(u) (161+27ζ3+45ζ5)−72log3(u) (37+6ζ3)

+252log4(u)− 54

5
log5(u) , (4.3)

while the lower loop F (n) were computed in [9, 12, 13]. The appearance of log terms

in F (5) can be easily understood from the right-hand side of (4.2) as coming from the

anomalous dimension of the exchanged operator. Thus, this procedure not only gives the

OPE coefficient but also the anomalous dimension. Since the latter has been known for a

long time [26] we were able to use it as a check of the correctness of our result. All the

lower loop conformal data can be obtained from the lower loop four-point function so we

are able to extract the OPE coefficient of the Konishi operator at five loops

(c2
20′20′K)(5) =−64(7364+1812ζ3−414ζ2

3 +2688ζ5+864ζ3ζ5+3717ζ7+5292ζ9) . (4.4)

It is interesting to note that all terms with π cancel out from the final result, which depends

only on odd ζ values, just like at lower loops. It is also curious to observe that multiple

zeta values are absent from the final result, even though they could have appeared starting

at transcendentality 8.

5 Conclusions

The description of three-point functions in N = 4 SYM using integrability is still very

recent. The proposal has passed several checks and this work will provide another crucial

test. Performing this five-loop computation within the Hexagon framework would be very

important as it would show if the procedure for the resolution of the singularity that first

appears at the four loop level continues to hold at higher loops.
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There are a couple of extensions to this paper that would be interesting to pursue. One

of them would be to obtain all four-point functions of half-BPS operators in planar N = 4

SYM. One possible approach to this problem is to combine both the integrability methods

and the Lagrangian insertion procedure [27]. Notice that in this setup the four-loop result

is still unknown, so it would be important to start with that.

Another possible direction is to obtain three-point functions for operators with higher

spin. It is trivial to apply the method of asymptotic expansions to expand the integrals

further in the cross ratios. The only hurdle is to perform the IBP reductions to express

the result in terms of master integrals, but this may still be feasible for the first higher

spin operators.

Finally, let us note that it is in principle possible to extend this result to higher loops.

The master integrals will not be known, but just like at five loops it might be possible to

bootstrap them from convergence and symmetry considerations. The main obstacle with

pursuing such a computation will rely on the ability to efficiently perform IBP reductions

at such high loop order.
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A Higher orders in expansion of master integrals

The public code FIRE picks a given integral that has to be reduced and tries to express it

in terms of simpler integrals. For example, an integral is simpler than another if it has a

lower number of denominators.2 Sometimes a full reduction consumes too many resources,

so it is useful to first reduce to integrals of twelve denominators and then parallelize a full

reduction of the resulting integrals. The trick described had to be used in the reduction of

the following integral

I =

∫
ddx5 . . . d

dx9

(2π)d/2
x2

58x
2
69x

2
79

x2
17x

2
18x

2
19x

2
25x

4
26x

2
28x

4
29x

2
56x

2
57x

2
59x

2
67x

2
68x

2
78x

2
89

. (A.1)

2Other criteria include the comparison of the sum of powers of denominators and numerators.
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It turns out that the expression of I in terms of master integrals was, by far, the most

complicated for all integrals analyzed. It is expressed in terms of 118 master integrals, but

the d-dependent rational factors multiplying each master introduced spurious poles in d−4

at a very high order. For example, the expansion of one of the relevant masters starts at

transcendentality 6

M =

∫
ddx5 . . . d

dx9

x2
8x

2
9x

2
15x

2
16x

2
17x

2
58x

2
59x

2
67x

2
69x

4
78

=
−36ζ2

3

ε
+O(ε) , (A.2)

but its coefficient in the reduction of I has a pole of order 8, which means that the finite or-

der of I depends on the ε8 order of the master integral M , where terms of transcendentality

15 first appear

I =

( ∞∑
i=−8

aiε
i

)
M + . . . (A.3)

The dots represent the contribution of the other master integrals to the reduction and the

constants ai are given by the IBP reduction.

This can become a serious bottleneck, since these high orders in ε cannot be obtained

with HyperInt or the constraints imposed by conformal symmetry. Fortunately, we know

that the finite order of I has at most transcendentality 9,3 so it suffices to find the tran-

scendentality 9 part of each integral at any required order.

The easiest way to achieve this is to find appropriate prefactors and combination of

integrals that make each order in ε have homogeneous transcendentality. Let us illustrate

this with a simple five-loop integral∫
ddx5 . . .d

dx9

(2π)d/2
1

x2
8x

2
9(x2

17)2x2
19(x2

58)2x2
59(x2

67)2x2
68

=−6ζ3

ε3
+

48ζ3− π4

10

ε2

+
4π4

5 −144ζ3−232ζ5

ε
+O(ε0) . (A.4)

Since three of the integration points are connected only to two propagators each, there are

three trivial integrations that can be performed using the formula4∫
ddx5

πd/2(x2
58)a(x2

59)b
=

1

εG(1, 1)

G(a, b)

(x2
89)a+b−d/2 , (A.5)

where the function G is given by

G(a, b) =
Γ(a+ b− d/2)Γ(d/2− a)Γ(d/2− b)

Γ(a)Γ(b)Γ(d− a− b)
. (A.6)

Our five-loop example effectively becomes a two-loop integral

G2(1, 2)G(1 + ε, 2)

ε3G(1, 1)3

∫
ddx8ddx9

(2π)d/2
1

x2
8x

2
9x

2
19(x2

89)1+ε(x2
18)1+2ε

. (A.7)

3This comes from analyzing the asymptotic expansions and the fact that the integrals are finite.
4This result was already known in the literature, it first appeared in [28].
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The two-loop integral with non-integer powers in the denominator has been studied in the

literature [29, 30] and it turns out to have homogeneous transcendentality at each order in

ε after dividing by (1− 2ε)

1

1− 2ε

∫
ddx8ddx9

(2π)d/2
1

x2
8x

2
9x

2
19(x2

89)1+ε(x2
18)1+2ε

= 6 ζ3 +
π4

10
ε+ 232 ζ5 ε

2 + ε3
(

113π6

189
− 320 ζ2

3

)
+ ε4

(
−32π4 ζ3

3
+ 7327 ζ7

)
+ ε5

(
24331π8

10500
+

1944 ζ3,5

5
− 18220 ζ3 ζ5

)
+ ε6

(
−2930π6 ζ3

63
+

27916 ζ3
3

3
− 5041π4 ζ5

15
+

676106 ζ9

3

)
. (A.8)

The same strategy can be applied for all other masters in the reduction of I which have

easy integrations. For the more complicated cases where there are no easy integrations, one

can try to find a prefactor directly for the master integral. We have started with the ansatz

polynomial in ε

(1− 2ε)4
(A.9)

and were able to find a numerator for all required integrals. In order to check the validity

of the result, we found other integrals of homogeneous transcendentality and observed that

the results were independent of the basis chosen.

Another nontrivial check we performed was that the divergent part of I matched the

expansion obtained from conformal symmetry with the methods of section 3.1.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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[12] V. Gonçalves, Extracting OPE coefficient of Konishi at four loops, JHEP 03 (2017) 079

[arXiv:1607.02195] [INSPIRE].

[13] B. Eden and F. Paul, Half-BPS half-BPS twist two at four loops in N = 4 SYM,

arXiv:1608.04222 [INSPIRE].
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